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ELECTRON LOCALIZATION IN INTRAMOLECULAR PROTON TRANSFER

The electron localization function (ELF) is a scalar field that accounts of the excess of elec-
tronic kinetic energy due to Pauli repulsion between electrons with the same spin. With this
function, it is possible to divide real space in regions (basins) where electronic localization
is high and Pauli repulsion is low (up-down electron pairs). From a phenomenological point
of view, bifurcation points of the localization domains (points that belong to certain basins
of a molecule) can be used to describe the rupture and formation of chemical bonds. More-
over, topological analysis of ELF allows us performing a statistical analysis of the electronic
population of basins in a molecule. In this work, by using density functional theory with
an hybrid exchange-correlation functional, we describe the electron localization along the in-
tramolecular proton transfer in the Salicidene Methilamine molecule (SMA). First we do it in
the ground state, in order to acquire physical insight of the process. Later, by means of time-
dependent density functional theory (TD-DFT) in the linear response regime, we perform an
equivalent analysis in the first excited state, for which we propose a way to compute ELF in
excited states using TD-DFT. We show how the electronic population and other properties
of interest of the basins associated with the atoms and bonds involved in the proton transfer
change during the reaction. Finally, we choose this system because, after photoexcitation and
proton transfer process, SMA suffers a large Stokes shift followed by a "closed" photocycle
that ends with the molecule in its original ground state. This makes molecules like SMA
good prospects for molecular photoswitches. The main contribution of this thesis is that this
is the first time that the ELF developed and successfully used to explain chemical bonding
in excited states.
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Resumen

LOCALIZACIÓN ELECTRÓNICA EN LA TRANSFERENCIA PROTÓNICA
INTRAMOLECULAR

La función de localización electrónica (ELF) es un campo escalar que da cuenta del exceso
de energía cinética electrónica debido a la repulsión de Pauli entre electrones con igual spin.
Con esta función, es posible dividir el espacio real en regiones (cuencas) donde la localización
electrónica es grande y la repulsión de Pauli es baja (pares de electrones up-down). Desde
un punto de vista fenomenológico, los puntos de bifurcación de los dominios de localización
(puntos que pertenecen a ciertas cuencas de la molécula) pueden ser usados para describir
la ruptura y formación de enlaces químicos. Más aún, el análisis topológico de la ELF nos
permite realizar un análisis estadístico de las poblaciones electrónicas de las cuencas en una
molécula. En este trabajo, usando teoría del funcional de la densidad con un funcional de
correlación-intercambio híbrido, describimos la función de localización electrónica a lo largo
de la transferencia protónica intramolecular en la molécula de Saliciden Metilamina (SMA).
Primero hicimos ésto en el estado fundamental, a fin de adquirir una visión física del proceso.
Luego, por medio de teoría del funcional de la densidad dependiente del tiempo (TD-DFT) en
el regimen de respuesta lineal, realizamos un análisis equivalente en el primer estado excitado,
para el cual proponemos una forma de calcular la ELF en estados excitados usando TD-
DFT. Mostramos cómo la población electrónica y otras propiedades de interés de las cuencas
asociadas con los enlaces y los átomos involucrados en la transferencia protónica cambian
durante la reacción. Finalmente, hemos escogido este sistema ya que, tras la fotoexcitación
y la transferencia protónica, la molécula de SMA sufre un gran Stokes shift seguido de
un fotociclo "cerrado" el cual termina con la molécula en su estado fundamental original.
Esto hace a moléculas como la SMA buenos prospectos para fotoswitches moleculares. La
principal contribución de esta tesis es que ésta es la primera vez que la ELF es desarrollada
y satisfactoriamente usada para explicar enlaces químicos en estados excitados.
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Chapter 1

Introduction

1.1 Physical description of chemical bond

"Chemistry has its own concepts, its own level of understanding which explains the
properties of the matter from its composition in terms of elements and of their position in

the periodic table rather from physical laws mastered by Schrödinger equation"

Linus Pauling

The description of the chemical bond from a physical point is not unique, but, in general,
relies on quantum mechanics. A covalent chemical bond can be seen as formed by a pair
of electrons of opposite spin, usually located between two atoms, which impose structural
stability to molecules. Also, electrons are fermions, and hence, its field operators ai(r) and
a†i (r) fulfills the Grassmann algebra,

{
ai(r), a

†
j(r
′)
}

= δ3(r− r′)δij, {a(r), a(r′)} =
{
a†(r), a†(r′)

}
= 0, (1.1)

where the Pauli exclusion principle, which is a consequence of the antisymmetry of fermionic
states, is encoded in the second anticommutator.

On the other hand, in analogy to a classical system, it is possible to describe the chemical
bond by a quantum harmonic oscillator where energy eigenvalues correspond to the energy
of vibration of the bond. However, a harmonic oscillator has only discrete spectra and can
not describe the rupture or the formation of chemical bonds. This approach can be im-
proved replacing the harmonic oscillator for an anharmonic one. The advantage of this last
kind of oscillator is that it contains both discrete and continuum spectra, and thus, allows
us to calculate bound to continuum probability transitions, which are responsible for the
rupture of bonds [36]. Thus, within this approach, the knowledge of the chemical bond it
is reduced to solve of the corresponding Schrödinger equation for a particular internuclear
potential function. In diatomic molecules, there are many works in this direction, which
use different resolution techniques of the molecular Schrödinger equation, namely, via hyper-
geometric series, numerical methods or, in the exceptional case when this equation has an
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analytical solution, via Lie algebras [37]-[38]-[39]-[40]. Unfortunately, as long as the number
of electrons in the molecule increases, the complexity of the Schrödinger equation becomes
overwhelming, due to the interelectronic repulsion between all electrons and the large number
of variables that the wave function depends on (for a N electron system, the wave function
depends on 3N spatial coordinates and N spin coordinates). Hence, it is important to count
with an approach that allows describing the physics of the chemical bond without solving
a formidable differential equation. In this sense, density functional theory (DFT) solve the
problem. DFT is a quantum-statistical approach to many-particle (fermion) systems, which
have as a fundamental variable the electronic density ρ(r), that corresponds to the coordi-
nate representation of the diagonal element of the first-order reduced density matrix of a pure
many-particle state |Ψ〉. Note that all molecular systems have a Hamiltonian with the same
form, differing only in the number of electrons, N , and the external potential, v(r), that is,
the Coulomb attraction that nuclei exert on the electrons. Then, the many-particle ground
state of the molecule depends on these two quantities and so does any observable. The essen-
tial statement of DFT is that ρ(r), instead of N and v(r), can be used as a basic variable, by
means of which all molecular observables are functional. This statement is formalized in the
first Hohenberg and Kohn theorem, which states that there is an isomorphism between the
space of the external potentials v(r) and the space of all v-representable electron densities,
so that there are no two different external potentials that give the same ρ(r) [28]. The first
example of the functional dependence on ρ(r) appears in quantum statistical mechanics, in
the problem of the non-relativistic non-interacting Fermi gas of electrons, whose total kinetic
energy is given by [42]

T [ρ] =
3~2

5me

(
9π4

2

)1/3 ∫
ρ(r)5/3dr. (1.2)

The second Hohenberg and Kohn theorem provides to the theory a variational structure.
Thereby, the total energy and the electron density are obtained by solving a Euler-Lagrange
equation, avoiding thus to solve the corresponding Schrödinger equation. Many concepts
used by chemist which, in general, have an important empirical component, can be described
by DFT. Concepts associated with chemical reactivity find a physical definition in DFT, for
instance, the chemical potential, µ, is defined as [27]

µ =
δE[ρ]

δρ
=

(
∂E

∂N

)
v

. (1.3)

In general, most chemical concepts belong to the real space. Then, if we are interested in
describing the chemical bond using quantum mechanics, we should find a way of mapping
the objects of a fermionic Fock space into objects that lie in R3. The Electron Localization
Function (ELF) partitions the real space in regions associated with electron pairs by mea-
suring their spatial localization. The ELF arises from the local behavior of the Hartree-Fock
exchange density and accounts for the probability of finding two electrons of the same spin
around a given point of R3 [1]. Thereby, with the ELF it is possible to divide real space
into regions (basins) where electronic localization is high, and Pauli repulsion is low. These
regions can be either non-bonding electron pairs, internal core electrons shells or chemical
bonds [2].
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1.2 Intramolecular proton transfer

Although many chemical reactions occur in the ground state, many others occur in elec-
tronically excited states. Molecules reach excited states through the absorption of radiation.
Photophysics and photochemistry study the physics of the excitation and deexcitation mecha-
nism and the molecular changes (reactions) that these processes entail. Examples of processes
that occur after absorption of radiation are photodissociation, geometric isomerization, and
tautomerization. Of particular importance is the excited state intramolecular proton transfer
(ESIPT) [18]-[24]. In general, an intramolecular hydrogen bond (H-bond) between an acid
group (with a tendency to give a proton) and a basic group (with a tendency to accept it)
is a signature of molecules with ESIPT. A prototypal molecule with ESIPT is the salicidene
methylamine (SMA) [19]-[23]-[26]. The molecular structure of SMA is shown in Figure 1.1.
In this representation, spheres represent atoms: gray are carbons, white hydrogens, red is
oxygen and blue is nitrogen. Sticks represent chemical bonds: a single stick is a simple bond,
a double stick is a double bond, and a dashed one represent electronic delocalization along
the six-carbon ring. In particular, in SMA molecule, the donor group is the hydroxyl (OH),
while the acceptor is the nitrogen atom (N).

Figure 1.1: SMA molecule.

The barrier for the proton trans-
fer in the ground state of SMA
(S0) is several orders of magnitude
higher than thermal energy and,
therefore, the process is not ob-
served at room temperature and
pressure. After absorption of ra-
diation, the molecule is excited to
its first singlet excited state (S1)
in which the proton transfer occurs
without an energy barrier. This
process, called Enol → Keto tau-
tomerism is accompanied by a dis-
placement of the maximum absorp-
tion wavelength to a higher wave-
length (Stokes shift). Therefore,
the radiation emitted by fluores-
cence by the Keto form is of lower

frequency than the radiation that absorbed the Enol form. This phenomenon is called pho-
tochromism. On the other hand, after the ESIPT process, the molecule can undergo a
geometrical isomerization, that is, a rotation of the bond C3 − C7 (see Figure 1.2), which
allows the system to return to the ground state, in a non-radiative way, through a conical
intersection (CI in the Figure 1.2). The decay to the ground state by emission of radiation
can lead to the molecule to its original (Enol) form through a proton transfer in S0 (GSIPT).
There may also be a considerable fraction of molecules trapped in the keto form. It is this
photochemical cycle between both, Enol and Keto forms, that makes this kind of compounds
good prospects for molecular photoswitches [22].

3



Figure 1.2: Photochemical and photophysical process in the SMA molecule

In order to get a physical insight of the ESIPT process, we have performed ground state
calculations on the SMA. As a first approximation, we can consider the displacement of
the hydrogen atom from the oxygen to the nitrogen as the path that follows the process.
Then, for a given (O − H) distance, the position of remaining atoms are relaxed until the
force of them is zero. This type of procedure is known in quantum chemistry as relaxed scan
calculation, and its purpose is to evaluate the change of the molecular energy with the change
of some structural degree of freedom [35]. The resulting potential energy surface (PES), with
the zero set to the energy of the initial molecular geometry (Enol), has a maximum at the
internuclear distance rO−H = 1.28Å, with an energetic barrier of 0.31eV (28.8kJ/mol). The
maximum point of the PES is called transition state (TS), and for a chemical reaction occurs,
the molecule must overcome this barrier.

Figure 1.3: Relaxed scan along oxygen-hydrogen internuclear distance in the ground state.
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Chapter 2

Electron localization function

2.1 Electron localization function in the Hartree-Fock ap-
proximation

In the Hartree-Fock (HF) approximation, a quantum state of an N -electrons system is given
by

|ΨN〉 =
1√
N !

∑
p

(−1)p |ψp1〉 ⊗ ...⊗ |ψpN〉 , (2.1)

which is a Slater determinant of one-particle basis kets (HF spin-orbitals) {|ψi〉}. These
orbitals constitute a mean-field solution. Similarly, the density matrix of a pure state of N
electrons, γ̂N

.
= |ΨN〉 〈ΨN |, has a space representation given by

γN(x′1, ...,x
′
N ;x1, ...,xN) = 〈x′1, ...| γ̂N |x1, ...〉 , (2.2)

where xi
.
= (ri, σ) includes both spatial (r) and spin (σ) coordinates. To calculate statistical

averages of molecular properties, we need to work with reduced density matricies (RDM),
which are defined as

γs(x
′
1, ...,x

′
s;x1, ...,xs)

.
=

(
N

s

)∫
dxs+1...dxNγN(x′1, ...,x

′
s,xs+1, ...,xN ;x1, ...,xs,xs+1, ...,xN),

(2.3)
where s is the order of the reduced density matrix. Expressions for second and first-order
RDM are

γ2(x′1,x
′
2;x1,x2) =

(
N

2

)∫
dx3...dxNγN(x′1,x

′
2...;x1,x2, ...), (2.4)

and
γ1(x′1,x1) = N

∫
dx2...dxNγN(x′1,x2, ...;x

′
1,x2, ...). (2.5)
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Now, in abscence of external magnetic fields, the molecular Hamiltonian in the coordinate
representation is given by,

ĤN =
N∑

i=1

(
−1

2
∇2

i + v(ri)

)
+

1

2

N∑
i=1

N∑
j 6=i

1

rij

, (2.6)

where the first term corresponds to a sum of one-particle Hamiltonians ĥi = −1

2
∇2

i + v(ri),
with

v(ri) = −
M∑
α=1

Zα
riα

(2.7)

the external field exerted by the M nuclei of the molecule on the i-th electron. Note that in
the molecular Hamiltonian there is not spin dependence. Hence, we can trace out the spin
coordinates in (2.4) and (2.5), to obtain the spinless RDM,

ρ2(r′1, r
′
2; r1, r2) =

(
N

2

)∑
σ1,σ′

2

∫
dx3...γN((r′1, σ1), (r′2, σ

′
2)...; (r1, σ1), (r2, σ

′
2)...), (2.8)

and
ρ1(r′1, r1) = N

∑
σ

∫
dx2...dxNγN((r′1, σ),x2, ...; (r1, σ),x2, ...). (2.9)

Furthermore, the total molecular energy is expressed as a functional of the spinless reduced
density matrices (2.8) and (2.9) as follows:

E [ρ1, ρ2] =

∫
dr

(
−1

2
∇2

r + v(r)

)
ρ1(r′, r)

∣∣∣∣
r=r′

+

∫
dr1dr2

ρ2(r′1, r
′
2; r1, r2)

|r2 − r1|

∣∣∣∣
r1=r′1;r2=r′2

. (2.10)

A consequence of the approximate nature of the Hartree-Fock wavefunction is that high
order RDM can be written in terms of RDMs of a lower order. Thus, γ2 in terms of γ1 is [28]

γ2(x′1,x
′
2;x1,x2) =

1

2

∣∣∣∣γ1(x′1,x1) γ1(x′2,x1)
γ1(x′1,x2) γ1(x′2,x2)

∣∣∣∣ , (2.11)

where γ1 has a spectral decomposition in terms of the HF spin-orbitals,

γ1(x′1,x1) =
N∑
i

ψi,σ(x′1)ψ∗i,σ(x1), (2.12)

called the first-order Fock-Dirac reduced density matrix.

