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Las actuales tendencias en los sistemas de comunicaciones inalámbricas, nos llevan a dis-
eñar sistemas con un eficiente uso del espectro, ya que los requisitos de tasas de transmisión,
de manera conservadora, se duplican cada año. La transmisión de señales a altas tasas genera
interferencia inter-simbólica (ISI), efecto que degrada el rendimiento de los sistemas de comu-
nicaciones. El diseño de señales libres de ISI en canales limitados en banda fue un problema
abordado por Nyquist. El primer criterio de Nyquist (Nyquist-I), garantiza que una secuen-
cia de pulsos será libre de ISI siempre y cuando sea muestreada en múltiplos del tiempo de
símbolo. De la misma forma, el desarrollo de nuevas tecnologías, como Machine to Machine
Communication (M2MC), Internet of Things (IoT) o redes móviles 5G, han introducido una
gran cantidad de dispositivos demandando también un uso eficiente del espectro. En estos
ambientes, la detección de datos de un usuario a menudo se corrompe por señales de otros
usuarios ubicados en distancias cercanas o moderadas que usan la misma banda de frecuen-
cia. El objetivo del re-uso de frecuencias es incrementar la eficiencia espectral. Este tipo de
interferencia es llamada interferencia co-canal (CCI) y afecta negativamente el desempeño
de los sistemas de comunicaciones. Así, la evaluación de diferentes pulsos de Nyquist-I, que
mitigan los efectos de interferencias, es de considerable interés.

En el presente trabajo se realiza la evaluación, comparación y análisis de distintos pulsos de
Nyquist-I, considerando los efectos de la ISI, CCI y simultáneamente, ISI y CCI en sistemas
banda-base y pasa-banda. Se considera la respuesta completa y truncada de los pulsos.
Además se consideran 2 modelos para representar los efectos del CCI, el modelo sinusoidal y
Preciso. Este análisis se realiza debido a que el tópico es escasamente tratado en la literatura.
Luego, para realizar una comparación justa, los parámetros de los pulsos son optimizados
considerando restricciones en el dominio de la frecuencia para condiciones particulares de
los sistemas de comunicaciones. Los pulsos se evaluan principalmente en términos de la
probabilidad de error de bit (BER) y, en todos los casos se presenta su comportamiento en
el dominio de la frecuencia. Lo resultados indican que existen diferencias significativas en
cuanto al desempeño de los pulsos, considerando distintos tipos de interferencias y tipos de
respuesta. Los resultados anteriores pueden ser utilizados para hacer un diseño más eficiente
de los sistemas de comunicaciones o también crear filtros adaptativos que modifiquen sus
parámetros considerando las condiciones particulares de propagación.
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Summary

The current trends in wireless communications systems, lead us to design better spectral
efficient digital communication systems, as data rate requirements are conservatively doubling
each year. Transmitting signals at high transmission rates introduce inter-symbol interference
(ISI), degrading the performance of communication systems. The design of ISI free signals in
band-limited channels was a problem considered by Nyquist. Nyquist first criterion (Nyquist-
I) guarantees that a sequence of pulses will be ISI-free by sampling signals in multiples of
the symbol time. In the same way, the introduction of new technologies, like Machine to
Machine Communication (M2MC), Internet of Things (IoT) and 5G mobile networks have
introduced large amount of devices, demanding an efficient use of the spectrum. In such
crowded environments, the detection of one user’s data is often corrupted by signals from
users located in near or moderate distances using the same frequency band. The aim of the
frequency reuse is to increase the spectrum efficiency. This interference is called co-channel
interference (CCI) and affects negatively the performance of digital communication systems.
Therefore, evaluate different Nyquist-I pulses, which mitigate the interference effects, is of
considerable interest.

In the present work, the evaluation, comparison and, analysis of different Nyquist-I pulses
is performed, considering the effects of ISI, CCI and simultaneously ISI and CCI in base-band
and pass-band systems. The complete and truncated response of the pulses is considered.
Also, 2 models to represent the effects of CCI are taking into account, the sinusoidal and
Precise models. This analysis is performed because the topic is barely treated in the literature.
Then, to make a fair comparison, the pulses parameters are optimized considering restrictions
in the frequency domain for particular conditions of the communication systems. All the
pulses are evaluated mainly in terms of the bit error probability (BER), and in all the
cases the behavior in the frequency domain is presented. The results indicate that exists
significant differences respect to the performance of the pulses, considering different kinds
of interference and response types. The prior results can be used to make a more efficient
design of communication systems or also create adaptive filters that modify their parameters
considering the particular propagation conditions.
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Chapter 1

Introduction

1.1 Motivation

The current trends in wireless communications systems lead us to design better spectral
efficient systems as data rate requirements are conservatively doubling each year [1]. Trans-
mitting signals at higher transmission rates introduces ISI, which impacts negatively the
communication performance. The design of ISI free signals in band-limited channels was a
problem considered by Nyquist [2], [3]. Nyquist first criterion (Nyquist-I) guarantees that a
sequence of pulses will be ISI-free by sampling signals at the optimum and uniformly spaced
instants. Additionally to the ISI-free prerequisite, pulse shaping filters have to show low sen-
sitivity to timing errors. To meet the prior constraints, several pulses that comply with the
first Nyquist criterion (Nyquist-I pulses) have been reported, being the most popular ISI-free
Nyquist pulse for distortionless transmissions the traditional raised cosine (RC) pulse. The
RC pulse has been proposed by the 3rd Generation Partnership Project (3GPP) as the pulse
shaping filter to be implemented at the user equipment (UE) and at the base station (BS)
[4, 5].

In [6], an efficient series used to compute the bit error probability (BER) in a binary
symmetric channel subject to additive noise and affected by ISI is derived. This series is
extensively used in the literature to study the effects of ISI in base-band systems for various
Nyquist-I pulses, reporting better results in terms of BER [2, 7, 8, 9, 3] than the RC pulse
in the presence of symbol timing errors and for different roll-off factors. Besides the effects
caused by ISI, other types of interference could affect more severely the performance of the
communication system.

On the other hand, the emergence of new technologies such as Machine to Machine Com-
munication (M2MC), Internet of Things (IoT), and 5G mobile networks have introduced a
large amount of devices connected to the network, demanding an efficient use of the spectrum.
In such crowded environments, the detection of one user’s data is often corrupted by signals
from users located in near or moderate distances using the same frequency band. The aim of
the frequency reuse is to increase the spectrum efficiency. This type of interference is knows
as CCI and generates adverse effects on the digital communication systems. The limitations
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in the performance of the digital communication systems are ruled by different sources of
interference. Therefore, analyzing the performances of these systems in the presence of CCI
is of considerable interest.

Different approaches for representing the effects of CCI have been investigated. In [10],
the sinusoidal model (sum of sinusoids) is presented and evaluated in a pass-band system.
Unfortunately, the sinusoidal interference model always underestimates the effects of inter-
ference on the BER for large values of SNR. Research has been ongoing over the last decades
trying to develop more accurate models to represent the CCI effects. In [11], the resultant
interference contribution is modeled by an additive Gaussian noise with mean and variance
equal to the mean and variance of the sum of the interfering signals. However, the Gaussian
model overestimates the effects of the CCI. For this reason, in [12], the Precise interference
model for representing the CCI is used. In this model, the interfering signals are assumed to
have the same modulation and nature as the desired signal.

Studies regarding the performance of Nyquist-I pulses considering the effects of ISI and
CCI simultaneously is very scarce in the literature. In fact, the only existing model, proposed
in [6], which considers the sinusoidal model to represent the CCI effect, has not been used
to evaluate the performance of novel Nyquist-I pulses. Further, exact models have not been
developed considering both interference, giving a great research opportunity.

Finally, the optimization of Nyquist-I pulses is an open research topic which has attracted
attention recently. The optimization of Nyquist-I pulses consists in finding the parameters
that minimize one or more objective functions. Usually, the BER is minimized considering
base-band, orthogonal frequency-division multiplexing (OFDM) or single carrier orthogonal
frequency division multiple access (SC-FDMA) systems, impaired by different sources of in-
terference. In several works [13, 14], the parameters of Nyquist-I pulses are optimized without
taking into account frequency domain restrictions, resulting in excellent BER performance
but at expenses of poor frequency characteristics. In addition, and to our best knowledge,
there are no studies related to the optimization of Nyquist-I pulses considering frequency
domain restrictions or multiple sources of interference.

1.2 Hyphothesis

• The evaluation and fair comparison of recently proposed Nyquist-I pulses, considering
the effects of ISI, CCI, and both interference simultaneously, can be performed in base-
band and pass-band communication systems.
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1.3 Objectives

1.3.1 General Objective

To evaluate Nyquist-I pulses with optimal parameters in base-band and pass-band systems
impaired by ISI, CCI, and the combination of ISI and CCI, for the sinusoidal and Precise
interference models, considering different scenarios in terms of BER.

1.3.2 Specific Objectives

• To evaluate the performance of recently proposed Nyquist-I pulses, including the ex-
ponential linear pulse (ELP), in base-band system impaired by ISI, CCI, ISI and CCI
simultaneously considering the BER and eye diagram opening for the ideal and time-
limited version of its impulse responses.
• To integrate the Precise interference model for representing the CCI effect along with

the ISI model, develop an expression to compute the BER in presence of time symbol
errors, and evaluate different Nyquist-I pulses in terms of BER for several evaluation
scenarios for pass-band systems.
• To optimize Nyquist-I pulses in terms of BER considering different interference models

by imposing restrictions on the frequency response of the pulses to be optimized.

1.4 Thesis Structure

The present work is organized as follows:

• Chapter 2 presents the general background of the work, describing the basic blocks of a
digital communication systems. Nyquist’s first criterion for distortion-less transmission
and its use in the matched filter scheme are presented. Then, different approaches to
formulate Nyquist-I pulses are described, and for every pulse, its time and frequency
behavior is shown.
• Chapter 3 evaluates the Nyquist-I pulse known as ELP in the time and frequency do-

main using different evaluation tools, and compares its performance with other existing
pulses.
• Chapter 4 evaluates recently proposed Nyquist-I pulses in terms of bit error rate (BER)

considering first, the effect of CCI and later, the ISI and CCI simultaneously, under
the effects of time jitter.
• Chapter 5 introduces the Precise model to represent the CCI effects more accurately.

Then, a pass-band system is evaluated under ISI and CCI simultaneously, using the
new model, for various Nyquist-I pulses in several scenarios under the effect of time
jitter.
• Chapter 6 formalizes the optimization problem to minimize the BER in a system im-

paired by ISI and later by ISI and CCI, using the Precise model, and considering
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Nyquist-I pulses obtained by a linear combination. Then, optimized pulses are evalu-
ated under both interference scenarios.
• Chapter 7 summarizes the conclusions in this work, and presents future work.
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Chapter 2

Background

2.1 Digital Communication Systems

The objective of a digital communication system is to send data efficiently from a transmitter
to a receiver through a channel, subject to noise and multiple interference. A general digital
communication system is shown in Fig. 2.1. The data is provided by the Source, and
passed to the Source Coding block, which usually chooses and represents the data in
digital form. Then, the information is treated by the Channel Coding block, which is
responsible for adding bits of redundancy to the sequence. These bits would allow detecting
and correct errors generated in the transmission. The Digital Modulation block performs
the conversion of digital data to an analog signal in base-band, and limits the bandwidth of
the transmitted signal, according to the channel requirements, by applying a filter. Finally,
the Pass-Band Modulation block positions the analog signal in the frequency band chosen
for the subsequent transmission.

The signal travels through a communications channel, namely the physical medium that
can be wired, optical fiber, or wireless. The information is corrupted in a randomly by a
variety of possible mechanisms, such as additive thermal noise, ISI, multi-path, shadowing,
CCI or adjacent channel interference (ACI).

When the signal arrives at the Receiver, the Pass-Band Demodulation process is per-
formed, shifting the central frequency to the base-band spectrum and filtering the base-band
signal, usually with a matching filter, improving the signal-to-noise ratio. Then, the sig-
nal is Sampled at uniform spaced instants, using at least the Nyquist rate for a successful
reconstruction of the signal. The Detection process is then performed by estimating the
transmitted symbol based on the received samples. The Channel De-coding block is re-
sponsible for detecting and correcting errors by reviewing the redundant bits, and finally the
Source De-codification recovers the original data.
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Figure 2.1: Standard digital communication system.

2.1.1 Matched Filter

In the Digital Modulation and Demodulation blocks, there exists a filtering process which
converts the digital data into an analog signal, and then after the signal travels through
a communication channel affected by Additive White Gaussian Noise (AWGN), transforms
back the signal from analog to digital. If both filters in cascade form a matched filter, then
the Signal to Noise (SNR) ratio is maximized at the output of the receiver. If we group all
the filtering effects into one equivalent system its transfer function H(f), considering HT (f),
HR(f), HC(f) the response filter in the transmitter, receiver, and channel, respectively, is
given by

H(f) = HT (f)HC(f)HR(f). (2.1)

To prove that the matched filter maximizes the SNR at the output of the receiver consider
that a known signal s(t) plus AWGN n(t) is the input to a linear time-invariant filter followed
by a sampler. At time t = T , the sampler output consists of a signal component ai and a
noise component σ2

0, therefore the instantaneous signal power to average noise power at time
t = T , (S/N)T at the output of the sampler is

( S
N

)
T

=
a2i
σ2
0

. (2.2)

We wish to find the filter transfer function (H0(f)) that maximizes (2.2). If we denote
S(f) the Fourier transform of the input signal, we can express the signal ai at the filter
output before the optimization as

ai(t) =

∫ ∞
−∞

H(f)S(f)ej2πftdf, (2.3)

if the two-sided power spectral density of the input noise is N0/2 watts/hertz, then we
can express the output noise power as

σ2
0 =

N0

2

∫ ∞
−∞
|H(f)|2df, (2.4)
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combining (2.3) and (2.4) to express (S/N)T

( S
N

)
T

=

∣∣∣ ∫∞−∞H(f)S(f)ej2πftdf
∣∣∣2

N0

2

∫∞
−∞|H(f)|2df

. (2.5)

Next, we find the value of H(f) = H0(f) for which the maximum (S/N)T is achieved,
using the Schwarz’s inequality, we can write the upper bound of (2.3) as

∣∣∣ ∫ ∞
−∞

H(f)S(f)ej2πftdf
∣∣∣2 ≤ ∫ ∞

−∞
|H(f)|2df

∫ ∞
−∞
|S(f)|2df. (2.6)

Substituting into (2.5), yields

( S
N

)
T
≤ 2

N0

∫ ∞
−∞
|S(f)|2df, (2.7)

or

max
( S
N

)
T

=
2E

N0

, (2.8)

where the energy of the input signal, s(t) is

E =

∫ ∞
−∞
|S(f)|2df. (2.9)

The equality in (2.8) holds only if the optimum filter transfer function H0(f) is employed,
such that

H0(f) = kS∗(f)e−j2πfT , (2.10)

since s(t) is a real-valued signal, we can write

f(x) =

{
ks(T − t), 0 ≤ t ≤ T,

0, elsewhere.
(2.11)

Therefore, the impulse response of a filter that produces the maximum output SNR is
the mirror image of the message signal, s(t) delayed by the symbol time duration. So,
the matched filter condition expressed in (2.11), can be composed of the convolution of 2
separated filters, as is showed in Fig. 2.2.
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Figure 2.2: Matched Filter.

2.2 Nyquist Criterion in the time and frequency domain

When signals are transmitted over a communication channel, there exist various types of
interference which distort the desired signal making the communication less reliable. The
ISI is the effect of one symbol interferes with subsequent symbols. The spreading of the
pulse beyond its allotted time interval causes interference to neighbor pulses degrading the
performance of the overall system. In [15], Harry Nyquist established three criteria, related
to the signal waveform, that result in distortion-less transmission considering an AWGN
channel. The first and more used criterion is defined as

h (kT) =

{
1, k = 0
0, k = ±1,±2,±3± 4, . . . ,

(2.12)

where h(t) is the impulse response of the filter, and T is the symbol period. In the
frequency domain, the Fourier transform of 2.12 is given as follows

1

T

∞∑
m=−∞

H(f +
m

T
) = 1, (2.13)

where H(f) is the Fourier transform of h(t). The first Nyquist criteria [16] is exemplified
in Fig. 2.3, where the desired signal located at t = 0 reaches its maximum amplitude at
h(0) = 1, meanwhile, its lateral side lobes evaluated at t = kT for k = {±1,±2,±3±4, . . . , }
are equal to h(kT ) = 0. When the resultant filter, built by the transmitter and receiver
filters in cascade, comply with the first Nyquist criterion the transmission is not affected by
ISI. But, if exists deviation from the optimum sampling instants, the system will be impaired
by ISI, degrading its performance. In practical receivers, the presence of timing jitter causes
the actual sampling points to diverge from the optimal ones; hence, symbol timing errors are
produced. So, in addition to the ISI-free prerequisite, pulse shaping filters have to exhibit
low sensitivity to timing errors.
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Figure 2.3: Train of Sinc pulses.

2.2.1 Nyquist-I pulses

There exists theoretically an infinite number of filters that comply with the first Nyquist
criteria, namely Nyquist-I pulses, with multiple shapes and frequency characteristic. In this
section, various classical and recently proposed Nyquist-I pulsed are detailed, including their
impulse and frequency responses.

Rect Filter

The Rectangular filter or zero-order hold filter, is the simplest filter which complies with the
first Nyquist criteria. In Fig. 2.4, the impulse response and the frequency characteristic of
the pulse are shown. It can be seen from the Impulse response that the filter would exhibit
no ISI at all even considering time jitter, but in exchange for having an infinite stop-band
value in its spectral characteristic, not fulfilling the bandwidth (B) restriction imposed by
the channel. Further, this pulse cannot be implemented due to the sharp edges of its impulse
response and the non-causal response.
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Figure 2.4: Impulse Response and Frequency characteristic of the Rect Filter.

Sinc Filter

The Sinc pulse, which also complies with the first Nyquist criteria, is the most bandwidth
efficient pulse because its frequency characteristic is a rectangular shape (−1/2T < f/B <
1/2T ). This pulse, derived by Nyquist [15], is defined in the time and frequency domain
respectively as:

hsinc(t) =
sin(πt/T )

πt/T
, (2.14)

Hsinc(f) =


1, 0 ≤ |f |≤ 1

2T

0, |f |≥ 1

2T
.

(2.15)

In Fig. 2.5, its impulse response and frequency characteristic is shown
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Figure 2.5: Impulse Response and Frequency characteristic of the Sinc Filter.

Besides its optimal frequency characteristic response, the slow extinction of the lateral

12



side lobes causes severe ISI when the system is not sampled at optimal instants, degrading
the Bit Error Rate (BER), the main performance of communication systems. It is for this
reason that any pulse that complies with the first Nyquist criteria, have to exhibit a fast
decay of its lateral side lobes to exhibit low sensitivity to time jitter effects. As drawback
of having fast decay of the lateral side lobes, the stop band value of the filter’s frequency
characteristic would increase beyond the most bandwidth efficient value, ±1/2T .

