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Assessment of Deep Learning Techniques for Fault Detection and Diagnosis in 

Thermal Systems 

 

When evaluating the performance of thermal systems, keeping a temporal record of its variables, 

such as temperature and flow, is useful to obtain relevant information of its operational conditions. 

Reliability studies of equipment and components are a fundamental step to reduce maintenance 

costs and extend the useful life of said systems. Identifying anomalous behavior can also be used 

to detect changes in consumption patterns or sudden degradation of components in the system. In 

recent years, various Deep Learning (DL) techniques have been successfully applied to the 

identification and quantification of damage in mechanical systems. Hence, it is of interest to assess 

their application to performance diagnosis in thermal systems. 

Solar hot water systems are viable and sustainable energy sources for domestic and industrial 

needs, and although not complex in their operation, they require a correct integration and regular 

maintenance measures to effectively reduce the use of fossil fuels.  Monitoring, however, elevates 

the costs of these systems, and thus, strategic decisions must be made to select the most relevant 

components in the system to be observed. Traditionally, temperature and water flow in solar 

collectors, pumps and heat tanks are the main variables analyzed under different meteorological 

conditions. 

The presented thesis consists on the assessment of different DL techniques for the development of 

an anomaly detection model. The model is applied to a solar thermal system for water heating 

located at the Beauchef 851 building, which is analyzed and then simulated with TRNSYS 

software. This representation allows the generation of large amounts of synthetic data based on 

measurable variables such as temperature, flow, and environmental conditions. This is used to 

represent operational and fault induced states.  

Deep Learning techniques are proposed for the analysis of sequential information corresponding 

to the data generated through the TRNSYS simulation. Different techniques are evaluated, such as 

Deep Recurrent Neural Networks, to assess their performance for temperature prediction under a 

variety of configurations depending on the previous time-window provided and the horizon of 

evaluation. Furthermore, the precision of these predictions is then used to develop a detection 

method of anomalous behavior in consumption profiles, solar collector efficiency and pump 

operation. The increase of the temperatures registered at the solar collector’s outlet due to fault 

induced water-draw patterns is recognized as an anomaly with a mean accuracy of 85% for the 

samples studied. The decrease of the same registered temperatures due to heat underproduction in 

the solar field yields an accuracy of 70%. Even though the anomaly detection results obtained are 

highly sensitive to the simulated conditions, the assessment of different techniques shows potential 

to improvement if complemented with experimental measurements and validation.  
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Evaluación de técnicas de Aprendizaje Profundo para la detección y 

diagnóstico de fallas en sistemas térmicos 

 

A la hora de evaluar el desempeño de sistemas térmicos, mantener registros temporales de 

temperatura y caudal permiten obtener información sobre el rendimiento y estado de operación del 

sistema. Estudios de confiabilidad en equipos y componentes son un proceso fundamental para 

reducir costos de mantención y aumentar la vida útil de estos. La identificación de 

comportamientos anómalos se puede utilizar para detectar variaciones inesperadas en patrones de 

consumo o en la degradación de componentes en el sistema.  En los últimos años, diversas técnicas 

de aprendizaje profundo se han aplicado de manera exitosa en la identificación y cuantificación de 

daño en distintos sistemas mecánicos. Por lo anterior, es de interés evaluar su uso para el análisis 

de desempeño en sistemas térmicos, en particular, técnicas especializadas para el análisis de series 

temporales.  

Los sistemas solares térmicos son una fuente de energía viable y sustentable para aplicaciones de 

agua caliente a nivel domiciliario e industrial. Su operación requiere una correcta integración y 

mantención para efectivamente reducir el consumo de combustibles fósiles. Sin embargo, un 

sistema de monitoreo aumenta los costos del sistema, por lo que se deben tomar decisiones 

estratégicas para seleccionar componentes críticos a los cuales observar. Temperaturas y caudales 

en colectores solares, bombas y acumuladores de calor son las principales variables para analizar 

bajo diferentes condiciones meteorológicas. 

El presente Trabajo de Título consiste en la evaluación de distintas técnicas de Aprendizaje 

Profundo para el desarrollo de un modelo de diagnóstico de detección de anomalías en sistemas 

térmicos.  El caso de estudio utilizado es el sistema de agua caliente solar del edificio Beauchef 

851, el cual es analizado y simulado con el software TRNSYS. A través de esta representación, es 

posible generar grandes cantidades de datos tales como temperatura, flujo y las condiciones 

ambientales para representar condiciones nominales y anómalas inducidas en el sistema. Se plantea 

utilizar técnicas de aprendizaje profundo para el análisis de información secuencial correspondiente 

a los datos generados a través de la simulación en TRNSYS.  

Se evalúan diferentes técnicas para el análisis temporal como, por ejemplo, Redes Neuronales 

Recurrentes Profundas para predicción de temperaturas bajo variadas configuraciones y horizontes 

de evaluación. Esto, con el fin de desarrollar un método para la detección de anomalías en patrones 

de consumo, eficiencia de los colectores solares y operación de las bombas. El aumento de la 

temperatura registrada a la salida del campo solar causada por una alteración en la demanda de 

agua caliente es identificada como anomalía con una exactitud de un 86% en las muestras 

estudiadas. A su vez, la detección de la reducción de la misma temperatura debido a anomalías 

inducidas en la eficiencia del colector obtiene una exactitud de un 70%. A pesar de la sensibilidad 

del modelo de detección, estos resultados son prometedores ante la posibilidad de integrar 

mediciones y validaciones experimentales de este.  
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Chapter 1  
 

Introduction 

Early fault detection is an important step in improving the availability of any equipment or 

mechanism. This allows to take appropriate maintenance measures in order to prevent further 

degradation and unexpected component failure. In the case of energy systems, monitoring variables 

which enable an in-depth analysis of the operational conditions constitute a fundamental step to 

improve their performance, by adjusting control systems or correcting integration schemes to 

increase their efficiency. 

 

Improving the performance and reliability of renewable energy systems, seeking to decrease their 

investment and operational costs, is a high priority for scientists and engineers since it represents 

the biggest entry barrier to a market currently dominated by fossil-fuel based energy sources [1]. 

In the search of reliable, flexible and renewable energy sources, energy storage has been a focus of 

investigation in the recent years, such as lithium-ion batteries and molten-salts for solar 

photovoltaic and concentrating solar power plants, respectively. Nevertheless, other alternatives to 

increase the dispatchability of renewable energy sources reside in reliability analysis and fault 

diagnostics systems, which have been applied for decades in different mechanical systems in which 

monitoring is available. Timely identification of anomalies derived from malfunctions and failure 

in a system’s components can increase operational time and energy outputs, for instance, in thermal 

plants where pressure and temperature are automatically controlled.  

 

Fault diagnostics can be achieved through various techniques, from simulation and model-based 

approaches to data-driven methods. Machine Learning (ML) introduced a kind of data-driven 

models which rely less importantly on the analysis and simulation of the studied system. For 

instance, Artificial Neural Networks (ANN) have already been used to analyze thermal systems; 

particularly refrigeration, heat pumps, and solar thermal. Likewise, performance prediction and 

detection of anomalies during operation have been approached using ANN, with successful results, 

as described in Section 3.2 .  

 

The growing successful cases in applying Deep Learning (DL) techniques for risk and reliability 

assessment in mechanical systems may offer an additional development path for reliability 

assessment in thermal systems. In recent years, modern architectures such as Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNN) have 

been successfully applied to fault detection in rotary machinery [2] and for the estimation of 

Remaining Useful Life (RUL) in lithium-ion batteries [3]. Thus, the use of deeper architectures 

designed to analyze temporal dependencies, such as RNN, could lead to achieve more precise 

results, help to understand periodic behavior, and evaluate relationships between the components 

in a thermal system.  
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1.1 General Background 

During the last decades, the pursue for viable alternatives for a cleaner and diversified energy 

matrix has led to the study of new technologies, seeking to meet the growing energy demand 

through more efficient means and with lower environmental impact. While fossil fuel sources are 

traditionally burned for electricity generation and thermal demands, renewable energy accounts for 

only 13.4 % of the worldwide energy consumption [4]. Reducing world-wide fossil resources 

consumption is not only important from an environment-friendly point of view, but also from an 

economic standpoint. As its prices are highly sensitive to political struggles, investing in local 

energy generation is an opportunity for countries without natural access to fossil fuels to further 

develop. 

 

In 2016, electricity generation from fossil fuels accounted for more than 65% of total world gross 

electricity production [5]. During the same year, almost 40% of global energy-related 𝐶𝑂2 

emissions came from water and space heating in buildings and for industrial processes.  In this 

context, the scientific community has devoted significant efforts in promoting research on 

alternative energy sources, aiming to replace the utilization of fossil fuels and decarbonizing energy 

generation [6]. These efforts are applied to meet either domestic, industrial or transportation energy 

demands. On one hand, wind and solar photovoltaic energy systems have grown significantly 

during the past two decades and as the technologies’ cost continues to lower, they have become 

cost-effective when compared to traditional electricity generation methods. On the other hand, solar 

thermal systems are a viable alternative to supply thermal demands in locations where solar 

radiation is available. There are many widespread solar thermal solutions with potential to deliver 

energy loads for small and large-scale applications. In such systems, solar collectors are used to 

absorb solar radiation and convert it into useful heat, transported by a working fluid. This heat can 

then be used either to generate electricity, deliver heat to industrial processes, or for sanitary water 

demands.   

 

Solar Hot Water (SHW) systems can be used to directly supply hot water for residential or 

commercial needs. They are frequently coupled with thermal storage, allowing to match the solar 

radiation availability and different demand profiles, which are commonly higher during non-

insolation hours. As SHW systems are usually combined with auxiliary heating, such as gas or 

electrical boilers, an additional difficulty exists to correctly identify faults in a particular 

component. For example, if the hot water coming from the solar thermal system is not reaching the 

desired temperatures, the auxiliary system will provide the required energy. Even if the systems’ 

costs are frequently inspected, no trustworthy information can be obtained of the systems’ 

performance and energy production unless temperature and flow values are monitored. Therefore, 

faults may go unnoticed until the components are too degraded for simple maintenance procedures, 

elevating the overall costs and complexity of the installation. This can also have a negative effect 

on consumers’ choices, distancing them from self-supplied energy sources and technologies in 

favor of more reliable and traditional alternatives.  
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Fault Diagnosis Systems (FDS) have been designed to detect, localize and assess damage present 

in a system. These methods have different approaches: qualitative or quantitative, depending on 

the knowledge there is of the system. These may also have a model-based or data-based approach. 

Model-based diagnosis systems heavily rely on expert knowledge of the installation and the 

underlying physics of failure that can exist in it. Thus, it is a high-cost approach which could deter 

investment if security is not a prime issue. For instance, thermo-economic methods combine 

concepts of exergy and economy to model the system, contrasting the predicted state of it with 

monitored data through complex thermodynamic analysis and economic assessment. Instead, data-

driven models rely on specific monitored data and the operational history of the system. 

 

Nowadays, together with the development of less expensive monitoring technologies, the 

availability of data such as temperature, pressure, vibration, rotational speed and other measured 

variables are used to study the health state of a system. As the computational power to analyze this 

information has grown, new techniques have been studied and developed aiming to get a better 

insight about the provided data. Machine Learning, as mentioned above, has been applied to a wide 

variety of problems and several different approaches have been developed depending on the 

quantity and quality of the available information of a system.  

 

1.2 Motivation  

Solar Hot Water systems, as well as other renewable energy sources, have been commercially 

available for decades, their popularity varying through the years depending on the economic 

scenario of fossil fuels and the influence of energy policies around the world. Since 2010, a tax 

franchise implemented in Chile grants a tax reduction for constructor companies who include SHW 

systems in new residential buildings, which value equals the installation and maintenance costs of 

the system. Thus, up to December 2017, the number of houses with solar collectors had risen over 

112,000 under this policy, additional to the growth of the private sector [7].  

 

However, the real impact of the increasing number of solar installations has not been quantified 

directly. Indirect estimations, such as the reduction of fossil-fuel consumption, do not contain 

enough information to assess if the SHW systems are working correctly. This is particularly 

important as malfunctions in the solar collectors can be hidden by the auxiliary heating system and 

thus can go unnoticed until complete failure. SHW systems are a commercially proven, efficient 

alternative for water heating for residential and commercial applications, reducing energy 

consumption and their emissions [8], but face performance issues when not correctly designed or 

integrated appropriately. Continuous inspection, monitoring and fault detection are of great 

importance for a good long-term performance of solar thermal systems [9].  

 

Prognosis and Health Management (PHM) is an important component in modern engineering 

systems, in which algorithms are designed and used to detect anomalies, diagnose faults and predict 

future states of the system, for instance, the RUL. In turn, these can increase the system availability 
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and performance by managing maintenance issues [10]. In the past decades, there has been a 

proliferation of different approaches for this purpose, coupled with the development of Machine 

Learning applications in engineering systems to assist decision-making analysis. Data-driven 

approaches (DDA) have made data collection and analytics within diagnostic technologies 

essential components and high priority research topics [11].  

 

This dependency on monitored data is not always beneficial. The lack of historical operational and 

failure data limits the wide range of techniques that can be applied for the system’s health 

management. However, if the design conditions are known but historical operational data is scarce, 

model-based approaches are a viable alternative to study the system. Although, instead of basing 

the performance diagnosis system on a physical model of the system, it can be used as a method to 

construct artificial operational data as an initial approach to health management, as done in [12], 

[13]. This approach potentially reduces the time expended to obtain useful information of the 

system. Hence, even if failure data is not available, early anomaly detection is possible to 

implement if the system is continuously monitored.  

 

Deep Learning techniques for PHM have been successfully applied to many engineering systems. 

Notable examples of rotary mechanical components and electrical batteries have been analyzed 

through measurable variables such as vibrations, acoustic emissions, temperature, state of charge 

and state of health, among others [3], [14], [15]. However, there is a limited amount of research 

which approaches performance diagnosis in thermal systems with these new techniques.   

 

The SHW system installed on the roof of the western tower at the Beauchef 851 building at the 

Faculty of Physical and Mathematical Sciences (Universidad de Chile) is studied under this 

perspective. As part of the automated climatization system of the building, the components of the 

renewable subsystem interact with other traditional equipment to supply different heating and 

cooling loads present at the university building. However, there is little information about the 

performance of this subsystem. Therefore, the development of a diagnosis framework is a useful 

tool to study and assess this system, with the goal of increasing its availability and effect on the 

building’s energy consumption.  

 

1.3 Objectives and Scope 

From the general context surrounding SHW systems and Deep Learning applications in reliability 

studies described above, the objectives and scope of this thesis are presented in this section.  

 

1.3.1 General Objective  

The main objective of this thesis is to assess Deep Learning techniques for the development of an 

anomaly detection and performance diagnosis framework applied to a thermal system. 
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1.3.2 Specific Objectives 

To achieve the general objective, the following tasks must be completed: 

 

• Characterize the performance of the solar hot water system at the Beauchef 851 building. 

 

• Simulate the SHW system in TRNSYS software [16] to generate fault-free and fault-

induced operational synthetic data.  

 

• Evaluate Deep Learning applications for performance prediction of solar thermal systems. 

These include: ANN, RNN, and LSTM.  

 

• Develop a prediction-based framework for anomaly detection in solar thermal systems.   

 

 

1.3.3 Scope 

The scope of this work, developed during the spring semester of 2018, is the assessment of three 

Deep Learning techniques for an anomaly detection framework, based on time series prediction in 

thermal systems. This is applied to a case study of a solar thermal hot water subsystem of campus 

using TRNSYS software to generate data that is not limited to time restrictions. Due to 

malfunctioning in the system and lack of reliable experimental measurements, the calibration and 

validation of the TRNSYS model is left outside of the scope of this work, although the model is 

constructed based on the original design of the system. For this reason, the TRNSYS model is a 

simplified version of the installed solar system and in the future requires experimental validation 

for an implementation of the anomaly detection framework. From TRNSYS software, temperature 

and flow values are extracted under meteorological conditions from April 7th to September 22nd, 

2018.  

 

From the generated databases, different architectures (ANN, RNN, LSTM) are implemented to 

assess their precision and accuracy to predict time-series using a many-to-one approach and 

extended prediction horizons. The construction and training of the models are implemented in 

TensorFlow [17]. Fine-tuning of certain hyperparameters, such as learning rates and the application 

of regularization techniques are not included in the analysis, emphasizing on principal 

characteristics such as number of units, layer and activation functions of the models. This work is 

focused on the prediction of two relevant temperatures in the solar thermal system and two 

anomalous behaviors due to induced faults developed in the TRNSYS model of the system. The 

anomalies are detected through the study of the prediction errors of the models trained with healthy 

data when presented with fault-induced measurements.  

 

Results are presented in tables and figures for the three main themes of this work: construction of 

the TRNSYS simulation, training and test for different DL framework configurations and the 

implementation of anomaly detection based on time-series reconstruction errors.  
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1.4 Outline  

The remaining of this document is structured as follows: Chapter 2 contains a theoretical 

background review covering crucial aspects of SHW systems and DL applications in systems’ 

health management. Chapter 3 is a review of related research, focusing on different FDS and their 

applicability to health management. Following the theoretical background of this work, the 

methodology is presented in Chapter 4. Chapter 5 details the SHW system, available information 

and simplifications applied to the construction of the TRNSYS model. Chapter 6 refers to the 

design and selection of DL techniques applied to the studied case. Chapter 7 contains main results 

and analysis. Finally, comments, conclusions and future work are stated in Chapter 8.    
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Chapter 2  
 

Background  

In this section, the specific background is presented and discussed, concerning components and 

possible failures during operation of solar thermal systems. This is followed by a brief description 

of Deep Learning theory, definitions, techniques and the applications of modern architectures.  

 

2.1 Solar Thermal Systems 

SHW systems can be applied for residential, commercial and even for industrial use to supply 

thermal demands. At least 20% of consumed energy in an average household is used for water 

heating [18], and thus, the study and optimization of this technology is a significant step in the 

quest to reduce dependency on fossil-fuels. A general scheme of an indirect heating system is 

presented in Figure 1 [19]. The main component is the solar collector, which acts as a heat 

exchanger between the incident solar radiation and a working fluid. To supply the thermal demand, 

the hot water may be directly dispatched from the solar collectors to the plumbing system or 

indirectly through a heat exchanger. In this figure, an indirect heating circuit is shown. Here, the 

primary circuit transports heat absorbed in the solar collector towards the hot water tank, through 

a coil heat exchanger immersed in the tank. From this tank, the hot water is dispatched as required. 

Additionally, an auxiliary heater in the form of an immersion heater inside the hot water tank is 

installed, allowing the secondary circuit exiting the tank to meet the hot water demand when the 

solar resource is low or not available. A brief description of the main components in a SHW system 

are discussed in this section.  

 

2.1.1 Solar Collectors 

Solar collectors’ basic operating principle consists on the heating of a fluid with the incident solar 

radiation on a surface. To meet low temperature demands required by the target system, non-

concentrating flat plate or evacuated tube collectors are commonly used. To increase the heat 

gained by absorbed radiation while reducing heat loss towards the environment, specific materials 

are selected by their optical properties for the construction of these collectors. Non-concentrating 

solar collectors can use both beam and diffuse radiation and thus, do not require tracking 

mechanisms to follow the sun’s path [20]. Thus, the solar geometry of the installation is determined 

by the tilt angle and collector’s orientation (azimuth). 

 

Applications range from solar water heating, building heating, air conditioning and industrial 

process heat. These can be installed as passive systems or as forced-convection systems, such as 

the one presented in Figure 1. For annual hot water production, the optimum tilt angle is equal to 

the latitude of the location, with angle variations of ±10° to ±15° depending on the application [21].  
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These stationary technologies generally operate at maximum temperatures around 90°C but can 

reach temperatures above 150°C when increasing the solar collector system’s pressure or using 

other thermal fluids instead of water. At a given pressure, the minimum and maximum operating 

temperatures are limited by the freezing and boiling points of the working fluid, respectively. The 

heat transfer mechanism between the heated work fluid and the target system can be of two types: 

 

• Direct heat transfer: the same working fluid that is transported in the interior of the tubes is 

the one delivered as a source of heat to the system 

 

• Indirect heat transfer: if the ambient temperatures can reach the freezing temperature of the 

working fluid at the nominal pressure of the system (for example, under 0°C for water), an 

indirect heat transfer configuration is employed. 

 

Both flat plate collectors (FPC) and evacuated tube (ETC) collectors are constructed with a 

transparent cover and an absorber surface, along with thermal insultation and fluid tubes designed 

for their specific geometry depending if the installation is of natural or forced convection. Solar 

radiation passes through the cover, which is transparent for shortwave radiation, towards the 

absorber which present high absorptivity and low emittance. The cover is opaque to the longwave 

thermal radiation reflected and emitted from the absorber, effectively capturing heat within the 

collector. Heat is then transmitted to the fluid by the absorber through different geometries as 

shown in Figure 2 and Figure 3 for FPC and ETC collectors, respectively.   

 

 

Figure 1: Solar Hot Water system diagram. Adapted from [19]. 
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To effectively compare the efficiency of different solar collectors, boundary conditions such as 

ambient temperature and incident radiation must be taken into account. Thus, test and performance 

indicators, such as the efficiency curves, are defined by ISO 9806 and EN 12975 standards, among 

others [22]. Parameters such as the total area of absorption, rated flow, efficiency coefficients and 

Incidence Angle Modifiers (IAM) are fundamental to characterize a solar collector and its expected 

performance under different weather conditions. 

 

 

 

The analysis of the collector’s energy balance shows distribution of incident solar energy into 

useful energy gains, thermal losses and optical losses. The equation which describes this balance 

in a FP is shown as follows: 

 

 𝑄𝑢  =  𝐴𝑐 𝐹𝑅[𝑆 − 𝑈𝐿(𝑇𝑖 − 𝑇𝑎)] (1) 

 

The initial available solar radiation is reduced by optical losses, which is determined by the physical 

properties of the collector. The effectively absorbed solar radiation per unit area 𝑆 is further reduced 

by the thermal losses to the surroundings through conduction, convection and infrared radiation 

 

Figure 2: Flat Plate Collector General Geometry. 

