Contents

1	INT	TRODUCTION	1
	1.1	Motivation	1
	1.2	Background	2
		1.2.1 Geothermal systems in the Southern Volcanic Zone	2
		1.2.2 Groundwater age and the use of environmental tracers	4
	1.3	Research questions and aims of this study	7
		131 Objectives	. 7
		1.3.2 Hypothesis	.7
	14	Structure of the thesis	9
	1.1	Publications and abstracts resulting from this dissertation	g
	1.0	Publications resulting from side projects	10
	1.0		10
2	\mathbf{ST}	ABLE ISOTOPE AND ANTHROPOGENIC TRACER SIGNATURE	C
	OF	WATERS IN AN ANDEAN GEOTHERMAL SYSTEM	11
	2.1	Introduction	12
	2.2	Geological background	14
		2.2.1 Regional tectonic and structural setting	14
		2.2.2 Subsurface geology and geothermal reservoir potential	14
		2.2.3 Climate of the study area and groundwater occurrence	16
	2.3	Sampling and analytical techniques	16
	2.4	Results	18
		2.4.1 Physicochemical parameters and fluid chemistry	18
		2.4.2 Stable isotope composition	18
		2.4.3 Dissolved anthropogenic tracer concentration	24
	2.5	Discussion	24
		2.5.1 Hydrothermal system recharge	24
		2.5.2 Sources of inorganic carbon	29
		2.5.3 Groundwater residence times and mixing of fluids of different ages	32
		2.5.4 Conceptual model of fluid circulation	37
	2.6	Concluding remarks	39
ი	CO	NCLUSIONS	40
3			40
	ა.1 ეკ	Scientific contributions of this dissertation	40
	3.2	Future work	41
Bi	ibliog	graphy	42
\mathbf{A}	ppen	dix A – Supplementary material	52
	A.3	Data for constructing the local meteoric water line	52
	A.4	PHREEQC code	54
A	ppen	dix B – Rayleigh fractionation model	55

List of Figures

1.1	Geological map of the Central Southern Volcanic Zone $(37-41^{\circ}S)$	3
1.2	Box plot of Cl/B ratios in thermal waters of the central SVZ, based on water	
	type and fault domain	5
1.3	Schematic illustration showing the use of environmental tracers to characterize	
	time-scales along a flow-path	6
1.4	Schematic cross-section illustrating different types of groundwater flow and	
	mixing at sampling point	8
2.1	Map of the study area	15
2.2	Piper diagram	22
2.3	δ^{18} O vs. δ^{2} H plot	23
2.4	δ^{18} O vs. sampling elevation of waters $\ldots \ldots \ldots$	26
2.5	TDIC vs. δ^{13} C	29
2.6	Saturation indices of calcite and dolomite in water samples	31
2.7	Effects of ${ m CO}_2$ degassing and calcite precipitation on $\delta^{13}C$ values of fluid $$.	31
2.8	Apparent recharge year of thermal and cold groundwater samples	33
2.9	Environmental tracer plots	35
2.10	Conceptual model of fluid circulation	37

List of Tables

1.1	Major regional-scale geochemical differences between LOFS-associated and ATF-associated geothermal fluids	4
2.1	Chemical composition, isotopic signature, and atmospheric tracer concentra- tion of water samples in the study area	19
2.2	Summary characteristics of hot and cold springs	$\frac{15}{27}$
A.1	Isotope precipitation data from the Araucanía Region, Southern Chile	52
B.1	Boundary conditions for the Rayleigh-fractionation model	57