2.2.2 Raised Cosine Filter

Nyquist demonstrated that pulses satisfying a vestigial side band criterion, namely, that the
pulse has an excess bandwidth with odd-symmetry around Nyquist frequency (B = 1/2T ),
will comply with the first Nyquist criteria. A family of such pulses, known as Raised Cosine
pulse (RC), produces a signal with bandwidth (1/2T )(1 + α), where α ∈ [0, 1] namely the
roll-off factor, the parameter that controls the amount of excess of bandwidth. The RC pulse
is defined in the time and frequency domain as

h(t)RC =
sin(πt/T )

πt/T

cos(παt/T )

1− (2αt/T )2
, (2.16)

HRC(f) =


T, 0 ≤ |f |≤ 1− α

2T
T

2

[
1 + cos

(
πT

α

)(
|f |−1− α

2T

)]
,

1− α
2T

≥ |f |≥ 1 + α

2T

0, |f |≥ 1 + α

2T
.

(2.17)

Figure 2.6 depicts the impulse and frequency response of the RC pulse.
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Figure 2.6: Impulse Response and Frequency characteristics of the RC Filter.

The root version of the RC filter, the root-raised cosine (RRC) filter, with roll-off factor
of α = 0.22 is the transmitting pulse-shaping filter used by the 3rd Generation Partnership
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Project (3GPP) as the pulse shaping filter to be implemented at the user equipment (UE)
and at the base station (BS), for transmission and reception, forming in cascade a RC filter.
The frequency spectrum and the impulse response of the RRC are given by

HRRC(f) =
√
HRC , (2.18)

hRRC(t) =
4α

π
√
T

cos
(

(1+α)πt
T

)
+ T

4αt
sin
(

(1−α)πt
T

)
1−

(
4αt
T

)2 . (2.19)

2.2.3 Parametric Approach

There is an infinite number of pulses that comply with the first Nyquist criteria having differ-
ent vestigial side-bands. In [2], the author proposed a parametric approach for constructing
families of ISI-free pulses with the same excess bandwidth. The pulses that comply with the
parametric approach are specified by the frequency spectra given in (2.20)

S(f) =


T, 0 ≤ f < 0

TG(γn[f −B(1− α)]n), B(1− α) ≤ f ≤ B

T{1− G(γn[B(1 + α)− f ]n), B < f ≤ B(1 + α)

0, B(1 + α) < f,

(2.20a)

γn =
γ0

αnBn
, (2.20b)

γ0 = G−1
(

1

2

)
. (2.20c)

In (2.20), G(f) is a function satisfying G(0) = 1 and n ≥ 0 is a parameter that defines
different pulses. The author, in the same work, proposed several G functions, which results
in different Nyquist-I family of pulses.

The time domain properties of the pulses specified by the frequency spectra of (2.20)
are analyzed to establish how rapidly the tails of the pulses decay in time, namely the
Asymptotic Decay Rate (ADR). The ADR is computed from the spectrum of the pulse by
means of Theorem 1,

Theorem 1 If the first m − 1 derivatives of S(f) are continuous and the mth derivative of
S(f) has one or more finite amplitude discontinuities, then |p(t)| decays as 1/|t|m+1 when |t|
is large.

Considering the RC pulse, its impulse response ADR is 1/|t|3 when |t| is sufficiently large.
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2.2.4 Linear combination approach

Further, in [17] a new approach for finding families of Nyquist-I pulses is derived. The linear
combination of two or more Nyquist-I pulses ensures that the resulting pulse will also be ISI-
free keeping the same stop-band value ((1 + α)(1/2T )). The linear combination is described
by the equation (2.21),

h(t) = a1h1(t) + a2h2(t) + ...+ anhn(t), (2.21)

The linear constants have to follow the following relation
∑N

n=1 an = 1.

PLCP

In [18], the author proposed a linear combination of 2 pulses used to reduce peak-to-average
power ratio (PAPR) in SC-FDMA systems. The Parametric Linear Combination Pulse
(PLCP) is composed of 2 previously proposed pulses [2], the parametric linear pulse for
n=1 and n=2 with G(f) = 1− f , keeping the same stop-band value. The new pulse contains
one degree of freedom and is described by the equation (2.22)

hPLCP (t) = µh(t)PLPn=1 + (1− µ)h(t)PLPn=2

=
sin(πτ)

πτ
× 4(1− µ) sin(πατ/2)2 + παµτ sin(πατ)

π2α2τ 2
,

(2.22)

where τ is the normalized time (τ = t/T ), µ is the constant that correspond to the linear
combination and defined for all real numbers. The impulses responses of PLPn=1 and PLPn=2

are given in [2], and decay as 1/t2 and 1/t3 respectively meanwhile the PLCP decays as 1/t2.
The impulse response of the pulse is shown in Fig. 2.7
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Figure 2.7: Impulse Response and Frequency characteristic of the PLCP Filter for µ = 2.418.

LCP

In [3], the author proposed another combination of 2 pulses, the parametric linear pulse for
n = 1 and RC pulse. The Linear Combination Pulse (LCP) contains a new design parameter
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β, giving an additional degree of freedom to minimize the bit error probability performance
in the presence of symbol-timing errors, for a given roll-off factor (α). The impulse response
of the pulse is given by

h(t)LCP = βh(t)PLPn=1 + (1− β)h(t)RC

=
sin(πτ)

πτ
×
(β sin(πατ)

πατ
+

(1− β) cos(πατ)

1− 4α2τ 2

)
.

(2.23)

The characteristic function, G, corresponds to G(f)PLPn=1 = 1− f and G(f)RC = cos(f)2

with decay rate equal to 1/t2 and 1/|t|3, respectively. Thus, the decay rate of the LCP pulse
is 1/t2
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Figure 2.8: Impulse Response and Frequency characteristic of the LCP Filter for β = 1.7.

r Filter

In [19], pulses with an asymptotic decay rate of t−k for any integer value of k are proposed.
The G(f) function used is a polynomial function given by G(f) =

∑n
i=0 aif

i with n being the
polynomial degree. Later, in [9], this method is used to construct families of pulses based on
the linear combination of several pulses.

In the first case, the linear combination technique for a pair of pulses is applied, one has
an ADR of t−2 (s2(t)) and the other with an ADR of t−3 (s3(t)), resulting in ADR of t−2
(r(t)),

r(t) = as2(t) + (1− a)s3(t). (2.24)

The impulse and frequency response of the constituent pulse of the linear combination is
illustrated in Fig. 2.9
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Figure 2.9: Impulse Response and Frequency characteristic of the r Filter for a = 1.618.

q Filter

The same approach is followed using a linear combination of the CC3 pulse (p(t)) and the
s3(t) pulse. The CC3 pulse, proposed in [7], is based on a piece-wise parabolic frequency
characteristic. The linear combination (q(t)) is described by the equation (2.25),

q(t) = ap(t) + (1− a)s3(t). (2.25)

The impulse and frequency responses of the q(t) pulse defined in equation (2.25), is shown
in the Fig. 2.10. The ADR of q(t) is t−2
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Figure 2.10: Impulse Response and Frequency characteristic of the q Filter, for a = 0.797.

v Filter

In [20], 2 pulses were proposed based on a piece-wise rectangular-polynomial frequency char-
acteristic, px2 and px3, using second and third-degree polynomials respectively. In [9] the
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proposed pulse is obtained as a result of the linear combination,

v(t) = apx2(t) + (1− a)px3(t). (2.26)

The impulse and frequency response of (2.26) are shown in Fig.(2.11), the ADR of the
v(t) is t−2
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Figure 2.11: Impulse Response and Frequency characteristic of the v Filter for a = 0.788.

2.2.5 Time Approach Domain

Another methodology to construct Nyquist families of pulses is to formulate them in the time
domain, namely, propose its impulse response. This methodology results in pulses with more
degrees of freedom than the previous pulses, and in this way, these families are more general
and can represent a variety of pulses. As a counterpart, the analytical Fourier transform
cannot be found, thus, for every parameter, the filter’s stop-band needs to be computed
applying the discrete Fourier transform of the impulse response. Usually, the filter’s stop-
band of the pulses formulated in the time domain is greater than the formulated in the
frequency domain, increasing the bandwidth used for the pulses.

ELP

First, the exponential linear filter (ELP) [21], is a hybrid filter composed of two main elements,
a finite impulse response (FIR) filter, and a Nyquist-I pulse,

h(t)ELP = e−π(β/2)(t/T )
2

× sin (πt/T )

(πt/T )
× sin(παt/T )

(παt/T )
. (2.27)

The impulse response and frequency characteristic can be seen in Fig. 2.12
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Figure 2.12: Impulse Response and Frequency characteristic of the ELP Filter.

SPLCP

The sinc parametric linear combination pulse (SPLCP), proposed in [22], is the product of a
modified sinc function and the PLCP, previously defined in 2.7. The modified sinc function
adds two additional degrees of freedom, b, and γ, which controls the amplitude of the main
and lateral side lobes of the filter. The explicit time-domain expression is given by the
equation (2.28),

h(t)SPLCP =
(sin(bτ)

bτ

)γ
× h(t)PLCP

=
(sin(bτ)

bτ

)γ
× sin(πτ)

πτ
× 4(1− µ) sin(πατ/2)2 + παµτ sin(πατ)

π2α2τ 2
.

(2.28)

The impulse response and frequency characteristic can be seen in Fig. 2.13
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Figure 2.13: Impulse Response and Frequency characteristic of the SPLCP Filter.
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IPLCP

The improved parametric linear combination pulse (IPLCP) proposed in [23], is equivalent
to the γ-th power of a PLCP multiplied by the exponential factor exp(−επ2(τ)2). These last
two operations add two extra degrees of freedom to the pulse-shaping function: γ and ε.

h(t)IPLCP = exp(−επ2(τ)2)×
(sin(πτ)

πτ
× 4(1− µ) sin(πατ/2)2 + παµτ sin(πατ)

π2α2τ 2

)γ
. (2.29)

The impulse response and frequency characteristic can be seen in Fig. 2.14

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

t/T

0

0.2

0.4

0.6

0.8

1

Im
pu

ls
e 

R
es

po
ns

e 

-4 -3 -2 -1 0 1 2 3 4

f/B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 R

es
po

ns
e 

Figure 2.14: Impulse Response and Frequency characteristic of the IPLCP Filter.
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Chapter 3

Analysis of the Exponential Linear Pulse
in base-band system impaired by ISI

3.1 Introduction - ISI

In practical receivers, it has been verified that the presence of errors in the sampling period
may cause deviation respect to sampling points; hence, symbol timing errors are produced
and due to this effect the bit error rate (BER) increases. Therefore, it is expected that
the tails of the filter must decay rapidly outside the pulse interval in order to eliminate
the undesired effects of timing errors [8], [23]. Further, the implementation of the filter in
practical systems has to consider a finite or limited version of its impulse response which is
carried out through a truncation process, adding new challenges to the design of Nyquist-I
filters because its frequency spectrum would be affected [24].

To overcome the prior concerns, several Nyquist-I pulses have been proposed. The most
popular ISI-free Nyquist-I pulse for distortion-less transmissions is the traditional raised
cosine (RC) pulse. Besides the RC pulse, other Nyquist-I pulses with lower BER and wider eye
openings have been proposed. The authors in [19] presented a family of ISI-free polynomial
pulses that can have an asymptotic decay rate of t−k for any integer value of k, whereas
in [3], [18], [9] a new ISI-free linear combination of pulses with different decay rates has
been proposed. Authors in [25] proposed a family of ISI-free pulses with senary piece-wise
polynomial frequency characteristic. Other ISI-free pulses denoted as piece-wise flipped-
exponential (PFE) have also been proposed in [7]. In [2], the authors presented several
families of Nyquist-I pulses by using a parametric approach, adding more degrees of freedom
in the design of ISI-free pulses. Furthermore, the proposed pulses in [2] incorporate reviewed
pulses as special cases. To the authors best knowledge, the analysis of time-limited pulses
in literature is very scarce, for example in [7], the practical implementation details of the
truncated realization of the PFE is discussed and compared. Meanwhile, in [24] the design
and implementation of the truncated version of the improved Nyquist filters are studied.

In [26] the exponential linear pulse (ELP) was derived and optimized for peak-to-average
power ratio (PAPR) reduction in single carrier orthogonal frequency division multiple access
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(SC-FDMA). The proposed filter outperforms other existing filters in terms of PAPR and
symbol error rate. Later, in [27], the ELP was used to mitigate the inter-carrier interference
(ICI) in orthogonal frequency-division multiplexing (OFDM) systems, giving excellent results.
Therefore, in this chapter, the performance of the ELP is studied considering a base-band
digital communication system impaired by ISI. The optimum ELP derived in [26] is evaluated
and the results are compared with other recently proposed pulses in terms of the average BER,
distribution of spectral energy and spectral regrowth, for various roll-off factors and symbol
timing errors. Further, the eye diagram opening of the ELP is evaluated and compared with
the traditional RC pulse. Finally, the effects of the impulse response truncation, which leads
to the implementation in practical systems of the pulses, are investigated.

The remainder of the chapter is organized as follows: in Section 3.2, the ELP, and its
impulse response are presented. Section 3.3 describes the tools used to evaluate the pulses,
and the results are presented for the complete and time-limited version. Section 3.4 shows
the frequency characteristic and presents the spectral energy distribution for the ELP and
the other evaluated pulses. Finally, partial conclusions are reported in Section 3.5.

3.2 Exponential Linear Pulse

The ELP is a hybrid filter, composed of two main elements: a finite impulse response (FIR)
filter and a Nyquist-I pulse [26]. The explicit time-domain expression of the ELP is given by

(3.1)h(t)ELP = e−π(β/2)(t/T )
2

× sin (πt/T )

(πt/T )
× sin(παt/T )

(παt/T )
.

The term α is the roll-off factor defined for 0 ≤ α ≤ 1, and t/T is the normalized time. The
coefficient β is defined for 0 ≤ β ≤ 1, and it is used to control the amplitude of the central
lobe and the side-lobes of the pulse. It can be seen that the hybrid ELP is the product of
an exponential expression and the linear pulse (LP) for n = 1. The parameter n defines a
family of pulses in the frequency domain, and for each value, a new pulse is generated with
an arbitrary excess of bandwidth α [2]. The sinc(t/T ) function in (3.1) is considered as a
FIR filter. The family of pulses defined in (3.1), evaluated for limt→0(·), and for any value of
α, and β is always equal to one. Additionally, the ELP, evaluated for k = ±1,±2,±3,±4, . . .,
and for any value of α and β is always equal to zero. Therefore, the family of pulses described
in (3.1) fulfills Nyquist’s ISI-free criterion, previously described in (2.12). In the Fig. 3.1 the
Impulse and Frequency response of the ELP filter for various values of β is shown. It can
be seen how the lateral side-lobes are reduced for values of β close to 1 but, at expenses of
having a narrower central lobe and a poor spectral behavior.

Throughout this manuscript, β = {0.5, 1} will be used, as observed in [26]. The ELP with
β = 0.5 is considered as a pulse with a balance between the amplitude of the side lobes and
the central lobe and the ELP with β = 1 as the pulse with the faster extinction and smaller
side lobes.

Figs. 3.2a and 3.2b present the impulse response of the ELPβ=1, ELPβ=0.5, the SPLCP,
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Figure 3.1: Impulse and Frequency response of the Exponential Linear Pulse for β =
{0, 0.25, 0.5, 0.75, 1} and α = 0.35

proposed in [8], and the traditional RC pulse with a roll-off factor equal to 0.35 and 0.50,
respectively for comparison purposes. It can be seen that the impulse response of ELP pulse,
in both cases, decay rapidly having amplitude values close to zero from t/T = 2 and beyond.
The behavior of the SPLCP pulse is similar to the ELPβ=1 for both values of α. The impulse
response of the ELPβ=1 has smaller relative magnitudes in its side-lobes compared to the
ELPβ=0.5 and the traditional RC pulse, but at expenses of having a narrower central lobe
compared with both, ELPβ=0.5 and RC. Consequently, robustness against ISI and a larger
eye-opening are expected for the ELPβ=1. Through the experiments realized it could be
noticed that the trend is the same for other roll-off factors and values of β. Because the
side-lobes of the ELP are rapidly diminished the undesired effects of jitter should decrease,
and the pulse would be less sensitive to timing errors, resulting in a lower BER [2, 19, 3, 9],
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Figure 3.2: Impulse response of the ELPβ=1, ELPβ=0.5, SPLCP and the RC pulse for an
excess bandwidth of α = 0.35 (a) and α = 0.5 (b).
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3.3 Performance Evaluation

In this section, the performance of the ELP is evaluated by using two main practical tools.
One of the tools used to analyze the performance of the ELP is the eye diagram. The eye
diagram is a useful tool to visually evaluate the susceptibility of the transmission systems
due to ISI [28, 29]. The eye diagrams were generated by superimposing 105 individual bi-
nary antipodal signaling sequences, and by inserting two consecutive symbol periods as was
reported in the literature [9, 7]. Binary phase shift keying (BPSK) was the binary antipodal
digital modulation used. In Figs 3.3a and 3.3b the eye diagrams of the ELPβ=1 and RC pulse
with α equal to 0.35 and 0.5 are plotted respectively. The results show that ELP exhibits a
much wider eye-opening than the RC pulse for both values of α; therefore, a lower BER is
expected because the ELP diminishes the undesired effects of jitter.
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Figure 3.3: Average envelopes of the eye diagram of the ELPβ=1 and RC pulses for an excess
bandwidth of α = 0.35 (a) and α = 0.5 (b).

The next step of the evaluation process involves the calculation of the BER in the presence
of different time sampling errors, roll-off factors for the ideal and truncated response of the
pulses. The BER is certainly the most important metric of performance in digital commu-
nication systems because it considers the effects of additive Gaussian white noise (AWGN),
distortion, synchronization, among other physical phenomena. To determine the BER of the
ELP in the presence of time-sampling errors, the truncated Fourier series proposed in [6] is
used as follows,

Pe =
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2)sin(mwgo)

m

N2∏
k=N1
k 6=0

cos(mwgk) (3.2)

The latter truncated Fourier series is the de facto evaluation metric used in the literature
to determine BER in the presence of symbol timing errors [2, 7, 8, 9]. The expression
given in (3.2) assumes AWGN in the channel and BPSK binary antipodal signaling. In
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(3.2), w = 2π/Tf is the period used in the series, M represents the number of coefficients
used to converge the truncated Fourier series, whereas N1 and N2 indicate the number of
interfering symbols before and after the transmitted symbol, respectively. For the expression
gk = p (kT + η), p(t) is the ISI-free pulse evaluated at the receiver at time kT plus symbol
timing error η. Thus, the term g0 represent the amplitude of the impulse response of the ISI-
free pulse under evaluation at time t = η. The parameters used to make the truncated Fourier
series converge are consistent with the parameters used in [7, 8, 23, 3], and are depicted in
Table 4.1. The BER for the complete impulse response in the presence of time-sampling
errors was determined for the ELP, the RC pulse, the recently proposed PFE [7], as well
as the recently evaluated SPLCP [8] and the improved parametric linear combination pulse
(IPLCP) [23]. To the authors best knowledge, the PFE, SPLCP, and IPLCP are the pulses
with the best BER performance found in the literature. A signal-to-noise ratio (SNR) of 15
dB has been assumed, while 210 interfering symbols were generated.