 

 

Figure 3: Evacuated Tube Collector General Geometry. 
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mechanisms, represented in Figure 4. These losses, combined in the overall thermal loss coefficient 

𝑈𝐿, also depend on the difference between the fluid inlet temperature 𝑇𝑖 and ambient temperature 

𝑇𝑎. This implies the existence of a maximum useful energy gain between the balance of available 

energy and thermal losses. Assuming steady state, the useful heat gains through an area 𝐴𝑐 is the 

difference between the absorbed radiation and thermal losses, 𝑄𝑢.  

 

The heat removal factor 𝐹𝑅 is used to express the relation between the actual useful energy gain to 

the ideal situation in which the whole collector was at a temperature of 𝑇𝑖, 

 

 𝐹𝑅 =
�̇� 𝐶𝑝(𝑇𝑓𝑜

− 𝑇𝑓𝑖
)

𝐴𝑐[𝑆 − 𝑈𝐿(𝑇𝑓𝑖
− 𝑇𝑎)]

 (2) 

  

Where 𝑇𝑓𝑖
 and 𝑇𝑓𝑜

  are the inlet and outlet fluid temperature, �̇� is the total collector flow rate and 

𝐶𝑝 is the specific heat capacity of the fluid.  

 

 

 

From the development and analysis of Equation (1), the efficiency of a solar collector can be 

described by the following expression.  

 𝜂 = 𝐹𝑅𝜏𝛼 − 𝐹𝑅𝑈𝐿 [
𝑇𝑖 − 𝑇𝑎

𝐺
] (3) 

 

 

Figure 4: Solar thermal collector heat flow diagram. 

 



 

- 11 - 

 

Here, the first term expresses the heat gain of the system, which depends on the heat removal factor 

𝐹𝑅 of the collector and its optical properties: transmittance τ and absorptivity α. The second term 

refers to the heat losses in the system. This also depends on 𝐹𝑅 and the overall loss coefficient 𝑈𝐿 

depending on the geometry and material choice, the temperature difference between two points in 

the collector and the incident global radiation 𝐺. 

 

The collectors’ efficiency curves expressed in Equation (3) may be presented in another format by 

the manufacturer, as shown below. Both equations represent the difference between the heat gains 

and losses in the system. In this case, 𝑎0 represents the optical efficiency, while 𝑎1 and 𝑎2 are the 

first and second order loss coefficients, respectively.  

 

 𝜂 = 𝑎0 + 𝑎1 ⋅
(𝑇𝑖 − 𝑇𝑎)

𝐺
+ 𝑎2 ⋅

(𝑇𝑖 + 𝑇𝑎)2

𝐺
 (4) 

 

 

2.1.2 Evacuated Tube Solar Collector 

The Evacuated Tube Collectors (ETC) consist of a series of double glass tubes with an internal 

vacuum cavity between them, as shown in Figure 3. Inside the inner tube or absorber, the working 

fluid is heated by the incident radiation, while the vacuum and the optical properties of the outer 

tube reduce heat loss to the environment. Thus, even though the collectors’ cost is higher and, as 

the FPC, its efficiency diminishes with larger temperature differences between the collector and 

the environment, ETC perform better than flat plate collectors under cold ambient temperatures 

[23]. This enables the system to reach higher temperatures and supply a wider range of thermal 

demands.  

 

As mentioned above, ETC can also be used for direct or indirect heat transfer. Heat extraction can 

be through a U-pipe, heat pipe or direct liquid contact [24]. An alternative for indirect heat transfer 

in ETC is the use of Heat Pipes, small copper tubes placed in the interior of ETC. Inside the Heat 

Pipe a mixture of water and refrigerant is used as working fluid, increasing the boiling point and 

reducing melting points. In this case, the incident solar radiation can evaporate the fluid within the 

pipe and then its latent heat is transferred to the solar fluid, as presented in Figure 5 [25]. There are 

many different configurations for the position of the Heat Pipe, its attachment to the outer tube and 

the entry of the phase-changing fluid to it.  

 

However, the highest temperatures that can be reached in a solar collector are limited by its 

stagnation temperature, a point where the heat gains are equal to the environmental losses. Its value 

varies with the design and materials used, and for ETC it is generally found between 180°C and 

250°C. To avoid reaching this point, heat dampening mechanisms can be integrated to the system, 

avoiding overpressure during the warmest months of the year.  
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2.1.3 Other Components 

As shown in Figure 1, another main component of a SHW system is a thermal storage unit, 

represented by a hot water tank or a heat accumulator. This device has the objective of dampening 

temperature changes in the system and allowing to dispatch energy demands during the hours of 

the day when incident radiation decreases. 

 

Also, due to the variability and uncertainty associated with the solar resource, it is of interest that 

a SHW is coupled to an auxiliary heat generation system, ensuring that the energy demands are 

met even in cloudy days. In Figure 1, this is represented by a submerged heater in the storage tank, 

however, the auxiliary heat source can be a natural gas boiler or heat pumps, among other 

conventional devices. 

 

For systems of higher complexity, the use of heat exchangers is required. A frequently used 

configuration are plate heat exchangers, which are compact devices presenting high heat transfer 

areas in relation to their size. Other required components are centrifugal pumps and different valves 

used to control the flow and pressure differences which naturally occur within the system. 

 

Finally, it is of interest to integrate an automatic control system that regulates the operation of the 

solar thermal system based on solar radiation availability, working hours, temperatures and 

pressures measured in its components.  

 

 

Figure 5: Heat Pipe Evacuated Tube Collector. Adapted from [25]. 
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2.1.4 Faults and Failures During Operation 

In solar thermal systems, a significant difficulty is to identify the existence of alterations or 

anomalies in their operation, since they are usually coupled to auxiliary heat-generating systems. 

Heat underproduction may be associated with unexpected meteorological conditions, degradation, 

or failure in one or more of its components [9], [26]. For example: 

 

• Pump and valve failures. The most common sensors employed are temperature and 

differential pressure sensors. Therefore, due to the limited availability of flow meters, no 

other relevant information about the flow can be extracted. 

 

• Heat loss. Degradation of thermal insulation components can only be determined by strict 

monitoring of surrounding temperatures and heat fluxes. This applies to heat exchangers, 

hot water tanks, piping, among others. 

 

• Collector failure. Depending on the type of solar collector, many different failure modes 

can be observed. In the case of evacuated tube heat pipe collectors, pressure loss or over-

pressure may result in fracture and consequent evaporation and leakage of the internal 

working fluid. Heat loss from insulation degradation is also possible. 

 

• Issues with the control system may also arise. Faulty temperature sensors or actuators, 

sensors placed in inadequate positions, or problems with their internal configurations may 

obstruct heat production and effective energy transfer to supply the hot water demand. 

 

These examples of failures during operation can occur unnoticed if the auxiliary circuit is not 

monitored. Several authors have analyzed different approaches for identifying and diagnosing the 

health of thermal systems, some of which are reviewed in section 3.2  
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2.2 Machine Learning and Deep Learning  

Since the 1990s and early 2000s, Machine Learning (ML) techniques became a popular method for 

data analysis and decision-making tools. Based on the available information, a ML model can learn 

from the data, extracting abstract relationships within the studied variables to classify or predict 

future values. Many Prognosis and Health Management (PHM) studies have been addressed with 

ML applications. As monitoring grew as a widespread tool in security management and 

computational hardware advances allowed massive and complex data analysis, engineers began to 

study and implement such algorithms in different areas. As mentioned before, ML addresses 

challenges such as classification and regression, seeking to recognize and replicate hidden patterns 

within available data. For instance, such tasks can be to classify the health state of a system or to 

obtain estimated future values of a desired variable.  

 

At present, a variety of ML techniques exist, designed for specific purposes and datasets. To learn, 

a parametric algorithm must adjust its parameters to the training data provided. This is done through 

the minimization or maximization of a cost function, which depends on the task at hand. The 

performance of a model will be affected by the architecture or hyperparameters selected 

beforehand, as well as the quality of the training data. The learning process or training depends on 

the previous knowledge of the analyzed data: while Unsupervised ML has no previous information 

on how the data is related, Supervised ML methods require input data and corresponding labels to 

complete the desired task. 

 

2.2.1 Neural Networks  

Artificial Neural Networks (ANN) are a common technique used in both Supervised and 

Unsupervised ML for both Regression and Classification. These are roughly inspired in how 

biological neurons function, where an external stimulus is propagated through the neural network, 

from sensory to response units. A basic structure is shown in Figure 6 [27], from where the 

weighted sum of input signals is used to determine the desired output of each neuron.  

 

The basic mathematical representation of an ANN considers a series of matrices and vectors 

(weights and biases) representing the transitions between the input, hidden and output layers of a 

network. In this case, the training of the model consists of an optimization process which seeks to 

minimize the error of the predicted output when compared to the label of the original data. This is 

usually done by propagating error from the output to the input layers, adjusting the weights and 

biases within each layer to correctly represent the given data (W and b in Figure 6, respectively). 

This is known as backpropagation, by which chain rule and gradient descent adjust these 

parameters as presented by Rumelhart et. al. [28]. Then, after the NN is trained, it can interpret 

new unseen data input and replicate the learned behavior. The accuracy of the model will depend 

on the chosen architecture hyperparameters, the nature of the data and learning process.  
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This can be summarized in the following equations where 𝑦 is a vector of known labels and 𝑦𝑛 the 

predicted output. Frequently, the mean square error (MSE) is used as the target function to be 

minimized in regression tasks. The output of the network 𝑦𝑛 depends on the input data 𝑿 and the 

weights and biases of each layer. A non-linear activation function σ is applied between layers to 

transmit information according to its nature, for example a sigmoid, tanh or ReLU function. 

 

 𝑚𝑖𝑛(𝑓) = 𝑀𝑆𝐸(𝑦𝑛, 𝑦) (5) 

   

 𝑦𝑛 = σ(𝑊𝑡𝑿 + 𝑏) (6) 

 

2.2.2 Deep Neural Networks  

Since the design of basic ANN, several architectures have been developed to tackle a variety of 

tasks. In this context, Deep Learning approaches have become a widely-used tool in several 

applications of ML tasks, such as object detection, speech recognition and replication [29]. These 

architectures have matured to approach highly complex and non-linear tasks.  

 

For instance, in Multi-Layered Perceptron (MLP), depth is added to the basic ANN network by 

stacking several hidden layers, as shown in Figure 7, where consecutive non-linear mathematical 

operations are applied to each layer. Equation (6) is then rewritten considering the output of each 

layer ℎ𝑖 depends on the output of the previous layer ℎ𝑖−1.  

 

 ℎ𝑖 = 𝜎(ℎ𝑖−1
𝑇 𝑊𝑖 + 𝑏𝑖) (7) 

 

 

Figure 6: Basic structure of a Feed Forward Neural Network. Adapted from [27]. 
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Other complex deep architectures, such as Convolutional Neural Networks (CNN) and Recurrent 

Neural Networks (RNN), have been designed to focus on specific feature extraction techniques for 

spatial and temporal relationships. Due to the large number of parameters the deeper models require 

to represent the data, big datasets need to be analyzed to correctly train the model. This, as well as 

the complex mathematical operations involved, such as convolutions or internal cycles, increase 

training and testing time. For this reason, the use of DL algorithms has become popular during the 

last decade, since the increased development and accessibility to GPU and other computational 

components at lower costs. 

 

 

 

The success of deep architectures resides in their ability to obtain higher levels of abstraction from 

the input data.  This property enhances its feature extraction capabilities and, due to its hierarchical 

architecture, it also helps the model converge faster to a good solution. Thus, Deep Neural 

Networks (DNN) have proven to be more powerful to address specific ML tasks than single-layered 

ANN.  

 

2.2.3 Recurrent Neural Network 
 

Deep Learning frameworks have been used to model and predict different physical phenomena, 

such as weather patterns, health management and medical diagnosis, among others [11], [30], [31]. 

Within the most common applications, RNN are particularly well adapted to analyze time series 

[29]. These models are, in principle, able to create and process memories of arbitrary sequences of 

input data, mixing sequential and parallel information processing with efficiency [32].  

 

A major drawback of standard neural networks is the underlying assumption that training and test 

examples are independent. Thus, even though DNN have reached outstanding sequencing results 

without directly modeling time, it has limited power over long-range dependencies [33]. However, 

 

Figure 7: Example of a NN structure. 
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in an RNN, each unrolled layer will receive the current input data 𝑥(𝑡), as well as the previous 

hidden state of the node ℎ(𝑡 − 1). The output 𝑦𝑝𝑟𝑒𝑑(𝑡) will depend on the hidden value of the 

current time step ℎ(𝑡) and an activation function 𝑔. This is depicted in the following equations, 

while the unfolded temporal structure is presented in Figure 8. 

 

 ℎ(𝑡)  =  𝜎(𝑊𝑥  ⋅ 𝑥(𝑡)  +  𝑊𝑟  ⋅ ℎ(𝑡 − 1)  +  𝑏ℎ  (8) 

   

 𝑦𝑝𝑟𝑒𝑑(𝑡) = 𝑔(𝑊𝑦
𝑡 ⋅ ℎ(𝑡) + 𝑏𝑦) (9) 

 

It is observed in Figure 8 that each layer in the unfolded network will represent a time-step with 

shared weights for input, hidden and output data (𝑊𝑥, 𝑊𝑟 , 𝑊𝑦) and biases in hidden and output 

layers (𝑏ℎ, 𝑏𝑦) (See equations (8) and (9)). Thus, the learning algorithm must be modified to a 

backpropagation through time (BPTT), which will operate similarly to the gradient descent to 

adjust the network's variables [34].  

 

 

 

However, for long-range dependencies vanishing or exploding gradients may appear when 

propagating errors towards the inner layers [35]. These optimization problems increase the 

computational demand of using these techniques. While truncated backpropagation through time 

(TBPTT) offers a partial solution, setting a maximum number of steps for the propagation, it is still 

limited for long-range dependencies. Thus, other architectures, as well as the use of regularization 

techniques, have been proposed to address this challenge.  

 

For instance, both Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) introduce 

a memory cell designed to overcome the issue of vanishing gradient, replacing the nodes in the 

hidden layers [36]. These have also been combined in different applications, such as natural 

language processing and estimation of RUL in mechanical components [37], [38]. 

 

 

Figure 8: Unfolded architecture of a recurrent neural network. 
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2.2.4 Long Short-Term Memory RNN 

The classical architecture of Long Short-Term Memory RNN consists on the interaction of gates 

or processes within a memory cell, each of which are independent RNN. Long-term memory is 

stored in what is called the cell state and is selectively updated with new input data stored in the 

short-term memory [39]. LSTM architecture has been widely and successfully applied to a variety 

of ML problems such as Natural Language Processing (NLP). In industry, the most commonly 

used variant known as Vanilla LSTM has been used to estimate the RUL of different components, 

which is one of the most challenging and significant decision-making indicators for security and 

maintenance issues [40].  

 

In Figure 9 a schematic representation of Vanilla LSTM is shown. Here, three gates control the 

memory update from a previous state at timestep 𝑡 − 1 and the new input data at timestep 𝑡. Each 

gate has its own set of weights (𝑊, 𝑈) and biases (𝑏) of a regular RNN and use a sigmoid activation 

function. From left to right in the center cell of Figure 9 there are the forget gate, input gate and 

output gate. Each cell has three inputs: the previous cell-state 𝑐𝑡−1, the previous output ℎ𝑡−1 and 

the new data 𝑥𝑡. There are two outputs from the cell: the present cell state 𝑐𝑡 and the present output 

of the hidden state ℎ𝑡.  

 

 

 

When a new input 𝑥𝑡 enters the memory cell, the forget gate will select the information to be 

thrown away from the previous cell-state 𝑐𝑡−1, represented as follows.  

 

 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (10) 

 

The input gate, on the other hand, selects the information that will be updated while a new cell-

state candidate is built from the input data. This is represented by the following equations.  

 

Figure 9: Vanilla LSTM architecture. 
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 𝑖𝑡 = 𝜎(𝑊𝑖𝑥
𝑡 + 𝑈𝑖ℎ

𝑡−1 + 𝑏𝑖) (11) 

  

 𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (12) 

 

A combination from the forget gate (Equation (10)) with the previous cell-state 𝑐𝑡−1 and from the 

input gate (Equation (11)) and the new candidate (Equation (12)) will create the new cell state 

through Equation (13).  

 

 𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑎𝑡 (13) 

 

Finally, the output gate selects which part of the cell-state obtained with Equation (13) will be used 

as a useful output ℎ𝑡. 

 

 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (14) 

  

 ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡) (15) 

 

Other variants to LSTM have been designed, such as the GRU. This simplified version merges the 

internal state with the hidden state and the forget gate and input gate [29]. In [40] it was shown that 

although LSTM performs better for short-term prediction and GRU for long-term prediction, the 

difference is not significant, and both outperform the standard RNN. Additionally, Bidirectional 

Recurrent Neural Networks (BRNN) introduces inputs from previous and future timesteps to 

predict outputs [41].  

 

Finally, even greater complexity can be reached when stacking several memory cells in sequence, 

forming Deep RNN cells. Deep LSTM (DLSTM) have shown successful results, even when raw 

sensory data is directly fed into the model. In [42], Zhao et al. argues that when analyzing sequential 

data, even though the use of multi-domain feature extractions such as statistical, frequency and 

time-frequency features have reached satisfying results with other models (such image-processing 

ones as CNN), they do not model the intrinsic sequential nature of it. Additionally, they require 

intensive expert knowledge or feature engineering to extract input data.  

 

Alternatively, to increase the analytic power of sequence-based models, stacking memory cells 

using DLSTM allows for a better abstraction of temporal relationships within the data. By enabling 

the model to learn characteristics of the raw signal at different time scales and distributing 

parameters in layers, this model achieves better results than Vanilla LSTM when predicting tool 

wear from raw input data.  
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2.2.5 Regularization Techniques 

Deep architectures usually display high degrees of freedom and during the training process, the 

parameters can be over-adjusted to replicate the initial training set. Overall, this reduces the 

model’s performance with unseen test data.  

 

Dropout is a popular technique used to prevent overfitting of deep neural networks, improving its 

performance on supervised learning tasks. In Figure 10 [43] a representation of a stochastic 

regularization process for weight training is shown. Dropout uses a Bernoulli distribution with p 

probability of a node in a layer being removed, reducing the inputs for the next layer. This 

probability is also a hyperparameter that must be selected appropriately, optimizing between lower 

performance due to overfitting and increasing the training time.  

 

 

  

 

Figure 10: Dropout Neural Net Model. Adapted from [43]. 
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Chapter 3  
 

Literature Review 

In this section, a selection of bibliographic works is revised and discussed, concerning the general 

context and methods used for fault detection in thermal systems. Studies on Deep Learning 

applications to thermal systems and fault detection models applied to thermal systems are revised.   

 

3.1 Performance Prediction Models in Solar Systems 

Machine Learning algorithms have been applied to describe and predict the performance of thermal 

systems and solar energy applications during the last decade. Their use is mostly focused on models 

seeking to predict values of solar radiation under different weather conditions and performance 

indicators of different components, such as solar collectors, heat pumps and hot-water systems. 

Ghritlahre et. al. [27] presented a literature review related to performance predictions of solar 

collector systems, in which ANN techniques have been implemented. The work describes 

references for over 30 different representations which seek to model and predict thermal 

performance of various types of thermal systems. Some notable examples are the following: 

 

• Flat plate and evacuated tube solar collector performance [44]–[46]. 

 

• Performance prediction of solar hot water systems [47]–[49].  

 

• Performance prediction of other thermal components, for example solar assisted heat 

pumps [50] and thermal energy storage [51]. 

 

The authors highlight the flexibility of the ANN models to interpret complex and incomplete data, 

while significantly reducing the calculation time required to predict performance and obtain 

intrinsic characteristics of the system. Different types of neural models such as Multi-Layered 

Perceptron (MLP), Radial Basis Functions (RBF) and Adaptive-Network-Based Fuzzy Inference 

System (ANFIS) are used for performance prediction in the aforementioned works. They also 

present a brief list of topics which could be developed in future works regarding optimization and 

comparison between proposed models. However, the architectures used in these works (up to 2016) 

are far from the current state-of-the-art on ANN and DL as mentioned in section 2.2.3 before.  

 

Additionally, ANN has been used in combination with Genetic Algorithms (GA) to optimize design 

variables in ETC U-pipe solar collectors. In [46], parameters such as the collector tilt angle, 

absorber plate and glass cover emissivity were optimized. Ideal meteorological conditions were 

also identified, such as wind velocity, ambient temperature and solar radiation, reaching a thermal 



 

- 22 - 

 

performance of 83.5 %. In [52] an extensive database of commercially available water-in-glass 

evacuated tube solar collectors (WGET-SWH) was used to train a model to predict heat collection 

rate and heat loss coefficients. Model inputs include tube length, number of tubes, tank volume, 

collector area, tilt angle and final output temperature. This model was then used to combine said 

parameters and optimize the design of solar energy systems. 

 

Several reasons may explain why complex DL architectures, such as LSTM, have not been 

explored for solar thermal applications. For example, in 2018 a comparative study of LSTM neural 

networks in forecasting day-ahead global horizontal irradiance with satellite data was presented 

[53]. This work arises from the analysis that LSTM had not been applied to forecasting irradiance, 

whereas shallow ML algorithms (Support Vector Machine (SVM), Random Forest, among others) 

and standard ANN (Feed-Forward Neural Networks (FFNN), RBF) have. However, the results of 

this work aim to obtain accurate forecast for photovoltaic (PV) based energy plants. This is due to 

the fact that PV power production, stability and storage dimensioning is strongly characterized by 

fluctuating outputs influenced by instantaneous meteorological conditions. Predictive features are 

a critical issue for the electrical grid management; and, as shown recently, also for smart grid 

applications: planning, storage system sizing and market participation of variable renewable energy 

sources [54].  

 

Similarly, in solar thermal systems power production and heat generation are directly affected by 

the variation of meteorological conditions. However, as solar thermal energy presents a natural 

inertia, lower precision is required to obtain acceptable results compared to PV plants. For power 

production, Rodat et. al in [55] presents a model combining meteorological forecasts and thermal 

performances of Fresnel solar collectors for heat storage management. Additionally, there are also 

many model-based meteorological forecast methods, including estimations and predictions for 

global, direct and diffuse radiation used for solar thermal energy production.  

 

3.2 Fault Diagnostic Systems 

Fault Diagnostics Systems (FDS) mainly include fault or failure detection and localization through 

the evaluation of the operational conditions of a system. Several methods, architectures and 

applications have been developed and are classified into three broad categories: quantitative model-

based methods, qualitative model-based methods, and process history-based methods [8]. The 

method used depends on the available information of the studied system. 

