TABLA DE CONTENIDO

CAPÍTULO I: INTRODUCCIÓN	1
1.1. ESTRUCTURA DE LA TESIS	1
1.2 FORMULACIÓN DEL ESTUDIO PROPUESTO	1
1.3 UBICACIÓN Y ACCESOS	3
1.4 HIPÓTESIS	4
1.5 OBJETIVOS	4
1.5.1 Objetivo General	4
1.5.2 Objetivos Específicos	5
1.6 METODOLOGÍA	5
CHAPTER II: CHRONOSTRATIGRAPHY	9
2.1 CHRONOSTRATIGRAPHY OF THE AREA	10
2.1.1 Carretera Austral Section	11
2.1.2 Michinmahuida River Section	12
2.1.3 Futalaufquen Lake Section	13
2.1.4 Route W887 Sections	13
2.1.5 Riñihué Lake Section	14
2.1.6 Other smaller deposits.	14
CHAPTER III: TEPHRA CHARACTERIZATION AND ERUPTIVE PARAMETERS	17
3.1 CHA2 DEPOSIT	17
3.2 DAC MICH DEPOSIT	21
3.5 ERUPTIVE PARAMETERS	25
3.5.1 Isopachs and volume	25
3.5.2 Isopleths and eruptions intensities	26
CHAPTER IV: MICHINMAHUIDA'S PRE-ERUPTIVE CHAMBER CONDITION ESTIMATION	30

4.1 INTRODUCTION	30
4.2 METHODOLOGY	30
4.3 EXPERIMENTAL RESULTS	31
CHAPTER V: MAGMA ASCENT MODELING	36 38
5.1.1 CHA2	40
5.1.2 DAC MICH	46
CAPÍTULO VI: DISCUSIÓN 6.1 SOBRE LA CRONOESTRATIGRAFÍA Y DISPERSIÓN DE PIROCLASTOS	53 53
6.1.1 Estilos eruptivos	58
6.1.2 Composiciones químicas de la zona de estudio y origen de DAC MICH	60
6.2 SOBRE LAS CONDICIONES PRE-ERUPTIVAS DE MICHINMAHUIDA	64
6.2.1 Validación con uso de geotermobarómetros e higrómetro	65
6.3 SOBRE PARÁMETROS DE ASCENSO DE MAGMA	67
6.3.1 Efectos de la Presión	68
6.3.2 Efecto de la Temperatura	70
6.3.3 Efecto de la concentración de agua y radio de conducto	73
6.3.5 Efecto de la composición química del magma	76
6.4 implicancias de los depósitos piroclásticos y modelaciones numéricas	78
6.4.1 Radio de conducto	78
6.4.2 Columnas eruptivas	81
6.4.3 Estilos eruptivos	85
6.5 Erupciones del registro geológico	90
6.5.1 Caso volcán Chaitén	90
6.5.2 Caso volcán Michinmahuida	91