Table 3.1: System simulation parameters of base-band system impaired by ISI.

Parameter Value
M 100
Tf 60
Interfering Symbols 210

Channel AWGN
Digital Modulation BPSK
Signal-to-noise ratio 15 dB
Symbol timing errors, t/T ±0.05,±0.10,±0.20
Roll-off factor, α 0.25, 0.35, 0.5

Complete Impulse Response

Table 3.2 presents the obtained results for the different pulses and scenarios. In general, the
ELP for β = 0.5 and β = 1 performed well for different roll-off factors and timing offsets
compared to the other pulses. Further, the ELPβ=1 has the smallest error rates for α = 0.25
and α = 0.35, among all of the evaluated timing offsets compared to the RC and the pulses
proposed in [7, 8, 23]. This behavior is consistent with the wider eye opening of the ELP and
because its side-lobes vanish rapidly compared to the other pulses. For the case of α equal
to 0.50, SPCLP has the best performance for all timing offsets, even though the ELPβ=1 was
very close. To clarify this point, it can be seen from Fig 3.2b that the SPLCP, beside having
a wider central lobe, its tails have smaller amplitude than the ELPβ=1. So the contributions
of the adjacent pulses in the compute of BER would be smaller. In general, it can be seen
that increasing the value of the time-sampling error, for a fixed excess bandwidth α, the BER
increases for all pulses. Further, for a fixed sampling time error, a larger BER is obtained
with a smaller roll-off factor due to the increase of the tails of the impulse response.
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Table 3.2: Bit Error Probability for 210 Interfering Symbols and SNR= 15dB

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20
RC 8.2189e-08 2.8184e-06 9.7472e-04
PFE 4.5110-e08 7.9603e-07 1.9140e-04

0.25 SPLCP 1.3870e-08 4.4260e-08 2.4530e-06
IPLCP 1.5232e-08 5.8295e-08 3.7486e-06
ELP (β = 1) 1.3444e-08 3.9914e-08 2.1059e-06
ELP (β = 0.5) 1.7221e-08 8.0914e-08 6.0494 e-06
RC 3.9253e-08 5.4021e-07 1.0129e-04
PFE 3.0130e-08 3.3720e-08 5.6450e-05

0.35 SPLCP 1.3380e-08 3.9432e-07 2.0438e-06
IPLCP 1.4476e-08 5.0372e-08 3.0138e-06
ELP (β = 1) 1.3323e-08 3.8656e-08 1.9911e-06
ELP (β = 0.5) 1.6175e-08 6.8666e-08 4.7534e-6
RC 2.4134e-08 1.8580e-07 2.0878e-05
PFE 1.8921e-08 1.1615e-07 1.3072e-05

0.50 SPLCP 1.2867e-08 3.4079e-08 1.5437e-06
IPLCP 1.3437e-08 3.9955e-08 2.0958e-06
ELP (β = 1) 1.3174e-08 3.6974e-08 1.8220e-06
ELP (β = 0.5) 1.4595e-08 5.1589e-08 3.1092e-06

Time-limited impulse response

The Nyquist pulses are digitally implemented in practical systems using a truncated version of
the impulse response that results in the same or lower BER performance because amplitude
values beyond the truncation are not considered [30]. Due to the truncation process, the
pulse does not fulfill the first Nyquist criterion anymore and as a consequence even if the
transmitter and receiver are perfectly synchronized errors due to ISI will arise. Table 3.3
shows the obtained results for different Nyquist pulses truncated at [-5.5 t/T, 5.5 t/T ] and
for different roll-off factors following the procedure detailed in [7]. The performance of all
pulses improves compared to the pulses with the ideal impulse response, but except for those
with side-lobes that rapidly become extinguished and the truncation operation does not
affect them. It is desirable that the tails of the pulse decay rapidly in order to allow quick
truncation and decrease the number of coefficients that represent the digital filter.

3.4 Frequency Characteristic

To design a modulation filter, the designer needs to consider carefully both representations
of the signal, in the time and frequency domain. Thus, in the designing process, time or
frequency representation has to be compromised at the expenses of the other, and it is a
particular application that defines the final compromise [30]. .
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Table 3.3: Bit error probability for the truncated pulse version in [-5.5 t/T ; 5.5 t/T ] for 210

Interfering Symbols and SNR= 15dB

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20
RC 8.2158e-08 2.8157e-06 9.7340e-04
PFE 4.2680e-08 6.8789e-07 1.5600e-04

0.25 SPLCP 1.3867e-08 4.4257e-08 2.4534e-06
IPLCP 1.5232e-08 5.8295e-08 3.7486e-06
ELP (β = 1) 1.3444e-08 3.9914e-08 2.1059e-06
ELP (β = 0.5) 1.7222e-08 8.0914e-08 6.0494e-06
RC 5.9982e-08 1.3886e-06 3.9043e-04
PFE 2.8305e-08 2.9460e-07 4.6706e-05

0.35 SPLCP 1.3380e-08 3.9428e-08 2.0426e-06
IPLCP 1.4476e-08 5.0372e-08 3.0138e-06
ELP (β = 1) 1.3323e-08 3.8656e-08 1.9911e-06
ELP (β = 0.5) 1.6175e-08 6.8666e-08 4.7534e-06
RC 3.9721e-08 5.4880e-07 1.0213e-04
PFE 1.8071e-08 1.0345e-07 1.1500e-05

0.50 SPLCP 1.2864e-08 3.4066e-08 1.5397e-06
IPLCP 1.3436e-08 3.9954e-08 2.0958e-06
ELP (β = 1) 1.3174e-08 3.6974e-08 1.8220e-06
ELP (β = 0.5) 1.4595e-08 5.1589e-08 3.1092e-06

Complete Frequency Response

Figs. 3.4a and 3.4b show the frequency response of the ELPβ=0.5, ELPβ=1, SPLCP, and the
traditional RC pulse for roll-off factors 0.35 and 0.5 respectively considering the complete
impulse response. It can be seen from the frequency characteristic that both ELP pulses
will introduce additional out-of-band radiation compared to the RC pulse, which has a stop
band value of f/B = 1 + α. This out-of-band radiation can be interpreted as a transfer of
energy from the low spectral region (f/B ≤ 1−α) to the high spectral region (f/B ≥ 1 +α)
resulting in a more open receiver eye in the eye diagram and a faster extinction of the tails
in the impulse response, giving better results in therm of BER [31]. Therefore, there is a
trade-off between out-of-band radiation and lower BER due to ISI.

Table 3.4 presents the energy contained in different intervals for the normalized frequency
considering the pulses with the best BER performance and the RC for comparison purposes
for different roll-off factors. The energy of the RC pulse is allocated completely in the low
spectral zone, having the highest energy for the main lobe (0 ≤ f/B < 1−α) compared to the
other pulses for all the roll-off factors. Considering the ELPβ=1, and the SPLCP, its energy
distribution is almost the same, but the ELP concentrates a bit more energy (less than 2
%) in the high spectral zone, (f/B > 1 + α) than the SPLCP. Comparing the distribution of
energy of the ELPβ=0.5 and the ELPβ=1 it can be seen that the out-of-band radiation can be
controlled by modifying β, and for lower values, the out-of-band radiation decreases.

The frequency response of the ELP pulse is not explicit known, because the filter was
formulated in the time domain. So, for the calculation of the spectrum shape starting from
the impulse response, numerical methods like fast Fourier transform (FFT) need to be used.
Thus, the relation between the filter stop-band and parameters of the pulse is not explicit,
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Figure 3.4: Frequency response of ELPβ=1, ELPβ=0.5 and RC pulses for α = 0.35 (a) and
α = 0.5 (b), considering the complete impulse response.

Table 3.4: Distribution of the spectral energy in percentage for the ELPβ=1, ELPβ=0.5,
SPLCP, and RC for α = {0.25, 0.35, 0.5} considering the ideal impulse response.

α Pulse 0 ≤ f/B < 1− α 1− α ≤ f/B < 1 + α f/B ≥ 1 + α

0.25

RC 74.81 25.16 0.03
SPLCP 64.37 24.93 10.71
ELP (β=1) 62.15 24.90 12.95
ELP (β=0.5) 67.66 24.96 7.39

0.35

RC 65.10 34.88 0.02
SPLCP 56.34 34.95 8.71
ELP (β=1) 54.83 34.91 10.27
ELP (β=0.5) 59.60 34.93 5.47

0.5

RC 50.53 49.46 0.02
SPLCP 43.27 49.50 7.22
ELP (β=1) 42.87 49.36 7.77
ELP (β=0.5) 46.54 49.50 3.97

so for every α and β parameter selection, the stop-band value needs to be found.

Spectral Regrowth

When the complete impulse response of the pulses is truncated at a certain value, its rep-
resentation in the frequency domain changes (this phenomenon is called spectral regrowth)
introducing harmonics that can spread frequency components over the stop-band value. In
Figs. 3.5a and 3.5b the spectral regrowth is presented for the ELPβ=1, ELPβ=0.5, SPLCP
and RC for roll-off factor 0.35, 0.5 and truncation at [-3.5 t/T, 3.5 t/T ] for demonstration
purposes. It can be seen that the spectral-regrowth affects only the RC pulse, because its
tails decay at a lower rate than the ELP, increasing the stop-band value beyond f/B = 1+α.
For higher values of α, the spectral regrowth decreases. An increase in the truncation length
(i.e. the use of more taps for representing the digital filter) is necessary in order to have both,
low spectral re-growth and reliable error probability performance. Moreover, the increase of
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the truncation length determines bigger latency and at the same time the increase of hard-
ware complexity, so a trade-off exists and is a task for the designer to choose the optimal
combination for the concrete application.
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Figure 3.5: Frequency response of ELPβ=1, ELPβ=0.5, SPLCP and RC pulses for α = 0.35
(a) and α = 0.5 (b) considering the time-limited impulse response.

.

3.5 Conclusions - ISI

In this work, the ELP pulse was numerically analyzed and compared with respect to the latest
pulses given in the literature, like the SPLCP, IPLCP, PFE and the traditional RC pulse for
reference, in the time and frequency domains. The eye diagram of each impulse response in
the transmitter side and the BER in the receiver side were used as evaluation tools. For the
complete impulse response, the ELP for β = 1 generates the smaller BER compared to the
other evaluated pulses for α = {0.25, 0.35}. For α = 0.5 only the Sinc Parametric Linear
Combination Pulse (SPLCP) outperform the ELPβ=1. For the time-limited version of the
pulses, the behavior improves in terms of BER for the pulses with tails that decays slowly.
These results allow communications systems to use lower power levels to achieve the same
BER value, making more efficient use of energy resources.

Considering the Frequency response, the ELP introduces additional out-of-band radiation
compared to the RC pulse. The excess of bandwidth introduced by the family of pulses
analyzed in this chapter explains the good performance in the time domain, in terms of
BER and wider eye opening. Finally, for the truncated frequency response, the ELP does
not present additional spectral regrowth. The performance of the ELP could potentially
be improved by using optimization techniques, specifically designed for BER reduction in
presence of time sampling errors.
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Chapter 4

Error Probability Analysis Considering
ISI and CCI

4.1 Introduction - ISI + CCI

The use of the pulse-shaping technique, along with the design and optimization of different
Nyquist-I pulses, is a widely researched topic [2, 7, 8, 9, 3]. For example, in orthogonal
frequency-division multiplexing (OFDM) systems, Nyquist pulses are used for ICI reduction
and BER improvement in the presence of carrier frequency offset [32, 27, 33]. In single-
carrier frequency division multiple access (SC-FDMA) systems, Nyquist pulses are used to
reduce the peak-to-average power ratio (PAPR) [34, 26], whereas for next-generation wireless
communication systems, 5G, Nyquist pulses are used to reduce the out-of-band radiation [35].

In the literature, the effects of ISI have been studied for various Nyquist-I pulses [2, 7, 8, 9,
3], considering the average BER in the presence of symbol timing errors and different roll-off
factors [6]. By contrast, the study of the effects of CCI considering Nyquist-I pulses is very
scarce, although different models for CCI were developed. In [36], the authors studied the
effects of CCI and fading in terms of BER for band-limited binary phase shift keying (BPSK)
environments. The authors assume different Nakagami-m distributions for the fading of the
desired and interfering signals. The authors also assumed that the interfering signals have
the same modulation format as the desired user signal. In [37], an equation to compute the
BER was developed for BPSK modulation, considering fast fading channels subject to timing
errors and asynchronous co-channel interferer signals. In the prior works, the equations to
compute the error are too complex and computationally expensive, mainly because they do
not have a closed-form equation.

In this chapter, the closed-form equations given in [6] are used to compute the BER under
CCI and both, ISI and CCI effects simultaneously using BPSK modulation, additive white
Gaussian noise (AWGN) channel, and considering the effects of time jitter in the receiver.
Also, the effects of the number of interfering signals are studied for a fixed interference power.
The remainder of this chapter is organized as follows: in Section 4.2, the sinusoidal interfer-
ence model and its expressions to compute the BER under CCI and CCI+ISI simultaneously
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are described. In Section 4.3 the performance of the evaluated Nyquist-I pulses is presented
and discussed. Finally, partial conclusions are reported in Section 4.4.

4.2 System Model - ISI + CCI

Consider a binary symmetric channel with additive noise, the output at the receiver has the
form

y(t) = s(t) + n(t), (4.1)

where s(t) is the received signal and n(t) is the noise signal. It is assumed that the noise
follows a zero-mean normal distribution with variance σ2 = 1. Consider the suppression on
t for compactness sake. The signal s, which includes the desired signal and the contribution
due to co-channel, inter-symbol or both types of interferences is expressed as

s =

N2∑
k=N1

bkgk +
L∑
i=1

ri cos(φi), (4.2)

where bk is a random variable that assumes the values {−1, 1} with equal probability and
is assumed to be independent. The term gk = p(t − kT − η) represents the ISI-free pulse
shaping filter evaluated at the receiver time kT plus a normalized symbol time error η. The
desired signal corresponds to b0g0 and the ISI contribution (z) due to N1 and N2 predecessors
and successive symbols, respectively is expressed as

z =

N2∑
k=N1
k 6=0

bkgk =

N2∑
k=N1
k 6=0

zk, (4.3)

additionally, the co-channel interference (ν) modeled as the addition of L fixed amplitude
signals (ri) with random phase (φi) to the received signal, is expressed as

ν =
L∑
i=1

ri cos(φi) =
L∑
i=1

νi, (4.4)

being the amplitudes and the random phases independent of each other, and the phases are
assumed to be uniformly distributed on the interval [0, 2π). The effect from ν in the desired
signal is a bias whose nature will depend on the number of interfering signals L.

Following the steps detailed in [6], where the characteristic function method is used,
the average bit error probability assuming AWGN in the channel, BPSK binary antipodal
signaling for CCI (s = b0g0 + ν) and time sampling errors is

Pe
CCI

=
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2) sin(mwgo)

m

L∏
i=1

J0(mwri), (4.5)

being M a positive integer that controls the truncation of the Fourier series, w = 2π/T the
period in the series, and J0(·) the zeroth-order Bessel function of the first kind. For the case
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where ISI (s = bog0 + z) and symbol time error are present, the average BER is given by [6]

Pe
ISI

=
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2) sin(mwgo)

m
×

N2∏
k=N1
k 6=0

cos(mwgk). (4.6)

Finally, and considering the CCI and ISI (s = b0g0 + z + ν) simultaneously, the average
probability of error is [6]

Pe
CCI+ISI

=
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2) sin(mwgo)

m
×

N2∏
k=N1
k 6=0

cos(mwgk)
L∏
i=1

J0(mwri). (4.7)

The signal-to-noise power ratio (SNR) and the signal-to-interference power ratio (SIR) are
defined as

SNR = g20, SIR = g20

/ L∑
i=1

r2i = g20/(Lr
2
i ), (4.8)

the last expression indicates that the total amount of power is distributed among L interfering
signals [10]. The products of the two inferences, CCI in (4.5),

∏L
i=1 J0(mwri), and ISI in (4.6)∏N2

k=N1
k 6=0

cos(mwgk), are multiplied in (4.7). This is because both interferences are statistically

independent; hence, their characteristic function can be separated.

Other models exist in the literature for determining the interference more precisely, for
example, the exact or Gaussian interference models [10]. But in this work, and as an initial
approach and for sake of simplicity, the sinusoidal interference model is used.

4.3 Numerical Results and Discussion

In this section, we evaluate several Nyquist-1 pulses described in Section 3.2 considering
different types of interferences. First of all, we consider the effects of CCI and time sampling
errors simultaneously because this type of analysis is very scarce in the literature and it will
be used later to clarify the effects of both interferences. Later, we consider the effects of CCI
and ISI simultaneously to compute the BER. The parameters used to make the truncated
Fourier series converge in (4.6) comply with the parameters used in [7, 8, 38, 39], and are
depicted in Table 4.1 along with L. The same parameters are used to make the truncated
Fourier series given in (4.5) and (4.7) converge, as previously shown in [6].

4.3.1 BER considering CCI

Tables 4.2 and 4.3 present the average BER only for CCI using different pulses, roll-off factors,
and time sampling errors for L = 2 and L = 6 interfering signals, respectively. The RC pulse
has the smallest error rate for all the evaluated scenarios, even though the BTRC was very
close. This behavior is consistent with Fig. 3.2a and 3.2b, where the impulse response
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Table 4.1: System parameters of base-band system impaired by ISI and CCI, considering the
sinusoidal model.

Parameter Value
M 100
Tf 60
Interfering Symbols 210

Channel AWGN
Digital Modulation BPSK
Signal-to-noise ratio 15 dB
Signal-to-interference ratio 10 dB
Symbol timing errors, t/T ±0.05,±0.10,±0.20
Roll-off factor, α 0.25, 0.35, 0.5
Number of interferers, L 1, 2, 6, 15

of the RC has the greatest main-lobe and intuitively is the most robust under amplitude
interferences or noise considering or not timing offset. The performance of the other recent
pulses (SPLCP, ELP, and IPLCP) is in the same order of magnitude as the RC pulse.
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Figure 4.1: Approximate pdf for ν using L = {1, 2, 6, 15} as the number of interferer signals.
The x axis is truncated originally from [−15t/T, 15t/T ] because the contribution of the tails
for the pdf (L = 15) is marginal.