Also, it is possible to obtain a simple expression for ρ2 using (2.11), and considering that
the exchange (given by the off-diagonal elements of the determinant) is different from zero
only for components of the density of the same spin. Hence, ρ2 in terms of its spin |+〉 and
|−〉 components is given by

ρ2(r1, r2; r1, r2)
.
= ρ2(r1, r2) = ρ

|+〉|+〉
2 (r1, r2) + ρ

|−〉|−〉
2 (r1, r2) + ρ

|+〉|−〉
2 (r1, r2) + ρ

|−〉|+〉
2 (r1, r2),

(2.13)
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where each term means
ρ
|σ〉|σ′〉
2 (r1, r2)

.
= γ2(r1, |σ〉 ; r2, |σ′〉). (2.14)

Now, using (2.11) for each of the four components in (2.13), one obtains

ρ2(r1, r2) =
1

2
ρ(r1)ρ(r2)− 1

4
|ρ1(r1, r2)|2. (2.15)

From the above equation is easy to understand the physical meaning of the spinless second-
order RDM. This is a pair probability density, where the first term corresponds to a uncor-
related statistical product between the electronic densities of any two electrons, while the
second term is due to the exchange correlation between them. This exchange correlation is a
manifestation of the Pauli’s exclusion principle. Then, the conditional probability of finding
an electron located in r2 separated a distance s .

= |r2−r1| of a electron located in a reference
point r1 is given simply by

P (r2|r1) =
ρ2(r1, r2)

ρ(r1)
=

1

2
ρ(r2) +

1

2
ρx(r1, r2), (2.16)

where
ρx(r1, r2) = −1

2

|ρ1(r1, r2)|2

ρ(r1)
= −hx(r1, r2) (2.17)

is the exchange density (the negative of the exchange hole hx(r1, r2)). Thus, in order to focus
on the Pauli repulsion between electrons, we define the conditional pair probability of the
same spin P (r2, σ|r1, σ) as

P (r2, σ|r1, σ)
.
=
ρ2σ(r1, r2)

ρσ(r1)
(2.18)

= ρσ(r2)− |ρ
σ
1 (r1, r2)|2

ρσ(r1)
, (2.19)

where ρ2σ corresponds to the sum of second-order RDMs with parallel spin, i.e.,

ρ2σ
.
= ρ

|σ〉|σ〉
2 = ρ

|+〉|+〉
2 + ρ

|−〉|−〉
2 . (2.20)

Becke showed that the spherical average of P (r2, σ|r1, σ) around a middle point between
electrons is, up to second order in the distance between electrons, s, given by [2]

〈P (r2, σ|r1, σ)〉 =
s2

3!
∇2

sP (r2, σ|r1, σ)

∣∣∣∣
r1=r2

+O(s4),

=
s2

3

N/2∑
i=1

|∇rψi,σ(r)|2 − |∇rρσ(r)|2

ρσ(r)

 ,
=
s2

3
Dσ(r), (2.21)

with
Dσ(r) =

1

2
∇2

rP (r2, σ|r1, σ)

∣∣∣∣
r1=r2

(2.22)
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a scalar field proportional to the curvature of the conditional pair probability, which measures
the excess of kinetic energy density of the electrons consequence of its fermionic nature,
and hence is called delocalization field. The first term in the square bracket of Eq. (2.21)
is the kinetic energy density of electrons, which is a functional of the occupied HF spin-
orbitals, while the second term is the same quantity for a bosonic system of equal density as
the fermionic system. This term it is known as the von Weizsäcker kinetic energy density.
Also, from Dσ(r) it is possible to define the Electron localization function (ELF), which is a
Lorentzian normalization of Dσ(r),

η(r) =
1

1 +

(
Dσ(r)

D0
σ

)2 . (2.23)

η(r) is a measure of electronic localization and allows us to identify regions of the space where
the probability of finding two neighboring electrons of the same spin is low. D0

σ in (2.23)
is the kinetic energy of the non-interacting Fermi gas ( Eq. (1.2)). Thus, ELF is close to
its maximum value (1) in regions where electrons are poorly correlated, that is, where the
second-order RDM is basically given by an uncorrelated product of electronic densities. An
alterantive interpretation given by Savin is that in regions of large ELF, the Pauli’s principle
imposes a small excess of kinetic energy to electrons, approaching to a bosonic behaviour [4].
In a molecule, these regions usually correspond to chemical bonds or non-bonding electron
pairs (in both cases, these regions are conformed by up-down electron pairs). On the other
hand, ELF tends to 0 in regions of maximum delocalization, that is, in regions where electrons
strongly fluctuate because their kinetic energy is large.

2.2 Elements of catastrophe theory

A chemical reaction is a dynamical process in which, upon variation of nuclear coordinates,
chemical bonds break and form, leading to new molecules. Hence, nuclear coordinates corre-
sponds to control parameters which defines the control space. To describe a chemical process
as a dynamical system is necessary to introduce certain concepts from topology, which will
allow us to study topological changes when control parameters are varied. These concepts
belong to the Tom’s Catastrophe theory.

A dynamical system is defined by

ẋi(cα; t) = fi(xi; cα; t), (2.24)

where x are the trajectories defined in the manifold M of internal states, cα are the control
parameters, and fi can be understood as a component of a velocity field. Note that (2.24)
defines an equation of motion in the space of trajectories. If f is time-independent, it can
be written as a gradient of a scalar field (potential function) V (x; cα). In this case, the
dynamical system is called gradient dynamical system, and is defined by

ẋi(cα; t) =
∂V (xj; cα)

∂xi
. (2.25)
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All trajectories begin and end at equilibrium points, that is, points where ẋi(cα; t) = 0. These
points are called critical points, and, for a gradient dynamical system, are defined by

∂V (xj; cα)

∂xi
= 0. (2.26)

Also, critial points xc are characterized by an index I(xc) called critical exponent, which
corresponds to the number of positive eigenvalues of the Hessian matrix Hij of the potential
function V (x; cα), that is

Hij(xc) =
∂2V (x; cα)

∂xi∂xj

∣∣∣∣
x=xc

(2.27)

Thus, for I = 3, a critial point is a local minimum and is called a repellor. I = 1, 2 correspond
to saddle points, and finally I = 0 defines a local maximum and is called an attractor. Now,
considering an arbitrary point x0 and taking the limit t → ∞, the point xp to which the
trajectory starting in x0 converges, is called the ω-limit. An ω-limit is also an attractor. The
set of points that converge to the same attractor is called the basin of this attractor, and it
defines its domain of structural stability [8]-[9].

In the language of the bonding evolution theory [7], the trajectories x are points in R3 and
the control parameters {cα} are the nuclear coordinates {Rα}. The potential function,V (x; cα),
has to be a field with information on bond regions; in this case the ELF. A great advantage
of using the ELF to describe the electronic structure of molecules is that it allows dividing
the molecular space into different regions according to how localized the electrons are. These
regions, {Ωi}, of high electronic localization, are the basins defined above, and they correlate
well with the regions associated with chemical bonds and lone pairs [4]. Basins of ELF are
classified according to the number of atomic cores that are involved (synaptic order), and
whether they enclose atomic cores or valence electrons. For example, C(A) is a monosynap-
tic basin associated with the core of the atom A, V (A) is a monosynaptic basin related to
the valence structure of the atom A, V (A,B) is a disynaptic basin related to the valence
structure shared by the two atoms A and B, and so forth [11]. Valence monosynaptic basins
correspond to non-bonding electron pairs located around atomic centers, and valence disy-
naptic basins are associated with chemical bonds. Basins associated with atomic cores are
only monosynaptic. The attractors of ELF basins may or not coincide with atomic centers.
Thus, only attractors of core basins coincide with atomic positions, while attractors of va-
lence monosynaptic basins are located around an atomic core but separated from it a certain
distance. Disynaptic valence attractors are located between two or more atoms involved in
a chemical bond.

Through critical points, rc, where the gradient of ELF vanishes,

∇rη(rc;R
∗) = 0, (2.28)

one identifies bifurcation points between adjacent basins, which, in turn, define the localization
domains. Specifically, for a certain nuclear configuration of the molecule, R∗, bifurcation
points are critical points where the determinant of Hessian matrixHij

.
= ∂2η/∂xi∂xj vanishes,

det

(
∂2η

∂xi∂xj
;R∗

)∣∣∣∣∣
rc

= 0. (2.29)
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Moreover, bifurcation points give us a qualitative measure about the electronic delocalization
between two basins: the smaller the ELF in a bifurcation point between two adjacent basins,
the lower the delocalization between them (electrons are more localized in their respective
basins). The contrary also applies, bifurcation points with high values of ELF indicate large
electronic fluctuation between the basins. A localization domain is a domain of structural
stability of certain attractors, and it corresponds to a certain region of the space enclosed by
some value of the ELF, i.e., it could be a subsets of basins [8]. Localization domains may be
reducible or irreducible. A localization domain is reducible if there is a value of ELF at which
the volume that defines the domain splits in two or more basins corresponding to simpler
domains. This process corresponds to a reduction of localization and occurs at a critical
point with critical exponent 1 (saddle point) located on the boundary of the basins involved.
An irreducible domain is one that cannot be reduced by bifurcation points and enclose only
one attractor.

Finally, with the concepts defined above, a chemical reaction can be understood as a tran-
sition from one structural stability domain, or bonding state, to another through bifurcation
catastrophes, i.e., through points in the reaction path at which are changes in the synaptic
order of the basins [8].

2.2.1 Core-valence bifurcation index

The choice of the ELF as a function for monitoring a chemical process, instead of the electron
density, is done because the ELF provides a clear differentiation between covalent and some
non-covalent interactions. In this sense, it is possible to answer the question if a hydrogen-
bonded complex represents a unitary molecular entity or an assembly of molecules. The
answer depends on how classical is the interaction between the two molecules. Thus, for
a unitary molecular entity there is a certain degree of electronic delocalization between the
acceptor atom and the hydrogen atom, while for an assembly of molecules, this interaction
is mostly a Coulomb interaction.

With the concept of catastrophe theory, we can establish a working definition of a hydro-
gen bond as follows: "there is a hydrogen bond when a protonated disynaptic valence basin
V (A,H), has a boundary with at least another valence basin, namely, V (B), which does not
participate to the same atomic valence shell" [10]. Thus, in order to quantify this idea, it is
defined the core-valence bifurcation index ν (CV index),

ν(AHB)
.
= η(C(A), V (A,H))− η(V (A,H), V (B)), (2.30)

where η(C(A), V (A,H)) is the value of ELF at which the core basin of the donor atom A
and the valence basin V (A,H) bifurcate, while η(V (A,H), V (B)) is the same quantity for
the basins V (A,H) and V (B). Then, having in mind the link between the value of the ELF
in a bifurcation point and electronic delocalization between basins, one can see that ν(AHB)
is a positive quantity if electrons populating the disynaptic basin V (A,H) fluctuate more
with the atomic core C(A) than with the valence of the acceptor atom V (B). In such a case
the interaction in question is purely classical. On the other hand, if the electrons populating
V (A,H) fluctuate more with the valence V (B), the interaction is a covalent one and ν(AHB)
is negative.
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Also, there is an empirical inverse relationship between the value of ν(AHB) and the
energy of the hydrogen bond. Table 2.1 shows the values of ν(AHB) for hydrogen fluoride-
nitrogen and hydrogen fluoride-ammonia dimers.

Dimer η(C(F ), V (FH)) η (V (FH), V (N)) ν (FHN)
FH −−N2 0.149 0.047 0.102
FH −−NH3 0.145 0.226 −0.081

Table 2.1: Core-valence bifurcation index [10].

Also, formation energy of the FH − −N2 and the FH − −NH3 dimers are 8.6kJ/mol
and 54.8kJ/mol, respectively, which is consistent with the nature of the hydrogen bond in
both cases: for FH − −N2 the hydrogen bond is purely a Coulombic interaction, while for
FH −−NH3 the hydrogen bond corresponds to a covalent interaction.

2.2.2 Statistical tools

Once the basins the ELF are known, it is possible to perform statistical analisys on them to
quantify the average of the number of electrons and how delocalized are electrons between
two or more basins. The average of the electronic population of a basin ΩA is the integral of
the electronic density over the total volume of this basin,

〈N(ΩA)〉 =

∫
ΩA

drρ(r). (2.31)

Electronic fluctuation between two diferent basins is given by the elements of the covariance
matrix, which are defined as [11]

〈cov (ΩA,ΩB)〉 = 〈N (ΩA)〉 〈N (ΩB)〉 −
∫

ΩA,ΩB

dr1dr2ρ2 (r1, r2) . (2.32)

The first term of (2.32) corresponds to a pure uncorrelated product between the electronic
populations of both basins, while the second term is the actual pair population, for which it
is necessary to know the form of the second-order RDM, and accounts for the correlations
between the electrons of both basins. Thus, the more important the correlation term is
(second term of (2.32)), the more negative the value of 〈cov (ΩA,ΩB)〉 is.
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Chapter 3

Electron localization in excited molecular
states

3.1 Linear response in density functional theory

In this chapter, we will develop the theory of linear response in time-dependent density
functional theory. We will first present a standard perturbation-theory treatment based on
the response of a many-particle state. Then, we will focus on the response of the electron
density and, finally show how the exact many-body linear response function of the density
can be computed from the independent-particle response function of the Kohn-Sham system.
The last step yields to the Casida’s equations of TD-DFT.

