UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS
DEPARTAMENTO DE INGENIERIA ELECTRICA

IMPLEMENTATION AND EVALUATION OF STATIC CONTEXT HEADER
COMPRESSION FOR IPV6 PACKETS WITHIN A LORAWAN NETWORK

MEMORIA PARA OPTAR AL TITULO DE
INGENIERO CIVIL ELECTRICO

NICOLAS ANDRES MATURANA ARANEDA

PROFESOR GUIA:)
SANDRA CESPEDES UMANA

MIEMBROS DE LA COMISION:
CLAUDIO ESTEVEZ MONTERO
CESAR AZURDIA MEZA

SANTIAGO DE CHILE
2019

RESUMEN DE LA MEMORIA PARA OPTAR

AL TITULO DE INGENIERO CIVIL ELECTRICO
POR: NICOLAS ANDRES MATURANA ARANEDA
FECHA: 2019

PROF. GUIA: SANDRA CESPEDES UMANA

IMPLEMENTATION AND EVALUATION OF STATIC CONTEXT HEADER
COMPRESSION FOR IPV6 PACKETS WITHIN A LORAWAN NETWORK

The Internet of Things (IoT) is a new communication paradigm, currently blooming and
spreading, that proposes the interconnection of common everyday objects and all kinds of
conventional devices with the Internet. At the same time, the enormous amount of nodes that
is expected to get connected to the Internet demands a massive implementation of Internet
Protocol version 6 (IPv6). IoT aims for the development of new applications, and thus has
promoted the creation of new device classes and new network architectures.

Low Power Wide Area Networks (LPWAN) have recently arisen as a natural evolution
of the concept of Wireless Sensor Networks (WSN). In the light of IoT, LPWAN networks
open a new field of development, which is mainly focused on monitoring-like services that
are carried out over wide areas and which do not require big data transfer rates. LPWAN
devices are characterized by their low power consumption and low cost, thus allowing their
massive deployment over long periods of time without the need for battery replacement or
recharge.

Long Range Wide Area Network (LoRaWAN) is one of the first and principal LPWAN
technologies, whose great flexibility makes it ideal for self-designed networks. In the continent
of America, it utilizes the Industrial, Scientific and Medical (ISM) frequency band around
915 MHz. However, there are several other LPWAN technologies with distinct proprietary
architectures and communication protocols, which hinders the interoperability desired within
the IoT environment.

The Internet Engineering Task Force (IETF) working group for the implementation of IPv6
over LPWAN networks (Ipwan WG) is currently developing a compression and fragmentation
mechanism for IPv6 packet transmission over LPWAN networks called Static Context Header
Compression (SCHC). The compression scheme for SCHC is already complete, but has not
yet been officially implemented nor evaluated.

In this work, the author presents an experimental platform for the implementation and
evaluation of the SCHC mechanism over a LoRaWAN network composed of a Microchip ter-
minal node and an Everynet Radio Gateway (RG). The development process has involved the
integration of multiple and diverse resources from the Telecommunications and Information
and Communication Technologies (ICT) fields.

The created platform achieves a basic but successful implementation of SCHC’s compres-
sion scheme. By means of this platform a preliminary evaluation of the functioning of SCHC
was carried out, analyzing the level of compression attained by the mechanism for three com-
munication contexts that are representative of LPWAN networks. The obtained results are
positive.

ii

RESUMEN DE LA MEMORIA PARA OPTAR

AL TITULO DE INGENIERO CIVIL ELECTRICO
POR: NICOLAS ANDRES MATURANA ARANEDA
FECHA: 2019

PROF. GUIA: SANDRA CESPEDES UMANA

IMPLEMENTATION AND EVALUATION OF STATIC CONTEXT HEADER
COMPRESSION FOR IPV6 PACKETS WITHIN A LORAWAN NETWORK

El paradigma de comunicacion Internet of Things (IoT), el cual plantea la posibilidad de
interconectar objetos cotidianos y toda clase de dispositivos convencionales a Internet, esta
actualmente en pleno desarrollo. El gran nimero de nodos que se espera conectar a Internet
exige a su vez la implementacion a gran escala de Internet Protocol version 6 (IPv6). IoT
busca el desarrollo de nuevas aplicaciones y ha impulsado la creaciéon de nuevas arquitecturas
de red y nuevas clases de dispositivos.

Las redes Low Power Wide Area Networks (LPWAN) han surgido recientemente como
una evolucion natural del concepto Wireless Sensor Networks (WSN), redes de sensores in-
terconectadas. A laluz del [oT, las nuevas redes LPWAN abren un nuevo campo de desarrollo,
principalmente enfocado en servicios de monitoreo y afines que se desarrollen en areas am-
plias y no requieran grandes tasas de transferencia. Los dispositivos LPWAN se caracterizan
por ser de bajo consumo energético y de bajo costo, facilitando su despliegue masivo por
largos periodos sin necesidad de recargar sus baterias.

Long Range Wide Area Network (LoRaWAN) es una de las primeras y principales tec-
nologias LPWAN, y presenta una gran flexibilidad que la hace ideal para redes de diseno
propio. En América funciona en la banda industrial, cientifica y médica (ISM) alrededor de
los 915 MHz. Sin embargo, también existen muchas otras tecnologias LPWAN con arquitec-
turas y protocolos propietarios, lo que dificulta alcanzar la interoperabilidad que se desea en
el entorno IoT.

El grupo de trabajo para la implementacion de IPv6 sobre redes LPWAN (Ipwan WG)
perteneciente al Internet Engineering Task Force (IETF) se encuentra actualmente desarrol-
lando un mecanismo de compresion y fragmentacion de paquetes IPv6 para redes LPWAN
denominado Static Context Header Compression (SCHC). El esquema de compresion se en-
cuentra terminado, pero ain no ha sido implementado ni evaluado de manera oficial.

En este trabajo se presenta una plataforma experimental para la implementacion y eval-
uacion del mecanismo SCHC sobre una red LoRaWAN consistente en un nodo terminal Mi-
crochip y un Radio Gateway (RG) de Everynet. En su desarrollo se han integrado multiples y
diversas herramientas del campo de las Telecomunicaciones y las Tecnologias de Informacion
y Comunicacion (ICT).

La plataforma creada logra una implementaciéon basica pero exitosa del esquema de com-
presion de SCHC. Por medio de ella se ha llevado a cabo una evaluaciéon preliminar del
funcionamiento de SCHC, analizando el nivel de compresion logrado por el mecanismo para
tres contextos de comunicaciéon caracteristicos de una red LPWAN. Los resultados obtenidos
son positivos.

il

v

A Marcelo, Angélica, Carmenglo, Mario, Cata, Mati, Pablo, los Papis, el Tote, la Ceci, la
Jesu y a la Maru.

A la profe Sandra, por su paciencia y su confianza en mi.
A mi papd, que me impulsé constantemente a terminar este camino.
A mi mamd, que siempre ha estado ahi para escucharme cuando la necesito.

A mi hermana, que tantas veces me apoyd y me ayudo a levantarme
cuando mi dnimo decayo.

A todos los champis, por su carino y apane incondicional durante todos estos anos.
Habria sido imposible sin ustedes.

A los que formaron parte de CAS, con quienes hicimos algunas cosas geniales que siempre
recordaré con alegria.

A Matus, Jaime Aranda y Mati Macaya por toda su ayuda, las veces que me acompanaron y
las aventuras que compartimos.

Al Isma, el Simon y a la Dani por la amistad inmortal, a pesar del tiempo y la distancia.

To my dear friends Dani, Martin and Fran, with whom I have shared many laughs and
conversations.

A la gente de la casita, por sus comidas, sus risas, su carino y sus palabras de dnimo
en los momentos dificiles.

A la Pame, que ha visto de cerca todo este proceso y nunca me ha dejado rendirme.
Gracias por ser mi principal apoyo estos ultimos anos.

vi

Agradecimientos

Agradezco a José Ignacio Guerra Gémez de Telefonica [+D por proporcionarme los equipos
necesarios para desarrollar este trabajo, y por su disposicién para facilitarme la informacion
necesaria. También quiero agradecer a los miembros del WiNet Group por las sesiones de
feed-back y el conocimiento que compartieron conmigo, sus aportes fueron muy ttiles para
resolver los problemas que surgieron en el proceso.

vil

viil

Contents

[Specific Objectives|
......................................

[I'hesis Organization|

Background and State of the Art|

IS 6LOWPANI

Static Context Header Compression

2.4 Packet Processing|
2.4.1 Matching Operators (MOs)|
2.4.2 Compression/Decompression Actions (CDAs)|
I2l ll;i I; lllg: :ig:lg:!:ti!zlll -------------------------------
DA Padding« o o oo

System Implementation|

[3.1 Equipment and Setup|.
[3.1.1 Microchip RN2903 LoRa Technology Mote]

X

Uk > e W W~ -

© o oD

= = = e
(o)) BN e) BTSN Ve

18
18
19
21
21
23
23
24
25

[3.1.2 Everynet LoRaWAN Gateway| 29

[3.1.3 Everynet Network Management Platform|. 30

[3.1.4 Host Computer and Development Tools|. 30

[3.1.5 Required Configuration|. 30

(3.2 Functional Blockslo oo 32
[3.2.1 System Overview| 33

3.2.2 [Pv6 Packet Generator] 34

[3.2.3 SCHC Compressor| 35

[3.2.4 Sender Device Input|o 36

(3.2.5 LoRaWAN Devicel oo 37

[3.2.6 LoRaWAN Gateway| 37

[3.2.7 Packet Sniffer] o 38

[3.2.8 LoRaWAN Payload Retriever| 39

[3.2.9 SCHC Decompressor|, 39

[3.2.10 Message Verihier|. o 40

4 Analysis 41
[4.1 Recommendations of Usage Scenario |

| and Comparison|. 41
4.2 Performance Evaluationl 43
[4.2.1 Ethciency of Packet Compression| 44

422 Future Bvaluation Planl.o 0000000 45

[4.3 Summary ot Achievements| 0oL 46
4.4 Future Workl.o 46
[4.4.1 Packet Size and Dataratel.o 47

A2 Ruled. o oo 47

[4.4.3 Address Management| L. 47

444 Downlink Absencelo oo 48
L__Conclusion| 48
[Bibliography| 52
[Appendix: Source Code| 53

List of Tables

(1.1 LPWAN technologies comparative tablel.
(1.2 Frame payload datarate dependence table|
(1.3

6LoRaWAN vs 6LoWPAN protocol stacks comparison|.

B

Field Descriptionsina Rulel 0.

A1

SCHC-enhanced vs conventional LPWAN scenarios comparison|

12

Context rules for performance evaluation

i3

Compression percentage by context|

x1

List of Figures

(L1 [oT communication schemel 7
(1.2 LoRa messages transmission and reception timing| 10
(.3 loRastackl 11
(1.4 TLoRaWAN network architecturel 12
(1.5 LoRaWAN network protocol stackl. 12
(1.6 LoRaWAN uplink message PHY format|. 13
(1.7 LoRaWAN downlink message PHY format| 13
1.8 LoRaWAN message MAC format| 13
(1.9 LoRaWAN message MAC payload format| 13
(1.10 LoRaWAN message frame header tormat| 14
(L11 [Pv6 header formatl Lo 15
(1.12 ITPHC packet format|, 16
[1.13 6LoRaWAN packet tormat|, 17
2.1 SCHC protocol stackl 18
2.2 SCHC Compression and Fragmentation overview|. 19
2.3 SCHC Packet formatl 20
2.4 SCHC Compression Rule format{. 22
[3.1 Microchip RN2903 LoRa Technology Mote] 27
3.2 RN2903 command interfacel 28
[3.3 Everynet LoRaWAN Gateway| 29
[3.4 Everynet Gateway's ports| 30
[3.5 Everynet Platform| oo 31
[3.6 Everynet Platform’s message panel| 31
[3.7 System’s block diagram|.o 0oL 34
[3.8 Packet capture using tcpdump command| 38

YCHC- 10l . o o e 42
4.2 Conventional LPWAN scenariol 43

x1i

Introduction

This thesis is contextualized on the current development of the Internet of Things (IoT),
a recent communication paradigm which proposes the interconnection of several diverse de-
vices, such as sensors, actuators, and all sorts of objects, through the Internet, thus allow-
ing the emergence of a whole new diversity of services built upon these new interactions.
Within this context, and as a natural evolution of the former concept of Wireless Sensors
Networks (WSN), a new category of networks is created: Low Power Wide Area Networks
(LPWAN), which have a special set of features that make them particularly interesting for
the development of IoT. At the same time, they bring up brand-new challenges concerning
the implementation of the new IoT paradigm, especially in regard to interoperability and
integration of Internet Protocol version 6 (IPv6). This work focuses precisely on this last
challenge.

Motivation and Context

The IoT paradigm, which is currently blooming and spreading, has opened new possibili-
ties for the use and application of the Internet, and thus generated new working areas within
the telecommunications field. One of the typical applications of IoT that has been widely
implemented in the recent years is that of WSNs, which seek massive deployment of sensors
over a vast geographical area, achieving large scale monitoring services not possible until now.
In accord with this objective and the possible derived applications, the concept of LPWAN
arises. In these networks, several devices, usually called “sensor nodes”, are distributed within
a rather big region, and have to periodically collect data that will be sent further through
the Internet to a server, for later processing and use. To make this possible, such devices
must comply with a particular series of features, namely [1]:

e Extremely low power consumption, allowing their deployment on the field, ideally for
a period of several years, on a single battery charge.

e Long range communication, thus covering wide areas with a reasonable number of
devices.

e Low transfer rate, in consistency with low power consumption and range optimization,
which is supported by the fact that the applications these networks are designed for do
not need such a high data transfer rate.

e Low cost, promoting their massive production and deployment in big numbers.