It is noted from Tables 4.2 and 4.3 that for a fixed interference power, the BER is smaller
when the total interference power is concentrated in two interferer signals than when it is
distributed among six interfering signals. This can be explained by looking at Fig. 4.1, where
the probability density function (pdf) of ν, expression (4.4), is shown for L = {1, 2, 6, 15}.
When the number of interfering signals increases for a fixed interference power, the range
of the pdf also increases, and ν can take larger values. This means that having multiple
interferer signals instead of a few, affects severely the performance of the system, even if each
of the interferer signals has a fraction of the total power.
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Table 4.2: Bit Error Probability with CCI only using SNR = 15dB, SIR = 10dB AND
L = 2 Interfering Singals

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 3.7910E-05 4.8981E-05 1.2815E-04
BTRC 3.8030E-05 4.9586E-05 1.3384E-04
SPLCP 4.0374E-05 6.2383E-05 2.9129E-04
IPLPC 4.0000E-05 6.0209E-05 2.5904E-04
ELP (β=1) 4.1129E-05 6.6903E-05 3.6369E-04
ELP (β=0.5) 3.9534E-05 5.7576E-05 2.2339E-04

0.35

RC 3.8018E-05 4.9524E-05 1.3324E-04
BTRC 3.8254E-05 5.0729E-05 1.4501E-04
SPLCP 4.0726E-05 6.4475E-05 3.2408E-04
IPLPC 4.0260E-05 6.1709E-05 2.8080E-04
ELP (β=1) 4.1333E-05 6.8165E-05 3.8575E-04
ELP (β=0.5) 3.9732E-05 5.8682E-05 2.3801E-04

0.5

RC 3.8248E-05 5.0696E-05 1.4466E-04
BTRC 3.8735E-05 5.3237E-05 1.7153E-04
SPLCP 4,1485E-05 6.9133E-05 4.0483E-04
IPLPC 4.0816E-05 6.5009E-05 3.3244E-04
ELP (β=1) 4.1770E-05 7.0917E-05 4.3650E-04
ELP (β=0.5) 4.0154E-05 6.1097E-05 2.7190E-04

4.3.2 BER considering CCI+ISI

Second, we evaluate the probability of error of the Nyquist-I pulses under CCI and ISI
simultaneously. Table 4.4 presents the obtained results for the pulses considering L = 2.
The ELPβ=1 has the smallest error rate for α = 0.25, whereas for α = {0.35, 0.5} SPLCP
presents the best performance among all timing offsets. These results are consistent with
those presented in [21], where ELPβ=1 presents the best performance for α = {0.25, 0.35}
considering only the ISI effect. For α = 0.35 our results differ from the ones in [21]. This is
due to the fact that when considering the simultaneous effect of ICI and ISI, in addition to
the reduction of the lateral side-lobes of the pulses, the magnitude of the main lobe must be
considered as well for decrease the BER.

The results for the case of L = 6 interfering signals are presented in Table 4.5. It can be
noticed that the CCI effect is stronger than the case of a single interfering signal, following
the same behavior of the case when only CCI was considered. For α = 0.25 and timing offset
t/T = {0.1, 0.2}, ELPβ=1 has the smallest BER. Meanwhile, for the same value of α, but
for t/T = {0.05}, SPLCP achieved the best performance. Further, for the remaining values
of α, SPLCP outperformed the other pulses. These results indicate that the SPLCP is the
pulse with the best compromise between the magnitude of its central and lateral side-lobes
in terms of BER.

Generally, in the literature the main focus is to optimize Nyquist-I pulses, considering only
the ISI effects, by reducing the magnitude of the lateral side-lobes of the impulse response.
But when the effects of CCI and ISI are considered, besides the reduction of the lateral
side lobes, the magnitude of the main lobe should be considered as well. Further, when the
number of interfering signals is large, the effects of the CCI are stronger than those of the

34



Table 4.3: Bit Error Probability with CCI only using SNR = 15dB, SIR = 10dB AND
L = 6 interfering signals

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 1.4194E-04 1.7284E-04 3.6293E-04
BTRC 1.4228E-04 1.7448E-04 3.7534E-04
SPLCP 1.4897E-04 2.0821E-04 6.8672E-04
IPLPC 1.4791E-04 2.0260E-04 6.2672E-04
ELP (β=1) 1.4659E-04 1.9574E-04 5.5851E-04
ELP (β=0.5) 1.5111E-04 2.1974E-04 8.1670E-04

0.35

RC 1.4225E-04 1.7431E-04 3.7405E-04
BTRC 1,4293E-04 1.7757E-04 3.9938E-04
SPLCP 1.4997E-04 2.1357E-04 7.4634E-04
IPLPC 1.4865E-04 2.0647E-04 6.6737E-04
ELP (β=1) 1.5169E-04 2.2292E-04 8.5519E-04
ELP (β=0.5) 1.4715E-04 1.9863E-04 5.8675E-04

0.5

RC 1.4291E-04 1.7748E-04 3.9864E-04
BTRC 1.4430E-04 1.8429E-04 4.5492E-04
SPLCP 1.5211E-04 2.2536E-04 8.8812E-04
IPLPC 1.5023E-04 2.1493E-04 7.6133E-04
ELP (β=1) 1.5292E-04 2.2983E-04 9.4210E-04
ELP (β=0.5) 1.4835E-04 2.0489E-04 6.5083E-04

ISI; therefore, the optimization of the Nyquist-I pulses in terms of the main lobe should be
an important issue when the sinusoidal interference model is considered.

4.4 Conclusion - ISI + CCI

In this chapter, recent proposed Nyquist-I pulses, as well as some traditional pulses, were
evaluated under different kinds of interference. First, the CCI, different symbol timing errors,
and roll-off factors were considered in the average BER computation. The results indicate
that the RC pulse achieved the best performance. This is because the RC pulse possesses the
greatest central lobe magnitude compared to the other evaluated pulses. Second, considering
the combined effects of CCI and ISI with symbol timing errors, in general, the SPLCP
outperform the other pulses by presenting the smallest average BER for roll-off factors α =
{0.35, 0.5}. For α = 0.25, the ELPβ=1 presents the best performance.

These results indicate that when ISI and CCI are both taken into consideration, the
magnitude of the main lobe is preponderant and is even more important than the magnitude
of the side-lobes as the number of interferer signals increases for a fixed interference power.
In this chapter, we used the sinusoidal interference model to represent the CCI as well as
non-fading environment as an initial approach, but as future work, we will use more precise
models and consider fading for the desired and interfering signals.
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Table 4.4: Bit Error Probability considering ISI+CCI for 210 interfering symbols using
SNR = 15dB, SIR = 10dB, and L = 2 interfering signals

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 8.9927E-05 5.0896E-04 8.8845E-03
BTRC 7.7705E-05 3.6833E-04 6.1701E-03
SPLCP 4.2845E-05 8.0001E-05 7.4930E-04
IPLPC 4.4315E-05 8.9277E-05 9.0274E-04
ELP (β=1) 4.2630E-05 7.8291E-05 7.1323E-04
ELP (β=0.5) 4.6384E-05 1.0251E-04 1.1156E-03

0.35

RC 7.8791E-05 3.7992E-04 6.4028E-03
BTRC 6.5551E-05 2.4883E-04 3.7782E-03
SPLCP 4.2391E-05 7.6987E-05 6.9414E-04
IPLPC 4.3529E-05 8.4287E-05 8.2098E-04
ELP (β=1) 4.2563E-05 7.7765E-05 7.0095E-04
ELP (β=0.5) 4.5292E-05 9.5496E-05 1.0025E-03

0.5

RC 6.5953E-05 2.5205E-04 3.8416E-03
BTRC 5.3046E-05 1.4841E-04 1.8823E-03
SPLCP 4.2055E-05 7.4338E-05 6.2860E-04
IPLPC 4.2497E-05 7.7612E-05 7.0470E-04
ELP (β=1) 4.2552E-05 7.7465E-05 6.8779E-04
ELP (β=0.5) 4.3629E-05 8.4947E-05 8.3184E-04

Table 4.5: Bit Error Probability considering ISI+CCI for 210 interfering symbols using
SNR = 15dB, SIR = 10dB, and L = 6 interfering signals

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 2.4214E-04 8.3629E-04 9.2600E-03
BTRC 2.2074E-04 6.6405E-04 6.6832E-03
SPLCP 1.5424E-04 2.4182E-04 1.2973E-03
IPLPC 1.5709E-04 2.5757E-04 1.4752E-03
ELP (β=1) 1.5431E-04 2.4132E-04 1.2736E-03
ELP (β=0.5) 1.6109E-04 2.7968E-04 1.7152E-03

0.35

RC 2.2269E-04 6.7888E-04 6.9026E-03
BTRC 1.9837E-04 5.0430E-04 4.4144E-03
SPLCP 1.5352E-04 2.3744E-04 1.2377E-03
IPLPC 1.5561E-04 2.4934E-04 1.3824E-03
ELP (β=1) 1.5430E-04 2.4109E-04 1.2651E-03
ELP (β=0.5) 1.5895E-04 2.6789E-04 1.5880E-03

0.5

RC 1.9915E-04 5.0917E-04 4.4767E-03
BTRC 1.7416E-04 3.5387E-04 2.5332E-03
SPLCP 1.5333E-04 2.3523E-04 1.1798E-03
IPLPC 1,5381E-04 2.3893E-04 1.2536E-03
ELP (β=1) 1.5458E-04 2.4216E-04 1.2647E-03
ELP (β=0.5) 1.5575E-04 2.5020E-04 1.3934E-03
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Chapter 5

Precise model for Co-channel
Interference

5.1 Introduction - Precise CCI

The introduction of new technologies, like Machine to Machine Communication (M2MC),
Internet of Things (IoT) and 5G mobile networks have introduced large amount of devices,
demanding an efficient use of the spectrum. The limitations in the performance of the
digital communication systems are ruled by different sources of interference. In such crowded
environments, the detection of one user’s data is often corrupted by signals from users located
in near or moderate distances using the same frequency band. The aim of the frequency reuse
is to increase the spectrum efficiency. This interference is called CCI and affects negatively
the performance of the communication systems. Therefore, analyzing the performances of
digital communications in the presence of CCI is of considerable interest.

In [6] the author presents closed expressions to evaluate Nyquist-I pulses in terms of the
bit error rate (BER) considering a base-band system impaired by CCI, ISI, or ISI and CCI
simultaneously. The approach used to analyze the CCI interference was the sinusoidal model
(sum of sinusoids) considering multiple interferer signals. Later in [10] is mentioned that
the sinusoidal interference model for representing the CCI impacts always underestimates
the effects of interference on the BER and conclude that the sinusoidal model may not be
a good approximation for moderate to strong cases of Signal to Interference Ratio (SIR). In
the literature other more accurate models to represent the CCI effects have been used. In
[11] the resultant interference contribution is modeled by an additive Gaussian noise with
mean and variance equal to the mean and variance of the sum of the interfering signals.
This model is based on a central limit theorem which states that under certain conditions
the distribution of a sum of many independent RV’s approaches to a Gaussian distribution.
However, the Gaussian model always overestimates the effect of CCI. For this reason, in [12],
the Precise interference model for representing the CCI is used. In this model, the interfering
signals are assumed to have the same modulation and nature as the desired signal, that is, the
interferer signals are quadrature phase-shift keying (QPSK) modulated with the same symbol
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rate, but with random carrier phase shifts and random symbol timing offsets relative to the
desired signal. In the present chapter, an expression to compute the BER in presence of ISI
and CCI simultaneously is proposed, using QPSK modulation for the Precise interference
model. Later, the performance of recently proposed Nyquist-I pulses is evaluated for various
parameters and scenarios.

The rest of the chapter is organized as follows, the system model including the trans-
mitted signal, the received signal and the detection process is described in Section 5.2. In
Section 5.3 the expression to compute the BER considering the ISI and CCI (Precise model)
simultaneously is presented. In Section 5.4 the results are presented and analyzed. Finally,
conclusions are shown in Section 5.5.

5.2 System Model - Precise CCI

Transmitted Signal

Considering the transmission of a signal modulated with QPSK, namely the desired signal,

S(t) = Sa sin(2πfct) + Sb cos(2πfct), (5.1)

where Sa(t) and Sb(t) are the baseband signals on the in- phase and quadrature paths re-
spectively, and fc is the carrier frequency. The base band signals (Sa(t) and Sb(t)) are given
by

Sa(t) =
∞∑

k=−∞

akg
d(t− kT ),

Sb(t) =
∞∑

k=−∞

bkg
d(t− kT ),

(5.2)

where T is the symbol interval, and gd(t) is the impulse response of the transmitter filter,
where the upper index d represent the desired signal. Usually, the transmitted filter in cascade
with the Received filter forms a matched filter, so the root response needs to be used on each
side. But sometimes is more convenient to use the complete response in the transmitter
or receiver side. Is assumed that the complete response of the filters complies with the
Nyquist criterion. The sequence ak and bk represents the binary data transmitted in-phase
and quadrature respectively and is assumed that ak and aj (−∞ ≤ k ≤ ∞, −∞ ≤ j ≤ ∞,
ak 6= aj), bk and bj (−∞ ≤ k ≤ ∞, −∞ ≤ j ≤ ∞, bk 6= bj) are independent. The data bits
are random variables (RVs) that assume the values {−1,−1} with equal probability, therefore
it follows a Rademacher distribution.
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Received Signal

If we assume that L co-channel interferer signals are present, the total received signal can be
written as

r(t) = RsS(t) +
L∑
l=1

RlSl(t) + n(t), (5.3)

where S(t) and Sl(t) represent the contributions from the desired signal and the lth interfering
signal, respectively, and n(t) is the AWGN noise. The terms Rs and Rl represent the channel
gain amplitude affecting the desired and the lth interfering signal respectively. In this work,
flat fading channel is considered. If we use the Precise interference model to represent the
contribution of the CCI, the signal Sl is given by

Sl(t) = Scl(t) sin(2πfct+ θl) + Sdl(t) cos(2πfct+ θl), (5.4)

The variables Scl and Sdl represent the base-band in-phase and quadrature components of
the lth interfering signal, respectively. They are given by,

Scl(t) =
∞∑

j=−∞

cklg
i(t− jT ),

Sdl(t) =
∞∑

j=−∞

dklg
i(t− jT ),

(5.5)

where ck, and dk, can take values of {−1,+1} with equal probabilities and they represent the
in-phase and the quadrature data bits of the lth interfering signal, respectively. The data
bits of the interfering signals ckl , cjl , dkl and djl (−∞ ≤ k ≤ ∞, −∞ ≤ j ≤ ∞, 0 ≤ l ≤ L)
are assumed to be mutually independent. The term gi represents the transmitter filter from
the interferer signals. The phase θl, is a RV uniformly distributed in [0, 2π] and it represents
the random phase of the lth interfering signal carrier.

Detection process

At the receiver, the total received signal is split into an in- phase component and a quadrature
component, filtered by a low-pass filter, usually a matched filter and the detection is then
performed. Perfect carrier phase and frequency tracking are assumed for the desired signal,
in general, difficult to achieve, thus the results present a best case situation. The signal at
the output of the receiver filter (ya(t)) can be written as

ya(t) = RsVa(t) +
L∑
l=1

Rl[Vcl cos(θl)− Vdl sin(θl)] + nw(t), (5.6)
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with nw(t) the filtered Gaussian noise with mean zero and variance σ2
n, Vcl and Vdl are the

base-band in-phase and in quadrature components of the l interfering signal respectively.

Vcl =
∞∑

k=−∞

cklg
i(t− kT − υl),

Vdl =
∞∑

k=−∞

dklg
i(t− kT − υl).

(5.7)

is assumed that the filter gi comply with the first Nyquist criteria, with the complete impulse
response. The RV υl is uniformly distributed in [0, T ] and it represents a possible offset
between the symbol timing epochs of the desired and the lth interfering signals, namely, the
effect of the ISI produced by the CCI.

5.3 Error rate on AWGN channel

Consider the diagram presented in Fig. 5.1, which represents a pass-band system impaired
by 2 kinds of interferences, ISI and CCI (modeled as Precise model) in an AWGN channel.
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Figure 5.1: System impaired by ISI+CCI for the Precise model of interference.

The expression to compute the BER in this system is given by

Pe
ISI+CCI

=
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2) sin(mwgio)

m

N2∏
n=N1
n 6=0

cos(mwgn)
L∏
l=1

A(l,m), (5.8)

where

A(l,m) =
1

2πT

∫ 2π

0

∫ T

0

(
P∏

k=−P

[cos(mwRlg
d
kl

cos(θl)) cos(mwRlg
d
kl

sin(θl))]) dθl dυl. (5.9)

The double integral given in (6.6) seems not to be reduced to a closed form expression.
However, it can be computed numerically using one of the broad family of algorithms used
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to solve definite integrals by numerical integration. The derivation of the expression given in
(5.8) is detailed in Chapter 8, Section 8.1.

From the equation (5.5) and (5.2) can be seen that the desired and interfering signals are
filtered by a pulse gd and gi respectively. Thereby, we can evaluate the performance of the
system considering different Nyquist-I pulses in the desired and interfering signals.

5.4 Numerical Results and Discussion

In this section, the BER considering ISI and CCI using the Precise model presented in
section 5.3 is computed for various scenarios and multiple Nyquist-I pulses. The Nyquist-I
pulses evaluated are the RC, BtRC, SPLCP, IPLCP and ELP for β = {0.5, 1} described in
Chapter 4, Section 4.3.2. Additionally, 2 other recently proposed pulses, called, Improved
Double Jump 1 (IDJ1) and Improved Double Jump Linear Combination (IDJLC) are added
to the analysis.

The IDJ1 pulse proposed in [13] results from the combination of a Gaussian function and
the Double Jump 1 (DJ1) pulse, characterized by an extra design parameter β ∈ R+ for a
certain roll-off factor α

h(t)IDJ1(t) = PGauss(t)× PDJ1(t)
h(t)IDJ1(t) = exp[−β(t/T )2]sinc(t/T )[(1− α) cos(παt/T ) + αsinc(αt/T )].

(5.10)

In [40], the IDJ1 pulse is optimized for reduce the ICI and the BER in an Orthogonal
Frequency Division Multiplexing (OFDM) system. The optimization was done for the DVB-
C2 standard which uses α = 0.15, resulting in βopt = 1.9951. The filter outperforms various
pulse shaping filters in terms of the SNR and frequency offset times OFDM symbol period
requirements at the FEC limit, namely, the BER.

Alike, the IDJLC pulse which results from the exponential function times a linear com-
bination of double jump functions, is characterized by two degrees of freedom, called as β
and γ, for a certain roll-off factor. In [5] the IDJLC pulse is optimized considering a OFDM
system in terms of BER and ICI for α = 0.22.

h(t)IDJLC = sinc(t/T )[(1− αβ) cos(παt/T ) + αβsinc(αt/T )] exp(−γ(t/T )2), (5.11)

the optimum values obtained in the document are βopt = −31.7507 and γopt = 1.1242 are
used in the evaluation of the system.

The parameters used in the computation of the BER are presented in the Table 5.1. We
evaluate different scenarios, from low (10 dB) to moderate (15, 20 dB) values of SIR, low (5
dB) to strong (15 dB) values of SNR and few (L = 2) to moderate (L = 6, 15) number of
interfering signals.
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Table 5.1: System parameters of pass-band system impaired by ISI and CCI, considering the
Precise model.

Parameter Value
M 99
Tf 60
Interfering Symbols 210

Channel AWGN
Digital Modulation QPSK
Signal-to-noise ratio 5, 15 dB
Signal-to-interference ratio 10,15,20 dB
Symbol timing errors, t/T ±0.05,±0.10,±0.20
Roll-off factor, α 0.25, 0.35, 0.5
Number of interferers, L 2, 6, 15

For the reader’s convenience all the results are presented in the Chapter 8, Section 8.2. In
the Tables 5.2 and 5.3 we present a summary of the results, showing the pulse with the best
performance in each case.

