CONTENTS

CHAPTER 1. INTRODUCTION 1
1.1. GENERAL OVERVIEW AND MOTIVATION1
1.2. THEORETICAL FRAMEWORK
1.2.1. The subcontinental lithospheric mantle
1.2.2. Mantle metasomatism
1.2.3. The formation of SCLM fertile domains
1.2.4. The lithospheric mantle connections of ore deposits
1.2.5. Sourcing metals from a fertile SCLM reservoir
1.3. CASES OF STUDY
1.4. OBJECTIVE OF THE THESIS
1.4.1. Specific goals7
1.5. HYPOTHESES
1.6. THESIS STRUCTURE
1.7. PUBLICATIONS AND CONFERENCES
1.7.1. Publications
1.7.2. Conference abstracts as leading author
1.7.3. Conference abstracts as co-author
1.8. BIBLIOGRAPHY
CHAPTER 2. PLUME-SUBDUCTION INTERACTION FORMS LARGE AURIFEROUS
PROVINCES14
2.1. ABSTRACT
2.2. INTRODUCTION 14
2.3. GEOLOGICAL SETTING AND XENOLITH PETROLOGY 15
2.4. GOLD ENTRAINED BY INFILTRATING MELTS
2.5. THE ROLE OF ALKALI MELTS ON GOLD MOBILITY IN THE SCLM 17
2.6. THE GOLD-BEARING GLASSY VEIN AS A FINGERPRINT OF A FORMER "GOLDEN PLUME"
2.7. AN OPTIMAL ALIGNEMENT OF EVENTS PRODUCED THE DESEADO MASSIF
AURIFEROUS PROVINCE
2.8. BIBLIOGRAPHY
2.9. FIGURES
2.10. ACKNOWLEDGEMENTS
2.11. AUTHOR CONTRIBUTIONS
CHAPTER 3. HIGHLY SIDEROPHIE ELEMENTS MOBILITY IN THE SUBCONTINENTALLITHOSPHERIC MANTLE BENEATH SOUTHERN PATAGONIA 27

3.1.	ABSTRACT	27
3.2.	INTRODUCTION	28
3.3.	GEOLOGICAL BACKGROUND	29
3.4.	RESULTS	30
3.4.1.	Sample description	30
3.4.2.	Whole-rock chemistry: major and trace elements	31
3.4.3.	Whole-rock HSE and Re-Os isotopic signatures	32
3.4.4.	Mineral chemistry: olivine and pyroxenes	33
3.4.5.	Mineral chemistry: metasomatic minerals	34
3.4.6.	Petrography and major element composition of base-metal sulfides	35
3.4.7.	In situ HSE and semi-metal abundances in base-metal sulfides	35
3.5.	DISCUSSION	36
3.5.1.	Estimation of the degree of partial melting	36
3.5.2.	Evidence of modal and cryptic volatile-rich metasomatism	37
3.5.3.	Nature of the interstitial glass	39
3.5.4.	HSE mobility in the subcontinental lithospheric mantle beneath southern Patagonia	39
3.6.	CONCLUSIONS AND IMPLICATIOS FOR METALLOGENY	43
3.7.	BIBLIOGRAPHY	44
3.8.	FIGURES	50
3.9.	Acknowledgements	65
CHAPT	ER 4. THE ROLE OF THE LITHOSPHERIC ANTLE IN THE OXIDATIO	NC
STATE	AND ORE FERTILITY OF ARC MAGMAS	66
4.1.	ABSTRACT	66
4.2.		67
4.3.	SAMPLE BACKGROUND AND REDOX CONSTRAINTS	68
4.4.		69
4.4.1.	Melt oxidation in the lithospheric mantle	69
4.4.2.	Scavenging sulphur and ore-metals from the lithospheric mantle	70
4.4.3.	Impact on the oxidation state of primitive arc magmas	/1
4.5.	CONCLUDING REMARKS	72
4.6.	BIBLIOGRAPHY	72
4.7.	FIGURES	/6
4.8.	Acknowledgments	80
4.9.		80
SOUTH	ER 5. A COMPLEA REDUA RECORD IN PRIMITIVE METS FROM THE ERN ANDES	81