 

Traditional methods are usually model-based. For example, in [56] a thermoeconomic analysis is 

applied by combining economic and thermodynamic analysis based on the Second Law of 

Thermodynamics, through the concept of exergy cost. Performance degradation diagnosis of 

thermal plants based on advanced exergy analysis is used for detection and localization of 

developing faults [57]. In [26] a review of long-term fault detection approaches in solar medium 

and large thermal systems is presented, where several model-based methods of manual and 
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automatic fault detection from monitored data are compared, along with their estimated cost of 

implementation. Generally, as the size of the thermal system grows, so does the cost of monitoring 

and processing the results from model-based diagnosis methods. 

 

The use of ML and DL algorithms have reduced the dependence on model-based systems and do 

not require a full comprehension or simulation of the studied system. Based on monitoring data, 

detection of faulty states may be solved by regression, where fault-free states are predicted, or by 

classification. These methods need data from healthy, deteriorated and faulty states correctly 

labeled, or alternatively require a method to classify faulty states. Many ANN-based systems are 

reviewed in [58].  

 

3.2.1 Anomaly Detection and Diagnostics 

An anomaly is defined as any point in time in which the behavior of a system is unusual compared 

to regular past behavior. This does not necessarily imply a fault or failure, as fluctuations naturally 

occur under varying operational conditions, but are regularly monitored for safety reasons in 

complex systems. Anomalous behaviors can be classified to known fault conditions through 

diagnostics modules, however generic algorithms require previous knowledge of the connection 

between anomalies and failure modes. Anomaly detection is then defined as the decision on 

whether the monitored behavior is experiencing unexpected performance of an intended function 

[11]. Further information is required to link the anomalous behavior with a known fault and 

whether the fault may lead to a failure state in the system.  

 

One of the first works which integrated ANN with FDS in solar thermal installations was developed 

by Kalogirou et al. [12], whom developed an automatic solar water heater (SWH) fault diagnosis 

system consisting on a prediction module, residual calculator and diagnosis module. A diagram of 

the studied system is presented in Figure 11, where all monitored temperatures are indicated. 

Predictions of fault-free temperatures under different environmental conditions are obtained with 

ANN and compared with monitored data to identify faults in the solar collector and pipe insulation. 

Free-fault data is simulated in TRNSYS with weather data from two locations in Cyprus and France 

and used to train an MLP of three hidden layers of 19 neurons each. Data inputs and the predicted 

output for the prediction module is shown schematically in Figure 12. The residual module 

compares measured data to outputs predicted by ANN, using the relative error as a metric between 

temperature differences. 

 

Finally, in the diagnosis module, the residuals are compared to constant thresholds values and 

classifying the operation into four categories from the magnitude of the residual: normal, low 

probability of failure, high probability of failure, and failure. The thresholds are determined 

manually, compromising between false alarms and early detection of the failure. There are two 

detection criteria: when five consecutive states are identified as the same type of fault, and when 

the average value of ten consecutive states overcomes a threshold (M10a in Figure 13). The FDS 

is then tested with two scenarios: a 10 % decrease of the collector efficiency factor, and a 10 % 
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increase of U value of pipe insulation. In both cases, the system is sensible to 5 % variance and the 

M10a procedure is more stable and can detect earlier stages of deterioration. It must be noted that 

flow availability is a binary [0,1] type of data and that the diagnosis module cannot identify the 

cause of the failure, just the general location given by the monitored values. 

 

 

 

 

 

 

Another example is the application of Adaptive Resonance Theory Neural Networks (ART) to 

monitor SHW systems and detect existing or developing faults [8]. ART architecture also has a 

type of memory cell, used to recognize patterns. The detection of anomalies or classification 

process consists on identifying if the input data corresponds to a learned category or if a new one 

 

Figure 11: Schematic diagram of the simple solar system. Adapted from [12]. 

 

Figure 12: ANN design concept. Adapted from [12]. 
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must be created. Therefore, fault detection is given by new categories recognized by the algorithm 

depending on how strict the internal vigilance system is. As done in [12], TRNSYS is used to 

simulate the experimental setup data for long periods of time. The ART is able to recognize pump 

failure, pump degradation, shading and thermosiphoning (reverse flow). Nevertheless, expert 

knowledge of the system is still required to oversee, recognize and correlate the creation of new 

categories, to real faults and failures in the system. 

 

 

 

As it had been mentioned before, most ANN fault detection algorithms are based on regression 

models where the fault-free conditions are predicted and compared to the measured data, unless 

information is available from the faulty conditions. Using simulation software, such as TRNSYS, 

has proven to be a viable alternative for data collection, however its application is limited and must 

be validated with experimental data. Another approach was proposed in [13], in which an online 

fault detection and diagnosis under uncertainty module is developed for a District Heating (DH) 

system using Bayesian Networks. Here, the pressure sensors of the DH network from the locality 

of Skultuna in Sweden are modeled in OpenModelica. This software is used to generate healthy 

data and thus, by comparing the residual values calculated from the model’s result and the online 

monitoring system, three health states are identified. The residual values are then processed by a 

Bayesian Network to assess the probability of a real anomaly being detected by analyzing the 

cause-effect relationships from the sequence of data. If ten consecutive or more timesteps are 

identified as anomalies, the diagnosis module recognizes a leak in the system.  

 

Decision tree (DT)-based data-driven methods have also been successfully applied to energy 

demand modeling, fault energy consumption pattern recognition and diagnosis. In [59] faults in a 

Variable Refrigerant Flow (VRF) systems are analyzed with a classification and regression 

 

Figure 13: Averaged sequence against the functionating hour of the whole system monitoring and location of the 

detection using the M10a method (Cypriot system) [12]. 
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decision tree-based fault diagnosis module (CART) for supervised fault detection. Four health 

states are identified as follows: normal, fouling, refrigerant undercharge and refrigerant overcharge. 

The overall fault diagnosis accuracies obtained are 94.44% for an experimental dataset, and 80.55% 

for the on-line testing datasets.  

 

Despite the wide range of techniques and models developed for anomaly and fault detection, there 

are challenges in system diagnostics which have not been overcome yet. Insensitivity to different 

operational conditions, false alarms and high uncertainty present in real-time processing have been 

identified as some of the more pressing issues [11]. In this context, time series modeling 

applications through more complex Machine Learning algorithms have been applied for anomaly 

detection in fault diagnosis. For instance, in [60] a deep LSTM-based framework was proposed for 

anomaly detection in superconductor magnets at the CERN laboratory. Time series modeling of 

the voltage registered in the superconductor magnets was assessed. Not only immediate voltage 

predictions were studied, but also the ability to forecast several timesteps ahead in time. Figure 14 

shows how the precision of said predictions is reduced when evaluating more than one timesteps 

ahead in time.  

 

There are also examples for unsupervised anomaly detection techniques, which reduces the cost of 

labeling great quantities of data for analysis and do not require previous fault data. Auto encoders 

(AE) are neural networks whose objective is to reconstruct and simulate the input data by learning 

a latent representation of features from it.  This is similar to a Principal Component Analysis (PCA) 

used to reduce the dimensionality of the input data for later analysis. Thus, they have become an 

efficient tool de-noising signals and for anomaly detection. The use of RNN-based encoders to 

analyze timeseries addresses one of the greatest challenges for accurate future predictions which is 

the presence of noise inherent in sensor data. Additionally, their ability to transform a varying-

length sequence as input data to a fixed output make it a more flexible model than regular sequence 

architectures. Figure 15 shows an example of original data a reconstructed time series from an 

RNN-based encoder-decoder, which can be seen that accurately imitates the behavior of the input 

signal.  

 

By using the reconstruction errors between the next period data and from the output RNN-based 

denoising AE, anomalous conditions can be detected and further classified from these outputs. In 

[61] the fault diagnosis framework for rolling bearings with GRU-RNN-based AE was proposed. 

In Figure 16 the reconstruction errors are shown for four health states of rolling bearings, which 

prove useful to indirectly classify the health state through the AE. In [62] an anomaly detection 

model based on encoder-decoder framework is also applied for enhancing the reliability of smart 

grids. The framework of this work is shown in Figure 17, in which online measurements are 

compared to the output of the model. As before, an unexpected high reconstruction error indicates 

the probability of an anomalous behavior.  
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Figure 14: Two examples of prediction for one and two steps ahead in time. Predicted signal is plotted in a green 

broken line [60]. 

 

 

Figure 15: Original series and reconstructed series by an RNN encoder-decoder for smart grid data from [62]. 
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However, in this case, the detection phase is based on the selection of a threshold τ which directly 

depends on the input data and the distance 𝑑 of the output prediction. This distance includes the 

effect of the difference of values in the same timestep as well as the trend of the data, while the 

threshold is selected by maximizing equation below.  

 

 F =  
2𝑃𝑅

𝑃 + 𝑅
 (16) 

 

Figure 16: Reconstruction error generated by the GRU-NP-DAE proposed in [61]. 

 

 

Figure 17: Framework of an RNN-based encoder-decoder. Adapted from in [62]. 
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Where 𝑃 =  
𝑁𝑇𝑃

𝑁𝑇𝑃+𝑁𝐹𝑃
  represents the precision and 𝑅 =  

𝑁𝑇𝑃

𝑁𝑇𝑃+𝑁𝐹𝑁
 the number of recalls based on 

Table 1.  

 

 

 

Finally, the function used to decide whether an anomalous behavior has been detected is shown in 

Equation (17). Results obtained from the analysis of this work demonstrate that the encoder-

decoder framework was able to successfully detect over 95% of the anomalies. 

 

 

 

3.2.2 Uncertainty Estimation 

When predicting future values of a timeseries with ML techniques, the output of any regression 

model is subject to various sources of uncertainty. This may arise from the recollected sensory data 

and the inherent bias of the trained model. Additionally, as ML algorithms have stochastic 

behavior, whether from parameter initialization or from the applied dropout, results carry 

uncertainty that must be quantified when studying systems in which security is an important issue.  

 

When using residual-based fault detection frameworks, the quantification of the prediction’s 

uncertainty is of great importance to reduce the number of false classifications obtained with the 

use of fixed-thresholds. Natural-occurring disturbances, as well as the model’s uncertainty, require 

wider threshold values but suffer from a decrease of sensitivity towards faults. In Figure 18, a 

residual-based fault detection model with fixed thresholds is shown. The value of the threshold is 

selected based on a compromise between false alarms and correct detection, however this can prove 

difficult when the data is subjected to noise. Thus, Figure 19 shows time-variant adaptive threshold 

values depending on the input data used to counter noise and the uncertainty of the model.  

 

 𝑓 =  {
0, 𝑑 ≥  𝜏
1, 𝑑 <  𝜏

 (17) 

Table 1: Definitions of precision and recall. Adapted from [62]. 

Category Anomaly samples Normal samples 

Predicted to be 

anomaly 

𝑁𝑇𝑃: Number of anomaly samples 

which are predicted to be anomaly 

correctly 

𝑁𝐹𝑃: Number of normal samples 

which are predicted to be 

anomaly wrongly 

Predicted to be 

normal 

𝑁𝐹𝑁: Number of anomaly samples 

which are predicted to be anomaly 

wrongly 

𝑁𝑇𝑁: Number of normal samples 

which are predicted to be normal 

correctly 
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In [63] an MLP model parameters and resulting parameter uncertainty is estimated through the 

application of the Outer Bounding Ellipsoid (OBE) algorithm. By obtaining the mathematical 

description of the model’s uncertainty, the parameters can be estimated from a previously defined 

feasible parameter set. This was implemented in a robust fault-detection model with the aim of 

providing support in diagnostic decisions. However, this method, which increases complexity as 

the number of parameters increase, can only give an estimate solution which is not guaranteed to 

be unique. Also, there was a low sensitivity to smaller faults.  

 

 

 

  

 

 

 

Figure 18: Residual-based fault detection [63]. 

 

Figure 19: Application of system output uncertainty interval to robust fault detection [63]. 
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Unlike Bayesian models, which offer a mathematical framework to analyze uncertainty at a high 

computational cost, it has been proposed that the use of a Bernoulli dropout applied between each 

weighted layer of a non-linear network can estimate the uncertainty of the model. Indeed, Yarin 

Gal in [64] proved that the use of the dropout is mathematically equivalent to a Monte Carlo 

approximation of a Deep Gaussian Process (GP). Thus, it is possible to obtain the network’s 

uncertainty from the trained model without any additional assumptions of the architecture. This 

allows an analysis of uncertainty as a Gaussian distribution without sacrificing complexity or 

accuracy of the model. This is applied by averaging a high number of forward passes of the data 

through a trained network, applying a 10% of dropout probability to map the stochastic nature of 

the model.  

 

3.3 Summary 

A number of investigations have been revised thus far to contextualize the motivation of the present 

work. From the titles shown in Table 2 it has been discussed that the applications of Neural 

Networks to solar thermal systems mainly seek to obtain performance predictions models under 

different conditions. However, with the exception of [53] in which LSTM-based models are used 

for solar irradiance prediction, these works do not use specialized architectures for temporal or 

spatial analysis, such as RNN or CNN, or rely heavily on heuristic logic. This leaves an untapped 

potential to develop more flexible data-driven fault detection systems applied to thermal systems 

than the ones stated in Table 3. For instance, while [8] and [12] both reached high accuracy for 

fault detection in SHW systems, both rely on selected thresholds based on expert knowledge to 

identify anomalous behavior in different components.  

 

In Table 4, other supervised fault detection methods are presented. Successful applications for 

District Heating [13] and Variable Refrigerant Flow [59] systems explore the probabilistic nature 

of fault detection. In [60] a LSTM-based model is used to predict future values of sensor 

measurements to determine the health state of LHC superconducting magnets. The sequence errors 

between the predicted sequence and the measured values are used to determine anomalous behavior 

for each timestep in the future. However, this idea can be developed with unsupervised or semi-

supervised methods, such as Auto-Encoders. A fault detection framework specialized for temporal 

sequence analysis for rolling bearings presented in [61], in which the input sequence is 

reconstructed from the latent space trained with. fault-free data. Reconstruction errors are then used 

to classify the health state of the component. Finally, in [62] the same principle is explored applied 

to smart grid management. Nevertheless, in this work the challenge of the prediction’s uncertainty 

is addressed and a method to obtain an optimized threshold for fault detection is presented. This 

approach deals with the natural fluctuations of input values, which under a fixed threshold, increase 

the number of false positive or false negative classifications.    
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Chapter 4  
 

Methodology 

To achieve the main objective of this work, a diagnosis framework must be developed to identify 

anomalies during operation of a solar thermal system. Thus, the following steps shown 

schematically in Figure 20 are implemented.  

 

 

 

4.1 Literature Review 

For this work, three main topics were analyzed: Solar Hot Water systems (SHW), Fault Diagnosis 

Systems (FDS) and data-driven approaches based on Deep Learning (DL). The purpose of this 

literature review is to establish connections between these topics. In particular, to explore the 

application of DL, which is widely used in Reliability analysis and time-series predictions in other 

mechanical systems, and asses its applicability for anomaly detection and diagnosis in thermal 

systems. 

 

4.2 SHW TRNSYS Model Construction  

To correctly carry out an analysis of the SHW system’s behavior and the health states of its 

components, a large time window of data is required to analyze the seasonality of the monitored 

variables. In this case, environmental conditions affect the heat output of the solar field and thus, 

of the rest of the system. For this reason, a method was required to gather data in a short period of 

time. 

 

Figure 20: Schematic representation of the proposed methodology.  
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Considering that the monitoring system in the building only begun recording data since the start of 

2018, the only way to obtain the SHW behavior was through a simulation of it. Based on the 

technical information of the components installed in the building and the real-time measurements 

of environmental conditions, thermal outputs in critical components in the system are generated 

and subsequently analyzed.  

 

4.2.1 SHW System Data and Available Information 

Data recollection from different sources is a critical step for the developed study. To correctly 

simulate the system in TRSNSYS the following data is considered:  

 

• Meteorological data: Solar radiation, ambient temperature, wind speed and wind direction 

are required to properly characterize the environmental conditions in which the SHW 

system operates. A complete meteorological station is placed next to the solar collectors’ 

array at the Beauchef 851 building, from which data is extracted and processed. Radiation 

and other meteorological values are then synchronized to later be fed into the TRNSYS 

software.  

 

• SHW system information: Design conditions and the main features of the system are 

defined, according to the information provided by the manufacturer. Also, the information 

about secondary equipment such as heat pumps, heat exchangers, heat accumulators, 

centrifugal pumps and the control system was also considered. Nevertheless, appropriate 

simplifications were introduced for the purpose of reducing the computational expenses in 

TRNSYS software. 

 

• Operational data: Temperature and differential pressure sensors are installed in various 

locations in the system. This information is used to compare and validate the physical model 

of the system developed in TRNSYS.  

 

 

4.2.2 TRNSYS Simulation  

A simplified version of the SWH system installed in the western tower at the Beauchef 851 building 

is built in the simulation software. TRNSYS operates with types or component blocks which are 

integrated to experimentally validated equations and calculation modes. A set of parameters 

defined by the user are applied to personalize the simulation, including thermal performance 

datasheets for certain components. Here, relevant technical information of the system, such as 

heating and cooling capacities of chiller and heat pump equipment, centrifugal pump power and 

rated flow, as well as area and optical characteristics of the solar field, is used to select the types 

and define their parameters. Control systems, demand profiles and operation schedules are also 

used to represent the SHW system in the simulation software. Details of these values are found in 

Chapter 5.  
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As the system’s current situation does not allow for a full experimental validation of the TRNSYS 

model, the generated temperatures may vary from the sample of measured values. Malfunctions 

have also been detected in the actual installation. For this reason, as series of simplifications are 

applied to the model’s design, prioritizing the internal logic of the model rather than reaching the 

expected values. Tuning of parameters, connections between components and the control system 

are considered. This also accounts for the integration issues identified during the study of the 

system and the interactions with other subsystems of the buildings climatization system. 

 

4.2.3 Nominal Synthetic Data Generation 

TRNSYS software allows the extraction of the simulated data in user-defined format documents. 

For each subsystem defined in the simulated model, a set of variables is monitored and extracted 

for analysis with a sampling frequency of a minute. These values consist on temperatures and 

control signals, leaving aside flow and energy consumption values due to the lack of experimental 

validation options for these variables. Thus, these values are just an approximation of the design 

conditions of the system. The length of the simulation window depends on the availability of 

radiation and meteorological data which is fed into the TRNSYS model. The software then 

generates a minute-based simulation of the behavior of the monitored variables during the selected 

time window. The TRNSYS simulation is the primary source of input data and a critical step in the 

development of this study. 

 

4.3 Deep Learning Framework  

The purpose of the framework is to predict future values of target variables, based on the generated 

data from the TRNSYS simulation. The training of the model is done only with data under nominal 

conditions of the thermal system. For this, the databases generated are preprocessed and features 

are selected for the prediction of each target variable. The performance of ANN, RNN and LSTM 

architectures are compared under similar conditions and selected hyperparameters to identify 

strengths and weaknesses of each model.  The objective is to select a model which can accurately 

predict values one timestep in the future, as well as reproducing the behavior during short 

sequences of several timesteps in the future.  

 

4.3.1 Data Preprocessing  

The output data from the TRNSYS model, such as radiation, temperature and operational 

conditions are preprocessed before selecting relevant variables for analysis. First, variables are 

selected and organized in sets of characteristics which are used to predict target temperatures in the 

system. Each of these datasets is averaged over a time period of 6 minutes to reduce the effect of 

the instantaneous variability of solar radiation. Due to the nature of the diffuse component, minute-

based measurements may suffer from larger uncertainties caused by the passing of clouds. As 
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thermal systems have a natural inertia, this average will not significantly impact the values of 

measured temperatures.  

 

4.3.2 Framework Development  

From the simulated data, a selection of features is established for the construction of the supervised 

regression framework. This model is later used for the anomaly detection in the system. Decisions 

about the architecture and DL techniques that are applied must be based on the nature of the input 

data and on the literary review done concerning the fault detection criteria to be selected. Due to 

their characteristics, RNN models are particularly well-adapted for time-series analysis. Thus, 

variations of this architecture are analyzed for temperature prediction under different scenarios of 

available data. Variations in the architecture rise from the following decisions:  

 

1. Predicted values: The objective of the DL framework is to accurately predict selected 

variables of the system. A priori, three temperatures are chosen: solar field outlet, 

preheating section heat accumulators’ output, and hot water temperature supplied to the 

demand. The latter is excluded due to the similarities to the heat accumulators’ temperature 

behavior.  

 

2. Prediction horizon: The number of timesteps in the future the model is required to predict. 

This horizon can be different during the training and the test session. However, the accuracy 

of the predicted value may decrease if the test is significantly longer than the training data 

presented.  

 

3. Length of the datasets: The number of timesteps prior to the prediction fed into the 

network will have different effects depending on the model used. This may vary between a 

day or a week. 

 

4. Content of the datasets: The initial database of temperatures, weather data and operational 

conditions, are separated into training, validation, and test sets. For each of the desired 

predicted temperatures, features will be selected to train the models.  

 

For each target temperature, hyperparameter tuning is carried out to fit each of the corresponding 

datasets.  Shallow and deep configurations are considered. Dropout is used to prevent overfitting 

the model with the training data. The models which are assessed for the supervised regression task 

are the following: RNN, LSTM and ANN. The latter is used to compare the proposed models with 

previous investigations. 
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4.3.3 Assessment of Proposed Models 

The assessment of the models is divided into two phases. First, the performance of each model is 

evaluated through the Root Mean Square Error (RMSE) metric for single future temperature values. 

Additionally, the percentage of the relative error is analyzed.  Each dataset is divided into training, 

validation and testing sets. The training process is carried out only on the training set, and the 

RMSE is evaluated over both the training and the validation subsets in each iteration epoch. Finally, 

the test RMSE is calculated over the test subset. Additionally, other metrics are used to evaluate 

the models’ predictions, such as variance, explained variance score and R2. Secondly, samples of 

daily temperature sequence samples are extracted. These samples are used to evaluate the model’s 

capacity to predict further timesteps in the future as a second testing process. 

 

4.4 Model Implementation 

The last section of the methodology is dedicated to the anomaly detection process. This is carried 

out by using the previously trained models and new input data generated with the TRNSYS 

software. Faults are induced in the simulation and the new data is fed into the selected DL model, 

which was trained with fault-free values. The prediction errors obtained from the fault-induced 

data are then used to identify the anomalous behavior. For each fault-induced scenario, three cases 

under different meteorological conditions are selected. The prediction errors are then compared 

when the trained model is fed with healthy and with anomalous data during the same period. Finally 

a detection threshold is selected to separate healthy from anomalous data.  