The results for SNR=15 dB, SIR=10 dB and L={2, 6} presented in the Table 8.10 and
Table 8.13 respectively, are up to one order of magnitude lower than the computed in the
Section 4.3.2 for the same parameters but using the sinusoidal model for representing the
CCI effects. This confirms the fact that the sinusoidal model underestimates the effects of
interference on the BER [10].

For the results given in Tables 5.2 and 5.3, it can be seen that the performance of all
pulses in term of BER is worse when low regimes of SNR are analyzed compared to high
regimes. Considering the number of interfering signals, when the BER is evaluated at a
moderate number, it is slightly worse than the case when the evaluation is performed with a
low number of interfering signals. Considering low regimes of SNR (5 dB) in Table 5.2, the 3
pulses with the best performance are the IDJ1 and the SPLCP followed closely for the IPLCP.
The IDJ1 performs well for low values of SIR, and the SPLCP and IPLCP for high values of
SIR. Considering high regimes of SNR (15 dB), Table 5.3, the IDJ1 pulse outperform other
pulses in term of BER for all the SIR regimes, and the number of interfering signals followed
closed by the IDJLC pulse.

The results indicate that the pulse with the best performance, in terms of BER, is the
IDJ1, which outperforms other evaluated pulses for all the scenarios, namely different regimes
of SNR, SIR, and number of interfering signals.

Moreover, in Fig. 5.2, the spectral behavior of the pulses for roll-off factors α = {0.25, 0.35, 0.5}
are presented. It can be seen that the pulses with the biggest out-of-band radiation (OBR)
are the IDJLC and IDJ1 increasing the bandwidth used. In many standards used in commu-
nication systems, the pulses used in the transmitter side needs to comply with a spectrum
mask. The increase of bandwidth used would introduce adjacent channel interference (ACI)
decreasing the performance of the communication system and not complying with the tech-
nical requirements. The excess of OBR is related to the optimization of the parameters, of
both pulses, where the optimization process did not consider restrictions on the frequency

42



0 0.5 1 1.5 2 2.5 3

f/B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 R

es
po

ns
e 

RaisedC
BTRaisedC
SPLCP
ImprovedPLPC
ELP
ELP5
IDJ1
IDJLC

(a)

0 0.5 1 1.5 2 2.5 3

f/B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 R

es
po

ns
e 

RaisedC
BTRaisedC
SPLCP
ImprovedPLPC
ELP
ELP5
IDJ1
IDJLC

(b)

0 0.5 1 1.5 2 2.5 3

f/B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
re

qu
en

cy
 R

es
po

ns
e 

RaisedC
BTRaisedC
SPLCP
ImprovedPLPC
ELP
ELP5
IDJ1
IDJLC

(c)

Figure 5.2: Spectral characteristic of RC, BtRC, SPLCP, IPLCP, ELPβ = 1, ELPβ = 0.5,
IDJ1 and IDLC pulses.

characteristic. Therefore, the great performance of both pulses can be explained looking the
Section 3.4 from Chapter 3, where it was mentioned that there exists a trade-off between
out-of-band radiation and lower BER due to ISI effects.
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5.5 Conclusion - Precise CCI

In this Chapter, an expression for computing the BER considering ISI and CCI, for the Precise
model, in a pass-band system was presented and evaluated for recently proposed Nyquist-I
pulses. Considering low regimes of SNR (5 dB), the 3 pulses with the best performance are
the IDJ1 and the SPLCP followed closely for the IPLCP. The IDJ1 performs well for low
values of SIR, and the SPLCP and IPLCP for high values of SIR. Considering high regimes
of SNR (15 dB), the ID1 pulse outperforms the other pulses in term of BER, followed by the
IDJLC.

The results indicate that the pulse with the best performance, in terms of BER, is the
IDJ1, which outperforms other evaluated pulses for all the scenarios, namely different regimes
of SNR, SIR, and number of interfering signals.

Moreover, the pulses with the biggest out-of-band (OBR) radiation are the IDJLC and
IDJ1. This phenomenon would introduce adjacent channel interference (ACI), decreasing the
performance of the communication system. The excess OBR is related to the optimization of
the parameters, of both pulses, where the optimization process did not consider restrictions
on the frequency characteristic.

For these reasons, in future work, we will consider restrictions in the frequency charac-
teristic of the pulses to optimize their parameters in terms of BER while considering the ISI
and CCI for the Precise model.
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Chapter 6

Optimization

6.1 Introduction - Optimization

The most popular ISI-free Nyquist pulse for distortionless transmissions is the traditional
raised cosine (RC) pulse, which depends on just one parameter, the roll-off factor (α). In
general, the value of the roll-off factor is fixed by the particular standard used, and therefore
this pulse cannot be adjusted to different channel conditions. Nyquist-I pulses with several
numbers of parameters have been proposed in the literature [18, 4, 8, 26]. If we consider the
BER as the main metric to compare different Nyquist-I pulses, for every system parameters,
there exists an optimum value of the pulses parameters that minimizes that metric.

The optimization of Nyquist-I pulses is a topic that has attracted a lot of attention re-
cently. In [41] the Piecewise Flipped-Exponential (PFE) pulse, which possesses 1 extra design
parameter (b), is proposed and optimized to obtain a minimum value of symbol error rate tak-
ing into account fixed values of the excess bandwidth α, and timing offsets, η. The technique
used to optimize the pulse was the Nelder-Mead method. In the optimization procedure,
was found that the parameter b and the timing offset follows a cubic relationship. The same
relation was found between the parameter and the excess bandwidth. In this way, the choice
of the optimum parameters can be performed simply considering the relations with α and
τ . Later, in [42] the Modified K-Exponential Filter (MKEF), which present 2 extra degrees
of freedom, the parameters β and k, was presented and optimized. The main advantage of
the pulse is its capacity of becoming different pulses, like the double jump filter [43], triple
jump filter, or the K-exponential filter [44] depending on the choice of parameters. The opti-
mization of the pulse was achieve also by means of the Nelder-Mead optimization technique,
for fixed values of excess bandwidth and timing offsets. This optimization technique used
for the optimization of the pulses parameters, its a heuristic technique that treats non-linear
optimization problems and can converge to non-stationary points [45].

In many recent works, pulses formulated in time domain [5, 40, 26] with many extra
parameters have been proposed and optimized in function of the Peak-to-Average Power
Ratio (PAPR) and BER in SC-FDMA systems [46, 47], ICI and BER in OFDM systems
[48, 49, 50, 51], or the BER in base-band systems [52] giving promising results. However,
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in all the cases, the spectral behavior of the pulses is not taken in consideration for the
optimization process giving as result larger stop-band values, increasing the bandwidth and
in many cases not fulfilling the bandwidth restriction imposed by the channel, although
many authors evaluate the out-of-band power [53]. For this reason, in this chapter, the linear
combination of 2 Nyquist-I pulses, formulated in the frequency domain, are optimized in
terms of average bit error rate for a fixed excess bandwidth and timing offset values. The
bandwidth used for the linear combination of Nyquist-I pulses does not change when the
linear constant is modified. Thus, the bandwidth restriction is implicit in the formulation of
the new pulses.

The rest of the work is organized as follows, first in section 6.2 the optimization problem is
formalized for a system impaired by ISI and then affected by ISI and CCI, using the Precise
model. It is showed that the problem turns in to a minimization of a convex function over
convex sets for both cases. In section 6.3, the system is evaluated for different Nyquist-I
pulses, with their parameters optimized. Finally, the final remarks are given in section 6.4

6.2 Formalization of the problem

6.2.1 Optimization considering ISI

Consider a band-base system impaired by ISI and additive white gaussian noise, detailed in
the Fig. 6.1

Source Modulator Pulse
Shaping

b[k] s[k]

Transmitter

(t)xk (t) = b[k] (t − kT)xk ∑
k=−∞

∞

gk

Channel

Destination Demodulator Detector
(t)yk (t) = b[k] (t − kT − τ) + n(t)yk ∑

k=−∞

∞

gk

Receiver
n(t)

e
(−jwτ)

[k]b̂  [k]s ̂ 

Figure 6.1: System impaired by ISI.

We assume that the pulse shaping filter used in the transmitter and receiver sides, comply
with the first Nyquist criteria. We optimize different linear combination of pulses being
formulated in the frequency domain under the parametric approach presented in 2.2.3. In
this way, the filter stop-band of the pulses keeps at the (1 + α)(1/2T ) value.
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The optimization problem to minimize the average probability of error is given by

minimize
a

Pe
ISI

=
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2) sin(mwgo)

m
×

N2∏
k=N1
k 6=0

cos(mwgk)

subject to g(t) = ah1(t) + (1− a)h2(t)

(6.1)

where gk = p (kT + η), p(t) is the ISI-free pulse evaluated at the receiver at time kT plus
symbol timing error η. The details of the expression given in (6.1) can be found in Section 3.3.

Convexity of Pe due to ISI

To solve the optimization problem, we need to investigate if the function Pe
ISI

is or not convex.
The convexity makes optimization easier than the general case since a local minimum must
be a global minimum. First of all, we need to prove that we are working with a convex set.

A subset of C of Rn is called convex if any linear combination of 2 elements of the set is
also contained in C

klh1(t) + (1− kl)h2(t) ∈ C, ∀h1, h2 ∈ C, ∀kl ∈ [0, 1] (6.2)

Here, the set C its the set of all the pulses that comply with the first Nyquist criterion.
We need to prove that a linear combination of Nyquist pulses it is also a Nyquist Pulse.
Fortunately, in [17] it is probed that the combination of 2 or more Nyquist-I pulses results
in an ISI-free pulse as well.

Second, we need to prove that the function (Pe
ISI
) is convex. Let C be a convex subset of

Rn. The function Pe
ISI

: C → R is called convex if for ∀ θ ∈ [0, 1],

Pe
ISI

(θh1 + (1− θ)h2) ≤ θPe
ISI

(h1) + (1− θ)Pe
ISI

(h2) ∀h1, h2 ∈ C (6.3)

If we consider the PLCP pulse as a particular case, described in Section 2.2.3, which is
composed from the linear combination of the PLPn=1 and PLPn=2, the following inequality
need to be proved,
Pe
ISI

(hPLCP ) = Pe
ISI

(ahPLPn=1 + (1− a)hPLPn=2) ≤ aPe
ISI

(hPLPn=1) + (1− a)Pe
ISI

(hPLPn=2) ∀a ∈ [0, 1].
(6.4)

To explore if the Pe
ISI

function is convex, first we show graphically if the inequality given
in (6.4) is fulfilled. The parameters used are α = {0.25, 0.35, 0.5}, SNR=15 dB, η =
{0.05, 0.1, 0.2} considering the complete impulse response. From the results shown in the
Fig. 6.2, it can be seen that for all cases and for a ∈ [0, 1] the left side of the inequality
holds below the right side. This would indicate us that the expression given in (6.3) would
be convex.

To perform the optimization of the nonlinear convex problem, we use the interior point
method and implemented it using the MATLAB software.
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Figure 6.2: Convexity of the BER expression considering the ISI effect for different timing off-
set values. The PLCP, PLPn=1, PLPn=2 pulse with parameters α = {0.25, 0.35, 0.5} SNR=15
dB, and the complete response are considered. Each plot shows the inequality expression, in
solid line the left side and dashed line the right side for η = t/T = {0.05, 0.1, 0.2}.

6.2.2 Optimization considering ISI + CCI

Consider a band-base system impaired by ISI, CCI and white noise, detailed in the Fig-
ure 5.1. Taking into account the same assumptions given in 6.2.1, the optimization problem
to minimize the average probability of error is given by

minimize
a

Pe
ISI+CCI

=
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2) sin(mwgo)

m
×

N2∏
k=N1
k 6=0

cos(mwgk)×
L∏
l=1

A(l,m)

subject to g(t) = ah1(t) + (1− a)h2(t)
(6.5)

with

A(l,m) =
1

2πT

∫ 2π

0

∫ T

0

(
P∏

k=−P

[cos(mwRlg
d
kl

cos(θl)) cos(mwRlg
d
kl

sin(θl))]) dθl dυl. (6.6)
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Convexity of Pe due to ISI+CCI

As in 6.2.1, we need to investigate if the function Pe
ISI+CCI

is or not convex.

Pe
ISI+CCI

(θh1 + (1− θ)h2) ≤ θ Pe
ISI+CCI

(h1) + (1− θ)Pe
ISI

(h2) ∀h1, h2 ∈ C (6.7)

We explore if the inequality given in (6.7) is fulfilled. For this, we consider the PLCP as
well. The parameters used are α = {0.25, 0.35, 0.5} SNR=15 dB, SIR=10 dB, L=2 and the
complete response of the filter is considered for η = {0.05, 0.1, 0.2}. From the results depicted
in the Fig. 6.3, it can be seen that for all cases and for α ∈ [0, 1] the left side of the inequality
holds below the right side. This would indicate us that the expression given in (6.7) is convex
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Figure 6.3: Convexity of the BER expression considering the ISI and CCI effects for different
timing offset values. The PLCP, PLPn=1, PLPn=2 pulse with parameters α = {0.25, 0.35, 0.5}
SNR=15 dB, SIR=10 dB, L=2 and the complete response are considered. Each plot shows
the inequality expression, in solid line the left side and dashed line the right side for η =
t/T = {0.05, 0.1, 0.2}.
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6.3 Experiments

6.3.1 Performance evaluation in systems impaired by ISI

In this section, several pulses formulated as a linear combination of different Nyquist-I pulses,
are optimized in term of the BER considering a base-band system impaired by ISI, for differ-
ent values of roll-off factors (α), time offsets (η) and truncation values. The pulses optimized
and evaluated are, the RC, in first instance used as a reference, and the following Linear
Combination Pulses, PLCP, LCP, v, r and q, described in Section 2.2.4. The pulses formu-
lated in the time domain like the ELP, SPLCP or IDJLC are not evaluated in this section
because they would not meet the frequency constraints of the channel or communication
standard, as described in Section 2.2.5.

First, in Fig. 6.4 we illustrate the effectiveness of the optimization algorithm for the
complete impulse response of the PLCP, using α = 0.25, τ = 0.05, SNR=15 dB. The result
is compared with the numerical solution method, which performs an exhaustive search of the
optimal point exploring a limited region of the search space [18, 3, 7]. It can be seen that
the results are very close, if we consider the numerical solution as the true optimal value,
the relative error in terms of the BER is only of 0.14%. The difference of results is due
to the choice of parameters which controls the accuracy of the optimization results. The
termination tolerance on the first-order optimality, which is related to the gradient of the
function, is set to 1× 10−10 being a fair choice between the accuracy and computation time
of the solution.
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Figure 6.4: Comparison of results for the PLCP pulse, considering the optimization process
and the exhaustive method for a base-band system impaired by ISI.

The results of the optimization problem are presented in Tables 6.1 for the complete
impulse response and in 6.2 for the truncated version [−5.5t/T, 5.5t/T ]. For the ideal case,
considering α = 0.25, and timing offset equals to t/T = {0.05, 0.1} the pulse with the
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best performance is the v pulse, and for t/T = {0.2} is the q pulse. For α = 0.35 and
t/T = {0.1, 0.2} the pulse with the best performance is the v pulse and for t/T = {0.05} the
r pulse. Finally, for α = 0.5, the pulse with the best performance is the v pulse for all timing
offsets. Considering the truncated version of the pulses, the performance follows the same
structure than the case where the complete versions of the pulses are considered. For α = 0.25
and t/T = {0.1, 0.2} the pulse with the best performance is the v pulse, and for t/T = {0.05}
is the q pulse. For α = 0.35 and t/T = {0.05} the pulse with the best performance is the r
pulse. For all the remain cases, the v pulse outperforms the other evaluated Nyquist-I pulses.
Considering the optimization results for the truncated and complete version of the pulses, it
can be seen that the optimization converges to a different value of linear constant depending
on the pulse, roll-off factor and timing offset. Also, the BER is significantly lower for all
the truncated version of the pulses compared with the complete version, except for the RC
pulse, which does not possess any extra degree of freedom. The major performance variation
correspond to the v pulse, with a maximum percentage variation of −44% for α = 0.5 and
t/T = 0.2 considering the truncated impulse response.
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α Pulse t/T = 0.05 t/T = 0.1 t/T = 0.2

0.25

RC 8.219E-08 2.818E-06 9.746E-04
µ (2.499) (2.325) (2.203)
PLCP 5.154E-08 1.058E-06 2.807E-04
β (4.062) (2.686) (2.535)
LCP 5.371E-08 1.016E-06 2.662E-04
a (3.361) (2.582) (3.258)
V 4.527E-08 8.105E-07 2.022E-04
a (0.595) (0.968) (0.877)
R 5.048E-08 8.825E-07 2.207E-04
a (0.970) (0.838) (0.766)
Q 4.548E-08 8.138E-07 1.969E-04

0.35

RC 6.000E-08 1.390E-06 3.908E-04
µ (1.549) (2.071) (1.902)
PLCP 3.772E-08 4.585E-07 8.598E-05
β (2.294) (2.407) (2.162)
LCP 3.478E-08 4.396E-07 8.129E-05
a (7.092) (0.681) (1.342)
V 3.788E-08 3.569E-07 6.101E-05
a (1.242) (1.168) (1.024)
R 3.208E-08 3.776E-07 6.560E-05
a (1.120) (0.936) (0.783)
Q 3.210E-08 3.866E-07 6.855E-05

0.5

RC 3.972E-08 5.489E-07 1.022E-04
µ (2.057) (1.898) (1.615)
PLCP 2.202E-08 1.656E-07 1.992E-05
β (2.433) (2.121) (1.813)
LCP 2.153E-08 1.582E-07 1.892E-05
a (1.744) (2.118) (2.844)
V 1.911E-08 1.207E-07 1.609E-05
a (1.333) (1.229) (0.927)
R 2.000E-08 1.324E-07 1.613E-05
a (1.312) (1.098) (0.802)
Q 2.065E-08 1.451E-07 1.765E-05

Table 6.1: BER considering ISI for linear combination of pulse with optimized parameters.
The parameters used are, 210 Interfering Symbols and SNR=15 dB for the complete pulse
version.