	6.6 Comparación con erupciones históricas de otros volcanes	93
	6.7 Implicancias sobre el peligro	95
Bi	bliografía	101

ÍNDICE DE FIGURAS

Figura 1: Ubicación de los volcanes Chaitén y Michinmahuida, con sus vías de acceso4
Figure 2: Diagrama simplificado de la metodología utilizada en este trabajo para la obtención y comparación de
tasas eruptivas de los eventos volcánicos estudiados8
Figure 3: Location of measured and sampled sites in the study area9
Figure 4: Location of the five stratigraphical sections described in detail in the text
Figure 5: Stratigraphic correlation among five of the sections studied in the surrounding area of the volcanoes.
Coordinates refers to WGS84, UTM 19S in Chile and 18-S in Futalafquen16
Figure 6: Photos of CHA2 deposit. It is shown the approximately location, thickness and clasts details
Figure 7: BSEM image. (a) CHA2, in detail (1)-(2) plagioclase phenocrysts, (2) and (3) vesicles morphologies. (b) DAC
MICH, in detail (1)-(2)-(3) plagioclase, pyroxenes, olivines and oxides phenocrysts, (4) vesicles morphologies19
Figure 8: Grain size distribution and component histograms from (a) CHA2 and (b) DAC MICH deposits23
Figure 9: Photos of DAC MICH deposit. It is shown the approximately location, thickness and clasts details24
Figure 10: a) Isopachs map for CHA2. Values of thickness on each isopach are in cm. Continuous black lines
corresponds to well constrained isopachs, while dashed lines correspond to inferred zones. b) Volume
estimation methods26
Figure 11: Isopleths Maps. Continuous black lines correspond to well-constrained isopleths, while dashed lines
correspond to inferred zones. Values of maximum clasts size and isopleths are in mm. a) CHA2 b) DAC MICH29
Figure 12: Experimental phase equilibrium diagram. Equilibrium mineral phases identified by microprobe analysis
for experiments at controlled temperature-pressure and water saturation. Occurrence of crystals is shown as
colored triangles in the pentagon, following the figure in the upper right of the graph. Natural sample is
represented by the full-colored pentagon. Dashed lines indicate water concentration in the silicate melt
according to the methodology described by Moore et al. (1998)
Figure 13: Mineral composition of experimental and natural samples. (a) Plagioclases and (b) pyroxenes
compositions from experiments DAC-1 and DAC-2. (c) Experimental vs natural olivine.
Figure 14: 2011-2017 VT seismic data of the study area, from OVDAS (quality A and B)
Figure 15: Variation of gas volume fraction, melt viscosity, and melt pressure regarding to the depth. Results
obtained by Confort 15, for 825°C, 125 MPa, 5%wt water, and conduit radius of 50 m. for both eruptions40
Figure 16: CHA2 mass eruptive rate vs. conduit radius graphics obtained by Confort 15 simulations46
Figure 17: DAC MICH mass eruptive rate vs. conduit radius graphics obtained by Confort 15 simulations

Figure 18: Columna compuesta de depósitos de caída de los volcanes Chaitén y Michinmahuida. Las edades fueron
tomadas de a) Naranjo y Stern (2004); b) Watt et al. (2011); c) Watt et al. (2013-a); d) Amigo et al. (2013); e)
Moreno et al. (2014); f) Darwin (1840); g) este estudio54
Figure 19: Isópacas para evento CHA1, valores en cm. En líneas azules se presentan las isópacas, siendo las líneas
continuas las zonas bien constreñidas, y las segmentadas las inferidas. Se utilizaron datos de Watt et al. (2015)
para complementar los datos de terreno, los que se indican en puntos de color verde. Además, se dibujan las
isópacas de Watt et al. (2015) en líneas segmentadas grises como referencia.
Figure 20: Diagrama resumen de las erupciones y sus volúmenes estimados de los volcanes de la ZVSS (41° a 46°).
Datos de Chaitén (rosado) y Michinmahuida (rojo) de este estudio; en gris oscuro de Weller et al. (2014, 2015);
en gris claro de Watt et al. (2013-b); y de Geoffroy (2017) las dos erupciones más jóvenes de Melimoyu. Imagen
modificada de Watt et al. (2013-b)60
Figure 21: Diagrama K ₂ O vs SiO ₂ para análisis de roca total de erupciones de los volcanes Chaitén (agrupadas en
azul) y Michinmahuida (agrupadas en rojo). Los datos de López-Escobar et al. (1993) corresponden a químicas
de lavas. Grafico modificado de Watt et al. (2013-a)61
Figure 22: Gráfico SiO₂ vs CaO con composiciones químicas de los depósitos explosivos dacíticos del volcán
Michinmahuida, y de Chaitén como referencia62
Figure 23: Efecto de la variación de la presión inicial sobre la densidad y velocidad de salida del material volcánico,
para CHA2 y DAC MICH. Valores obtenidos con Confort 1570
Figure 24: Efecto de la variación de la temperatura inicial sobre la densidad y velocidad de salida del material
volcánico, para CHA2 y DAC MICH. Valores obtenidos con Confort 1573
Figure 25: Efecto de la variación de la concentración de agua y radio de conducto eruptivo sobre la densidad y
velocidad de salida del material volcánico, para CHA2 y DAC MICH. Valores obtenidos con Confort 1576
Figure 26: Efecto de la variación de la composición química sobre la densidad y velocidad de salida del material
volcánico, para CHA2 y DAC MICH. Valores obtenidos con Confort 15
Figure 27: Gráficos de tasa eruptiva vs velocidad de salida de CHA2 (se plotean resultados hasta radios de 230 m).
En el gráfico se identifican los rangos en los que una columna eruptiva consigue condiciones simple buoyant,
superbuoyant, o bien colapsa. La zona identificada en color gris, indica el rango de tasas eruptives obtenidas con
el análisis de isópletas en el Capítulo IV. Figura modificada de Bursik y Woods (1991), donde las líneas continuas
de color negro indican concentraciones de agua83
Figure 28: Gráficos de tasa eruptiva vs velocidad de salida de DAC MICH (se plotean resultados hasta radios de 230
m). En el gráfico se identifican los rangos en los que una columna eruptiva consigue condiciones simple buoyant,
superbuoyant, o bien colapsa. La zona identificada en color gris, indica el rango de tasas eruptives obtenidas con
el análisis de isópletas en el Capítulo IV. Figura modificada de Bursik y Woods (1991), donde las líneas continuas
de color negro indican concentraciones de agua84