 

4.4.1 Anomalous Synthetic Data Generation 

From the analysis of the SHW system and the resulting simulation model in TRNSYS, a selection 

of anomalous scenarios with a distinguishable impact on the thermal performance of the SHW 

components is made. Frequent issues of SHW systems are evaluated in the simulation and the 

anomalous synthetic data is generated and extracted as daily samples for each set of characteristics 

defined in the previous steps.  

 

4.4.2 Anomaly Detection Framework  

As temperature is the main studied variable, unexpected variations of these values are monitored 

throughout the system. These may be a result of a change in meteorological conditions, faulty 

sensor equipment, or from unidentified faults in the system. The lack of historical data does not 

allow an in-depth study of which faults and failures develop in the system, and thus, the focus will 

be on identifying abnormal conditions for a further performance and energy consumption analysis.  
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The proposed diagnosis model is based on quantifying and interpreting the relative errors between 

input data from the system and the predicted values of the prognosis model. The prediction errors 

are used to select a threshold which will then classify the healthy from the anomalous data 

sequences. To increase the flexibility of the anomaly detection method, the value of the threshold 

is not fixed beforehand. Instead, the value of the threshold is calculated based on the performance 

of the trained model when tested with each specific sample, incorporating the uncertainty of the 

prediction into the classification process. From this initial analysis, it is possible to construct 

performance indicators based on different consumption profiles, solar collector efficiency and 

meteorological conditions.  

 

4.5 Resources 

For the development of this work, the following resources have been identified.  

• Technical information of the air conditioning system of the Beauchef 851 building. This is 

available as the company in charge of the engineering design of the system, CINTEC S.A. 

has shared relevant technical documents. 

 

• Software: TRNSYS 18 and Autodesk Inventor DWG True View. All these are available for 

use through academic or free licenses. For programming, Python 3.6 language with 

Tensorflow 1.4 was used in an Ubuntu 64 bits 16.04 LTS operating system. 

 

• Measured data from the meteorological station installed at Beauchef 851. Radiation 

information is directly available for use obtained from the following instrumentation: 

Pyranometer Kipp&Zonnen CMP21, Pyrgeometer Kipp&Zonnen CGR4, Pyrheliometer 

Kipp&Zonnen CHP1, Sun Tracker Kipp&Zonnen SOLYS2 and Datalogger Scientific 

Campbell CR1000. Other meteorological variables are obtained from a R.M. Young 

Meteorological Instrumentation Wind Monitor Model 05103-5, Campbell Scientific 

HMP60 Temperature and Relative Humidity Probe and Datalogger Scientific Campebell 

CR6 Measurement and Control Center. 

 

• Access to the Smart Reliability and Maintenance Integration Laboratory (SMRILab) and 

the use of the computers there installed. An Intel®Core™ i7-6700K CPU @ 4.00 GHz x8 

with a TITAN Xp/PCle/SSE2 Graphics card is used.  

 

• Measured data from the SHW. Temperatures and operational status of different equipment 

of the fully-functioning system must be available for comparison purposes.  
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Chapter 5  
 

System Description  

The solar-driven climatization subsystem at the western building of Beauchef 851 is analyzed from 

the technical documents and blue-prints delivered by Cintec S.A1, company in charge of the 

engineering design. Information from the system such as design temperatures, equipment 

characteristics and the control system design is extracted to build the TRNSYS model of the 

subsystem. A schematic representation of the principal components of the subsystem is illustrated 

in Figure 21.  

 

 

 

From the solar collectors and the condenser output of the CH-03 chiller, heat is driven to the mid-

temperature tanks CAC-05 and CAC-06. A second heating section is provided by heat pumps to 

reach the desired temperature for the demand. Mains water is used to regulate the output 

temperature and as make-up water in the preheating section. These components, along with heat 

exchangers and centrifugal pumps are monitored for temperature and operation status. In Figure 

22, a process flow diagram of the system is shown. Red lines represent the hot water flowing in the 

system, while the blue lines correspond to the cool water. The output of the mid-temperature tanks 

                                                 

1 Engineering firm dedicated to HVAC&R systems. Reference: http://www.cintec.cl/index.html.  

 

Figure 21: Schematic representation of the solar thermal system at Beauchef 851. Source: Own elaboration 

based on documents delivered by Cintec S.A. 

http://www.cintec.cl/index.html
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is then heated again by a series of heat pumps and finally delivered to the hot water system of the 

building, as shown in Figure 23.  

 

 

 

5.1 Nominal Design Conditions  

The western building at Beauchef 851 (Faculty of Physical and Mathematical Sciences, FCFM, for 

its acronym in Spanish) is located at: 

  

• Latitude 33° South 

 

• Longitude 70° West 

 

• Altitude above sea level 550 m.  

 

Figure 22: Process Flow Diagram of the Pre-heating section in SWH System. Source: Own elaboration based on 

documents delivered by Cintec S.A. 
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There are two design conditions established for the climatization system of the building, in summer 

and winter with the following characteristics:  

 

• Summer 

• Dry Bulb Temperature: 33°C 

• Relative Humidity: 40% 

 

• Winter 

• Dry Bulb Temperature: 2°C 

• Relative Humidity 90% 

 

Therefore, design conditions for offices, classrooms, sport infrastructure and other interior spaces 

are defined by temperatures, humidity, air renovation, heat rejection from equipment, lightning and 

use profiles of each space. As mentioned before, the SHW subsystem supplies sanitary hot water 

for the showers in the dressing rooms in the -3 floor. The nominal hot water demand is estimated 

at 24,000 L at 40°C for 12 hours daily. For such purpose, the following temperatures have been 

determined:  

 

• Hot water tank temperature: 60°C 

 

 

Figure 23: Process Flow Diagram of the Heating section in SWH System. Source: Own elaboration based on 

documents delivered by Cintec S.A. 
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• Mains water temperature: 10°C 

 

• Preheated water temperature: 35°C 

 

The SHW is designed to preheat the sanitary water from 10°C to 40°C during the summer and 30-

35°C during the winter. When the available radiation is not enough to reach these temperatures, 

auxiliary heat is provided by the heat-recovery chiller (CH-03). This preheated water is to be stored 

in two hot water tanks (CAC-05/06); then it is heated up to 60°C by heat pumps (BC-09/10/11/12) 

and subsequently stored in other four hot water tanks (CAC-01/02/03/04). Finally, it is dispatched 

by demand from these tanks, and the unused hot water reentries the system at the two first water 

tanks. A brief description of each component of the solar-driven subsystem is presented below. 

  

5.1.1 Solar Collector Field 

The solar field is composed by evacuated tube heat pipe collectors, amounting to a total absorption 

area of 105.6 m2 and whose main characteristics are listed in Table 5. Given the available space on 

the roof of the building, the spatial distribution of the 44 solar collectors is shown in Figure 24.  

 

 

Table 5: Design solar collector main characteristics. 

Tube and Heat Pipe   

Number of tubes 30 

Tube diameter 80 mm 

Tube thickness 1.6 mm 

Tube Material Borosilicate  

Heat Pipe Material Copper 

Dimensions  

Total Area 4.94 m2 

Absorption Area 2.40 m2 

Fluid capacity 1.80 L 

Length 1,990 mm 

Width 2,487 mm 

Thickness 180 mm 

Inclination angle 15° 

Optical properties   

Absorptance 92% 

Emittance 10% 

Operational conditions   

Pressure 8 bar 

Stagnation temperature 250°C 

Refrigerant Propylene glycol, 20% 
*Source: Own elaboration based on documents delivered by Cintec S.A. 
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From the common inlet of the solar field, the flow is divided into thirteen collector strings 

connected in series, eight rows of three collectors and five rows of four collectors each. Each row 

is supported on metallic bases which maintain an inclination angle of 15° and a north orientation. 

The datasheet describing the selected model Hitek Solar NSC 58-30 is shown in Appendix B, tested 

under the EN 12975 regulations. In Table 6 the Incidence Angle Modifiers (IAM) are presented 

and the efficiency parameters related to aperture area and thermal properties are listed in Table 7.  

 

 

 

 

 

Figure 24: Spatial distribution of the solar field at Beauchef 851. Source: Own elaboration based on documents 

delivered by Cintec S.A. 

 
Table 6: Incidence Angle Modifiers for selected solar collector. 

Incidence Angle 

Modifiers 
10° 20° 30° 40° 50° 60° 70° 

𝐾𝜃(𝜃𝑇) 1.010 1.019 1.056 1.151 1.452 1.462 1.261 

𝐾𝜃(𝜃𝐿) 0.999 0.994 1.018 0.974 0.952 0.913 0.833 

*Source:  Summary of EN12975 Test Results for Hitek Solar NSC-58-30 in Appendix B. 

Table 7: Thermal Properties of selected solar collector. 

Collector Efficiency Parameters 

𝜂0 0.618 - 

𝑎1𝑎 1.377 𝑊 (𝑚2𝐾)⁄  

𝑎2𝑎 0.018 𝑊 (𝑚2𝐾2)⁄  

Effective Thermal Capacity 5.684 𝑘𝐽 (𝑚2𝐾)⁄  

*Source:  Summary of EN12975 Test Results for Hitek Solar NSC-58-30 in Appendix B. 
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5.1.2 Heat Recovery Chiller 

In the climatization system, the cooling and heating needed for air conditioning are supplied by the 

heat pumps, cooling towers and chiller. Additionally, a third chiller with heat recovery must supply 

the water and space heating required for the indoor swimming pool, and the auxiliary preheating 

of the sanitary hot water, coupled with the SHW system. Vapor-compression chillers are machines 

which are used to remove heat from a liquid through a refrigeration cycle. A schematic diagram of 

the cycle is shown in Figure 25, where the cooled and chilled water stream interact with the 

refrigerant within through the condenser and evaporator heat exchangers. In the evaporator, the 

liquid refrigerant absorbs heat from the entering chilled water stream and then is passed through a 

compressor, further elevating its temperature until reaching an overheated steam. In the condenser, 

heat is ejected to the cooling water stream, and liquid refrigerant is then passed through an 

expansion valve, lowering its temperature to reenter the evaporator.  

 

 

 

Table 8 presents the design conditions for the installed equipment, a Thermocold CWC Prozone 

1320 Z C model, along with the model’s performance matrix in Table 92. Additionally, the 

operation range for this model is shown in Figure 26, where the aforementioned temperatures are 

within this range.  

                                                 

2 See Appendix 8 and Appendix 9.  

 

Figure 25: Schematic Diagram of Single Stage Water Cooled Chiller. 
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Table 8: Design conditions for the heat-recovery chiller CH-03. 

Evaporator side  

Water flow [𝑚3 ℎ⁄ ] 32.5 

Inlet temperature [°C] 12.7 

Outlet temperature [°C] 6 

Condenser side  

Water flow [𝑚3 ℎ⁄ ] 54.7 

Inlet temperature [°C] 44.5 

Outlet temperature [°C] 50 

EER 3.0 

Capacity [kW] 254 

Refrigerant R-134a 

* Source: Own elaboration based on documents delivered by Cintec S.A. 

 

Figure 26: Water Cooled Refrigeration Cycle. Source: Thermocold CWC Prozone Data Sheets, Appendix C. 
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In Appendix 4 a diagram of the chiller circuit is presented. The cooling water flow which exits the 

CH-03 chiller is divided to two heat loads: the heating section of the SHW system and to other 

sanitary hot water uses in the building. The returning flows are joined through a mixing valve 

before reentering the chiller.  

 

5.1.3 Heat Exchangers 

Throughout the system there are several flat plate type heat exchangers. An example of this 

configuration is shown in Figure 27, where the hot and cold flow of the system are represented in 

red and blue, respectively. Different designs of plate heat exchangers exist, combining materials 

and corrugated surfaces to increase the effectiveness of the heat exchange between fluids. These 

were selected to facilitate maintenance activities. The properties stated in Table 10 belong to the 

heat exchangers involved in the solar-driven subsystem: 

 

• IC-6S-05/07: Heat exchanger between the solar collector field (primary circuit) and the heat 

accumulator CAC-05/06 (secondary circuit).  

 

• IC-6S-06/08: Heat exchanger between the heat-recovery chiller (primary circuit) and the 

heat accumulator CAC-05/06 (secondary circuit).  

 

In Table 11 properties for the heat exchangers involved in the heat pump-driven subsystem are 

presented.  

 

Table 9: Cooling Capacity and COP. Adapted from Thermocold CWC Prozone Data Sheet, Appendix C. 

Evaporator 

Outlet T°C 
Property 

Condenser Inlet T°C 

30 35 40 45 50 55  

5 Capacity 309.30 293.50 276.70 258.90 240.80 221.30 kW 

 COP 5.42 4.68 4.00 3.39 2.84 2.35  

6 Capacity 319.00 302.80 285.50 267.10 248.40 228.40 kW 

 COP 5.57 4.82 4.13 3.49 2.93 2.42  

7 Capacity 328.90 312.20 294.40 275.50 256.30 235.70 kW 

 COP 5.72 4.96 4.25 3.60 3.02 2.50  

8 Capacity 339.10 321.90 303.50 284.10 264.40 243.20 kW 

 COP 5.89 5.09 4.37 3.70 3.11 2.57  

9 Capacity 349.40 331.70 312.90 292.90 272.60 250.90 kW 

 COP 6.04 5.24 4.50 3.81 3.20 2.65  

10 Capacity 360.00 341.90 322.50 302.00 281.10 258.70 kW 

 COP 6.21 5.38 4.62 3.92 3.30 2.73  
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• IC-6S-01/02/03/04: Heat exchanger between the heat pumps BC-09/10/11/12 (primary 

circuit) and the heat accumulator CAC-01/02/03/04 (secondary circuit).  

 

 

 

 

 

 

 

 

 

 

Figure 27: Schematic Representation of a Plate Heat Exchanger. 

 

Table 10: Design conditions for Solar Heat Exchangers. 

 IC-6S-05/07 IC-6S-06/08 

Primary Circuit   

Inlet Temperature [°C] 45.0 45.0 

Outlet Temperature [°C] 37.0 39.5 

Secondary Circuit   

Inlet Temperature [°C] 27.0 29.5 

Outlet Temperature [°C] 35.0 35.0 

Heat Exchanger   

Area [m2] 0.78 1.76 

Water Flow [m3/h] 5.3 13.6 

Pressure Loss [bar] 0.31 0.46 

Number of plates 21 45 

Plate Thickness [mm] 0.7 0.7 

Plate Material Stainless Steel Stainless Steel 

Pressure [bar] 8/10 8/10 
* Source: Own elaboration based on documents delivered by Cintec S.A. 
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5.1.4 Hot Water Tanks 

The hot water accumulators or storage tanks are the principal components which enable the system 

to dispatch hot water out of the peak radiation hours during the day. The CAC-05/06 heat 

accumulators for the preheating section dispatch hot water to the CAC-01/02/03/04 heat 

accumulators, coupled with heat pumps to raise the temperature until 45°C is reached. The main 

dimensions are described below in Table 12. As the system is pressurized, for CAC-05/06, these 

are constant volume tanks with the following inlets from:  

 

• Secondary circuit from the IC-6S-05/07 heat exchangers, constant flow.  

 

• Secondary circuit from the IC-6S-06/08 heat exchangers, constant flow. 

 

• Recirculating hot water not supplied to the user.  

 

The returning flows may cause overpressure, in which case the excess water is recirculated into the 

secondary circuit, or experience low pressure, for which water is injected from the mains system, 

depending on the required volume. Similarly, the CAC-01/02/03/04 heat accumulators have two 

inlets:   

 

• Secondary circuit from the IC-6S-01/02/03/04 heat exchangers, constant flow which 

connect the primary circuit from the heat pumps BC-09/10/11/12.  

 

• Preheating section from the CAC-05/06 heat accumulators.  

Table 11: Design conditions for Heat Pump Heat Exchangers. 

IC-6S-01/02/03/04 

Primary Circuit  

Inlet Temperature [°C] 65 

Outlet Temperature [°C] 61 

Secondary Circuit  

Inlet Temperature [°C] 54 

Outlet Temperature [°C] 58 

Area [m2] 1.93 

Water Flow [m3/h] 5.3 

Pressure Loss [bar] 0.4 

Number of plates 49 

Plate Thickness [mm] 0.7 

Plate Material Stainless Steel 

Pressure [bar] 8/10 
* Source: Own elaboration based on documents delivered by Cintec S.A. 
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To further control the dispatched hot water temperature, mains water is extracted and mixed at the 

outlet of the CAC-01/02/03/04 heat accumulators.  

 

 

 

The heat tanks are manufactured from black steel 3724-ES with an 8 mm thickness. It is reinforced 

with fiber glass and with a 40 mm thick foam isolation to reduce heat loss.  

 

5.1.5 Heat Pumps 

The heating section of the SHW system is comprised by four heat pumps, which rise the 

temperature from the preheating section from 40°C to 45°C. Each heat pump BC-09/10/11/12 is 

connected to a heat accumulator through heat exchangers. In Table 13, the main design conditions 

for this equipment is presented. The schematic representation of a heat pump is similar to the water-

cooled chiller shown in Figure 25.  

 

 

 

 

 

 

 

 

Table 12: Heat Tank Dimensions and Operating Pressure. 

CAC-05/06 

Capacity [L] 4,000 

Diameter [mm] 1,600 

Height [mm] 2,100 

Pressure [bar] 8 
* Source: Own elaboration based on documents delivered by Cintec S.A. 

 

Table 13: Design conditions for Heat Pumps. 

BC-09/10/11/12 Hot Water 

Water flow [𝑚3 ℎ⁄ ] 5.3 

Inlet temperature [°C] 61 

Outlet temperature [°C] 65 

Pressure loss [bar] 0.45 

Capacity [kW] 18.5 

Refrigerant R-410a 
* Source: Own elaboration based on documents delivered by Cintec S.A. 
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5.1.6 Mains Water Source 

To correctly estimate the value and seasonal variation of the mains water temperature, a numeric 

correlation is presented in  [65], influenced by annual ambient temperature and the depth of the 

mains system, as shown in Figure 28. These variations in the mains water significantly affect the 

performance of water heating systems, such as SWH and can lead to a 10% error in heat gains 

calculations. For instance, the solar collector’s efficiency is described in the equation below. 

 

 

 

 
𝛿𝜂𝑐𝑜𝑙𝑙

𝜂𝑐𝑜𝑙𝑙
= −𝐹𝑅𝑈𝐿 ⋅

𝛿𝑇𝑚𝑎𝑖𝑛𝑠

𝜂𝑐𝑜𝑙𝑙𝐼
 (18) 

 

Where the temporal dependence of the solar collector’s efficiency η𝑐𝑜𝑙𝑙 is determined by the 

temperature differences δ𝑇𝑚𝑎𝑖𝑛𝑠 and the incident radiation 𝐼, as well as 𝐹𝑅 and 𝑈𝐿 described in 

Section 2.1.1 . The sensitivity of a SWH system is estimated at a 9.3% loss of annual energy 

savings3. This also considers that mains water temperature value varies in δ𝑇𝑚𝑎𝑖𝑛𝑠 = ±3°𝐶.   

 

                                                 

3 System parameters: 𝐹𝑅𝑈𝐿 = 5𝑊/𝑚2𝐾; 𝐼 = 400𝑊/𝑚2; 𝜂𝑐𝑜𝑙𝑙 = 0.4.  

 

 

 

 

Figure 28: Plot of ground temperature annual variation, from [65]. 
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Equation (19) is used to determine the mains water temperature for an hourly basis for a year. Each 

term is described in the following Equations (20)-(23), based on the parameters presented in Table 

14 and reference values for Santiago, Chile in Table 15.  

 

 𝑇𝑚𝑎𝑖𝑛𝑠 = 𝑇𝑚𝑎𝑖𝑛𝑠,𝑎𝑣𝑔 + 𝛥 𝑇𝑚𝑎𝑖𝑛𝑠 𝑠𝑖𝑛(𝜔𝑎𝑛𝑛𝑡 − 𝜙𝑎𝑚𝑏 − 𝜙𝑚𝑎𝑖𝑛𝑠) (19) 

 

 Tmains,avg = Tamb,avg + ΔToffset (20) 

 

 Δ𝑇𝑚𝑎𝑖𝑛𝑠 =  [𝐾1 + 𝐾2(𝑇𝑎𝑚𝑏,𝑎𝑛𝑛 − 𝑇𝑟𝑒𝑓)]Δ𝑇𝑎𝑚𝑏 (21) 

 

 ΔTamb =
Tmon,max − Tmon,min

2
 (22) 

 ϕmains = K3 + K4(Tamb,ann − Tref) (23) 

 

 

with: 

• 𝑇𝑚𝑎𝑖𝑛𝑠: The estimated value of the mains water temperature during an hour 𝑡 during a year 

of 8760 hours.  

 

• 𝑇𝑚𝑎𝑖𝑛𝑠,𝑎𝑣𝑔: Average mains water temperature. 

 

• Δ𝑇𝑚𝑎𝑖𝑛𝑠: Annual mains water temperature variation. 

 

• ω𝑎𝑛𝑛: Annual angular frequency of temperature variation. 

 

• ϕ𝑎𝑚𝑏: Angle offset representing the ambient temperature annual variation. 

 

• 𝜙𝑚𝑎𝑖𝑛𝑠: Angle offset representing the mains temperature annual variation. 

 

• 𝛥𝑇𝑜𝑓𝑓𝑠𝑒𝑡: Temperature difference from 𝑇𝑎𝑚𝑏,𝑎𝑛𝑛 in 𝑇𝑚𝑎𝑖𝑛𝑠 correlation. This value is 

presented in Table 14.  

 

• 𝐾1, 𝐾2, 𝐾3, 𝐾4: Numeric parameters defined in Table 14 representing reference 

temperatures.  

 

• 𝑇𝑎𝑚𝑏,𝑎𝑛𝑛: Annual average ambient temperature.  

 

 ϕamb = ωann ⋅ N ⋅ 24 + 90 (24) 
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• 𝑇𝑟𝑒𝑓: Reference minimum average monthly temperature registered in the selected location. 

Value selected is shown in Table 15. 

 

• Δ𝑇𝑎𝑚𝑏: Average annual ambient temperature variation. 