6.3.2 Performance evaluation in systems impaired by ISI+CCI

In this section, the same linear combination of pulses that were evaluated in subsection 6.3.1
are optimized in terms of the BER considering a pass-band system impaired by ISI and CCI,
for the Precise model, different values of roll-off factors (α), time offsets (τ), and truncation
values. First, we illustrate the effectiveness of the optimization results for the PLCP filter. In
Fig. 6.4 the result of the optimization is compared with the extensive computer simulations
for α = 0.25, τ = 0.05, considering the complete impulse response and SNR=15 dB. It can
be seen that the results are very close, begin the relative error only of 0.001%.
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α Pulse t/T = 0.05 t/T = 0.1 t/T = 0.2

0.25

RC 8.2158E-08 2.8157E-06 9.7340E-04
µ (2.229) (2.539) (2.406)
PLCP 5.0527E-08 9.5682E-07 2.4322E-04
β (3.335) (2.923) (2.758)
LCP 4.8480E-08 9.2292E-07 2.3178E-04
a (-0.130) (5.834) (6.730)
V 4.2298E-08 6.2580E-07 1.2675E-04
a (1.322) (1.244) (1.139)
R 4.3459E-08 7.3610E-07 1.7143E-04
a (1.324) (1.178) (1.075)
Q 4.0383E-08 6.3236E-07 1.3866E-04

0.35

RC 5.9982E-08 1.3886E-06 3.9043E-04
µ (2.527) (2.113) (1.927)
PLCP 3.4841E-08 4.5042E-07 8.3577E-04
β (2.692) (2.435) (2.223)
LCP 3.3828E-08 4.2586E-07 7.7455E-05
a (0.917) (-0.350) (1.371)
V 2.9458E-08 2.9410E-07 4.0723E-05
a (1.825) (1.691) (1.444)
R 2.8468E-08 2.9668E-07 4.6798E-05
a (1.416) (1.205) (1.002)
Q 2.9387E-08 3.2082E-07 5.2633E-05

0.5

RC 3.9721E-08 5.4880E-07 1.0213E-04
µ (2.542) (1.884) (1.627)
PLCP 2.2517E-08 1.6416E-07 1.9632E-05
β (2.392) (2.272) (1.829)
LCP 2.1448E-08 1.5667E-07 1.8596E-05
a (1.986) (1.683) (3.263)
V 1.7654E-08 9.3881E-08 9.0108E-06
a (1.026) (1.552) (1.186)
R 2.0025E-08 1.1312E-07 1.2705E-05
a (1.601) (1.157) (0.838)
Q 2.0683E-08 1.4156E-07 1.7121E-05

Table 6.2: BER considering ISI for linear combination of pulse with optimized parameters.
The parameters used are, 210 Interfering Symbols and SNR=15 dB for the truncated pulse
version ([−5.5t/T ; 5.5t/T ]).

The results of the optimization process considering the system impaired by ISI and CCI
for the Precise model, are presented in Tables 6.3 and 6.4 for the complete and truncated
version of the pulses. It can be seen that the results in terms of BER for the truncated
version are slightly better than for the complete version of the pulses. Comparing the results
with the presented in Table 8.10, where different recently proposed pulses formulated in the
time domain were evaluated for the BER expression which considers ISI + CCI interference,
considering the Precise model, it can be seen that the present results are bigger up to one
order of magnitude, which can be explained considering the large out-of-band radiation of the
pulses presented in Chapter 5. Also, comparing the results with the given in Section 4.3.2,
where the performance of pulses being formulated in the time domain are evaluated in a
base-band system considering ISI and CCI using the sinusoidal model are shown, it can be
seen that in this case, the BER is smaller for all the conditions. The prior met the fact that
the sinusoidal always underestimates the effects of interference on the BER.
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Considering the complete impulse response of the pulses, the v pulse outperforms other
pulses for all timing offsets and roll-off factors, following the same behavior of the case
where only the ISI effect is considered. For the truncated version, the pulse with the best
performance for α = 0.25 and all timing offsets is the q pulse, for α = 0.35 and all timing
offsets is the r pulse and for α = 0.5 and all timing offsets is the v pulse. These varieties of
results are explained due to the optimization of the BER considering the truncation version
of the pulses, so, for every truncation value, a new optimum constant value needs to be found.
Also, as in the case of the system impaired by ISI, the constant of the linear combination
converge to different values depending on the pulse, roll-off factor and timing offset.
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Figure 6.5: Comparison of results for the PLCP pulse, considering the optimization process
and the exhaustive method for a pass-band system impaired by ISI+CCI.

6.4 Conclusions - Optimization

In this chapter, the optimization of linear combination of Nyquist-I pulses considering first
a base-band system impaired by ISI and later a pass-band system impaired by ISI+CCI, for
the Precise model, were performed. The complete and truncated version of the Nyquist-I
pulses were considered. The optimal parameters resultant from the optimization process
were compared with the optimal parameters found exhaustively, finding minimal differences
between their values. For the base-band system impaired by ISI, the BER is significantly
lower for the truncated version of the pulses compared with the complete version. The pulse
with the best performance in terms of BER was the v pulse, considering its complete and
truncated version.

Considering the pass-band system impaired by ISI + CCI for the Precise model, the
results show that the BER for the truncated version of the pulse is slightly lower than for
the complete impulse response. Considering the complete impulse response, the pulse with
the best performance was the v pulse for all the roll-off factors and timing offsets. Moreover,
for the truncated version, the pulse with the best performance for α = 0.25 and all timing
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offsets is the q pulse, for α = 0.35 and all timing offsets is the r pulse and for α = 0.5 and
all timing offsets is the v pulse. In general, for every system parameter, α, η and truncation
value, the optimal parameter of the Nyquist-I pulse need to be found. As future work, the
convexity of the optimization problem will be prove and other optimization algorithms will
be used.
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α Pulse t/T = 0.05 t/T = 0.1 t/T = 0.2

0.25

RC 1.4413e-03 3.5098e-03 1.9568e-02
µ (2.784) (2.721) (2.661)
PLCP 1.3173e-03 2.8148e-03 1.4734e-02
β (3.257) (3.179) (3.102)
LCP 1.3122e-03 2.7871e-03 1.4542e-02
a (8.866) (1.165) (1.468)
V 1.2848e-03 2.6381e-03 1.3494e-02
a (1.247) (1.208) (1.165)
R 1.2950e-03 2.6948e-03 1.3901e-02
a (1.079) (1.046) (1.009)
Q 1.2862e-03 2.6474e-03 1.3568e-02

0.35

RC 1.1794e-03 2.7638e-03 1.5701e-02
µ (2.521) (2.457) (2.360)
PLCP 1.0537e-03 2.0783e-03 1.0757e-02
β (2.926) (2.847) (2.724)
LCP 1.0490e-03 2.0539e-03 1.0586e-02
a (-0.072) (0.100) (0.332)
V 1.0336e-03 1.9678e-03 9.9194e-03
a (1.586) (1.531) (1.444)
R 1.0341E-03 1.9755E-03 1.0027E-02
a (1.222) (1.179) (1.105)
Q 1.0353E-03 1.9825E-03 1.0085E-02

0.5

RC 8.6775e-04 1.8985e-03 1.0983e-02
µ (2.139) (2.100) (1.976)
PLCP 7.6220e-04 1.3412e-03 6.8245e-03
β (2.443) (2.397) (2.246)
LCP 7.5903e-04 1.3250e-03 6.7098e-03
a (1.891) (1.966) (2.279)
V 7.4279e-04 1.2417e-03 6.1183e-03
a (1.415) (1.382) (1.263)
R 7.4864e-04 1.2713e-03 6.3084e-03
a (1.275) (1.243) (1.126)
Q 7.5311e-04 1.2950E-03 6.5020E-03

Table 6.3: BER considering ISI+CCI for linear combination of pulse with optimized param-
eters. The parameters used are, 210 Interfering Symbols, SNR=15dB, SIR=10dB, number of
interfering signals L = 2, for the complete impulse response. In all the cases the interfering
pulse used was the RC pulse.
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α Pulse t/T = 0.05 t/T = 0.1 t/T = 0.2

0.25

RC 1.4410e-03 3.5091e-03 1.9564e-02
µ (3.016) (2.950) (2.886)
PLCP 1.3068e-03 2.7575e-03 1.4324e-02
β (3.508) (3.427) (3.347)
LCP 1.3023e-03 2.7334e-03 1.4157e-02
a (2.479) (2.936) (3.380)
V 1.2701e-03 2.5539e-03 1.2844e-02
a (1.582) (1.535) (1.478)
R 1.2743e-03 2.5848e-03 1.3131e-02
a (1.472) (1.431) (1.375)
Q 1.2575e-03 2.4959e-03 1.2516e-02

0.35

RC 1.1793e-03 2.7634e-03 1.5698e-02
µ (2.547) (2.483) (2.384)
PLCP 1.0522e-03 2.0702e-03 1.0698e-02
β (2.994) (2.915) (2.788)
LCP 1.0462e-03 2.0390e-03 1.0479e-02
a (-0.631) (-0.405) (-0.064)
V 1.0218e-03 1.9037e-03 9.4091e-03
a (2.104) (2.045) (1.917)
R 1.0114e-03 1.8585e-03 9.2050e-03
a (1.511) (1.465) (1.371)
Q 1.0179e-03 1.8927e-03 9.4540e-03

0.5

RC 8.6773e-04 1.8984e-03 1.0982e-02
µ (2.149) (2.110) (1.986)
PLCP 7.6167e-04 1.3385e-03 6.8030e-03
β (2.457) (2.412) (2.261)
LCP 7.5842e-04 1.3218e-03 6.6844e-03
a (2.111) (2.195) (2.551)
V 7.32156e-04 1.1852e-03 5.6205e-03
a (1.683) (1.655) (1.519)
R 7.4026e-04 1.2286e-03 6.0065e-03
a (1.317) (1.286) (1.167)
Q 7.5169e-04 1.2877e-03 6.4473e-03

Table 6.4: BER considering ISI+CCI for linear combination of pulse with optimized param-
eters. The parameters used are, 210 Interfering Symbols, SNR=15dB, SIR=10dB, number of
interfering signals L = 2, for the truncated pulse version ([−5.5t/T ; 5.5t/T ]). In all the cases
the interfering pulse used was the RC pulse.
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Chapter 7

Conclusions and Future Work

In this work, the ELP pulse was numerically analyzed and compared with respect to recently
proposed pulses given in the literature and the traditional RC pulse in the time and frequency
domains. Considering a base-band system impaired by ISI and additive white noise, the ELP
obtains the smallest BER for the ideal impulse response and β = 1 compared to the other
evaluated pulses considering α = {0.25, 0.35}. For α = 0.5 only the Sinc Parametric Linear
Combination Pulse (SPLCP) outperforms the ELPβ=1. For the time-limited version of the
pulses, its behavior is improved in terms of BER for the pulses with tails that decay more
slowly than those of the ELP. Considering the frequency response, the ELP introduces addi-
tional out-of-band radiation compared to the RC pulse. The excess of bandwidth introduced
by the family of pulses analyzed in this manuscript explains the good performance in the
time domain, in terms of BER and a wider eye opening. Finally, for the truncated frequency
response, the ELP did not present additional spectral regrowth. The performance of the
ELP could potentially be improved by using optimization techniques, specifically designed
for BER reduction in presence of time sampling errors.

Further, the same Nyquist pulses were evaluated considering a base-band system impaired
first by CCI and later by CCI+ISI, using the sinusoidal model of interference. For both cases,
the average BER was computed for different symbol timing errors and roll-off factors. The
results indicate that the RC pulse achieved the best performance considering only CCI. This
is because the RC pulse possesses the greatest central lobe magnitude compared to the other
evaluated pulses. Second, considering the combined effects of CCI and ISI, in general, the
SPLCP outperformed the other pulses by presenting the smallest average BER for roll-off
factors α = {0.35, 0.5} and L={2, 6} number of interfering signals. For α = 0.25, the ELPβ=1

obtains the best performance for all number of interfering signals. These results indicate
that when ISI and CCI are both taken into consideration, the magnitude of the main lobe
is preponderant and is even more important than the magnitude of the side-lobes as the
number of interferer signals increases for a fixed interference power.

Because the sinusoidal interference model for representing the CCI always underestimates
the effects of interference on the BER, we developed an expression to compute the BER in a
pass-band system impaired by ISI and CCI simultaneously, for the Precise interference model.
This interference model is assumed to have the same modulation and nature as the desired
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signal, that is, the interfering signals are quadrature phase-shift keying (QPSK) modulated
with the same symbol rate, but with random carrier phase shifts and random symbol timing
offsets relative to the desired signal. Then, using this new expression we evaluated different
recently proposed Nyquist-I pulses, for various scenarios. The results indicated that the
pulse with the best performance, in terms of BER, is the IDJ1, which outperforms other
evaluated pulses for all the scenarios, namely different regimes of SNR, SIR, and number of
interfering signals. Moreover, the pulses with the biggest out-of-band (OBR) radiation are
the IDJLC and IDJ1. This phenomenon would introduce adjacent channel interference (ACI)
decreasing the performance of the communication system. The excess of OBR is related to
the optimization of the parameters, of both pulses, where the optimization process did not
consider restrictions on the frequency characteristic.

Later, considering linear combination of Nyquist-I pulses, we performed the optimization
in terms of BER first for a base-band system impaired by ISI and later a pass-band system
impaired by ISI+CCI, for the Precise model. The ideal and truncated version of the Nyquist-I
pulses were considered for each case. The use of linear combination Nyquist-I pulses ensured
that the stop-band frequency remains at (1+α)(1/2T). Considering the pass-band system
impaired by ISI + CCI for the Precise model, the results showed that the BER for the trun-
cated version of the pulse is slightly lower than for the ideal impulse response. Considering
the ideal impulse response, the pulse with the best performance was the v pulse. Moreover,
for the truncated version, the pulse with the best performance for α = 0.25 and all timing
offsets was the q pulse, for α = 0.35 and all timing offsets was the r pulse and for α = 0.5
and all timing offsets was the v pulse.

Within this work, we have successfully evaluated recently proposed and standard Nyquist-
I pulses in base-band and pass-band systems impaired by different kinds of interferences, ISI,
CCI, and the combination of ISI and CCI, for the sinusoidal and Precise interference models.
Also, the bases of the optimization of linear combination of Nyquist-I pulses have been settled,
and as future work, we hope to demonstrate good properties of the optimization problems.

As future work, we will consider the develop of new measures to evaluate the performance
of Nyquist-I pulses that consider only a distribution of the time jitter, and not its particular
value. Also, we will probe that the optimization problem of minimize the BER subject to
linear combination of Nyquist-I pulses is convex. This would imply that adding new pulses
to the linear combination, would not affect negatively the BER.
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Chapter 8

Annexes

Appendix A

8.1 Derivation of the Precise model for Co-channel Inter-
ference

Consider a base-band system impaired by ISI and CCI considering the Precise model. The
signal at the output of the receiver filter (ya(t)) assuming that a0 is detected, can be written
as

ya = a0g
d
0 +

∞∑
k=−∞
k 6=0

akg
d
k +

L∑
l=1

ηl + n, (8.1)

where z represent the contribution from the ISI effect

z =
∞∑

k=−∞
k 6=0

akg
d
k =

∞∑
k=−∞
k 6=0

zk, (8.2)

and ηl the contribution from the lth interfering signal

ηl =
L∑
l=1

Rl[Vcl cos(θl)− Vdl sin(θl)], (8.3)

Vcl =
∞∑

k=−∞

cklg
i(t− kT − υl),

Vdl =
∞∑

k=−∞

dklg
i(t− kT − υl).

(8.4)

62



By symmetry, the average probability of error Pe assuming that the bit a0 = −1 was
transmitted for the in-phase component is given by

Pe = P(ya > 0 | a0 = −1), (8.5)

then, the equation 8.1 turns in to

ya = −gd0 + z + η + n. (8.6)

Let the probability density function (pdf) of the noise n denoted by f(·) and the com-
plementary cumulative distribution function (cdf) denoted by G(·). The probability of error
conditioned on z + η is,

Pe|z+η = P(−gdo + z + η + n > 0)

= P(n > gdo − z − η)

= G(gdo − z − η).

(8.7)

The calculation of the exact value of Pe is very complex because the distribution function
of the RV z + η is difficult to obtain. Let the pdf of z + η be denoted fz+η(z + η). Averaging
the conditional probability (8.7) over the distribution of all values of z + η

Pe =

∫ ∞
−∞

fz+η(z + η)G(gdo − z − η)d(z + η), (8.8)

assuming that G(x) can be represented by a Fourier series, in the form

G(x) =
∞∑

m=−∞

cme
jmwx + ε(x), (8.9)

being ε(x) an error term and w the angular frequency. The expression in (8.9) says that the
cdf G(x) of the noise process can be expressed approximately and exactly (if ε(x) = 0) by a
Fourier series. Combining (8.8) with (8.9)

Pe =

∫ ∞
−∞

fz+η(z + η)
[ ∞∑
m=−∞

cme
jmw(gdo−z−η) + ε(gdo − z − η)

]
d(z + η)

=
∞∑

m=−∞

cme
jmw(gdo)

∫ ∞
−∞

fz+η(z + η)e−jmw(z+η)d(z + η)

+

∫ ∞
−∞

fz+η(z + η)ε(gdo − z − η)d(z + η).

(8.10)

The interchange of the order of integration and summation in (8.10) is valid when the
series (8.9) converges uniformly to a limit G(x)− ε(x). Let’s name

γ =

∫ ∞
−∞

fz+η(z + η)ε(gdo − z − η)d(z + η), (8.11)
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and
Φz+η(w) = E[ejw(z+η)] =

∫ ∞
−∞

fz+η(z + η)ejw(z+η)d(z + η), (8.12)

where E denotes expectation. The term γ represents the error of the approximation of the
Fourier series and Φz+η(w) is the characteristic function of the RV (z+ η). Combining (8.10)
with (8.11) and (8.12)

Pe =
∞∑

m=−∞

cme
jmw(gdo)Φz+η(−mw) + γ, (8.13)

is assumed that zm, zn, ηp and ηq (−∞ ≤ m ≤ ∞, −∞ ≤ n ≤ ∞, 1 ≤ p ≤ L, 1 ≤ q ≤ L,
zm 6= zq and ηp 6= ηq) are independent. Therefore

Φz+η(w) =E
[
ejw(···+z−1,z1···+η1+···+ηL)

]
= E

[ ∞∏
k=−∞
k 6=0

L∏
l=1

ejw(zk+ηl)
]

= E
[ ∞∏
k=−∞
k 6=0

ejw(zk) ×
L∏
l=1

ejw(ηl)
]

=
∞∏

k=−∞
k 6=0

E[ejw(zk)]×
L∏
l=1

E[ejw(ηl)]

=
∞∏

k=−∞
k 6=0

Φzk(w)×
L∏
l=1

Φηl(w).

(8.14)

Here the RV zk can take two possible values, {−gk, gk}, with equal probability and con-
sequently zk follows a Rademacher distribution, with characteristic function given by

Φzk(w) =
1

2
(ejw + e−jw) = cos(w). (8.15)

For the Precise interfering model, assuming that the number of symbols from each co-
channel interfering is 2× P + 1 the characteristic function is

Φηl(w) = E[ exp(w[Vcl cos(θl)− Vdl sin(θl)])]

= E
[

exp
( P∑
j=−P

w[ckl cos(θl)− dkl sin(θl)]g
i(−υl − jT )

)]
= E

[ P∏
j=−P

exp
(
w[cjl cos(θl)− djl sin(θl)]g

i(−υl − jT )
)]

=
1

2πT

∫ 2π

0

∫ T

0

( P∏
j=−P

[cos(wgijl cos(θl))cos(wg
i
jl

sin(θl))]
)
dυldθl,

(8.16)

defining

dl(x) =
1

2πT

∫ 2π

0

∫ T

0

( P∏
j=−P

[cos(xgijl cos(θl)) cos(xgijl sin(θl))]) dυl dθl

)
. (8.17)
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Combining (8.13), 8.16 and (8.15)

Pe =
∞∑

m=−∞

cme
jmw(gdo)

∞∏
k=−∞
k 6=0

cos(mwgdk)
L∏
l=1

dl(mwRl) + γ

= co +
∞∑
m=1

{cmejmw(g
d
o) + c−me

−jmw(gdo)}
∞∏

k=−∞
k 6=0

cos(mwgdk)
L∏
l=1

dl(mwRl) + γ.