5	.1.	ABSTRACT	. 81
5	.2.	INTRODUCTION	. 82
5	.3.	GEOLOGIC BACKGROUND AND SAMPLE MATERIAL	. 83
5	.4.	ANALYTICAL METHODS	. 84
5	.4.1.	Electron probe microanalysis (EPMA) and electron backscatter diffraction (EBSD)	. 84
5	.4.2.	Micro X-ray absorption near edge structure spectroscopy (µ-XANES)	. 85
5	.4.3.	Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)	. 85
5	.5.	RESULTS	. 86
5	.5.1.	Olivine composition	. 86
5	.5.2.	Cr-spinel composition	. 86
5	.5.3.	Melt inclusions composition	. 87
5	.5.4.	Iron µ-XANES analysis of melt inclusions	. 87
5	.5.5.	Post-entrapment modification of melt inclusions	. 88
5	.5.6.	Redox state constraints	. 89
5	.6.	DISCUSSIONS	. 90
5	.6.2.	Two different redox conditions recorded in the LHC magmas?	. 92
5	.7.	CONCLUSIONS	93
5	.8.	BIBLIOGRAPHY	. 94
5	.9.	FIGURES	102
5	.10.	ACKNOWLEDGEMENTS	114
CHA	APT	ER 6. CONCLUSIONS	115
SUF	PLE	EMENTARY INFORMATION	117
A.1.		SUPPLEMENTARY INFORMATION FOR CHAPTER 2	118
A.2.		SUPPLEMENTARY INFORMATION FOR CHAPTER 3	131
A.3.		SUPPLEMENTARY INFORMATION FOR CHAPTER 4	169
A.4.		SUPPLEMENTARY INFORMATION FOR CHAPTER 5	181

TABLES INDEX

Table 3.1.	Summarized	composition	nal	features	of	the	different	clinopyroxene
Table 3.2. sulfides	Summarized I	petrographic a	ind c	omposition	al fea	ature	s of the dif	fferent base-metal
Table 5.1. equilibrium	Summary of	data used in	the	estimation	of	fO ₂	based on	the olivine-spinel

FIGURES INDEX

Figure 2.1. Argentina	Simplified	geological	map	of	southern	Patagonia, 23		
Figure 2.2. xenolith	Photomicrogra	ph and BSE image	es of Au	particles in	the Cerro Red	ondo mantle		
Figure 2.3. Deseado Mas	Lithospheric-sc sif auriferous pro	cale processes invo	olved in t	he precurso	or stage of form	nation of the25		
Figure 3.1. basalts contai	Simplified sket ning mantle xen	ch map of souther	rn South	America sh	owing the Neo	gene Plateau		
Figure 3.2. xenoliths	Mineral mod	al abundances	estimated	l for th	e investigated	peridotite		
Figure 3.3. recognized in	Optical and the Patagonian	scanning electron mantle xenoliths	microph	notographs	of metasomat	tic minerals		
Figure 3.4. xenoliths	Major elem	ent variations	for	southern	Patagonian	peridotite		
Figure 3.5. the whole-roo xenoliths	Figure 3.5. CI chondrite-normalized and primitive mantle-normalized trace element patterns for the whole-rock REE and trace element compositions of the investigated Patagonian peridotite xenoliths							
Figure 3.6. peridotite xen	Whole-rock Clother	I chondrite-norma	lized HSI	E patterns	of the southern	Patagonian		
Figure 3.7. Patagonian pe	Re-Os isotope pridotite xenolith	data and calcula s	ted TRD	model age	es for whole-ro	ock southern		
Figure 3.8. patterns of cli	CI chondrite-ne	ormalized and prin	nitive mai	ntle-normal	ized REE and t	race element		
Figure 3.9. peridotite xen	Backscattered oliths	electron images o	of base n	netal BMS	from southern	Patagonian		
Figure 3.10. - Fe - Ni + Co	Composition of and S - Fe $-$ Cu	f the BMS from the systems	e southern	Patagonian	peridotite xeno	liths in the S		
Figure 3.11. Patagonian pe	CI chondrite-r ridotite xenolith	ormalized HSE s	element	patterns of	the BMS fro	om southern 60		
Figure 3.12. types of BMS	Bivariate plots	of the (Os/Ir) _n an	d (Pd/Pt)n	versus the	S/Se ratios of	the different		
Figure 3.13. 2 peridotites	CI chondrite-no	ormalized trace elem	ment com	position of	he interstitial gl	ass in Group 62		

Figure 3.14. Cartoon showing the likely sequence of events that occurred during the genesis of Figure 4.1. Mechanisms leading to oxidation of percolating melts and ore metal Figure 4.2. Figure 4.3. Redox evolution of the silicate melts and the effect of redox gradients on Au Figure 4.4. Redox evolution of silicate melts formed within an arc setting, and its impact on ore Location of the transitional southern volcanic zone (TSVZ) in the Chilean Andes, Figure 5.1. Transmitted light photomicrographs of the studied olivine and their hosted melt Figure 5.2. inclusions from the tephra material......103 composition of the studied olivine-hosted Figure 5.3. Trace element melt Representative Fe-XANES spectra and illustration of the applied fitting Figure 5.4. Comparison of the Mg# in equilibrium with melt inclusions against the Mg# of the Figure 5.5. Figure 5.6. Backscattered of olivine-hosted electron images melt Figure 5.7. Major element variations of the studied suite of olivine-hosted melt Re-equilibration timescales for vanadium between olivine-hosted melt inclusions Figure 5.8. Example of olivine crystal and the measured high-resolution profiles plus the Figure 5.9. Figure 5.10. Calculated fO_2 conditions for the magmatic products of the LHC......110