3.1.1 Perturbation theory

The dynamics of the ground state of a closed quantum system subjected to an external
perturbation F is described by the time-dependent Schrödinger equation

i~
∂

∂t
|Ψ0(t,F)〉 =

[
Ĥ(0) + λĤ(1)

]
|Ψ0(t),F〉 , (3.1)

where |Ψ0(t,F)〉 corresponds to the ground state of the system, Ĥ(0) is the unperturbed
Hamiltonian (molecular Hamiltonian), Ĥ(1) is the Hamiltonian due to the external perturba-
tion, and λ is a perturbation parameter which varies continuously from 0 to 1. It is convenient
to work in the interaction picture (IP) where the evolution of the ground state of the system
is given by

|ΨI
0(t,F)〉 = eiĤ(0)t |Ψ0(t,F)〉 , (3.2)

and the Schrödinger equation becomes

i
∂

∂t
|ΨI

0(t,F)〉 = λĤ
(1)
I (t) |ΨI

0(t),F〉 , (3.3)
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where Ĥ(1)
I (t) = eiĤ(0)tĤ(1)e−iĤ(0)t is the perturbation Hamiltonian in the IP (hereafter, we

take ~ = 1). Moreover, knowing that

|ΨI
0(t),F〉 = ÛI(t, t0) |ΨI

0(t0)〉 , (3.4)

with ÛI(t, t0) the evolution operator in the IP and |ΨI
0(t0)〉 .= |Ψ(0)

0 〉 the ground state at t = t0,
the time-dependent equation for the ground state (3.3) becomes a dynamical equation for
the evolution operator:

i
∂

∂t
ÛI(t, t0) = λĤ

(1)
I (t)ÛI(t, t0). (3.5)

If the perturbation remains small compared with the total energy of the system, an linear
expansion of (3.5) in powers of λ is accurate enough,

ÛI(t, t0) = 1− iλ

∫ t

t0

dt′Ĥ
(1)
I (t′) + O(λ2). (3.6)

After replacing Eq. 3.6 in Eq. 3.5 and then Eq. 3.5 in 3.4, one obtains the evolution to the
ground state due to the external field F,

|Ψ0(t,F)〉 = e−iH0t |Ψ(0)
0 〉 − iλe−iH0t

∫ t

t0

dt′eiH(0)t′H(1)e−iH(0)t′ |Ψ(0)
0 〉+ O(λ2), (3.7)

or more compactly
|Ψ0(t,F)〉 = |Ψ(0)

0 (t)〉+ λ |Ψ(1)
0 (t,F)〉 . (3.8)

3.1.2 Linear response of the electron density

The coupling between electrons in a molecule, whose Hamiltonian does not have spin terms,
and a classical radiation field with wave lengths much larger than the size of the molecules,
is given by

Ĥ(1)(r, t) = − e

mec

∑
i

p̂i · Â(r, t), (3.9)

that is, it is the electric dipole momenta of the electrons p̂i is the observable that couples
with the external vector potential A(r, t) of the radiation. Equation (3.9) can also be written
in the style of DFT, i.e., in terms of the electron density and a perturbing potential v(1):

Ĥ(1)(t) = tr
[
v(1)ρ̂

]
=

∫
dr′v(1)(r′, t)ρ̂(r′). (3.10)

The correction to the electron density ρ(r) is just expectation value of the density operator,

ρ(r, t) = 〈Ψ0(t, v(1))| ρ̂(r) |Ψ0(t, v(1))〉 , (3.11)

where |Ψ0(t, v(1))〉 is the linear perturbed state (Eq. (3.7)),

〈Ψ0(t, v(1))| ρ̂(r) |Ψ0(t, v(1))〉 =
[
〈Ψ(0)

0 (t)|+ λ 〈Ψ(1)
0 (t, v(1))|

]
ρ̂(r)

[
|Ψ(0)

0 (t)〉+ λ |Ψ(1)
0 (t, v(1))〉

]
.

(3.12)
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After some algebra, a link between the linear evolution of the electron density and the ground
many-particle state is found [45]

〈ρ̂(r)〉|Ψ0(t,v(1))〉 = 〈Ψ(0)
0 | ρ̂I(r, t) |Ψ

(0)
0 〉 − iλ

∫ t

t0

dr′ 〈Ψ(0)
0 | [ρ̂I(r, t), Ĥ

(1)
I (t′)] |Ψ(0)

0 〉 , (3.13)

where ρ̂I(r, t) is the electronic density operator in the IP. Replacing (3.10) in the commutator
and taking the limits t0 → −∞ and t to ∞, one gets

〈ρ̂(r)〉|Ψ0(t,v(1))〉 = 〈Ψ(0)
0 | ρ̂I(r, t) |Ψ

(0)
0 〉−iλ

∫ ∞
−∞

dt′dr′Θ(t−t′) 〈Ψ(0)
0 | [ρ̂I(r, t), ρ̂I(r′, t′)] |Ψ

(0)
0 〉 v(1)(r′, t′).

(3.14)
where the step function assures time ordering (causality). From Eq. (3.14) we can define the
linear response function χρ̂ρ̂(r, t, r′, t′) as [43]-[45]

χρ̂ρ̂(r, t, r′, t′) = −iΘ(t− t′) 〈Ψ(0)
0 | [ρ̂I(r, t), ρ̂I(r′, t′)] |Ψ

(0)
0 〉 , (3.15)

which accounts for the response of the electronic density of the unperturbed system due to
the perturbing potential v(1)(r, t). The evolution of the electron density in terms of χρ̂ρ̂ is
then given by

〈ρ̂(r)〉|Ψ0(t,v(1))〉 = 〈Ψ(0)
0 | ρ̂I(r, t) |Ψ

(0)
0 〉+ λ

∫ ∞
−∞

dt′
∫

dr′χρ̂ρ̂(r, t, r′, t′)v(1)(r′, t′). (3.16)

Equation (3.15) is a formal definition of the linear response function, but it is not the most
convenient to compute it. A more practical representation is achieved by i) expanding the
commutator between the two densities, ii) applying the resolution of the identity (using en-
ergy eigenstates), iii) using the complex representation of the step function and iv) performing
a pair of Fourier transformations in order to map the response to the frequency domain. Af-
ter this procedure, one obtains the Lehmann representation (energy representation) of the
linear response function [43],

χρ̂ρ̂(r, r′, ω) =
∞∑
n6=0

〈Ψ(0)
0 | ρ̂(r) |Ψ(0)

n 〉 〈Ψ(0)
n | ρ̂(r′) |Ψ(0)

0 〉
ω − (E

(0)
n − E(0)

0 ) + iη
−
∞∑
n 6=0

〈Ψ(0)
0 | ρ̂(r′) |Ψ(0)

n 〉 〈Ψ(0)
n | ρ̂(r) |Ψ(0)

0 〉
ω + (E

(0)
n − E(0)

0 ) + iη
.

(3.17)
The advantage of the frequency representation of χρ̂ρ̂ is that it is possible to extract the
excitation energies of a many-particle system from the poles of χρ̂ρ̂. The first term in χρ̂ρ̂
is associated purely with the absorption of radiation and the second term associated purely
with the emission. Unfortunately, determining the exact many-particle states |Ψ(0)

n 〉 and the
exact excitation energies Ωn

.
= E

(0)
n −E(0)

0 in realistic systems such as molecules is beyond any
possibility except for very small systems. Therefore, we shall consider a different approach
that allow us to determine these quantities indirectly using time dependent DFT (TD-DFT).

3.1.3 Linear response of the Kohn-Sham system

For a many-particle system it is imperative to count on approximations, like perturbation
theory, that allows to access to observables of interest. In our case, the electronic density
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plays a key role. In DFT the N -interactig fermionic problem is transform into an auxiliar
mean-field system whose electronic density is exactly the same than the one of the real
system. This auxiliar system is called the Kohn-Sham (KS) system [28]. Hence, instead
of obtaining the first order correction to the electronic density from the interacting (real)
system (Eq. (3.15)), we can write the linear change of the density as

ρ(1)(r, t) =

∫ ∞
−∞

dt′
∫

dr′χKS(r, t, r′, t′)v(1)
KS(r′, t′), (3.18)

where χKS corresponds to the linear response function of the Kohn-Sham system and v(1)
KS is

the first order correction to the mean-field potential vKS, which is given by

vKS(r, t) = v(r, t) +

∫
dr′

ρ(r′, t)
|r− r′|

+ vxc(r, t). (3.19)

Note that the mean-field potential has a classical part, which corresponds to the external
potential v(r, t) plus the average of the electronic Coulomb repulsion (second term), and a
potential that accounts for the non-classical effects, called the exchange-correlation potential
(third term). The first term is decomposed according to v(r, t) = v0(r, t) + Θ(t− t′)v(1)(r, t),
where v0 is the external potential due to the nuclei of the molecule and v(1) is the potential
due to the classical radiation field. Then, an analogous equation to (3.19) holds for v(1)

KS

v
(1)
KS(r, t) = v(1)(r, t) +

∫
dr′

ρ(1)(r′, t)
|r− r′|

+ v(1)
xc (r, t). (3.20)

Now, from the Runge-Gross theorems, it is known that all molecular properties are function-
als of the time-dependent electronic density. We know then that the exchange-correlation
potential is a functional of the electronic density and hence, we can perform a functional
Taylor expansion of it,

vxc[ρ] = v(0)
xc +

∫
dr′dt′

δvxc(r, t)

δρ(r′, t′)

∣∣∣∣
ρ(0)
ρ(1)(r′, t′), (3.21)

where the integral in second term is nothing but v(1)
xc :

v(1)
xc

.
=

∫
dr′dt′

δvxc(r, t)

δρ(r′, t′)

∣∣∣∣
ρ(0)
ρ(1)(r′, t′). (3.22)

The functional derivative in the integrand of equation (3.22) is defined as the exchange-
correlation kernel [12],

fxc(r, t, r′, t′)
.
=
δvxc(r, t)

δρ(r′, t′)

∣∣∣∣
ρ(0)

; (3.23)

which us a functional of utmost importance in TD-DFT, because it allows us to connect
the auxiliar system with the real system, including information on the correlation and the
exchange between electrons [12]. In particular, it is possible to find a relationship between the
linear response function of the real system and its simile for the Kohn-Sham system through
a Dyson-type integral equation [16]∫

dx′χρ̂ρ̂(x, x
′)v(1)(x′) =

∫
dx′χKS(x, x′)

{
v(1)(x′) +

∫
dx′′

[
δ(t′ − t′′)
|r′ − r′′|

+ fxc(x
′, x′′)

]
ρ(1)(x′′)

}
,

(3.24)
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where we have used the fact that ρ(1) is the same for both the real and the auxiliar system,
and the notation x .

= (r, t). After Fourier transformation, applying convolution theorem and
reordering terms, we obtain finally the desired relationship

fxc(r, r′, ω) = χ−1
KS(r, r′, ω)− χ−1

ρ̂ρ̂ (r, r′, ω)− 1

|r− r′|
. (3.25)

The major advantage in working with the Kohn-Sham system is that the linear response func-
tion χKS has a Lehmann representation in only terms of the Kohn-Sham orbitals

{
ϕ

(0)
jσ (r)

}
,

χσσ
′

KS(r, r′, ω) = δσσ′

∑
j,k

ασjk
ω − ωσjk + iη

ϕ
(0)∗
kσ (r)ϕ

(0)
jσ (r)ϕ

(0)∗
jσ (r′)ϕ(0)

kσ (r′), (3.26)

where ασjk
.
= fkσ − fjσ are differences between occupation numbers of the spin-orbitals ϕkσ

and ϕjσ (with f = 1 for an occupied orbital and f = 0 for empty ones), ωσjk
.
= εjσ − εkσ are

the differences of energy between respective orbitals and σ represents symbolically the spin
component of the spin-orbitals (σ = |+〉 or |−〉).

