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CONTRIBUTION TO INVERSE PROBLEMS AND CONTROLLABILITY ISSUES
OF HYPERBOLIC AND PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

El objetivo de esta tesis consiste principalmente en el estudio teérico de algunos resultados
de problemas inversos y de controlabilidad en ecuaciones hiperboélicas y parabolicas.

En el Capitulo 1 presentamos una breve introduccion de los topicos tratados en este
trabajo. Principalmente, centramos nuestra atencién en las definiciones clésicas de con-
trolabilidad y problemas inversos. Posteriormente, indicamos cudles son los resultados
generales obtenidos en esta tesis.

En el Capitulo 2, describimos los resultados de estabilidad obtenida para la reconstruc-
cion de potenciales en un sistema de ecuaciones hiperboélicas acopladas en cascada. Para
probar este resultado, nos inspiramos en el método de Bukhgeim-Klibanov combinado con
un tipo especial de desigualdades conocidas como estimaciones de Carleman. Estas dos
herramientas, junto con el hecho que las ecuaciones del sistema estan acopladas en cas-
cada, nos permiten obtener un resultado de estabilidad Lipschitz para la recuperaciéon de

todos los potenciales del sistema utilizando mediciones de algunas componentes accesibles
de él.

En el Capitulo 3, nos centramos en el estudio de la controlabilidad a cero de una
ecuacion del calor con condiciones de borde dindmicas. Este problema se puede ver como
una ecuacion del calor acoplada con una ecuacion diferencial ordinaria actuando en un
extremo del borde. Nuestros resultados apuntan en dos direcciones. En primer lugar,
probamos que este tipo de problemas se puede controlar a cero en una regiéon que estéi
lejos de la interaccion entre las dos dinamicas. Usando la dualidad entre observabilidad
y controlabilidad, la prueba de este resultado estd basado en la construcciéon de una
estimacion de Carleman adecuada. En segundo lugar, probamos que una modificacion
de este tipo de problemas puede ser visto como el problema limite de una familia de
problemas parabolicos con coeficientes de difusién discontinuos en donde la difusion es
muy alta en una parte del dominio. Adicionalmente, estudiamos el efecto que tiene el
control del problema limite en la sucesion de problemas aproximados.

Finalmente, en el Capitulo 4 desarrollamos una manera de obtener una estimacion de
tipo Carleman para una ecuacion del calor con coeficientes de difusion discontinuos. La
novedad en esta estrategia estan basadas en las ideas del anélisis microlocal desarrollado
por L. Robbiano y J. Le Rousseau et al. para ecuaciones parabdlicas, con la ventaja de
que podemos obtener informacién de la constante de observabilidad.
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CONTRIBUTION TO INVERSE PROBLEMS AND CONTROLLABILITY ISSUES
OF HYPERBOLIC AND PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

The goal of this thesis is the theoretical study of some controllability and inverse problems
for hyperbolic and parabolic equations.

In Chapter 1, we present a brief introduction of the general topics of this thesis. We fo-
cus on the classical definitions of controllability and inverse problems in partial differential
equations. Then, we present the main results of this work.

In Chapter 2, we deal with the potential reconstruction for hyperbolic systems in
cascade where measurements of the last component are not available. Roughly speaking,
the novelty of this work consists in the Lipschitz stability of this inverse problem from
partial measurements of the components of the system. More precisely, we measure all
components except the last one. The main tool to achieve this result is a global Carleman
estimate for a system of wave equations in cascade where the last component is not
accessible.

In Chapter 3, the null controllability of a parabolic equation with dynamic boundary
conditions is studied. This problem can be seen as a heat equation with an ordinary
differential equation coupling through the boundary. We present our results in two direc-
tions. Firstly, we prove that these kind of problems are null-controllable at any time when
control acts on a subset which is far from the coupling region. Following the well-known
duality between controllability and observability, we prove the associated observability
inequality for the adjoint system. Secondly, we prove that a slight modification of this
problem can be seen as a limit of a family of parabolic equations with discontinuous dif-
fusion coefficients where the diffusivity is very high in a part of the domain. Additionally,
we study the effect of controls for the limit problem in the approximate system.

Finally, in Chapter 4 we develop a suitable Carleman estimate for the heat equation in
the presence of an interface. The novelty in this strategy is based on the ideas of microlocal
analysis by L. Robbiano and J. Le Rousseau in the context of parabolic equations, with
the advantage that we can track the observability constant.
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Chapter 1

(zeneral Introduction

In this chapter, we state the elementary notions concerning inverse problems and con-
trollability issues in partial differential equations (PDE’s for short). In order to get a
self-contained exposition, we divide this chapter into three sections.

Firstly, in Section we restrict our attention to inverse problems for hyperbolic equa-
tions and systems. More precisely, we focus on stability results of potential reconstruction
for this kind of equations where the observation is on a part of the boundary satisfying
suitable geometric and time conditions. Moreover, some other inverse problems concern-
ing hyperbolic equations are considered. In particular, we state results on the stability for
some coefficients of an acoustic equation studied by M. Yamamoto and M. Bellassoued.

On the other hand, in Section [I.2] controllability results on parabolic equations are
studied. Since the literature is very rich concerning this topic, we reduce our scope to
the basic results for the heat equation and their variants. In addition, recent results of
controllability for parabolic equations with dynamic boundary conditions are considered.

Finally, in Section [1.3| we state the main theoretical contributions of each topic in this
thesis.

1.1 Inverse problems for hyperbolic equations

Intuitively, the observation of an effect in a physic phenomenon may not be sufficient
to determine its cause. In fact, if we go inside a room and notice that the temperature
is (approximately) uniform, it is difficult for us to know what the distribution of the
temperature was four hours ago. Even more, one can think about if there is two different
distributions of the temperature which provides the same observation.

The so-called direct problems in PDE’s try to describe various physical phenomena
such as the propagation of sound, heat, seismic waves, electromagnetic waves, etc. Here,
the media properties, the initial state or its conditions on the boundary are assumed to
be known.

For example, we can formulate the following direct problem for the acoustic equation:



In the domain Q C R¢, with d > 1 with smooth boundary 9, let y = y(x,t) be a solution
of

p(2)dfy — () Ay = fz,t), nQx(0,7),
y(z,0) = yo, Oy(x,0) =y, in Q, (1.1.1)
Y=g, on 09 x (0,7).

Here, y = y(x,t) is the acoustic pressure, p = p(z) and ¢ = ¢(z) stand for the density
and sound speed of the medium and f = f(z,t) is the source. Under suitable assumptions,
system ([1.1.1)) is well posed, i.e., it has a unique solution and is stable with respect to
small perturbations in the data.

Generally speaking, the unknowns in inverse problems include some functions given in
the formulation of a direct problem, which are the solution of our inverse problem. In
order to compute these unknowns, the direct problem is supplied with some additional
information about the solution to the direct problem. This one represents the data of our
inverse problem. For example, in one can consider the partial data on the flux
%u — hoon 9Q x (0, 7).

There is not a universal definition for inverse problems. Indeed, given a direct problem
(sometimes called forward problem), one can define several inverse problems. For example
we say the inverse problem for (1.1.1)) is a source term inverse problem if it is required to
determine the function f = f(x,t). In a similar way, we say that an inverse problem is a
coefficient inverse problem if it is required to reconstruct the coefficients ¢ = ¢(x) and/or
p = p(x) in . There exist other classifications based on the additional information,
on equations on the structure of the operator, etc. For more details about this topic, we
refer to [68].

In contrast to direct problems, inverse problems are ill posed. Mathematically speaking,
this means that this kind of problems has no solution in the desired class, or has several
solutions, or the solution procedure is unstable, i.e., arbitrarily small errors in the data of
the inverse problems may lead to indefinitely large errors in the solutions. For this reason,
three questions arise naturally: uniqueness, stability and reconstruction of the coefficients
studied. In this thesis, we focus only on uniqueness and stability issues.

Concerning uniqueness, we discuss whether the adopted extra data on the solution
can uniquely determine an unknown coefficient or source term. On the other hand, in
the stability issue, we are interested on getting the so-called stability estimates. Roughly
speaking, these ones determine if it is possible to obtain the norm of the unknown co-
efficients by partial measurements. Of course, it follows from this that a stability result
implies uniqueness. We refer to [16] and [65] for a complete description of these problems.

In general, concerning theoretical methods for coefficient inverse problems, we can
consider two types of formulations:

e Infinitely many measurements by Dirichlet-to-Neumann map: In this case,
the data are all the pairs of Dirichlet boundary inputs and the corresponding Neu-
mann boundary values. For example, given g, we solve (l.1.1) with f = 0 in



Qx(0,7), y(-,0) = y(-,0) =0in Q and y = g on I x (0,7T), we define the map

which is called the Dirichlet-to-Neumann map. Then, in this case, the problem is
to determine ¢ from the Dirichlet-to-Neumann map, which means that we have to
repeat measurements of cg—ﬁ on 09 x (0,T) after choosing all possible g. For this
reason, we say that this is an inverse problem with infinitely many measurements.

e Finitely many measurements by Carleman estimates: In contrast to the
above formulation, in this one it is sufficient to observe boundary or distributed
data of the solution after suitably choosing initial values at finitely many times or a
single time. Concerning uniqueness and stability, in 1981 Bukhgeim and Klibanov
[26] proposed a fundamental method to obtain uniqueness and stability of the inverse
problem based on Global Carleman estimates.

There exists a huge literature on these topics. For more details in other contexts and
equations, we refer to [65], [93], |[L6], and the references therein.

1.1.1 On the well-posedness of the wave equation with potential

In this section, we present the classical inverse problem related to the wave equation. In
order to get an idea, let Q C RY with N > 1 be a domain with smooth boundary 99 and
T > 0. Then, let u = u(z,t) be the solution of the following problem:

0?u — Au+pu = f, in Q% (0,7),
u(z,0) = ug(x), u(x,0) =uy(z), inQ, (1.1.2)
u=0, on 02 x (0,7).

Here u = u(x,t) denotes the evolution of the amplitude of the waves, p = p(z,t) is a
bounded potential and f = f(z,t) denotes a source term acting according to the equation
1.1.2);. Moreover, (ug,u;) denotes the initial state of the waves. In addition, equation
1.1.2))3 is a Dirichlet boundary condition which states that the amplitude of the waves
vanishes at the boundary.

The following result asserts that (1.1.2]) is well posed in the sense of Hadamard.

Theorem 1.1 Suppose that p € L=(Q x (0,T)), f € L*0,T;L*(Q)), up € H} () and
uy € L*(Q). Then, the problem (1.1.2) admits a unique (weak) solution satisfying

u € C[0,T); Hy (), O e C°([0,T); L*(Q)).

Moreover, there exists a constant C' = C(2,T) > 0 such that the solution u of (1.1.2)
satisfies the following estimate:

[wll oo, mp ) + [10kullcoqoryLz@) < C <||U0HH3(Q) + [Juall 22 @) + Hf||L1(o,T;L2(Q))> :
(1.1.3)



Notice that Theorem gives us the regularity of the solution in the presence of a
source term f € L'(0,T;L?*(2)). Alternatively, one can establish the regularity of the
solution v when f belongs in a different functional space:

Theorem 1.2 Let us assume that p € L®(Q x (0,T)), f € WH(0,T; H1(Q)), ug €
H3(Q)) and uy € L*(QQ). Then, there exists a unique solution u of (1.1.2) with the following
properties

u € C°[0,T]; Hy (), O € C°([0,T); L*()).

Moreover, there exists a positive constant C' which depends at least of Q and T > 0

such that the unique solution of (1.1.2) fulfills

lullco o mz @) + [10sullcoqomr2@) < C <||uoHH5(Q) + |lui |l 2 ) + Hf”lel(O,T;L?(Q))) -
(11.4)

Let us mention that the inequalities (1.1.3)) and (1.1.4)) assert the continuous depen-
dence of the solution u with respect to the initial data and source terms, see [80)].

We remark that Theorems or do not provide information about the normal
derivative d,u of the solution of (1.1.2). To be more precise, if a function belongs to
CY([0,T7; H}(2)) the normal derivative could not be well defined. However, under the
assumptions of Theorem we will see that the solution u has an extra regularity. This
is given in the following:

Theorem 1.3 (Hidden regularity of wave equation [79]) Assume the same hypothe-
ses of Theorem[1.1l Then, the solution u of (L.1.2) fulfills

O,u € L2 x (0,T)).

Furthermore, the application
A LN0,T; LA(Q)) x Hi (Q) x L*(Q) — L*(0Q x (0,T))

defined by A(f,up,u1) = Oyu is well defined and is a linear continuous map, that is to
say, there exists a constant C > 0 such that

|0sull200x 017 < C (1l 0miaen + luoll e + lurllz2(en ) -

Remark 1.4 Under the assumptions of Theorem [1.9 we cannot get any regularity result
on the normal derivative 0, u.

1.1.2 Potential reconstruction for the wave equation

Now we will introduce an inverse problem for (1.1.2)). Suppose that the potential p in
(1.1.2)) is a time-independent function. Then, one can consider the following

4



Inverse problem: Can we retrieve the potential p = p(z) of (1.1.2) from the knowl-
edge of the flux d,u on I'g x (0,7) with I'y C 92 or partial measurements of u in w x (0,7")
with w C Q7

Notice that the above problem is interesting since the partial data is defined only on a
part of the boundary. Of course, we point out that this makes sense thanks to the hidden
regularity result of the wave equation.

In the following, we are interested in the dependence of the solution u of with
respect to the potential p. For this reason, here and subsequently, u(p) and u(q) stand
for the corresponding solution of u associated to the potentials p and q respectively, for
fixed initial data (ug,u;) and source term f.

Then, thanks to this notation, we can formulate questions related to the above inverse
problem in three directions:

e Uniqueness: Does the equality
ayu(p) = auu(Q) on I-‘0 X (OaT)

imply p = ¢ in Q7

e Stability: Is it possible to estimate ||g — pl|12(q) or better yet, a stronger norm of
(¢ — p), by a suitable norm of d,u(q) — d,u(p) in I'y x (0,7)?

e Reconstruction: Can we find a formula or an algorithm to retrieve the potential
p from the knowledge of d,u(p) on I'y x (0,7)?

Of course, the same three questions can be formulated in the case of partial data of
interior observations, i.e., u(p) in w x (0,7"), with w C Q.

Now we focus on the stability problem. To this end, we shall introduce the so-called
geometric and time conditions:

e Geometric condition: there exists 7o ¢  such that Ty C 9 fulfills

{x € 0Q; v(x)- (x—1x0) >0} CT. (1.1.5)
e Time condition: T is chosen such that zy ¢ Q given in the geometric condition
satisfies:
sup | — xo| < T. (1.1.6)
e

In the case of interior observations, the geometric condition reads as follows: there
exists xg ¢ () such that w C Q satisfies

{x € 0Q; v(z) - (x —x0) > 0} C dw NN (1.1.7)

Let us emphasize that I'y C 002 and w C 2 satisfying the geometric condition are not
arbitrary subsets. Indeed, in the particular case of {2 being a ball in R?, the length of T,
is larger than half of the ball. In the same way, w is a boundary neighborhood of T'y, see
figure 1.1:



Figure 1.1: T'y and w satisfying the geometric condition

Roughly speaking, the Geometric and Time conditions assert that, thanks to the Snell
law, all rays of geometric optics in €2, which are simply straight lines reflected on the
boundary, should meet the observation region I'g (or w) at a non-diffractive point in a
time less than 7.

Let us also introduce the admissible sets of potentials for the above inverse problem.
For m > 0, we define the set

L3, () ={p € L=(Q); [[pllre@) < m}.
Theorem 1.5 (see [I1]) Let m > 0, K > 0 and v > 0. Let p € LZ, (). Assume that
the solution u(p) of (1.1.2)) is such that
lu@) |z 0,00 < K,
and assume also that the initial datum ug satisfies the following positivity condition:

: S '
;I€1§f2 lup(x)| > 7 >0

Additionally, suppose that I'o C 02 and T > 0 satisfy the geometric and time condition.
Then, for all g € LZ, (), d,ulq) — d,u(p) belongs to H'(0,T; L*(I'y)) and there exists a
constant C' = C(m, T, K,r) > 0 such that for any q € LZ,,(Q), the following inequalities
hold:

10,u(q) — O, u(p)||lmro1:L2(r0)) < Cllg — Pllz2(9), (1.1.8)

and

g = pllz2@) < Cllulg) — uP)|[mr07;22(00))- (1.1.9)
We emphasize that the estimate (1.1.9) asserts the Lipschitz stability of the inverse
problem while ([1.1.8) gives the continuous dependence of the normal derivative in the

norm H'(0,T; L*(Ty)) of the solution with respect to the potentials in the L?(Q)-norm.

6



We remark that the geometric condition is a restrictive assumption on the observations.
Without this condition, M. Bellassoued proved in [I5] that the same inverse problem has
logarithmic stability. More precisely, the author achieved the following result:

Theorem 1.6 (see [I5], [16]) Let T' be an arbitrary subset of 0Q. Assume that ug €
H3(Q) N H}(Q) and uy € H*(Q), and there exists a constant mg > 0 such that

lup(z)] > my >0, VreQ\w.
Then, there exist T > 0 sufficiently large and o constant C' > 0 such that

o ~1/2
log [ 1+ : (1.1.10)
10, (up — uy) ||H1(O,T;L2(f))

for all p,q € A(QY), where A(QY) is the set of admissible potentials given by
AQ) = {p e WH(Q); [Ipllwieoi) < M, p = po in Q\w},

lp = qll2@) < C

with M > 0 and py € C*°(R") are given arbitrarily. Moreover, the constant C in (|1.1.10))
18 dependent of Q,w, T, M, ug, uy, but independent of p, q.

According to the definition of A(2), we remark that this stability result comes from
the fact that p is known in a part of €2. Let us also mention that the main ingredient of
the proof of the above theorem is the Fourier-Bros-Iagolnitzer (FBI) transform. This one
is crucially used in order to prove a sharp unique continuation property for hyperbolic
equations (see [87], [86]).

The proof of the Theorem is based on the Bukhgeim-Klibanov’s method and the
so-called global Carleman inequalities, which is an interesting result by itself. In order to
state this result, we shall introduce some weight functions. For 8 € (0, 1), we define

Y(x,t) = v — x> — B2+ Co,  @(a,t) =M@ V(xt) € Qx (=T,T). (1.1.11)
Then, the Carleman estimate for the wave operator reads as follows:
Theorem 1.7 (see [11], [96]) Let us assume the geometric and time conditions. Let 1

and ¢ weight functions defined by (1.1.11). Then, there exist three positive constants C,
Ao and so such that for all A > \g and s > sq, the following inequality holds

T T
S)\/ /er‘ng(]atv\Q + | Vo|?)dzdt + 83)\3/ /ezs@gp3\vl2dxdt
—_TJQ -TJQ

T
+ / / e*?| Py (e*v)|?dxdt
-1 Jo

T T
§C’/ /erﬂDdemdthCs)\/ / e**? |0, v|*dodt,
-TJQ =T JT'g

for all v € L*(=T,T; H (Q)) satisfying Ov := 0?v — Av € L*(Q x (=T, T)) with normal
derivative 0,v € L*(To x (=T, T)), v(£T) = 0v(£T) =0 in Q and P, defined by

Piw = 0?w — Aw + s2A20%w(|0p)]* — |VY|?).

7



Theorem ensures the existence of a 2-parameter Carleman estimate (i.e. A and s)
for the wave operator [0 = 97 — A. As we shall see in Section 2 and 3, often we just
need a one-parameter Carleman estimate for our purposes. On the other hand, Carleman
estimates provide another interesting result called Unique Continuation Property (UCP
for short). Then, thanks to Theorem we obtain the following:

Corollary 1.8 (UCP for the wave operator) Suppose that v € L*(=T,T; H}(f2))
is a function which verifies Jv = 0 in Q x (=T,T), v(£T) = Ow(£T) = 0 in Q, and
additionally O,u =0 on To x (=T,T), where Ty and T > 0 satisfy the geometric and time
conditions (1.1.5) and , respectively. Then, v vanishes in Q@ x (=T,T).

1.1.3 Inverse problem for the wave speed of the wave equation

Let Q be a bounded domain with smooth boundary (C? at least) and T" > 0. Let
u = u(x,t) be the solution of

O?u — div(p(x)Vu) =0, in Q x (0,7),
u(+,0) = a, dwu(-,0) =0, in (1.1.12)
u =", on 092 x (0,7).