(8.18)

Let M be a positive integer chosen so that ”negligible” error results when the infinite series
(8.18) is truncated after M terms.

Pe = co +
M∑
m=1

{cmejmw(g
d
o) + c−me

−jmw(gdo)}
∞∏

k=−∞
k 6=0

cos(mwgdk)
L∏
l=1

dl(mwRl) + γ +RM , (8.19)

where

RM =
∞∑

m=M+1

{cmejmw(g
d
o) + c−me

−jmw(gdo)}
∞∏

k=−∞
k 6=0

cos(mwgdk)
L∏
l=1

dl(mwRl). (8.20)

If (8.9) can be found that has good convergence properties, it means, only small number
of terms M is needed in (8.19), then the effort to calculate Pe is proportional to M(N − 1)
where N is number of symbols. In general, the coefficients of an exact Fourier series of G(x)
need to be determined by numerical integration. In this way we will use and approximate
Fourier series, based on approximate the noise pdf, by a periodic square wave. Using the
method explained in [6] the expression in (8.19) turns in to,

Pe =
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2)sin(mwgdo)

m

∞∏
k=−∞
k 6=0

cos(mwgdk)
L∏
l=1

dl(mwRl) + γ +RM . (8.21)

Finally, if we consider finite number of interfering symbols, the limit of the product se-
quence due to ISI can be limited to N1 +N2− 1 interfering symbols.

Pe =
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2)sin(mwgdo)

m

N2∏
k=N1
k 6=0

cos(mwgdk)
L∏
l=1

dl(mwRl)+γ+RM+β, (8.22)

with

β =− 2

π

M∑
m=1
m odd

exp(−m2w2/2)sin(mwgdo)

m

N2∏
k=N1
k 6=0

cos(mwgdk)

[ N1−1∏
k=−∞
k 6=0

cos(mwgdk)
∞∏

k=N2+1
k 6=0

cos(mwgdk)− 1
] L∏
l=1

dl(mwRl).

(8.23)
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All the error terms are bounded and for details refers to [6]. Finally the expression to
compute the BER is

Pe =
1

2
− 2

π

M∑
m=1
m odd

exp(−m2w2/2)sin(mwgdo)

m

N2∏
k=N1
k 6=0

cos(mwgdk)
L∏
l=1

dl(mwRl). (8.24)
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Appendix B

8.2 Numerical Results

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 6.1303E-02 6.7453E-02 9.3014E-02
BtRC 6.0466E-02 6.6013E-02 8.9572E-02
SPLCP 5.7414E-02 6.1577E-02 8.0583E-02
IPLCP 5.5936E-02 6.0194E-02 7.9691E-02
ELP (β = 1) 5.4752E-02 5.9460E-02 8.0829E-02
ELP (β = 0.5) 5.6585E-02 6.0769E-02 7.9927E-02
IDJ1 5.3841E-02 5.9198E-02 8.3395E-02
IDJLC 5.2658E-02 5.9254E-02 8.8999E-02

0.35

RC 6.0547E-02 6.6151E-02 8.9901E-02
BtRC 5.9426E-02 6.4337E-02 8.5780E-02
SPLCP 5.6944E-02 6.1049E-02 7.9898E-02
IPLCP 5.5612E-02 5.9940E-02 7.9733E-02
ELP (β = 1) 5.4575E-02 5.9384E-02 8.1183E-02
ELP (β = 0.5) 5.6289E-02 6.0487E-02 7.9727E-02
IDJ1 5.3563E-02 5.9169E-02 8.4498E-02
IDJLC 5.3682E-02 6.9377E-02 1.4264E-01

0.5

RC 5.9464E-02 6.4400E-02 8.5928E-02
BtRC 5.7972E-02 6.2249E-02 8.1607E-02
SPLCP 5.6079E-02 6.0189E-02 7.9139E-02
IPLCP 5.4994E-02 5.9525E-02 8.0163E-02
ELP (β = 1) 5.4224E-02 5.9259E-02 8.2040E-02
ELP (β = 0.5) 5.5720E-02 6.0001E-02 7.9604E-02
IDJ1 5.3129E-02 5.9185E-02 8.6609E-02
IDJLC 9.2186E-02 1.5782E-01 3.7760E-01

Table 8.1: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=5dB, SIR=10dB, L=2.
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α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 4.6483E-02 5.2466E-02 7.8009E-02
BtRC 4.6061E-02 5.1398E-02 7.4683E-02
SPLCP 4.4719E-02 4.8536E-02 6.6480E-02
IPLCP 4.4247E-02 4.8091E-02 6.6208E-02
ELP (β = 1) 4.3953E-02 4.8190E-02 6.7943E-02
ELP (β = 0.5) 4.4446E-02 4.8245E-02 6.6160E-02
IDJ1 4.3790E-02 4.8628E-02 7.1041E-02
IDJLC 4.3671E-02 4.9707E-02 7.7555E-02

0.35

RC 4.6101E-02 5.1500E-02 7.4998E-02
BtRC 4.5565E-02 5.0218E-02 7.1092E-02
SPLCP 4.4549E-02 4.8288E-02 6.5969E-02
IPLCP 4.4155E-02 4.8054E-02 6.6401E-02
ELP (β = 1) 4.3916E-02 4.8245E-02 6.8395E-02
ELP (β = 0.5) 4.4351E-02 4.8151E-02 6.6084E-02
IDJ1 4.3751E-02 4.8823E-02 7.2320E-02
IDJLC 4.5815E-02 6.0859E-02 1.3339E-01

0.5

RC 4.5583E-02 5.0263E-02 7.1232E-02
BtRC 4.4932E-02 4.8887E-02 6.7312E-02
SPLCP 4.4262E-02 4.7969E-02 6.5567E-02
IPLCP 4.3995E-02 4.8069E-02 6.7139E-02
ELP (β = 1) 4.3849E-02 4.8387E-02 6.9454E-02
ELP (β = 0.5) 4.4181E-02 4.8038E-02 6.6216E-02
IDJ1 4.3701E-02 4.9198E-02 7.4721E-02
IDJLC 6.9170E-02 1.3856E-01 3.7550E-01

Table 8.2: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=5dB, SIR=15dB, L=2.

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 4.1755E-02 4.7642E-02 7.3064E-02
BtRC 4.1471E-02 4.6705E-02 6.9789E-02
SPLCP 4.0687E-02 4.4372E-02 6.1889E-02
IPLCP 4.0538E-02 4.4232E-02 6.1827E-02
ELP (β = 1) 4.0528E-02 4.4597E-02 6.3756E-02
ELP (β = 0.5) 4.0594E-02 4.4249E-02 6.1684E-02
IDJ1 4.0604E-02 4.5258E-02 6.7023E-02
IDJLC 4.0821E-02 4.6661E-02 7.3825E-02

0.35

RC 4.1498E-02 4.6793E-02 7.0099E-02
BtRC 4.1153E-02 4.5694E-02 6.6283E-02
SPLCP 4.0614E-02 4.4215E-02 6.1440E-02
IPLCP 4.0521E-02 4.4265E-02 6.2070E-02
ELP (β = 1) 4.0536E-02 4.4694E-02 6.4240E-02
ELP (β = 0.5) 4.0563E-02 4.4216E-02 6.1650E-02
IDJ1 4.0640E-02 4.5524E-02 6.8358E-02
IDJLC 4.3315E-02 5.8118E-02 1.3035E-01

0.5

RC 4.1166E-02 4.5733E-02 6.6419E-02
BtRC 4.0788E-02 4.4618E-02 6.2653E-02
SPLCP 4.0513E-02 4.4072E-02 6.1159E-02
IPLCP 4.0507E-02 4.4417E-02 6.2909E-02
ELP (β = 1) 4.0559E-02 4.4921E-02 6.5362E-02
ELP (β = 0.5) 4.0520E-02 4.4224E-02 6.1868E-02
IDJ1 4.0712E-02 4.6013E-02 7.0849E-02
IDJLC 6.1405E-02 1.3185E-01 3.7488E-01

Table 8.3: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=5dB, SIR=20dB, L=2.

68



α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 6.1224E-02 6.7353E-02 9.2856E-02
BtRC 6.0392E-02 6.5918E-02 8.9417E-02
SPLCP 5.7360E-02 6.1507E-02 8.0449E-02
IPLCP 5.5894E-02 6.0136E-02 7.9570E-02
ELP (β = 1) 5.4719E-02 5.9411E-02 8.0719E-02
ELP (β = 0.5) 5.6538E-02 6.0705E-02 7.9800E-02
IDJ1 5.3816E-02 5.9157E-02 8.3294E-02
IDJLC 5.2641E-02 5.9225E-02 8.8918E-02

0.35

RC 6.0473E-02 6.6055E-02 8.9745E-02
BtRC 5.9358E-02 6.4250E-02 8.5631E-02
SPLCP 5.6893E-02 6.0983E-02 7.9768E-02
IPLCP 5.5573E-02 5.9885E-02 7.9615E-02
ELP (β = 1) 5.4544E-02 5.9337E-02 8.1074E-02
ELP (β = 0.5) 5.6244E-02 6.0426E-02 7.9602E-02
IDJ1 5.3539E-02 5.9131E-02 8.4401E-02
IDJLC 5.3673E-02 6.9358E-02 1.4260E-01

0.5

RC 5.9396E-02 6.4312E-02 8.5778E-02
BtRC 5.7914E-02 6.2174E-02 8.1469E-02
SPLCP 5.6035E-02 6.0130E-02 7.9017E-02
IPLCP 5.4959E-02 5.9474E-02 8.0050E-02
ELP (β = 1) 5.4195E-02 5.9215E-02 8.1935E-02
ELP (β = 0.5) 5.5680E-02 5.9944E-02 7.9485E-02
IDJ1 5.3108E-02 5.9150E-02 8.6517E-02
IDJLC 9.2061E-02 1.5769E-01 3.7762E-01

Table 8.4: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=5dB, SIR=10dB, L=6.

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 4.6481E-02 5.2460E-02 7.7994E-02
BtRC 4.6059E-02 5.1393E-02 7.4668E-02
SPLCP 4.4718E-02 4.8533E-02 6.6468E-02
IPLCP 4.4246E-02 4.8089E-02 6.6197E-02
ELP (β = 1) 4.3952E-02 4.8187E-02 6.7933E-02
ELP (β = 0.5) 4.4446E-02 4.8242E-02 6.6149E-02
IDJ1 4.3790E-02 4.8626E-02 7.1032E-02
IDJLC 4.3670E-02 4.9705E-02 7.7547E-02

0.35

RC 4.6099E-02 5.1494E-02 7.4983E-02
BtRC 4.5563E-02 5.0214E-02 7.1078E-02
SPLCP 4.4548E-02 4.8285E-02 6.5958E-02
IPLCP 4.4155E-02 4.8052E-02 6.6390E-02
ELP (β = 1) 4.3916E-02 4.8243E-02 6.8385E-02
ELP (β = 0.5) 4.4350E-02 4.8148E-02 6.6073E-02
IDJ1 4.3750E-02 4.8821E-02 7.2311E-02
IDJLC 4.5815E-02 6.0858E-02 1.3339E-01

0.5

RC 4.5581E-02 5.0259E-02 7.1218E-02
BtRC 4.4930E-02 4.8884E-02 6.7300E-02
SPLCP 4.4261E-02 4.7966E-02 6.5557E-02
IPLCP 4.3995E-02 4.8067E-02 6.7129E-02
ELP (β = 1) 4.3848E-02 4.8385E-02 6.9444E-02
ELP (β = 0.5) 4.4180E-02 4.8035E-02 6.6206E-02
IDJ1 4.3701E-02 4.9196E-02 7.4712E-02
IDJLC 6.9159E-02 1.3854E-01 3.7550E-01

Table 8.5: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=5dB, SIR=15dB, L=6.
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α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 4.1755E-02 4.7642E-02 7.3063E-02
BtRC 4.1471E-02 4.6704E-02 6.9788E-02
SPLCP 4.0687E-02 4.4372E-02 6.1888E-02
IPLCP 4.0539E-02 4.4231E-02 6.1826E-02
ELP (β = 1) 4.0528E-02 4.4597E-02 6.3756E-02
ELP (β = 0.5) 4.0594E-02 4.4249E-02 6.1683E-02
IDJ1 4.0604E-02 4.5257E-02 6.7022E-02
IDJLC 4.0822E-02 4.6661E-02 7.3824E-02

0.35

RC 4.1498E-02 4.6793E-02 7.0098E-02
BtRC 4.1154E-02 4.5694E-02 6.6281E-02
SPLCP 4.0614E-02 4.4215E-02 6.1439E-02
IPLCP 4.0521E-02 4.4265E-02 6.2069E-02
ELP (β = 1) 4.0536E-02 4.4694E-02 6.4239E-02
ELP (β = 0.5) 4.0563E-02 4.4216E-02 6.1649E-02
IDJ1 4.0640E-02 4.5523E-02 6.8357E-02
IDJLC 4.3315E-02 5.8118E-02 1.3035E-01

0.5

RC 4.1166E-02 4.5733E-02 6.6418E-02
BtRC 4.0788E-02 4.4617E-02 6.2652E-02
SPLCP 4.0513E-02 4.4072E-02 6.1158E-02
IPLCP 4.0507E-02 4.4417E-02 6.2908E-02
ELP (β = 1) 4.0559E-02 4.4921E-02 6.5361E-02
ELP (β = 0.5) 4.0520E-02 4.4223E-02 6.1867E-02
IDJ1 4.0712E-02 4.6013E-02 7.0849E-02
IDJLC 6.1404E-02 1.3185E-01 3.7488E-01

Table 8.6: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=5dB, SIR=20dB, L=6.

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 6.1198E-02 6.7321E-02 9.2810E-02
BtRC 6.0367E-02 6.5887E-02 8.9371E-02
SPLCP 5.7341E-02 6.1483E-02 8.0408E-02
IPLCP 5.5879E-02 6.0117E-02 7.9533E-02
ELP (β = 1) 5.4708E-02 5.9395E-02 8.0685E-02
ELP (β = 0.5) 5.6521E-02 6.0684E-02 7.9762E-02
IDJ1 5.3806E-02 5.9144E-02 8.3263E-02
IDJLC 5.2635E-02 5.9215E-02 8.8894E-02

0.35

RC 6.0448E-02 6.6025E-02 8.9699E-02
BtRC 5.9336E-02 6.4222E-02 8.5586E-02
SPLCP 5.6876E-02 6.0961E-02 7.9728E-02
IPLCP 5.5559E-02 5.9866E-02 7.9579E-02
ELP (β = 1) 5.4533E-02 5.9321E-02 8.1041E-02
ELP (β = 0.5) 5.6228E-02 6.0406E-02 7.9565E-02
IDJ1 5.3531E-02 5.9119E-02 8.4371E-02
IDJLC 5.3671E-02 6.9353E-02 1.4259E-01

0.5

RC 5.9373E-02 6.4284E-02 8.5733E-02
BtRC 5.7894E-02 6.2149E-02 8.1427E-02
SPLCP 5.6020E-02 6.0110E-02 7.8979E-02
IPLCP 5.4947E-02 5.9458E-02 8.0016E-02
ELP (β = 1) 5.4185E-02 5.9201E-02 8.1903E-02
ELP (β = 0.5) 5.5665E-02 5.9926E-02 7.9448E-02
IDJ1 5.3101E-02 5.9139E-02 8.6490E-02
IDJLC 9.2024E-02 1.5766E-01 3.7762E-01

Table 8.7: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=5dB, SIR=10dB, L=15.
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α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 4.6480E-02 5.2458E-02 7.7989E-02
BtRC 4.6058E-02 5.1392E-02 7.4663E-02
SPLCP 4.4717E-02 4.8532E-02 6.6464E-02
IPLCP 4.4246E-02 4.8088E-02 6.6194E-02
ELP (β = 1) 4.3952E-02 4.8187E-02 6.7930E-02
ELP (β = 0.5) 4.4445E-02 4.8241E-02 6.6145E-02
IDJ1 4.3790E-02 4.8625E-02 7.1029E-02
IDJLC 4.3670E-02 4.9705E-02 7.7545E-02

0.35

RC 4.6099E-02 5.1493E-02 7.4978E-02
BtRC 4.5562E-02 5.0212E-02 7.1074E-02
SPLCP 4.4547E-02 4.8284E-02 6.5955E-02
IPLCP 4.4154E-02 4.8051E-02 6.6387E-02
ELP (β = 1) 4.3916E-02 4.8242E-02 6.8382E-02
ELP (β = 0.5) 4.4350E-02 4.8147E-02 6.6070E-02
IDJ1 4.3750E-02 4.8820E-02 7.2309E-02
IDJLC 4.5815E-02 6.0857E-02 1.3339E-01

0.5

RC 4.5581E-02 5.0257E-02 7.1214E-02
BtRC 4.4930E-02 4.8883E-02 6.7296E-02
SPLCP 4.4261E-02 4.7965E-02 6.5553E-02
IPLCP 4.3994E-02 4.8066E-02 6.7126E-02
ELP (β = 1) 4.3848E-02 4.8384E-02 6.9441E-02
ELP (β = 0.5) 4.4180E-02 4.8035E-02 6.6203E-02
IDJ1 4.3701E-02 4.9196E-02 7.4710E-02
IDJLC 6.9156E-02 1.3854E-01 3.7550E-01

Table 8.8: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=5dB, SIR=15dB, L=15.