3.1.4 Casida’s equations

From now on we consider explicitly the spin-dependence in the electronic density, and we
assume from the beginning that v(1) = 0. The reason is that here we are interested in the
eigenmodes and eigenfrecquencies of the system, that is, how is the response of the system
to a perturbation happened in the distant past. In other words, we are interested in the
density of the stationary state that the system achieves after the absorption of radiation.
Hence, using (3.18), the first order correction to the density of electrons with σ spin, in the
frequency domain, is [16]

ρ(1)
σ (r,Ω) =

∑
σ′,σ′′

∫
dr′χσσ

′

KS(r, r′,Ω)

∫
dr′′fσ

′σ′′

Hxc (r′, r′′,Ω)ρ
(1)
σ′′ (r′′,Ω). (3.27)

For simplicity we have defined fHxc as

fHxc(r, r′,Ω)
.
= fxc(r, r′,Ω) +

1

|r− r′|
. (3.28)

Multiplying (3.27) by fHxc, and using the definition of its expected value,〈
fσσ

′

Hxc(r, r
′,Ω)

〉
ρ
(1)

σ′ (r′,Ω)
=

∫
dr′fσσ

′

Hxc(r, r
′,Ω)ρ

(1)
σ′ (r′,Ω) (3.29)

.
= gσσ′(r,Ω), (3.30)

we obtain

gσ′′′σ(r′′′,Ω) =

∫
drfσ

′′′σ
Hxc (r′′′, r,Ω)

∑
σ′σ′′

∫
dr′χσσ

′

KS(r, r′,Ω)gσ′σ′′(r′,Ω). (3.31)
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Now, using (3.26) in the equation above, and defining the matrix elements Hjk,σ as

Hjk,σ(Ω) =
∑
σ′

〈ϕ(0)
j,σ|
〈
fσσ

′

Hxc

〉
ρ
(1)

σ′

|ϕ(0)
k,σ〉 , (3.32)

we obtain, after rearranging index conveniently, the following iterative equation

Hjk,σ(Ω) =
∑
σ′

∑
j′,k′

ασ
′

j′k′

Ω− ωσ′
j′k′

Kk′j′,σ′

jk,σ (Ω)Hj′k′,σ′(Ω) (3.33)

where Kk′j′,σ′

jk,σ (Ω) are the two-particle matrix elements of fHxc, which are given by

Kk′j′,σ′

jk,σ′ (Ω)
.
= 〈ϕ(0)

jσ , ϕ
(0)
k′σ′ | fσσ

′

Hxc |ϕ
(0)
kσ , ϕ

(0)
j′σ′〉 . (3.34)

Then, multiplying both sides of (3.33) by (Ω− ωσjk)−1 and defining βjk,σ(Ω) as

βjk,σ(Ω)
.
=
Hjk,σ(Ω)

Ω− ωσjk
, (3.35)

we obtain, after rearranging terms,

Ωβjk,σ(Ω) =
∑
σ′

∑
j′k′

[
δσσ′δjj′δkk′ω

σ′

j′k′ + ασ
′

j′k′K
k′j′,σ′

jk,σ (Ω)
]
βj′k′,σ′(Ω). (3.36)

Now, as a KS orbital can be occupied (hole state) or empty (particle state), we explicitly use
i for labeling occupied orbitals and a for empty ones:

Ωβai,σ =
∑
σ′

∑
a′i′

{[
δσσ′δaa′δii′ω

σ′

a′i′ +K i′a′,σ′

ai,σ

]
βa′i′,σ′ −Ka′i′,σ′

ai,σ βi′a′,σ′

}
,

Ωβia,σ =
∑
σ′

∑
a′i′

{[
δσσ′δaa′δii′ω

σ′

i′a′ −K
a′i′,σ′

ia,σ

]
βi′a′,σ′ +K i′a′,σ′

ia,σ βa′i′,σ′

}
, (3.37)

where we use αaiia = ±1 to separate the sum. Note that in Eq. (3.37) only particle-hole
excitation (i → a) or deexcitation (a → i) are present. Therefore, processes that imply
double or higher excitations are not captured by linear response TD-DFT (LR-TDDFT).
Finally, defining conveniently the matrices Xia,σ and Yia,σ as

Xia,σ
.
= βai,σ, Yia,σ

.
= −βia,σ, (3.38)

and the fourth-rank tensors A and B, whose components are given by

Ai′a′,σ′

ia,σ
.
= δii′δaa′δσσ′ωσ

′

a′i′ +K i′a′,σ′

ai,σ , (3.39)

Bi′a′,σ′

ia,σ
.
= K i′a′,σ′

ia,σ , (3.40)

we recast Eq. (3.37) into a general matricial form, know as the Casida’s equations (CE)
[14]-[16], [

A BT

B AT

] [
X
Y

]
= Ω

[
I 0
0 −I

] [
X
Y

]
. (3.41)
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CE gives, in principle, the exact excitation energies for any molecular system, via the
poles of the Kohn-Sham linear response function χKS, Ω = ωjk, which in the self-consistent
procedure converges to the poles of χρ̂ρ̂ of the real system, Ωn. The only approximation
involved in CE is the approximation used for the exchange-correlation potential. Note that
CE only depends on the orbitals and excitation energies of the Kohn-Sham system, ωjk,
which are standard outputs of a ground state DFT calculation. Although CE treats explicitly
only single excitations and deexcitations, higher order many-body effects are included, in an
averaged way, by the exchange-correlation kernel. An important simplification of CE consists
in neglecting the B tensor in (3.41), that is, considering excitations only. This simplification
is called the Tamm-Dancoff approximation [13], and the empirical evidence shows that for
gradient-generalized exchange-correlation functionals (GGA), it yields to better excitation
energies than the full CE but it gives wrong oscillator strengths [17]. Furthermore, other
properties, such as the electron density of excited states do not necessarily improve with
Tamm-Dancoff approximation.

Summarizing, the first order correction to the ground state density (3.27) after excitation
to the n-excited state, in the linear regime, can be written in terms of the matrix elements
Xia,σ and Yia,σ and the KS orbitals:

ρ(1)
σ (r,Ωn) =

∑
i,a

[
ϕ(0)
a,σ(r)ϕ

∗(0)
i,σ (r)Xia,σ + ϕ

∗(0)
i,σ (r)ϕ(0)

a,σ(r)Yia,σ

]
, (3.42)

where the first term of (3.42) corresponds to single excitations and the second one to single
deexcitations. Thus, the density of the n-excited state is just

ρn,σ(r,Ω) = ρ(0)
σ (r,Ω) + ρ(1)

σ,n(r,Ω), (3.43)

where ρ(0)
σ (r,Ω) = 〈Ψ(0)

0 (Ω)| ρ̂σ(r) |Ψ(0)
0 (Ω)〉.

It should be noted that we use the term deexcitation as a synonymous of stimulated
emission. Remember that we consider the molecule as a closed system; hence, spontaneous
emission cannot occur.

3.2 Electronic correlation in DFT

A molecule in an excited state has often a high electronic correlation, mainly because the
many-particle wave function is more delocalized than in the ground state and because the
chances of an excited state to mix with another one is large. Besides, although the correlation
energy contribution to the total energy of the ground state may be small, it could be equal
or larger than the excitation energies. Hence, the ideal is to treat correlation energy in the
ground and excited states with the same accuracy. Nevertheless, this is not often the case as
correlation in an excited state is usually more difficult to capture.

Calculations of molecular excited states with TD-DFT precises the choice of a functional
that approximates the exchange-correlation energy Exc[ρ], which is defined within DFT as
[28]

Exc[ρ]
.
= (T [ρ]− TKS[ρ]) + (Vee[ρ]− VKS[ρ]) , (3.44)
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where T [ρ] and V [ρ] are the kinetic energy functional and the interelectronic repulsion func-
tional of the real system, and TKS[ρ] and VKS[ρ] are the same quantities for the mean-field
KS system, whose expressions in terms of the KS orbitals, {ϕi}, are given by

TKS[ρ] =
N∑
i=1

〈ϕi|
(
−1

2
∇2

i

)
|ϕi〉 , (3.45)

VKS[ρ] = Vclass =

∫
dr′

ρ(r′)

|r− r′|
. (3.46)

"Standard" functional in DFT, such as those based on the generalized gradient approxi-
mation (GGA) [30] do not describe the correct long-range behavior of the exchange potential
(1/r). Rather, they predict an exponential decay, which results in KS orbitals too high in
energy and KS excitation energies to far from the actual excitation energies [16]. Thus, in
the treatment of excitations with TD-DFT, functionals with the correct long-range behavior
are necessary. In this work, we use a long-range hybrid functional.

In the rest of this section we first briefly review the two kinds of electronic correlation that
one finds in molecular systems, namely, static and dynamical correlation. Then, with the
purpose to perform analysis of electronic localization, based on ELF, in excited states, we will
define the quantities that will allow us to reconstruct the second-order RDM in interacting
systems.

3.2.1 Static vs dynamical correlation

Although we will use DFT all along this work, it is convenient to discuss correlation energy
within the framework of wave function-based methods. In a wave function method, the
correlation energy is defined as the missing part in the mean-field approximation of HF
[29]-[33],

Ec = Eexact − EHF . (3.47)

Note that when a wave function method is used, the exchange energy is not included as a
correlation energy. The exchange correlation between electrons of the same spin appears nat-
urally in HF as a direct consequence of the Pauli exclusion principle. In mono-determinantal
approximations, such as HF, a electron sees other electrons as a mean field produced by
them. But, classically speaking, electrons move such that they instantaneously avoid loca-
tions taken by other electrons. The piece of correlation energy that HF fails to capture due
to this instantaneous dynamics of electrons is called dynamical correlation energy [29]. The
effect of dynamical correlation energy is decreasing the energy below the HF limit. Dynam-
ical correlation can be included starting from the HF approximation by adding more Slater
determinants to the trial wave function. These additional determinants are constructed from
the single determinant of the HF ground state |Ψ0〉 by creating new determinants that are
excitations from occupied, {|ψi,σ〉}, to unoccupied spin orbitals {|ψa,σ〉}. These extra deter-
minants, which can correspond to single, double or multiple excitations, can be used along
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with |Ψ0〉, to build a more accurate wave function for the ground state of the many-particle
system, that is to say,

|Ψ〉 = c0 |Ψ0〉+
∑
i,a

cai |Ψa
i 〉+

(
1

2!

)2∑
i,a

∑
j,b

cabij |Ψab
ij 〉+ .... (3.48)

The above expression is the well-known CI (configuration interaction) expansion [29].

Sometimes the HF ground state may not be a good mean field reference to construct a
CI wave function. That is the case, for instance, when the ground state is degenerate or
pseudo-degenerate (molecules with transition metal with partially filled d states). The piece
of correlation energy that HF fails to capture in this case is called static correlation energy.

In density functional theory, particulary, in the KS system, the electron density is given
by

ρ(r) =
N∑
i=1

|ϕi(r)|2, (3.49)

where {ϕi(r)} is a basis of KS orbitals, which are solutions of the KS equations:[
−1

2
∇2

r + vKS(r)

]
ϕi(r) = εiϕi(r). (3.50)

Here, vKS(r) is the ground state (time-independent) KS potential, which is directly related
to the exchange-correlation potential vxc(r) (Eq. (3.19)). Thus, the exchange-correlation
effects are include in the electron density through vxc(r), which is related with Exc by

vxc[ρ] =
δExc[ρ]

δρ
. (3.51)

Moreover, the KS system is also a single Slater determinant of KS orbitals. Therefore, except
in the case that one knows the exact exchange-correlation functional, static correlation is
very difficult of including or tuning the amount of it present in each approximate exchange-
correlation functional.

In the time dependent counterpart (TD-DFT), exchange and correlation effects between
particles and holes are encoded in exchange-correlation kernel, fxc, which is the second func-
tional derivative of the exchange-correlation energy with respect to the density

fxc(r, t, r′, t′) =
δ

δρ(r′, t′)

δExc[ρ]

δρ(r, t)

∣∣∣∣
ρ(0)
. (3.52)

Note that in the CE exchange and correlation are included through fxc in the eigenvectors
Xia,σ and Yia,σ. Therefore, from (3.42) one concludes that in TD-DFT the first order correc-
tion of the electronic density is given by a correlated (CI-like) expansion of the KS orbitals.

Given the mono-determinantal nature of DFT and HF, there is a similarity between the
TD-DFT equations (CE) and those of the time-dependent Hartree-Fock (TD-HF) method.
This similarity is easy to see in the cases of hybrid exchange-correlation functionals, which
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include a fraction HF exchange. For example, if one considers an exchange-correlation func-
tional composed purely by Hartree exchange, that is, taking vxc = vHFx , one recovers the
equations of TD-HF [13]. In other words, starting from the time-dependent Schrödinger
equation for a Slater determinant,

i
∂

∂t
|ψi(r, t)〉 =

[
−1

2
∇2 + v(r, t)

]
|ψi(r, t)〉+

N∑
j=1

[
V̂j(r′)− K̂j(r′)

]
|ψi(r, t)〉 , (3.53)

where V̂j and K̂j are the coulomb and exchange operators, respectively, which are defined
through the action on a spin-orbital |ψi(r, t)〉 as

V̂j(r′) |ψi(r, t)〉 = 〈ψj(r′, t)|
1

|r− r′|
|ψj(r′, t)〉 |ψi(r, t)〉 , (3.54)

K̂j(r′) |ψi(r, t)〉 = 〈ψj(r′, t)|
1

|r− r′|
|ψi(r

′, t)〉 |ψj(r, t)〉 , (3.55)

it is possible to obtain a matrix equation with the same form of the CE, the only differ-
ence being that in TD-HF there is not exchange-correlation kernel but a purely non-local
mean-field potential. Also, if one applies the Tamm-Dancoff approximation to the TD-HF
equations, one recovers the simplest wave function method for the calculation of excitation
energies in molecules: configuration interaction singles (CIS) [35]. CIS method outputs exci-
tation energies after diagonalizing the molecular Hamiltonian written in a basis of all Slater
determinants that are a single excitation of the HF determinant; that is, the CI expansion
(3.48) truncated in the first summation.

Summarizing, TD-DFT with approximate functionals include dynamical correlation and
they could fail to include static correlation, although empirical results show that TD-DFT
with hybrid-long-range corrected functional qualitatively describe conical intersections be-
tween the ground and first excited state [14].

3.3 ELF and natural orbitals

In mean-field systems, like HF or KS systems, the first-order RDM is diagonalized by the
canonical spin-orbitals or by the KS orbitals, respectively,

γ̂1 =
∑

i

ni |ψi〉 〈ψi| , (3.56)

where ni are the occupation numbers. However, in real (interacting) fermion systems, where
its N -particle state is not described by a slater determinant, γ̂1 is not diagonalizable by these
sets of orbitals, so that

γ̂1 =
∑
i,j

nij |ψi〉 〈ψj| . (3.57)

Fortunately, one can always perform a unitary transformation from the set of mean-field
states {|ψi〉} to another set {|ηi〉}, which allows us to diagonalize γ̂1 in interacting (and
correlated) systems, i.e.,

γ̂1 =
∑

i

λi |ηi〉 〈ηi| . (3.58)
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This basis corresponds to the natural orbital basis set, and form an eigenbasis for γ̂1 in
correlated systems [29]-[32]. Note that both (3.56) and (3.58) have the same form. However,
they differs in the occupation numbers. In the noninteracting case, the occupation numbers
takes the value 1 for occupied orbitals, and 0 for virtual ones, and hence, γ̂1 is idempotent
(so the sum in (3.56) goes up to N). On the other hand, occupation numbers λi of the
interacting systems are fractional numbers between 0 and 1, so that γ̂1 is not idempotent.
Then, we will use natural orbitals to approximate the second-order RDM.

The importance of knowing an approximate form of the second-order RMD in correlated
systems as molecular excited states is twofold. First, the delocalization field of the ELF
(D(r)) comes from the spherical average of the conditional pair probability P (r2|r1) which is
directly related to ρ2. Second, in order to perform ELF analysis in excited states, we require
the explicit form of both first and second-order RDMs. Thus, electronic population over a
certain basin 〈N(Ω)〉 is calculated through the integration of the electronic density, whose
first-order correction is given by (3.42), while the covariances between basins are calculated
using both, the electronic density, and ρ2. However, due to the dynamical correlation of
excited states, there is no exact analytical decomposition of γ̂2 in terms of γ̂1, unlike HF
systems.