Here, p denotes the bulk-modulus of the acoustic equation considered in a non homo-
geneous medium. Under smooth assumptions on a,b and p the problem has a unique
(weak) solution. We consider the following:

Inverse problem: Determine the coefficient p from the knowledge of partial measure-
ments of u in w x (0,7"), with w C €.

In order to formulate the results, we consider w C € satisfying the geometric condition

(1.1.5). In addition, set

e

D = \/sup|m—a:0|2— inglex—xo\? (1.1.13)
Te

Given n € C1(99Q) and constants My > 0, M; > 0, 0 < 6y < 1 and 6, > 0, we define
the following admissible sets:

(1.1.14)
Vplx)  (x —x
‘ p )Qp((as) 0| <1~ o,z € T\ w, ullwomionom < Ml},
and
Uy — {p & C*(@): [plleny < M [plloy < Moup(a) > 6,,¥2 € 0
(1.1.15)

Vp(z) - (x — o)
2p(x)

<1-— eo,v.%’ € Q\w, HUHW‘LOO(QX(O,T)) < Ml}



It is possible to replace < and > by < and > respectively. We choose 5; > 0 and
Bo > 0 such that

MyD
Bi + ﬁ\/ﬂl < Oot; (1.1.16)
and
M()D . 2 2
P + ﬁ\/ Pa < 0001, b ;Ielgfz |z — ol — 52D > 0. (1.1.17)

Now we have all the ingredients to state a stability result for the inverse problem with
interior observations:

Theorem 1.9 Let us consider w and xq satisfying the geometric condition. Let a €

Wheo(Q) such that
Va(z) - (x —x9) #0, Vo €.

Let k=1 or k = 2. We choose the observation time T’ > 0 such that

T \/%D (1.1.18)

Then, there exist constants k € (0,1) and C > 0 such that for all (p,q) € Uy, the
associated solutions u(p) and u(q) fulfill the following inequality:

lp = allz2@) < € (Z 107 (u(p) — u(Q))HLQ(WX(O,T)) - (1.1.19)

The main tool to prove Theorem is a Carleman estimate in H1(Q2 x (0,7)). In
order to state this result, let us recall that z is defined by the Geometric condition
(1.1.7) and /31 and S, given by ([1.1.16]) and (1.1.17)), respectively. We define the functions

U = Yi(x,t) and ¢ = py(x,t) by
U, t) = |z — xzo|* — Bit?, (1.1.20)

and

op(z,t) = @D X >, (1.1.21)

Now we are ready to state the Carleman estimate with source lying in H~'(Q X
(_Ta T))

Theorem 1.10 Let k € {1,2}. We assume that p € Uy, xo and w satisfying (1.1.7). Let
y € HY(Q x (=T,T)) satisfy

Opy — div(p(x)Vy) = f+ 0ufo+ 300, 0i 5, in Qx (=Tk, T),
y(-, £T) = 0, in Q, (1.1.22)
Yy = OJ on 082 X <_Tk7Tk),



where f € HY(Q x (=T, T1)), f; € L*(Q x (=T, T3)), with 0 < j < N. Then, there
exists a constant p > 0 such that for each T}, satisfying

T€(11+)
VB VR )

there exists A\g > 0 such that there exist constants so = so(A) > 0 and Cy > 0 such that

T Tk ;
s / / e* ek |y 2 dadt <Chs / / ek fiPdwdt + Cul|e*?* fll -1~z 1))
-1, Ja T /O

o (1.1.23)
+C’1$/ /625“”“|y|2dxdt,
—T Jw

for all s > sq.

1.2 Controllability issues in PDE’s

Control theory is the area of mathematics concerning dynamical systems whose behavior
can be changed by means of controls applied through actuators. This is also a rich inter-
disciplinary branch of mathematics, with applications in areas such as biology, chemistry,
engineering, economics and seismic prospection. For more details about this theory, we
refer to the books [79], [91] and the reviews [48], [22] and the references therein.

Roughly speaking, a control system can be written in the following abstract form

dy
%—L(y,u), 0<t<T, (1.2.1)
y(0) = vo.

where y € Y and u € U,y. Here y is the state, the unknown of the problem that we
want to control, yg is the initial state, u is the control, the variable that can be chosen
appropriately to act on the system and U4, and Y stand for the set of admissible controls
and the state space, respectively.

Given a control system like ([1.2.1]), we can formulate the so-called controllabiliy prob-
lem, which can be stated as follows:

Controllability problem: find a control u € U,y such that the associated state
behaves in a appropriate manner in a given final time 7" > 0.

We distinguish four different notions of controllability. We say that the system (|1.2.1))
is approximately controllable if, for any initial state yq, it is possible to steer the solution
to a state arbitrarily close to any given target (in an appropriate topology). The exact
controlability of asserts that the system can be driven from any initial data to
a prescribed target. On the other hand, we say that the system has the null-
controllability property if, for any initial data, the solution can be driven to zero. Finally,
another interesting concept of controllability is the exact controllability to trajectories,
which means that it is possible to steer the state of the system to join a control-free
prescribed trajectory, i.e., a given solution of the system without control.

10



From a mathematical viewpoint, the literature is very rich on controllability problems,
see for instance [92], [32],[41],[5] and the references therein. The control theory started
to be developed in the beginning of the 1960’s for finite dimensional systems. The linear
case of this problem is by now completely understood thanks to the Kalman rank con-
dition, and moreover the four notions of controllability introduced before are equivalent.
Furthermore, the case of nonlinear finite dimensional systems has been intensely studied
in the last two decades and there are many powerful sufficient conditions for local and
global controllability, see [32].

Nevertheless, in the context of PDE’s the situation is more delicate, even in the lin-
ear case. The main reason is that a linear PDE governing the evolution of a process
may be of hyperbolic type (wave equation, Maxwell equations), of dispersive type (plate
equation, Schrodinger equations, Korteweg-de Vries equation), or of parabolic type (heat
equation, Stokes equation). Each equation induces specific properties on the trajectories:
propagation of singularities with finite velocity for hyperbolic equations, infinite speed
propagation property together with a weak (resp. strong) smoothing effect for dispersive
(resp. parabolic) equations, and time irreversibility for parabolic equations.

Accordingly to the above description of the evolution of a linear PDE, we cannot expect
equivalence between the different notions of controllability in general. For instance, the
regularizing effect of the heat equation asserts that the associated solution of a L? initial
state is a smooth function. Thus, it is difficult to ensure exact controllability for the heat
equation when the control acts in a small part of the domain. On the other hand, the
location and the duration of the control play an important role in the controllability of
the wave equation. This role may be completely hidden in the finite dimension setting.

Generally, the study of controllability of linear PDE’s is equivalent to a suitable ob-
servability inequality for the adjoint problem. This means that we need full knowledge
of the solution of the adjoint problem at a given time using only local measurements of
it. Nevertheless, we emphasize that the proof of such inequalities are a challenging issue
and requires tools such as Ingham inequalities [64] [72], multiplier methods [71] [58], [79],
[84], microlocal analysis [10], [77] [27], or Carleman estimates [G1], [50], [48], [45].

1.2.1 Classical results on controllability of parabolic equations

In this subsection, we follow the presentation given in [83]. Let €2 be a bounded open set
with boundary of class C? and w C € a non-empty open subset of €. Given 7' > 0 we
consider the following non-homogeneous heat equation:

Ou — Au = x,f, inQx(0,7T),
u(-,0) = up, in €, (1.2.2)
u=0, on 02 x (0,7).

In (1.2.2), u = u(x,t) is the state and f = f(x,t) is the control function with a support
localized in w.

Theorem 1.11 For any f € L*((0,T) xw) and ug € L*(Q) problem (1.2.2)) has a unique

11



weak solution u € C([0,T]; L*(Q)) given by the variation of constants formula

¢
u(t) = S(t)uo + / S(t — s)xwf(s)ds
0
where (S(t));>o is the semigroup of constractions generated by —A in L*(Q).

Moreover, if f € WH(0,T; L*(w)) and ug € H*(Q) N H (), problem (1.2.2) has a

classical solution
we CH[0,T]; L2()) N C([0,T); H*(Q) N Hy(2))
and is verified in L*(Q) for all t > 0.

From the fact that v € L>(0,T; L*(Q)), it follows that u € L*(0,T; H}(Q)). Conse-
quently, whenever uy € L*(Q2) and f € L?(0,T; L*(w)) the solution verifies

u € L(0,T; L*(2)) N L*(0,T; Hy(Q))

and we have the following energy estimate:

t t
Ju(-, 1) I72 (0 +/ V|| r2@ydt < C'/ 11172004t + Clluoll72(0y-
0 0

Now, we focus on the null-controllability results on the heat equation with Dirichlet
boundary conditions where w C R is arbitrary. More precisely, we wonder if for each

T > 0 and ug € L*(Q) in ((1.2.2)), there exists a control f € L*(w x (0,T)) such that
w(T) =0, in €.

First, we notice that one of the most important properties of the heat equation is its
regularizing effect. When Q \ w # 0, the solutions of belong to C*°(Q\ w) at time
t = T. Hence, the restriction of the elements of R(T;ug) to 2\ w are smooth functions.
Then, unless the trivial case w = (2, that is to say, when the control function acts on the
entire domain €2, exact controllability may not hold. In this sense, the notion of exact
controllability is not very relevant for the heat equation. This is due to its strong time
irreversibility of the system under consideration.

Moreover, it is not difficult to see that if null controllability holds, then any initial
data may be let to any final state of the form S(T)vy with vy € L*(f2), i.e., to the range
of the semigroup in time ¢ = 7. Null controllability implies approximate controllability.
Indeed, this is a consequence that the eigenfunctions of the laplacian operator belong to
S(T)[L*(Q)]. Then we deduce that R(T;up) is dense in L*(Q2), which is the definition of
approximate controllability.

On the other hand, approximate controllability together with uniform estimates on the
approximate controls as € goes to zero may lead to null controllability properties. More
precisely, given u!, we have that u' € R(T;uq) if and only if there exists a sequence of
controls (f:)eso such that

|u(T, ) —url|z2@) < €

and (f.)e=o is bounded in L*((0,7T) x w). Indeed, in this case any weak limit in L*(w x
(0, 7)) of the sequence of controls (f:).~o gives an exact control which makes that u(-,7) =
U1 in Q.

12



1.2.2 Null controllability of the heat equation for parabolic equa-
tions with dynamic boundary conditions
In this part, we follow the presentation of [81]. Let Q@ C RY be a bounded domain with

smooth boundary I' = 90, N > 2 and T > 0. Let y = y(x,t) be the solution of the
following problem

Oy — dAy + a(z,t)y = xv(z,t), in Qx (0,7),
atyl" - AFyF + dayy + b(ﬂf, t)yl—‘ - 07 on I' X (O, T)a (1 9 3)
yF(w7t) = y’F(x7t)a on I' x <OaT)a o

(Y, yr)|t=0 = (yo,yo,p), in Q x I

Here, w CC  is an arbitrary nonempty open subset of 2, yo € L*(Q) and yor € L*(T)
are the initial data, the constants ¢, d are positive, a € L>(Q2 x (0,7)) and b € L>(I" x
(0,7)). In addition, y|r denotes the trace of a function y : Q — R, v is the outer unit
normal field, 0,y = (v - Vy)|r stands for the normal derivative at I', and Ar denotes the
Laplace-Beltrami operator on I'.

Then, the main question is: find a control v € L*(w x (0,T)) such that the solution y

of (1.2.3) satisfies

Following the classical equivalence between controllability and observability, we intro-
duce the following adjoint system:

—0ip — dAp + a(x,t)p =0, in Q x (0,7),

—0ypr — 0Arp + do,p + b(z,t)pr =0, on ' x (0,7, (1.2.4)
or(z,t) =yr(z,t), on I' x (0,7,
(-, 1), (- T)) = (o7, ¢11), in Q@ xT.

Proposition 1.12 There is a constant C' > 0 such that for all (o1, orr) € L*() x L*(T')
the mild solution (@, @r) of the backward problem (1.2.4)) satisfies

T
loC )2 + [l (- 0)|? < C/O /|g0|2dxdt. (1.2.5)

Given R > 0, the constant C = C(R) can be chosen independently of a, b with

lalloo; [[lloe < R

To prove Proposition the authors prove a Carleman estimate for the problem
. Let us emphasize that weights appearing in such estimate are the same in [48] for
the case Dirichlet boundary conditions and in the classical text of A. V. Fursikov and O.
Yu. Imanuvilov [50] for mixed boundary conditions. Of course, such functions are based
on an auxiliary function n° whose existence is guaranteed in the following result:
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Lemma 1.13 Given a nonempty open set w' CC Q, there is a function n° € C*(Q) such
that

">0inQ, n°=0, onl, [V’ >0, inQ\uw.
We emphasize that, since [Vn°]? = |[Vrn°|2+19,n°)? on T, the function 1" in the above
lemma satisfies
Ve’ =0, |V’ =10,n°|, 9n° <—c<0, onT,

for some constant ¢ > 0. Now let us define the Carleman weight functions. For A\, m > 1,
we set

a(z,t) =T — )™ <62Am||n°||m B eMm”no”mno(m))) |
E(x,t) =(H(T — t))~ eI’ lotn’@)

for z € Q and t € (0,7). Notice that o and ¢ are smooth and strictly positive on
Q2 x (0,7) and blow up as t — 0 and as t — T. Moreover, such functions are constant on
the boundary I' so that

Vra=0, and Vré =0, onl.
Lemma 1.14 Let T > 0, w CC 2 be a nonempty and open subset of 2, d, o > 0,

a € L*(Qx(0,T) and b € L>(I'y). Let w' CC w. Define n°, o and & as above with
respect to w'. Then, there exist constants C' > 0, A\ > 1 and sy > 1 such that

T T
/ / (04 + | AP )dadt + 57 / / 2 (Byor? + | Arpl2)dSdt
0 Q 0 T

T T
+ sA? / / e~ B V> drdt + sA / / e~ 2| Vror|*dSdt
0 Q 0 r

T T
+ 83)\4/ / e~ 2563 || Pdadt + 53)\3/ /6_250‘53\90p|2d5dt
o Jo o Jr
T
+ S)\/ /6_25a§|8,,g0|2d5dt
o Jr
T T
§C$3)\4/ / e~ 263 p|*dwdt + C/ / e 2% 00 + dAp — ayp|*drdt
w Q
0 0
+ C/ / e >**0ypr 4+ 0Argr — dd,p — ber|*dSt,
o Jr
(1.2.6)
for all X > Xy, and for all
(¢, 0r) € H' (0,7 L*(Q) x L*(I')) N L*(0, T; H?),

where H? = {(y,yr) € H*(Q) x H*(T') with y|r = yr}. Furthermore, given R > 0, the
constant C' = C(R) can be chosen independently of all a,b with

[alloc, [[blloc < R
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1.3 Main results of the thesis

In this section we briefly introduce the problems and results obtained in this thesis. The
main topics covered here are:

e Potential reconstruction for a class of hyperbolic systems in cascade: In
Chapter 2, we analyze the simultaneous reconstruction of each potentials ¢, . . ., ¢, defined
in Q C RY, N > 11in a linear hyperbolic system of the form

(Dul%—qlul:aluz%—gl, in Q x (0,7),
DUQ + goUos = U3 + g2, in Q) x (0, T),
OUp—1 + Gu1Un_1 = An_1Up + gn_1, 0 Qx(0,T), (1.3.1)
Ouy, + gty = gn, in Q x (0,7),
@f”uj(O):ug‘?, k=0,1, j=1,...,n, 1in (),
(u; =0, j=1,...,n, on 092 x (0,7).
from a reduced number of controls of (u;);ez with j € Z C {1,...,n}. Inspired in the

Bukhgeim-Klibanov method, we prove a Lipschitz stability result for these coefficients of
the form:

n n—2
Z lg; — qu%Q(Q) < CZ Ju; — aj“%{i‘(O,T;L?(w)) + Cllup—1 — ﬂn—l”%{él(o,:r;m(w))» (1.3.2)
=1 j=1

where @; with j =1,...,n is the solution of associated to (G, ..., Gn) (source and
initial conditions are fixed), C' is a positive constant independent of these potentials and
w C 2. We point out that in (|1.3.2), measurements of u, — u, do not appear in our
results. This means that we can reconstruct the potentials ¢i,. .., ¢, of without
any knowledge of the last component of the system.

The main ingredient to prove this result is a Carleman estimate for problems having
the form:

(O + 7101 = vg + hy, in Q x (=7,7),

Cvy + 1909 = v3 + ho, in Qx (=7,7),

vp—1 + T 1Vp—1 = Up + hp_1, in Qx (=7,7), (1.3.3)
vy, + 1pvn = ho, in Qx (=7,7),

Ofvj(£T) =0, k=0,1, j=1,...,n, inQ,

lv;=0,j=1,...,n, on 002 x (=T,T).

More precisely, using the abbreviation

I(a,v,Q) =s° / 2?0 (s%[v(0)]? + |9v(0)* + [Vu(0)[*)dz
Q

T
+ 8a+1/ / e*(s o] + 0] + |Vl ?)dadt,

-TJQ
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with
Y(x,t) = |z — 20| — Bt2 4+ Co,  p(a,t) = @) V(1) € Qx (=T, T),

and suitable assumptions on zy € RV, o, 3,Co, A > 0 and T > 0 we get

n—1

Zl(a,v]—, Q)+ 1(0,v,,Q)

j=1
n—2 T n—2 T
§025a+12/ /62&‘0(52’1}]"2"’_ |8tvj|2)d:cdt+Cgso‘Z/ /eZs‘p]hj]dedt
j=1 T Jw j=1 =T JQ

T
+ 0283/ / e (S lvp_1|* + 8°|Opvn_a | + |0fvn-1|?) dudt
T Jw

(1.3.4)

T
+ C'z/ / e (8P| hn-1|* + [hn|* + 8[0shn_1|* + |Oshy|*) dadt.
-rJa

for all s > 5o > 0, where vy, ..., v, is a solution of ((1.3.3) and C being a positive constant.
The results of Chapter 2 are based on the article [29] in collaboration with Nicolas Carrenio
y Axel Osses.

e Controllability properties of a class of heat equation with dynamic boundary
conditions: In Chapter 3, the null controllability of a suitable class of 1-D parabolic
equations with dynamic boundary conditions is studied. The prototype of such problems
is

(Opu(z,t) — Pulz,t) = yo(x)v(z,t), Y(z,t) € QL x (0,T),
(u(z,0),ur(0)) = (up(z), uro), Vo € Qyp,

ur(t) = u(0,t), vt € (0,7), (1.3.5)
w(—Ly, t) =0, vt € (0,7),

e (t) + 0,u(0,t) = 0, vt € (0, 7).

Here Q, = (—L1,0) C R with L; > 0 and w C Q. In other words, the goal is to steer
the state u of to a null final target by a suitable choice of the control function,
i.e., given (ug,uor) € L*(2) x R and T > 0 we want to find a control v € L*(w x (0,7))
such that the associated solution of satisfies

u(z, T) =0, VzeQ.

This means that the first equation is controlled directly by the action of v, while the
ODE at z = 0 is being controlled indirectly through the coupling.

Concerning this question, our results provide that (1.3.5) is null-controllable at any
time 7" > 0 with w = (— Ly, —a), with a > 0. However, some discussions are presented in
the case w CC Q.

Following the duality between controllability and observability, the proof of this result
consists in obtaining an observability estimate of the form

T
W@mmmm+mmwgcl‘/mmma (1.3.6)
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for each (27, 2rr) € L*(Qr) X R, where (2, 2r) is the solution of the adjoint system

Opz(x,t) + 0%z(x,t) = 0, V(x,t) € Qp x (0,7T),

(2(x,T),2r(T)) = (27(x), 20 1), Ve,

2(—Ly,t) =0, vt € (0,7), (13.7)
20(t) — 0,2(0,t) =0, vVt e (0,7).