These features, however, place certain constraints over the way nodes communicate and
connect to the Internet. In particular, these technologies’ natural low transfer rate and small
message size make the use of standard Internet protocols, such as Internet Protocol (IP),
Transmission Control Protocol (TCP) and Hypertext Transfer Protocol (HTTP), unpractical
and generally non-viable. Due to these constraints, nodes do not have individual IP addresses
and are unable to connect to the Internet directly, currently having to do so through a Radio
Gateway (RG), which acts as an intermediary between the nodes and the Network Gateway
(NG) that connects to the rest of the Internet. This network architecture is called a “star-
of-stars” topology and represents the traditional LPWAN architecture [I]. Moreover, there
are various LPWAN technology developers with distinct communication mechanisms and
service models; all of this threatens the interoperability that is desired in IoT and makes its
architecture rather rigid and lacking flexibility.

In the last years, new alternative protocols have been developed, especially designed for
enabling Internet connection using IPv6 in constrained networks, and particularly in LPWAN
technology devices. These protocols include Constrained Application Protocol (CoAP), an
Application layer protocol based on User Datagram Protocol (UDP) in the Transport layer, as
an alternative to HTTP over TCP. In fact, CoAP has been adopted as the official Application
layer protocol for LPWAN networks by the Internet Engineering Task Force (IETF) [2],
the organism in charge of proposing and establishing standards for the use of the Internet.
Another Application layer protocol that has been recently released is Hypertext Transfer
Protocol version 2 (HTTP/2) [3], the latest version of HTTP, which is much more compact
and efficient than its predecessor, making it more suitable for the IoT [4]. HTTP/2 is being
tested for a configuration tailored for the IoT, so as to take advantage from the already
existing know-how on HTTP [4], thus favoring IoT’s rapid expansion.

Along with CoAP and HTTP /2, other techniques for adapting traditional protocols, espe-
cially IP, have been developed. In particular, the IETF is currently working on a compression
and fragmentation scheme called Static Context Header Compression (SCHC) whose objec-
tive is to enable IPv6 packet transmission over LPWAN networks [2]. SCHC addresses two
main issues: i) compression of headers using physical addresses; and ii) taking advantage
of the rather static topology of LPWAN networks, and fragmentation of IPv6 packets when
necessary, to make them fit within the Maximum Transfer Unit (MTU) determined by the
corresponding technology. Although the fragmentation mechanism is still under develop-
ment, the compression mechanism is already complete and proposed, but has not yet been
officially implemented.

SCHC development is carried on by the Working Group for IPv6 over Low Power Wide-
Area Networks (1lpwan WGQG), and is partially based on former works, also by IETF WGs,
addressing devices with limited resources, like 610, 6tisch and 6lowpan. The main purpose
of these developments is the adaptation of the IPv6 protocol for use in constrained networks,
some of them covering the general case and others regarding a specific application. Par-
ticularly, the 6lowpan WG has created an adaptation of IPv6 for networks compliant with
the IEEE 802.15.4 standard and Low-power Wireless Personal Area Networks (LoWPAN) in
general, constituting what is denominated 6LoWPAN [5].

Some recent works have managed to implement IPv6 over LPWAN networks using an

adaptation based on 6LoWPAN [6]. This constitutes a concrete base that suggests the
viability of implementing SCHC and also allows for a potential comparison once this is
accomplished. The work hereby presented intends to explore the possibility of a functional
integration of SCHC compression in real hardware, carrying out the implementation and
evaluation of the resulting system, and analyzing its performance and suitability for the [oT
environment.

Problem Statement

Currently, there is no IPv6 support for LPWAN terminal nodes, making them invisible
to the network and unable to directly connect to the Internet, having to do so through a
Radio Gateway which encapsulates and translates Data Link layer messages of each particular
technology into IPv6 packets and relays them to a Network Gateway. This greatly affects the
interoperability sought in the Internet of Things ecosystem, adding undesirable complexity
and costly equipment to achieve communication between different technologies. There is
an Internet Engineering Task Force proposed standard that intends to address this matter:
Static Context Header Compression, but to the best of our knowledge, it has not yet been
physically implemented nor evaluated to date.

Scope

The present work covers the adaptation and usage of IPv6 for a Long Range Wide Area
Network (LoRaWAN), one of the first and principal LPWAN technologies [I], following the
IETF’s SCHC specifications.

The process considers the development of an integrated hardware and software platform
that implements the essential features of SCHC to make the transmission of IPv6 packets
over a LoRaWAN network possible. This involves studying and understanding the LoRaWAN
protocol and the SCHC specification, so as to properly fit SCHC packets and fragments into
the LoRaWAN message format to be transmitted.

The viability and proper operation of the generated platform is to be verified according to
certain performance metrics that will be specified throughout the work, leaving out any eval-
uation method not explicitly mentioned. Where evaluation cannot be performed, whatever
the reason, a potential development direction through which evaluation could be achieved
will be pointed out.

A qualitative and quantitative analysis of the obtained results will be carried out, regarding
the overall system performance and general recommendations on the applicability of SCHC
to LPWAN networks and LoRaWAN networks in particular.

This is essentially an experimental work. The system evaluation and required adaptations
will be made fundamentally based on tests. No specific application development is intended,

but only understanding what is required for a proper implementation of SCHC over a Lo-
RaWAN network and potential advantages over alternative implementations of IPv6.

Objectives

General Objective

e Evaluate the applicability and performance of Static Context Header Compression for
the implementation of IPv6 over a representative LPWAN technology.

Specific Objectives

e Establish the state of the art regarding the implementation and evaluation of IPv6 in
LPWAN networks.

e Implement SCHC over a LoRaWAN network concerning one terminal node and a Lo-
RaWAN RG.

e Build an integrated test-bed platform for IPv6 packet transmission and verification over
a LoRaWAN network.

e Make a comparative evaluation of the system regarding the additional capabilities
granted by IPv6 in contrast with a traditional LoRaWAN network.

Methodology

This work will begin with a revision of the state of the art for IPv6 implementations
over LPWAN networks including the basic concepts an fundamentals that allow the under-
standing of the following development. Firstly, the main obstacles and difficulties for the
implementation of IPv6, given the characteristic constraints of LPWAN technologies, will be
established. LoRa and LoRaWAN technologies will be described, along with their particular
features and architecture. Next, 6LoWPAN will be covered, explaining how it solves the IPv6
adaptation for some constrained networks [7]. 6LoRaWAN adaptation will also be covered,
including its relation to 6LoOWPAN and the way it solves IPv6 application over a LoRaWAN
network. Finally, SCHC will be presented, along with the features it shares with the former
adaptations.

The platform to be developed will be described in a general fashion, enumerating its com-
ponents and explaining each block. The adaptation programming will be based mainly on the
IETF work and the equipment’s existing documentation. The required code is written fun-
damentally in Python. The use of other related programming languages, whenever necessary,
will be explicitly stated and clarified.

The system hardware consists of an Everynet LoRaWAN Gateway integrating the SX1301
and SX1276 chips and a Microchip LoRaWAN node populated with the RN2903 module.
Each device carries a corresponding antenna for the 915 MHz frequency band. The setup for
the whole system and for each test will be explained step by step.

The implementation process for each block will be described in detail, addressing its
function within the global system. Modifications with respect to the original code, when
present, will be precised and argued, along with the aspects of traditional IPv6 they solve
and the advantages they generate, if any.

Evaluation criteria for the implemented system’s performance will be established, both
numeric and purely qualitative. Qualitative criteria will be clearly defined, as well as the
circumstances in which they are fulfilled.

Thesis Organization

This work is composed of five chapters. The first chapter presents the fundamental knowl-
edge that is necessary for understanding the development hereby described, as well as other
works that pursue a similar goal and serve as precedents. The following chapter describes the
hardware used throughout the process, detailing the connections of the system’s setup and
the methodology applied for the tests run. In chapter three, a full explanation of the SCHC
scheme is given, along with the manner in which it was implemented by the author. Chapter
four addresses the results obtained in the tests and a general evaluation of the implemented
system’s performance, regarding the metrics previously established. At last, chapter five
gives the main conclusions derived from the evaluation, including advice concerning the use
of SCHC, particularly in LoORaWAN networks, and what future improvements or tests might
be relevant for its full applicability.

Chapter 1

Background and State of the Art

This chapter presents the fundamental concepts that are necessary for the study and
comprehension of LPWAN technologies, including a review of the most relevant protocols and
platforms, with an emphasis in LoRaWAN. Latest advancements towards IPv6 adaptations
for LPWAN networks are also covered.

1.1 Internet of Things

The IoT, in a general sense, can be considered as a broad vision of communications that
has both technological and societal implications. From a technical perspective, it consists
of a global infrastructure capable of interconnecting physical and virtual objects through
information and communication technologies (ICT), new and legacy, with the purpose of
providing advanced services and applications [g].

The referred objects are commonly called “things”, and they must be able to be identified
and integrated into communication networks. Physical things correspond to things existing
in the physical world, which can be sensed, acted upon, and interconnected with a communi-
cations network through devices especially designed for this purpose. They include all sorts
of goods and regular objects, machines, equipment, robots, and the environment itself. Vir-
tual things, on the other hand, belong to the information world and can be stored, processed
or accessed. They correspond to multimedia content, application software and other pieces
of functional software [g].

To allow for communication and information exchange between the different things, each
physical thing must be associated with a device at least capable of establishing a commu-
nication link, and optionally capable of data sensing, capture, storage or processing, or any
form of external actuation [§]. Communication between devices can be direct, through the
network by using a gateway, or through the network without the need of a gateway. A general
scheme for IoT communication can be seen in Figure [I.1]

[oT applications are virtually unlimited, covering a wide range of purposes, such as in-

Physical woreld . [nformation world

L* Rl PN B
e 5 : F@ D device
""|II|'III:|| =] N
I:l__ E ||,,J |:| D St — =i |:| gateway
. 2 @ physical thing
D @ virtual thne

- D a1 - - — COMmmuncaleon
Q- S 7
I;I. - |j - . — == Imapping

== COMmMUniGALion via gaeway
- lre communication withoil saleway

=+ direct communication

Figure 1.1: General scheme for IoT communications. Physical things are objects in the real
world, to which devices are connected in order to make them communicate with one another.
Devices are pieces of electronic equipment with communication capabilities, sometimes in-
cluding sensors, actuators and others. Virtual things are information structures related to
physical objects or representing them, such as databases, virtual memories or srcipts. Source:

18].

telligent transport systems, health monitoring, environmental monitoring, measurements in
distributed generation systems, and many others. Each application requires a different type
of device, depending on the abilities needed to achieve its purpose. This implies that devices
are frequently designed and configured for a specific application (or range of applications), but
also that adding new abilities to devices makes them suitable for new applications, expanding
potential solutions.

A fundamental aspect of IoT with respect to its global implementability concerns the
heterogeneity of the communication networks that compose it. Before this new vision was
born, the Internet had been designed and built based on the interconnection of equipment
with relatively big storage capacities, processing power, and data transfer rates. In fact, its
development has always been focused on finding methods to improve these attributes as much
as possible. According to this new paradigm, however, and given the nature of the desired
applications, the capabilities of the devices composing the network are constrained by their
size, power consumption, price and the need for portability in many cases. As a consequence,
the new kind of devices that are intended to get connected to the Internet do not fit the
usual requirements. Besides, the diversity of technologies that have emerged by virtue of the
wide range of possible applications, constitutes a challenge regarding interoperability, as all
the different devices must comply with the Internet’s basic communication structure. Thus,
the Internet is currently faced with a variety of devices with very dissimilar characteristics
that need to connect through a common infrastructure and language.

1.2 LPWAN Technologies

LPWAN technologies seek to interconnect a variety of devices generically denominated
“sensor nodes” through the Internet, with the purpose of delivering services centered around
the collection of data within a wide geographical area, by creating applications that require
relatively low data transfer rates and long periods of permanence for the devices on site [I].
Such technologies have been under development by different entities, which results in the
coexistence of very diverse systems, with their own proprietary hardware, communication
mechanisms, infrastructure and service model. Some of the principal LPWAN technologies,
which are considered by the IETF in their adaptation developments, are the following [1]:

e LoRaWAN

e SigFox

e Narrowband IoT (NB-IoT)

e Wi-SUN Alliance Field Area Network (Wi-SUN)

A general comparison of some of these is represented by Table [I.1]

LoRa Y sigfox NB-loT

bt
—

LoRa / LoRaWAN Sigfox NB-IoT
Origin France France sA (Global)y
Proprietary or LoRa - proprietary Met — proprietary Guin
open LoRaWAMN - open Devices - open P
Cellular Mo Mo Yes
Spectrum Unlicensed Unlicensed Licensed
Ra - urbamn: 2-5 urban: 3-10 urban: 1-5

g rural: 15 rural: 30-50 rural: 10-15
Speed, uplink f 50 kbps [300 bps f 250 kbps /
downlink 50 kbps - 250 kbps
Rowrar see »
consumption
Security L L] L L] L 1.]
:uaflahility of Ps o0 o0
evices

Price* [. L L L]

Table 1.1: Comparative table for some of the principal LPWAN technologies. Extracted
from: [9]

All LPWAN technologies considered by the IETF share the following characteristics [I]:

8

e Low power consumption sensor node hardware
e Low data transfer rate

e Wide range communication link

e Relatively low sensor node cost

e Star-of-stars architecture, where the NG represents the center of the main star, con-
necting to one or more RGs, and each RG constitutes a smaller star connecting with
several sensor nodes

The first four characteristics are related to the type of application for which the devices
are designed for. Low power consumption is desired so that the sensor nodes can remain
functioning in place for long periods of time, ideally up to five or ten years [I], powered
only by a battery and without needing to replace it during this period. This gives the nodes
autonomy and reduces maintenance costs. The low data transfer rate typical of this sort of
technology derives from the devices sending a very limited amount of data in each working
cycle, staying in “sleep” state during most of it; this accords with the low power demand.
As the technology’s name suggests, the nodes’” wide communication range allows for a new
kind of service based on their deployment over vast areas. Generally, there is a trade-off
between the communication range and the transfer rate. The modules’ low cost makes it
possible to simultaneously use several of them for the same application, which is also one
of this technology’s objective. Lastly, the nodes’ natural architecture, with terminal nodes
organized around a RG, is a consequence of them being unable to connect to the Internet
directly, as they do not support IPv6.