A general approximate form of a second-order RDM in terms of the first order RDM, can
be written as [5]

ρ2σ(r1, r2) = ρσ(r1)ρσ(r2)− |ρ1σ(r1, r2)|2 + ξ2σ(r1, r2), (3.59)

where ξ2σ(r1, r2) is the correlation correction. Then, there are several reconstructions of γ̂2

with different degrees of complexity. The simpler one, is the HF reconstruction in which one
assumes ξ2σ(r1, r2) = 0, obtaining thus a HF-like decomposition of ρ2σ(r1, r2), in terms of
natural orbitals (instead of HF spin-orbitals or KS orbitals):

ρ2σ(r1, r2) =
∑
i,j

λiλj
[
η∗iσ(r1)η∗jσ(r2)ηiσ(r1)ηjσ(r2)− η∗iσ(r1)η∗jσ(r2)ηjσ(r1)ηiσ(r2)

]
. (3.60)

This approximation for the second-order RDM fulfills the Pauli principle [28],

ρ2σ(r1; r1) = 0, (3.61)

and the electron-electron cusp condition [34]

∇r2ρ2σ(r1; r2)|r1=r2 = 0. (3.62)

It is worth mentioning that is desirable that an approximation for second-order RDM fulfills
these two conditions, because they contain the basic rules of the dynamics of electron of the
same spin.

In the following, we show with some detail, the deduction of the delocalization field Dσ(r)
for molecular excited states, i.e., using the HF-like reconstruction for ρ2σ and expressing this
in terms of natural orbitals. The associated conditional pair probability for (3.59) is given
by

P (r2, σ|r1, σ) = ρσ(r2) + 2ρxσ(r1, r2), (3.63)
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where ρxσ is the exchange density defined in Eq. (2.17).

The short range (small |r1 − r2|) part of P (r2, σ|r1, σ) has most of the information on
the Pauli repulsion between electrons. This short-range information can be exctracted by
performing a Taylor expansion and, assuming that there is an electron located in a reference
point r = r1 and taking the limit where the second electron is close to the first one to a
distance s = |r2 − r1| → 0. Thus, considering the expansion of the electron density, up to a
linear term in s,

ρσ(r + s) = ρσ(r) + s · ∇sρσ(r + s)

∣∣∣∣
s=0

+O(s2),

= es·∇sρσ(r + s)

∣∣∣∣
s=0

, (3.64)

and taking the spherical average

〈ρσ(r + s)〉 =
〈
es·∇s

〉
ρσ(r + s)

∣∣∣∣
s=0

, (3.65)

we obtain

〈ρσ(r + s)〉 = ρσ(r) +
s2

3!
∇2

sρσ(r + s)

∣∣∣∣
s=0

. (3.66)

The spherical average entails an integration over a solid angle dΩ = sinθdθdφ for a fixed
interelectronic distance s, i.e.,

〈
es·∇s

〉
=

1

4π

∫
es·∇ssinθdθdφ, (3.67)

=
sinh(‖s‖‖∇s‖)
‖s‖‖∇s‖

, (3.68)

where we also have used the expansion of the hyperbolic sine,

sinh(x) =
∞∑
n=0

x2n+1

(2n+ 1)!
. (3.69)

In the same form, it is possible to show that the spherical average of the exchange density is:

〈ρxσ(r, r + s)〉 =

[
1 +

s2∇2
s

3!
+O(s4)

]
ρxσ(r, r + s)

∣∣∣∣
s=0

,

= −1

2
ρσ(r) +

s2

3!
∇2

sρxσ(r, r + s)

∣∣∣∣
s=0

+O(s4), (3.70)

where we have used the fact that ρxσ(r, r) = −1

2
ρσ(r). Hence, the spherical average of

conditional pair probability is written as

〈P (r + s, σ|r, σ)〉 =
s2

3!
∇2

s [ρσ(r + s) + 2ρxσ(r, r + s)]

∣∣∣∣
s=0

+O(s4). (3.71)
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Now, in order to compute the Laplacians, we express ρ1σ in terms of natural orbitals,

ρ1σ(r1, r2) =
∑

i

λiηiσ(r1)η∗iσ(r2). (3.72)

Assuming real orbitals, we obtain for the Laplacian of the electron density:

∇2
sρσ(r + s) = 2

∑
i

λi|∇sηiσ(r + s)|2 + 2
∑

i

λiηiσ(r + s)∇2
sηiσ(r + s). (3.73)

On the other hand, the Laplacian of the exchange density, results

∇2
sρxσ(r, r + s) = − 1

ρσ(r)

[
ρ1σ(r, r + s)∇2

sρ1σ(r, r + s) +∇sρ1σ(r, r + s) · ∇sρ1σ(r, r + s)
]
.

(3.74)
Summing (3.73) and (3.74), taking the limit s = 0 (r1 = r2), and returning to the original
variables r1 and r2,

〈P (r + s, σ|r, σ)〉 =
s2

3

[∑
i

λi|∇sηiσ(r + s)|2 − |∇sρ1σ(r, r + s)|2

ρσ(r)

] ∣∣∣∣
s=0

,

=
s2

3

[∑
i

λi|∇r2ηiσ(r2)|2 − |∇r2ρ1σ(r2, r2)|2

ρσ(r2)

]
. (3.75)

Finally, renaming r2 simply by r, we obtain for the spherical average of the conditional pair
probability,

〈P (r, σ|r1, σ)〉 =
s2

3

[∑
i

λi|∇rηiσ(r)|2 − |∇rρσ(r)|2

ρσ(r)

]
=
s2

3
DHF
σ (r), (3.76)

where, in the bosonic term (the second one), we have used the fact that ρ1σ(r, r) = ρσ(r).
The principal difference between the delocalization field of a HF system (Eq. (2.21)) and its
correlated reconstruction written in terms of natural orbitals, is that the sum in the kinetic
electronic density goes, in principle, up to infinity, while in HF goes up to N/2.

Here, we have introduced the electronic correlation through natural orbitals and its frac-
tional occupation numbers λi. However, there are other approaches more sophisticated than
the HF-like reconstruction of ρ2, in which the correlation correction ξ2σ is different from zero.
Buijse and Baerends showed that a good choice for ξ2σ (BB correlation correction term) is
given by [5]

ξ2σ(r1, r2) =
∑
i,j

(
λiλj −

√
λiλj

)
η∗iσ(r1)η∗jσ(r2)ηjσ(r1)ηiσ(r2), (3.77)

where the difference λiλj −
√
λiλj is a measure of dynamic correlations. Note that for HF

or KS systems, due to λi = 0 for occupied orbitals, λiλj =
√
λiλj, and hence ξ2σ = 0. In

general, we can use an arbitrary function of the occupation numbers that fulfills the condition
f(λiλj) = λiλj, for λi = λj = 1. In such a case, the conditional pair probability is given by

P (r2, σ|r1, σ) = ρσ(r2)− |ρ1σ(r1, r2)|2

ρσ(r1)
+
∑
i,j

(λiλj − f(λi, λj))

ρσ(r1)
η∗iσ(r1)η∗jσ(r2)ηjσ(r1)ηiσ(r2).

(3.78)
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Now, we calculate the spherical average of (3.78). Defining

ξ′2σ(r1, r2)
.
=
ξ2σ(r1, r2)

ρσ(r1)
, (3.79)

and proceeding in the same way, i.e., changing r1 and r2 by r and s, we obtain for the
spherical average of ξ′2σ,

〈ξ′2σ(r, r + s)〉 = ξ′2σ(r, r) +
s2

3!
∇2

sξ
′
2σ(r, r + s)

∣∣∣∣
s=0

+O(s4)

=

∑
i,j (λiλj − f(λi, λj)) |ηiσ(r)|2|ηjσ(r)|2∑

k λk|ηkσ(r)|2

+
s2

3!

∑
i,j (λiλj − f(λi, λj)) η

∗
iσ(r)ηjσ(r)

[
2∇sηiσ · ∇sη

∗
jσ + ηiσ∇2

sη
∗
jσ + η∗jσ∇2

sηiσ
]∑

k λk|ηkσ(r)|2

∣∣∣∣
s=0

. (3.80)

Finally, taking the limit s = 0, and expressing all in terms of r2 = r, it is possible to show
that the delocalization field for this correlation correction is given by

Dσ(r) = 2DHF
σ (r) +

3!

s2
〈ξ′2σ(r, r)〉 . (3.81)

What Eq. (3.81) suggests is that increasing the complexity of the second-order RDM in
terms of the first-order RDM may exclude the possibility of having a short range local scalar
field that captures the Pauli principle. This conclusion raises because in Eq. (3.81) the field
Dσ(r) depends not only on the average position of electrons but in their distance s.
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Chapter 4

Results and discussion

4.1 Computational methods

For the GSIPT, we have performed the calculations using DFT in the Kohn-Sham formal-
ism. In order to include the long-range behavior of the exchange potential and, therefore,
better values of the KS energies, we employed the ωB97xd exchange-correlation functional.
The functional ωB97xd is a hybrid functional that belongs to the family of the long-range
corrected functionals [16]. This kind of functionals have the peculiarity that the Coulomb
interaction that appears in the exchange density is split into two terms, that is:

1

|r− r′|
=
f(µ|r− r′|)
|r− r′|

+
1− f(µ|r− r′|)
|r− r′|

(4.1)

where f is a function that must fulfill f(µx → 0) = 1 and f(µx → ∞) = 0. Thus, the first
term of the RHS of (4.1) accounts for the short-range (SR) interactions, while the second term
accounts for the long-range (LR) interactions. The general form of the long-range corrected
functionals is

Exc = ESR−DFT
x + ELR−HF

x + EDFT
c , (4.2)

where the superscript DFT, in the exchange and correlation parts of Exc (first and third
terms), means that in these terms a standard density functional approximation is used, such
as local density approximation (LDA) or generalized gradient approximation. The second
term of Exc corresponds to the HF-type exchange with the long-range Coulomb interaction.
This part gives the hybrid character to this functional. The basis set employed to expand
the KS orbitals is the 6-311G + +(d, p), i.e., a triple-zeta split-valence with diffused and
polarized Gaussian functions [33]. In this basis set, each atomic orbital of the atomic cores
is written as a linear combination of six primitive Gaussian functions, while for each valence
electron, three basis functions are used, where the first one is a linear combination of three
primitive Gaussians and the other two are single Gaussians. The ++ symbol means that
diffuse functions have also been included in all atoms: one s and three p diffuse functions per
each non-hydrogen atom (carbons, oxygen, and nitrogen), and one s diffuse function per each
hydrogen. Diffuse functions are primitive Gaussian functions with a small ξ exponent, used to
capture electron density far from the nuclei. They are necessary for an accurate description of
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inter and intramolecular interactions (H-bond) and excited state densities. The symbol (d, p)
means that polarization functions are used in all the atoms. Polarized functions are primitive
Gaussians with high angular momentum. In particular, six d orbitals on non-hydrogen atoms
and three p orbitals on hydrogens has been added. Polarized functions allows to describe
the deformation of the electronic density caused by the induced polarization when an atoms
approaches to form a molecule. Thus, polarization functions are essential for the theoretical
description of chemical reactions [33].

4.2 Intramolecular proton transfer in the ground state

The degree of freedom used in the relaxed scan is the oxygen-hydrogen internuclear distance.
We assume that the proton transfer process occurs only via the evolution of this coordinate.
However, from Figure 4.1, it is seen that, at the beginning of the process, there is a difference
between the curve associated to the relaxed scan with the curve associated to the intrinsic
reaction coordinate (IRC). The IRC corresponds to the minimum energy path that follows
the mass-weighted coordinates (normal coordinates) of the molecule in the chemical process
along the PES [41]. The IRC is an idealization of the path that a reaction follows and, in every
point, the atoms carry no kinetic energy. It usually gives the best agreement of reaction rates
with experiments because it is the average path that atoms follow in a reaction where atoms
move to moderate speed (temperature of few thousands of K). The difference with a relaxed
scan is that the IRC takes into account contributions from degrees of freedom different from
the O − H distance. For instance, in our case, the IRC reveals that C1 − C7 − N angle
contributes to the reaction path. Hence, a relaxed scan is an approximation to the IRC as it
can be seen in Figure 4.1. The IRC reveals that the CCN angle slightly decreases before the
proton transfer and increases at the end of the reaction as is shown in Figure 4.2. Overall,
the relaxed scan is a good approximation to the IRC of a proton transfer. The reason we
used relaxed scan is that in excited states we do not have the machinery to compute IRC’s
but relaxed scans only.

Figure 4.1: Comparison between relaxed
scan along O −H internuclear distance and
IRC.

Figure 4.2: Variation of the C1 − C7 − N
angle in the proton transfer.

Fortunately, in the neighborhood of the maximum of the scan, both curves differ in less
than 0.02eV , and it is in this region where rupture and formation of chemical bond occur.
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Thus, with the purpose of studying changes in the chemical bonds in the proton transfer
process, the scan procedure is a good approximation and, therefore, we assume from now on
that the PES for the process is faithfully represented by a relaxed scan. We use very fine
spacing between points along the scan (0.02Å).

4.2.1 Electron localization function along the reaction path in the
ground state

Figure 4.3 depicts the PES for S0 with the localization domains for an isovalue of the ELF
equals to 0.8 for four molecular structures of interest. The first corresponds to the Enol
structure, whose O − H internuclear distance is 0.98Å. In this structure, it is possible to
observe that there is a localization domain that involves both oxygen and hydrogen atoms,
which accounts for the fact that in this initial structure there is a covalent chemical bond
between these both atoms. The structure located at the end of the curve, at 1.70Å, corre-
sponds to the Keto form, which is the product of the chemical reaction. The isosurface shows
clearly that there is a covalent bond between the hydrogen and the nitrogen. The structure
located at 1.28Å corresponds to the transition state of the reaction. In this case, the oxygen
and the hydrogen atoms belong to two different localization domains. On the other hand,
at this point, the hydrogen and the nitrogen atoms belong to the same localization domain,
which indicates that the bifurcation point between V (H) and V (N) is higher than 0.8 (it is
close to 0.9), and hence, the hydrogen is more correlated with the nitrogen than with the
oxygen. However, this does not imply that there is a covalent bond between the hydrogen
and the nitrogen: as we will see in Section 4.2.1, at the TS, the hydrogen atom behaves as an
independent entity, because it contains its own attractor. Finally, the structure located at
1.20Å is associated to another kind of transition state which we call the electronic-transition
state (elec-TS). The elec-TS corresponds to the point of the PES at which the correlations
between the hydrogen and the oxygen and between the hydrogen and the nitrogen are equal.