 

• 𝑇𝑚𝑜𝑛,𝑚𝑎𝑥, 𝑇𝑚𝑜𝑛,𝑚𝑖𝑛: Maximum and minimum average ambient monthly temperature.  

 

 

 

 

 

 

The coefficients were obtained from nine locations in the U.S. and do not consider locations with 

freezing ground temperatures and or where snow cover exists during the winter. As the highest 

temperature is expected to be on January N=15, the angular frequency of the ambient temperature 

is estimated with Equation (24).  

  

 

 

 

 

 

 

Table 14: Parameters from Mains Temperature correlation, from [65]. 

Parameter Value 

Δ𝑇𝑜𝑓𝑓𝑠𝑒𝑡 0.6 °F 

𝐾1 0.4 

𝐾2 0.010 °F-1 

𝐾3 35 ° 

𝐾4 -0.01°/ °F 

 

 

Table 15: Reference values for T Mains correlation. 

Variable Value 

𝑇𝑎𝑚𝑏,𝑎𝑛𝑛 14.95 °C 

𝑇𝑚𝑜𝑛,𝑚𝑎𝑥 21.58 °C 

𝑇𝑚𝑜𝑛,𝑚𝑖𝑛 8.40 °C 

𝑇𝑟𝑒𝑓 6.67 °C 
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5.1.7 Centrifugal Pumps 

Centrifugal pumps are installed between each mayor component of the system. This is required to 

maintain constant pressure in the system. The pumps are the main actuators of the control system 

and operate at constant speed, as detailed in Table 16. The main pumps in the system are: 

 

• BACA-05/06: Solar hot water pumps. Connect the solar field with the primary circuit of 

the IC-6S-05/07 heat exchangers.  

 

• BACS-05/07: Connect the mains water and excess water from the CAC-05/06 heat 

accumulators and the secondary circuit of the IC-6S-05/07 heat exchangers.  

 

• BACS-06/08: Connect the mains water and excess water from the CAC-05/06 heat 

accumulators and the secondary circuit of the IC-6S-06/08 heat exchangers. 

 

• BACA-07/08: Connect the outlet of the primary circuit of the IC-6S-06/08 heat exchangers 

to the CH-03 heat-recovery chiller. The system operates with one pump in stand-by mode. 

 

• BPAF-04/05: Operate in the cooling circuit of the CH-03 chiller, connecting the discharged 

water used in the air conditioning system with the inlet of the evaporator’s side. The system 

operates with one pump in stand-by mode. 

 

• BACS-01/02/03/04: Operate the heating circuit between the BC-09/10/11/12 heat pumps 

and the corresponding heat accumulators through the IC-6S-01/02/03/04 heat exchangers.  

 

 

 

 

 

Table 16: Centrifugal Pumps Design Conditions 

 BACA-

05/06 

BACS-

05/07 

BACS-

06/08 

BACA-

07/08 

BPAF-

04/05 

BACS-

01/02/03/04 

Water flow 

[m3/h] 
5.3 5.3 13.5 52.5 30 5.3 

Power 

[kW] 
1.1 0.7 0.7 3.75 2.25 0.4 

Static 

pressure 

[bar] 

1.0 0.4 0.6 1.36 1.2 0.5 

Speed 

[RPM] 
2900 2700 2700 1450 1450 2900 

* Source: Own elaboration based on documents delivered by Cintec S.A. 
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5.1.8 Control System  

The system is equipped with temperature and differential pressure instrumentation in each main 

component. The operation of the solar-driven subsystem is defined by the following:  

 

1. If the temperature registered at the outlet of the hot side of the CH-03 is less than 25°C, 

the internal pumps of the CH-03 stop and its operation is paralyzed.  

 

2. Both heat accumulators CAC-05/06 have a relief valve which releases hot water if the 

average temperature is over 70°C. This continues until 50°C is reached.  

 

3. If the temperature registered at the outlet of the solar collector field is greater than the 

average temperature in the hot water accumulators, the BACA-05/06 pumps are activated.  

 

4. Hot water is dispatched from the CAC-05/06 tanks to the CAC-01/02/03/04 if the average 

temperature is over 55°C and there is an active demand in the system.  

 

5. Mixing valves are activated if the outlet of the CAC-01/02/03/04 heat accumulators is 

greater than 45°C, in which case mains water is injected before being dispatched.  

 

5.2 Weather Files and Available Meteorological Data 

The weather information required for the TRNSYS simulation is obtained from two CR1000 

dataloggers installed next to the solar field at the Beauchef 851 western building. One receives 

solar radiation measurements and the other registers meteorological variables shown in Table 174. 

These data files are preprocessed and synchronized to the same timestamp, to then be fed into the 

solar collector ETC modules. The following values approximately describe this location:  

 

• Time Zone: -3 GMT 

 

• Longitude: 70.66 W 

 

• Latitude: 33.45 S 

 

                                                 

4 Radiation and other meteorological values are registered with a different time zone reference. While the CR1000 

datalogger is set to GMT 0 Greenwich Time for global horizontal, diffuse horizontal and direct normal irradiance, 

values of ambient temperature, relative humidity, wind speed and wind direction are registered at GMT -4. From both 

dataloggers the data can be obtained with a one-minute interval. To correctly integrate these values to the TRNSYS 

simulation, these must be shifted to GMT -3 for Santiago, Chile. 
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One additional correction must be applied to the measured meteorological data. Solar time is used 

instead of the local clock time for computing the actual position of the sun, based on the apparent 

angular motion of the sun across the sky. For solar time, the solar noon corresponds to the moment 

in which the sun crosses the meridian of the local observer. The following equation is used to shift 

the local standard time (GMT -3) to the corresponding solar time.  

 

 𝑆𝑜𝑙𝑎𝑟 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑡𝑖𝑚𝑒 = 4(𝐿𝑠𝑡 − 𝐿𝑙𝑜𝑐) + 𝐸 (25) 

 

where 𝐿𝑠𝑡 is the standard meridian for the local time zone, 𝐿𝑙𝑜𝑐 is the longitude of the specified 

location and 𝐸 is the equation of time given by Equation (26)5.  

 

 
𝐸 =  229.2(0.000075 + 0.001868 ⋅ cos 𝐵 − 0.032077 ⋅ sin 𝐵 − 0.014615 ⋅

cos 2𝐵 − 0.04089 ⋅ sin 2𝐵) 
(26) 

 

where:  

  𝐵 =
360(𝑁 − 1)

365
 (27) 

 

and 𝑁 is the number of the day of the year. Details on the path of the sun across the sky are found 

in Appendix D.  With the use of solar angles, the quantity of incident radiation on a specific surface 

can be estimated. 

  

In Table 18, an extract from the meteorological database is shown with the original and corrected 

timestamp obtained from the method described above.  

 

                                                 

5 From [20], 𝐿𝑠𝑡 = 45° 𝑊 and 𝐿𝑙𝑜𝑐 = 70.66° 𝑊. 

Table 17: Available Meteorological Data. 

CR1000 Units CR1000 GEOF Units 

Global Horizontal 

Irradiance (GHI) 

[𝑊/𝑚2] 
 

Ambient 

Temperature 
[°𝐶] 

Diffuse Horizontal 

Irradiance (DFI) 

[𝑊/𝑚2] 
 

Relative Humidity [%] 

Direct Normal Irradiance 

(DNI) 

[𝑊/𝑚2] 
 

Wind Speed [𝑚/𝑠] 

Wind Direction [°] 
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Additionally, an example of a daily profile for global (GHI), diffuse (DFI) and direct (DNI) 

components of solar radiation is shown in Figure 29. A week profile of radiation values is also 

presented in Appendix F. An example profile of wind speed and direction is presented in Figure 

30, as well as ambient temperature and relative humidity in Figure 31.  

 

 

 

 

Table 18: Extract of Radiation Values and Corrected Timestamp for Santiago, Chile. 

Date Timestamp 
Corrected 

Timestamp 
GHI [W/m2] DNI [W/m2] DFI [W/m2] 

2018-05-17 14:38:00 13:25:00 356.062 494.077 112.992 

2018-05-17 14:39:00 13:26:00 354.851 492.447 111.508 

2018-05-17  14:40:00 13:27:00 363.792 508.183 111.835 

2018-05-17  14:41:00 13:28:00 391.994 559.647 113.833 

2018-05-17  14:42:00 13:29:00 373.827 525.763 111.582 

2018-05-17  14:43:00 13:30:00 372.495 522.006 110.873 

2018-05-17  14:44:00 13:31:00 377.372 529.307 111.235 

2018-05-17  14:45:00 13:32:00 376.661 525.976 111.334 

2018-05-17  14:46:00 13:33:00 397.283 566.664 110.358 

2018-05-17  14:47:00 13:34:00 379.395 534.340 107.873 

2018-05-17  14:48:00 13:35:00 389.749 553.692 107.084 
*Source: Own elaboration based on measurements from meteorological station. 

 

 

Figure 29: Extract of Solar Radiation Values. Source: Own elaboration based on measurements from 

meteorological station. 
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Figure 30: Extract from Wind Speed and Direction Values. Source: Own elaboration based on measurements 

from meteorological station. 
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Figure 31: Extract from Ambient Temperature and Relative Humidity Values. Source: Own elaboration based on 

measurements from meteorological station. 
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5.3 Model Simplifications 

For the SHW system implementation in TRNSYS, a series of assumptions are made aiming to 

reduce the complexity of the system and increase its flexibility to simulate different scenarios. The 

most important simplifications are the following:  

 

• Heat Pumps are replaced by auxiliary water heaters with the same thermal capacities as the 

model described in Table 13.  

 

• Design conditions are maintained for water flows returning to the CH-03 chiller which have 

not been simulated. These are the returning flow temperature to the evaporator, expected to 

be at 12.7°C, and the returning temperature from the secondary heat load designed at 

44.5°C.  

 

• The temperature control systems are simplified as the following:  

 

o If the temperature registered at the outlet of the solar collector field is greater than 

the average CAC-05/06 temperatures, the BACA-05/06 pumps are activated.  

o Hot water is dispatched from the CAC-05/06 tanks to the CAC-01/02/03/04 if the 

there is an active demand in the system.  

o Mixing valves are activated if the outlet of the CAC-01/02/03/04 heat accumulators 

is higher than 45°C, in which case mains water is introduced before being 

dispatched. 

 

• As it is unlikely that the heat accumulators CAC-05/06 average temperature exceeds 70°C, 

the control subroutine which released hot water to the drain system is suppressed. Thus, the 

heat accumulators are also simplified.  

 

• Operation of the system is maintained during 14 hours in weekdays from 7 AM to 9 PM. 

During weekends the operation hours are reduced to 11, from 8 AM to 7 PM.  

 

• As no real-time measurements of the hot water demand profile were available, a standard 

weekly profile was drawn from estimations of user experience and the design conditions. 

This profile is shown in Figure 32. 

 

For the construction of the TRNSYS model, the unit types and description are shown in Table 19 

to Table 22. Finally, a schematic representation of the principal diagram blocks is shown in Figure 

33, while the details for each sub-block are shown in Appendix A. From this model, operational 

fault-free data is generated to train the selected Neural Network architecture.  
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Figure 32: Weekly Hot Water Demand Profile. Source: Own elaboration. 

 

Table 19: TRNSYS Models used for SWH System, Solar Section. 

Name TRNSYS Model Type Name 

Weather Files   

Santiago TMY Type 99 
Weather Data Reading and Processing – User 

Format 

Solar Field   

Solar Collector 1-2 Type 71 Solar Collector; Evacuated Tube 

Field-Collector Diverter Type 647 Fluid Diverting Valve w/Up to 100 Outlets 

Field-Collector Mixer  Type 649 Mixing Valve for Fluids w/Up to 100 Inlets 

General Circuit   

BACA-05/06 Type 654 Single-Speed Pump 

Temp. Control Type 2 
ON/OFF Differential Controller; Successive 

Substitution 

Preheat Mixer Type 649 Mixing Valve for Fluids w/Up to 100 Inlets 

Return Diverter Type 647 Fluid Diverting Valve w/Up to 100 Outlets 

Operation Type 14 Time Dependent Forcing Function 

Weekly Load Type 14 Time Dependent Forcing Function 

*Source: Own elaboration from TRNSYS documentation [16]. 
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Table 20: TRNSYS Models used for SHW System, Operation Schedule. 

Name TRNSYS Model Type Name 

Schedules   

Operation Type 41 Load Profile Sequencer - Unique Days of the Week 

OpWeek Type 14 Time Dependent Forcing Function 

OpSat Type 14 Time Dependent Forcing Function 

OpSun Type 14 Time Dependent Forcing Function 

Weekly Load Type 41 Load Profile Sequencer - Unique Days of the Week 

WeeklyLoad Type 14 Time Dependent Forcing Function 

SatLoad Type 14 Time Dependent Forcing Function 

SunLoad Type 14 Time Dependent Forcing Function 

*Source: Own elaboration from TRNSYS documentation [16]. 

Table 21: TRNSYS Models used for SWH System, Preheating Section. 

Name TRNSYS Model Type Name 

Circuit CAC-05/06   

IC-6S-05/06/07/08 Type 91 
Heat Exchanger with User-Provided 

Effectiveness 

BACS-05/06/07/08 Type 654 Single-Speed Pump 

Manifold BACS OUT ½ Type 647 Fluid Diverting Valve w/Up to 100 Outlets 

Manifold BACS IN ½ Type 649 Mixing Valve for Fluids w/Up to 100 Inlets 

OutletCAC05/06 Type 649 Mixing Valve for Fluids w/Up to 100 Inlets 

CAC-05/06 Type 534 
Cylindrical Storage Tank with Immersed 

Heat Exchangers 

Circuit CH-03   

Diverter CH Type 647 Fluid Diverting Valve w/Up to 100 Outlets 

Mixer CH Type 649 Mixing Valve for Fluids w/Up to 100 Inlets 

CH-03 RC Type 666 Water-Cooled Chiller 

BPAF-04/05 Type 654 Single-Speed Pump 

BACA-07/08 Type 654 Single-Speed Pump 

*Source: Own elaboration from TRNSYS documentation [16]. 
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Table 22: TRNSYS Models used for SWH System, Heating Section. 

Name TRNSYS Model Type Name 

Circuit Heat Pumps   

HP Diverter Type 647 Fluid Diverting Valve w/Up to 100 Outlets 

HP Mixer Type 649 Mixing Valve for Fluids w/Up to 100 Inlets 

CAC-01/02/03/04 Type 534 Cylindrical Storage Tank with Immersed 

Heat Exchangers 

BACS-6S-01/02/03/04 Type 654 Single-Speed Pump 

IC-6S-01/02/03/04 Type 91 Heat Exchanger with User-Provided 

Effectiveness 

BC-09/10/11/12 Type 138 Auxiliary Fluid Heater 

TempValve Type 11 Controlled Flow Mixer 

*Source: Own elaboration from TRNSYS documentation [16]. 

 

Figure 33: TRNSYS model schematic representation. Source: Own elaboration from TRNSYS documentation 

[16]. 
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5.4 Monitored Variables 

Due to the availability of weather data detailed in Table 17, the TRNSYS model was run for a 

period of 168 days, from April 7th to September 22th, 2018. The outputs of the simulation are 

registered each minute, giving a total of 241,922 data entries. The principal monitored values 

presented in Table 23, which describe the performance of the solar preheating subsystem. These 

variables are used to generate the data inputs for the DL models after a preprocess phase.  

 

Although the monitored variables are not directly used as input for the prediction models, Table 24 

summarizes those registered for the auxiliary heating system and the final output temperature to 

the hot water demand. The obtained values are approximations of the real operational conditions. 

In particular, the monitored variables for the heating section correspond to outputs from units which 

were not completely modeled, such as the heat recovery chiller CH-03 and the heat pumps BC-09 

to 12. An extract from the generated timeseries for the monitored variables presented in Table 23 

are shown in Figure 34 to Figure 38. As both heat accumulators CAC-05 and CAC-06 behave 

identically in the simulation, only one of the preheating circuits is further analyzed. The monitored 

components are then from the CAC-05 heat accumulator and the IC-6S-05/06 heat exchangers 

circuit.  

 

 

Table 23: Monitored variables for preheating system. 

Name Description  Units Subsystem 

T Coll in Inlet temperature to the solar collector field. °C Solar  

T Coll out Outlet temperature of the solar collector field. °C Solar 

T Pipe out Outlet temperature of the solar collector field 

considering ambient heat loss. 

°C Solar 

Pump signal-1 Control signal to solar pumps BACA-05/06 - Solar 

Pump signal-2 Control signal to pumps BACS-05/06 - CAC-05 

IC05-Load-In  BACS-05 outlet temperature °C CAC-05 

IC05-Load-Out IC05 return temperature to solar collectors °C CAC-05 

IC05-Source-Out IC05 outlet temperature to CAC-05 °C CAC-05 

IC06-Load-In  BACS-06 outlet temperature °C CAC-05 

IC06-Load-Out IC06 outlet temperature to CAC-05 °C CAC-05 

IC06-Source-Out IC06 return temperature to CH-03 °C CAC-05 

CAC-05 Average temperature in CAC-05 tank °C CAC-05 

Pump signal-3 Control signal to pumps BACS-07/08 - CAC-06 

IC07-Load-In  BACS-07 outlet temperature °C CAC-06 

IC07-Load-Out IC07 return temperature to solar collectors °C CAC-06 

IC07-Source-Out IC07 outlet temperature to CAC-06 °C CAC-06 

IC08-Load-In  BACS-08 outlet temperature °C CAC-06 

IC08-Load-Out IC08 outlet temperature to CAC-06 °C CAC-06 

IC08-Source-Out IC08 return temperature to CH-03 °C CAC-06 

CAC-05 Average temperature in CAC-06 tank °C CAC-06 
*Source: Own elaboration from TRNSYS simulation results.  

 



 

- 65 - 

 

 

 

 

 

 

 

 

Table 24: Monitored variables for auxiliary heating system. 

Name Description  Units Subsystem 

T Chilled Outlet chilled water temperature from CH-03 °C CH-03 

T Cooling Outlet cooling water temperature from CH-03 °C CH-03 

COP Coefficient of Performance of CH-03 - CH-03 

Pump signal-4 Control signal to pump BPAF-04/05 - CH-03 

Pump signal-5 Control signal to pump BACA-07/08 - CH-03 

Preheat outlet Inlet temperature to the heating system °C HP 

Heating outlet Outlet temperature from the heating system °C HP 

Pump signal-6 Control signal to pump BACS-01 to 04 °C HP 

IC-Source-Out IC-01 to 04 return temperature to heat pumps °C HP 

IC-Load-Out IC-01 to 04 outlet temperature to CAC-01 to 04 °C HP 

Temp. Valve Tempering valve outlet temperature to demand °C HP 

Mains Temp. Mains water temperature inlet for tempering valve °C HP 

Return Temp. Return hot water to CAC-05/06 °C HP 
*Source: Own elaboration from TRNSYS simulation results.  

 

 

Figure 34: Extract from Solar Collector Field Monitored Values. Source: Own elaboration from TRNSYS 

simulation results.  
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Figure 35: Extract from Heat Recovery Chiller Monitored Values. Source: Own elaboration from TRNSYS 

simulation results.  

 

 

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

0

10

20

30

40

50

60

2
3

3
3

2
3

3
4

2
3

3
4

2
3

3
5

2
3

3
6

2
3

3
6

2
3

3
7

2
3

3
7

2
3

3
8

2
3

3
9

2
3

3
9

2
3

4
0

2
3

4
0

2
3

4
1

2
3

4
1

2
3

4
2

2
3

4
3

2
3

4
3

2
3

4
4

2
3

4
4

2
3

4
5

2
3

4
6

2
3

4
6

2
3

4
7

2
3

4
7

2
3

4
8

2
3

4
8

2
3

4
9

2
3

5
0

2
3

5
0

C
O

P

Te
m

p
er

at
u

re
 [

°C
]

Hours [Year]

T° Chilled T° Cooling C.O.P.

 

Figure 36: Extract from CAC-05 and IC-6S-05 Circuit Monitored Values. Source: Own elaboration from 

TRNSYS simulation results.  
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Figure 37: Extract from CAC-05 and IC-6S-06 Circuit Monitored Values. Source: Own elaboration from 

TRNSYS simulation results.  
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Figure 38: Extract from Heating Section Monitored Values. Source: Own elaboration from TRNSYS simulation 

results.  
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As shown in Table 25, by comparing the temperatures obtained by the TRNSYS model and a 

sample from the monitored data, the difference amounts to 22%. The highest difference is found 

for the IC-6S-05/06 heat exchangers, while the measured values from the IC-6S-07 are overlooked 

as faulty.  

 

 

 

 

 

 

Table 25: Difference between design, simulated and measured temperatures in the system. 

Temperature Design Simulated Measured 
Simulation 

vs Design 

Simulation 

vs 

Measured 

Measured 

vs Design 

IC05-CS-IN 45.0 53.2 35.9 18.2% 48.3% 20.3% 

IC05-CS-OUT 37.0 45.0 35.7 21.7% 26.3% 3.6% 

IC05-CAC-IN 27.0 48.4 31.9 79.4% 51.7% -18.3% 

IC05-CAC-OUT 35.0 50.4 35.9 43.9% 40.5% -2.4% 

IC06-CH-IN 45.0 54.5 44.6 21.1% 22.3% 1.0% 

IC06-CH-OUT 39.5 50.8 41.5 28.5% 22.2% -5.2% 

IC06-CAC-OUT 35.0 51.6 40.1 47.4% 28.8% -14.4% 

IC06-CAC-IN 29.5 48.4 26.8 64.1% 80.8% 9.2% 

IC07-CS-IN 45.0 53.2 24.9 18.2% 113.8% 44.7% 

IC07-CS-OUT 37.0 45.0 23.7 21.7% 89.9% 35.9% 

IC07-CAC-IN 27.0 48.4 23.7 79.4% 104.3% 12.2% 

IC07-CAC-OUT 35.0 50.4 24.6 43.9% 104.7% 29.7% 

IC08-CH-IN 45.0 54.5 44.0 21.1% 23.8% 2.2% 

IC08-CH-OUT 39.5 50.8 42.9 28.5% 18.2% -8.7% 

IC08-CAC-OUT 35.0 51.6 41.7 47.4% 23.6% -19.2% 

IC08-CAC-IN 29.5 48.4 40.5 64.1% 19.7% -37.2% 

CAC-05 35.0 45.2 40.3 29.3% 12.4% -15.0% 

CAC-06 35.0 45.2 38.0 29.3% 19.0% -8.6% 

CH-CH-IN 12.7 12.7 13.6 0.2% -6.2% -6.8% 

CH-CH-OUT 6.0 6.8 12.0 12.7% -43.4% -99.2% 

CH-CL-IN 44.5 47.6 42.4 7.0% 12.4% 4.8% 

CH-CL-OUT 50.0 54.5 44.6 9.0% 22.2% 10.8% 

COL-OUT 45.0 53.2 53.2 18.2% -0.1% -18.2% 
  Average 32.8% 36.3% -3.4% 
  Corrected Average 31.1% 22.2% -10.6% 

*Source: Own elaboration from TRNSYS simulation results.  
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5.5 Fault Scenarios  

To study the effect of faulty states in the SHW system with no prior recollected historic data, faults 

must be induced and studied in the TRNSYS simulation. From operational experience, the biggest 

issues arise from overheating due to lower demand profiles than expected, especially during 

summer. Also, during winter it is common to draw lower temperatures than required. As the latter 

is more related to the auxiliary heating system, the anomaly detection process is centered in the 

preheating solar section. Two main faults are explored: overheating caused by low hot water 

demand or pump failure, and the reduction of the solar energy yielded to the system caused by a 

drop of the collector’s efficiency. The units that are directly affected are the following:  

 

• BACA-05/06.  