1.3 LoRaWAN

1.3.1 LoRa

Long Range (LoRa) is the name given to the Physical (PHY) layer technology developed
by Semtech, which allows for a long range communication using a spread spectrum frequency
modulation technique called Chirp Spread Spectrum (CSS). LoRa is the first low cost com-
mercial implementation of this modulation technique, which has bas been used in the military
field for decades, because of its long range communication and robustness against interference
[10].

LoRa technology is designed to operate over some Industrial, Scientific and Medical (ISM)
bands of the electromagnetic spectrum, which are unlicensed and free to use, under certain
constraints. Available ISM bands vary depending on the region of the world, so there is
an according LoRa hardware fabricated especially for each one of them: EU868 (European
Union, 868MHz), EU433 (European Union, 8433MHz), US915 (United States, 915MHz) and
AS430 (Asia, 430MHz). All of them utilize the CSS technique, which privileges communi-
cation reach over transfer rate [11]. LoRa devices have different modes of operation that
regulate tha trade-off between data trasfer rate and communication range, by modifying the
Spreading Factor (SF) and transmission power [12].

9

LoRa technology contemplates three classes of devices, depending on the available power
sourcing and message reception availability needed:

e Class A (all): This class represents the basic functionality, and all LoRa devices are
implemented with it. Class A terminal nodes have the lowest duty cycle, and therefore
the lowest power consumption. They are designed to be powered using a battery. They
have predefined and fixed transmission and reception windows. Their duty cycle is less
than 1%.

e Class B (beacon): Also designed to be powered with a battery, although in addition
to the elemental working cycle, they include configurable scheduled reception windows.
These windows are initiated through a synchronization beacon sent by the RGs, giving
the terminal nodes a time reference to open periodical receive windows, called “ping
slots”.

e Class C (continuous): This device class can receive downlink messages at anytime,
whenever it is not transmitting. As such devices are constantly working and they have
the largest power consumption, they are supposed to be mains powered.

All LoRa modules must implement at least class A, and optionally add class B or class
C. Classes correspond to operation options of the LoRaWAN protocol, the Medium Access
Control (MAC) layer protocol designed for LoRa technology (see Section 1.4).

Figure[I.2]shows the basic message transmission and reception time schedule, implemented
by class A. Additional reception times, either continuous or beacon-based, corresponding to
classes C and B respectively, are added to this structure.

pu)
-
-

Transmit i RX 2
< ¥ 2 >
\ﬁ \{{\) 'Q'.- g‘a}" 'E ?ﬁ
N e ™
lI,“-.'.T"' L) t‘:r
-{\12‘ q&f’r

Figure 1.2: Basic timing structure for message transmission and reception in LoRa devices
(Class A). The device wakes up and opens a ‘transmit window’, after which there is a delay
for the RG and NS to forward and process the message, and then there is a first receive
window (RX1) for the device to listen to the NS reply. If no reply is received in RX1, there
is a second delay and then a second receive window (RX2) opens, for a potential NS reply.
Source: [12].

A general overview of the layers involved in LoRa communication can be seen in Figure

3

10

Application

LoRa Modulation

Figure 1.3: General scheme for LoRa communication stack. Source: [13].

1.3.2 LoRaWAN protocol

LoRaWAN is the communication protocol used by LoRa devices, and it has been devel-
oped by the LoRa Alliance. LoRaWAN defines the MAC layer protocol and the system’s
architecture [10].

In the architecture defined by LoRaWAN, terminal noded!] organize in a star fashion
around a RGE| (or many) with which they communicate using the LoRaWAN protocol, while
the RG establishes a link with a Network Server (NS) through a standard IP connection [12].
Altough communication within these systems is bidirectional, uplink strongly predominates.
In Figure one can observe a scheme for a LoORaWAN system. A more detailed description
of the node-RG-NS interaction is shown in Figure [1.5

Communication between nodes and RGs is distributed in different frequency channels and
data rates, which represent the different levels of trade-off between the message duration and
the communication range [12]. By virtue of CSS modulation, communications using different
data rates do not interfere each other. LoRa data rates range from 0.3 kbps to 50 kbps [12].
LoRa infrastructure is capable of applying a mechanism called Adaptive Data Rate (ADR)
which optimizes the transfer rate and communication range of all devices within the network.
This mechanism follows these rules [12]:

e Fach node changes channels in a pseudorandom manner in each transmission; this
frequency diversity makes the system more robust.

e Nodes respect the duty cycles established depending on the sub-band used and local
spectrum regulations.

e Nodes respect the the maximum transmission duration depending on the sub-band used
and local spectrum regulations.

IThe term used by LoRa Alliance is “End-device”.
2The term used by LoRa Alliance is “Gateway”.

11

pet
tracking

verding
machine

LoRa* RF TCP/IP S5L TCP/IP 55L
LoRaWAN™ LoRaWAN™ Secure Payload

AES Secured Pavload

Figure 1.4: LoRaWAN communication network and platform architecture. Source [10].

r““"“"“““"""l s .i
] 1] 1
I 1 I 1
I 1 I 1
i : i :
: =T > :
I 1 i i
i o |! i i
i) | I> I
: BT ! !
= 8 | b !
: = [F >0 !
I n" i (1] _._,l] :
! i EECGETN = 0! ! Backhaul i
i : IP Stack TR} i IP Stack '
| = ‘. =
i & i 21 o5 !
] w 1 1] E 1
1

1 £) Efhernet, 3G, e
1 D I WiFi 1 [} @ :
I W ! ' ZW i

_____ — % _ R @ o N sBCUrE ™.

Figure 1.5: Protocol stack structure for communication between a LoRaWAN end-node and
the NS through a Gateway. Source: [14].

1.3.3 Message Format

Here, the general format of LoRaWAN messages is described and explained. As the present
work focuses on the Network layer, the description’s emphasis is placed on the format fields
general organization and fields related to terminal nodes identifiers, i.e., their address within
the LoRaWAN network. The rest of the fields will not be discussed in detail.

12

Messages are classified according to their direction within the system in uplink (from
terminal node to server) and downlink (from server to terminal node).

At the PHY layer, uplink and downlink message format is observed in Figures and
[L.7] respectively. The fields constituting them are [12]:

e Preamble: Synchronization preamble

e PHDR: PHY layer header

e PHDR CRC: PHY layer header’s Cyclic Redundancy Check
e PHYPayload: PHY layer payload

e CRC: Message’s Cyclic Redundancy Check

Preamble PHDR PHDR_CRC PHYPayload CRC

Figure 1.6: LoRaWAN uplink message PHY format. Source: [12].

Preamble PHDR PHDR_CRC PHYPayload

Figure 1.7: LoRaWAN downlink message PHY format. Source: [12].

The PHY layer payload (PHYPayload) contains the MAC layer message. Its format can
be seen in Figure [L.8, The corresponding fields are the following [12]:

e MHDR: MAC layer header
e MACPayload: MAC layer payload
e MIC: Message Integrity Check

MHDR MACPayload MIC

Figure 1.8: LoRaWAN uplink and downlink message MAC format. Source: [12].
MACPayload field’s inner format is visible in Figure Its composing fields are [12]:

e FHDR: Frame header
e FPort: Frame port
e FRMPayload: Frame payload

FHDR FPort FRMPayload

Figure 1.9: LoRaWAN message MAC payload format. Source: [12].

Finally, inside the FHDR field, one can find the DevAddr field, which refers to the terminal
node address within the LoRaWAN network. This 4-byte long field is of interest regarding

13

the Network layer routing over a LoRaWAN network. The complete FHDR format can be
seen in Figure [1.10]

DevAddr FCtrl FCnt FOpts

Figure 1.10: LoRaWAN message frame header format. Source: [12].

1.3.4 Datarate

LoRaWAN’s maximum available message payload is dependent on a variable denominated
datarate (DR), which represents the link’s data transfer rate and is tightly related to allowed
time on air, transmission power and modulation settings. For the US region, the relationship
between DR and the maximum frame payload is summarized in Table

DataRate M N
0 19 11
1 61 53
2 137 129
3 250 242
4 250 242
57 Mot defined
8 41 33
9 117 109
10 230 222
11 230 222
12 230 222
13 230 222
14:15 Not defined

Table 1.2: Maximum available frame payload (in bytes) depending on current datarate.
M and N represent the available payload size when the FOpts field is absent or present,
respectively. Source: [12]

1.4 IPv6

It is the most recent version of the Network layer standard protocol, which allows the
interconnection between devices with distinct characteristics through the Internet. Its basic
data unit is the packet, which is composed of a header and a payload. The header consists of a
minimum fixed structure of 40 bytes in size that contains the indispensable information about
the packet, like the protocol version, payload and additional headers lengths (in bytes), hop
limit (time to live), origin and destination addresses, and others [I5]. A graphic description
of an IPv6 packet’s fixed header structure can be observed in Figure [L.11]

14

1PvE Header

1] q 8 12 I'IE I‘..‘Il IZﬂ- IZl 32 36 Il_'l J“ a8 I5E 56 IBI'.I 63

Version| Traffic Class Flow Label Payload Length Next Header Hop Limit

Figure 1.11: IPv6 packet main header format. Source: [16].

After the fixed header come the extension headers, which are optional. They provide
additional functionalities for security, routing, fragmentation and other features. At the
end of the packet is the payload, which contains the information coming from higher layers
protocols.

IPv6 introduces some substantial changes with respect to Internet Protocol version 4
(IPv4), its former version, especially regarding IP addresses, going from 32 to 128 bits in size
[15]. This extended address aims to definitively solve the IPv4 address exhaustion matter,
a consequence of the massive expansion of devices currently able to connect to the Internet.
The huge amount of addresses supported by IPv6 is in tune with the foreseen IoT scenario
for the upcoming years, with several devices deployed in vast areas. Because of this, IPv6 is
considered adequate and necessary for [oT and the future of the whole Internet. However, 1P
was originally designed for networks built upon the high transfer rates, processing resources
and power connection typical of traditional Internet scenarios, and is not natively viable in
constrained networks and particularly in LPWAN networks. Therfore, IPv6 adaptations that
are especially conceived to operate over constrained networks are required. The main issues
that need to be addressed regarding the use of IPv6 in LPWAN networks are the following

5,]

e [ts header is at least 40 bytes long, which is excessive for the typical frame size in
LPWAN networks.

e It requires a Maximum Transfer Unit (MTU) of at least 1280 bytes over the MAC layer
[15], which is disproportionate and natively non-viable within the LPWAN environment

I5].

To put this into context, the maximum frame size at the PHY layer for a LoWPAN
network as established by standard IEEE 802.15.4 is 127 bytes [I7]. If we take out the
PHY and MAC headers plus the security options of devices complying with the standard,
the worst-case scenario leaves only 41 bytes for the information concerning the Transport
layer and higher layers. This is rather small and far away from the 1280 imposed by the
MTU requirement, so an adaptation layer that provides a compression and fragmentation
mechanisms is needed [7].

15

1.5 Adaptations of IPv6 over Constrained Networks

1.5.1 6LoWPAN

It consists in an adaptation layer for IPv6 aimed for use in LoOWPAN networks, compliant
with the standard IEEE 802.15.4. 6LoWPAN integrates header compression and packet
fragmentation mechanisms to achieve the necessary size reduction from the standard MTU
of 1280 bytes to the 127 bytes of the MAC layer frame [7]. This adaptation layer makes use
of the communication context to compress the IPv6 packet header, omitting a significant
fraction of the addresses, the longest fields. In order to do it, it takes advantage of the 16-bit
and 64-bit addresses defined in the IEEE 802.15.4 standard [17].

6LoWPAN defines a header compression format denominated IP Header Compression
(IPHC) which essentially compresses the header of IPv6 packets according to the link and

network context. In the best case, total header length is reduced to 2 bytes, while in the
worst case, it reduces to 3 bytes [18].

The IPHC format can be seen in Figure [1.12

bitss 1418 1 20 | 16 | 8 18 ! 128 ! 128 i
1 | | 1 1 1 |
IPv6 Fixed v | TC FL PL NH | HL SA DA
Header
\‘\l i [i i [i i [i i [,t"'l i
bits:\! 03 p o2 12 b1 42 b2 b a4
- 1
IPHC Compressed 011 TF [NH| HL | CID |SAC|SAM | M |DAC| DAM scl DCI
Header
;
' ! -7 Context Identifier Extension

Dispatch Byte -

IPv6 Hdr Compr. Header Uncompressed IPv6 Header + IPv6 Payload

6LoWPAN encapsulation header stack containing IPHC compression header

Figure 1.12: 6LoWPAN’s IPHC packet format. Adapted from: [19].

1.5.2 6LoRaWAN

6LoRaWAN is the name given to the adaptation of IPv6 for LoRaWAN networks developed
in [6]. The adaptation is completely analogous to 6LoWPAN, adopting UDP and CoAP as

the higher layer protocols. In Table [[.3] a protocol stack comparison between 6LoWPAN
and 6LoRaWAN is displayed.

16

IEEE 802.15.4 | 6LoWPAN | LoRaWAN | 6LoRaWAN
Application layer e.g. ZigBee e.g. CoAP custom e.g. CoAP
Transport layer - e.g. UDP - e.g. UDP

IPv6 IPv6

Network layer e.g. ZigBee 6LoWPAN - 6LoRaWAN
adaptation adaptation
Data Link layer | 802.15.4 MAC | 802.15.4 MAC | LoRaMAC LoRaMAC
Physical layer 802.15.4 PHY | 802.15.4 PHY | LoRaPHY LoRaPHY

Table 1.3: 6LoRaWAN vs 6LoWPAN protocol stacks compared. Standard IEEE 802.15.4

and LoRaWAN native protocol stacks included as reference. Adapted from: [6].

6LoRaWAN allows for the transmission of IPv6 packets within a LoRaWAN network in
a way that is compatible with native LoRaWAN packets.
adaptation it is possible to integrate native LoRaWAN nodes, 6LoRaWAN nodes, and nodes

operating on traditional IPv6 into the same network.