In order to prove we use a Carleman estimate of the form

// e (U(T — 1))~ d:z;dt+s// 299 (4(T — 1))~ O,y ddt
QL QL

e / / 20 (H(T — 1) (0% + |0y ) dudt
0 L

T
L / e 29000 (H(T — 1))~ |yo(t) Pt
0 (1.3.8)

T T
+s / e 290D (H(T — 1))~ 0,y/(0, ) |dt + / e~ 22O |y (1) |2t
0 0
T T
SC’/ / e |0y + O2y|*dxdt + C/ e 22O |y (#) — D,y(0, 1) |*dt
0 Qr, 0

T
" C’S/ 6_2590(—[/1,15) (t(T o t))_a‘amy<_L17 t)’2dt7
0

for all s > s; > 1 and for all (y,yr) smooth enough, where ¢ = 0(t)y(z) and
0(t) =T — 1))~ Vte(0,T),

1
Y(x) =— —a*+ 1 +2L;, VreQy.
41,4

On the other hand, we prove that a similar problem to (|1.3.5) appears as limit of a
sequence of solutions for parabolic problems with discontinuous diffusion coefficients. In
this context, functional setting of both problems play an important role.

In addition, according to the above result of convergence, questions arise naturally.
One of them is: can we employ the limit control of the problem to drive the solutions
of the approximate system too? Under suitable assumptions of the initial conditions, we
prove that the last system is approximately controllable at any time 7" > 0.

These results are based on a joint work with Jéremi Dardé and Sylvain Ervedoza.

e Controllability of a 1-D heat equation with discontinuous diffusion coeffi-
cients: In Chapter 4, we study controllability properties of the following class of prob-
lems:

Owu(z,t) — 0, (o(x)0pu(x,t)) =0, V(x,t) € Qx(0,T),

u(,0) = u’(z), Vr € Q,
<_L17 ) = U(t), YVt € (O,T), (139)
Osu(La,t) =0, vt € (0, 7).
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Here, Q = (—Ly, Ly) C R with Ly, Ly > 0, T > 0 and o is given by

{o—%, Va € (—14,0),

“@ =102 vee(.L)

Moreover, the control v = v(t) acts only in the left-hand side of the domain. Then, once
again, in order to obtain the null controllability of such systems, we look for a Carleman
estimate of the form

/ /,0|z|2dxdt+s/ / |0y 2 Pdxdt
<C’/ /V|8t:|:3 (00,2)| dxdt+C'S/ p(t, —L1)]0.2(t, — Ly)|?dt,
0

for some positive functions p, u and v. In order to prove it, we use similar arguments
based on [86] and [75] and suitable localization in time functions. In spite of microlocal
techniques, this choice allows us to keep tracking of the observability constant.
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Chapter 2

Potential reconstruction for a class of
hyperbolic systems in cascade

In this chapter we present new results concerning the potential reconstruction of wave
systems in cascade when some components of this ones (that is to say, some variables
of the system) are not available to get partial measurements. We adapt the Bukhgeim-
Klibanov method to the case of hyperbolic systems and we use Carleman estimates for
the scalar wave equation to achieve a new Carleman estimates for a hyperbolic system in
cascade with missing components. Let us mention that the main results of this chapter
were published in [29] in collaboration with Nicolas Carreno and Axel Osses.

The outline of this chapter is as follows. In Section we introduce the basic notation,
the inverse problem that we will consider along this chapter. Additionally, we give a
literature discussion about this subject and we state the main result obtained, i.e. the
Theorem [2.1] In Section 2.2} we adapt the Carleman estimate for the scalar wave equation
to deduce a new Carleman inequality to our problem (see Theorem [2.8). In Section [2.3]
we modify the Bukhgeim-Klibanov’s method to proof of the Theorem

2.1 General Setting

In this section, we devote to introduce the main results about an inverse problem for a
hyperbolic system in cascade. Let us start giving basic notations. Let {2 be a smooth
open set in R? with boundary 92, d > 1 and T > 0.

Before going further, let us mention that the results available in this section could
be formulated under weak smoothness assumptions of the boundary of €). Indeed, for
instance we can take Q be a bounded, connected and open subset of R? with boundary
of class C*, but the goal of these hypothesis is to simplify the presentation.

Then, according to the notation previously introduced, let us consider the following
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coupled hyperbolic system in cascade:

(Oui + qrun = arus + g, in 2 x (0,7),

Oug + qoug = asus + go, in Q x (0,7),

Otn_1 + GootUn_1 = Gn_1tn + gn_1,  in Q x (0,7), (2.1.1)
g, + gty = gn, in Q x (0,7),

Ou;(0) =ub, k=0,1, j=1,...,n, in,
\u; =0, j=1,...,n, on 09 x (0,7).

Here, O := 07 — A is the D’Alembertian operator, a; are non-zero constants, u; € L*(Q)
are the initial conditions and ¢; € L?(Q2) are the potentials and ¢g; € L*(Q2 x (0,T)) are
the source terms, for every £k =0,1and j=1,...,n.

Suppose, for instance, that g; € L' (0,T; L*(Q)), uj € Hy(Q) and uj € L*(Q), j =
1,...,n. Then, according to the results presented in Section [I.1.T] on the well-posedness
of the scalar wave equation, it is not difficult to deduce that the system is well
posed in the sense of Hadamard and moreover the normal derivative of each component
u; with 1 < j < n belongs in L*(0Q x (0,T)). We recall that in the case of source terms g;
lying in WH1(0,T; H1(Q)) with 1 < j < n, we still have the same well-posedness result
but we do not have any regularity result on the normal derivative on each component.

Let us point out that the hyperbolic and parabolic systems play an important role in
mathematical models which come from biological, chemical, engineering, mechanical and
medical applications. Nevertheless, some components of such models are not accessible
in practice. Motivated for this kind of limitations, some natural questions arise: Can we
observe such systems from incomplete measurements? Can we retrieve information of the
inaccessible components of such systems from information of the accesible ones? These
questions has been studied recently by several authors for different kind of PDE models,
see for instance [I],[18] and [6] and the bibliographic discusion below.

In this chapter, we are interested in the following inverse problem associated to the

system (2L1):

Inverse problem: Is it possible to retrieve the potentials ¢, ..., g, in system ([2.1.1])
from incomplete data, that is to say, from a reduced number of measurements of the
solution, saying (u;), with j € Z C {1,...,n}?

We point out that our goal is the study of dependence of the solutions uy, ..., u, with
respect to the potentials qi,...,¢,. Then, in order to understand this we shall write
u;[Q] where @ = (q1,...,q,) and 1 < j < n. For simplicity, we ignore for instance the
dependence of the solutions with respect to the initial conditions and source terms.

Concerning to the inverse problem previously stated, we can formulate questions in
three directions: Let @ = (q1,...,¢,) and Q = (¢1,--.,Gn) be two sets of potentials for
the system (2.1.1)),

e Uniqueness: Suppose that the available measurements of the system coincide in a
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part of the domain w C € for two sets of potentials, i.e.,

uQ = w[Q],  inwx(0,T),

for each j € Z. Then, can we conclude that Q = Q in Q?
e Stability: is it possible to estimate

1Q = Qllaz@yr = D_llas = dillze)
j=1

or better, a strong norm of Q — Q by a suitable norm of u;[Q] — u;[Q], j € T in
w x (0,77

e Reconstruction: Can we find a formula or an algorithm to rebuild the potentials
Q= (q,.-.,q,) from the knowledge of u;[Q] with j € Z7?

In this chapter, we are interested in the stability of the potentials in terms of the
observations of the solution of system (2.1.1). In particular, we restrict our attention in
the case when the last component of the system is missing.

2.1.1 Literature review

Before to state the main results of this topic, let us briefly discuss the available litera-
ture about inverse problems of wave equation and systems and their relation with exact
controllability.

In 1992, Bukhgeim and Klibanov dealt for the first time with uniqueness issues in
inverse problems for the wave equation in [69] using local Carleman estimates. Then,
the first results about the stability of inverse problems for hyperbolic equations were
obtained using local Carleman estimates (see e.g.[97], [61] and [65]). Concerning other
inverse problems for the wave equation with a single observation, we refer to [63], [62],
[70], and [IT] and the references therein. In these articles, the authors consider the case of
interior or Dirichlet boundary data observation satisfying stronger geometric conditions
and they use global Carleman estimates.

For an arbitrary set of observation, we refer to [14] and [I5] for logarithmic stability
results. Roughly speaking, these results are connected with stability results of elliptic
thanks to the Fourier-Bros-Iagolnitzer (FBI) transform. Let us also mention the work [66]
where the authors proved the uniqueness of the inverse problem of recovering a spatial
component of the source term of the wave equation from the final observation data.

However, to the best of the author’s knowledge, there exist few works concerning inverse
problems for coupled parabolic or hyperbolic systems with incomplete measurements of
their components. In the recent work [6], the authors study the reconstruction of the
spatial distribution of external forces only from data of one component of a 2 coupled
hyperbolic system in cascade. The proof is based on an observability property of such
system, following the approach of [96].

Similar inverse problems for linear and semilinear parabolic systems like reaction-
diffusion systems has been studied in [34], [18], [I7], [35] and [33]. In these articles,
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the authors deal with identification and stability of the inverse problem of recovering pa-
rameters and initial conditions of such systems from a finite number of measurements of
one component using appropriate Carleman estimates for parabolic equations.

Furthermore, hyperbolic-parabolic systems are considered in [51] with different kinds of
observations. Another relevant work is [56] for the Stokes system, where the authors give
a reconstruction algorithm for a source of the form F(z,t) = f(x)o(t) from incomplete
velocity measurements.

Exact controllability properties of hyperbolic systems with a reduced number of con-
trols has been extensively studied and there exist many works published on this topic. In
[1], a strategy called Two-Level Energy method is developed to prove positive results in
the case of wave-type systems (see also [2], [3], [7] and the references therein). Moreover
these results allow to deduce null-controllability results for the heat or the Schrédinger
equations satisfying the geometric control condition using the transmutation method.

Furthermore, the literature is also very rich concerning controllability results for cou-
pled parabolic systems with a reduced numbers of controls in the one or multidimensional
setting. We refer to the survey article [§], [45], and the references therein.

Coupled systems are also connected with insensitizing control problems, notion intro-
duced by Lions in [79]. Indeed, these problems are equivalent to the null-controllability
of a cascade system. We reference to [36], [90], and [4] for some results about this subject
in the case of wave-type equations, [23], [28] and [37] in the case of parabolic equations
and systems.

2.1.2 Main result

Now, we will state a Lipschitz stability result for system (2.1.1)), from observations in
all the components of the system except the last one. In order to state this result, we
shall introduce some geometrical and time conditions which are classical in the context of
control and inverse problems for hyperbolic equations. Specifically, let zo & Q, Ty C 9
and T" > 0.

e Geometric condition: z, and I'y satisfy the following inclusion:
{x € 0Q; (x —xg) - v(x) >0} C Ty C ON. (2.1.2)
e Time condition: There exists 5 € (0,1) such that

sup |z — x| < \/B. (2.1.3)

€N

We emphasize that the Geometric condition given above is the same in However,
the Time condition is slightly different from the mentioned in the above chapter. This
change is just for technical reasons to state our results in a simple way.

Now, let us introduce the admissible set of the unknown potentials. For a positive
number m, we define the set

LZ,(Q) ={p € L=(Q); [|plle@) < m}.
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Now we have all the ingredients to state the main result of this chapter:

Theorem 2.1 Suppose that Ty C 0Q, T > 0 and ¢ ¢ Q satisfy the geometric and time
conditions and [2.1.3). Let w C Q such that Ty C Ow N OQ. Let (w1, ..., u,) and
(Ui, ..., Uy,) be the solutions of the system ([2.1.1)) associated to the potentials qq,...,q, €
L= (Q) and Gy, ...,q¢, € L=, (S2), respectively, with m > 0. Assume that there exists a
constant ¢ > 0 such that

Furthermore, suppose that

wiy iy € HH0,T3 HA(Q) N HY(Q) N LX(Q)), j=1,....n,
U1, iy € HY0,T; HA(Q) N HE(Q) N Lo(Q)).

Then, there ezists a constant C'= C(S,¢,T,Q,w) such that
n n—2
Z lg; — Gill720) < CZ luj — 51550 22(0)) + Clltn-1 — -1l B2 rer2y-  (2:1.5)
j=1 =1

Remark 2.2 Let us emphasize that inequality establishes the Lipschitz stability
of the hyperbolic system (2.1.1) with incomplete measurements in the sense that u, 1s
missing. Moreover, notice that the estimate does not depend on the observations
of the gradients.

Remark 2.3 Theorem[2.1)is also valid if we suppose that the coupling coefficients a; are
not constants satisfying

/

aj(x) >c>0, inuw,

where w' C Q such that Ty C 0w’ and W' Nw # 0. In other words, the inequality (2.1.5)
holds if the coupled and the observations regions of each components meet.

As we said before, the main tool of the proof of Theorem is a Carleman estimate for
a hyperbolic system in cascade where we do not have access to the observations associated
to the last component. This inequality depends on a suitable Carleman estimate for the
scalar wave equation in the spirit of the work of Imanuvilov and Yamamoto [62] (see also

[12)).

2.2 Carleman estimates

The goal of this section is to prove a Carleman estimate for a system of wave equations
in cascade. In order to do that, our starting point is a suitable Carleman estimate for the
scalar wave equation. Nevertheless, before doing that, we will give some technical results.

2.2.1 Technical results

We start with the following
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Lemma 2.4 Let z € L*(—T,T; H}(Q)) be a function such that Oz+pz € L*(Qx (=T, T)),
O,z € LX(O0X (=T, T)) and 2(£T) =0 in Q, withp € L=(Q). Let v € R. Let wy,wy C
be two open sets such that wy C ws.

a) If p € CH([~T,T) x Q), then there exists a constant C > 0 such that

T
/ / €**?|V 2| dadt <csmax{27}/ / e**?|zf? d:rdt+0/ / €*?|0,2|* ddt
-7 Jun w2 w2

+Cs™7 / / e**?|0z + pz[*dxdt,

(2.2.1)
for all s > 1.
b) If the function p € C1([-T,T); C*(Q)) satisfies
inf [V(t)] > co >0, Vte[-T,T],
z€ef)
then, there exist two positive constants C' and sy independent of s such that
T i T )
32/ / e2sw\z|2dxdt—|—/ / e?*?|0,z|*dwdt
e e (2.2.2)

T T
<Csmexi00-2} / / e*?|\Vz|*dxdt + Cs™7 / / e**?|0z + pz|*dwdt,
—T Jws T Jwa

for all s > sg.

Remark 2.5 The principal significance of part a) on Lemma 18 that it allows to drop
the local term of the gradient. This fact plays an important role in some steps of the proof
of the Carleman estimate for the wave system in cascade in Subsection 2.2.

Proof of Lemma[2.4. Let us consider a function £ € C*°(2,R) such that
0<¢<1l, inQ,

E=1, in wy,
£=0, in Q\ ws.

Additionally, we suppose that & has the form & = e? in w, \ @y, for some smooth
function ¢. We have the following identity:

T T 4
/ /625¢§zﬁfzdxdt—/ /BQS“Zszzdxdt—ir/ /62‘3@5?‘2’2‘13“575
=T Jws T Jwz e
T ~
:/ / e*?¢2(0z + pz)dadt.
=T Jwsg

Integration by parts yields

/ / e? €202 zdadt = —25/ / QSwatSszatdedt_/ / e*2¢|0yz|*dudt,

(2.2.4)

(2.2.3)
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T T T
—/ / e Pz Azdadt :23/ / 625‘5§ZV<,5~Vzdxdt+/ / e*? V¢ - Vadrdt
=T Jwsy —T Jwa —T Jwa
T
+/ / e?*? €|V 2P dadt.
—T Jwa

(2.2.5)
Substituting (2.2.4) and (2.2.5) into (2.2.3), we have
T
/ / e* P €|V 22 dadt
—T Jwo
T T i T ~
:25/ / e2w§8tg528tzdxdt+/ / 628@§|8tz|2dxdt+/ / e**?¢p|z | dadt
“2 “ e (2.2.6)

/ / e??¢2(0z + pz)dadt — 23/ / ¥V p - Vzdadt

_ / / e2s¢zV§ -Vzdxdt = J; + Js.
=T Jws

Here, J; is the sum of the first four terms of (2.2.6) and J, is the sum of the fifth and
sixth terms of the same equation. Straightforward computations show that

T T
. 1 i
|J1] §2||§||CO(0J2)/ / e2590|8tz\2dxdt+§s7/ / e**?|0z + pz|*dxdt
—T Jwa —T Jwa

. (2.2.7)
—I—A/ / P | 2|2 duxdt,
=T Jwsa
where A is defined by
3 0
19: Bl 0amimzm s + 7€l s” + IPllreon) ) I€llco@a)
and
2 2 3 T 2sp 2
901 < (B0 e iy + IV ) W€l [ [ 1ot
e (2.2.8)

2 [T ;
+—/ /625"9§|V2|2dxdt
3 —T Jws

Combining (2.2.7)), (2.2.8) with (2.2.6) we obtain (2.2.1)), which completes the part a) of

Lemma The rest of the proof runs as before but additionally we have to estimate the
local term |z|* by using the weighted Poincaré inequality (see [I1], Lemma 2.4). O

Now, we introduce the classical Carleman weights for the scalar wave equation. Sup-
pose that I'y, 2o and T’ > 0 satisfy the Geometric and Time condition ([2.1.2) and (2.1.3).
Let 8 € (0,T). For (z,t) € Q x (=T, T), we define the following functions:

Y(x,t) = o — x> = B2+ Co,  p(x,t) = V@Y, (2.2.9)

25



where A > 0 and Cj > 0 is chosen such that ¢ > 0 (and therefore ¢ > 1) in Q x (=7, 7).

For brevity, we shall use the following notation
I(a,v,9Q) :so‘/ e2#(0) (s*[v(0)* + [0 (0)]* + |Vv(0)[*) dx
)

T
+5°‘+1/ /628¢(32|U\2+|8tv]2+\VU|2)dqjdt
~rJo

In the remainder of this section, C' denotes a generic positive constant which depends
at least on 'y, T" and xg and may change from line to line.

Proposition 2.6 Assume that I'g, T and xzy satisfy the Geometric condition and Time

condition (2.1.2) and (2.1.3) and let p € L, () with m > 0. Let us consider the
Carleman weight functions defined in (2.2.9). Let wy C Q be an open subset such that

Ty C Owy N OS. Then, there exist two positive constants C; = C1(To, T, xg,ws) and
so = so(Lo, T, xg,ws) independent of s such that for all s > s, we have

T T
1(0,v,Q) < 01/ / e**?|0v + po|*dxdt + C’ls/ / e ($*Jv]? + |0 |?) dudt,
-T JQ =T Jwo
(2.2.10)

forallv € L*(=T,T; H} () such that Ov+pv € L*(Qx(=T,T)), d,v € L*(OQx (=T, T))
and v(£T) = 0w (xT) =0 in Q.

Remark 2.7 In contrast to the Theorem 2.5 in [11|] in the case of the Carleman esti-
mate of the scalar wave equation with a single boundary observation, we emphasize that
Proposition requires the assumptions z(£T) = 0pz(£T) = 0 in Q. This point becomes
important iof we want to eliminate more components in the inequality of Theorem

2.1

Let us point out that the proof of the Proposition is straightforward and many of
the ingredients of the proof are already available in the literature (see for instance [62]
and [12]). Nevertheless, for our purposes, it is convenient to write the Carleman estimate

for wave equation under the form of Proposition 2.6l For the sake of completeness, we
will give the proof of this result.

Proof of Proposition[2.4] For s > 1, let us define

E.(t) = % /Q &0 (|0,0(t) + [Vo(t)P)de, Vi€ (~T,T).

Differentiation with respect to ¢ and integration by parts in space yields

djs (1) :s/ e o,0(t) (|0 (t)|* + |V (t)|*)dx + / 2?00 (t) o (t)dz
Q Q

— 25/ ?Wu(t)Vu(t) - Vo(t)de, Vte (=T,T).
Q
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After integration on (—7,0) in time we obtain

0 0
E(0) :s/ / e**?0up (|0pv]” + |Vul*) dzdt —I—/ / e 0p0vdxdt
—_TJQ -TJQ
0
- 23/ / e**?0,0Vv - Vipdadt,
-1 Jo

where we have used v(—=7") = dw(—T) = 0 in Q. Applying Young’s inequality and the
weighted Poincaré inequality to v (see [11], Lemma 2.4) we obtain

/(262590(0) (82|U(0)]2 +10,0(0)|* + |Vv(0)|2)dx

T T
SC’S/ /623“’(82\1)]2—1— O] + ]Vv|2)dxdt+0/ /628‘P|DU + pu|*dxdt, Vs > sp.
-1 Jo -1 Jo
(2.2.11)

On the other hand, let us recall the classical Carleman estimate for the wave equation
with A = )\ fixed applied to v:

T
s/ / > (s|v|* + |0w|* + |Vo|*)dzdt
7 Ja

T T
SC’/ /62550@0 +pv|2dxdt+(]s/ / e*?|0,v|*dodt.
-rJo —1Jr,

Let us consider an open subset w), C wy such that w) C w and dw) N AN C Awy N .
Consider the function n € C*>(Q, R) satisfying

(2.2.12)

< in Q,
n= 1, in Q\ wp,
n=0,n=0, only.