Figure 29: Gráficos de viscosidad vs tasa eruptiva de CHA2, para distintas presiones y temperaturas. En gris se
indica el rango de tasas eruptivas obtenidas con isópletas en el Capítulo IV. Figura modificada de Gonnermann y
Manga (2013)
Figure 30: Gráficos de viscosidad vs tasa eruptiva de DAC MICH, para distintas presiones y temperaturas. En gris se
indica el rango de tasas eruptivas obtenidas con isópletas en el Capítulo IV. Figura modificada de Gonnermann y
Manga (2013)
Figure 31: Tasa eruptiva vs. Contenido de agua para distintas erupciones históricas, en comparación con rangos
esperados para los volcanes Chaitén y Michinmahuida. Parámetros obtenidos de: (a) Fierstein y Hildreth (1992),
Houghton et al. (2004); (b) Castro y Dingwell (2009), Alfano et al. (2011); (c) Rutherford et al. (1985), Carey et al.
(1990); (d) Castro et al. (2013), Bonadonna et al. (2005)95
Figure 32: Figuras con posibles áreas de afectación por caída de piroclastos (zonas anaranjadas) y lahares (flechas
rojas), para (a) volcán Chaitén, (b) volcán Michinmahuida97

ÍNDICE DE TABLAS

Table 1: Bulk and glass composition, normalized 100% anhydrous.	20
Table 2: Experimental conditions and results for DAC MICH	32
Table 3: Summary of input data used for Cha2 and DAC MICH on Confort 15	37
Table 4: CHA2 Confort 15 results for 750°C and 125 MPa	42
Table 5: CHA2 Confort 15 results for 825°C and 125 MPa	43
Table 6: CHA2 Confort 15 results for 750°C and 200 MPa	44
Table 7: CHA2 Confort 15 results for 825°C and 200 MPa	45
Table 8: DAC MICH Confort 15 results for 825°C and 125 MPa	48
Table 9: DAC MICH Confort 15 results for 900°C and 125 MPa	49
Table 10: DAC MICH Confort 15 results for 825°C and 200 MPa	50
Table 11: DAC MICH Confort 15 results for 900°C and 200 MPa	51
Table 12: Correlación tefrocronológica de los eventos eruptivos de los volcanes Chaitén y Michinmahuida. Eda	des
marcadas en gris corresponden a estimaciones ¹⁴ C sobre materia orgánica en suelo, y las marcadas en mor	ado a
¹⁴ C sobre trozos de carbón directamente encontrados en los depósitos	55
Table 13: Comparación de composiciones químicas de depósito dacítico de volcán Michinmahuida	63
Table 14: Rangos de conducto eruptivo estimados para el evento CHA2	79
Table 15: Rangos de conducto eruptivo estimados para el evento DAC MICH	80
Table 16: Tasas eruptivas estimadas para distintos eventos del registro geológico del volcán Chaitén	91
Table 17: Tasas eruptivas estimadas para distintos eventos del registro geológico del volcán Michinmahuida	92
Table 18: Parámetros eruptivos de erupciones volcánicas del mundo, similares a las de los volcanes Chaitén y	
Michinmahuida	93