4.2.2 Electronic populations, attractors and catastrophes

Several catastrophes in the topology of ELF occurs as the proton transfers proceeds. These
catastrophes define different bonding states along the reaction and are easily identified as
discontinuities in the average number of electrons of the basins along the reaction coordinate,
as it is depicted in Figure 4.4. From this, it is possible to identify the points along the reaction
coordinate at which catastrophes occurs. Particularly, these bifurcation catastrophes are
related with the rupture and formation of chemical bonds: they correspond to points in which
a certain basin disappears giving origin to new ones. Thus, at rOH = 1.12Å the disynaptic
basin V (O,H) disappears at the same time that two new basins appear, namely V (O) and
V (H), representing the rupture of the hydroxyl (O − H) bond. Next, at rOH = 1.42Å the
monosynaptic basins V (H) and V (N) merge, giving origin to the disynaptic basin V (N,H).
The latter represents the formation of the covalent bond between hydrogen and nitrogen
(N − H bond). Note that in the Enol form, the electronic population of V (N) is 2.65
electrons, which decreases until a minimum value of 2.21 at rOH = 1.40Å, where the bonding
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Figure 4.3: Variation of the molecular energy (in eV ) with the elongation of the O − H
internuclear distance (in Å) in the ground state. Also localization domains for four molecular
structures in the proton transfer are shown. Vertical dashed lines indicates the energies of
the electronic TS and the thermodynamic TS.

of hydrogen and nitrogen atom occurs. Then, once formed the V (N,H) basin, its electronic
population decreases from 2.66 to 2.28 electrons until its minimum in the Keto form.

An important feature is the existence of a hydrogen monosynaptic basin in the region
between 1.12Å and 1.40Å. This is the principal evidence that proton transfer occurs via a
pseudoatomic form of the proton, and that, the rupture of the O−H bond and the formation
of the N −H are not simultaneous. It is worth noting that the rupture of the O −H bond
occurs several points before the TS (located at rOH = 1.28Å). From a chemical point of
view, this indicates that the electronic processes involved in chemical reactions occur before
the thermodynamical transition state. Also, at the TS, there are no appreciable changes in
the basins: all significant changes in the process occur before or after thermodynamic TS.

At the beginning of the reaction, there are two monosynaptic basins associated with the
oxygen atom whose populations have been added (in Figure 4.7, two spheres in purple over
the oxygen atom in red which represent the V (O) basins). These basins have electronic
populations of 2.08 and 2.22 (4.29), and they correspond to the two non-bonding electron
pairs of this atom. In Figure 4.4, these basins corresponds to the V (O2). Also, after rupture
of O−H bond, a new monosynaptic basin appears, which is associated to the oxygen (V (O1))
that carries part of the electronic population that belonged to the hydroxyl bond (O −H).
At 1.10Å the electronic population of V (O,H) basin is 1.85 electrons. At the next step in the
scan, the electronic population of V (O1) is 1.40 while the V (H) is 0.45. Hence, the rupture
of the hydroxyl bond is asymmetric in the sense that most of the electronic population is
carried away by the oxygen atom (due to the electronegativity of the oxygen atom). Once
the V (H) basin is formed, its electronic population begins to descend until a minimum of
0.35 electrons at 1.20Å. Then its population increases until it reaches a population of 0.49
electrons. Thus, the process does not correspond to a transference of a bare proton, but a
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Figure 4.4: Electronic populations of the
basins involved in the proton transfer pro-
cess.

partially screened proton. It is important to note that the minimum of 〈N(V (H))〉 is located
in the neighborhood of the TS (precisely between the elec-TS to the TS).

As the reaction progresses, the electronic population of the V (O1) increases at the same
time that the electronic population of V (O2) decreases. This can be explained in terms of
the electronic fluctuation between both V (O1) and V (O2) basins: these basins are more
correlated in the Keto form than in the Enol. Interestingly the total electronic population of
the oxygen at the end of the reaction (in the Keto structure) is 5.59 electrons, which is quite
high compared with the classical structures (Lewis) predicted by the organic chemistry rules:
for an oxygen atom in an organic molecule like SMA, it is expected its electronic population
to be close to 4 electrons, corresponding to the two non-bonding electron pairs. This unusual
highly charged O atom (almost 3 non-bonding pairs) would partially explain why the barrier
for the proton transfer in the ground state is high compared with the proton transfer in the
excited state in which there is no barrier. The Coulomb repulsion among these three pairs of
electrons that build up along with the proton transfer can be postulated as the main physical
reason for the high barrier in the ground state.

Figure 4.5, shows the variation of electronic populations of the basins of the aromatic ring
(six-carbon ring). Note that the electronic population of the basins close to the oxygen atom,
namely, V (C3, C4) and V (C4, C5), decreases from 2.78 to 2.49 and from 2.76 to 2.47, in the
course of the reaction, respectively. Similarly, the electronic population of the V (C2, C3)
basin also decreases. However, the reduction of the population of V (C2, C3) is more abrupt:
at 1.50Å, its electronic population decreases from 2.71 to 2.50, which is compensated with
the increase of the electronic population of the basin V (C3, C7) in a similar amount (from
2.65 to 2.68). This spreading of the population of the bonds in the aromatic ring points in
the direction of the idea the high barrier and the endothermicity of the reaction in the ground
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state are associated to a loss of aromaticity of the ring, which entails an increase of the total
energy of the molecule. The loose of aromaticity (electron delocalization) is an argument
that has been previously used by Rocha et al. [25] to explain the barrier in the ground state
and the lack of it in the excited state.

In the context of topological analysis of electronic localization, we define the population
spreading, σ (spreading index), as the diference of electronic population between the basin
with greater electronic population and the basin with the lower electronic population in the
Keto structure, minus the same quantity in the Enol structure i.e.,

σ = (〈N〉max − 〈N〉min)Keto − (〈N〉max − 〈N〉min)Enol . (4.3)

For the GSIPT, the basin of the aromatic ring with the higher electronic population is the
V (C5, C6) (in brown), while the basin with the lower one is the V (C6, C1) (navy blue).
Here, the σ index has a value of 0.51, which we should compare with the σ index for the
ESIPT.

Figure 4.5: Variation of elec. populations of
basins of the aromatic ring along GSIPT.

On the other hand, the basins associated to the functional groups adjacent to the ring in-
crease its electronic population along the process (see Figure 4.6). These basins are V (C4, O),
V (C3, C7) and V (C7, N), whose increments are from 1.59 to 1.99, from 2.31 to 2.96 and from
2.98 to 3.52 electrons respectively. Thus, there is an electronic flux from the aromatic ring
to the functional groups, as a consequence of the high electronegativity (capacity of an atom
in a molecule to attract electrons) of the oxygen and the nitrogen.

In order to complete the scheme of the proton transfer in the ground state, it is important
to identify the positions of the attractors in the SMA molecule. Once known these positions,
we can determine the points along the reaction in which catastrophes occur. Figures 4.7 to
4.12 show the attractors for these key points in the reaction path. In these figures, gray
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Figure 4.6: Variation of elec. populations of
basins of the functional groups adjacent to
the aromatic ring along GSIPT.

spheres corresponds to the attractors of the core basins of carbons C(C), black spheres rep-
resent the location of the attractors associated to the disynaptic basins V (Ci, Cj), V (C,O)
or V (C,N), purple spheres are the attractors associated to the valence monosynaptic basins
V (O1), V (O2) and V (N) (non-bonding electron pairs), and the red and blue spheres corre-
sponds to the attractors of the basins C(O) and C(N) respectively. Finally, a white sphere is
used to represent the attractor associated to the V (O,H) basin in the first step of the reaction,
the V (H) in the intermediate region, or the V (N,H) basin in the Keto form. The numbers
over the spheres correspond to the electronic populations of the corresponding basins. The
first diagram (Figure 4.7) corresponds to the Enol structure. In this diagram, it is possible
to identify two attractors over the oxygen atom corresponding to the two non-bonding elec-
tron pairs with electronic populations of 2.08 and 2.22. Also, we can recognize the double
bond between the nitrogen and the adjacent carbon: this corresponds to the two attractors
(black spheres) located between these atoms, whose populations are 1.43 and 1.55. In the
second diagram (Figure 4.8) the attractors at rOH = 1.02Å are shown. At this point the
first catastrophe takes place, that is, the two attractors corresponding to the non-bonding
electron pairs of the oxygen are merged in only one attractor with an electronic population
of 4.29. Figure 4.9 shows the attractors at the point where the rupture of the O −H bond
occurs. In fact, at this point, two new attractors appears corresponding to the V (O1) and
the V (H) basins. Then, at rOH = 1.16Å two attractors of the V (C,N) merge, but this
does not represent a physical catastrophe because the population of the new basin after the
catastrophe (2.96 electrons) is equal to the sum of the populations of the basins before the
catastrophe, and hence, the chemical character of this bond does not change. Next, several
points later, at rOH = 1.42Å, it appears an attractor associated to the V (N,H) basin with an
electronic population of 2.66. Finally, Figure 4.12 shows the attractors of the Keto form. The
geometrical disposition of the attractors of the Keto form is quite similar of the attractors
showed in the Figure 4.11, with the only difference in the orientation of the attractor of the
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V (N,H) basin.

Figure 4.7: Attractors of the Enol structure.
rOH = 0.98Å. Figure 4.8: Attractors at rOH = 1.02Å.

Figure 4.9: Attractors at rOH = 1.12Å. Figure 4.10: Attractors at rOH = 1.16Å.

4.2.3 Electronic fluctuacions and bifurcation points

Covariances of electronic population between basins in the intermediate region of the GSIPT
(between 1.12Å and 1.40Å) are shown in the Figure 4.13. We see that, as the reaction
progresses, the covariances between V (H) and V (O) increases (red curve) because the second
term of 〈cov (V (H), V (O))〉 in the Equation (2.32) (which corresponds to the integration of
the second-order RDM) becomes less important. Hence, the electronic fluctuations, and also,
the correlations between these basins, decrease with the proton transfer. On the other hand,
the covariances between V (H) and V (N) decreases (blue curve) as a consequence of the
increasing of the correlated term of 〈cov (V (H), V (N))〉. Thus, the electronic fluctuation
between V (H) and V (N) increases in the process.

The elec-TS allows characterizing the reaction from the electronics instead of thermody-
namics. We define this point of the process formally in terms of the covariances. Elec-TS
is defined as the point in the PES in which the covariances between the basin associated to

33



Figure 4.11: Attractors at rOH = 1.42Å. Figure 4.12: Attractors of the Keto struc-
ture. rOH = 1.70Å.

the proton, V (H), and the basin of the donor atom, V (O), is the same than the covariances
between V (H) and the basin associated to the acceptor atom, V (N). This means that, at
this point, electrons belonging to V (H) are as correlated with V (O) as with V (N). From
Figure 4.13 we can notice that such point corresponding to the elec-TS is located between
1.18Å and 1.20Å.

Figure 4.13: Electronic fluctuations in the intermediate region of the proton transfer.

It is important to emphasize that the covariances showed in Figure 4.13 correspond to the
KS because since in the calculation of these quantities, we use the KS orbitals to expand the
electronic density as the second-order RDM. Despite ρ2 of the KS system is different than
that the real system, it gives the correct tendencies. (In fact, in DFT we cannot know the
exact form of ρ2 in real systems, but only the adiabatic average of the exchange-correlation
density). The precision with which we determine the position of the elec-TS is limited by
the spacing between the points of the relaxed scan (in this case is of 0.02Å). Thus, a finer
relaxed scan would give us a more precise location of the elec-TS, but such degree of accuracy
is chemically not very relevant.

Another descriptor for the electronic fluctuations between basins is the bifurcation point
between them: the smaller the ELF at the bifurcation point of two basins, the less per-
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sistent the topology of these basins and the higher the electron fluctuation (delocalization)
between them [3]. Bifurcation points between the basins V (H) and V (O) (η (V (H), V (O)),
red curve), and between V (H) and V (N) (η (V (H), V (N)), blue curve) are shown in Figure
4.14. Notice that the tendencies of the bifurcation points are opposite to those obtained
with the covariances, that is, while the higher the bifurcation points between two basins are,
the more correlated are these basins. The elec-TS can also be defined as the point in the
PES in which the value of ELF at the bifurcation points of V (H) and V (O) and V (H) and
V (N) is the same. Additionally, because variations of the bifurcation points are smoother
than the variations of the covariances, we have a better precision for the location of the
elec-TS. According to the point in which the two curves intersects, the elec-TS is located at
rOH = 1.20Å.

Figure 4.14: Bifurcation points of V (H) and V (N) and V (O) basin in the intermediate region
of the proton transfer.

4.3 Intramolecular proton transfer in the excited state

A remarkable difference between the proton transfer in the first singlet excited state (S1)
compared with the ground state is that, in the excited state, there is no energetic barrier
between the Enol and Keto forms. So, once reached the excited state through absorption
of radiation, the molecule carries out the proton transfer spontaneously. The reason for this
behavior is that there is no local minimum in the PES for S1 close to the structure of the
Enol (Frank-Condon state), and hence, this molecular form is not stable in the excited state.
In fact, only the Keto form is stable in the excited state, which has a local minimum located
at the geometry of this molecular form. Thus, the ESIPT process consists of the transit of
the system from an unstable molecular structure to a stable one. The excitation energies
of the molecule along the ESIPT calculated with the level of theory described in Section
(4.1) are shown in Figure 4.15. The excitation energy of the Enol form is 3.94eV , which is
a good prediction of the TD-DFT, considering that the experimental value is 3.97eV [23].
This excitation energy corresponds to a wavelength of 315nm, while the excitation energy
for the Keto form calculated with the same level of theory is of 3.01eV , which corresponds
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Figure 4.15: Excitation energies along ESIPT

to a 411nm. So, the molecule suffers a redshift after proton transfer, from the UV region to
the visible region of the spectrum. This large redshift and the ultrafast proton transfer is
what makes this molecule interesting for molecular photoswitches.