Replacing v by nv in (2.2.12)), we have
T
s/ / e (v + |0 |* + | Vv|?) dadt
-rJa
T T
§C/ /625¢|Dv+pv|2da:dt+0/ /623‘p(\v|2 + |Vol*)dxdt (2.2.13)
—-TJQ =T JQ
T
+ s/ / 7 ($*Ju]” + |0w|* + | Vv|?)dadt,
-T Juw|

where we have used that O(nv) = n0v — Anpv — 2V - Vo in Q x (=7,T) and Vi =0 in
2\ wy. Notice that the second term of the right-hand side of can be absorbed
taking s large enough. Finally, combining the previous estimate obtained with
and applying the estimate with ¢ = ¢, w; = wj, wa = wy and v = 1, the proof of
(2.2.10) is complete. m
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2.2.2 A new Carleman estimate for a hyperbolic system

The aim of this section is to prove a Carleman estimate for a wave-type system with
potentials. In order to formulate our result, let us consider the following system:

(Ovy + vy = vg + hy, in Qx (=T,7),

Owvg 4 1909 = v3 + ha, in Qx (=T,7T),

Ovp1 + The1Un_1 = Up + hp_1, in Qx (=T,T), (2.2.14)
v, + 700, = hy,, in Qx (=7,7),
Ofvj(£T) =0, k=0,1, j=1,...,n, inQ,

(v; =0, j=1,...,n, on 0Q x (=T,T).

Here, r; € L>=(Q2) are the potentials and h; € L*(Q2 x (=T, T)) are the source terms,
foreach j=1,...,n.

Now, we are in position to state the Carleman estimate for system (2.2.14]), which is
one of the main results of this article:

Theorem 2.8 Let us consider the Carleman weights defined in (2.2.9), where I'y C OS2,
T > 0 and xg ¢ § satisfy the geometric and time conditions (2.1.2) and (2.1.3). For
m > 0, suppose that v; € LS, () , j=1,...,n, and let w C Q be an open set such that

Ty C OwNIN. In addition, consider hj € L*(Q x (=T, T)) for each j =1,...,n —2 and
hp1,hy € HY(=T,T; L*(Q)) such that

o € H' (T, T, Q) N HY(9), j=1,....m,

Vo1 € H*(=T,T; H*(Q) N H ().

Furthermore, we choose 1 < o < 2. Then, there exist two positive constants Cy and
so which depends at least on Ty, Q,w,T,xy) > 0 such that for all s > sq, the solution
(U1, ...,v,) of system (2.2.14)) satisfies

n—1

Z[(a,vj,ﬂ) + 1(0,v,,,2)

j=1
n—2 T n—2 T
§Cgsa+12/ /625“”(52\vj|2+ ]&,vj]Q)dxdthCgsaZ/ /eQSw\thdedt
j=1 T Jw j=1 =T JQ

T
+ 0253/ / e (lvg_1|” + $°|Opvn_1* + |07 vn-1|?) dudt
T Jw

(2.2.15)

T
+02/ /625‘”(33|hn_1|2+|hn|2+s|8thn_1|2+lé)thn|2)dxdt.
-T JQ

Remark 2.9 We emphasize that the Carleman estimate (2.2.15)) depends only on h,, and
Oth,, in the last component.

Proof of Theorem[2.8 Let w; and wy be two subsets of w be two open sets such that
L'y C Ow; N 0N for each 7 =1,2 and Wy C wy and Wy C w.
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We start applying the Carleman inequality of Proposition to v1,...,v, in system
(2.2.14) with wy = w;. We have:

Zl(a,vj,Q) + 1(0, v, 2)
=1

n T n—1 T T
<(Cs* / /eQS“OU-zdxdt+C$a / /erwh-dedt—l—C/ /625“" hy,|2dxdt
2 ), Jy 2 ), e [ eIl

C’“Z/ / 22 (s2v;* + |0 | )drdt+08/ / 252 (8% on]? + [Opvn|*) dadt.

Note that the first term of the right-hand side of the inequality above can be absorbed
by taking s large enough since 1 < a < 2. Therefore, we can rewrite this inequality as
follows:

n—1

> I(a,0;,9) + 10,0, Q)

j=1

n—1 T T
SC’SO‘Z/ /625‘p|hj|2dxdt + C/ /625“’|hn|2d:ﬂdt
=1 —-T JQ T JQ
st Z/ / 22 (2v;? + |0pvy)?) dadt

+ Cs/ / e**? (*vn|* + |Opvn|?) ddt.
=T Jw

(2.2.16)

Now we are going to estimate the local term of v, and d;v, in (2.2.16)). To do this, we
consider a cut-off function £ € C*°(€2, R) such that

0<¢E<T in Q,
E=1 in wy,
£E=0 in Q\ ws.

Using the equation of v, 1 in (2.2.14)), we see that:

/ / X2\ vy, Pdrdt =s / / e?*? v, (Ovy_1 + Tp1Vp_1 )dadt
w2 w2
—83/ / e* v, hy_1dadt.
—T Jws

Let us estimate each term of the equation above. First, by Young’s inequality for every
0 > 0, there exists a constant C' = C(§) such that

/ / > €y, _vpdadt < §s° / / e |v,|*dxdt + C's® / / e*?|hy,_1 |2 dadt,
w2 w2 w2

(2.2.18)

(2.2.17)
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On the other hand, integration by parts yields

T
52 / / 625@§8t2vn_1vndxdt
w2

=s / / e3¢ (45%0,p|? + 2502 0)vp_1vpdadt + 45 / / 2P £0u vy 1 Oyvpdadt
w2

33/ / eQSwfvn_lafvndxdt,
—T Jws

(2.2.19)

and

T
—33/ / e € Av,,_ v, dxdt
=T Jwso

T T
:254/ / e* eV @ (0, VU1 — Vp_1 VU, )dodt — 33/ / e v, 1 Av,dxdt
—T Jwa =T Jwa

T
+ 5° / / X PV E (0, VU1 — V1 Vup, )dadt.

(2.2.20)
By (2.2.19), (2.2.20) and Owv,, + r,v, = hy,, we have
T
53/ / e*&v, (Ovy_1 + Tp_1Vy_1 )ddt
—T Jwa
T
SO/ / e (|1 |* + |hn|*) dadt (2.2.21)
=T Jwso

T
+Cs® / / € (s Jona[* + [Opvna > + [Voua|*)dadt + 61(0, vn, w3),

for every § > 0, where we have used the Young inequality. Moreover, by part a) of Lemma
applied to v,_1, ws and w with v = 3 one has

T T
55/ / |V, _1|*dzdt SC'Sz/ /628“’(]1)”|2 + |hp1|?) dadt
—T Jwa T Jw

(2.2.22)

T

+ 6’35/ /625“"(53\1)”_1\2 + |8tvn_1|2)d:1:dt.
T Jw

Substituting (2.2.22)) into (2.2.21]) and substituting the obtained estimate into (2.2.18]),

we conclude that

T
s / / e*?|v,|*dxdt
T Jwi

T
SC/ /62”(33%”1]2—1— |\ |?) dacdt (2.2.23)
T Jw
T T
+C'88/ /e2s¢\vn_1|2dxdt+085/ /623¢|8tvn_1|2dxdt+6I(O,Un,w),
-TJw -TJw
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for every 6 > 0, where we have included the integral term of |v,|* which has in front s
in 67(0,v,,w) by taking s large enough. In the same manner, we can estimate the local
term of 0;v,. In fact, let us consider the function £ defined above. Then,

T
s / / e*E| Oy [P dadt
—T Jwsy

T T
= — s/ / €2 £0,0,,0phy_1dadt + s/ / €00, (A0 Vp_1 + 710401 )ddL.
—T Jws —T Jwa
(2.2.24)

First, notice that for all 6 > 0, there is a positive constant C' = C(§) such that

T T
—s/ / e €00, 04 hy 1 dadt §(53/ / 2 €|0yv, [Pdadt
—T Jws =T Jwsa

T (2.2.25)
+O(5)s / / 29|01 dadt.
—T Jwa
On the other hand,
T
s/ / €00, (00 Up—1 + T_10vp_1 )dxdt
=T Jw
T 2
:S/ / 628“‘75&1)”(85’1)”,1 — A@tvn,l + Tnflat'l}nfl)dﬂldt
=T Jws
=1 + o+ Js. (2.2.26)

Then, we compute the terms J, with £ = 1,2,3. We start with J;. Integration by
parts yields

T T
J = —252/ / e*? €000, 02 vy, 1 dwdt — s/ / e* 020, 0% v, 1 dadt.  (2.2.27)
—T Jwo —T Jws

The last term can be estimated by using integration by parts again. After straightfor-
ward computations, we get

T
—s/ / > E02v,07v, 1 dxdt
—T Jwa

T T
= — 24> e*%£(25]0,0]* + 020)Oyvn_10pvpdadt + s e £03v,,0,0,_1 dxdt.
T ! T ‘
— w2 — w1
(2.2.28)

Substituting (2.2.28)) into (2.2.27) we deduce that

T
J=— 432/ / e2s“0§8tg08tvn83vn_1dxdt
—T Jws

T T
— 2¢? e*%£(25]0,0]* 4+ 02¢0)0pvy_1Opvpdadt + s e £03v,, 0,0, 1 dxdt.
T ! T !
— w2 — w2
(2.2.29)
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Now, we estimate J>. To do this, we proceed integrating by parts in space:

T
Jo :s/ / e?%?(25£0,v, Vo + 0,0, VE)V Oyv,,_ 1 dxdt
1w (2.2.30)

T
+ S/ / e*PENV Oy 1 - VOu,dadt.
—T Jws

Moreover, the second term of the right-hand side of (2.2.30)) can be estimated as follows:
first we integrate by parts in space to get

T
s/ / e2PENV Oy 1 - VOupdadt
—T Jws
T
= — s/ / e??(256V p + VE)V 00, 0,0, 1 dadt
T Jwa

T
—s/ / e*PE A0, 04— 1 dazdt.
—T Jws

However, notice that the term V0,v, cannot be absorbed by using the classical Carle-
man approach. To solve this, we integrate by parts in time the first term of the right-hand
side of the above equation and therefore we obtain

T
5/ / ePEN Ovn_1 - VOu,dadt
=T Jwa
T
:3/ / e25%9), (625@(23§Vg0 + Vf)) V0,04, _1dxdt
Bt (2.2.31)
+ s/ / e**?[(2sEV p + VE) - Vo, 1] 02v,_1dxdt
—T Jwa

T
—s/ / e2PE A, 04y 1 dadt.
—T Jwo

Substituting (2.2.31)) into (2.2.30) we get the following estimate for Jo:

T
Jo —S/ / e?*?(25£0,0, Vo + 0w, VE) - VO, _1dxdt
—T Jwa
T
+ s/ / Oy [6259"(235ch + VE)] - V0,040, 1dxdt
—T Jwa
7 (2.2.32)
+ S/ / e??(256V i + VE)Vv,_107v,_1dxdt
—T Jws

T
—s/ / e2PE Ay, Oy 1 dadt.
=T Jwa
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On the other hand, J3 can be written as follows:

T
Js3 :5/ / 2% Er,,_10,Un_10pvy dadt
T Jwi

T T
:s/ / 625‘p§rn6tvn_18tvndxdt+s/ / 6259‘75(7“,1_1 — 7)) 04Uy 1 0pv, dxdt.
T Jwi =T Juw
(2.2.33)

Thus, substituting (2.2.29) (2.2.32) and (2.2.33) into (2.2.26) and using Young’s in-
equality and the fact that 0}v, — Adyw, + 7,00, = O;h, we deduce that for all § > 0,

there exists a positive constant C' = C(§) such that

T
s/ / €00, (00 vp_1 + T_10,vp_1 )dxdl
—T Jws
T *
—0(5)/ / 2 (2171 0pvn1 [ + | Von1[* + |02v,-1|?) ddt (2.2.34)
—T Jwa

T T
+C(0)s™ " / / 2|0, h,|*dwdt + (55/ / 2|00, + |V, |2dzdt.
—T Jwy T Jw

for every v* > 0. Furthermore, the local term Vv, in w; x (=7, 7T) can be estimated by
using the technical lemmas introduced in the above section and the weighted Poincaré

inequality as follows:
T
53/ / e?*? |V, |*dxdt
—T Jwo

T
3083/ /625@0(32|vn_1y2+ |0yvn_1|?)dxdt (2.2.35)
T Jw

T
+ 082/ / > (|vn|* + | A |*)dadt.
T Jw

Substituting (2.2.35)) into (2.2.34]) we have

T
3/ / e**? €00, (01 + 110,01 )dxdt
—T Jwy

T
SC(5)83/ / 625“"(52”*
—T Jwo

T T
+O@)s / / ¢\ Oyhn 1 [2dadt + 6 / / &% (10,02 + [Vou|?)dadt
T Jw T Jw

T T
—1—032/ /e2s‘p|hn_1|2dxdt—|—082/ / e**?|v, |*dxdt.
T Jw —T Jwa

for each ¢ > 0 and v* > 0. Finally substituting (2.2.25) (2.2.36) into (2.2.24) and using
& =1in wy we have

Ovn1|* + |0} vn_1|?) dzdt
(2.2.36)
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T
s / / e**?|Oyvp | dxdt
T Jw

T
<C(6)s’ / / 2% (*[vn_1)? 4+ s |01 [2|0Pvp_1|?dadt
T (2.2.37)

T
+C(5)/ /625“’(32|hn_1|2+s|6thn_1|2+s‘7* Oyh |?)dxdt
T Jw

T
+ (58/ /eQW(dxdt\@tvn]Q + [ Va)?).
T Jw

Finally, by substituting (2.2.23)) and (2.2.37)) into (2.2.16)), by taking the Carleman

parameter s > 1 large enough and by choosing § > 0 sufficiently small, we obtain
n—1

> I(a,v;,9Q) + 10,0, Q)

j=1
n—2 T T
SC'SO‘Z/ /625"9|hj|2dxdt+0/ /625‘p(33|hn_1\2+|hn|2)da:dt
= J-rJa -1 Jo
T
+C/ /625“’(3|6thn_1|2+|8thn|2)dxdt
-t Jo
n—2 T
w0ty [ [ (a0 o
j=1 T Jw
T
+CS3/ /625“’(55|vn_1|2+s3|8tvn_1]2+ |07 vn—1 |?) dadt,
-TJw

which completes the proof of Theorem [2.8] O

2.3 Proof of Theorem

The plan of the proof of Theorem contains three parts:

Step 1 In the same spirit of the Bukhgeim-Klibanov method, we rewrite appropriately
system (2.1.1)) to apply the estimate (2.2.15) in Theorem

Step 2 After applying the Carleman estimate of Theorem to the new system, we esti-
mate the residual and source terms.

Step 3 We conclude the proof gathering the estimates of the previous steps and eliminating
the small order terms.

e Step 1: Setting

For each j = 1,...,n, let us denote by y; = u; — 4;, p; = q;, f; = ¢; — ¢; and R; = u;.
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Then, following this notation, yy,...,y, solves:

(Oyi +piyi = y2 + fi R, in 2 x (0,7),
Oyo + paya = Y2 + foRy, in Q x (0,7),
Dynfl +pnflyn71 = Un + fnfanfh in Q X (07 T)7 (231)
Oyn + Puln = fuln, in Q x (0,7),
Hy(0)=0, k=0,1, j=1,...,n, inQ,
ly; =0, j=1,...,n, on 09 x (0,7).
For each j = 1,...,n, we set w; = 9?y;. Then, the new variables solve the following
system:
'le + prw; = we + flabe in Q x (O,T),
Ows + pows = ws + f20} Ra, in Q% (0,7),
Dwn,l +pn71wn71 = w, + fn,lﬁfRn,l, in ) x (O,T’)7 (232)
Ow,, + ppw, = [,0? R, in Q x (0,7),
OFw;(0) = f;0FR;(0), k=0,1, j=1,...,n, in,
(w; =0, j=1,...,n, on 09 x (0,7).

Now, we want to apply Theorem [2.8|to a suitable system. In order to do that, we extend
system (2.3.2)) in an even way, setting w;(z,t) = w;(x, —t) for all (z,t) € Q@ x (=T,0). We
also extend the functions R;, 9;R; and 9} R; in an even way and keep the same notations
for the new system.

To be able to apply the Carleman estimate (2.2.15), the functions w; must satisfy
Ofw(£T) = 0 in Q, for k = 0,1. However, this condition does not hold. To avoid this
difficulty, we consider a cut-off function § € C°((—T,T),R) defined as follows:

{ogegL in (—-7,7),

0=1, in (=7 +7,7—r1).
According to the definition of 6, it is clear that z; = 6w, for j = 1,...,n, solves
(Dzl + P12 :ZQ+F1, in Q x (—T,T),
DZQ + poze = 23 + FQ, in Q) x (—T’7 T),
|:|Zn_1 + Pn—1Zn—1 = 2n + Fn—lu in ) x (—T, T), (2 3 3)
Oz, 4 ppzn = F, in Qx (=T,7T),
oF2(0) = f;0FR(0), k=0,1, j=1,...,n, inQ,
OFz(£T) =0, k=0,1,2, j=1,...,n, in Q,
\zjzo,jzl,...,n, on 00 x (=1,T).
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Here, the functions F} are defined by
F; = 0f;07R; + 070w, + 20,00,w;, in Q x (=T, T),

foreach j=1,...,n

e Step 2: Applying Carleman estimate for hyperbolic systems In this step, we
denote by C a generic positive constant which depends at least of I'y,m, T, w and zy and
may change from line to line.

Applying the Carleman estimate of Theorem to the system (2.3.3) with v; = z;,
r; = p; and h; = I}, we see that

n—1

Z[(a,zj,Q) + 1(0, 2z, Q)

Jj=1

n—2 T T
<Cs Z/ / | F; |2 dxdt + C’/ / e (*| Fca|? + | Fu|?) dadt

T
+O/ /6254,0(S|atFn_1|2 4 |3tFn|2)dxdt (234)

O‘“Z/ / 22 (227 + |02;]7) dasdt

208 [ [ a4 10 5
T Jwsy

Note that the assumption (2.1.4) implies

c<|R;j(0)]*, Vji=1,2,...,n

Then, the following estimate holds:

0/2”|wa</2”Wﬁ&www=/?m@mme. (2:3.5)
Q Q Q

Hence, summing (2.3.5) over j, we deduce that

n—1
1 1
T [ O n a+2 / 2sp(0 d / 2sp(0 . d
c; (az])+ Zn) > Z N filPdx + s )| fol 2dz.
Now we estimate the global terms of F; and its derivatives, for each j = 1,...,n. By
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definition,

T
/ / | F; |2 dadt
=T JQ

T T
§2/ /623”|0fj83Rj]2da:dt+2/ /625“"|28t98twj—|—8t29wj|2dxdt (2.3.6)
-1 Jo -1 Jo

T
<C / 0| f;Pdx + 2 / / €2%?)20,00,w; + 020w, |*dxdt.
Q T JQ

Now, we focus our attention on estimating the global term of 20,00,w; + 970w;, for
j = 1,...,n. Notice that if the Time condition (2.1.3) holds, the Carleman weight v

defined in (2.2.9) satisfies
Uz, £T) = |x — xo|> = BT? + Cy < Cy,  in Q.

Then, we choose 7 > 0 such that
(x,t) < Cy, mQx([-T,-T+7]U[T—7,T)),
and therefore,

o(z,t) = < M@0 = (2,0), in Qx ([T, -T+7]U[T —7,T]).

Since the derivatives of # vanish in [T + 7,7 — 7| we see that

T
/ / e**°120,00,w; + 02 0w;|*dxdt
-rJa

e T AC
=¢ (/ +/ )6256 0/ (|0sw;]? + |wy|?) dadt.