 

• Solar Collectors 1-2. 

 

• Weekly Load. 

 

It is important to monitor these components over the auxiliary heating system, since the heat input 

from the CH-03 chiller and the BC-09/12 heat pumps can hide possible damages in the SHW 

system. These components have not been modeled completely and thus only behave under design 

conditions with limited variability. For anomaly detection purposes, only the solar collector outlet 

temperature was analyzed, and not the average tank temperature due to the limits of the physical 

model to represent actual operation of the system.   

 

5.5.1 Anomalous Water-Draw Profiles  

As mentioned before, the solar field regularly presents overheating periods. This is mainly due to 

the logic with which the control system activates the circulation pumps connecting the solar field 

and the heat exchangers, as well as the lack of other heat-dampening methods to prevent this 

behavior and reducing the heat delivered to the load. This can be seen in Figure 39, in which even 

though the temperatures registered in the solar collectors reaches over 130°C, the solar field’s outlet 

temperature on average is barely 32°C. This behavior is repeated over long periods of time, as 

shown in Appendix E. Even if the energy output from the solar field is low, the hot water discharged 

to demand is within operational range. This is due to the action of heat pumps and the heat-

recovering chiller, and thus the system, from this point of view, operates correctly.  

 

For the collector model installed in the system, the reference stagnation temperature is of 250°C, 

as shown in Table 5. However, while the solar collectors are designed to operate until their 

stagnation temperature, the overheating events may induce faults in auxiliary components, leading 

to possible failures in the system. Although no formal fault history has been recorded, malfunctions 

derived from overheating have occurred and concern has been expressed by the campus’ 

administration team on several occasions. For instance, the centrifugal pumps have already been 
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replaced once before due to corrosion failure, affected by temperature rises. As a rule of thumb, a 

10°C temperature increase causes the chemical reaction rate to double, however it strictly depends 

on the operation conditions of each system [66].  

 

Hence, the outlet solar field temperature is monitored for unexpected changes. During normal 

operation, as the system operates pulling hot water to supply the demand from the heat 

accumulators, these variations arise from sudden changes in the water-draw profile perceived by 

the system. An example is shown in Figure 40, in which an induced fault is able to increase up to 

10°C the normal operating temperatures for over three hours due to a drastic fall of hot water 

demand. This event may occur due to an effective reduction of demand profiles or other failures 

upstream of the solar preheating section of the system, as for example, pump failures. This behavior 

continues until the control system shuts down the BACA-05/06 pumps, leading to normal 

temperature decay during non-operating hours. The detection of rising temperatures outside 

expected values and normal patterns, can be useful to interrupt the operation of the system or to 

implement other temperature dampening measures.  

 

 

 

5.5.2 Solar Collector Efficiency 

A sudden reduction of the solar collector’s energy input to the system, which is not coherent with 

the input pump signal, can be a sign of a fault in the solar field. This may be caused by faults in the 

circulation system or in the collectors itself, reducing the useful heat extracted from the absorbed 

solar radiation as the heat loss to the environment increases. However, faults which develop over 

time such as dust accumulation, are not considered due to the limited operational history available 

for analysis.  

 

Figure 39: Extract from measured solar field temperatures. Source: Own elaboration measured values in the 

SHW system.  
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From a thermal perspective, due to the integration strategy of the components installed, the 

auxiliary systems represented by both the heat-recovery chiller and the heat-pumps can absorb 

anomalous behavior of the solar field. For this reason, a lower solar field input is less recognizable 

as an anomalous behavior than a sudden increase of temperature, as modeled in the previous 

section. Through TRNSYS software, the drop of the solar collector’s efficiency was modeled as a 

reduction of the incident radiation, as design parameters of said component are not variable during 

the simulation.  

 

In Figure 40, an example of an altered temperature profile is shown. The effect of the induced fault 

on the solar collector’s inlet and outlet temperatures drastically reduces the heat gains of the system 

and the temperatures experience up to 10°C decrease. However, this local fault does not extend 

from the solar field through the heat exchangers to the rest of the system, and thus after the fault 

has initially developed, the temperature drop is not significant. The prediction of the solar collector 

outlet temperature is also useful to quantify the expected renewable energy contribution to the 

system’s gains and to recognize integration issues which lower the participation of the solar field 

in the SHW system.   

 

 

 

 

 

 

 

 

 

 

Figure 40: Examples of induced anomaly in Solar Collector’s Temperatures. 
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Chapter 6  
 

Proposed Diagnosis Framework 

The proposed diagnosis framework consists of two principal tasks: the prediction of the target 

temperatures’ timeseries, and the anomaly detection based on RMSE values when fed with new 

data from the TRNSYS simulation. The first focuses on the design and assessment of Deep 

Learning techniques to accurately represent the timeseries from the data delivered by the TRNSYS 

model, and the latter on the selection and evaluation of sensible thresholds based on the incoming 

data.  

 

6.1 Data Preprocessing 

From the SHW system’s monitored values shown in Table 23, a selection of features relevant to 

each target temperature is made. These selected features are then preprocessed to generate the input 

data matrixes for the DL framework, as shown in Figure 41. This initial selection of variables is an 

important step to reduce the complexity of the model and focus on local variations influencing each 

target temperature. 

 

For instance, even if radiation measurements intuitively seem crucial for the prediction of the solar 

collector outlet temperature, these values and the other meteorological conditions are dropped, 

since their effect is already considered by other simulated variables. This is the case of the control 

signal of the solar pumps, which depends not only of the available radiation but also on the heat 

accumulator’s temperature. For the average heat tank temperature, only the immediate 

component’s temperatures shown in Appendix 3 are selected as the effect of other components are 

already accounted by the interactions of the heat exchangers. The selected monitored variables for 

each target temperature are shown in Table 26. 

 

 

 

Table 26: Target Temperatures and Selected Monitored Variables. 

Solar collector outlet  CAC-05 Average 

Ambient temperature 

Solar collector inlet 

Pump signal-1 

Pipe outlet temperature 

Pump signal-1 

Pump signal-2 

IC05-Load-Out 

IC06-Load-Out 

Mains Temp. 

Return Temp. 

   *See Table 23 and Table 24 for reference. 
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As it was mentioned before, the output data extracted as shown in Table 18 must be averaged over 

a period of six minutes to reduce variability of solar radiation measurements. As such, a day now 

consists of 240 periods of six minutes, significantly reducing the length of the sequences to be 

analyzed.   

 

6.2 Training and Test Sample Generation  

From the target temperatures and related variables defined in Table 26, the training, validation and 

test datasets are prepared to be fed into the network. The timeseries data is reshaped into sequence 

matrixes by a sliding window. The number of samples depends on the length of the sequence’s 

time window 𝑡𝑤 and the slide step 𝑡𝑠. Figure 41 depicts the methodology which from an original 

dataset of 𝑁𝑡 features during a 𝑇𝑝 period of time, three matrixes will be extracted.  

 

A sliding window of size 𝑡𝑤 × 𝑁𝑡 passes over the original dataset, extracting the values within its 

boundaries for 𝑆 iterations. As only the following timestep is predicted, the sliding step used is of 

one to extract continuous timeseries data. These values are then reshaped into matrixes where each 

row represents a sequence of a whole time-window. Three different length sequence are generated 

to assess the performance of the different architectures: one, three, and seven days, respectively. 

The seven-day sequence is included to consider the complete effect of the weekly hot water demand 

profile presented in Figure 32. 

  

 

 

The generated 𝑋 matrix contains 𝑆 number of samples of length 𝑡𝑤 for 𝑁𝑓 features. The labels 𝑦  

are shaped into a vector of length 𝑆 for each of the sequences in the 𝑋 matrix. Additionally, a future 

state matrix 𝐹 is extracted, containing the 𝑡ℎ following timesteps for both the 𝑋 (𝐹𝑡+1) and the 𝑦 

(ℎ𝑡+1) data.  

 

Figure 41: Preprocessing of the data. 
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This data is used to evaluate the ability of the model to predict several timesteps in the future, using 

the previous prediction as a new row in the input data. The selected number of future timesteps is 

ten, which corresponds to an hour in the future from the original prediction.  Furthermore, the 

matrixes and labels are divided into the training, validation and test set. The test set consists of 20% 

of the original data, while the 80% remaining is divided into training and validation data. Another 

20% of the data is taken for validation purposes. For both datasets analyzed, the size of the training, 

validations and test sets are presented in Table 27.  

 

Finally, each set of data matrixes must be normalized by a scaler operation, so as the magnitude of 

any specific feature does not bias the model. This is done through a Min-Max normalization as 

shown in Equation (28). From a vector 𝑋, the minimum (𝑋𝑚𝑖𝑛) and maximum (𝑋𝑚𝑎𝑥) values are 

extracted to scale the data. This operation is only fit to the X training data and then is applied to the 

validation and test sets. The labels, in this case the output temperatures, are untouched by this step.  

 

 Xscaled =
X − Xmin

Xmax − Xmin
 (28) 

 

 

 

 

6.3 Hyperparameter Selection  

Parametric models, such as ANN, are defined by a set of trainable and non-trainable parameters. 

The latter, also known as hyperparameters, define the basis of the architecture and consist on a set 

of values which must be chosen based on the input data, the task the model is required to do, and 

its performance. In RNN models, the following decisions must be made regarding the architecture 

and configuration of the network:  

 

 

Table 27: Dataset division and number of samples. 

Datasets N° Previous 

Days 

Series Size Train 

Set 

Validation Set Test Set 

Solar Collector 

Outlet T° 

1 240 5836 1460 1824 

3 720 17510 4378 5472 

7 1680 23654 5919 7393 

Average Tank 

T° 

1 240 5836 1460 1824 

3 720 17510 4378 5472 

7 1680 23654 5919 7393 
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• Unit type: ANN, Vanilla RNN and LSTM are the main models used.  

 

• Number of layers: Depending on the relationships within the analyzed data, a deeper 

network can allow the mapping of more complex functions, as each layer will be able to 

extract different temporal features from the original data. 

 

• Number of units: For each layer, the number of units must be selected. Deeper 

architectures with a smaller number of units per layer are generally preferred to wide 

shallow layers, to allow a more complex understanding of the data.  

 

• Dropout probability: Dropout can be used as a regularization technique, with the 

probability of dropping a unit is of [0,1]. This inherent randomness allows the network to 

train without relying on specific weights.  

 

• Activation function: Each hidden layer has an activation function. This are non-linear 

function such as Tanh or ReLU for hidden layers. These are shown in the following 

equations.  

 

 

 

• Optimizer: The selected optimizer defines the method by which the weights and biases of 

the network are updated through backpropagation. Various techniques exist, responsible of 

the minimization of the objective function through gradient descent. Adaptive methods, 

such as Adam [67] and RMSprop [68] obtain more stable results than other optimization 

techniques [69]. 

 

• Learning rate: Defines the pace at which the optimizer affects the gradient descent used 

during the backpropagation process. Each optimizer has its own set of internal parameters 

other than the learning rate, but only the effect of the learning rate variations is studied.  

 

• Batch size: The batch size determines the number of samples that are fed into the network 

per training iteration. A small batch size may increase the prediction’s precision but lose 

the ability to generalize results, however larger batch sizes require more memory space to 

train.   

 

• Number of epochs: An epoch is defined as a complete, forward and backward, pass of all 

the batches of the dataset through the network. The performance of the models depends on 

how many training epochs it reaches. The optimizer and learning rate, as well as the train 

and validation error are used to diagnose the number of required epochs for the model to 

converge.  

 Tanh(x) =
2

1 + 𝑒−2𝑥
− 1 (29) 

 𝑅𝑒𝐿𝑈 = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 (30) 
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• Sequence length: The length of the input data sequence also affects the performance of the 

framework for future predictions. Shorter sequences are more easily captured with Vanilla 

RNN, while LSTM and GRU can process more complex data [70].   

 

• Weights and bias initializers: Variable initialization can have an impact on the time the 

model takes to converge during and its ability to locate a convenient local minimum. 

Usually biases are initialized at zero. However, weights can be initialized by different 

means using random set values generated by scaled and truncated normal distributions. 

 

• Loss functions: Mean-Square Error (MSE) and Root Mean-Squared Error (RMSE) are 

frequent metrics used to evaluate the precision of predicted values in supervised ML tasks. 

The minimization of the RMSE, shown in Equation (31), tends to penalize further the 

difference between the real and the predicted values than the MSE.  

 

 RMSE =  √∑
(𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑)

2

𝑛

𝑛

𝑖=1

 (31) 

 

The number of hyperparameters imply a complex process of tuning each of these values, besides 

the relationships and effect each hyperparameter has on the others and the overall performance of 

the model for a specific input data. Through trial-and-error, acceptable results may be achieved, 

although other techniques, such as a grid search, have been proposed to methodically reach better 

results. In the following sections the different model configurations that were trained are presented, 

as well as a schematic representation of the architecture used.  

 

6.4 Proposed RNN and LSTM Models 

The analyzed RNN and LSTM-based models trained configurations are shown in Table 28 and 

Table 29. The length of the temporal image, units per layer of the RNN-LSTM model, units per 

layer of the output MLP, activations functions used, batch size and number of training epochs are 

presented. These values were proposed, tested and selected by comparing the RMSE obtained over 

the training, validation and test sets. Though trial-and-error process, it has been noted that some 

hyperparameters have a higher impact than others on the metrics utilized, and thus various 

alternatives have been explored for the number of units, layers and batch size.  

 

A schematic representation of the RNN-based architecture is shown in Figure 42, in which the 

input data of size 𝑁𝑓 × 𝑡𝑤 is fed into the RNN unit. The values from the last temporal unit is 

extracted in a many-to-one configuration, and later flattened and passed through an MLP of 𝑁ℎ 

units to obtain the predicted values. To visualize a deeper architecture of an RNN, in Figure 43, all 
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the temporal outputs from the first RNN layer are then connected as input values to the second 

layer. This is repeated for every deep layer, leading to a similar output MLP as in the RNN.  

 

Similarly, a visualization of the LSTM-based model is presented in Figure 44, in which the cell 

and hidden state are propagated through the temporal units to produce the outputs. Just as before, 

the last temporal output is passed through an MLP structure to predict the temperatures. A deep 

version is presented in Figure 45, in which the high number of trainable parameters significantly 

increases the epochs needed for the training and validation errors to converge.  

 

 

 

 

 

Table 28: Hyperparameter values used for RNN-based model. 

Model RNN DRNN 

Data Length 1 Day 1 Day 3 Days 7 Days 

Number of 

RNN units 

64 

128 

256 

64-32 

32-16 

64-32 

128-64-32 
64-32 

Number of 

MLP units 

128 

512 
128 128 128 

Activation 

Function 
ReLU ReLU ReLU ReLU 

Epochs 100 100 100 100 

Batch Size 

32 

64 

128 

32 32 32 

 

Table 29: Hyperparameter values used for LSTM-based model 

Model LSTM DLSTM 

Data Length 1 Day 3 Days 1 Day 3 Days 7 Days 

Number of 

LSTM units 
64 

64 

128 

64, 32 

128,64,32 

256, 128,64 

64, 32 

128,64 

128,64,32 

64,32 

Number of 

MLP units 

256 

512 
512 

256 

512 

1024 

256 

512 
512 

Activation 

Function 

Tanh 

ReLU 
Tanh Tanh Tanh Tanh 

Epochs 
50 

100 

50 

75 
150 

75 

150 

200 

75 

Batch Size 64 64 64 64 64 
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Figure 42: Schematic representation of proposed RNN architecture. 

 

 

Figure 43: Schematic representation of proposed DRNN architecture. 
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Figure 44: Schematic representation of proposed LSTM architecture. 

 

Figure 45: Schematic representation of proposed DLSTM architecture. 
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6.5 Anomaly Detection  

From the frameworks presented in the previous section, the one which displays a better 

performance under the stated criteria is used to design an anomaly detector. The fundamental 

concept of this is to take advantage of a well-trained model which would respond to a new healthy 

data input similarly to the test set. However, when presented with anomalous data, the selected 

framework is expected to wrongly predict future values. The discrepancy between the predicted 

and real temperature values is interpreted as a sign of anomalous behavior in the system.  

 

For this, anomalous data profiles are generated by TRNSYS through the use of user-defined data 

readers. A faulty water-draw forcing function and the reduction of incident radiation are introduced 

in the simulation showed in Figure 33. An anomalous water-draw is considered as the drastic 

reduction of demanded hot water from the system. This implies a larger return flow, which elevates 

the temperatures of the system. The original forcing function of 2400 L/h mean flow demanded is 

reduced to 200 L/h, maintaining the same weekly profile shown in Figure 32. This difference is 

reflected on registered temperatures almost 10°C higher in the solar field’s temperature outlet. 

Similarly, for a temperature reduction of similar proportions, the effective incident solar radiation 

on the collector is blocked 80%. For the anomalous water-draw, the input of the Return Diverter 

shown in Table 19 is modified, while a reduction of the incident radiation is manually incorporated 

into the model based on the output of the Weather File used (refer to Table 18 and Figure 34 for 

TRNSYS model’s intervened components). Both anomalous scenarios are modeled as sudden 

changes in the system, to take into consideration the high thermal inertia that it presents, due to the 

auxiliary heat sources. To effectively assess the ability of the fault detection model, it is desired 

that the effect of the anomaly causes temperature discrepancies for over at least 10 timesteps, or an 

hour. With the available information, fluctuations in the system with a cycle life shorter than an 

hour and lower magnitudes cannot be categorically defined as anomalous. 

 

Three cases are analyzed for each of the anomalous profiles under different meteorological 

conditions during the period of April 7th and September 22nd. The available time-windows are 

filtered to operational hours of the solar field, as it is the main source of variability in the system. 

For each case, a healthy and an anomalous temporal image is used to test the predictions of the 

selected model. Then, the following methods are used to assess the model’s performance:  

 

• Prediction errors: The model is used for the prediction of 20 timesteps in the future since 

the induced fault in the system. Each prediction is compared separately to the original 

timeseries, for both the anomalous and the healthy profile. As mentioned before, the 

reconstruction of the anomalous profile is expected to present a higher RMSE.  

 

• Accuracy of anomaly detection: Through the selection of a threshold sensible to the input 

data based on the variance of the model’s prediction, the accuracy of the classification of 

health states are analyzed with the following metrics: accuracy, precision, recall and F1. 
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Chapter 7  
 

Results and Discussion  

The frameworks results are divided in the selection of the DL model to accurately predict the SHW 

system’s selected temperatures, and in the ability to detect anomalies with these predictions. The 

accuracy of the models’ results is compared through the RMSE metric during training and testing 

sessions, as well as the relative error of these values compared to the original sequences. From the 

tested values presented in Table 28 and Table 29, the following observations are made:  

 

1. As a general result, the longer the temporal image and the deeper the network, the longer is 

the time required for the training process, amount up to 9 hours in the case of the DLSTM 

model trained with 7-day data. Refer to Section 4.5 for details of the computer used.  

 

2. For the same length of temporal image provided, for example three days, LSTM models 

require an average of 5.24 hours to train, while RNN train in 3.25 hours. This is due to the 

larger number of epochs required for the LTSM training error to converge steadily.  

 

3. For deep LSTM architectures, the use of Tanh as the activation function between layers 

yield more stable results than ReLU, which yields better results with the DRNN models.  

 

4. While experimenting with different configurations, it is found that even though the 

optimizer Adam converges in a lower number of epochs, the obtained RMSE values are 

higher when compared to the RMSProp optimizer. This can be explained by how the 

exponentially decaying gradients are introduced in both optimizers to regulate the effective 

learning rate. On one hand, RMSprop uses an adaptive learning rate divided by an 

exponentially decaying average of the squared gradients to reduce the effect of vanishing 

gradients while updating the weights of the network. On the other hand, Adam additionally 

keeps an exponential decaying average of the moments of the gradients, increasing the 

convergence speed [71].  

 

5. The choice between single values or a full sequence prediction depends on the availability 

and frequency of the training and test data. While a many-to-many approach is a bigger 

challenge for training and fine-tuning of the models’ parameters, a many-to-one allows 

analysis for each timestep individually and simplifies an eventual implementation with real-

time input data.   
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7.1 Temperature Prediction 

The first criteria to assess the performance of the trained ANN, RNN and LSTM models is to obtain 

low RMSE values with small dispersion for the predicted temperature values for both models. From 

the models’ point of view, significant efforts can be made to reduce the RMSE values lower than 

1°C.  However, from a practical perspective, obtaining a RMSE value below the measuring tools’ 

uncertainty bounds is not necessary. Hence, with the present information available, a punctual 

prediction with an RMSE under 1°C is not directly differentiable from the thermal systems’ natural 

variations. 

 

7.1.1 Solar Collector Outlet Temperature 

Low values of RMSE under 2°C are obtained for most of the trained models when trained to predict 

the solar collector outlet’s temperature. In Figure 46, an example is shown for the test set belonging 

to the 3-day temporal image dataset for a DRNN model with three layers of [64, 32, 16] units each. 