A 6LoRaWAN packet’s format is visible in Figure Compression introduced by 6Lo-
RaWAN corresponds to the Comp. IPv6 Header field, where the fundamental advantage
resides in the compression of origin and destination addresses through the usage of the ter-

In other words, by using this

minal nodes’ DevAddr, which is stored by RGs present in LoRaWAN networks [6].

byte: ' 1 1 7-22 1 1
1

byte: 1

9-25

Comp. IPv6 Header

4-5

2

App Payload

Figure 1.13: 6LoRaWAN packet format. Adapted from: [6].

17

Chapter 2

Static Context Header Compression

This chapter describes the SCHC proposal in a generic fashion, details its compression
mechanism and introduces the required associated concepts. The fragmentation scheme is
out of the scope of this work, and is therefore not included in the detailed description. All
the information hereby presented is the result of the IETF lpwan WG work [2} 20], combined
with the author’s interpretation and understanding where the IETF document is not explicit
or sufficiently clear.

2.1 SCHC Overview

SCHC is generally considered as an adaptation layer between IPv6 in the Network layer
and the underlying LPWAN protocol from the Data Link layer. It is composed of two
sublayers: one for compression and one for fragmentation. This is graphically shown in

Figure 2.1]

Compression

SCHC stack —

—_—————————
-l

Fragmentation

LPWAN technology

Figure 2.1: SCHC protocol stack. Based on [20].

18

When an IPv6 packet is ready for transmission in the sender side, header compression is
first applied to it, resulting in what is called a SCHC Packet. If the SCHC Packet is greater
than the LPWAN link’s MTU, it should be fragmented, producing two or more SCHC Frag-
ments. The SCHC Packet or each Fragment is then sent in an LPWAN frame to the receiver.
If the SCHC Packet was fragmented, the SCHC Fragments are reassembled on the receiver
side to recover the SCHC Packet. Finally, the SCHC Packet, either native or reassembled, is
then decompressed following the corresponding actions. The diagram in Figure illustrates
this behavior. Note that despite SCHC is designed for all LPWAN technologies, the actual
decision to use SCHC Fragmentation is not compulsory and is therefore left to the specific

technology.
IPV6 IPvé
Packet Packet
SCHC Compression SCHC Decompression
If no fragmentation
[SCHC Packet |
SCHC Fragmentation SCHC Reassembly

'3

SCHC ACK

[SCHC Fragments J

SENDER RECEIVER

Figure 2.2: SCHC Compression and Fragmentation overview. Based on [20].

The compression and decompression mechanism used on each side is denominated SCHC
Compressor/Decompressor (SCHC C/D). The functional units implementing such mechanism
are also referred to with this name. Thus, a SCHC C/D exists both inside the device and on
the network side. They achieve compression and decompression based on certain Rules.

2.2 Rules and Context

The SCHC mechanism’s essential purpose is to take advantage of the rather static context
of LPWAN communications, where devices are intended for a particular set of applications,
and the network’s architecture, besides some potential degree of mobility, generally does
not change over time. For any given LPWAN network the set of devices is usually known

19

(i.e., their addresses/identifiers), and as each one of them communicates with one or very
few specific built-in applications, communication occurs in much the same fashion most of
the time, and traffic is highly predictable [20]. Thus, instead of sending full IPv6 packets
whose information is mostly already known, SCHC proposes to establish a set of shared Rules
between sender and receiver that determines in which cases and to what extent information
is known by the other side and can therefore be omitted, and when (and how) it must
be sent or compressed. These Rules are based on the communication context, regarding the
network’s architecture and the characteristics of data exchanged between devices and servers.
This allows SCHC to avoid context synchronization, which is the most bandwidth-consuming
operation in other header compression mechanisms [20].

Rules define which header fields can be omitted or compressed and what actions should
be performed during the compression and decompression stages to respectively compress the
packet header on the sender side and recover it on the receiver side. In SCHC, compression
is achieved by sending the Rule IDs in place of the header fields, plus a Compression Residue
bearing some parameters used for compression, as well as the header fields that could not be
compressed. Together they compose SCHC’s Compressed Header. The Compression Residue
is always followed by the packet’s original payload. A SCHC Packet’s format can be seen
in Figure It should be noted that the Compression Residue might be absent, and that
the compressed header may not necessarily be smaller than the original header, although of
course this is generally not the case. Another detail to take into account is that Rule IDs do
not have a fixed length; this is left to the implementation.

Rule ID + Compression Residue

Compressed Header Payload

Figure 2.3: SCHC Packet format. Based on [20].

Regarding Figure 2.3 the Compressed header is formed by concatenating two blocks: the
Rule ID block and the Compression Residue block. The Rule ID block contain the chosen
Rule’s Rule ID, while the Compression Residue block contains the Compression Residues for
each of the fields in the same order that they were produced. This is detailed in section
2.4 Although the use of more than one compression Rule at the same time is not explicitly
forbidden in 20], the analysis in the document consistently seems to assume the use a unique
Rule, which is the most simple and effective case. While the author strongly believes that
using more than one Rule is actually feasible and some parts of the developed system were
in fact designed with this in mind, for the sake of simplicity and programming ease a unique
Rule will be assumed from here onwards, both within the theory and the implementation.

20

2.3 Rule Format

A Rule corresponds to a set of Field Descriptions (FD), each referring to a particular IPv6
header field. FDs comprise the following items:

e Ficld ID (FID): Uniquely identifies the header field to analyze.

e Ficld Position (FP): Refers to the occurrence of the header field within the header.
Most header fields only appear once, so FP defaults to 1.

e Field Length (FL): The length of the field in bits. If its length is variable, FL represents
the type of value, which defines its length unit (bit, byte, or other) and how to compute
it.

e Direction Indicator (DI): Describes the direction for communication (uplink, down-
link or bidirectional) to which the FD applies. This allows different management for
information going up or down.

e Target Value (TV): The value in an FD with which the actual header Field Value (FV)
will be compared, using the Matching Operator. It can be a single value or some sort
of array with multiple entries.

e Matching Operator (MO): Strategy used when comparing a TV to an FV. Its result is
either True or False, and determines whether the Rule is applicable or not to a given
packet. It is used only during compression.

e Compression/Decompression Action (CDA): Defines the action taken when compressing
and decompressing the field, depending on the context. It is only applied when a Rule
is actually selected.

A Rule might include any set of available header fields, not necessarily all of them and
potentially some of them more than once, making use of the DI or FP items. However, for
each header field included in the Rule, i.e., for each FD, all of the items must be present,
with the only exception of TV when the corresponding MO is set to ignore. The FD’s in a
Rule must be presented in the order in which the fields appear in a given header[20]. Rules
look as depicted in Figure [2.4]

2.4 Packet Processing

In order to correctly transmit SCHC Packets over an LPWAN link and recover the original
[Pv6 packets, a few things should be ensured. First, both sides of communication must
share the same set of Rules. Rules are used by the SCHC C/D on each side to perform
compression and decompression, each of the Rules being used for both processes. Rules have
to be provisioned before SCHC communication takes place. Second, the network side must
be able to uniquely identify the devices before choosing the proper Rule, as the same Rule
ID might be used in different devices to represent distinct Rules. Devices, on the other hand,
do not face this issue since they only hold Rules that apply to themselves [20]. Finally, any
LPWAN technology-specific parameters, such as the Data Link layer Word, i.e., the link’s
minimum data unit (usually a byte), need to be configured.

21

Rule N k
. $2Z090909090909029292eE E E EmmmE - |
Rule | k | Field Descriptions !

Rule 1 k ;
!
|

FID(1) | FL|FP | DI | TV | MO | CDA |[# -4 -—---------o—-- '

FID(2) [FL|FP [DI [TV | MO | CDA |# =q==--------u- !

FID(N) | FL| FP | DI [TV | MO | CDA famd oo e oo

Figure 2.4: SCHC Compression Rule format. Rules are composed of Field Descriptions, each
referring to a particular header field from the IPv6 packet. Based on [20].

Once both ends have been properly configured and are prepared for communication, the
actual processing and transmission can start. The process’s outline is as follows:

= W =

An IPv6 packet is ready for transmission.
Rules are searched for an applicable compression Rule.
A compression Rule is selected. Its Rule ID becomes the Rule ID block.

The corresponding fields are compressed according to the Rule, producing a (poten-
tially empty) Compression Residue block consisting of the concatenation of individual
Compression Residues for each field, in the order they were generated.

If no matching Rule was found, the packet header fields remain unmodified. A special

Rule may be selected to indicate that no compression was possible, whose Rule 1D
becomes the Rule ID block.

The SCHC Packet is created by joining together the Rule ID block, the Compression
Residue block and the IPv6 packet’s original payload, in that order. In case no com-
pression was done, the SCHC Packet consists of the no-compression Rule ID followed
by the original packet.

If the resulting SCHC Packet does not exceed the LPWAN technology’s maximum
available payload size, it is sent. Otherwise, SCHC Fragmentation should be applied,
unless the LPWAN technology specifies its own fragmentation mechanism.

If SCHC Fragmentation is used, it produces SCHC Fragments no larger than the LP-
WAN technology’s maximum available payload size, thus ensuring that they can be
transmitted through the link.

22

9. SCHC Fragments (if present) are reassembled on the receiver side, reconstituting the
SCHC Packet.

10. The appropriate decompression Rule is identified using the received Rule ID.

11. The corresponding fields are decompressed following the CDAs specified by the Rule,
whose application order can differ from the FD order. Computations are done after
all other actions. Any decompression parameters needed by a field are taken from the
corresponding Compression Residue.

12. Once this process is finished, the output is the original IPv6 packet.

2.4.1 Matching Operators (MOs)

When compression takes place on either side of the link, there are two important factors
to take into account: how to choose Rules and how to execute the compression. MOs serve
the first purpose, by defining what kind of comparison is carried out between an FV in the
packet being compressed and the TV in a Rule. The comparison’s result, which can be either
True or False, is what determines whether the associated strategy, i.e., the corresponding
CDA, is appropriate for a given packet. When all MOs in a Rule give a True result, the Rule
is selected. However, some fields can be ignored depending on the context, in which case the
comparison is omitted. This will be explained in section [2.4.3]

The values that an MO can take are the following:

e equal: The result is True if the FV is exactly the same as the Rule’s TV for that field.
e ignore: No comparison is carried out, the result is True by default.

e MSB(x): The comparison is made considering only the ‘x’ most significant bits of F'V,
and TV. ‘x’ is of course an integer number smaller than FL. If FL is variable, ‘x” must
be a multiple of the FL’s unit, be it a single bit, a byte, or any other given number of
bits.

e match-mapping: Here, TV is a list or array of values. Each value has a unique index.
The result is True if F'V is equal to one of the elements of TV.

2.4.2 Compression/Decompression Actions (CDAs)

CDAs are the actions actually taken in order to effectively compress or decompress a
SCHC Packet once a Rule has been chosen or identified, respectively. They result in the
omission of fields or their replacement for smaller pieces of data when compressing, and the
reconstruction of the fields using TVs, Compression Residues or performing computations
when decompressing.

They correspond to the following:

® not-sent

23

— Compression: The header field is completely omitted. No Compression Residue is
generated.

— Decompression: The header field is reconstructed using the FD’s TV.
value-sent

— Compression: The header field is sent in full, that is, it is added to the Compression
Residue.

— Decompression: The header field is read from the received SCHC Packet. No
additional parameters are required.

mapping-sent

— Compression: The header field is omitted. Its corresponding index from the TV’s
matching element is added to the Compression residue.

— Decompression: Reconstruction of the header field is achieved using the TV’s
element whose index comes in the Compression Residue.

LSB

— Compression: Only the ‘y’ least significant bits from the field are sent in the
Compression Residue, the rest are omitted.

— Decompression: For reconstruction, TV is joined with the bits from the Compres-
sion Residue. TV length in bits plus ‘y’ must equal FL.

compute-length
— Compression: The header field is omitted.

— Decompression: The decompressor computes the length of the corresponding field.
It can also be used for UDP fields, which is out of the scope of this work.

compute-checksum
— Compression: The header field is omitted.

— Decompression: The decompressor computes the corresponding checksum from
the data already received. This is intended for computing the UDP checksum
field, which is out of the scope of this work.

DevIID
— Compression: The header field is omitted.

— Decompression: The Device Interface ID (DevIID) is recovered from the LPWAN
Data Link layer frame.

AppIID
— Compression: The header field is omitted.

— Decompression: The Application Interface ID (ApplID) is recovered from the
LPWAN Data Link layer frame.

2.4.3 Rule Selection

At this point, all the necessary elements for understanding Rule selection have been de-
scribed. The Rule selection algorithm is presented next.

24

1. First, the direction of communication must be identified. The SCHC C/D should
know where it lies (either device or NS), so based on this information and whether
it is performing compression or decompression, it can identify the direction. Uplink
corresponds to device compression and NS decompression, and downlink is the other
way around.

2. Rules are then scanned line by line for their applicable direction, looking into the DI
item of each field. If an FD does not correspond to the current direction, it is ignored.
If no FD in the Rule matches the direction, that Rule is discarded and the next one is
scanned.

3. When a DI matches the direction, the FP item is then checked against the actual
occurrences of the field represented by FID within the packet to be sent. If an FP is
not valid, the Rule is discarded.

4. Once DI and FP in a given FD are valid, the MO is calculated. If all MO results are
True, the Rule is selected. Otherwise, the following Rule is considered.