The relative energies of the PES for the ESIPT normalized to the energies of the Enol
form in S0 are depicted in Figure 4.16. The energies of the PES of S1 are obtained through
a relaxed scan in which we have added, to each point of the relaxed scan in S0, the excitation
energies. Also, in this procedure, we impose the constraint to block the dihedral angle formed
between the atoms C4-C3-C7-N . This constraint prevents that the system in the excited
state returns to the ground state via a transition through a conical intersection that connects
both electronic states.

One would expect that, after normalizing the energies of S1 to the energy of the Enol
form in S0, these coincide with the excitation energies. However, the energies of the proton
transfer in S1 are slightly higher than the excitation energies. The reason is that blocking
the dihedral angle leads to slightly higher energies than those of the actual reaction path
in S0. So, the first point of the PES in S1 has an energy of 4.16eV . Also, it is possible
to see an additional point located just over the first point of the PES in S1, which has an
energy of 4.42eV . This point corresponds to the energy of the Franck-Condon (FC) structure,
that is, the energy of the Enol form in the excited state with exactly the same optimized
geometry as the Enol in S0 (vertical excitation). The first point of the PES is obtained
after a geometrical optimization of all degree of freedom except for the OH distance; hence,
it has lower energy than the FC. Hereafter, we call this point the pseudo-FC. Note that in
the relaxing of the atoms when passing from the FC to the pseudo-FC, the oxygen-hydrogen
internuclear distance has remained constant. All plots of the electronic populations in S1
begin at such point.

The localization domains of the ELF for an isovalue of 0.8, for the FC, the Keto form and
the elec-TS structure, are also shown in Figure 4.16. Qualitatively, there are no appreciable
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differences between the localization domains between both S0 and S1, which does not mean
that there are no quantitative differences (electronic populations and covariances).

In the excited state, the elec-TS is located between rOH = 1.14Å and rOH = 1.16Å while,
for the GSIPT, the elec-TS is located at rOH = 1.20Å. The reason for such difference is that
in the excited state the basic character of the nitrogen atom (the capacity to attract the
hydrogen) is enhanced. Also, it should be noted that, in the ground state, the Keto form has
a O−H internuclear distance of 1.72Å, while in the excited state, the Keto form is located at
rOH = 1.82Å. Thus, the trajectory that connects the Enol and Keto forms in S1 is slightly
longer than the same trajectory in S0.

Figure 4.16: Comparison between the proton transfer in both S0 and S1 states. Also,
localization domains for the FC, the elec-TS and the Keto structures are shown. Vertical
dashed lines indicate the vertical excitation and the position of the electronic TS.

4.3.1 Electronic populations, attractors and catastrophes

Despite variations of electronic populations of basins in both S0 and S1, they seem quali-
tatively similar, but there are several quantitative differences. First, the detachment of the
hydrogen atom of the oxygen occurs quite early compared with the proton transfer in S0:
while in the ground state this catastrophe occurs at rOH = 1.12Å, in the excited it state
occurs at rOH = 1.06Å. This can be explained by the enhanced ability of nitrogen to attract
the hydrogen atom in the excited state. While in the Enol form of the GS the nitrogen has a
usual pair of lone electrons, in the FC it has 3 non-bonding electrons. Besides, this "excess"
of charge persists for a good part of the reaction path until just before the hydrogen bonds
to the nitrogen (1.26Å). The strong electrostatic attraction between the positively charged
hydrogen and the nitrogen is the driving force for the ultrafast proton transfer.

The domain of the proton transfer in which the hydrogen atom exists as an independent
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entity is from rOH = 1.06Å to rOH = 1.38Å, which corresponds to 17 points in the relaxed
scan, while in S0 this domain goes from rOH = 1.12Å to rOH = 1.40Å (15 points in the
relaxed scan). The electronic population of V (H) at rOH = 1.06Å is of 0.43, reaching a
minimum of 0.35 at the position of the elec-TS of S1, i.e., at rOH = 1.14Å. In this part of the
reaction, the hydrogen atom, which has a positive charge of 0.65e, feels a great electrostatic
attraction to the nitrogen, due to the three non-bonding electrons located in the valence
of this atom. Thus, the main argument that would explain that the proton transfer in the
excited state occurs without an energetic barrier is that there is a driven force produced by
the excess of negative charge on the nitrogen atom. Then, as the hydrogen atom approaches
to the nitrogen, its population increases reaching a value of 0.55 at rOH = 1.38Å, where the
electronic population of V (N) is of 2.77. The next point in the relaxed scan corresponds to
the catastrophe in which the basins V (H) and V (N) merge giving rise to the V (N,H), whose
population is 3.33. This population keeps constant until rOH = 1.52Å. After this point, a
new catastrophe occurs which was not present in the GSIPT. This catastrophe consists in
the formation of two monosynaptic basins associated to the nitrogen, with populations of
0.48, causing an abrupt decrease in the electronic population of V (N) basin from 3.29 to
2.37. This suggests that part of the electron density located in the N −H bond is displaced
symmetrically to both sides of the molecular plane, forming these basins. A chemical picture
consistent with the topology of ELF in the Keto isomer is that of the nitrogen atom having
a radical (unpaired) electron.

Figure 4.17: Electronic populations of the
basins involved in the proton transfer reac-
tion in the first excited state.

At the pseudo-FC, there is only one monosynaptic basin associated with the oxygen atom
(V (O2)), with a population of 3.92. Also, the population of the V (O,H) basin is of 1.97,
which increases slightly until 2.04 at rOH = 1.04Å. At the next step, the V (O,H) basin
is split in the basins V (H) and V (O1), where the electronic population of this latter is of
1.64, while in S0 is of 1.40. Then, it is observed the same behavior in the basins of the
oxygen atom which was observed in the GSIPT: as the population of V (O2) decreases, the
population of V (O1) increases.
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Another important difference between the GSIPT and ESIPT is observed in the behavior
of the V (C7, N) basin (see Figure 4.19). In S0 this basin appears in the Enol form with
an electronic population of 2.98 and then increases with the evolution of the process until
reaching its maximum value of 3.52 at the Keto form, implying the strengthening of this
double bond. On the other hand, in S1, the V (C7, N) basin appears with an electronic
population of 2.81 which decreases reaching its minimum at the Keto form with a value of
2.40. Hence, this suggests that in the excited state, the bond between nitrogen and the
carbon atom gets weak, which allows the increasing of the population on the nitrogen and,
hence, improving its basic character.

Figure 4.18: Variation of elec. population of
basins of the aromatic ring along ESIPT.

The electronic populations of basins belonged to the aromatic ring are shown in Fig-
ure 4.18. Unlike GSIPT, in which the basins adjacent to the functional groups, namely,
V (C3, C4) and V (C4, C5) decreases its electronic populations, in the ESIPT the electronic
populations of these basins remain practically constant, with values around of 2.42 and 2.87.
Also, the behavior of the basins V (C1, C2), V (C2, C3), V (C5, C6) and V (C6, C1) are in the
opposite direction to the variations of the same basins in S0. For example, the variation of
V (C2, C3) basin is from 2.91 at the pseudo-FC to 3.06 at the Keto form, while in S0, this
variation goes from 2.83 at the Enol to 2.47 at the Keto form.

In the same way that in the GSIPT, there is a population spreading in the aromatic ring.
In the ESIPT, the basin with higher electronic population is the V (C2, C3) (light blue), while
the basin with the lower one is the V (C3, C4) (orange). Thus, the σ index in the ESIPT
has a value of 0.47. While it is true that this value is lower than the spreading index of the
GSIPT, the difference is actually small, and it is not possible to identify any difference in the
loss of aromaticity between both GSIPT and ESIPT with this index.

The variations of populations of the basins corresponding to the groups adjacent to the
aromatic ring are shown in Figure 4.19. The carbonyl bond (V (C,O)) has an electronic
population of 1.78 at the pseudo-FC, which reaches a value of 1.93 at the Keto form. This
slight increase of the C − O bond order is accompanied by a decreasing of the population
of V (O2) basin. Thus, the electron density flows from to the non-bonding electron pairs of
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Figure 4.19: Variation of elec. populations
of basins of the functional groups adjacent
to the aromatic ring along ESIPT.

the oxygen to the covalent bond between the oxygen and the carbon. Both V (C3, C7) and
V (C7, N), have an electronic population of 2.65 electrons in the pseudo-FC but its variations
along the reaction path are different. While the basin V (C7, N) decreases its electronic
population, the behavior of the basin V (C3, C7) is more complicated. At the beginning of
the reaction, the electronic population of the C3−C7 bond increases until a maximum value
of 2.73, and then it slowly decreases until a constant value of 2.67. Curiously, the maximum
value of 〈N(V (C3, C7))〉 appears at rOH = 1.14Å, i.e., at the electronic transition state.

Attractors and catastrophes in S1 are shown in Figures 4.20 to 4.25. The catastrophes
that occur in the ESIPT correspond to the rupture of the O−H bond, the formation of the
N − H bond, and the appearance of the two symmetrical attractors of the nitrogen atom.
Figure 4.20 shows the attractors of the FC structure. A remarkable difference with the Enol
structure of S0 is the rearranging of the electrons along the functional groups. Thus, part of
the 4.3 electrons in the V (O) basin are redistributed between the adjacent bonds, increasing
the populations of the V (C,O) and the V (O,H) basins, from 1.59 to 1.54 and from 1.84 to
1.97, respectively. Similarly, part of the electrons located in the V (C7, N) basin (population
equal to 2.98 in S0) migrates towards the valence of the nitrogen and the adjacent C3−C7
bond. Thus, the electronic population of the non-bonding attractors of the nitrogen atom
in the excited state with the same molecular geometry of the Enol of the ground state is of
2.90, which increases until 3.00 after the relaxing of the atoms, giving the structure of the
pseudo-FC. The step that connects the FC with the pseudo-FC brings an increment of the
population of the V (O,H) basin from 1.97 to 2.02. An equalization of the populations of the
basins V (C3, C7) and V (C7, N), having both 2.65 electrons, occurs too.

The catastrophe corresponding to the rupture of the O − H bond is shown in Figure
4.22. There are several differences compared with the same catastrophe of the ground state
proton transfer (Figure 4.9). First, while in S0, the V (O2) has 4.26 electrons, in the excited
state this basin has a population of 3.78. Also, the V (O1) basin (which has an origin in
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the breaking of the hydroxyl bond) has a population of 1.40 while in S1 it is 1.64 electrons.
Note that the population of the V (H) basin (0.43) only differs slightly with its equivalent
of the S0 (0.45). Next, at rOH = 1.40Å the catastrophe associated to the formation of
the N − H bond occurs (Figure 4.23). Compared with the same catastrophe in S0, it is
noticed that the basins V (C,O) and V (O1) have the same electronic population in both
states, 1.88 and 2.40, respectively. On the contrary, the electronic populations of the basins
V (N,H) and V (C7, N) differ considerably. While in the ground state these have 2.66 and 3.15
electrons respectively, in the excited state they have 3.33 and 2.45, respectively. This excess
of electronic density localized in the volume of the V (N) would imply that this molecular
structure is an unstable one. Therefore, in order to reach the minimum in the PES of the S1,
the nitrogen atom must rearrange the excess of charge. Thus, at rOH = 1.54Å, it appears two
new attractors associated to the valence of the nitrogen, disposed symmetrically to both sides
of the molecular plane (Figure 4.24). Finally, at rOH = 1.82Å (Figure 4.25) the attractors of
the Keto structure are shown. The fundamental difference with the Keto structure of the S0
is that, in the excited state, there are 1.21 electrons in excess over the nitrogen, which gives
it a radical character.

Figure 4.20: Attractors of the FC structure.
rOH = 0.98Å.

Figure 4.21: Attractors of the pseudo-FC.
rOH = 0.98Å.

Figure 4.22: Attractors at rOH = 1.06Å in
S1.

Figure 4.23: Attractors at rOH = 1.40Å in
S1.
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Figure 4.24: Attractors at rOH = 1.54Å in
S1.

Figure 4.25: Attractors of the Keto structure
of S1. rOH = 1.82Å.

4.3.2 Electronic fluctuations and bifurcation points

The quality of the data depicted in Figure 4.26 is directly related to the degree of approxi-
mation used in the reconstruction of the second-order RDM. In this case, we have used the
HF-like reconstruction of the ρ2σ (Eq. 3.60). Although it is true that this approximation is
the simpler one, it comes with a relatively cheap computational cost. On the other hand, ρ2σ

with the BB correlation correction gives better results for the covariances. However, the BB
reconstruction for the ρ2σ fulfill neither the Pauli exclusion principle nor the cusp condition
(Eqs. (3.61) and (3.62)), and hence, it cannot be used for the calculation of the ELF [5].
Figure 4.26 shows the electronic covariance between V (H) and V (O) and V (N). A step of

Figure 4.26: Electronic fluctuations in the intermediate region of the proton transfer.

0.01Å has been used to have more precision in the position of the elec-TS. The covariances
show that the elec-TS is located between 1.14Å to 1.15Å with a value of −0.11 (the same
value found in the elec-TS of the ground state). Moreover it is possible to note that the in-
crease in the fluctuations between V (H) and V (N) (blue curve) is greater than the decrease
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in the fluctuations between V (H) and V (O), possibly due to the high electronegativity of
the oxygen atom.

Additionally, the delocalization between the basins V (H) and V (N), and between V (H)
and V (O), could be understood in terms of its bifurcation points, which are shown in Figure
4.27. Following the rule that electronic TS corresponds to point where both bifurcation
points are equal, then this is predicted to be located at 1.16Å, which agrees with the one
estimated with the covariances. The value of ELF at the bifurcation point of the elec-TS is
approximately 0.770. This high value of the bifurcation implies that the electrons are quite
delocalized between these three atomic centers because the topology among them is not very
persistent.

Figure 4.27: Bifurcation points between V (H) and V (O) and V (N) basin in the intermediate
region of the proton transfer in S1.