The difference between the predicted 𝑦𝑝𝑟𝑒𝑑 and real 𝑦𝑟𝑒𝑎𝑙 values is also presented, obtaining a 

relative error of 4.45%. Train and test errors for the other tested models are presented in Table 30, 

in which the model with the best results for each temporal image length is highlighted. This 

comparison is also shown in Figure 47, where the lower RMSE values are obtained for the RNN-

based models for punctual temperature predictions.  

 

In Table 31 it is shown that the best results are yielded by the DLSTM Ver 2 model of [128, 64] 

units for the 3-days temporal image. This model displays the lowest test error of 3.45%, the lowest 

variance (0.520) and the highest R2 and explained variance score (0.997). Thus, even though the 

mean test RMSE of 1.47°C is slightly greater than the RNN counterpart, the predicted values of 

the DLSTM-Ver 2 model are more precise, reducing the uncertainty of the regression.  

 

From both Table 30 and Figure 47, it is observed that RMSE values are significantly reduced when 

the length of the temporal image is increased, except for the DNN models in which the difference 

is less notorious. These errors are reduced by half when increasing the length from 1 day to 3 days 

of previous data for the RNN and LSTM models. A longer time-window can include the effects of 

weather and water-draw profiles to predict the future values with a higher accuracy.  

 

Thus, from the standard demand profile presented in Figure 32 above, a 7-day temporal image may 

increase the likeliness between the real and predicted values if is able to incorporate better the 

sequence of weekdays and weekends. Nevertheless, Figure 48 shows the behavior of the training 

and validation errors throughout the training session, and the difference between 3-day and 7-day 

long temporal images is not significant and even tends to slightly overfit the training data.  
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Figure 46: Test RMSE values for 3-day DRNN Ver 2 Model for Solar Collector Outlet Temperature. 

Table 30: Train and test errors for selected models for Solar Collector Outlet Temperature. 

Model Num. Days Units Train Error Test Error 

DNN 1 64-32 0.53 1.74 

RNN 1 64 0.71 1.68 

DRNN 1 64-32 0.78 1.28 

LSTM 1 64 2.18 2.5 

DNN Ver 1 3 64-32 0.91 1.43 

DNN Ver 2 3 64-32-16 0.54 1.29 

DNN Ver 3 3 128-64 1.56 1.66 

DRNN Ver 1 3 64-32 0.62 0.92 

DRNN Ver 2 3 64-32-16 0.55 0.89 

DLSTM Ver 1 3 64-32 0.67 1.42 

DLSTM Ver 2 3 128-64 0.83 1.47 

DLSTM Ver 3  3 128-64-32 0.43 1.66 

DNN 7 64-32-16 0.39 1.26 

DRNN 7 64-32 0.55 0.94 

DLSTM 7 64-32 0.47 1.38 
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Figure 47: Comparison of train and test errors for selected models for Solar Collector Outlet Temperature 

Prediction [°C]. 
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Table 31: Statistical Metrics for selected models for Solar Collector Outlet Temperature. 

Model Num. 

Days 
Units 

Test 

Error % 
Variance R2 

Explained 

Variance 

DNN 1 64-32 7.82 2.910 0.986 0.986 

RNN 1 64 6.20 2.460 0.987 0.988 

DRNN 1 64-32 5.50 1.221 0.993 0.993 

LSTM 1 64 7.70 3.410 0.982 0.984 

DNN Ver 1 3 64-32 6.97 1.587 0.988 0.991 

DNN Ver 2 3 64-32-16 6.38 1.502 0.990 0.991 

DNN Ver 3 3 128-64 9.08 2.425 0.984 0.986 

DRNN Ver 1 3 64-32 7.10 1.516 0.991 0.991 

DRNN Ver 2 3 64-32-16 4.45 0.619 0.996 0.996 

DLSTM Ver 1 3 64-32 4.33 0.618 0.996 0.996 

DLSTM Ver 2 3 128-64 3.45 0.520 0.997 0.997 

DLSTM Ver 3  3 128-64-32 5.99 0.898 0.993 0.995 

DNN 7 64-32-16 5.38 1.550 0.991 0.991 

DRNN 7 64-32 4.43 0.644 0.996 0.996 

DLSTM 7 64-32 6.10 1.510 0.991 0.991 
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Figure 48: Comparison of training RMSE for different lengths of temporal images given. 
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7.1.2 Average Hot Water Tank Temperature 

The prediction of the average temperature for the hot water tanks CAC-05/06 poses a lesser 

challenge for the models due to the stationarity caused by two main factors: the fluid’s natural 

thermal inertia and the input of a stable heat source from the heat-recovery chiller. Thus, training 

and test errors are below the smallest registered for the solar collector outlet temperature and it is 

not as direct to identify the model which performs better. Additionally, the variances are lower and 

the R2 and explained variance score are consistently higher.  

 

Figure 49 shows an example of the difference of the predicted and real values for the average 

temperature of CAC-05. As the variability of the temperature decreases due to external factor, the 

causes of unstable predictions also are reduced. For the best performing models for the solar 

collector outlet temperature identified in the previous section, training and test error, as well as 

other statistic metrics are presented in Table 32 and Table 33. As shown in Figure 50, the model 

with lowest training and test error is yielded by the DLSTM Ver 2 model of only 0.18 and 0.20 °C 

respectively. Such low values of RMSE errors can only be verified with precise instrumentation 

and the quantification of the uncertainty the measurements carry.  This model also presents the 

lowest variance of 0.033.  

 

 
 

 

 

 

 

 
Figure 49: Test RMSE values DRNN Ver 2 Model for Average Tank Temperature. 
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Table 32: Train and test errors for selected models for Average Tank Temperature. 

Model Num. Days Units Train Error Test Error 

DNN Ver 2 3 64-32-16 0.40 0.37 

DRNN Ver 2 3 128-64-32 0.25 0.36 

DLSTM Ver 1 3 64-32 0.28 0.30 

DLSTM Ver 2 3 128-64 0.18 0.20 

   

Table 33: Statistical Metrics for selected models for Average Tank Temperature. 

Model 
Num. 

Days 
Units 

Test  

Error % 
Variance R2 

Explained  

Variance 

DNN Ver 2 3 64-32-16 0.88 0.069 0.96 0.979 

DRNN Ver 2 3 128-64-32 0.87 0.129 0.96 0.961 

DLSTM Ver 1 3 64-32 0.71 0.036 0.97 0.989 

DLSTM Ver 2 3 128-64 0.48 0.033 0.99 0.990 

 

 

Figure 50: Comparison of train and test errors for selected models for Average Tank Temperature. 
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Finally, in Figure 51, the evolution of training and validation errors for the four models used to 

predict the average hot water tank temperatures are presented. Even if the training process is 

irregular, low RMSE values are reached, which reflects the small variability and thus high 

predictability of this monitored temperature. It can be noted that the ANN and LSTM models 

converge to a more usual behavior, whereas the RNN does not improve significantly during 

training. 

 

 

7.2 Sequence Prediction 

Although the trained models yield low RMSE values, isolated temperature predictions do not yield 

enough information to determine if a significant anomaly has occurred during operation in the 

system. Thus, the ability to accurately predict longer sequences is also an interesting result. Due to 

the frequency of the incoming measurements, it is possible to rely on single predictions for each 

timestep and asses the model’s ability to interpret and regenerate the following sequence, rather 

than otherwise relying on sparsely-timed measurements which would require full future sequence 

prediction. 

 

When generating a sequence, the model will update the sliding temporal window over the data and 

thus will incorporate previous predictions’ errors in future values. Intuitively, if the single datapoint 

prediction error is small, the output sequence could maintain the real behavior of the data within a 

narrow uncertainty gap. Although the RNN-based models yielded lower test RMSE for single 

temperature predicted values, in Figure 52 it can be seen that these are not able to reproduce the 

data sequence correctly, and even though the temperature difference is low (at most 3°C), the 

behavior is inverted for Sample 2. For Sample 10, however, the three-layered RNN model of [64, 

32, 16] units outperforms the two layered version of [64, 32] units, implying the existence of a 

more abstract relationship within the data which deeper models can extract.  

 

Figure 51: Comparison of training errors for 3-day length of temporal images given for average tank 

temperature. 
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Less surprisingly, due to the fact then DNN architectures are not specialized in timeseries analysis, 

in Figure 53 it can be seen that the these models do not adequately replicate the sequence, exhibiting 

a similar behavior than the RNN-based models with an error rate as high as 6°C. 

 

 

 

While the LSTM-based models had achieved worse results than the RNN-based models predicted 

single temperature values,  in Figure 54 it can be seen that it has better capabilities of following the 

temperature sequence with lower differences between the predicted and real values. The DLSTM-

Ver 2 model, with [128, 64] units, achieves a maximum difference of 0.5°C on Sample 2. Even 

though the model exhibits the same problems of desynchronizing the predicted peak values for 

Sample 8, the error is reduced to 1°C.  

 

 

Figure 52: DRNN Model Sequence Prediction. 

 

 

Figure 53: DNN Model Sequence Prediction. 
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Additional to these general observations, the sequence prediction accuracy was assessed for the 

solar collector outlet temperature as well the average tank temperature for the 3-day dataset.  

 

7.2.1 Solar Collector Outlet Temperature 

The outlet temperature from the solar field is bound to natural variations which make the prediction 

of future values a useful tool to assess the performance of the system. Sudden changes in weather, 

control signals and other physical mechanisms within the system have been modeled using 

TRNSYS software and from these, internal relationships have been extracted by the trained models 

to reproduce similar time sequences. In Table 34, the mean and standard deviation of the obtained 

RMSE values are presented for models DNN, RNN and LSTM-based for a 3-day length temporal 

images for a selection of 10 random samples. While the DNN-based model is outperformed by 

both the other models in terms of the mean RMSE obtained, it has a smaller standard deviation 

than the RNN model, which also possesses the lowest RMSE score. These results also reaffirm the 

idea that the LSTM-based model has a better ability to replicate the temporal sequence at hand, 

compromising the accuracy with the precision of the prediction.  

 

A selection of these samples and the performance of the models is shown in Figure 55, while the 

remaining samples can be found in Appendix G. The samples have been filtered for operational 

hours of the solar collector field, depending on the control system of the solar pumps BACA-05/06, 

in which anomalous behavior is of higher risk due to the high temperatures reached. During these 

operating hours, the DNN model tends to underestimate the outlet temperatures, while the RNN 

version tends to overestimate it. Although the LSTM predictions can replicate the general 

temperature tendencies in Samples 6, 8 and 10, they also present discrepancies with the simulated 

values, such as in Sample 2. Even if the magnitude of the error is small, this is preferable than if 

the variations of the predicted sequences are unsynchronized with the tendencies of the real data.  

 

Figure 54: DLSTM Model Sequence Prediction. 
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The mean values of RMSE and variance of the models’ for a prediction horizon of 10 timesteps 

(corresponding to an hour) are also presented in Figure 56 to Figure 58 for each of the samples 

selected. These three models share some common defects, such as the apparent challenge to 

replicate rising temperature levels compared to decreasing temperature sequences6. This might be 

explained by the fact that the model for a 3-day length temporal image is not able to completely 

interpret the weekly water-draw profile, and thus struggles to identify the initial response of the 

control system that activates the circulation pump of the solar system. 

 

As mentioned before, while the RNN and LSTM models consistently perform better than the ANN 

architecture, the latter yields lower variance for more than half of the samples tested. This result 

may suggest why ANN models have had a more widespread use than the more complex models 

which require significant efforts to select adequate hyperparameters and training conditions, as 

well as longer training times. Still, Figure 58 shows that the LSTM yields superior results for 

sequence prediction, obtaining the smallest variance between the samples. In Figure 59, the mean 

RMSE errors for the three models are compared, showing that the RNN model has the most 

unstable prediction tendencies. Unlike the ANN and LSTM models which overestimate the 

predicted temperatures except for one sample, RNN predictions overestimate and underestimate 

almost equally. This limits the integration of, for example, additional parameters in the cost 

functions to penalize more one tendency of inaccuracy or another.  

 

The results yielded by the LSTM model suggest that sequence predictions can effectively benefit 

from the use of this architectures, given the availability of long enough previous data sequences. 

                                                 

6 Sample 1. Refer to Appendix 12 and Appendix 13.  

Table 34: Sequence Reconstruction Error by Model for Solar Collector Outlet Temperature. 

RMSE DNN Ver. 2 DRNN Ver. 2 DLSTM Ver 2. 

Sample Mean STD Mean STD Mean STD 

1 3.39 5.35 2.11 4.28 0.57 3.99 

2 2.55 0.92 1.66 0.94 0.46 0.49 

3 0.74 0.50 0.10 0.59 0.75 0.36 

4 0.90 0.31 0.28 1.53 0.08 0.43 

5 0.49 0.67 0.13 0.40 0.03 0.55 

6 0.62 1.57 -1.36 2.59 1.09 2.13 

7 0.86 0.40 0.49 0.69 1.40 0.36 

8 1.40 0.73 0.32 1.06 0.12 0.88 

9 1.17 0.56 0.16 0.41 0.80 0.43 

10 0.62 0.69 0.20 0.36 0.17 0.50 

Average 1.27 1.17 0.41 1.28 0.55 1.01 
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However, the desynchronized predicted values seen in Sample 6 suggest that a finer selection of 

input variables is required to effectively represent the relationship between the physical quantities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55: Reconstruction Samples for Solar Collector Outlet Temperature. 
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Figure 56: Mean Sequence Prediction Error for ANN Model for Solar Collector Outlet Temperature. 

 

 

Figure 57: Mean Sequence Prediction Error for RNN Model for Solar Collector Outlet Temperature. 
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Figure 58: Mean Sequence Prediction Error for LSTM Model for Solar Collector Outlet Temperature. 

 

Figure 59: Comparison of relative Mean Prediction Errors for selected models for Solar Collector Outlet 

Temperature. 
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7.2.2 Average Tank Temperature  

As stated before, the prediction of the average tank temperatures yields low RMSE error values 

and small variance, due to the natural inertia of a body of water of 4000 L. However, such small 

variability of the results is rather a symptom of the limitations of the physical model. This is due 

to the simplifications incurred during the simulation of the heat-recovery chiller. The lack of 

operational data to contrast and validate the simulation renders the representation of this component 

as a constant heat source rather than presenting the natural fluctuations occurring in the 

climatization system. This gives the thermal input from the IC-6S-06/08 heat exchanger a larger 

weight than the solar input transported by the IC-6S-05/07 components, as well as doubling the 

design water flow, as stated in Table 16.   

 

In Table 35 the mean and standard deviation of the RMSE values are presented for the DNN, RNN 

and LSTM models for a 3-day length of temporal images. The stated behavior regarding the models 

is repeated, with the LSTM model vastly outperforming DNN and RNN models, in that increasing 

order.  

 

 

 

A selection of these samples and the performance of the models is shown in Figure 60, while the 

remaining samples can be found in Appendix H. Similar to the previous samples for the solar 

collector output temperature, these have been filtered for operational hours of the solar collector 

field risk due to the higher temperatures reached. For these predictions the RNN model is the least 

adaptable to abrupt temperature changes, tending to underestimate the real values. Nevertheless, 

even if the results enhance the LSTM model’s ability to accurately predict temperature sequences, 

all three models yield acceptable results.  

 

Table 35: Sequence Reconstruction Error by Model for Average Tank Temperature. 

RMSE ANN Ver. 2 DRNN Ver. 2 DLSTM Ver. 2 

Sample Mean STD Mean STD Mean STD 

1 0.19 0.11 0.22 0.28 0.01 0.03 

2 0.31 0.09 0.21 0.30 0.09 0.08 

3 0.51 0.13 0.21 0.10 0.08 0.11 

4 0.22 0.10 0.04 0.07 0.11 0.15 

5 0.16 0.18 0.41 0.31 0.13 0.06 

6 0.29 0.12 0.58 0.74 0.19 0.28 

7 0.24 0.22 0.11 0.16 0.03 0.05 

8 0.05 0.25 0.53 0.22 0.04 0.04 

9 0.06 0.16 0.51 0.22 0.07 0.09 

10 0.12 0.20 0.12 0.20 0.28 0.15 

Average 0.22 0.16 0.29 0.26 0.10 0.10 
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The mean values of RMSE and variance of the models’ for a prediction horizon of 10 timesteps 

are also presented in Figure 61 to Figure 63 for each of the samples selected. In contrast to the 

tendency obtained for the other predicted temperature, here both DNN and LSTM tend to 

underestimate the sequence’s values, while the RNN tends to do the contrary. Again, this model 

yields the higher variance for its predicted values.  

 

In Figure 64, the mean RMSE errors for the three models are compared. In this case, both RNN 

and LSTM models do not have a clear tendency, while the ANN repeatedly underestimates the 

temperature values. Either way, each model can accurately predict temperature sequences within 

less than 0.5°C of uncertainty.  

 

 

 

 

 

 

 

Figure 60: Reconstruction Samples for Average Tank Temperature. 
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Figure 61: ANN Model Mean Sequence Prediction Error for Average Tank Temperature. 

 

Figure 62: RNN Model Mean Sequence Prediction Error for Average Tank Temperature. 
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Figure 63: LSTM Model Mean Sequence Prediction Error for Average Tank Temperature. 

 

Figure 64: Comparison of relative Mean Prediction Errors for selected models for Average Tank Temperature. 
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7.3 Diagnosis Performance  

Due to the natural variability of the solar collector outlet temperature, it is of more interest to detect 

anomalies in its behavior than with the average tank temperature. In the heat accumulators, the 

effect of the anomalous water-draw patterns and the collectors’ efficiency is lessened by the 

constant heat input from the auxiliary sources. The DLSTM Ver 2 model, first shown in Table 30, 

is selected as it yielded the best results considering individual temperature prediction and sequence 

LSTM used.  

 

As expressed above, not only a low value of the RMSE is used to compare the performance of the 

trained models, but also a small variance in relation to the mean error obtained. Under these criteria, 

the DLSTM Ver. 2 model is selected for further use in the anomaly detection framework. In Table 

36 the selected hyperparameters are presented. A similar architecture is shown in Figure 45, in 

which two layers of LSTM cells are used together with an MLP to obtain the predicted value.  

 

 

 

A period of seven days must be simulated for the use of a 3 day-long model, such as the LSTM 

model selected. This is to ensure each time-window extracted is the same length, as shown in Figure 

41. From the extraction of the last time-window before the induced fault, a total of 20 periods (or 

two hours) are predicted. Three cases are selected for analysis, during which the solar collector 

field was operational. These are shown in Table 37 and selected to represent different 

meteorological conditions from the available weather data.   

 

 

Table 36: Selected Deep Learning Architecture. 

Hyperparameter Value 

Architecture LSTM 

Units & Layers 128-64 

Activation Function Tanh 

Optimizer RMSProp 

Learning Rate 10-3 

Batch Size 64 

Epochs 150 

Length of time-window 3 days 

MLP Hidden Units 512 

 

Table 37: Studied Weekly Profiles for Induced Anomalies. 

Case Start Hour End Hour Start Date End Date Induced Fault 

1 2,377 2,545 April 9th April 16th 2,440 

2 4,321 4,489 June 29th July 4th 4,405 

3 5,832 6,000 August 30th September 7th 5,919 
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7.3.1 Anomalous Water-Draw Profiles 

The effect of the anomalous water-draw profiles for each of the three cases studied are shown in 

Figure 40 and Figure 65. These show the difference between healthy and anomalous temperature 

values caused by the induced fault. While the effect on temperature is almost instant, it endures for 

more than an hour until the solar control system suspends the operation of the pumps. The full 

sequences extracted for analysis are shown in Appendix I .  

 

The generated healthy and anomalous sequences are fed to the LSTM model and then the prediction 

errors are analyzed. From the behavior of the reconstruction errors, the anomaly detection threshold 

is selected and finally the confusion matrix for each case are presented. A summary for the water-

draw anomaly is presented in Table 38. The sequence reconstruction error is a direct comparison 

between the healthy prediction with the original healthy time-window. The same is done for the 

anomalous profile. For Figure 66, Figure 68 and Figure 70, the anomalous profile generated higher 

prediction errors, indicating that the model’s latent representation of the healthy data is different 

enough to be recognized as an anomaly. Although both predictions obtain similar results with 

different threshold values, Case 1 presents the lowest overall errors, the threshold which yields best 

results is Case 3. Case 2, on the other hand occurs during mid-winter. As the energy delivered by 

the solar field low due to the limited radiation availability, the systems’ temperatures are lower. 

Thus, the anomaly has a reduced effect on the system (as Figure 65 suggests) and so is the ability 

to identify anomalies. 

 

 

 

The threshold is selected as the value of the anomalous predictions error’s variance, as a 

representation of the dispersion within the data, considering that the healthy profile should have a 

smaller dispersion than the anomalous data. This allows the selection to be adjusted to each new 

input data and how the LSTM model recognized and replicates the sequences, rather than external 

analysis over the data. This, however, limits an instant response from the maintenance team, since 

 
(a) Case 2                                                           (b) Case 3  

Figure 65: Faulty Water-Draw Profiles: Solar Collector’s Temperatures, Case 2 and 3. 
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at least 5 measurements are needed to discriminate anomalous behavior. On the other hand, even 

though a two-hour window generated only 20 datapoints to detect anomalies, it is a practical 

measure considering that the online data recollection system is updated every minute.  The details 

for each case are presented in the following sections. 

 

  

 

I. Case 1 

As the LSTM model uses previous predictions to construct the whole temperature sequence, it is 

expected that the reconstructions error increase with a longer horizon predicted. Figure 66 shows 

that the prediction error increases during the 20 future timesteps for the anomalous profiles, 

meanwhile the healthy reconstruction errors are consistently lower.  

 

  

 

Additionally, the anomalous predictions tend to constantly overestimate the anomalous-induced 

temperatures. Healthy scenario yield errors with a peak of almost 2°C, meanwhile further future 

Table 38: Summary of Anomaly Detection Results for Faulty Water-Draw Profiles. 

Case 1 2 3 

Threshold 1.817 3.662 3.866 

True Positive 19 12 20 

False Positive 1 8 0 

True Negative 18 14 19 

False Negative 2 6 1 

Accuracy 0.925 0.650 0.975 

Precision 0.940 0.630 1.000 

Recall 0.900 0.700 0.950 

F1 Score 0.923 0.667 0.974 

 

 

Figure 66: Faulty Water-Draw Profiles, Case 1: Prediction Error and Anomaly Detection Threshold Selection. 
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anomalous values are more dispersed. This effect allows a defined separation of the healthy and 

anomalous data by selecting a threshold based on the variance of the reconstruction errors of the 

anomalous data. The results of the classification for this case are summarized in Figure 67, in which 

only 7.5% cases are misclassified.  