5. Finally, the selected Rule’s CDAs are executed, resulting in the SCHC Packet.

2.4.4 Padding

Some LPWAN technologies use a minimal data unit, called the ‘LPWAN Word’, that is
greater than a single bit, and normally a byte. Because the SCHC scheme operates on bits,
some extra bits might need to be added in order for the LPWAN technology to correctly
process and deliver the corresponding frame. When sent, the SCHC Packet will become an
LPWAN frame’s payload, which must comply with the LPWAN Word length. The extra
bits are called ‘padding bits’, and the process of adding them is called ‘padding’. After
the compression process involving Rules is finished, the resulting SCHC Packet is padded
as needed to an integer multiple of the Word. The number of padding bits is strictly less
than the number of bits in a Word. Padding bits have the same value, which can be either
1 or 0 and needs to be specified, since padding bits are considered in MIC calculations.
When decompression takes place, after completely processing the SCHC Packet and once the
original IPv6 packet has been recovered, only the padding bits (right after the end of the
payload) remain unprocessed, and are then simply dropped.

25

Chapter 3

System Implementation

This chapter covers the implemented functional SCHC scheme in detail. First, the hard-
ware and working setup is described. Then, the complete system design is presented, in-
cluding its block diagram, inputs and outputs for each block, and the connections between
them. Finally, a description is given on the way each block was implemented, explaining the
functions that each piece of software accomplishes.

3.1 Equipment and Setup

The whole purpose of the developed system consists in achieving the transmission of an
IPv6 packet through a LoRaWAN link, from device to NS. The LoRa link (that is, the
physical radiofrequency modulation link) involves a gateway and a device. The LoRaWAN
link, i.e, the communication established through the use of the LoRaWAN protocol, involves
the device and the NS as the two ends of the link. A network management Application
Programming Interface (API) is needed to effectively connect the device to the NS. All these
elements are described below.

3.1.1 Microchip RN2903 LoRa Technology Mote

As the LoRaWAN device, a Microchip LoRa Technology Mote is used, which incorporates
a Microchip RN2903 LoRa Technology Transceiver Module chip. The RN2903 implements
the LoRaWAN Specification version 1.0.2, which enables the use of the LoRaWAN protocol
to communicate with an NS. The device is a class A LoRaWAN end-device. This Mote has
two possible versions, depending on the region it is intended to operate in: the 868 MHz and
the 915 MHz versions. The device used throughout this project is the latter, corresponding
to the ISM band available in North America and some countries in South America, including
Chile [21]. The Microchip Mote is shown in Figure [3.1]

The device has two basic operation modes: USB and Battery. In USB mode, it is connected

26

Figure 3.1: Microchip RN2903 LoRa Technology Mote, a device compliant with the Lo-
RaWAN Specification version 1.0.2. It uses the [902 - 928] MHz ISM band.

through a USB cable to a host, which can then issue serial commands to the device. In Battery
mode the device is powered on using a built-in switch, and controlled using two push buttons
[22]. Hereafter USB mode is always assumed; Battery mode is irrelevant to this work.

Serial Commands

While in USB mode, the device can receive ASCII serial commands coming from a terminal
or appropriate application within a computer. There are many commands, allowing different
configurations and operations regarding the module’s radio, the LoRaWAN protocol, and
some memory reading functions from the internal microcontroller. These are named radio,
sys and mac commands, respectively. Their scopes and interactions are depicted in Figure
5.2

The Mote’s mac commands have to be encoded in ASCII, and trailed with the special char-
acters ‘Carriage Return’ (<CR>) and ‘Line Feed’ (<LF>) when sent through a serial interface.
They are written in lowercase and each of their arguments is represented as <argument>.
Only the most relevant commands for this implementation will be explained below, which
are mostly the LoRaWAN-related mac commands.

e sys get hweui: Outputs the device’s EUI-64, a 64-bit unique identifier. It can be
used to build network identifiers, if needed.

e mac join <mode>: Joins the device to an available network. Requires providing valid
keys for the network, namely NwkSKey and AppSKey, as well as a recognized DevAddr.

— <mode>: Possible values are either ‘abp’ or ‘otaa’, respectively representing the

27

Command Interface

Figure 3.2: RN2903 command interface (yellow) and its relationship to the module’s internal
components. Source [23].

ABP and OTAA network join methods.

e mac tx <txtype> <portno> <data>: Issues a LoRaWAN message to be sent by the
device to the NS. Requires the device to be joined to a network.

— <txtype>: Either ‘cnf’ or ‘uncnf’, for a ‘confirmed’ message (expecting an ACK
from NS) or an ‘unconfirmed’ one (no ACK expected).

— <portno>: A decimal number in the range [1 - 223|, representing the device’s port
number through which the message will be sent.

— <data>: The LoRaWAN frame payload to be sent, a sequence of bits represented
in uppercase hexadecimal format. The number of characters must be even, for
completing an integer number of bytes.

e mac set devaddr <address>: Sets the device’s network address (DevAddr) to the
value input in <address>, in uppercase hexadecimal format. DevAddr is provided by
the network and required for ABP joining method.

mac set nwkskey <nwksesskey>: Sets the device’s Network Session Key (NwkSKey)
to the value input in <nwksesskey>, in uppercase hexadecimal format. NwkSKey is
provided by the network and required for ABP joining method.

e mac set appskey <appsesskey>: Sets the device’s Application Session Key (AppSKey)
to the value input in <appsesskey>, in uppercase hexadecimal format. AppSKey is
provided by the network and required for ABP joining method.

mac get devaddr: Gets the DevAddr current value, in uppercase hexadecimal format.

mac get nwkskey: Gets the NwkSKey current value, in uppercase hexadecimal format.

e mac get appskey: Gets the AppSKey current value, in uppercase hexadecimal format.

mac set dr <dataRate>: Sets DR for the next transmission to <dataRate>, a decimal
value in the range [0 -4]. DR influences the maximum allowed length for the <data>
argument in mac tx command.

mac save: Saves the currently set setting values (since last reset or power-on), such
as the DevAddr, NwkSKey, AppSKey and DR, to the device’s EEPROM, so that they
survive power-cycling.

28

3.1.2 Everynet LoRaWAN Gateway

This piece of equipment corresponds to the LPWAN RG, which will forward message’s
received from the device to the NS. The Everynet LoRaWAN is compliant with the LoRaWAN
Specification version 1.1, which supersedes the previous versions by introducing new options
and better security management, but is however backwards compatible. It is essentially a
GNU/Linux machine with relatively limited resources, which incorporates a built-in LoRa
message forwarding application. Busybox, an executable file that provides many standard
GNU/Linux tools as compact versions, is also included in the gateway’s machine. The
tcpdump command, which is essential for the Packet Sniffer presented in section [3.2.7, comes
among these tools. The Everynet LoRaWAN Gateway can be seen in Figure [3.3

Figure 3.3: Everynet LoRaWAN Gateway, compliant with the LoRaWAN Specification ver-
sion 1.1.

Two connectors are available: an Ethernet port and a custom serial port. A Power-
over-Ethernet (PoE) adapter is connected to the Ethernet port in order to provide both
power and Internet connection to the gateway. A custom cable connects the serial port to a
host computer (via USB) to grant Secure Shell (SSH) connection to the gateway’s terminal,
for debugging and configuration purposes. The SSH connection will be used to issue some
commands relevant to the system’s functionality. Both the PoE adapter and the custom
cable are included with the gateway. A 915 MHz antenna has also been connected for proper
radiofrequency communication. Figure [3.4] shows the gateway’s connectors.

29

Ethernet + PoE UART

Figure 3.4: Everynet Gateway’s Ethernet and custom serial ports. Source: [24]

3.1.3 Everynet Network Management Platform

Everynet provides a Network Management Platform (hereafter the ‘Everynet Platform’)
for device administration and NS settings. It lets the manager configure the join method,
the device address and session keys, and see the data exchanged between the NS and a
given device, for all devices connected to the network. Session keys and addresses can be
randomly updated for better security and network flexibility, and new devices can be created
and tagged for easy search and data filtering. The uplink and downlink messages, as well as
useful information regarding the communication link are visible as JSON (JavaScript Object
Notation) objects, when opened on a message panel located below the settings. Figure
shows the main configuration interface, while Figure [3.6] shows an opened message on the
same platform, at the lower part within the webpage.

3.1.4 Host Computer and Development Tools

A GNU/Linux computer with Ubuntu 16.04 has been used as the host computer connected
to the devices for SSH and serial communication, and also as the main programming tool.
Python 2.7 and Node.js 10 were installed into the computer for script development, with
IDLE and Gedit being used the respective script editors. The minicom terminal utility was
used to connect with the gateway’s internal machine via SSH.

3.1.5 Required Configuration

In order to establish a LoRaWAN link capable of transporting SCHC Packets, the equip-
ment must be configured in some particular ways. This is done through some serial commands

30

27427 Devices Filters Connections

-

™

= M 3
Device management (@ Delete)

)

v Device EUI

Device EU A uUplinks " Downlinks) strict counters

defaab3dbci22616 oN FED (oN EED OFF)

Application EUI €3
a3b4a72265413114

(_test nma)

defaa63dbcf22616

06-06-2018 Security
Device address €1 @ Activation e Encryption
— ABP | Ns
87ef02a7a58f52f4 06-06-2018 Network session key £
- Application session key <=
- . ~ c33185d8lcddabbafeld8eea86880548
7ae422871a5b167b 06-06-2018
Pr— LoRa
(_migration_script)
- , Counters
5eb5dde879%ee92f
»Uplink “wDownlink Class Counter size

e > 1 &

Figure 3.5: Everynet Network Management Platform for device administration. In the red
rectangle (left), the current device. Credentials needed for ABP appear in the yellow rectangle
(center). On the right, marked in green, the joining method selection switch.

Live stream @ | 11

EE=IEED-c 0 rnoumT EUGLD) WARNING INFO (Teleien]

Port Payload (base64)
1
>
' Sat 17:37:37 4@bb defaab3dbcf22616 1c692ald a3b4a72265413114 Wy 1376 7 926.3MHz # 1
/1 58zt 17:37:37 4Bbb defaab3dbcf22616 1c692ald a3b4a72265413114 A = 9029MHz Il -11.0dB/-103dBm 4 DRO
1 58zt 17:37:37 4@bb defaab3dbcf22616 1c692ald a3b4a72265413114 A = 904.7MHz Il -10.0dB/-106dBm 4 DRO
1 58zt 17:37:37 4@bb defaab3dbcf22616 1c692ald a3b4a72265413114 A = 903.1MHz Il -5.5dB/-96dBm /ﬁ DRO
1 Tsat 17:37:37 48bb defaac3dbof22616 1c692ald a3b4a72265413114 A1 = 903.3MHz Il 11.0dB/-56dBm /n DRO ~ |'2|

Figure 3.6: Everynet Platform’s message panel. It shows the uplink and downlink messages

recently exchanged, as well as some other information. Messages can be opened and visualized
as JSON objects.

31

for the Mote in conjunction with Everynet Platform’s settings. After entering the Mote’s
correct settings, the mac save command is given for it to remember these settings when reset
or power-cycled.

Network Joining

For simplicity, and as the developed test-bed platform does not require much flexibility,
the ABP joining method was preferred. ABP requires three pieces of information to join
a device with a network: a DevAddr identifier, and the NwkSKey and AppSKey security
session keys. All three codes are randomly generated by the Everynet Platform, and are
then configured into the device with the ‘mac set devaddr/nwkskey/appskey’ commands,
correspondingly. Once the variables have been configured, the ‘mac join abp’ command
is issued to execute the joining procedure. When the device replies with ‘accepted’ upon
receiving the command, it has effectively been connected to the network.

LoRaWAN Datarate

Tests for verifying the system’s functioning assume a 100-byte long IPv6 packet, whose
40-byte long header will be compressed using SCHC. This might actually result in making
the header one byte longer in some cases, but reduces it to only one byte in the best-case
scenario, and somewhere inbetween in most cases. Thus, the length range for the actual
SCHC Packet is [61 - 101] bytes. As explained in chapter |1, LoORaWAN maximum available
application payload (where the SCHC Packet will be put) is dependent on the device’s current
DR. The [61 - 101] bytes range requires DR 3 or DR 4, both allowing at least 222 bytes for
the application payload. Between the two, DR 3 implicates less power consumption, so it is
preferred. Therefore, the LoRaWAN Mote will be configured with DR 3, using the ‘mac set
dr 3’ command.

Network Message Confirmation

As a way to verify and debug the device-NS connection, the ‘cnf’ transmission type is
used for all ‘mac tx’ commands, so the device will wait for an ACK message from the NS
after every transmission, and reply with ‘mac_tx_ok’ if received or ‘mac_error’ otherwise.

3.2 Functional Blocks

In this section, the system design is described. It comprises several functional blocks with
well defined inputs and outputs. The way they interact and connect is explained in the
following subsections. The system’s block diagram is also given. As this work has been done
as a proof of concept, not all the system’s blocks are fully integrated, but each of them is
self-contained.

32

3.2.1 System Overview

Simply put, the system creates an IPv6 standard packet, compresses it using the SCHC
Compression scheme, sends it through a LoRaWAN uplink, recovers it on the network end
(actually, before reaching it), applies SCHC Decompression to the received SCHC Packet in-
side the LoRaWAN payload, and verifies that the recovered IPv6 packet matches the original
one. The steps are the following:

1. The Packet Generator creates a standard IPv6 packet (no extension headers).
2. The SCHC Compressor compresses the packet, producing a SCHC Packet.

3. The SCHC Packet is padded to a multiple of bytes and passed onto the LoRaWAN
device for uplink transmission.

4. The LoRaWAN device sends the packet to the gateway (which forwards it to the NS)
and expects and ACK from the NS (only to verify that the link is working and that
the packet was properly received).

5. The Packet Sniffer (in the local network) catches the packet forwarded by the gateway,
whose IP connection is already identified. The packet’s payload is extracted.

6. A LoRaWAN Payload Retriever takes the sniffed packet’s payload, corresponding to
the complete LoRaWAN frame, and uses a LoRaWAN decoder to obtain the LoRaWAN
decrypted payload, which is in fact the SCHC Packet.

7. The SCHC Packet undergoes SCHC Decompression, thus recovering the original IPv6
packet.

8. A Message Verification block receives both the original IPv6 packet from the Packet
Generator and the packet recovered through decompression, and compares them, vali-
dating the result.

The functional block diagram is illustrated in Figure below.