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 4.1755E-02 4.7642E-02 7.3062E-02
BtRC 4.1471E-02 4.6704E-02 6.9787E-02
SPLCP 4.0687E-02 4.4372E-02 6.1887E-02
IPLCP 4.0539E-02 4.4231E-02 6.1826E-02
ELP (β = 1) 4.0529E-02 4.4597E-02 6.3755E-02
ELP (β = 0.5) 4.0594E-02 4.4249E-02 6.1682E-02
IDJ1 4.0604E-02 4.5257E-02 6.7022E-02
IDJLC 4.0822E-02 4.6660E-02 7.3824E-02

0.35

RC 4.1498E-02 4.6793E-02 7.0097E-02
BtRC 4.1154E-02 4.5694E-02 6.6281E-02
SPLCP 4.0614E-02 4.4215E-02 6.1438E-02
IPLCP 4.0521E-02 4.4265E-02 6.2069E-02
ELP (β = 1) 4.0536E-02 4.4694E-02 6.4239E-02
ELP (β = 0.5) 4.0563E-02 4.4216E-02 6.1649E-02
IDJ1 4.0640E-02 4.5523E-02 6.8357E-02
IDJLC 4.3315E-02 5.8118E-02 1.3034E-01

0.5

RC 4.1166E-02 4.5733E-02 6.6418E-02
BtRC 4.0788E-02 4.4617E-02 6.2652E-02
SPLCP 4.0513E-02 4.4072E-02 6.1158E-02
IPLCP 4.0507E-02 4.4417E-02 6.2908E-02
ELP (β = 1) 4.0559E-02 4.4921E-02 6.5361E-02
ELP (β = 0.5) 4.0520E-02 4.4223E-02 6.1867E-02
IDJ1 4.0712E-02 4.6013E-02 7.0848E-02
IDJLC 6.1404E-02 1.3185E-01 3.7488E-01

Table 8.9: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=5dB, SIR=20dB, L=15.
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α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 1.4413E-03 3.5098E-03 1.9568E-02
BtRC 1.1534E-03 2.6904E-03 1.5308E-02
SPLCP 4.6545E-04 8.5911E-04 4.9738E-03
IPLCP 2.9962E-04 5.0309E-04 2.9109E-03
ELP (β = 1) 2.1619E-04 3.5082E-04 2.0241E-03
ELP (β = 0.5) 3.6339E-04 6.3675E-04 3.7147E-03
IDJ1 1.7294E-04 2.8696E-04 1.7287E-03
IDJLC 1.4255E-04 2.7787E-04 1.9881E-03

0.35

RC 1.1794E-03 2.7638E-03 1.5701E-02
BtRC 8.5833E-04 1.8724E-03 1.0832E-02
SPLCP 4.0279E-04 7.1352E-04 4.1121E-03
IPLCP 2.7283E-04 4.4982E-04 2.5858E-03
ELP (β = 1) 2.0659E-04 3.3532E-04 1.9399E-03
ELP (β = 0.5) 3.3236E-04 5.6958E-04 3.3067E-03
IDJ1 1.6231E-04 2.7328E-04 1.6889E-03
IDJLC 2.6615E-04 1.6159E-03 3.5259E-02

0.5

RC 8.6775E-04 1.8985E-03 1.0983E-02
BtRC 5.5305E-04 1.0708E-03 6.2203E-03
SPLCP 3.0981E-04 5.1027E-04 2.8798E-03
IPLCP 2.2976E-04 3.6932E-04 2.0933E-03
ELP (β = 1) 1.8930E-04 3.0874E-04 1.8037E-03
ELP (β = 0.5) 2.8104E-04 4.6376E-04 2.6579E-03
IDJ1 1.4762E-04 2.5639E-04 1.6789E-03
IDJLC 2.3220E-02 9.5759E-02 3.7189E-01

Table 8.10: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=15dB, SIR=10dB, L=2.

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 2.3141E-05 1.6729E-04 5.0368E-03
BtRC 1.6959E-05 1.0287E-04 2.9686E-03
SPLCP 5.6038E-06 1.7299E-05 3.4229E-04
IPLCP 3.5762E-06 8.5723E-06 1.4955E-04
ELP (β = 1) 2.6459E-06 5.6026E-06 8.9039E-05
ELP (β = 0.5) 4.3399E-06 1.1650E-05 2.1750E-04
IDJ1 2.1904E-06 4.6168E-06 7.2404E-05
IDJLC 1.9704E-06 5.4645E-06 1.0513E-04

0.35

RC 1.7479E-05 1.0781E-04 3.1303E-03
BtRC 1.1537E-05 5.5862E-05 1.4504E-03
SPLCP 4.7884E-06 1.3353E-05 2.4993E-04
IPLCP 3.2651E-06 7.4388E-06 1.2526E-04
ELP (β = 1) 2.5429E-06 5.3386E-06 8.3980E-05
ELP (β = 0.5) 3.9602E-06 1.0042E-05 1.8112E-04
IDJ1 2.0795E-06 4.4406E-06 7.0463E-05
IDJLC 6.7985E-06 1.3393E-04 1.7469E-02

0.5

RC 1.1695E-05 5.6947E-05 1.4804E-03
BtRC 6.7997E-06 2.3892E-05 5.1690E-04
SPLCP 3.6481E-06 8.4776E-06 1.4220E-04
IPLCP 2.7787E-06 5.8479E-06 9.1865E-05
ELP (β = 1) 2.3589E-06 4.9090E-06 7.6003E-05
ELP (β = 0.5) 3.3519E-06 7.6899E-06 1.2973E-04
IDJ1 1.9269E-06 4.2646E-06 7.0848E-05
IDJLC 3.0642E-03 6.2992E-02 3.6769E-01

Table 8.11: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=15dB, SIR=15dB, L=2.
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α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 1.1473E-06 1.8367E-05 1.9825E-03
BtRC 8.2559E-07 9.7526E-06 9.1173E-04
SPLCP 2.7769E-07 1.2016E-06 5.1475E-05
IPLCP 1.8771E-07 5.6918E-07 1.9602E-05
ELP (β = 1) 1.4831E-07 3.7277E-07 1.1107E-05
ELP (β = 0.5) 2.2180E-07 7.8914E-07 3.0334E-05
IDJ1 1.3059E-07 3.1920E-07 9.1021E-06
IDJLC 1.3146E-07 4.5622E-07 1.6165E-05

0.35

RC 8.5174E-07 1.0338E-05 9.8185E-04
BtRC 5.5802E-07 4.6083E-06 3.3450E-04
SPLCP 2.4021E-07 9.0299E-07 3.5150E-05
IPLCP 1.7396E-07 4.9037E-07 1.6003E-05
ELP (β = 1) 1.4414E-07 3.5677E-07 1.0452E-05
ELP (β = 0.5) 2.0459E-07 6.7218E-07 2.4425E-05
IDJ1 1.2645E-07 3.1228E-07 8.9244E-06
IDJLC 7.0492E-07 2.8327E-05 1.1585E-02

0.5

RC 5.6533E-07 4.6960E-06 3.4038E-04
BtRC 3.3314E-07 1.7401E-06 8.8409E-05
SPLCP 1.8839E-07 5.4916E-07 1.7964E-05
IPLCP 1.5286E-07 3.8309E-07 1.1304E-05
ELP (β = 1) 1.3682E-07 3.3194E-07 9.4421E-06
ELP (β = 0.5) 1.7734E-07 5.0554E-07 1.6570E-05
IDJ1 1.2098E-07 3.0976E-07 9.1556E-06
IDJLC 4.1406E-04 4.6557E-02 3.6512E-01

Table 8.12: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=15dB, SIR=20dB, L=2.

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 2.4688E-03 4.6240E-03 1.9957E-02
BtRC 2.1321E-03 3.8011E-03 1.5896E-02
SPLCP 1.1430E-03 1.6975E-03 6.2133E-03
IPLCP 7.9628E-04 1.1313E-03 4.0873E-03
ELP (β = 1) 5.7722E-04 8.2037E-04 3.0516E-03
ELP (β = 0.5) 9.3811E-04 1.3575E-03 4.9394E-03
IDJ1 4.4027E-04 6.4847E-04 2.6252E-03
IDJLC 3.0792E-04 5.2243E-04 2.6792E-03

0.35

RC 2.1635E-03 3.8762E-03 1.6267E-02
BtRC 1.7533E-03 2.9331E-03 1.1712E-02
SPLCP 1.0237E-03 1.4855E-03 5.3583E-03
IPLCP 7.3156E-04 1.0328E-03 3.7269E-03
ELP (β = 1) 5.4862E-04 7.8282E-04 2.9422E-03
ELP (β = 0.5) 8.7150E-04 1.2479E-03 4.5142E-03
IDJ1 4.0351E-04 6.0442E-04 2.5445E-03
IDJLC 3.6072E-04 1.7921E-03 3.5173E-02

0.5

RC 1.7660E-03 2.9620E-03 1.1850E-02
BtRC 1.2964E-03 1.9826E-03 7.4101E-03
SPLCP 8.2693E-04 1.1577E-03 4.0752E-03
IPLCP 6.1861E-04 8.6939E-04 3.1531E-03
ELP (β = 1) 4.9486E-04 7.1396E-04 2.7548E-03
ELP (β = 0.5) 7.5290E-04 1.0616E-03 3.8119E-03
IDJ1 3.5039E-04 5.4246E-04 2.4697E-03
IDJLC 2.3552E-02 9.5507E-02 3.7178E-01

Table 8.13: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=15dB, SIR=10dB, L=6.
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α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 4.1208E-05 2.2371E-04 5.1776E-03
BtRC 3.1886E-05 1.4724E-04 3.1402E-03
SPLCP 1.2163E-05 3.1276E-05 4.3921E-04
IPLCP 7.7766E-06 1.6376E-05 2.0560E-04
ELP (β = 1) 5.5213E-06 1.0659E-05 1.2554E-04
ELP (β = 0.5) 9.4715E-06 2.1784E-05 2.8997E-04
IDJ1 4.2880E-06 8.3781E-06 1.0087E-04
IDJLC 3.3392E-06 8.4584E-06 1.3190E-04

0.35

RC 3.2694E-05 1.5332E-04 3.3001E-03
BtRC 2.3057E-05 8.7055E-05 1.6198E-03
SPLCP 1.0487E-05 2.4814E-05 3.3058E-04
IPLCP 7.0585E-06 1.4303E-05 1.7443E-04
ELP (β = 1) 5.2534E-06 1.0098E-05 1.1845E-04
ELP (β = 0.5) 8.6453E-06 1.9009E-05 2.4539E-04
IDJ1 3.9715E-06 7.8873E-06 9.7281E-05
IDJLC 8.3231E-06 1.4465E-04 1.7460E-02

0.5

RC 2.3328E-05 8.8576E-05 1.6516E-03
BtRC 1.4517E-05 4.1508E-05 6.3429E-04
SPLCP 8.0102E-06 1.6406E-05 1.9802E-04
IPLCP 5.8884E-06 1.1265E-05 1.3028E-04
ELP (β = 1) 4.7626E-06 9.1418E-06 1.0699E-04
ELP (β = 0.5) 7.2737E-06 1.4803E-05 1.8052E-04
IDJ1 3.5228E-06 7.2758E-06 9.5804E-05
IDJLC 3.1841E-03 6.2750E-02 3.6765E-01

Table 8.14: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=15dB, SIR=15dB, L=6.

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 1.4425E-06 2.0522E-05 2.0027E-03
BtRC 1.0555E-06 1.1182E-05 9.3195E-04
SPLCP 3.6652E-07 1.4806E-06 5.6308E-05
IPLCP 2.4510E-07 7.0818E-07 2.1833E-05
ELP (β = 1) 1.8911E-07 4.5980E-07 1.2405E-05
ELP (β = 0.5) 2.9146E-07 9.7854E-07 3.3517E-05
IDJ1 1.6176E-07 3.8536E-07 1.0081E-05
IDJLC 1.5380E-07 5.1845E-07 1.7249E-05

0.35

RC 1.0873E-06 1.1827E-05 1.0024E-03
BtRC 7.2527E-07 5.4399E-06 3.4912E-04
SPLCP 3.1692E-07 1.1201E-06 3.8799E-05
IPLCP 2.2611E-07 6.1030E-07 1.7876E-05
ELP (β = 1) 1.8275E-07 4.3858E-07 1.1663E-05
ELP (β = 0.5) 2.6827E-07 8.3552E-07 2.7108E-05
IDJ1 1.5500E-07 3.7369E-07 9.8446E-06
IDJLC 7.4191E-07 2.8905E-05 1.1586E-02

0.5

RC 7.3418E-07 5.5421E-06 3.5532E-04
BtRC 4.3898E-07 2.1193E-06 9.5179E-05
SPLCP 2.4681E-07 6.8713E-07 2.0122E-05
IPLCP 1.9637E-07 4.7539E-07 1.2667E-05
ELP (β = 1) 1.7178E-07 4.0521E-07 1.0511E-05
ELP (β = 0.5) 2.3103E-07 6.2992E-07 1.8516E-05
IDJ1 1.4566E-07 3.6480E-07 1.0020E-05
IDJLC 4.2673E-04 4.6481E-02 3.6511E-01

Table 8.15: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=15dB, SIR=20dB, L=6.
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α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 2.7603E-03 4.9073E-03 2.0049E-02
BtRC 2.4182E-03 4.0899E-03 1.6037E-02
SPLCP 1.3748E-03 1.9543E-03 6.5036E-03
IPLCP 9.8200E-04 1.3444E-03 4.3845E-03
ELP (β = 1) 7.2080E-04 9.9117E-04 3.3299E-03
ELP (β = 0.5) 1.1448E-03 1.5911E-03 5.2374E-03
IDJ1 5.4987E-04 7.8421E-04 2.8772E-03
IDJLC 3.7430E-04 6.1156E-04 2.8747E-03

0.35

RC 2.4502E-03 4.1646E-03 1.6403E-02
BtRC 2.0270E-03 3.2204E-03 1.1917E-02
SPLCP 1.2424E-03 1.7302E-03 5.6564E-03
IPLCP 9.0631E-04 1.2350E-03 4.0213E-03
ELP (β = 1) 6.8567E-04 9.4694E-04 3.2161E-03
ELP (β = 0.5) 1.0689E-03 1.4725E-03 4.8130E-03
IDJ1 5.0286E-04 7.2933E-04 2.7868E-03
IDJLC 3.8943E-04 1.8430E-03 3.5147E-02

0.5

RC 2.0402E-03 3.2495E-03 1.2052E-02
BtRC 1.5424E-03 2.2514E-03 7.6851E-03
SPLCP 1.0190E-03 1.3766E-03 4.3764E-03
IPLCP 7.7167E-04 1.0496E-03 3.4375E-03
ELP (β = 1) 6.1888E-04 8.6463E-04 3.0189E-03
ELP (β = 0.5) 9.3162E-04 1.2677E-03 4.1079E-03
IDJ1 4.3401E-04 6.5049E-04 2.6953E-03
IDJLC 2.3622E-02 9.5424E-02 3.7176E-01

Table 8.16: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=15dB, SIR=10dB, L=15.

α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 4.9485E-05 2.4368E-04 5.2156E-03
BtRC 3.9009E-05 1.6381E-04 3.1871E-03
SPLCP 1.5718E-05 3.7752E-05 4.7105E-04
IPLCP 1.0109E-05 2.0255E-05 2.2575E-04
ELP (β = 1) 7.1033E-06 1.3221E-05 1.3937E-04
ELP (β = 0.5) 1.2299E-05 2.6679E-05 3.1499E-04
IDJ1 5.4057E-06 1.0245E-05 1.1179E-04
IDJLC 3.9967E-06 9.7815E-06 1.4146E-04

0.35

RC 3.9927E-05 1.7021E-04 3.3464E-03
BtRC 2.8825E-05 9.9572E-05 1.6682E-03
SPLCP 1.3615E-05 3.0285E-05 3.5801E-04
IPLCP 9.1678E-06 1.7753E-05 1.9245E-04
ELP (β = 1) 6.7381E-06 1.2507E-05 1.3158E-04
ELP (β = 0.5) 1.1239E-05 2.3405E-05 2.6803E-04
IDJ1 4.9649E-06 9.5771E-06 1.0755E-04
IDJLC 8.8365E-06 1.4793E-04 1.7457E-02

0.5

RC 2.9142E-05 1.0124E-04 1.7003E-03
BtRC 1.8623E-05 4.9360E-05 6.7129E-04
SPLCP 1.0446E-05 2.0379E-05 2.1823E-04
IPLCP 7.6112E-06 1.4024E-05 1.4482E-04
ELP (β = 1) 6.0651E-06 1.1272E-05 1.1889E-04
ELP (β = 0.5) 9.4562E-06 1.8374E-05 1.9907E-04
IDJ1 4.3369E-06 8.7134E-06 1.0526E-04
IDJLC 3.2176E-03 6.2690E-02 3.6764E-01

Table 8.17: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=15dB, SIR=15dB, L=15.
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α Pulse t/T = 0.05 t/T = 0.10 t/T = 0.20

0.25

RC 1.5618E-06 2.1270E-05 2.0085E-03
BtRC 1.1501E-06 1.1693E-05 9.3795E-04
SPLCP 4.0464E-07 1.5909E-06 5.7926E-05
IPLCP 2.6962E-07 7.6427E-07 2.2606E-05
ELP (β = 1) 2.0621E-07 4.9487E-07 1.2861E-05
ELP (β = 0.5) 3.2131E-07 1.0543E-06 3.4605E-05
IDJ1 1.7448E-07 4.1150E-07 1.0424E-05
IDJLC 1.6234E-07 5.4137E-07 1.7612E-05

0.35

RC 1.1840E-06 1.2358E-05 1.0084E-03
BtRC 7.9530E-07 5.7491E-06 3.5363E-04
SPLCP 3.4990E-07 1.2069E-06 4.0040E-05
IPLCP 2.4832E-07 6.5883E-07 1.8531E-05
ELP (β = 1) 1.9908E-07 4.7168E-07 1.2090E-05
ELP (β = 0.5) 2.9553E-07 9.0122E-07 2.8033E-05
IDJ1 1.6654E-07 3.9774E-07 1.0167E-05
IDJLC 7.5366E-07 2.9082E-05 1.1586E-02

0.5

RC 8.0497E-07 5.8566E-06 3.5992E-04
BtRC 4.8419E-07 2.2667E-06 9.7392E-05
SPLCP 2.7206E-07 7.4329E-07 2.0875E-05
IPLCP 2.1473E-07 5.1276E-07 1.3147E-05
ELP (β = 1) 1.8623E-07 4.3447E-07 1.0888E-05
ELP (β = 0.5) 2.5394E-07 6.8027E-07 1.9196E-05
IDJ1 1.5544E-07 3.8599E-07 1.0320E-05
IDJLC 4.3063E-04 4.6460E-02 3.6510E-01

Table 8.18: BER considering ISI and CCI using the Precise Interference Model, for the ideal
impulse response of the pulses and SNR=15dB, SIR=20dB, L=15.
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Appendix C

8.3 Codes

All the codes used in this work are available in the following link:

https://github.com/LaboratorioTICs-UChile/

Appendix D

8.4 List of Publications

Conference

1. J. Aranda Cubillo, C. Azurdia, S. Montejo-Sanchez, I. Jirón, and R. Demo Souza,
“Error probability analysis of Nyquist-I pulses in intersymbol and cochannel interfer-
ence,” in 2018 IEEE Symposium on Computers and Communications (ISCC), Natal,
Brazil, Jun. 2018.

2. S. Montejo-Sanchez, C. Azurdia, J. Aranda Cubillo, R. Demo Souza , E Garcia
Fernandez and I.Soto, “Energy-Efficient Transmission Strategies with Multiple Radios
in Cognitive Radio: Beyond Rendezvous,” 2018 IEEE 11th Colombian Conference on
Communications and Computing (COLCOM), Medellín, Colombia, May. 2018.

3. J. Aranda Cubillo, C. A. Azurdia-Meza, S. Montejo-Sánchez, F. M. Maciel-Barboza
and I. Jirón, “Analysis of the exponential linear pulse in baseband digital communication
systems,” 2017 IEEE 9th Latin-American Conference on Communications (LATIN-
COM), Guatemala City, Nov. 2017, pp. 1-6. doi: 10.1109/LATINCOM.2017.8240170.
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