 

 

 

II. Case 2  

In this case, the detection threshold does not generate a clear division as before. The prediction 

errors do not follow a trend as in case 1, and even the healthy errors surpass the anomalous 

generated during the last periods, in which the accumulated uncertainty of the prediction is higher. 

However, the magnitude difference remains for most part of the sequence, with the anomaly being 

overestimated in up to 10°C as shown in Figure 68.  

 

 

 

Figure 67: Faulty Water-Draw Profiles, Case 1: Confusion Matrix. 

 

Figure 68: Faulty Water-Draw Profiles, Case 2: Prediction Error and Anomaly Detection Threshold Selection. 
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This leads to a higher threshold than before and a larger number of misclassified datapoints, 

however, the balance between correct and incorrect classifications is still favorable. The greater 

dispersion of healthy values and the model’s incorporation of the anomalous data towards the end 

of the series (reducing the predictions errors) results in a lower performance for this case. Finally, 

the confusion matrix is presented in Figure 69.  

 

The number of false positives is larger than the false negatives, an undesired increase of the number 

of false alarms. However, if the temporal order of the errors is analyzed, the selected threshold is 

able to detect the initial sequence (roughly 1:20 hours) of the anomalous data, while the healthy 

data significantly misclassified at the beginning of the series for 6 periods (36 minutes).  

 

 

 

III. Case 3 

The last case presented for the anomalous water-draw profile presents similar results to case 1, in 

which the threshold separates the healthy from the anomalous class as shown in Figure 70. 

However, the threshold is also larger, as in case 2, and both errors of the predicted values are over 

4°C higher.  

 

The confusion matrix obtained is shown in Figure 71, in which only one anomalous datapoint is 

misclassified. When comparing with Figure 70, it is observed that the value corresponds to the first 

anomalous output of the sequence, which again suggests that another criteria can be introduced, 

concerning the temporal behavior of the reconstruction errors can be useful for further anomaly 

detection.  

 

 

 

Figure 69: Faulty Water-Draw Profiles, Case 2: Confusion Matrix. 
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Figure 70: Faulty Water-Draw Profiles, Case 3: Prediction Error and Anomaly Detection Threshold Selection. 

 

Figure 71: Faulty Water-Draw Profiles, Case 3: Confusion Matrix. 
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7.3.2 Solar Collector Efficiency Drop 

Similarly, Figure 40 and Figure 72 show the anomalous temperature profiles generated by the 

reduction of the collector’s efficiency for the three cases shown in Table 37. In this scenario, as the 

useful heat gains from the solar collectors is reduced, temperatures drop around 5°C within since 

the moment the fault is induced on the system. As aforementioned, the effect of the reduced 

absorbed radiation is effective until the solar control system suspends the circulation pumps. The 

full sequences extracted for this scenario are shown in Appendix J. 

 

In Table 39 a summary of the performance of the LSTM-based model for anomaly detection is 

presented. For this anomaly scenario, the overall performance is lower, reaching a maximum 

accuracy of 0.85, and yields a high number of false negatives. The sequence reconstruction errors 

shown in Figure 73, Figure 75 and Figure 77 all present higher prediction errors for the healthy 

input data than the anomalous profile, overestimating the sequence of temperatures.  

 

For the reason stated above, while the threshold is still based on the variance of the prediction’s 

errors, the detection logic is inversed as the anomaly corresponds to lower temperatures than 

expected. Case 1 shows a better performance than the others, which are similar. However, Case 2 

again yields the lowest score for every metric used. The results obtained also indicate that the 

reduction of the energy delivered by the solar system is an anomaly harder to capture and recognize 

from the characteristics learned by the model. This might be explained by the periodical oscillation 

of the temperature sequence, in which lower values are natural during certain hours of operation. 

From the perspective of the thermal model, the effect of the lower radiation absorbed is reduced 

by the constant heat influx from the heat-recovery chiller and the returning flow from the heat 

pump circuit. The details of each case are presented in the following sections.  

 

 

 

 

(a) Case 2                                                                          (b) Case 3  

Figure 72: Collector Efficiency Drop: Solar Collector’s Temperatures, Case 2 and 3. 
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I. Case 1 

As mentioned before, the behavior of the prediction errors is inverse when compared to the water-

draw anomaly which elevates the system’s temperature. This anomaly, however, causes the solar 

collector’s outlet temperature to decrease. As the prediction errors shown in Figure 73 are higher 

for the healthy dataset than the anomalous one, it is useful to invert the logic for the selection of 

the detection threshold. If any datapoint is within the dispersion of the anomalous predictions, then 

it is recognized as an anomalous state. This again limits the time-window for early detection, 

requiring at least 4-6 periods to effectively obtain a representative threshold value.  

 

Case 1 yields the best results for the detection of a drop in the collector’s efficiency, although 

presenting a high number of false negatives as shown in Figure 74. This reduces the overall 

confidence of the detector, as the time required to correctly identify the fault is over 10 periods, an 

hour, since it manifested.  

 

 

Table 39: Summary of Anomaly Detection Results for Collector Efficiency Drop Faults. 

Case 1 2 3 

Threshold 2.907 1.975 2.319 

True Positive 20 14 15 

False Positive 0 6 5 

True Negative 13 10 12 

False Negative 7 14 8 

Accuracy 0.825 0.600 0.675 

Precision 1.000 0.625 0.705 

Recall 0.650 0.500 0.600 

F1 Score 0.788 0.555 0.648 

 

 

Figure 73: Collector Efficiency Drop, Case 1: Prediction Error and Anomaly Detection Threshold Selection. 
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II. Case 2 

Figure 75 shows the predictions errors and the selected threshold for anomaly detection for the 

second case analyzed. An interesting behavior presented by the reconstructions errors is how the 

healthy and anomaly trends are inverted, overestimating and underestimating the values 

respectively with a maximum of ± 5°C. However, as a result, the dispersion of both datasets is 

higher, and the selected threshold is not able to differentiate between them adequately.  

 

As shown in Figure 76, the number of false negatives and true negatives are equal, implying that 

identifying lower temperatures during winter period may require other features to accurately 

represent the internal behavior of the system.  

 

 

 

Figure 74: Collector Efficiency Drop, Case 1: Confusion Matrix. 

 

Figure 75: Collector Efficiency Drop, Case 2: Prediction Error and Anomaly Detection Threshold Selection. 
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III. Case 3 

The third case presented also behaves differently than both cases presented before, as the prediction 

errors for the anomalous temperature profile are higher than the healthy prediction. Thus, from the 

samples presented, no common pattern may be identified, as the in the case of the water-draw 

anomaly. In fact, in this case the anomalous prediction error in Figure 77 increases with the number 

of timesteps, similar to the observed for the water-draw anomaly.  

 

However, just as in Case 2, the dispersion of both errors surpasses the threshold, resulting in a high 

number of false negatives as shown in Figure 78. By analyzing the sequence of the reconstruction 

errors, this also suggests that the anomaly detection logic must include a temporal factor, as from 

an hour since the fault was induced, the health states are accurately classified.  

 

 

 

Figure 76: Collector Efficiency Drop, Case 2: Confusion Matrix. 

 

Figure 77: Collector Efficiency Drop, Case 3: Prediction Error and Anomaly Detection Threshold Selection. 
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7.3.3 Summary  

Summarizing the results obtained for the anomaly detection under two different scenarios, Figure 

79 shows the total predictions for the health state of the system. These results yield an overall 

precision of 83% and an accuracy of 76% as shown in Table 40.   

 

However, as the detection model yields such different results for the anomaly caused by the faulty 

water-draw profile and the reduction of the collector’s efficiency, a deeper analysis is required to 

interpret these differences. This is crucial to develop a robust framework which can be 

implemented for real-time monitoring and prognosis of the SHW system. The biggest setback for 

this framework is the fact that it is built on simulated data which has not been experimentally 

validated. This, coupled with the restrictions on the control system and the ideal conditions of the 

auxiliary heat inputs, reduces the number of hours in which the solar field is operational. 

Consequently, the LSTM is unnecessarily biased towards lower temperatures, which could explain 

the unfavorable results obtained for this scenario.  

 

The lower accuracy achieved for the reduced temperature scenario also limits the identification of 

faults within the collector, while the detection of high temperatures allows the detection of 

anomalies occurring upstream of the solar field. Considering the presence of auxiliary heat sources, 

the second case is of greater importance for the analysis of the thermal system as a whole, since 

the occurence of high temperature events can lead to damage in other components, particularly in 

the circulation pumps.  

 

 

 

 

Figure 78: Collector Efficiency Drop, Case 3: Confusion Matrix. 
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Figure 79: Summary of Anomaly Detection results for both scenarios. 

Table 40: Summary of Anomaly Detection classification metrics. 

Precision Recall Accuracy F1 

0.83 0.72 0.76 0.77 
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Chapter 8  
 

Conclusions and Comments  

The presented work seeks to develop an anomaly detection framework for a solar thermal system, 

based on synthetic data generated from a specialized software and deep learning techniques. As 

such, the development of the thesis has been divided into three main tasks: the construction of a 

thermal model in TRNSYS software based on design conditions, the training of a deep learning 

model capable of extracting abstract temporal relationships from the data, and finally, the use of 

this trained model to predict temperature values and subsequently classify the health state of the 

system.  

 

First, the model is built in TRNSYS software. It incorporates all the mayor thermal and hydraulic 

components of the system, based on the information available of the design conditions. However, 

integration and maintenance issues do not allow the use of experimental measurements to validate 

the results yield by the software. Still, from the analysis carried out of the system and the available 

measured values, malfunctions in instrumentation and the control system are identified. A series 

of simplifications and suppositions about the internal logic and certain components are required. 

This limits the representability of the thermal model for components related specifically to the heat-

recovery chiller and the heat pumps.  

 

Secondly, for the assessment of deep learning techniques to predict future values based on the 

generated temperature and control signal profiles, different models and hyperparameters are 

explored. The performance of three main models under similar conditions is compared, namely: 

ANN, RNN and LSTM. These models are tested for similar hyperparameters. For ANN and RNN 

the use of the whole previous day as input data is enough to predict the following timesteps’ output 

accurately. However, LSTM requires longer sequences to reach comparable results. The 

improvement of the LSTM’s performance with a three day-length temporal matrix reaches an 

RMSE below 1°C, but the difference is not significant to when a seven-day sequence is analyzed. 

Other lengths of time-windows can yield better interpretations of the temporal sequences, such as 

a five-day time-window representing the labor week period which matches the higher demand for 

hot water in the system. The use of a time-window coherent with the demand pattern may yield a 

better latent representation of the data, and subsequently, more accurate and precise predictions.  

 

The precision and accuracy of the predictions for single and sequence of temperature values is 

carried out in two points of the system: the solar field’s outlet temperature and the average hot 

water tank temperature. Although RNN models obtain a lower RMSE for single temperature 

predictions, its performance decreases when faced with the sequence prediction. Opposed to this 

behavior, the LSTM’s performance is better at replicating sequences than both other models, 

obtaining the lowest variance of the predicted values as well.  
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The results obtained under the 2°C error threshold can only be corroborated with experimental 

measurements and the quantification of the instrumentation’s uncertainty, as the TRNSYS 

simulation is not stochastic in nature. The RMSE values obtained for the average tank temperature 

are lower for all the three trained models when compared to the solar collector outlet temperature 

predictions. As mentioned before, this is expected due to the small variability experimented by the 

tank temperature during operation, due to the constant input of heat from the auxiliary sources. As 

the natural variations cannot be accounted for, this temperature is not considered for the anomaly 

detection process. The DLSTM Ver 2 design is selected as the best performing model for sequence 

predictions and is used in the last task.  

 

Only operational hours of the solar pumps are used for sample selection. The major drawback of 

the induced faults simulated in TRNSYS software is the fact that their effect must be significative 

on the system’s temperatures to be classified as anomalous. This means that faults developed over 

time, such as dust accumulation or changes in consumption patterns, may be overlooked, as well 

as faults developed during non-operating hours. With more information available, anomaly 

detection methods could be more adequate to identify subtle changes in heat production.  

 

The proposed method to identify anomalies consists on using the model’s prediction values 

variance as threshold to classify health states of the system. This yields accurate results for the 

water-draw anomalous behavior, in which the system’s temperatures rise over expected trends. 

This scenario is recognized with a mean accuracy of 85%. Meanwhile, the detection of the 

anomalous heat underproduction by the solar field reaches a 70% of accuracy. The restrictions of 

the physical representation of the TRNSYS model limits the applicability of this framework. 

Decreasing the water-draw results in temperatures rising over 10°C, while the reduction of the 

useful heat gained by the collectors only lowers expected temperatures by 5°C. Additionally, lower 

temperatures are more frequent within the simulated values due to the daily trend of the solar 

resource, naturally decreasing when the radiation is reduced. This makes the second scenario not 

as easily recognizable as anomalous behavior. As mentioned before, this is due to the representation 

of the data in the latent space obtained from the feature and time-window initial selection. An 

overall precision of 83% is obtained for the anomaly detection framework. From this previous 

analysis, the idea to incorporate temporal criteria to identify anomalous behavior arises. It is also 

noted that at least five predictions are required to effectively classify developing faults in the 

system. The obtained results for the anomaly detection framework heavily depend on the 

representativity of the thermal model, and for further developments, experimental measurements 

must be carried out.  

 

In previous literature, the frequent use of ANN frameworks for performance prediction and 

anomaly detection in thermal systems, raises the question as to why other more complex 

architectures have not been experimented with. By comparing ANN with RNN and LSTM under 

similar conditions, each model presents strengths and weaknesses regarding the required data, 

training process and performance. In this work, the trained LSTM model yields both more accurate 

predictions than ANN and more precise values than RNN for temperature sequence predictions. 

Ultimately, this leads to believe that excellent results can be achieved with further experimentation 

and calibration of the presented framework.   



 

- 113 - 

 

8.1 Future Work 

The obtained results show the strengths and shortcomings of an initial approach for anomaly 

detection in a SHW system. The lack of experimental validation weighs heavily on the results and 

methods chosen for this framework, and thus it is a pending challenge to validate the TRNSYS 

simulation to gain greater representativity of the thermal system. Additionally, the quantification 

and identification of the measurements’ and simulation’s uncertainty thresholds is fundamental to 

set a target precision to be reached by the trained Deep Learning models.  

 

Another aspect to be improved is the preprocessing of the temperature sequences and the generation 

of a representative latent space of the selected features. As other variables in the system become 

monitored with the installation of better equipment, such as the flowmeter recently installed at the 

outlet of the solar field, other methods can be applied to obtain a better multisensorial 

representation of the data, such as CNN. As mentioned above, the use of a time-window coherent 

with the demand profile might also help achieve a better interpretation of the relationships within 

the measured data. To seek even greater flexibility, unsupervised methods, such as the use of auto-

encoders might yield more useful results for the detection of abnormal behavior in the analyzed 

systems.  

 

Finally, other data-based metrics can be explored for anomaly and fault detection in systems. By 

quantifying the uncertainty of the experimental measurements, the simulation’s results and the 

model’s predictions, other methods can be implemented to determine the health state of the system.   
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Glossary 

AE - Auto-Encoders. 

ANFIS - Adaptive-Network-Based Fuzzy Inference System. 

ANN - Artificial Neural Network. 

ART - Adaptive Resonance Theory Neural Network. 

BPTT - Backpropagation Through Time. 

BRNN - Bidirectional Recurrent Neural Network. 

CART - Classification and Regression Decision Tree. 

CERN - Conseil Européen pour la Recherche Nucléaire. 

CNN - Convolutional Neural Network. 

DDA - Data-Driven Approaches. 

DH - District Heating. 

DL - Deep Learning. 

DLSTM - Deep Long Short-Term Memory Recurrent Neural Network. 

DNN - Deep Neural Network. 

DT - Decision Tree. 

ETC - Evacuated Tube Collector. 

FDS - Fault Diagnostic System. 

FFNN - Feed-Forward Neural Network. 

FPC - Flat Plate Collector. 

GA - Genetic Algorithm. 

GP - Gaussian Process. 

GPU - Graphics Processing Unit. 

IAM -  Incidence Angle Modifier. 

LSTM - Long-Short Term Memory Recurrent Neural Network. 

ML - Machine Learning. 

MLP - Multi-Layer Perceptron. 

MSE - Mean Square Error. 

NLP - Natural Language Processing. 

NN - Neural Network. 

OBE - Outer Bounding Ellipsoid algorithm. 

PCA - Principal Component Analysis. 

PHM - Prognostics and Health Management. 

PV - Solar Photovoltaic technology. 

SVM - Support Vector Machine. 

RMSE - Root Mean Squared Error. 

RBF - Radial Basis Function. 

RNN - Recurrent Neural Network. 

RUL - Remaining Useful Life. 
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SHW - Solar Hot Water system. 

TBPTT - Truncated Backpropagation Through Time. 

TRNSYS - Transient System Simulation program. 

VRF - Variable Refrigerant Flow systems. 

WGET-SHW - Water-In-Glass Evacuated Tube Solar Hot Water system. 
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Appendix 

A.  TRNSYS Model 

 

 

 

 

 

 

 

Appendix 1: Simple TRNSYS model sample. Source: Own elaboration from TRNSYS documentation [16]. 
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Appendix 2: TRNSYS Solar Field Subsystem. Source: Own elaboration from TRNSYS documentation [16]. 

 

 

Appendix 3: TRNSYS Heat Storage CAC-06 Subsystem. Source: Own elaboration from TRNSYS 

documentation [16]. 
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Appendix 4: TRNSYS Chiller Subsystem. Source: Own elaboration from TRNSYS documentation [16]. 

 

 

Appendix 5: TRNSYS Heat Pump Subsystem. Source: Own elaboration from TRNSYS documentation [16]. 
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B.  Solar Collector Datasheet 

 

Appendix 6: Hitek Solar Datasheet, page 1. 
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Appendix 7: Hitek Solar Datasheet, page 2. 
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C.  Heat-Recovery Chiller Datasheet 

 

Appendix 8: CWC Prozone 1320Z C Datasheet, page 1.  
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Appendix 9: CWC Prozone 1320Z C Datasheet, page 2. 
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D.  Solar Angles  

The daily and yearly path across the sky of the sun can be described by solar angles. These variables 

allow the calculation of the quantity of incidence radiation on a particular surface, described by the 

incidence angle shown in Equation (39) [20]. TRNSYS is able to obtain these angles based on the 

weather data, coordinates and time zone presented.  

 

The solar collector field is designed with the following parameters:  

• Inclination angle: 

 β =  15° (32) 

   

• Surface azimuth angle, facing north: 

 γ =  0° (33) 

 

 

  

The zenith angle is described by the following equation, which in turn depends on the solar 

declination angle (Eq.(35)) and the hour angle (Eq. (36)).  

 

 

Figure 80: Zenith angle, slope, surface azimuth angle and solar azimuth angle for a tilted surface.  

Adapted from [20]. 
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 cos 𝜃𝑧 = cos 𝐿 ⋅ cos 𝛿 ⋅ cos 𝜔 + sin 𝐿 ⋅ sin 𝛿 (34) 

 

 
δ = 0.006918 − 0.399912 𝑐𝑜𝑠 𝐵 + 0.070257 𝑠𝑖𝑛 𝐵 − 0.006758 𝑐𝑜𝑠 2𝐵

+ 0.000907 𝑠𝑖𝑛 2𝐵 − 0.002697 𝑐𝑜𝑠 3𝐵 + 0.00148 𝑠𝑖𝑛 3𝐵 
(35) 

 

 ω = (h − 12) ⋅ 15 (36) 

 

Where ℎ is the solar time in hour units.  

 

From Figure 80, with the zenith angle, the elevation angle is described by: 

 

 α + θz =
π

2
 (37) 

 

Thus, the solar azimuth can be found with the following expression   

 𝑠𝑖 𝑛 γ𝑠 = −
𝑐𝑜 𝑠 δ ⋅ 𝑠𝑖 𝑛 ω

𝑐𝑜𝑠 α
 (38) 

 

Finally, the incidence angle on a tilted surface is described by Equation (39). This angle is used to 

calculate the incident global and diffuse irradiance, as well as the direct horizontal irradiance from 

the weather data provided.  

 

 cos θ = cos θz ⋅ cos β + sin θz ⋅ sin β ⋅ cos( γ𝑠 − γ) (39) 

 



 

- 130 - 

 

E.  Solar Collector Temperatures 

 

 

Appendix 10: Measured temperatures from the solar collector. field. 
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F.  Measured Radiation and Ambient Temperature Values 

 

 

Appendix 11: Measured Radiation and Ambient Temperature values for 13-04 to 25-05. 
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G. Sequence Prediction for Solar Collector Outlet 

Temperature Samples   

 

 

Appendix 12: Sequence Prediction for Solar Collector Output Temperature, Samples 1-6. 
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Appendix 13: Sequence Prediction for Solar Collector Output Temperature, Samples 7-10. 
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H. Sequence Prediction for Average Tank 

Temperature Samples   

 

 

Appendix 14: Sequence Prediction for Average Tank Temperature, Samples 1-6. 
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Appendix 15: Sequence Prediction for Average Tank Temperature, Samples 7-10. 
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I. Anomalous Behavior for Water-Draw Induced Fault 

 

 

 

 

 

 

 

 

Appendix 16: Faulty Water-Draw Profiles, Case 1: Comparison of Healthy and Anomalous Solar Collector 

Temperatures. 

 

Appendix 17: Faulty Water-Draw Profiles, Case 2: Comparison of Comparison of Healthy and Anomalous Solar 

Collector Temperatures. 
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Appendix 18: Faulty Water-Draw Profiles, Case 3: Comparison of Comparison of Healthy and Anomalous Solar 

Collector Temperatures. 
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J. Anomalous Behavior for Collector Efficiency Induced 

Fault 

 

 

 

 

 

 

 

Appendix 19: Faulty Collector Efficiency, Case 1: Comparison of Healthy and Anomalous Solar Collector 

Temperatures. 

 

 

Appendix 20: Faulty Collector Efficiency, Case 2: Comparison of Healthy and Anomalous Solar Collector 

Temperatures. 
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Appendix 21: Faulty Collector Efficiency, Case 3: Comparison of Healthy and Anomalous Solar Collector 

Temperatures. 