Now, we will estimate the last term of the above inequality. To do this, we will use
the following energy estimates of (12.3.2)):

[owsoPds+ [ 19ui0Piz < [ 150Pd+C [ opaPds, e (-1.1),
Q Q Q Q

foreach j =1,...,n and

/|8twn(t)]2dx+/ |an(t)|2da:§0/ | f|2dz,Vt € (=T,T),
Q Q Q

where have used that R; € H?(—T,T;L>(Q)) for each j = 1,...,n. Integrating on
(=T,—T+71)U(T —7,T) the estimate above and using the Poincaré inequality to w;, we
see that

—T+T T \C
</ —l—/ )6256 O/ (|0sw;]? + |w;]?) dadt
-T T—1 Q
AC T
< / )| f5)2dx + Cese™° / / w1 |*dxdt,
Q -rJo
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for each j = 1,...,n — 1. Furthermore, due to the structure in cascade of system (2.3.3)),
we obtain

T " o
GSEACO / / 625@|wj+1|2dxdt S OBSBACO Z / |fz|2d$ S O Z / 62S¢(O)|fi‘2dx7
“rJa @ °

i=j+1 i=j+1
for each j = 2,...,n — 1. Therefore, for every j = 1,...,n, we deduce that
T n
/ / €**%120,00,w; + 0} fw;*dadt < CY / 2O £, 2 d. (2.3.7)
—TJQ — Jo
i=j

Substituting (2.3.7)) in (2.3.6)), we see that
n—-2 .7 T
SQZ/ /625‘p|Fj|2dxdt+/ /628@(33|Fn_1|2 + |, ?) dadt

- (2.3.8)
<Y [0l 0 [ 0 (S 1) de
= e Q

In the same manner we can see that

T T
/ /ew(syatFnl\%r |0,F, %) dxdt < C/ /em(syfnl\%r | ful?)dzdt.  (2.3.9)
-1 Jo -7 Jo
Thus, substituting (2.3.8)) and (2.3.9) into (2.3.4), and taking s large enough, we have

n—1
sa+22/62w(0)\fj|2dx+82/ | ful?da
= Jo Q
n—2 T
SCSO‘HZ/ / €7 (%12 [* + 0,2;]%) dadt (2.3.10)

j=1 =T Jws

T
v 08 [ [ @+ SN0l + 08 )i

=T Jwa

e Step 3: Last arrangements and conclusion

From ([2.3.10)), we fix the parameter s and put it into the constant C:
n n T
Z/ FARE: ch/ / 252 (|22 + |0y |*) dasdt
j=1"7¢ =1 /=T Jww

T
+ C/ / (’%—1’2 + |Opzn—1|* + ’81522”,1]2) dxdt,
T Jw

where we have used that the Carleman weights defined in (2.2.9)) are bounded. Moreover,
by definition of each z; we see that

n n—1
Z 1fillZ20) < CZ 19515 2y + N9 lira 1020 (2.3.11)
j=1 j=1

Finally, replacing f; = ¢; — ¢; and y; = u; — u; by (2.3.11) for each j =1,...,n, we
conclude the proof of Theorem [2.1] O
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Chapter 3

Controllability properties of a class of
heat equations with dynamic boundary
conditions

3.1 Introduction and main results

In this chapter, the null controllability property for a suitable class of parabolic equations
with dynamic boundary conditions is studied. In order to state the main results of this
article, we shall introduce some notation. Let Q; = (—L,0) be a bounded interval with
L >0, wCQp, and T > 0. Then, let us consider (u,ur) € L*(, x (0,7)) x L*(0,T)
be a solution of

(Opu(x,t) — Pu(z,t) = yol(x)v(z,t), Y(z,t) € QL x (0,T),
(u(z,0),ur(0)) = (uo(z), uro), Vo €y,

up(t) = u(0,1), vt e (0,7), (3.1.1)
u(—Lq,t) =0, vt e (0,7),
L up(t) + 0,u(0,t) = 0, vt € (0,7).

Here, the pair (u, ur) stands for the state of (3.1.1]), (ug, uor) € L*(€2;) xR is the initial
state and v € L?(w x (0,7T)) denotes the control acting on w C €. Notice that
can be treated as a coupled system of dynamic equations for u and ur with side condition
u}r = ur at the boundary = = 0. Moreover, if u is smooth enough, then up(¢t) = du(0,t).

In this chapter, we analyze the null controllability of (3.1.1)), i.e., given any data
(ug,uor) € L*(Q) x R and T > 0, we want to find a control v € L*(w x (0,7")) such that
the associated solution satisfies

u(z, T) =0, VxeQ.

In other words, the goal is to steer the state of (3.1.1) to a null final target by a suitable
choice of the control function. In addition, we point out that in our model the control is
applied in a (small) subset of Q7. This means that the first equation is controlled directly
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by the action of v, while the ODE at x = 0 is being controlled indirectly, through the
coupling.

Sometimes, boundary conditions like ([3.1.1)5 are called of Wentzell type and in the
unidimensional case has the general form d,u — aAu + bd,u = 0 with @ > 0 and b € R.
In our case, dynamic surface diffusion contributions are neglected (i.e. a = 0).

Physically, equation 5 can be viewed as a transport equation acting on a neigh-
borhood of the boundary at x = 0. Then, the unidirectionally heat wave travels into the
region {27 and this wave lives only for an infinitesimally short time. Of course, once the
heat wave is inside the region, diffusion is the primary process. For a complete description
of physical interpretation for Wentzell boundary conditions in linear and nonlinear models
we refer to [31], [57], [53].

Parabolic models with general Wentzell boundary conditions were introduced in the
context of the heat equation by A. Favini, G. Goldstein, J. Goldstein and S. Romanelli [44]
and subsequently have been intensely studied in the last two decades by many authors,
see for instance [54] [94], [95], [55], [52] and the references therein.

The study of controllability properties of parabolic equations are well-known in the
case of Dirichlet and Neumann boundary conditions (see for instance [50],[78],[48]), as
well as for Robin or Fourier boundary conditions [38], [46], [47]. Moreover, controllability
properties of parabolic equations with discontinuous diffusion coefficients are recently
studied in [39], [19], [20], [22], [21] and [82].

However, to the best of our knowledge, there are a few work concerning controllability
for parabolic equations with dynamic boundary conditions. In particular, optimal control
problem and approximate controllability have been considered in [59] and [13] in the
case of global controls, i.e, w = ). Moreover, in [73] the authors studied approximate
controllability of a one-dimensional heat equation with dynamical boundary conditions
by using the theory of one-sided coupled operator matrices developed by K.-J. Engel in
[40].

Recently, in [81] null controllability for parabolic equations with dynamic boundary
conditions with surface diffusion (i.e. a > 0) is studied. In particular, the authors consider
Generalized Wentzell conditions with surface diffusion acting on the boundary. In this
case, the result was proved by applying Carleman estimates for the homogeneous dual
problem. The authors used the weight functions defined in the work of O. Yu Imanuvilov
et al [62] (see also [61] and [48]). In this context, the novelty relies in the fact that several
boundary terms appears in the deduction of the Carleman estimate. Some of these enter
in the final estimate, a few cancel, and others can be controlled using the smoothing effect
of the surface diffusion. Let us also mention the papers [60] and [24] where the authors
studied the local null controllability of some two-dimensional fluid-structure interaction
problems where parabolic equations are coupled with some dynamics (typically an ODE)
in a part of the boundary. Again, the main ingredient in the proof of this result is a
suitable Carleman estimate, which will be applied to the corresponding adjoint system.

In our case, we obtain a null controllability result for (3.1.1)) when the control region
is far from the right-hand side of the interval {1 even if initial data ug and ur are not
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related. More precisely, the main result of this paper is the following

Theorem 3.1 Suppose that w = (—Ly,—a) with a > 0. Then, the system defined by
(3.1.1) is null-controllable at time T > 0.

Using the well-known equivalence between null controllability and observability (see
e.g. [48], [79]), the proof of Theorem [3.1] consists in obtaining a suitable observability in-
equality for the corresponding adjoint system. This will be done by obtaining an auxiliary
Carleman inequality.

In order to state the second main result of this paper, let Qg = (0,1) and set Q2 =
(—L1,1). From now on, we shall use the following notation: for a function h: Q@ — R, hy,
and hg stand for the restriction of (27, and Qg, respectively.

Now, let (u,ur) € L*(Q x (0,T)) x L*(0,T) be a solution of

Oyr(z,t) — Doyr(x,t) = f(x,t), V(z,t) € Q x (0,T),

yr(z,t) = yr(0,t) = yr(t), V(z,t) € Qr x (0,7,

(y(2,0),yr(0)) = (yo(x),yro), Yz €Qy, (3.1.2)
yr(—Li,t) =0, vt € (0,7),
Lt (8) + 0,900.0) = 0. vt e (0.7).

We emphasize that (3.1.2)) is an extension of (3.1.1]) where ug is only a time-dependent
function in €2i. This problem is well-posed in the sense of Hadamard. In addition, thanks
to Theorem [3.1] problem (3.1.2) is null-controllable at time 7" > 0.

As we mentioned above, the problem (3.1.2) appears as the limit case of a heat equation
with discontinuous diffusion coefficient of the form

1, ifzreQ
oK)= 14 NTETn (3.1.3)
KQ, if v € QR,

with K > 1. More precisely, the second result of this paper is the following:

Theorem 3.2 Let ug € L*(Q), w C Q, K >0 and T > 0. For v* € L*(w x (0,T)), let
K be the solution of

O — 0, (%0, uf) = x vF,  V(z,t) € Q2 x(0,T),
u(z,0) = up(x), Vo € €, (3.1.4)
UK(—Ll,t) = 8IUK(L2, t) = 0, vVt € (O,T)

Suppose that

v — v weakly in L*(w x (0,T)). (3.1.5)

Then, there exists a subsequence of the associated family of solutions (u) ko defined
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by (3.1.4) with initial data ug € L*(2) which converges as K — +oo in the sense that

u® = weakly in L*(0,T; H'()), (3.1.6)
uf —u  weakly-star in L>(0,T; L*(Q)), (3.1.7)
u® —u  strongly in L*(Q x (0,T)) (3.1.8)

Moreover, u is a weak solution of (3.1.2)) with source term f = x,v and initial condition

yr(x,0) =uor(z), VreQr, yr(0)=yg(z,0)= / up rdx, Vr € Qp.
QR

On the other hand, another interesting questlon concerning models and ( -
can be considered. In fact, for each K > 1, let 4 be the solution of

Q‘?mf(a:,t) — Pull(z,t) = xo,(z)v(z,t), V(x,t) € Qpx(0,T),

Ol (z,t) — K20%uk (z,t) = 0, V(x,t) € Qr x (0,7T),

uf (x,0) = ug r(z), Vo € Qp,

u (z,0) = ug g(x), Vr € Qp, (3.1.9)
uB (07, 1) = ul (07, 1), vVt € (0,7),

K20,up(0™,t) = d,ur(07,1), vVt € (0,7),

ul(=Ly,t) = 0,ul(1,t) =0, vt € (0,7).

In addition, let us consider (u,ur) be the solution of

(Oyup(z,t) — O%up(z,t) = xou(z,t), Y(z,t) € Qpx(0,T),

up(z,t) =ur(0,t) = ur(t ) V(z,t) € Qp x (0,7),

(u(z, 0), ur(0)) = (Go(x), dor), Yz € Q, (3.1.10)
ur(—Lq,t) =0, vVt € (0,7),

U () + Bpur(0,t) = 0, vt € (0,T).

Suppose that v € L?(w x (0,T)) is a control which drives the initial state ug € L*(9)
in (3.1.9) to zero at time 7' > 0. Then, we can formulate the following question: can we
employ the limit control v of the problem (3.1.10) to control (in a suitable sense) system

B19) too?

Concerning the above question, we have the following result

Theorem 3.3 Let ¢ > 0 and choose ug € L*(Q) such that

|luo.r — UOR”L2 < where UO,R:/ up rdx. (3.1.11)
Qr

9
3 )

Let @ be the solution of (3.1.10) with conlrol v € L*(w x (0,T)) and initial condition

ﬂo,L(l‘) = UO7L($), YV € QL, 1~LF70 = 1~L07R(ZU) = Uo,R, Vo € QR.
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Then, there exists Ko > 0 such that for all K > K, the associated solution v’ of (3.1.9)
fulfills

|’UK('7T)||L2(Q) <e.

Roughly speaking, Theorem asserts that for suitable initial conditions under consid-
eration (in particular where v g is constant), problem ({3.1.9) is approximately controllable
at time 7" > 0.

To end this section, we give the outline of this paper. First, in Section we fix
the functional setting to study the problem (3.1.1). In particular, well-posedness in the
sense of Hadamard is given. In Section we prove the Theorem [3.1] This will be done
by using a suitable Carleman estimate to the adjoint system. In Section we prove
Theorem by using well-known arguments combined the definition of weak solution of
such problems. In Section we prove Theorem by using the ideas developed in the
proof of Theorem

3.2 Well-posedness of the heat equation with dynamic
boundary conditions

In this section, we study well-posedness results for parabolic equations with dynamic
boundary conditions like (3.1.1). In particular, we restrict our attention to definitions
and properties for this kind of problem.

Before going further, we shall point out that the used in this section are well-known in
the literature, see for instance [25],[41] and [80] and for parabolic problems with dynamic
boundary conditions we refer to [44], [31], [55] and [8I]. However, for completeness we
give these notions and results (some of them without proof).

3.2.1 Variational approach

In this section, well-posedness result in the appropriate functional spaces of problems in
the form (3.1.1)) is considered. First, for 7' > 0, let us consider (u, ur) being a solution of
the following problem:

(Opu(x,t) — 2u(z,t) = f(x,t), Y(x,t)eQ x(0,T),
(u(z,0),ur(0)) = (uo(z),urp), Vre Qr,

up(t) = u(0,1), vVt e (0,7), (3.2.1)
w(—Li,t) =0, vt € (0,7),
| Orur(t) + 0,u(0,t) = g(t), vt e (0,7),

with f € L*(Qg x (0,7)), (ug,uro) € L*(Qr) x R and g € L*(0,T). To state the result,
we introduce the following space:

Hy(Q1) = {v e H'(Q); v(—L1) =0},

43



endowed by the usual norm of H'(Q;). It is clear that H} () is a Hilbert space. Now,
we introduce the bilinear form a : H} () x HL(Q1) — R given by

a(u,v) = Oyudyvdx, Nu,v €V,
Qr,

Additionally, let H be the completion of H}(€2;) with respect to the norm induced by
the inner product

(u,v)g = /Q uvdx + u(0)v(0). (3.2.2)

In this sense, it is clear that H is isomorphic to L*(Qz,dr) x R, where dz denotes the
Lebesgue measure in 2. In the same manner, H} (€) is isomorphic to the space
V ={(v,or) € H () x R, v’r = ur and v(—L4) = 0},

endowed by the norm |[|(v,vp)|lv = ||0,v]|12(q,). For this reason, from now one we shall
write

(4, ur), (v, v0)) i = / wodz + ur(0)or(0),

Qr

for each (u,ur), (v,vr) € H to represent the inner product (3.2.2). Similarly, the bilinear
form a : V x V — R can be defined by

a((ua uF)v (Ua UF)) = 8:Euaxvdw7 \V/(U, uF)a (Ua UF) eV

Qr

Now, we are interested in the following:

Problem: find (u,ur) € C°([0,T]; H) N L?(0,T;V) such that for all (v,vr) € V the
following identity holds:

((atu<t>7 ull“(t))v (U, UF))H + a((u’ UF), (Uu UF)) = ((f7 9)7 (Uv UF)>H7 (323)
in the sense of distributions on (0,7") with (u(x,0),ur(0)) = (uo(z),uro) for each x € Q.

It is not difficult to see that after integration by parts and well-known arguments (see
[80], [85]), the above problem is equivalent to find a solution to (3.2.1). Then, concerning
the above variational problem, we have the following result:

Proposition 3.4 For each (ug,uro) € H and (f,g) € L*(0,T; H), the problem (3.2.3)
admits a unique solution

(u,ur) € C°([0,T); H) N L*(0,T; V).

Moreover, the following energy estimate holds true

1ot ) ooy + 1, ) By < C (1o, o) By + 1 Do) - (3:2:4)

for some positive constant C' = C(Q2,,T).

It is clear that a : V x V — R is coercive and continuous on V' x V. Then, by
standard arguments concerning parabolic problems (see e.g. [80]) the existence of (u, ur)
is guaranteed.
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3.2.2 Semigroup approach

Using the notation previously introduced in the above section, let A : D(A) C H - H
be the linear operator defined by

A(v,vor) = (03v, —0,v(0)), (3.2.5)
with domain

D(A) = {(v,or) € V; O?v € L*(1)}.

We have the following result

Proposition 3.5 The operator A given by (3.2.5) is densely defined, self-adjoint and
generates a contraction semigroup (em)tzo on H.

Proof. Tt is easy to check that {(y,yr) € V; y € C*(Q)} C D(A) is dense in L*(2;) xR.
Hence, A is densely defined. In addition, for each (v,vr) € D(A), we have

(A(v,vr), (v,vr))g = / vO2vdx — vr(0)0,v(0),

Qr,

and integration by parts shows that

(A(v,vr), (v,vr))g = —/ 10, v[*dx < 0. (3.2.6)

Qr,

In the same manner, after integration by parts twice, we can assert that for each
(U7UF)7 (’(,U,’LUF) S D(A)

(A<U7 UF)? (w7 wF)>H = (<U7 UF)v A(w7 wr))H’

Thus, by Hille-Yosida’s Theorem (see, for example, [30]), we conclude that A is the
generator of a contraction semigroup on H. O

Next we introduce different classes of solutions of (3.2.1)).
Definition 3.6 Let f € L*(Q x (0,T)), g € L*(0,T) and Yo = (yo,yor) € H.

(a) A strong solution of (3.2.1) is a function U = (u,ur) € H'(0,T; H) N L*(0,T; D(A))
fulfilling (3.2.1)) in L*(0,T; H).

(b) A mild solution of (3.2.1) is a function U = (u,ur) € C°([0,T]; H) satisfying

U(t) = AU, + /0 t e =DAF(1), g(r))dr. (3.2.7)
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(¢c) A distributional solution of (8.2.1)) is a function U = (u,ur) € C°([0,T); H) such that
for all T € [0,T] we have

/T / w(Ou) + 2¢)dudt + / (ue, )l 7) — o )bl 0))da
0 Qr Qr

T up(r)$(0,7) — urod(0,0) + / " ur(£)(@.6(0,1) — 0,6(0, £))dt
_ / [ fdedt + / " o(H)6(0, Dy,
0 Qr, 0

for all p € C>=(Qy x [0,T)) such that ¢(—Ly,t) =0 for all t € (0,T).
The next result asserts the existence of strong solutions for regular initial data:

Proposition 3.7 Let f € L*(Q x (0,T)), g € L*(0,T) and (ug,uor) € V. Then, there
erists a unique strong solution

U = (u,ur) € E1(0,t) :== H(0,T; H) N L*(0,T; D(A))

of (3.2.1)), which is also a mild solution. In addition, there ezists a constant C' > 0 such
that

| (w, ur)|| 00y < C (H(U,UO,F)HV + 11 fllz2@w) <o, + HQHH(O,T)) .

However, for our purposes (specially for controllability results) we shall consider initial
data (ug,uor) € H. Then, the next result gives necessary conditions to get the uniqueness
of a mild solution and describes the regularity of such solutions.

Proposition 3.8 Let f € L*(Q x (0,T)), g € L*(0,T) and (u,uor) € H. Then,

1. there ezists a unique mild solution U € C([0,T]; H) of (3.2.1) and the following
energy estimate holds:

1w, ur) ooy < C ([ (uo, wor) e + 1 fll 220 x 01 + 19ll22001))
for some positive constant C' = C(Q,, T). Moreover, for each T € (0,T) we get
(u,ur) € H'(1,T; H) N L*(1,T; D(A)).

2. If (u,uor) € V, then there mild solution of (3.2.1) given by the first item is a strong

one.

3. A function (u,ur) is a distributional solution of (3.2.1) if and only if it is a mild
solution.
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3.3 Controllability properties of the original problem

In this section, we devote to prove Theorem First, using the well-known relation
between null controllability and observability, we introduce the adjoint system

Opz(x,t) + 0?z(x,t) = 0, V(x,t) € Qp x (0,7T),

(2(x,T),2r(T)) = (20(x), 20 1), Ve,

2(—Ly,t) =0, vt € (0,7), (3:3.1)
20(t) — 0,2(0,t) =0, vVt e (0,7).