Most blocks were implemented in Python, although JavaScript modules and GNU /Linux
Command Line Interface utilities were also used. As a notable resource, the bitstring
Python module [25] was utilized for ease and practicality in handling bits. All packets
are ultimately represented as bitstring objects, and computations involving them take
advantage of the bitstring module’s built-in functions and methods. Another bit-handling
module, the bitarray module, was also used, mainly for easy creation of random bitstrings
in combination with the module just mentioned. As in Python’s natural representation, the
prefixes ‘Ob’ and ‘0x’ are used to denote binary and hexadecimal strings or data, respectively.

The most relevant bitstring methods used in this implementation are:

e bitstring.uint: Returns a decimal number equal to the bitstring object interpreted
as an unsigned integer.

e bitstring.bin: Returns a string with ‘1’s and ‘0’s representing the bitstring object
in binary format.

e bitstring.hex: Returns a string representing the bitstring object in lowercase hex-
adecimal format.

33

Recovered
IPv6 packet

Original
IPv6 packet

SCHC Packet

LoRaWAN frame
(Base-64)

—

IP packet
(ethernet)
----------- H

LoRa link

Figure 3.7: The complete system’s functional block diagram, including inputs, outputs and
connections between blocks.

SCHC Packet
(padded)

e bitstring.len: Returns a decimal number equal to the bitstring object interpreted
as an unsigned integer.

3.2.2 1IPv6 Packet Generator

This block generates a standard IPv6 packet with a valid fixed header and no extension
headers. The header’s length is 40 bytes, and the payload length has been fixed to 60 bytes,
so that the total packet size is 100 bytes. For completeness, the header’s fields are: Version,
Traffic Class, Flow Label, Payload Length, Next Header, Hop Limit, Source Address, and
Destination Address. For details, refer to [15]. Payloads smaller than 60 bytes can also be
used, but were not tested. The payload’s content is a dummy; it does not represent any
particular information, but only random bits as a generic application payload.

This block uses the bitstring module’s Bits object class to represent the IPv6 packet. It
essentially creates the fixed header fields, a random payload, and concatenates all the elements
in the proper order to produce the packet. It also creates a friendly visual representation of

34

the packet as a block of 4-byte lines for debugging purposes. The header fields’ hexadecimal
representations and values (always interpreted as unsigned integers) used in the system testing
are:

e Version: 0x6 - (6)

e Traffic Class: 0x00 - (0)

e Flow Label: 0x00000 - (0)

e Payload Length: 0x003c - (60 [bytes|)

e Next Header: 0x11 - (17 [UDP))

e Hop Limit: Random value in the range [1 - 256]. Ex.: 0xb5 - (181)

e Source Address: 0x5555 5555 5555 5555 5555 5555 5555 5555 - (irrelevant)

e Destination Address: Oxaaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa - (irrelevant)
Block summary:

e Input: None.

e Output: A standard IPv6 packet consisting of the fixed 40-byte header followed by a
60-byte random payload.

e Programming Language: Python.

3.2.3 SCHC Compressor

The TPv6 packet received by this block is compressed using the SCHC mechanism as
described in chapter 2] The basic mechanism was implemented in a Python script using 4
Rules and all 8 IPv6 header fields per each. In order to process the Rules for selection, they
have been put together in a list (array-like) object. The Rules themselves are as well lists
that contain 8 elements, the FDs, each of which corresponds to an OrderedDict (OD) object.
An OD is just a regular dictionary object, only it preserves the order in which the entries
were first entered when the object was created, for ease of use and friendly visualization. A
dictionary is a collection of (key, value) pairs, where key is normally a string and value
can be any object. The values are accessed using their corresponding keys as the indexes,
as in dict[key1] = valuel, and so on. An OD works just the same.

Thus, an FD within a rule has the following structure, given in Table [3.1}

(LFID?? L(FLJ? “FP?? “DI?? (LTVJJ ((MO’? 4LCDA77
fid fl fp di tv mo cda

Table 3.1: Field Description, a row within a Rule. The double-quoted fields are the keys,
used to refer to their respective values, in lowercase below.

A for loop goes through the Rules collection, where a nested for loop goes through FDs
in each Rule. From there onwards, the Rule selection algorithm is applied using the usual
comparison and conditional execution strategies. In the first three Rules, DI was defined
as ‘Up’ for all FDs, while in the last one all DIs were defined as ‘Dw’ with the intention of

35

testing Rule failure and the no-compression case. As only the standard header is used in this
project, all FPs are equal to ‘1’, because no field is optional nor repeated.

Rules were designed using three groups where the header fields are organized, and which
define the MO-CDA strategy for each of them. The groups are: ‘known’, ‘from set’ and
‘unknown’; their strategies are respectively ‘equal’ - ‘not-sent’, ‘match-mapping’ -
‘mapping-sent’ and ‘ignore’ - ‘value-sent’. The ‘MSB(x)’ MO and the ‘LSB’> CDA
were included as potential cases within the script, but the time needed to create their related
functions for bitwise calculations exceeded the time available for this work. The same ap-
plies for the rest of the CDAs that were not implemented, except for the compute-checksum
CDA, which is targeted at UDP and is therefore out of scope. The AppIID and DevIID CDAs
represent a way of avoiding address transmission, the longest fields in the IPv6 header, and
are therefore relevant to SCHC’s performance. Their implementation however required a
little more research and programming, in order to correctly simulate different application
and device addresses within the context.

Block summary:

e Input: An IPv6 standard packet (from Packet Generator).

e Output: A SCHC Packet, corresponding to the concatenation of a Rule ID, a (possibly
empty) Compression Residue, and the IPv6 packet’s original payload. Its size ranges
from 482 bits (60.25 bytes) to 802 bits (100.25 bytes).

e Programming Language: Python.

3.2.4 Sender Device Input

The block takes the SCHC Packet coming from the SCHC Compressor, adds padding
bits as needed and hands it onto the LoRaWAN Mote through the ‘mac tx’ command.
Padding is managed here and not in the SCHC Compressor block because it is LPWAN
technology-specific, so this leaves the SCHC Compressor block compatible with potential
implementations using technologies different from LoRaWAN.

The first thing this block does is selecting the communication port that corresponds to
the Mote, and opening a serial port using the serial module. It then creates a string
representing the command that will be issued, namely ‘mac tx cnf 1 <loradata>’, where
<loradata> is the padded SCHC Packet in uppercase hexadecimal format. The message is
a confirmed one in order to verify that the NS has received it (or not). The port number is
irrelevant to this implementation, 1 is used by default. As discussed in section [3.1.5, DR 3
(or DR 4) is needed to transmit the 100 bytes packet. Therefore, it must be configured into
the Mote before sending the message. However, the device’s DR is adjusted by the NS with
a command coming in each ACK it sends back to the device. This behavior could not be
avoided, not even by disabling the NS ADR function in the platform and the Mote’s ADR
with the corresponding command.

The solution found was to check for the device’s DR value before sending each message,
and changing it to DR 3 whenever it was neither 3 nor 4. Thus, the operating loop of the

36

block does the following:

e Checks the DR value with the ‘mac get dr’ command.
e If DR is not 3 nor 4, the device adjusts it through the ‘mac set dr 3’ command.

e After ensuring that DR is appropriate, the device sends the message to the NS using
the ‘mac tx’ as described.

e The device then waits for the NS’s ACK and prints the reply.
e After this, the loop is restarted.

The loop can be interrupted at any moment by the user, by pressing ctrl-C. This allows
re-running the former blocks to produce a different SCHC Packet, although only the random
values are reset, and the Rule selection conditions will be the same. This is meant to be
enhanced into further packet randomization, so that Rule selection is not predictable a priori.

Block summary:

e Input: A SCHC Packet, not necessarily an integer number of bytes long.

e Output: A padded SCHC Packet with an integer number of bytes, represented in
ASCII hexadecimal format. Its maximum possible length is 101 bytes.

e Programming Language: Python.

3.2.5 LoRaWAN Device

The LoRaWAN device is also part of the previous block’s loop (as it processes and answers
the mac commands), but is conceptually separated here for block-wise clarity. In a later
version of this implementation, the loop behaviour should be modified to involve all the blocks
in the system, that is, a full compression-transmission-decompression-verification cycle should
be executed per each newly generated packet. The LoRaWAN device block starts once the
‘mac tx’ command has been issued, after which the command is received and processed by
the device, and the corresponding LoRaWAN frame containing the SCHC Packet is generated.
The message is then translated into a physical LoRa modulation signal and transmitted
through the antenna to reach the gateway.

e Input: An ASCII hexadecimal representation of a SCHC Packet, padded to an even
number of characters (integer number of bytes). It is issued with the ‘mac tx’ com-
mand and therefore interpreted as a LoRaWAN frame payload.

e Output: A LoRaWAN frame containing a padded SCHC Packet as the payload. Sent
towards the LoRaWAN gateway using LoRa radio modulation.

e Hardware: Microchip LoRaWAN device.

3.2.6 LoRaWAN Gateway

The gateway receives the LoORaWAN frame sent by the device and encapsulates it inside
an IP packet, which will be sent through the Internet to the NS. The NS will reply if it

37

corresponds, but this is not part of the block’s function. The custom debug cable connects
the gateway with the host computer, which allows access to the gateway via an SSH session
in the computer’s terminal. This will allow the forwarded packet (gateway to NS) to be
caught by the next block.

e Input: An ASCII hexadecimal representation of a SCHC Packet, padded to an even
number of characters (integer number of bytes). It is issued with the ‘mac tx’ com-
mand and therefore interpreted as a LoRaWAN frame payload.

e Output: An IP packet forwarding a LoRaWAN frame to the NS for processing. Sent
through Ethernet interface.

e Hardware: Everynet Gateway.

3.2.7 Packet Sniffer

The Packet Sniffer’s function is to identify and access the packet sent from gateway to
NS, and then finding the LoRaWAN frame. It has been implemented by using the tcpdump
command from inside the gateway’s terminal, through the SSH session. The interface tun0
has been identified as the network tunnel between gateway and NS. Packets going through
this connection are therefore printed in ASCII and observed, until finding the plaintext
word ‘data’, which indicates that the subsequent portion of the message corresponds to the
LoRaWAN frame, which is coded in Base-64 format. It is then copied to be introduced into
the next block. A captured (partial) packet can be appreciated in Figure . The LoRaWAN
data section is marked in red.

19:52:05.186104 IP (tos 0x0, ttl 64, id 32042, offset 0, flags [DF], protc UDP
(17), length 1444)
2 2. 2.1680: [udp sum ok] UDP, length 1416
4500 4011 aadc] . @ .
0a00 0 (0550 1658
70b3

068,
-10-15T189

systime
16, "rfch"

(3%

N Wwmbkp

ORA", "da
0OBW125™, "

= 0o

7
7
4
3

(¥4}
(%]
N H BB e

(78}
=] b

L

L b
-V O L RO

=~ =1 T

I

70745068, "t
0x0130: 2018-10-15
0x0140:

0x0150:

il
Wa M

(%]
I I G T O T« TR O I]
WM W

b3 B B

0x0170:
0x0180:

Figure 3.8: Packet captured using tcpdump command. LoRaWAN data, in Base-64 format,
is shown in the red rectangle.

38

Block Summary:

e Input: An IP packet traveling from gateway to NS.
e Output: The complete LoRaWAN physical data encoded as a Base-64 string.
e Utility: GNU/Linux terminal tcpdump command.

3.2.8 LoRaWAN Payload Retriever

LoRaWAN Payload Retriever block does the following: it takes the copied LoRaWAN
frame from the Packet Sniffer and gives it to a command line utility named ‘devlora-packet-decode’,
which decodes the frame and obtains the decrypted payload, printing it in the terminal.
The devlora-packet-decode command is based on the lora-packet project by Anthony
Kirby [26], which is written in JavaScript. The utility has been internally provided with the
NwkSKey and AppSKey used in the Mote and platform, so it can perform the decrypting
actions that use these keys. The retrieved LoRaWAN payload corresponds to the SCHC
Packet, adequately padded.

Block summary:

Input: A Base-64 encoded full LoRaWAN physical frame.

Output: The raw LoRaWAN decrypted payload in hexadecimal format, which in this
case represents a SCHC Packet.

e Programming Language: Node.js JavaScript.

Utility: GNU/Linux terminal devlora-packet-decode command.

3.2.9 SCHC Decompressor

The SCHC Decompressor receives the retrieved SCHC Packet coming from the LoRaWAN
link, and performs decompression as per chapter [2l It is implemented in a way similar to
the SCHC Compressor, as it performs the reciprocal actions. Both blocks share the same
Rules and the same information about them. The SCHC Decompressor starts off by reading
the first ‘rb’ bits, where rb is the number of bits needed to encode the Rule ID. Rule IDs
are encoded as unsigned integers, using the least number of bits possible, i.e., the minimum
number of bits required for encoding the highest Rule number, in this case 3. Upon reading
the first rb bits, the Rule is identified. Its CDAs are then applied, in the same order that
the FDs are read, that is, the order of the IPv6 header fields.

A ‘reader’, i.e., a counter for already read bits, is used in order to keep track of the fields
that have been reconstructed so far during the process, and to correctly get and use the
Compression Residue elements. After this process, the IPv6 packet has been recovered. The
only unprocessed bits are the padding bits (if any), at the end of the payload. They are
conceptually ‘dropped’, which in practice means that nothing else is done with them.

Block summary:

39

e Input: SCHC Packet represented in hexadecimal format.
e Output: A standard IPv6 packet recovered by means of SCHC Decompression.

e Programming Language: Python.

3.2.10 Message Verifier

Finally, the recovered packet, coming from the SCHC Decompressor, and the original
packet, coming from the Packet Generator, are compared for equality, as bitstring objects.
It prints the question ‘“Decompressed packet = original packet?”’ If they in fact are
equal, the result is ‘True’, otherwise, it is ‘False’. The result is then printed below the
question. The Message Verifier has been implemented within the same script as the SCHC
Decompressor, given that its function is quite simple.