4.4 Comparison of the covariances between proton trans-
fer in the ground and the excited state

There are certain differences between the evolution of the covariances between basins in
both, GSIPT and ESIPT, as can be seen in the attractor diagrams. In Figures 4.28 to
4.35 the covariances between significant basins along the GSIPT are shown, namely, Enol,
elec-TS, TS and Keto. Similar diagrams for the reaction in the excited state are shown in
Figures 4.32 to 4.35 . The covariances that show higher changes are those located next to
the oxygen, hydrogen and nitrogen atoms. For example, the covariance between the V (O2)
and the V (C,O) basins in the Enol takes a value of −0.23, which sharply decreases in the
elec-TS (−0.45). Then, once passed the elec-TS, the covariances between these basins begin
to increase reaching a value of −0.37 in the Keto form. On the other hand, after excitation,
the electrons belonging to the basins V (O2) and V (C,O) quite fluctuate with each other,
with a covariance of −0.44 in the FC, than then increases with the course of the reaction
reaching a value of −0.34 in the Keto. This implies that these basins are more correlated in
the FC that in the Keto structure.
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The covariances between the V (O2) and the V (O,H) basins have a value of −0.27 in the
Enol form of S0. Then, after the rupture of the O−H bond, the V (O1) basin arises, whose
electrons fluctuate with the V (O2) with a covariance of −0.49 in the elec-TS. Then, from the
elec-TS to the Keto form, the covariances between these basins slowly decreases, reaching a
value of −0.53. This implies that the electrons belonging to these basins are more correlated
after proton transfer, i.e., in the Keto structure of S0. In the ESIPT process, the covariances
between these basins remain practically constant, having a value of −0.52 in the FC that
slightly increases to −0.48 in the elec-TS. In the Keto, the covariance is again the same as
in the Enol.

Figure 4.28: Covariances in the Enol struc-
ture of S0.

Figure 4.29: Covariances in the elec-TS of
S0.

Figure 4.30: Covariances in the TS of S0.
Figure 4.31: Covariances in the Keto struc-
ture of S0

.

From fluctuations between the basins adjacent to the nitrogen, we can see that the elec-
trons of to the basins V (C7, N) and V (N) fluctuate with a covariance of −0.23 in the Enol
of S0, which decreases enormously in the elec-TS to −0.43, to then keep constant until the
end of the reaction. The electronic fluctuation between these basins also increases after the
excitation, changing from −0.23 to −0.45 in the FC, to later slightly increase in the elec-TS
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(−0.43) (the same value that in the elec-TS of S0). Then, before the appearance of the sym-
metrical attractors corresponding to the V (N) basins located on both sides of the nitrogen
atom, the covariance between the basins V (C7, N) and V (N) remains constant. After this
bonding catastrophe, the electrons are less delocalized among the V (N,H), the V (N) and
the V (C7, N), implying a decreasing in the fluctuations, and thus, and increasing in the co-
variances. On the other hand, the covariances between the basins V (C3, C7) and V (C7, N)
have the small value −0.10 in the Enol structure of S0. This small fluctuation increases in
the elec-TS, to −0.20. Then it keeps constant until the Keto of S0. Also, it is possible to
observe a very similar behavior through the excitation. In fact, going from the Enol to the
FC structure, the covariances reaches a value of −0.22, increasing slightly to −0.20 as in the
elec-TS structure of S0.

Finally, it is possible to observe that the covariances in the FC structure are, in general,
more negative than the covariances in the Enol and also, the covariances in the elec-TS of
S0 are qualitatively similar to the ones of the FC. Thus, the excitation process entails an
activation of the molecule due to an increase of the electronic delocalization among the basins
contiguous to the reaction site.

Figure 4.32: Covariances in the FC structure
of S1.

Figure 4.33: Covariances in the elec-TS of
S1.

Figure 4.34: Convariances at rOH = 1.28Å
in S1.

Figure 4.35: Covariances in the Keto struc-
ture of S1.
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Core-valence bifurcation index

In section 2.2.1 we introduce the core-valence bifurcation index, and we show how, by means
of this index, to classify the H-bond interaction according to if it corresponds to a purely
classical (Coulombical) interaction or if there is an electronic delocalization between the donor
group and the acceptor atom. In the SMA molecule, in its Enol form, there is an H-bond
between the hydrogen atom in the hydroxyl group (O−H) and the nitrogen, while in the Keto
form, the H-bond is between the hydrogen in the N −H bond and the oxygen atom. Thus,
the core-valence bifurcation index allows an understanding of the variation of the strength
of the H-bond between the Enol and Keto structures, and also, after an excitation process.

Structure η(C(O), V (OH)) η (V (OH), V (N)) ν (OHN)
Enol 0.109 0.203 −0.094
FC 0.116 0.231 −0.115

Table 4.1: Core-valence bifurcation index in the Enol for both S0 and S1 states.

The values of the bifurcation points between the basins involved in the H-bond in the Enol
structure for both S0 and S1 states are shown in the table 4.1. In this, it is evident that the
H-bond it gets stronger after a vertical excitation, favoring the proton transfer in the excited
state. Moreover, the more negative value for ν implies that this intramolecular interaction
has a more covalent character in S1 than in S0, which is directly related with the fact that
there is a higher electronic fluctuation between the basins V (OH) and V (N) in the excited
state.

Structure η(C(N), V (NH)) η (V (NH), V (O)) ν (OHN)
Keto S0 0.101 0.179 −0.078
Keto S1 0.101 0.138 −0.115

Table 4.2: Core-valence bifurcation index in the Keto for both S0 and S1 states.

On the other hand, from the values depicted in the table 4.2, we can see that the H-bond
in the Keto structure is more covalent in the ground state than in the excited state, which
would favor the inverse proton transfer over the direct process.

4.4.1 Covariance index

Although that the spreading index σ gives us insights about the loss of aromaticity of the
molecule along the proton transfer, this does not allow us to compare the loss of aromaticity
between the process in both electronic states. A better description of this phenomenon is
given in terms of the covariances between the basins V (Ci, Cj) of the aromatic ring. In this
description we consider the fluctuations between basins not only to first neighbors but to
second and third as well. Thus, we defines a covariance index δ, which corresponds to the
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negative of the total stardard deviation σ2 in the aromatic ring [6], and is given by

δ =
1

2

N∑
a=1

N∑
b=1

〈cov (Ωa,Ωb)〉 = δ(1) + δ(2) + δ(3), (4.4)

where the Ωa are any of the disynaptic basins of the aromatic ring, δ(1) the covariance of first
neighbors, δ(2) the covariance of second neighbors and δ(3) the covariance of third neighbors.
Then, the loss of aromaticiy is simple given by the difference of the covariance index between
the Keto and the Enol isomers, i.e.,

∆δ = δKeto − δEnol. (4.5)

The fluctuations between the attractors included in δ are depicted in the Figure 4.36: blue
lines indicates fluctuations to first neighbors, red dashed line represent fluctuations to second
neighbors and green dashed line represents fluctuations to third neighbors.

Figure 4.36: Covariances between V (Ci, Cj) basins in the aromatic ring to first, second and
third neighbors.

Basins V (C1, C2) V (C2, C3) V (C3, C4) V (C4, C5) V (C5, C6)
V (C1, C2)
V (C2, C3) −0.26
V (C3, C4) −0.03 −0.28
V (C4, C5) −0.02 −0.03 −0.26
V (C5, C6) −0.03 −0.02 −0.03 −0.29
V (C6, C1) −0.28 −0.03 −0.02 −0.03 −0.26

Table 4.3: Covariances in the Enol form of S0.
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Basins V (C1, C2) V (C2, C3) V (C3, C4) V (C4, C5) V (C5, C6)
V (C1, C2)
V (C2, C3) −0.25
V (C3, C4) −0.02 −0.19
V (C4, C5) −0.02 −0.02 −0.19
V (C5, C6) −0.04 −0.01 −0.03 −0.28
V (C6, C1) −0.28 −0.02 −0.01 −0.02 −0.25

Table 4.4: Covariances in the Keto form of S0.

Values of covariances between the basins in the Enol and Keto form of S0 are shown
in Tables 4.3 and 4.4, respectively. From this data we obtain the values of δ(S0)

Enol = −1.87

and δ
(S0)
Keto = −1.63 for the covariances index in the Enol and Keto structures, respectively.

Hence, the difference between these values gives us a value of 0.24, which represents a loss of
aromaticity due to the fact that the covariance index in the Keto form is less negative.

Basins V (C1, C2) V (C2, C3) V (C3, C4) V (C4, C5) V (C5, C6)
V (C1, C2)
V (C2, C3) −0.27
V (C3, C4) −0.02 −0.23
V (C4, C5) 0.00 −0.02 −0.25
V (C5, C6) −0.02 −0.01 −0.02 −0.26
V (C6, C1) −0.24 −0.02 −0.01 −0.02 −0.27

Table 4.5: Covariances in the FC.

Basins V (C1, C2) V (C2, C3) V (C3, C4) V (C4, C5) V (C5, C6)
V (C1, C2)
V (C2, C3) −0.25
V (C3, C4) −0.02 −0.25
V (C4, C5) −0.01 −0.03 −0.22
V (C5, C6) −0.02 −0.01 −0.02 −0.26
V (C6, C1) −0.25 −0.03 −0.01 −0.03 −0.27

Table 4.6: Covariances in the Keto form of S1.

The covariances in the aromatic ring of the FC and the Keto structure of S1 are shown in
Tables 4.5 and 4.6, respectively. The covariance index in the FC is of δ(S1)

FC = −1.66, which
accounts for a reduction of the electronic delocalization in the aromatic ring after excitation,
which is in agreement with the increase of the electronic delocalization in the functional
groups. The covariance index after the ESIPT is of δ(S1)

Keto = −1.68, which is slightly lower
than the value in the FC. Hence, the difference of −0.02 between the Keto and the FC
indicates that there is no loss of aromaticity in the ESIPT, but only a spreading of the
electronic population in the aromatic ring. Therefore, in the absence of loss of aromaticity
in the ESIPT process, we can conclude that there is no decrease of stability in the molecule,
contrary to what happens in the ground state proton transfer, favoring the photochemical
process above the purely thermodynamic one.

48



Chapter 5

Conclusions

5.1 About GSIPT

• In the intermediate region of the ground state proton transfer, located between 1.12Å
and 1.40Å, there is a monosynaptic basin associated to the hydrogen atom: this is the
principal evidence that this simple process occurs via this independent entity, and that,
the rupture of the O−H bond and the formation of the N −H are not simultaneous.

• The rupture of the O −H bond occurs several points before the TS. From a chemical
point of view, this fact indicates that the electronic processes involved in a chemical
reaction occur before the thermodynamical transition state (located at 1.28Å).

• The proton transfer process does not correspond to a transference of a bare proton, but
a partially screened proton.

• In the valence structure of the oxygen atom in the Keto form, there is an electronic
population of 5.59, which is quite high compared with the electronic population of an
oxygen atom in a Lewis structure predicted by the organic chemistry. The associated
electrostatic repulsion is in our opinion the main source of a barrier for the proton
transfer.

• There is a spreading of the electronic population of the bonds in the aromatic ring,
which is related to a loss of aromaticity after the proton transfer process.

• We define a covariance index that allows quantifying the loss of aromaticity of the ring
along the reaction. This index indicates that there is a loss of aromaticity along the
path of ground state proton transfer.

• There is an electronic flux from the aromatic ring to the functional groups along proton
transfer.

• There is a point located at rOH = 1.20Å at which the covariances between the basin
associated to the proton, V (H), and the basin of the donor atom, V (O), is the same
that the covariances between V (H) and the basin associated to the acceptor atom
V (N). This means that, at this point, electrons belonging to V (H) are as correlated
with V (O) as with V (N). We called this point electronic transition state.
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5.2 About ESIPT

• The excitation energy of the Enol form is 3.94eV , which is a good prediction of the
TD-DFT, considering that the experimental value is 3.97eV .
• We have defined, for the first time, a working expression for the electron localization

function for excited states using only information of the ground state KS orbitals and
transition probabilities from TD-DFT.
• The detachment of the hydrogen atom of the oxygen occurs quite early compared

with the proton transfer in S0: while in the ground state, this catastrophe occurs at
rOH = 1.12Å, in the excited state it occurs at rOH = 1.06Å.
• The basic character of the nitrogen atom is enhanced: its electronic population at

the pseudo-FC is of 3.00, which remains practically constant until slightly before the
attachment of the hydrogen to the nitrogen.
• The domain of the proton transfer in which the hydrogen atom exists as an independent

entity is from rOH = 1.06Å to rOH = 1.38Å, which is longer than in the ground state.
• In the intermediary region of the ESIPT, the hydrogen atom, which has a positive

charge of 0.65e, feels a great electrostatic attraction to the nitrogen, due to the three
non-bonding electrons located in the valence of this atom.
• There is a driven force produced by the excess of charge of the nitrogen on the hydrogen

atom. This is the main physical argument that would explain that the proton transfer
in the excited state occurs without an energetic barrier.
• The V (N,H) basin appears at rOH = 1.40Å with an electronic population of 3.33

(in the ground state this basins appears with an electronic population of 2.66). This
excess of electronic density localized in the volume of the V (N) would imply that this
molecular structure is a unstable one.
• At rOH = 1.54Å, it appears two new attractors associate to the valence of the nitrogen,

placed symmetrically to both sides of the molecular plane. Thus, there are 1.21 electrons
in excess over the nitrogen, which gives it a radical character.
• The elec-TS is located at rOH = 1.16Å.
• The covariances in the FC structure are, in general, more negative than the covariances

in the Enol form, and also, behave similarly to the covariances in the elec-TS in S0.
Thus, the excitation process entails an activation of the molecule due to an increase of
the electronic delocalization among the basins contiguous to the reaction site.
• The covariance index in the FC is of −1.66, which accounts for a reduction of the

electronic delocalization in the aromatic ring after excitation, which is in agreement with
the increase of the electronic delocalization in the functional groups. The covariance
index after ESIPT is −1.68. Therefore, there is no loss of aromaticity in the ESIPT,
but only a spreading of the electronic population in the aromatic ring.
• There is not lost of stability associated to changes of aromaticity (electron delocalization

along the ring) in the molecule, contrary to what happens in the GSIPT, favoring the
photochemical process above the purely thermodynamic one.
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