Using the change of variables ¢ = T — t and applying Proposition we deduce that
system has a unique solution z € C°([0,T); H) N L*(0,T;V), where H and V
are the spaces defined in the previous section. Moreover, we have the following energy
estimate:

1(z; 20) leoo,rymy + 12, 20) | 2200mv) < Cll (2 20,0) |1 (3.3.2)
for some constant C = C(Q2, T') Moreover, by Proposition [3.8| for all 7 € (0,7'), we have

(z,2r) € H'(0,7; H) N L*(0,7; D(A)).

As we said before, the proof of (3.3.2) (or equivalently Theorem is based on the
observability inequality for the adjoint system ((3.3.1)):

T
150 220, + |20 () < C/o /|z|2da:dt, (3.3.3)

for all (27, 2rr) € L?(21) x R, where z is the associated solution to (3.3.1]), and for some
positive constant C' = C(€,T). This will be done by using a suitable Carleman estimate
for (3.3.1).

In order to formulate next result, we shall introduce weight functions. For a > 1, we
define

0(t) =((T — 1)), ¥t e (0,T),

1 _
@D(x):—Eﬁ—kx—f—QLl, Vo €y,
1

with p(z,t) = 0(t)y(z), for each (z,t) € Qp x (0,7). Notice that ¢ is a smooth positive
function which blows up as t — 0" and as t — 1.

Now we state the one-parameter Carleman estimate:

Lemma 3.9 Let T > 0 and for o > 1 define the function ¢ as above. Then, there exist
positive constants C = C(a,Qp,T) and sog = so(a, L, T) such that for all s > sq the
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following inequality holds

/ / e BP(HT — 1) y|? dxdt—i—s/ / e 2T — 1)) 0py|*dadt
QL QL

_1/ /QL e 22 (4(T — 1))*(|0%y|? + |9,y|?)dzdt

s / e 2RO (T — 1)) yo(1)

0 . (3.3.4)

T
+ s / e 290D (H(T — 1)) 7% 0,y(0, 1) |dt + / e~ 22 O0 |y (1) |2t
0 0

T T
SC’/ / e %0y + O2y|*dxdt + C/ e~ 22O |y (#) — B,y(0, 1) [2dt
0 Qr, 0
T
+Cs [ BT — ) oy~ L) i,
0

for all functions (y,yr) € H*(0,T; H) N L*(0,T; D(A)).

The proof is based on the works of A. Fursikov and O. Imanuvilov [50], [62], [6I] in
the case of Dirichlet and mixed boundary conditions. In our setting, we will see that
some new boundary terms arise from the Wentzell dynamic condition. Then, the main
difficulty is to prove that these new terms can be absorbed by choosing the parameter s
large enough in the spirit of Carleman estimates.

Remark 3.10 By using a cut-off function n localized close to © = —L;, and standard
observability properties for parabolic equations (see for example [{§]), we can prove easily

(3.3.3) when w = (—Ly,—a) with a > 0.

Remark 3.11 One can consider Classical weight functions introduced by A. Fursikov and
O. Imanuvilov [50], [62] in the unidimensional case. Indeed, these details are given in
the appendiz. However, in the context of multidimensional setting this strategy fails, see
Remark 3.3 of [81)]. In fact, there are some boundary terms depending on Vry which we
cannot absorb it.

Proof of Lemma([3.9. Since all the terms in are continuous with respect to the
norm of F(0,T), it suffices to consider smooth functions y € C*(Q2; x [0,7]). In fact,
the general case follows by the classical approximation by convolution with mollifiers in
space and time by the density of C>([0,T] x Q) in Ey(0,T). This allow us to deduce
that yi-(t) = y(0,¢) for all t € (0, 7).

In what follows, C' denotes a generic constant depending on «, €y, w and T" > 0 that
may change from line to line. For an easier comprehension, we divide the proof into four
steps:

e Step 1: Setting. Let us introduce the conjugate variable

2(z,t) = e *@0y(, 1), V(x,t) € Qp x (0,7T).
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Then, direct computations show that the space and time derivatives of z are given by

Oz = —sOpz + e 20y, Opz = —s0,pz+ e °?0,y,
0z = —50%pz — 5%|0,0|*2 — 250,00, 02 + e 0%y,

for all (z,t) € Qp x (0,7). In order to simplify the computations, let us define the
operators

M, = 50,0 + 02 + $*|0,0|%, My = 0, + 280, + 802,
Ny = s0p — 0y, Ny = 0p — 0.

In addition, due to the regularity of (y,yr) we set

fz,t) = Oy(x,t) + Py(x,t) V(x,t) € Qpx(0,T), g(t)=0y(0,t) — dy(0,t) Vte (0,T).

Then, according to the above computations, it is clear that

e @Y f(x t) =My z(x,t) + Myz(z,t), Y(x,t) € Qp x (0,7) and

) (3.3.5)
e PO g(t) =Ny (2)(0,1) + Na(2)(0,1), ¥t € (0,T).

Taking || - || 2, x(0,r)) and || - ||20,7) to the equations in (3.3.5) we have

Heiwa%?(QLx(O,T)) + Heis@((]’t)gH%?(o,T)
:HMlz"%Q(QLx(O,T)) + HM2ZH%2(QLx(0,T)) + || V12 (0, ')H%Q(O,T) + [| V22 (0, ')H%Q(O,T) (3.3.6)
+ 2(Myz, Maz) 12(00, x(0,1)) + 2(N12(0, -), N22(0, -)) £2(0,7)-

Our next task is to compute the inner products in L?(Qy, x (0,7)) and L*(0,T). This
will be done using integration by parts and applying boundary conditions at z = —1L;
and z = 0.

e Step 2. Now let us compute the terms of the first inner product. In order to do that,
let us use the following notation:

3
<M127M2Z>L2(QL><(07T)) - Z Ij’k

ij=1

where J;;, stands for the scalar product in L*(Q, x (0,7)) between the j'"-term of M,z
and the k*"-term of Myz. Then, we start with J;;. Using the fact that

1
207 = §6t|z|2, in Qp x (0,7

and integrating by parts in time leads
T 1 /7
_ _ 4 2 112
I = s/ Oypz0yzdxdt = s/ / 05 p|z|“dxdt, (3.3.7)
0 Jog 2 Jo Ja,
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where we have used the fact that z(-,¢t) =+ 0ast — 0" and t — T~. In the same manner,
J1o can be estimated in the following way:

T
I5 =25> / 040,020, zdxdt
0

Qr,
T T
=— 32/ / (00,005 + O1p02p) | 2| *dxdt + 82/ D1p(0,1)0,0(0,1)|2(0, 1) |*dt,
o Jo, 0

(3.3.8)
where we have used the homogeneous Dirichlet boundary condition on z = —L;. Fur-
thermore, by definition Ji3 reads as follows

T
113:32/ / Oypd2p|z|*dadt. (3.3.9)
0o Jog

Let us compute Jo;. Integration by parts in space yields

T
Iy = / 8tz8§zdxdt
o Jar

0

T T
= —/ / 8t8x20xzdxdt+/ 0;2(0,1)0,2(0, t)dt.
0o Jaog

Let us compute the above terms. First, notice that

Op2(t) = 0ast— 0" and t — T~
Then, using the fact that 0,0,0,z = %8t|8$z|2 in Qp x (0,7) it follows that
T
/ 04(|0,2|*)dzdt = 0.
o Jag

On the other hand, according to the definitions of N; and N, we have
T
/ 0,2(0,1)0,2(0,t)dt
OT T T
:/ 10,2(0,t)[2dt — s/ 0:(0,t)2(0,t)0,2(0, t)dt + 5/ O0yp(0,1)2(0,t)02(0, t)dt
0 . 0 0
—/ e=*?O0Y g(1)8,2(0, t)dt.
0
Integration by parts yields
T 1 T
_S/ azgp(07t)z(07t)atz(07t)dt = 58/ 8ta$90(07t)|z(07t)|2dt7
0 0
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and

T T
s / 8tg0(0,t)z(0,t)0tz(0,t)dt:—% / 25(0, 1)) 2(0, 1) Pt
0 0

Therefore, I5; is given by

T 1 T
b= [ 00.0Pdt + 55 [ 00.0.0)]2(0.0) P
0 0 (3.3.10)

1 T
- 55 | el 0P

Let us emphasize that I; contains the boundary term |9,z(0,t)|?, which plays an im-

portant role to eliminate the boundary terms from the next step. Once again, integration
by parts in space we have

T T
I :_3/ / 8§g0]8x2\2dxdt+s/ 00(0,1)[0:2(0, )| *dt
o Jo, 0 (3.3.11)

T
—s/ (()J;go(—Ll,t)|8$z(—L1,t)|2dt.
0

We point out that the third term of the right-hand side of I, will be considered as an
observation. In the same manner, 53 is given by

T
I3 :3/ / 02002 zdxdt
o Jag
T

. (3.3.12)
s / o\, = Pdudt + s / 20(0,1)2(0, )0, (0, )dt,
0 Qr, 0

where we have used z(—Ly,t) = 0 for all ¢t € (0,7) and the fact that 3¢ = 0in Q% (0, T).
In addition, the term I5; reads as follows

1 T
Iy = —552/ 119w 2|2 ) derdt. (3.3.13)
0 Qp,

Moreover, integration by parts yields
T
I3 :233/ / 0p0]220, zdwdt (3.3.14)
o Jag

T T
=— 352/ / 10,0202 0| 2|*dadt + 33/ 10.0(0,1)?]2(0, ) |*dt. (3.3.15)
o Jag 0

Finally, by definition /33 is given by
T
Iy = &° / / 10,|2020| = P (3.3.16)
0 Jog
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In the next step, we compute the the second inner product in the equation . We
emphasize that this step plays an important role on the proof of Lemma [3.9) In fact,
we must ensure that all these new terms can be controlled or absorbed by taking the
parameter s large enough.

e Step 3: Boundary terms. We introduce the notation

(N1(2)(0,2), N2(2)(0, 1)) 2(01) Z ik

7,k=1

where J;; stands for the scalar product in L*(0,7) between the j™-term of N;(z)(0,)
and the k*™-term of Ny(2)(0,-). Then, J;1 can be estimated in the following way:

T T
Jn—s/‘@ﬂaﬂdaﬂ&daﬂﬁ—fés/ (0,020, 0Pt (3.3.17)
0 0

Moreover, the other terms are given by

T
Jig = — 52/ 0,(0,1)0,0(0,1)]2(0, 1) |*dt, (3.3.18)
0
T
J21 = — / axZ(O, t)(?tz(O, t)dt, (3319)
0
T
Jog = — s/ 0.0(0,1)2(0,1)0,2(0, t)dt. (3.3.20)
0

As we shall see in the next step, due to the definitions of Carleman weights ¢ and
6 with a > 1, the terms given by the equations (3.3.17)-(3.3.20) can be bounded in a
suitable way by taking s large enough. This enable us to control these new boundary
terms.

e Step 4: Substituting (3.3.7)-(3.3.20) into (3.3.6) and gathering the terms we have

T
/ / 10,0]%0 <,0|z]2dxdt—23/ / 02| 0p 2P dadt
QL QL

+s/)mwmtﬂbmﬂ\ﬁ+s/ 0,0(0, )]0, 2(0, £)2dt

0

T
+/0 10020, )dt + (| M2 720, x(0.my) + 1Moz 720, < 011 (3.3.21)
+ [ NU(2) (0, )] F20,) + 1N2(2)(0, )] 720,17

T
=lle™* fllZ2(a, xory + 1€ gl 3200 + 3/ Ouip(— L1, 1)|0p2(— Ly, t)Pdt
0
+ X +Y.

where X and Y are given by

1T T
X = —s/ / OFo|z|*dxdt + 52/ 010,00, 0|22 dxdt,
2 0 Qr, 0 Qr,

o2



and

T 1 T
Y:—%s/ 8t0xgp(0,t)|z(0,t)|2dt——s/ 20 (0, 1) 2(0, )Pt
T
+/ 20 60,2(0, 1) dt—s/ 20(0,1)2(0,)0,2(0, t)dt
0
—%s/ 0390(0,t)|z(0,t)|2dt+32/ 01p(0,1)0,0(0,1)]2(0, t)|*dt
0 0

T T
+/ 0,2(0,)0;2(0,t)dt + s/ 0,¢(0,)2(0,t)0,2(0, t)dt
0 0

Our next task is to eliminate the terms X and Y. In order to do that, let us point out
that the derivatives of 6 can be bounded as follows:

0/(t)] < aT(H(T — 1))~V 19"()| < C(HT — £))"©+D, Wt e (0,T),  (3.3.22)

for some positive constant C' = C(«,Q,T). On the other hand, ¢ and their derivatives
satisty

3
_Ll S ’é/}(l’) S 2L1a

5 Vr € Q. (3.3.23)

<Y <1, o(2) = —2%,

DN | —

Then, by using inequalities (3.3.22) and (3.3.23)) in (3.3.21)) we obtain

// T — 1))z d:rdt+s// T —1))"%|0pz|*dxdt
QL QL

+s /0 (1T — £))~%]2(0, )2 dt+s/0 (KT — £))~%|0,2(0, 1) 2dt

r (3.3.24)
+/O 10:2(0, 1) 2dt + || My 21720, w01y + | M22] 7200, x(01))

INL(2) (0, )20y + IIN2(2)(0, )72 07y < Chlle™ fll2(p x(0,1y)
T
Cille™ g1 Za0.m) + 018/ (H(T = 1))"*|0p2(= Lo, t) 'dt + C1 X + C1 Y],
0

for some constant C; = Cy(«, 2, T). Notice that

C'1|X|<C’23/ / — 1)) "2|2Pdzdt + Cys® / / )~ |22 dadt.
QL QL

Moreover, since o > 1 we can choose s; > 0 large enough to get

Ch|X| < —s / / )2 z|*dxdt, Vs > sy.
Qr

By using Young’s inequality and the previous arguments we deduce the existence of a
constant sy = so(a, C1,Q, T) > s1 such that the following estimate for Y holds:

1 T 1 [T
ClY] <z [ (T = 1) 2(0,8)]2 + 55 [ (H(T —1))"*[0:2(0,¢)|*dt
2 /0 2 /0 (3.3.25)

e 2 Lt 08)] 12
+ - 10;2(0,t)|°dt + = e OV g|*dt, Vs > so.
2 Jo 2 Jo
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Therefore, for each s > s3 with s3 = max{sy, s} we get

/ / )73 2 dxdt+s/ / )"0, 2|*dxdt
QL QL

+s /0 (H(T — )]z (0,t)|2dt+s/o (H(T — £))~*|9,2(0, £)|2dt

T
+/0 |0:2(0, t)[*dt + ||M1’Z||%2(QL><(O,T))+ HMQZH%Q(QLX(O,T))
+ [ N1(2) (0, 8) 7200,y + 1N2(2) (0, )| 720,17

T
<Cille** fl 720, xory + Cille™ gl 2201y + 018/0 (H(T — 1)) ~0z(—La, t)[*dt.
(3.3.26)

It remains to deduce estimates for 9,z and 9%2. To do this, by definition of M; and
M; we can assert that

1/ / )02z |2 dxdt
Qr
_1/ / T —t)Y| M,z dxdt+C’s/ / ) =@ |2 2dxdt  (3.3.27)
QL QL

+Cs / / )%z *dxdt, Vs >0,
Qr

and

T
s_l/ / (t(T — 1))*|0yz*dxdt
0o Jag

T
§C$1/0 /Q (H(T — 1)) |M2z|2dmdt+C’s//Q Dole2dedt (3.3.28)

T
+ Cs/ / (t(T — 1))~ *|0,2|*dxdt,¥s > 0.
o Ja,

Thus, the global terms of 9,z and 9%z can be incorporated in the left-hand side of
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(13.3.26)). Thus, for each s > s3 we have

/ / T —t))%z]? d:cdt—i—s/ / )"0, z|*dxdt
QL QL
/ / * (1022 + |0p2|*) dxdt
Qr,

+s /0 (HT — 1)) 3a|z(0,t)|2dt+s/0 (HT — £))=*|0,2(0, 1)|2dt

T
+/0 10:2(0,8)|2dt + || My 217200, « 0.1y + | M22]| 7200, x(01))

+INL(2) (0, ) 17201y + [IN2(2)(0, )17 0,1

T
§O2He_s¢f|’%2(QL><(O,T)) + C2H€—s<p(0,t)g“%2(0j) + 023/0 (t(T — 1)) ™*|0pz(— Ly, t)|2dt.
(3.3.29)

Finally, let us come back to the original variables. By definition of z, we know that

/ / e 20 (1(T — 1))~y Pdudt = 5° / / )73z [2dwdt, Vs > 0.
Qy QL

(3.3.30)

Moreover, since 0,z = —se”*?0,py + e *?0,y, in Qr x (0,7) we have

T
s / / 22 (H(T — )0,y [2dadt
Qr
/ / T —t))73*|z|? d:z:dt—l—Cs/ / ~®|0,2*dzdt, Vs > 0.
Qrp Qr

(3.3.31)

In the same manner, the global terms of 9%y and d;y can be estimated in the following

way:
T
51 / /Q ¢=259 (4(T — #))°| 02y 2dadt
L

<Cs? / / T —t))73*|z|? dxdt+Cs/ / ~|0,2|*dxdt (3.3.32)
QL QL

1/ / 0222 dxdt, Vs > 0.
Qr,
and

T
_1/ / —2s<p t))a]é?ty]?dmdt
Qr,

T T
gC’s/ / 2022 dadt + C's™ / / (t(T — 1))*|0sz|*dzdt, Vs > 0.
0 QL 0 QL
(3.3.33)
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Then, using (3.3.30)-(3.3.33)) in (3.3.32) we obtain This completes the proof of
Lemma 3.9 O

Remark 3.12 We point out that Lemma can be used to prove a boundary controlla-
bility for problems in the form

(Opup(z,t) — O2uy(z,t) =0, V(z,t) € Qp x (0,7),
(u(z,0),ur(0)) = (uo(x), urp), Vz € Qy,

up(t) = u(0,1), vt € (0,7), (3.3.34)
u(—Ly,t) = v(t), vVt e (0,7),
up(t) + 0,u(0,t) = 0, vt € (0,7).

with (ug,urp) € L*(Q1) X R the initial data and control v € L*(0,T) acts only on the
flux of solutions in the left-hand side of the domain x = —Ly. In fact, the adjoint of the
control problem of 18 the same as the one in but in this case we have to
prove the following observability inequality:

T
2 0 B+ 1er(OF < € [ 10,5(-Lu, 0
0

for some constant C' = C(Qg,T).

3.4 Convergence of the approximate system

In this section, the goal is to prove Theorem 2. To do this, we introduce the notions of
weak solutions in the sense of distributions for the problems (3.1.2)) and (3.1.4).

Let us start giving a remark on the approximate system. As we said before, some-
times parabolic equations with discontinuous diffusion coefficients can be viewed as a
transmission problem. This means that (3.1.2)) can be written in the following way:

(8tuf-f(x,t) — Pul(x,t) = xo(x)0E(z,t), V(x,t) € Qp x (0,7T),

Ol (z,t) — K20%uk (z,t) = 0, V(x,t) € Qr x (0,T),

uf(x,0) = ug r(z), Vo e Qp,

u (z,0) = ug p(x), Vr € Qp, (3.4.1)
ul (07, 1) = uf (07, 1), vVt € (0,7),

K20,up(0™,t) = d,ur (07, 1), vVt € (0,7),

ul(=Ly,t) = 0,ul(1,t) =0, vVt € (0,7T).

We point out that equation (|3 5 and (3.4.1} -6 describes the continuity of the solution
and the flux at x = 0.