In a more realistic scenario where a comparison between the generated packet and the
recovered one is wanted, there would be essentially two options: i) Provisioning both ends
with an identical copy of a set of previously generated packets; or ii) Providing the generated
packets to the Decompressor end by reliable out-of-band means. In any case, the integrity
and identity of the packets being compared must be ensured. Studying the actual feasibility
of either of these methods is however out of the scope of this work.

Block summary:

e Inputs: An originally generated IPv6 packet (from Packet Generator) and a recovered
IPv6 packet from SCHC Packet decompression.

e Output: The result of an equivalence comparison between the two inputs, either ‘True’
or ‘False’.

e Programming Language: Python.

40

Chapter 4

Analysis

In this chapter, the implemented system’s features will be analyzed, emphasizing its scopes
and limitations. In section a qualitative evaluation of the application scenarios for SCHC
over an LPWAN network is carried out. Section gives a quantitative compression effi-
ciency evaluation for representative LPWAN scenarios, and a direction for a future complete
evaluation. The most significant achievements accomplished by this work are summarized
in section Finally, in section the main limitations of the system are discussed and
proposed as future enhancements.

4.1 Recommendations of Usage Scenario
and Comparison

So far, the SCHC mechanism’s theory and the implementation hereby presented have been
explained in detail. The reader should have a relatively clear idea of the requirements that
an implementation of SCHC imposes, regarding both hardware and software. At this point,
it is relevant to think more deeply of these requirements and how they relate to the more
conventional LPWAN scenarios, what the differences between them are and which are the
implications. Therefore, it is of key importance to recall what the main features of LPWAN
technologies are:

e Low power consumption
e Wide communication coverage

Low transfer rate

e Constrained low cost devices

As discussed, these features are designed to fit into a particular type of applications,
where devices are expected to stay on-site for several years on a single battery charge, while
conveying small periodical amounts of data and staying in sleep-mode most of the time. They
are also intended to be deployed in big numbers for several monitoring-like services. The
implementation of SCHC in an LPWAN network does not exactly fit in this conventional

41

scenario. While twisting the requirements in some ways, it provides new possibilities for
more network-sensible and device-centered services, all at the same time. It also opens a new
direction leading to more complex services by overcoming the interoperability issue between
different LPWAN technologies.

With these factors in mind, a new scenario for SCHC-enhanced LPWAN networks is
created, and the need for a comparison of advantages and requirements arises. Let us state
what the additional requirements for a SCHC-enhanced LPWAN network are:

e Embedded computer for SCHC C/D and TCP/IP stack on device side
e [Pv6 address allocation for devices
e Implementation of SCHC C/D on network side

In this scenario, depicted in Figure [£.1 the SCHC mechanism is implemented in an em-
bedded computer due to the higher memory and processing capabilities demanded, too high
for a device of constrained nature such as an LPWAN mote. It is the embedded computer
that will process actual data packages and hold the IPv6 address. Meanwhile, the mote will
act as the Network Interface Controller, being directly connected to the embedded computer
for SCHC Packet input and output, while transmitting and receiving the corresponding LP-
WAN frames. All elements traditionally connected to the LPWAN device, such as sensors,
actuators and other functional units, are now connected to the embedded computer. As a
comparison, Figure shows what an equivalent conventional scenario would look like.

SCHC-enhanced LPWAN Device

LPWAN
Gateway

— o me e s o — e

Sensors

© -ImplementsSCHCC/D ' _ActsasNIC
. -Holds IPvé6 address . - -Establishes LPWAN link
. -TCP/IP stack :e

..........................

44444444444444444444444444

Figure 4.1: SCHC-enhanced LPWAN scenario. An embedded computer is directly connected
to a plain LPWAN device, both acting together as a SCHC-enhanced LPWAN device. The
embedded computer implements the SCHC C/D and holds the IPv6 address, while the con-
ventional LPWAN device acts as the node’s NIC, establishing the link with the RG. Sensors
and actuators are controlled by the embedded computer.

Each of these scenarios holds distinct advantages and disadvantages, which are listed in

Table [£.1] The two scenarios should be seen as complementary, and not as one being better
than the other. Which scenario fits a desired application best is something that needs to be

42

Conventional LPWAN Device

[}

1

1

1

| S LPWAN
: Gateway
: Sensors .

E. - Sensors directly connected .: Holds terminal IP address -

. -No IP address (invisible to the network) : T '
. - Directly establishes LPWAN link |

444444444444444444444444444444444444444

Figure 4.2: Conventional LPWAN scenario. A stand-alone LPWAN device directly commu-
nicates with an RG, which holds an IP address. The device is invisible to the network.

looked into and is not trivial. This ultimately expands the possibilities that the IoT universe
can offer by providing a new dimension for development.

Scenario Advantages Disadvantages
Header compression
Network visibility

Interoperability
SCHC-enhanced Transparent system Potential higher power consumption
Architecture flexibility Higher cost per node

Custom management
Single device control
UDP/CoAP and TCP/HTTP

System simplicity Invisible to the network
Conventional | Known low power consumption Proprietary system
Plug and play UDP/CoAP constrained

Table 4.1: SCHC-enhanced and conventional LPWAN scenarios compared. The advantages
and disadvantages for each scenario are listed.

4.2 Performance Evaluation

In this work, a functional proof of concept for a SCHC implementation over a LoRaWAN
network has been achieved, and the system’s performance has been preliminarily studied.
Two typical packet sizes in IoT have been used: 100 bytes for basic working tests and 60
bytes for compression efficiency under three representative IoT scenarios. Afterwards, a
robust set of tests and a direction for future performance evaluation is hereby given.

43

4.2.1 Efficiency of Packet Compression

The system’s performance has been studied by applying the following methodology:

e The most frequent IPv6 packet sizes have been researched. Sizes 60 and 100 bytes have
been selected as the target packet sizes, due to high frequency and compatibility with
the system’s scenario.

e DR 3 has been fixed through the whole test.

e Three different contexts that are reasonable for a generic LPWAN network have been
defined. The appropriate Rules for each of them were designed and implemented.

e For each context, 100 random packets have been generated and run through the system.
The mean percentage of compression achieved has been calculated for each case.

A 2007 technical report by the University of Southern California shows that between 40%
and 80% of total packets transmitted over the Internet are less than 100 bytes long, with a
mode at 40 bytes [27]. This size represents the whole of a packet (header and payload) and
packets involved were mostly IPv4. As IPv4 header is 20 bytes long, this means 20 bytes for
the payload. If we make this equivalent to the IPv6 case, a total packet length of 60 bytes is
obtained. Therefore, 60 bytes was selected as one of the target packet sizes for the test. In
order to cover the upper limit of the same packet size range, 100 bytes has also been studied.
Although in the case of 60-byte packets DR 2 would also be viable (see section , DR 3
has been maintained with both tests, for the sake of simplicity and fair comparison.

Three contexts were chosen considering what some common LPWAN network communi-
cation scenarios might be. For each of the contexts, the IPv6 header fields were separated
in three categories by level of knowledge: 1) already known value; 2) value belongs in a
well-known set of values; and 3) value is completely unknown. A context always corresponds
to a Rule being implemented in the system. Table describes the three contexts used.

Context Fields

Rule number | Known From set | Unknown

Rule 0 V-TC-FL-PL-NH-HL-SA-DA |- -

Rule 1 V-TC-FL - NH - HL SA - DA | PL

Rule 2 V-TC - FL NH PL - HL - SA - DA

Table 4.2: Context rules for performance evaluation test.

The first context (Rule 0) corresponds to an ideal context where all information regarding
the communication taking place is already expected: mainly the length of packets exchanged
(which is fixed), the transport protocol (none in this case), the hop limit established for
the link, and the source and destination nodes. This context would represent a perfectly
predictable traffic for a static application that sends the same kind of information all the
time. The second context (Rule 1) fits in a more common LPWAN scenario where there
are two well-known sets of nodes exchanging information, and any node in a group can
communicate with any other node in the second group. Both sets where defined as composed
by 1000 nodes each. The protocol and general communication link information is known,
but the packet size is variable. Finally, the third context (Rule 2) would represent a much

44

more dynamic environment, where a node within the network can receive messages from a
node which is not previously known or predictable (a new user establishing a session in an
application, for example). The transport protocol belongs to the set {None, UDP, TCP} but
is not predictable, and the packet size and established hop limit are variable. In all Rules,
the version field (V) is always known (IPv6 is constantly used), and the traffic class and flow
label are considered known (see [15] for details).

As there are three possible Rules, the Rule ID is composed of 2 bits. These will add to
the compressed header, thus distorting the ‘base’ compression percentage a little. This gives
place to what is denominated here as the ‘real” compression percentage, which will depend
on the amount of Rules used. It also depends on the amount of indexes in a given well-known
set.

Table [4.3| summarizes the compression percentage for the whole 60-byte packet in each of
the three given contexts.

Context Rule | Real packet compression percentage
Rule 0 66.25%
Rule 1 58.75%
Rule 2 7.5%

Table 4.3: Real packet compression percentage for each proposed context.

The compression rates achieved are considerable, especially in the first two cases. The big
difference observed for case three arises from the fact that in this scenario, the source and
destination addresses are completely unknown, and as they are 16 bytes long each, together
they account for 80% of the whole header. Thus, addresses are the most important fields
impacting the compression rate, although case three is extremely uncommon by virtue of how
LPWAN networks are desgined and how they make use of IPv6 addresses. As discussed in
section [4.4], TPv6 addresses within the LPWAN network in this work are not properly used,
and are proposed as a future work improvement.

4.2.2 Future Evaluation Plan

Performance should be first evaluated by establishing a fixed amount of packets, ‘N’
and a fixed DR. N copies of the same packet, which will become a SCHC Packet of length
‘L’, should be transmitted through the link using the same DR. Then, N random valid
LoRaWAN frames with payload length L should be transmitted. Then, the rate of successfully
received messages in each case should be compared. This will result in a measure of how
SCHC Compression affects the LoRaWAN link, which is expected to be negligible. This way,
subsequent evaluations involving the SCHC Packets’ intrinsic characteristics will have a base
success rate to compare with. This step has been omitted.

Next, performance should be evaluated applying the following general study schemes:

e For a fixed IPv6 packet size, study the mean compression achieved by SCHC, given a
well defined header field randomization that represents a common case for an LPWAN

45

network.

e For a given DR, and a given packet size range, study the minimum compression needed
in order for the packet to be transmittable after SCHC Compression. Then study
how often that level of compression is actually reached, and what are the main factors
involved.

e For a given packet profile, as in which header fields are usually known, unknown or
somehow compressible, study which SCHC strategies are more effective. Also, which
strategies are more generic and which ones are more specific, in a common case scenario.

e Study how Rules can be ordered in the most effective way, depending on the known
network /traffic context and the strategies each of the Rules applies.

4.3 Summary of Achievements

A few important milestones are achieved through this work. First, although the imple-
mented system has some limitations (they will be discussed in the next section), the system’s
purpose, namely an experimental functional implementation of SCHC over a well established
LPWAN technology, has been successfully fulfilled. Despite this being a basic SCHC ver-
sion, some of its characteristic features have been tested and showed the expected behavior.
SCHC’s Rule concept was correctly understood and applied, and some functional ‘details’
such as padding and datarate management performed as intended within the major system.

This work also represents a multi-factored development involving many different resources
and tools, which have been properly connected in a way that operates as expected. Telecom-
munication concepts, such as IoT and the layered communication model have been put to-
gether with network sniffing techniques and GNU /Linux systems utilities, giving a strong
example of the wide range of resources that exist within the Information and Communi-
cation Technologies field and what kind of complex systems can be created when they are
combined. In fact, all designed blocks within the system worked as expected even if they were
not fully integrated, despite some of them being implemented using different programming
languages, and relying on particular hardware-software interactions.

Finally, this project managed to create a working experimental test-bed platform for the
IETF’s SCHC proposal, starting only from the theory and isolated resources. This platform
can be extensively enhanced, allowing a fully-featured SCHC implementation with a rather
small amount of relatively simple modifications. Once that has been accomplished, SCHC
could be properly studied and experimented with.

4.4 Future Work

The developed system lacks some features that are ultimately necessary to carry out a
proper complete evaluation. The implemented system presents many limitations, most of
which are a consequence of the system’s scope, while some have arisen as a result of time

46

constraints. At its most essential level, the system is conceived as a test-bed platform for
a SCHC basic implementation, a first proof of concept with much space for improvement
and functionality expansion. The most notable limitations are related to the size of packets
tested, the Rules not testing all possible CDAs, the way addresses are managed, and the
system’s setup being uplink-only. All of these features are hereby proposed as future work
for improving the system.

4.4.1 Packet Size and Datarate

Only one fixed IPv6 packet size was used, so the interaction between SCHC’s performance
cases and the constraints placed by the link has not been studied to its ideal extent. Vary-
ing the packet size, while exploring all datarate combinations, would be an interesting and
relevant way to study in which cases SCHC allows a successful transmission under the cur-
rent link constraints, and to what extent it is compatible with a technology’s characteristic
maximum message sizes. A mechanism for intelligent and dynamic datarate selection based
on the packet size and the compression achieved could be developed, even in the presence of
power or datarate adjustments enforced by the NS. This last factor should also be explored
further, as it has not yet been fully understood by the author.

4.4.2 Rules

The Rules used in the implementation lack the use of some relevant constituents of a
SCHC full version, namely the MSB(x) MO and the LSB, compute-length, DevIID and
AppIID CDAs. Functions for including these elements were intended to be created, but the
time to do so exceeded the available resources. The way a packet is generated could also
be modified in a way that might result in different Rules being selected depending on the
packet. Thus, Rules have not been fully explored and their actual performance regarding
different contexts cannot yet be evaluated.

4.4.3 Address Management

Addresses are managed in a way that does not fully represent the way networks and devices
organize in IPv6, but rather reflects a very basic and generic network behavior. This, which
is tightly related to the lack of DevIID and AppIID CDAs, strongly affects the performance
that SCHC Compression can achieve, as addresses are the most massive fields in the IPv6
header, and their transmission could be completely avoided in many cases. This is considered
the most critical feature to be included in a future version.