Let K >0 and T > 0. We say that v € C°([0,T]; L*(2)) is a weak solution of (3.4.1])
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if for all 7 € [0, 7] the following inequality holds
/ / u (O + 0%y dxdt—/ / ub (O + K20%g)dxdt
Qr

+/Q (ul (2, )¢ (2, 7) — uo,r(2)¢r(x,0))dz +/Q (uls (2, 7)r(z, 7) — uo r(2)R(x,0))dr

R

+ /0 uIL(<07 t) (axwLa)v t) - Kzawa((L t))dt = /0 /QL XwUKdexdt7
(3.4.2)

for all ¥ = ¢ (z,t) € U(7), where

U(r) = {1 € C°(Q x [0,7]); v, ¥R are smooth and 11 (—Ly,t) = 0,r(1,t) = 0}.
On the other hand, we say that y € C°([0, T]; L*(Q)) is a weak solution of if

— /T/ yr(0ipr, + O2r)dxdt +/ (yo(z, 7)pr(x, 7) — yor(z)pr(x,0))dx

0 JQp Qr,

()0n(r) = 10r00) + [ yelt)(@r010.8) = le) (343)

[ [ sontsar+ [ gwono.nar
o Ja, 0
for all ¢ € ®(7) where

O(1) ={p € C°(QAx [0,T]); ¢r, is smooth , O, = 0 in Qg and ¢r(—Li,t) = 0,ér(1,t) = 0}

Now we have all the ingredients to start the proof of Theorem

Proof of Theorem[3.4. First, we recall that for each K > 0, (3.4.1]) admits a unique weak
solution

u™ € C°[0,T; L*(Q2)) N L*(0, T Hy (),

with ug € L?(Q) and v € L*(w x (0,T)). Moreover, the following energy estimate holds:

||“K||CO([0,T};L2(Q)) + ”O-KafBuKH%Q(QX(O,T)) <C (”uOH%?(Q) + HUKH%Q(UJX(O,T))) . (344)

for some positive constant C' = (,w,T) independent of K. Since v converges weakly
to v, we deduce that

(u™) g1 is uniformly bounded L>®(0,T; L*(Q)) N L*(0,T; H(Q)).

Then, there exists a subsequence (u®)g~1 (which denotes by the same index for sim-
plicity) such that (3.1.6) and (3.1.7) holds. Moreover, we can use classical compactness
results (see for instance [25],[41] and [89]) to deduce that

u® — u strongly in L*(Q x (0,7)).
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It remains to identify the limit problem for u. First, from (3.4.4)) it is easy to see that
102 || L2@mx 0y < CK 2,

and as K — +oo we see that d,ugr = 0 a.e. in Qg, i.e., ugp = ug(t) is a function of ¢ only.
Moreover, Trace Theorem implies that uy(—Lq,t) = 0 and ug(t) = ur(0,t), ¥t € (0,T).

Now we focus on the weak solution (3.4.2). In order to avoid the explicit dependence
of K, we choose 1) = ¢ with ¢ € ®(7). Then, we have

_/0 /QL ul (O, + 029y )dadt —/0 /QR ub ¢ (t)dxdt
+ [l ronte. )~ wosonle. 00+ or) [ ulfdo = 00) [ wonde (349
Q, Q

R Qr

+ /T up (0,6)0,¢1,(0,t)dt = /T/ YK o dadt.
0 o Ja,
Letting K — +oo in (3.4.5)), using the fact that ug(t) = ur(0,t) and |Qg| =1 we get
_ /OT/Q ur (91 —i—@i(ZﬁL)dxdt—i-/Q (u(z, 7)r(x,7) — uor(2)pp(x,0))dz
+un(r)on(r) - 6(0) [

Qr
:/ / XoV¢rdzdt,
o Jor

which is the definition of weak solution (3.4.3)) for (3.1.2)) with f = x,v, g =0, yoL = uoL
and yor = fQR uo,gpdz. This completes the proof of Theorem O

ug rd + /OT ur(0,t)(0x0L(0,t) — dR(t))dt

3.5 Plugging the limit control in the approximate sys-
tem

In this section we focus on the proof of Theorem In general terms, the proof is based
on the convergence result given in Theorem [3.2| together with regularity results of (3.1.9)

and (3.1.10).

Proof of Theorem[3.3, Let us define y = u — u€ in Q x [0, T)]. It is clear that y depends
on K and therefore we shall write y” instead of y, however in this case we avoid this
dependence for simplicity. Then, according to the equations (3.1.9) and (3.1.10) y is a
solution of

(Oyyr(z,t) — O2yp(2,t) = 0, V(z,t) € Qp x (0,7),
Oyr(z,t) — K20 yr(z,t) = 0,ur(0,t), Y(z,t) € Qp x (0,7T),
yr(z,0) =0, Vo € Qy,
yr(z,0) = uo p(z) — fQR uo,rdz, YV € Qpg, (3.5.1)
yr(0,t) = y.(0,7), vt € (0,7),
K?0,yr(0,t) = 02y (0,t) — d,ur(0,t), Vte (0,7),
(y(=L1,t) = Opyr(1,t) =0, vt e (0,7).
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Due to the regularity of v and u (see for instance Propositions and in Section
2 and [80] or [41]), and classical arguments we can write for all ¢ € (0,7)

ld 2 Ld 2 / K 2
—— t)]“d —— t)“d o, y(t)]“d
27t Jo, lyr(t)["dx + 24l o, lyr(t)|"dr + QU 0:y(t)|"dz

= — 0,ur(0,1) / yrdr — yr(0,t)0,ur(0,1).
Qr

Thus, for all 7 € [0,T] we have

T T
/ ly(7)2da <2 / / yrdotin (0, t)dzdt + 2 / (0, )9,z (0, £)dt
Qr 0 Qr, 0

(3.5.2)
+/ [uo.r — o g|*dz.
Qr
Now, by (3.1.6) we choose K; > 1 such that for all K > K, we have
T 2
/ /ywdwdt’ < 3 vYw € L*(Q x (0,7)). (3.5.3)
o Ja

Moreover, by Trace Theorem and the strong convergence of (y)x~1 of we choose Ky > 1
such that for all K > K, we get

T 2
/ y((),t)zdt’ < %, Vz € L*0,T). (3.5.4)
0

Then, applying the inequalities (3.1.11), (3.5.2)) and (3.5.3), choosing 7 = T and by
using the fact that u(7T) = 0 in Q we get

||UK('7T)||L2(Qx(o,T)) <e VK > K,

with Ky = max{K7, K»}. This completes the proof of Theorem [3.3] O
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Chapter 4

Controllability of 1-D heat equation
with discontinuous diffusion coefficients

In this chapter, we will study the null-controllability of the heat equation with Lipschitz
diffusion coefficient and mixed boundary conditions. In this case, we consider a boundary
control acting in the left-hand side of the domain. This will be done by using a suit-
able Carleman estimate, which implies the observability inequality for the adjoint system
asociated to the original problem.

4.1 Introduction, setting and main result

Let Q = (—Ly, Ly) be an open interval of R. Throughout this chapter, we consider the
following heat equation with mixed boundary conditions:

Owu(z,t) — 0y (o(x)0u(x,t) =0, Y(x,t) € Qx(0,7T),
u(z,0) = u’(x), Vo € €,

u(—Ly,t) = v(t), vVt € (0,7),
Opu(La,t) =0, vVt € (0,7).

(4.1.1)

Here, the piecewise diffusion coefficient 0 = o(x) is defined by
2 Vx e (—Ly,0),

where 01,05 > 0. Moreover, the initial datum «° belongs in L?*() is given and v €
L*(0,T) is the boundary control. Tt is well-known that, under these assumptions, the
problem is well-posed in the Hadamard’s sense. As we said before, we are interested
in the problem of null-controllability of (4.1.1). In other words, we focus in the following
question: given u° € L*(Q) in and T > 0, can we find a boundary control v €
L*(0,T) such that the associated solution u satisfy

u(z,T) =0, VreQ?
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It is well-known that the question above is equivalent to prove the observability in-
equality for the adjoint system of (4.1.1). To be more precise, let w be the solution
of

Ow(x,t) + Op(o(x)dpw(z,t)) =0, V(z,t) € Qx(0,7),

_ T
w(T) = w', Vo €, (41.2)
w(—Li,t) =0, vt € (0,7),
dyw (L, t) = 0, vt € (0,7).

Then, the observability property of (4.1.2)) is the following: can we find a constant
Cobs > 0 such that every solution w of (4.1.2)) satisfies

T
ez, 0|22 < Cots / Oy0(— Ly 1) Pdt?
0

The main ingredient in the proof of the observability inequality is a suitable Carleman
estimate where the observation is on the flux of the left-hand side of the domain. More
precisely, we will get an estimate of the following form

/ /p\z| dxdt+s/ /,u\@ 2| dxdt
<C/ /1/|8ti8 (00,2)| d:vdt+05/ pu(t, —L1)|0,2(t, —Ly)|?dt,
0

for some functions p, u and v depending on space and time.

Controllability issues of parabolic equations have been intensely studied by several au-
thors since the 70’s. For this reason, we will mention some of the most important results
concerning scalar parabolic equations with smooths coefficients. In [42] and [43] H.O.
Fattorini and D.L. Russel obtained for first time results about null boundary controlla-
bility for the one dimensional heat equation using the so-called method of moments. In
contrast, in [88] the author proved a null controllability result for N-dimensional heat
equation with a boundary control supported on the whole boundary of the domain. To
be more specific, he proved that the null controllability of wave equation at a positive
time implies the null controllability of the heat equation at any positive time.

In 1995, the null-controllability of the heat equation for high-dimensional case was
solved by G. Lebeau and L. Robbiano [78] using a spectral inequality which was proved
using local Carleman estimates. On the other hand, in 1996 the same problem was solved
by A. Fursikov and O. Imanuvilov in [50]. Besides, the authors consider a general parabolic
operator. This result was obtained by proving Carleman estimate for a general parabolic
equation and for an arbitrary internal observation region.

The literature is also rich about controllability of other types of parabolic equations
like Stokes or Navier-Stokes. For a deeper discussion, see for instance the survey of E.
Fernandez-Cara and S. Guerrero [48] (see also [§] and the references given there).

Now we reduce our scope to controllability issues for parabolic problems in the case
of non-smooth coefficients. In 2002, E. Fernandez-Cara and E. Zuazua in [49] proved a
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controllability result for 1 — D linear parabolic equations for coefficients with bounded
variations using the Russel’s method (see [88]).

In [39] the authors proved a Carleman estimate and consequently a null controllability
result for a semilinear heat equation in the case where the control is supported in the
region where the diffusion coefficient is the ’lowest’. The key is the construction of a
non-smooth weight function satisfying the same transmission condition as the solution.

In [20], the authors achieve a Carleman estimate for the operators of the form 0; +
0.(00;) without any restriction on the observation region, but this strategy does not
extend to higher-dimensional cases. In the one-dimensional case, this monotonicity as-
sumption of [39] on the diffusion coefficient was relaxed in [20] and [19] introducing more
requirements on the non-smooth weight function. Also, they achieve a Carleman esti-
mate with boundary observation in the Dirichlet case and finite jumps on the diffusion
coefficient on the domain.

In [74], J. Le Rousseau derived a Carleman estimate for the problem above where
the diffusion coefficient ¢ is a bounded variation function. The proofs relies in the idea
of approximate the diffusion coefficient o of 0, + 0,(00,) by a sequence of piecewise
functions o. and study the controllability properties of each problem with 0, + 9,(0.0)
and later pass to the limit. The main issue in this limiting process is to keep both the
weight functions and constants in the Carleman estimate under control. They also obtain
Carleman estimates in the case of boundary observation considering Dirichlet boundary
conditions for bounded variation diffusion coefficients.

On the other hand, in [76] the authors obtain a Carleman estimate for an operator of
the type V - (¢(x)Vz) without any isotropy assumption. Specifically, in this article ¢ is a
symmetric positive-definite matrix with a jump discontinuity across a smooth hypersur-
face. Also, they give conditions on the Carleman weight functions that are rather simple
to handle, and they prove that these functions are sharp.

Recently, in [82] the authors achieve a null controllability result for one-dimensional
parabolic equation with generalized Robin-Neumann conditions at both extremities, with
one boundary control. They following the flatness approach. Also, they obtain some
numerical results on the reconstruction of the control for the problem above.

Our next task is formulate the main result of this work. To do this, we will introduce
some notation. Let A : D(A) C L*(Q) — L*(2) be the operator formally defined by
A=0,(00,),
and its domain of A is given by
D(A)={ue H(Q); 0d,u € H'(Q), u(—L;) =0} .

Throught this section, we consider the following system:

Opz(x,t) — Oy (0(2)0z2(2, 1)) = f(x,t), V(x,t) € Qx(0,7T),

z(z,0) = 2%(x), Va € (), (41.3)
Z(—Ll,t) = O, Vit € (07T)7 .
8xZ(L2,t> = O, vVt € (O,T)
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Suppose that f € L*(Q x (0,7)) and 2° € L*(Q). It is clear that, under these as-
sumptions, the problem (4.1.3)) is well-posed. Moreover, due to the classical semigroup
approach, the solution z of (4.1.3)) satisfies

z(-,t) € D(A), for all t € (0,T). (4.1.4)
Before going further, it is convenient to write the system (4 in terms of each parts
of the domain separated by the interface located in {0}. To be more specific, let us

Q; = (—L1,0) and Qy = (0, Ly). Here and consequently, for a spatial function h defined
on the domain €2, h; stands its restriction to the subdomains €;, for each j =1, 2.

Thus, with this notation, system (4.1.3) can be written as follows:

(0,21 (2, t) — 01(2)20221 (2, 1) = fu(x,t), Y(z,t) € Q x (0,T),
Orza(z,t) — 09(2)20229(, ) = folx,t), V(x,t) € Qy x (0,T),

z1(z,0) = 29(2), Vo € O,
29(z,0) = 29(x), Vo € Qy,
2(0,1) = #,(0, 1), vt € (0,7), (4.1.5)
0350,22(0,1) = 039,21(0, 1), vVt € (0,7),
Zl(—Ll,t> = O, YVt € (O,T),
(99;22([/2, t) = O, Vt € (0, T),
kﬁmzl(—Ll,t) == gN(t), Vt € (07T)

The boundary conditions (4.1.5)3 and (4.1.5))4 are the transmission conditions of the
system. Let us emphasize that these conditions arise due to the regularity of the solution
zin (4.1.4).

Let us introduce the weight functions that we will use for state the Carleman inequality
for systems like (4.1.3). For each j = 1,2, we consider the positive functions ¢; = ¢;(x) €
C?*(Q;,R) such that ¢1(0) = ¢2(0) and

{mj < 0;¢5(x) < Mj, i Qy, (4.1.6)

T § —O']¢;/([B) ~ Rj, in Qj,

for some positive constants m;, M;, r; and R; with My < m;. Note that the assumptions

in (£1.6) imply:
my = Ulﬁb,l(o)a M, = 01¢1(—L1)/, mo = U2¢2(L2)/, My = 02%(0)/-

The Figure 2.1 sketch a prototype of functions ¢, and ¢, that we will use:
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T30

~L, of L.

Figure 4.1: Sketch of the jump of the derivative of functions ¢; and ¢o

For instance, note that the following class of functions:

(My —mi) 5 (My —mg) , M
— ar - ) = T Qar - - ) S R7
o x°+ p r+a, ¢ox) a0, 7+ poy r4+a, a

o1 (z) = —
satisfy the above assumptions, for a € R sufficiently large such that ¢; and ¢, are positive.

Additionally, for a parameter o« > 0 and j = 1,2, let us denote by ¢; the following
functions:

i(x,t) =0%(t)p;(z), V(x,t) € Q; x(0,T), (4.1.7)

where 0(t) = t~}(T — t)~'. For simplicity of notation, we ignore the dependence of a and
o; on ;.

We can now formulate the Carleman estimate for 1-D heat equation:

Theorem 4.1 Consider the functions p; in (4.1.7) for o > 2. Moreover, assume that
3a > 203, with B > 1. Then, there exist two positive constants C' and s, such that for all
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s > Sy, the following inequality holds:

T T
53/ / e” 252130 21 |Pdadt + 53/ / e~ 250203078 | o |2 dadt
Ql Q2
—i—s/ / e 25010°7P |0, 2| dxdt+s/ / e~ 250209780, 2o [*dvdt
Q1 Q2

+ s / e~ 201 0)g3a=B| 1 (t,0)%dt + s° / e~ 2sealbla)gda=b| . (¢ L,)|2dt

0 0

T T
SC’/ / e 2910710,z + 02022 |Pdadt + C’/ / e~ 25220710, 2y + 0202 20| dadt
Ql 0 QQ
T
+ CS/ 6_28¢1(t7_L1)(9a_’8|aIZl(—L1)|2dt,
0

for each function z; € L*(Q; x (0,T)) such that Oyz; + 0303z € L*(Q; x (0,T)), for each
j=1,2, and z1(—Lq,t) = 0y22(La,t) =0 for each t € (O T).

As a consequence of Theorem we have the following:

Corollary 4.2 Let (uy,us) be the solution of the following system

Oy (z,t) — 020%uy(z,t) =0, V(x,t) € Oy x (0,7),

Opug(z,t) — 030%uy(x,t) =0, V(x,t) € Qy x (0,7,

up(x,0) = ud(x), Vo € O, (4.1.8)
us(z,0) = u(x), Va € Q,

uy (=L, t) = v(t), vVt e (0,7),

| 0,us(La, 1) = 0, Vit € (0,7),

where ui € L*(Q;), for each j = 1,2 and v € L*(0,T). Then, system ([@.1.8) is null-
controllable at time T > 0.

We will prove the Corollary [4.2] at the end of this chapter.

4.2 Proof of the Theorem

4.2.1 Setting

For simplicity, we prove the case where the operator involve is 0,z; — 070%2; for each
j = 1,2. The other case is completely analogous. First, we start reformulating our
parabolic problem (4.1.5). This will be done into three steps:

e Step 1: Localization in time

Let us define 7 as a smooth function compactly supported in | — 1, 1] with n(0) = 1.
For >0, A > 1 and ¢ty € (0,7T), we define the function 7, as follows:
At — o)

m) . Vte (0,7, (4.2.1)

Mo () =1 (
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and shorten notation, we write 7, instead of 73 5 +,. Moreover, for each j = 1,2, we define
Zito (4, 1) = 1o (1) 25 (2, 8) - V(2 t) € € x (0,T),

where (21, 2) is the solution of system (4.1.5). Then, the new variables (21 4,, 224,) solve
the following problem:

(8t21,t0 — 03022140 = Mo 1 + Osmie21,  V(x,t) € Q1 % (0,7),
81?227150 - Ugaazc'z?,to = Nt f2 + atnt()ZZv V(% t) € Qs X (0, T),
22,40(0,1) = 21,4,(0,1), vt € (0,7),
020,22.4,(0,1) = 020,21,4,(0, 1), vt € (0,7),
2140(— L1, 1) =0, vt € (0,7,

Or 224y (La,t) = 0, vt € (0,7),
02140 (=L, 1) = gng (1), vt € (0,7),

\

where gnt, = M, 2(t, —L1), for each ¢ € (0,7T) is the observation of our new system.

Notice that the form of n, in (4.2.1)) does not play an important role here. Besides, we
have defined in this section for indicate the dependence of ¢, of the support of z;,, and

2240+
e Step 2: Conjugation

For a > 0, we consider the weight functions defined in (4.1.7). For each j = 1,2, let
us denote by Z; the following function:

Z; =€ iz, =e iz, Y(x,t) € Q; x(0,7),

where s is the Carleman parameter associated to the weight functions (4.1.7). Once again,
for abbreviation, we write Z; instead of Z;;,. Then the unknown variables (Z;, Z,) solve
the following problem:

(0,21 — 02(0, + s0°(1)0,61)2Z1 = g1, V(z,t) € Qy x (0,7T),

0y Zo — 05(0y + 80%(t)0ph2)? Zy = g, V(x,t) € Qy x (0,T),
Z5(0,t) = Z1(0, 1), vt e (0,7),
050, 75(0,1) = 020, 71(0,t) + (myoy — Maos)s02(t) Z5(0,t), Vt € (0,T),
Zi(—Ly,t) =0, vt € (0,7),
00 Z5(La,t) = —mooy 0%(t)s Zy(La, t), vt € (0,7),

| 0:Z1(— L1, t) = GN(1), vVt e (0,7).