47

4.4.4 Downlink Absence

Probably the most fixed limitation of the whole system is its intrinsic uplink-only con-
dition, as it is essentially hardware and setup dependent. Despite there is a functional
LoRaWAN communication downlink present, if SCHC Compression was to be implemented
on the NS side, some kind of external processing would have to be linked to the Everynet
Platform, in order to send the SCHC Packet as the message’s payload. This is not impossi-
ble, since the platform offers the possibility to issue custom downlink messages upon uplink
receipt. However, for an NS to initiate downlink communication, a class B LoRaWAN device
is needed, rather than the current class A Mote; this requires studying and understanding
class B functionality.

48

Conclusion

In this work, an experimental test-bed for the IETF’s SCHC proposal has been presented.
A minimal working SCHC-compliant system has been successfully designed and implemented.
The system has been proven to work satisfactorily; its performance has been studied through
some preliminary tests which, although limited, have shown positive results. Three possible
LPWAN network contexts were evaluated, obtaining packet compression rates of 66.25%,
58.75% and 7.5%.

The implemented test-bed offers a potential development tool for a new dimension within
the IoT scenario, where interoperability can be experimented and put to work. This could
greatly expand the existing possibilities for interconnection of LPWAN networks, as it allows
for architectural flexibility and customized management. By overcoming the interoperability
issue and thus breaking the proprietary technology barrier, more complex services become
possible, for which new potential applications are yet to be explored.

During the development process, a number of diverse tools from the ICT field were com-
bined into a fully functional system. Despite the system not being fully integrated, the whole
system worked correctly, which is a good example of the great potential of telecommunication
technologies and resources, and the wide range of applications that can be developed.

Successful transmission of IPv6 packets through an LPWAN network was done and mes-
sage integrity was verified in order to study relevant contexts for LPWAN networks where
SCHC can effectively compress the header and potentially compensate power consumption
due to larger data processing while granting network visibility and flexibility. A promising
usage scenario for SCHC-enhanced LPWAN networks has been presented and supported.

49

Bibliography

1]

2l

3]

4]

[5]

(6]

7]

8]
9]

[10]

S. Farrell, “LPWAN Overview, draft-ietf-lpwan-overview-07,” IETF, Internet draft
(work in progress), Oct. 2017. |Online|. Available: https://datatracker.ietf.org/doc/
html/draft-ietf-lpwan-overview-07

S. Krishnan, “IPv6 over Low Power Wide-Area Networks WG,” RFC Editor,
Fremont, CA, USA, Oct. 2016. [Online|. Available: https://datatracker.ietf.org/doc/
charter-ietf-lpwan /

M. Belshe, R. Peon, and M. Thomson (Ed.), “Hypertext Transfer Protocol Version 2
(HTTP/2),” RFC 7540 (Proposed Standard), RFC Editor, Fremont, CA, USA, pp.
1-96, May 2015. [Online|. Available: https://www.rfc-editor.org/rfc/rfc7540.txt

G. Montenegro, S. Cespedes, S. Loreto, and R. Simpson., “HTTP/2 Configuration
Profile for the Internet of Things,” Mar. 2017. [Online|. Available: https://github.com/
h2ot-wg/h2ot-profile /blob /master /draft-montenegro- httpbis-h2ot-profile-00.txt

N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANSs): Overview, Assumptions, Problem Statement,
and Goals,” RFC 4919 (Informational), RFC Editor, Fremont, CA, USA, pp. 1-12,
Aug. 2007. |Online|. Available: https://www.rfc-editor.org/rfc/rfc4919.txt

P. Weber, D. Jackle, D. Rahusen, and A. Sikora, “IPv6 over LoRaWAN™ ” in 2016
3rd International Symposium on Wireless Systems within the Conferences on Intelligent
Data Acquisition and Advanced Computing Systems (IDAACS-SWS). 1EEE, Sept.
2016. [Online]. Available: https://doi.org/10.1109/idaacs-sws.2016.7805790

G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6 Packets
over IEEE 802.15.4 Networks,” RFC 4944 (Proposed Standard), RFC Editor, Fremont,
CA, USA, pp. 1-30, Sept. 2007, updated by RFCs 6282, 6775, 8025, 8066. [Online].
Available: https://www.rfc-editor.org/rfc/rfc4944.txt

Overview of the Internet of things, ITU-T Recommendation Y.2060, June 2012.

(2017, June) Top 7 technologies for IoT connectivity 2017. Flespi. [Online|. Available:
https:/ /flespi.com/blog/top-7-technologies-for-iot-connectivity-2017

“LoRaWAN™ What is it? A technical overview of LoRa® and LoRaWANT™ ”

20

https://datatracker.ietf.org/doc/html/draft-ietf- lpwan-overview-07
https://datatracker.ietf.org/doc/html/draft-ietf- lpwan-overview-07
https://datatracker.ietf.org/doc/charter-ietf-lpwan/
https://datatracker.ietf.org/doc/charter-ietf-lpwan/
https://www.rfc-editor.org/rfc/rfc7540.txt
https://github.com/h2ot-wg/h2ot-profile/blob/master/draft-montenegro-httpbis-h2ot-profile-00.txt
https://github.com/h2ot-wg/h2ot-profile/blob/master/draft-montenegro-httpbis-h2ot-profile-00.txt
https://www.rfc-editor.org/rfc/rfc4919.txt
https://doi.org/10.1109/idaacs-sws.2016.7805790
https://www.rfc-editor.org/rfc/rfc4944.txt
https://flespi.com/blog/top-7-technologies-for-iot-connectivity-2017

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

LoRa® Alliance Technical Marketing Workgroup, Nov. 2015. [Online|. Available:
https://docs.wixstatic.com/ugd/ecccla_ed7lealcd969417493c74edal3c55685.pdf

“LoRaWAN™ 101 A Technical Introduction,” LoRa® Alliance. [Online|. Available:
https://docs.wixstatic.com/ugd/ecccla_20fe760334{84a9788c5b11820281bd0.pdf

N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent, LoRa WAN™ Specification
V1.0, LoRa® Alliance LoRa Specification, Jan. 2015.

What is LoRa? Semtech. [Online|. Available: https://www.lora-alliance.org/technology

LoRa Alliance™ Technology. LoRa Alliance™. [Online]. Available: https://www.
semtech.com /technology /lora/what-is-lora

S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC
8200 (Internet Standard), RFC Editor, Fremont, CA, USA, pp. 142, July 2017.
[Online|. Available: https://www.rfc-editor.org/rfc/rfc8200.txt

IPv6 Header Format. Redes locales y globales. |Online|. Available: https://sites.
google.com /site/redeslocalesyglobales/6-arquitecturas-de-redes/6-arquitectura-tcep-ip/
7-nivel-de-red /8-direccionamiento-ipv6 /2-formato-de-la-cabecera-ipv6

Standard for Information technology— Telecommunications and information exchange
between systems— Local and metropolitan area networks— Specific requirements Part
15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Low-Rate Wireless Personal Area Networks (WPANs), IEEE Std. 802.15.4™-2006,
Sept. 2015, revision of IEEE Std 802.15.4-2003.

J. Hui (Ed.) and P. Thubert, “Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks,” RFC 6282 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1-24, Sep. 2011, updated by RFC 8066. [Online|. Available:
https:/ /www.rfc-editor.org/rfc/rfc6282.txt

I. Ishaq, D. Carels, G. Teklemariam, J. Hoebeke, F. Abeele, E. Poorter, I. Moerman,
and P. Demeester, “IETF standardization in the field of the internet of things (IoT): A

survey,” Journal of Sensor and Actuator Networks, vol. 2, no. 2, pp. 235-287, apr 2013.
[Online]. Available: https://doi.org/10.3390/jsan2020235

A. Minaburo, L. Toutain, C. Gomez, and D. Barthel, “LPWAN Static Context
Header Compression (SCHC) and fragmentation for IPv6 and UDP,” Internet
Engineering Task Force, Internet-Draft draft-ietf-lpwan-ipv6-static-context-hc-16, Jun.
2018, work in Progress. |[Online|. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-lpwan-ipv6-static-context-hc-16

Aprueba Plan General de Uso del FEspectro Radioeléctrico, Subsecretaria de

Telecomunicaciones del Ministerio de Transporte y Telecomunicaciones de Chile Decreto
No. 127, Mar 2006, accessed: Nov 2018. [Online|. Available: http://oraias.subtel.cl/
sgr_reclamos/bdc_subte. PKG _SGD BUSCADOR_NORMAS.prc_despliegue

o1

https://docs.wixstatic.com/ugd/eccc1a_ed71ea1cd969417493c74e4a13c55685.pdf
https://docs.wixstatic.com/ugd/eccc1a_20fe760334f84a9788c5b11820281bd0.pdf
https://www.lora-alliance.org/technology
https://www.semtech.com/technology/lora/what-is-lora
https://www.semtech.com/technology/lora/what-is-lora
https://www.rfc-editor.org/rfc/rfc8200.txt
https://sites.google.com/site/redeslocalesyglobales/6-arquitecturas-de-redes/6-arquitectura-tcp-ip/7-nivel-de-red/8-direccionamiento-ipv6/2-formato-de-la-cabecera-ipv6
https://sites.google.com/site/redeslocalesyglobales/6-arquitecturas-de-redes/6-arquitectura-tcp-ip/7-nivel-de-red/8-direccionamiento-ipv6/2-formato-de-la-cabecera-ipv6
https://sites.google.com/site/redeslocalesyglobales/6-arquitecturas-de-redes/6-arquitectura-tcp-ip/7-nivel-de-red/8-direccionamiento-ipv6/2-formato-de-la-cabecera-ipv6
https://www.rfc-editor.org/rfc/rfc6282.txt
https://doi.org/10.3390/jsan2020235
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-ipv6-static-context-hc-16
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-ipv6-static-context-hc-16
http://oraias.subtel.cl/sgr_reclamos/bdc_subtel.PKG_SGD_BUSCADOR_NORMAS.prc_despliegue
http://oraias.subtel.cl/sgr_reclamos/bdc_subtel.PKG_SGD_BUSCADOR_NORMAS.prc_despliegue

[22] “LoRa® Mote User’s Guide,” Microchip Technology Inc., Datasheet DS40001808B,
2015-2016. [Online|. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/
LoRa%20Mote%20Users%20Guide.pdf

[23] “RN2903 LoRa™ Technology Module Command Reference User’s Guide,” Microchip
Technology Inc., Datasheet DS40001811A, 2015. [Online|. Available: http://wwl.
microchip.com/downloads/en/DeviceDoc/40001811A.pdf

[24] “Everynet LoRaWAN Gateway v.2 User Manual,” Everynet,
2017. [Online]. Available: http:/ /everynet.com/wp-content /uploads/2017/06/
Everynet-GW-User-Manual-ENG-V1.3.pdf

[25] S. Griffiths. bitstring module. Python Software Foundation. [Online]. Available:
https://pypi.org/project /bitstring/

[26] A. Kirby. LoRa radio packet decoder. GitHub, Inc. (US). [Online|]. Available:
https:/ /github.com /anthonykirby /lora-packet

[27] R. Sinha, C. Papadopoulos, and J. Heidemann, “Internet packet size distributions: Some
observations,” USC/Information Sciences Institute, Tech. Rep. ISI-TR-2007-643, May
2007, orignally released October 2005 as web page http://netweb.usc.edu/%7ersinha/
pkt-sizes/. [Online]. Available: http://www.isi.edu/%7ejohnh /PAPERS/Sinha07a.html

02

http://ww1.microchip.com/downloads/en/DeviceDoc/LoRa%20Mote%20Users%20Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/LoRa%20Mote%20Users%20Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001811A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001811A.pdf
http://everynet.com/wp-content/uploads/2017/06/Everynet-GW-User-Manual-ENG-V1.3.pdf
http://everynet.com/wp-content/uploads/2017/06/Everynet-GW-User-Manual-ENG-V1.3.pdf
https://pypi.org/project/bitstring/
https://github.com/anthonykirby/lora-packet
http://netweb.usc.edu/%7ersinha/pkt-sizes/
http://netweb.usc.edu/%7ersinha/pkt-sizes/
http://www.isi.edu/%7ejohnh/PAPERS/Sinha07a.html

Appendix: Source code

The code used in this project was uploaded to a GitHub repository. The latest versions
are located at:

https://github.com/nicomatu/schc-lorawan

23

	Introduction
	Motivation and Context
	Problem Statement
	Scope
	Objectives
	Overall Objective
	Specific Objectives

	Methodology
	Thesis Organization

	Background and State of the Art
	Internet of Things
	LPWAN Technologies
	LoRaWAN
	LoRa
	LoRaWAN protocol
	Message Format
	Datarate

	IPv6
	Adaptations of IPv6 over Constrained Networks
	6LoWPAN
	6LoRaWAN

	Static Context Header Compression
	SCHC Overview
	Rules and Context
	Rule Format
	Packet Processing
	Matching Operators (MOs)
	Compression/Decompression Actions (CDAs)
	Rule Selection
	Padding

	System Implementation
	Equipment and Setup
	Microchip RN2903 LoRa Technology Mote
	Everynet LoRaWAN Gateway
	Everynet Network Management Platform
	Host Computer and Development Tools
	Required Configuration

	Functional Blocks
	System Overview
	IPv6 Packet Generator
	SCHC Compressor
	Sender Device Input
	LoRaWAN Device
	LoRaWAN Gateway
	Packet Sniffer
	LoRaWAN Payload Retriever
	SCHC Decompressor
	Message Verifier

	Analysis
	Recommendations of Usage Scenario and Comparison
	Performance Evaluation
	Efficiency of Packet Compression
	Future Evaluation Plan

	Summary of Achievements
	Future Work
	Packet Size and Datarate
	Rules
	Address Management
	Downlink Absence

	Conclusion
	Bibliography
	Appendix: Source Code