(4.2.2)
Here, the function Gy is defined by Gy = e=*#1(=L1tl gy (#), in (0,T). Moreover, for
each j = 1,2, the function g; is given by

g; = €_Sc'0j77t0fj + e_s“ojamtozj + a@g‘_l(t)@ﬁ(t)%Zj, V(ﬂj, t) € Qj X (O, T) (423)
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e Step 3: Freeze in time

Now, our next task is to avoid the dependence of ¢ on the coefﬁcients of the right-hand

side of (4.2.2 1 and ( 2 and also on the boundary conditions 4 and ( -6

To simplify our notation, for ¢y fixed, we denote by s, the following expression:

so = $0%(tp). (4.2.4)

Then, we rewrite the system (4.2.2)) as follows:

(BtZl — O'%(@a; + &Cgblso)zZl = Fl, V(I,t) S Ql X (O,T),
atZQ — 03(&5 + 333@30)222 = FQ, V(l’,t) € QQ X (O, T),
Zg(O,t) - Zl<0 t) Vt S (0,T)7
Ugﬁng(O,t) == 018 Zl(O t) (m101 — MQO'Q)S()ZQ(O,t) + H(t), Vt € (O,T),

Zi(—Ly,t) =0, vVt € (0,7),
0, ZQ(LQ, ) = —m202 SQZQ(LQ, ) + J(t), vVt € (O,T),
(021 (~10,1) = G (1), vi e (0.7),
(4.2.5)
where the residual functions H and J are defined by
H(t) :(m101 — MQUQ)(ea(t) — ea(to))SZQ<O, t), te (0, T),
J(t) =(0%(to) — 0“(t))maoy s Z5(Lo,t), t € (0,7).
Furthermore, the source term Fj in (4.2.5)) is given by
By = it R0+ o 0000, + 200~ 0007

+07(s0°(t) — 50)0;0;2; + 05(s°0°(t) — 50)|0.651"Z

for each (z,t) € Q; x (0,T) and j =1, 2.

Let us emphasize that in this step, several residual functions of different nature appears,
see the definition of H, J and Fj for instance. At the moment, we will treat these ones as
a source terms and later we will choose the parameters «, 3, A and s in order to eliminate
them in the classical spirit of Carleman estimates.

As we said before, the proof of the main result is is deduced by the following:

Lemma 4.3 There ezists a positive constant Cy = Cy(c, B, my, My, mo, Mo, 11,72, 01, 02)
independent of s such that each solution (Zy,Z>) of [{4.2.5) with F; € L*(€; x (0,T)),
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j=1,2, Gy € L*(0,T) and H,J € L*(0,T) satisfies
T T T
5 / ZiPdwdt + 58 / \Zo[2dwdt + 5o / 10,7, [Pzt
0 Ql 0 QQ 0 Q1

T T T
+30/ / |axZQ|2da:dt+sE;/ |ZQ(0,t)|2dt+s§/ | Zy (Lo, t)|dt
0 Je 0 0 (4.2.9)

T T T
SOl/ ’F1|2dl’dt—|—01/ |F2|2d$dt+0180/ |GN|2dt
0 Q1 0 QQ 0
T T
+0130/ yHy2dt+Clso/ |J|2dt,
0 0

for all s > s,.

We will give the proof of the Lemma [.3]later. Now, with this Lemma at hand, we can
conclude the proof of Theorem [4.1}

4.2.2 End of the proof of Theorem 4.1

Our main goal is eliminate the residual terms appeared in Lemma 1 for each solution of
the system (4.2.5)). For an easier comprehension, the rest of the proof of Theorem 4.1|falls
naturally into three parts:

e Step 1: First residual terms: H and J
Proposition 4.4 We assume the same hypotheses as Lemmal[{.3. Additionally, suppose

that 28 + o > 2. Then, there exist a positive constant A, such that for every X > \,, the
following inequality holds:

T T 1 T 1 T
0150/ ‘H‘Zdt + 0150/ ‘J’th S 588/ |Z2<O,t)‘2dt + 583/ ’ZQ(LQ, t)|2dt,
0 0 0 0
(4.2.10)

where Cy 1is the constant associated to Lemma[{.3

Proof. Our proof starts with the observation that for each ¢t € supp(m,) satisfies the
following:

[t —to] < A Hto(T — t))”. (4.2.11)
Then, for each ¢ € supp(n,) we have
10°(t) — 0%(to)] < C(0%(to))'|t — to] < CAT to(T — to)|P 71, (4.2.12)

for some constant C > 0. Then, the L?*(0, T)-norm of H can be bounded as follows:

T T
Ciso / 2t < Clto(T — to)[2P-2-2)"253 / 1250, ) 2dt. (4.2.13)
0 0
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Furthermore, notice that if we choose A, such that

23+2a—2
< A2, (4.2.14)

2

QC’Z

where C' is the constant appear in (4.2.13)), it is evident that

1
Clto(T — to)|?P22N 2 < 5\tO(T —to)| 7%, VA > .. (4.2.15)

Thus, combining (4.2.13]) with (4.2.15]), we obtain

T T
1
0150/ |H|2dt < 553/ 1250, ) 2dt. (4.2.16)
0 0

Analogously, straightforward computations show that

T T
Clso / |J’2dt S C ’tU(T — to)‘Qﬂ_a_2 )\253/ ‘ZQ(LZ’ t)‘zdt (4217)
0 0

Then, if we choose A, such that

284202

2
d < \2 (4.2.18)

QCI

where the constant C' is as the right-hand side of (4.2.17)), we deduce that
1
Clto(T — to)|P 2 A2 < S[to(T — to)| 7%, (4.2.19)

for each A > \,. Hence, we have the following upper-bound for L?*(0,T)—norm of J:

T 1. T
Clso/ | J[?dt < 533/ | Z5(0,t)|*dt. (4.2.20)
0 0

Consequently, we add the inequalities (4.2.16)) and (4.2.20]), with A\, the maximum value

which satisfies (4.2.14)) and (4.2.18]) and the proof of Proposition is complete. m

Applying the Proposition 1 into (4.2.9), we see that
T T T
s / |7, Pdxdt + sg/ | Zy|Pdxdt + 50/ 0,2, |*dxdt
0 (951 0 (92 0 1951
T T T
4 50/ / 10, 2o dudt + sg/ 1750, ) [2dt + sg/ Zo(Lo t)2dt (4.2.21)
0o Ja, 0 0
T T T
SCQ/ |F1|2dﬂfdt+02/ |F2|2d$dt+0280/ |GN|2dt,
0 (951 0 Qo 0

for some constant Cy > 0 independent of s and for every A\ > A,.
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e Step 2: Residual terms of F}

Now, we are interested in eliminate the residual terms of F} (and F; respectively) in
(4.2.8)) depending on Z; and 0,7 (and Zy and 0,725 respectively). First, we rewrite the
terms of F} as follows:

Fy = i + K,

where f] and K is defined by

— 5P —5¢;
Ji =€y fi + e 0y 25,
and

Kj :a39a_10t0¢ij + 032 (0204@) - 02a(t0)) |8x¢j|2322j + O'?(ea(t) - Ha(to))ﬁggbszj
— 2(6%(t) — 6°(t))50: Z,;

in (0,7) x Q;. We recall that 7, is defined as follows:

_ A(t — to)
it =1 (=)

where the support of the function n belongs in | — 1, 1[ and n(0) = 1.

Proposition 4.5 Let ty € (0,T) fized and suppose that f > 1 in the definition of ny, in
(4.2.1). Then, there exist three positive constants c1, ¢ and A, independent of ty such
that

HT — 1)
< — < A> A

Proof. By definition of 7,, we can write each term of its support as follows:
t=to+a\"HJ(T —ty)®, with —1<a<1.

Then, we have

KT -1
wto <t> ._to(T _ to)
=1+ a4 N (T —ty)*! (T — 2ty — aXN" MY (T — t0)5> : (4.2.22)

for each t lying in the support of ¢;,.We divide the proof into four cases:

e Case 1: Suppose that 0 < tg < T/2 and a > 0. In this case, notice that

ey (1) 21 = *A7%(to(T — t9))*" ™
T2(28-1)

-2
2L = A e

It is clear that if we choose A, such that



it is clear that
» T226-1)

L= A

> A=A

1
2 Y
Therefore, from the estimates above, we can assert that
1
Wy, (1) > 37 VA > A
On the other hand,

Ui (1) <1+ a0 (T — to)°!

B—1
<1+ A1 <T£) .

Therefore, we obtain the following bounds for ,:

T\
<ty (t) < 1+ al (Z) ; (4.2.23)

DN | —

where A, does not depend on .

e Case 2: Suppose that 0 < tg < T/2 and a < 0. For simplicity, we will use the
temporary notation b = —a that is, b > 0. Then, (4.2.22)) can be rewritten as follows:

Yio (1) = 1 — DATHS (T — )P (T — 2o + DATHY(T — t0)5> .

It is easy to see that

wt()(t) < L.
On the other hand,
T2(8-1) . 2T2(2B—1) L

Straightforward computations show that if we choose A, such that
3 T2,8—1
Ax 2 (2 + 5) DR

T2(8-1) . 2T2(25*1)

1
— —2

we can assert that

Hence, we have

<Y (t) <1, VA=A (4.2.24)

N | —

e Case 3: Suppose that T/2 <ty < T and a > 0. Then, it is easy to see that

Py (1) < 1.
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On the other hand, a simple computation shows that if we choose A, fullfilling

5T2,8—1
M2 g
we obtain
2 |B-1 T2 2p-1 1
Py () > 1 — (2tg — T)a\ ' |— —a* | — > A> A\
0
4 4 2
Thus, we have
1
5 S wto(t) S 17 )\ 2 )\* (4225)

e Case 4: Suppose that T/2 < t; < T and a < 0. Once again, we set b = —a. In this
case, we note that

Yo () =L = DAHEHT = 1) (T = 210 + WA (T — 1))
<1+ b(2tg — T)N T (T — 1)
<1+ 227pAjiT?L
Furthermore, it is clear that if we choose A, such that
A > 2% /opT?
we obtain

1 — pPNT292 48462 > A >\,

l\DI»—

Therefore,

1
= < () S 1227201 WA > A (4.2.26)

\)

From (4.2.23)), (4.2.24)), (4.2.25) and (4.2.26]), we conclude the proof of the Proposition
4.5 O

Proposition 4.6 We Suppose the same hypotheses of Lemma 1. Additionally, let o and
B such that o > 2 and 20 — o > 2. Then, for each j = 1,2, there exist two positive
constants A\, and s, such that for every A\ > X\, and s > s, we have

T 1 T 1 T
CQ/ / |K;|2dzdt < —sg/ / | Z;|?dxdt + —so/ / 0.2, dzdt, j=1,2,
0 /9 2 0 JO 2 0o Jo

where Cy is the constant previously defined in (4.2.21]).

Proof. By definition of K, we have

T
02 / / ‘KJPdl'dt
0 Q;

<O(to(T — to))~2e+D //|Z|dasdt+05/ / 10%(t) — 02(t)|?| Z; P ddt

//wa —0°(ty)] |Z|dmdt+03//|9“ ) — 0°(to) 210, Z; 2 ddt.

(4.2.27)

72



Let us estimate each term of the right-hand side of the inequality above. First, notice
that if we choose s, such that

a—2

< s., (4.2.28)

2

4C5 | —

the following inequality holds:

1
Cg|t0(T - t0)|_2(a+1) S thQ(T — t0)|_3a8, s> Sk (4229)
This implies,

Cylto(T — to)| 2@ Vs //|Z|d:pdt<—so/ / |Z;|*dxdt, s> s.. (4.2.30)

On the other hand, we note that for each ¢ € supp(rn,,), we have
0%%(1) — 67*(to)| < CO**(t0)D,0(to)|t — to| < Clto(T — to)[P~2 AT, (4.2.31)

for some constant C' > 0. Then, notice that for each ¢t € supp(n,,), we can assert that

CQS / / ’9204 9204 )‘2’2]‘2dl‘dt

T (4.2.32)
<COto(T — to)|P~ 172\ 2s1 / / | Z;|2ddt.
o Ja;
If we choose the parameters s, and A, such that

T2 28—a—2

4C | — < Mt (4.2.33)
where the constant C' > 0 is given in (4.2.32)), it is easy to check that
1

Clto(T — to)|?P~7 2N 2" < 133(t0)(T — )|, A > A, 8> s, (4.2.34)

Thus, combining (4.2.32)) and (4.2.34)), the first term of the right-hand side of (4.2.27))
can be bounded as follows:

023/ / 162 (t) — 6> (to)|? |Z\dxdt<—so/ / | Z;|*dxdt. (4.2.35)

Now we deal with the second term of the right-hand side of (4.2.27)). Using the estimate

of 6% in (4.2.12]), we see that

/ / 10°(t) — 0°(to) |*|Z;)2dadt < Clto(T — to)|?P 7272 \72 2/ / | Z;|?dxdt.

(4.2.36)
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If we choose the parameters A\, and s, such that

2B+a—2

T2
< Ns,, (4.2.37)

40 | —
04

where C' is the constant appeared in (4.2.36), it is easy to seen that

1 T
C|t0(T - t0)|2ﬁ_a_2 S Z|t0<T - t0)|_3a83/ / |Z]|2dl’dt, A Z /\*, S 2 Sk. (4238)
0 Q;

Substituting (4.2.38)) into (4.2.36)) yields
Cs? / / |6°(t) (to)|?|Z;?dxdt < —30/ / | Z; | dxdt. (4.2.39)

Once again, applying the estimate (4.2.12), the third term of the right-hand side of
(4.2.27)) can be bounded as follows:

/ / 0% (t) — 0% (t0)|?|0.Z;|Pdadt < Olto(T — to)|?P 72272172 2/ / 0, Z;|*dxdt.

(4.2.40)

It is inmediate that if we choose A, and s, satisfying

T2 28—a—2
20 |— < AZs;t, (4.2.41)
it follows that
2—2a—2 1 —«
Clto(T — to)| < §|t0(T —to)|7Y, VA=A, Vs> s, (4.2.42)
Substituting (4.2.42)) into (4.2.40), we get
T 1 T
82/ / |9a(t) - Qa(t0)|2|8$Z]|2d$dt S —50/ / |8$Z]|2dl‘dt (4243)
0 Qj 2 0 Qj

Finally, we add the inequalities (4.2.35)), (4.2.39)) and (4.2.43), and the proof of the
Proposition [4.6] is complete. O

Thus, applying the Proposition 4.4 and 4.6 into (4.2.9)), we conclude that

T T T
53/ / | Z1|2dwdt + 53/ / | Zy|*dadt + 50/ / 0,71 |*dxdt
0 J 0 JQ 0 J

T
+ so / 0, Zs|*dxdt (4.2.44)
0 (9

T T T
SC/ |f1|2dl’dt + C/ |f2’2dl’dt + CSO / ‘GN|2dt,
0 (951 0 Qo 0
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for some constant C' > 0 independent of A and s.
e Step 3: Last residual terms depending on z;, j = 1,2

Our next task is to deal with the residual terms depending on z; from fj, 7=1,2.In
order to do that, we introduce the following functions:

al®) = [ ®F o, ()= [ o 0l

In the reminder of this step, we need the following technical result:

Proposition 4.7 There exist positive constants cs, ¢y, C5,c6 and A, such that, for all t €
supp(n, )

AT () <wo(t) < elAHOP(L), YA > A, (4.2.45)
and

csA0P () < wi(t) < csM@P(t), VA > A, (4.2.46)

Proof. By definition,

2

= [ oy )

—| dt 4.2.47
dt[) 0 ( )

where ¢ is defined by

- Mt —to)
to (T —t0)”

A direct compute show that

dt _A( 1 B(T—Qto)(t—to))_

o~ "\ (oI —t0)P | (to(T = to))P

Since every t € supp(n,) satisfy
it —to] <A (to(T —to))”,

we can assert that

dt
dto

A < A
(to(T —t0))® = (to(T —t9))?

Taking A, large enough and using the Proposition [£.5 we have for each ¢ € supp(y,)

5T§‘ + AT.

Cl)\(t(T — to))_ﬁ S ‘C;d—tto

< eANHT =), A> A\,
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Consequently, we have for all ¢ € supp(7y,)
esATHHT —1)° < wo(t) < el T —1)P, X >\, t € supp(ny,).
This completes the proof of the first inequality. To proof the other one, notice that
A -
Oy, (1) = ————0m(1),
tT/tO( ) (to(T— tO))B tn( )

where ¢ is defined as before. Then,
-1

dt
diy.

T
() =3 [ 62T - PlomdP |
0 0

The rest of the proof runs as before. Thus, the proof of the Proposition [4.7]is complete. [

Now, we integrate in to on (0,7) in (4.2.44) and by definition of Z;, Zy and Gy, we
obtain

T T T T
/ /0 /Q33623@1\77t021]2dxdtdt0+/0 /0 /§253625¢2|7yt022|2dxdtdt0
0 1 2
T T T T
—I—/ / / 806_2&‘01|77t08m21|2d1'dtdt0+/ / / s0e” 22| ny, O, 20 |2 dadtdty
0 0 95 0 0 Qo

T T T T
+/ / 5362S‘P(O’t)]ntozl(0,t)|2dtdt0+/ / spe 2Lt | o0 (Lo, t)2dtdty
o Jo o Jo

T T 3 T T R
gC’/ / / e~ 251 f1|*dxdtdty + C/ / / e~ 2522 | fo|* dadtdty
0 0 Q1 0 0 Qo

T T
+ C/ / 806_28('01(_111@|’I’]t02!1(—L1, 7f)|2dtdt07
0 0

T T R
IR
0 0 Qj
T T T T
SC/ / / 6_2Swj|nt0|2|fj|2d:pdtdto + C/ / / 6—284,0]'|at,r]t0|2|zj‘2dxdtdt0
0 0 Q; 0 0 Q0

Applying Fubini’s Theorem and the results of Proposition [4.7, we deduce that

T T
)\_133/ / 6_25¢193“_6|z1|2d:17dt—|—>\_183/ / e~ 250203078 | o |2 dadt
Ql QZ
/ / e 2107819, 21 Pdwdt + N7 / / e~ 2520789, 2o |* ddt
Q1 QQ

—251(t,0) 9304 ﬂ’z (t O)’th—l—)\ 1 3/ —2sp2(t,L2) g3a— 5’22(75’ Lg)‘th
0

T
<O\~ 1/ / e 22107 1 Pdadt + X1 / / e”22207P £, |2 dadt
0 Q4 Qo

T
+ C'/\/ / e” 2108 | 2 |2 dxdt + C’)\/ / e~ 25208 | 2o |* ddt
0 Ql 0 Q2

T

+CX s [ e ElIgeB) g2t
0

where
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or equivalently

T T
53/ / 6233"1930‘5|zl\2dxdt+s3/ / e~ 2502037 | 2y |2 dadt
0 Ql 0 Q2

T T
+ 8/ / 6_25W10°‘_5|8x21|2dxdt + s/ / 6_259"200‘_ﬁ|8xz2|2dxdt
0 Q1 0 Q2
T

T
+5° / e~ 201009328 21 (0, 1) |*dt + s° / e~ 2sealla)gda=b| . (L, t)|2dt
TO . 0
§C’3/ / 6253"19’3]f1\2dxdt+03/ / e~20207P| fo| 2dadt
0 Ql 0 Q2
T T
+ C3\? / / e 725108 2 | dwdt + Cs)\? / / e~ 252208 2o |*dadt
0 Ql 0 Q2

T
—|—C'33/ e’Qs@l(’Ll)H‘l’B]gNth,
0

To eliminate the terms of z; and 25 on the right-hand side of the inequality above, we will
use the following result:

Proposition 4.8 Suppose that o > 2 and 3a > 23. Then, there exists two positive
constants s, and A, such that for all s > s, and A > X\, we have

T T
1. .
03)\2/ / e 729108 2|2 dxdt < —33/ / e 251 93P | 2. 2 ddt, (4.2.48)
0 Q; 2 0 Q;
for each j =1,2.

Finally, using the estimates (|4.2.48]) we obtain

T T
53 / / e~ 250103078 2 |Pdadt 4 s° / / e 201 3B | 2y |2 dadt
0 Ql 0 QQ
T T
+ s/ / e 25107019, 21 |*dwdt + s/ / e™ 25220789, 2o [P dadt
0 Q1 0 QQ
T

T
+8° / e~ 2010038 (0, ¢)]2dt + s° / e~ 2oLt g3a=b . (Lo ) [2dt
0

0
T T
gC/ / 625(’019’8|f1‘2d1'dt+0/ / e 2502078 | fo|2dadt
0 Q1 0 Q2
T

n CS/ €—2s<p1(L17t)Qa_B|Zl(_Lla t)|2dt
0

This completes the proof of Theorem

4.3 Proof of Lemma

In this section, we devote to prove the Lemma The proof of this one falls naturally
into two parts:
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e The first one concerns in the L? estimates for the global terms of Z; and Zs, the local
term of Z; at the interface and the local term of Z; at the right-hand side of the domain:

T T T T
sg/ yzlde:cstg/ yzzdedesg/ |Zl(0,t)]2dt+sg/ \Zo(Lo, ) 2dt
0 Q1 0 Qo 0 0
T T T
SC/ |F1’2dl'dt+0/ |F2|2d$dt+080/ |GN|2dt
0 (951 0 Qo 0

T T
+050/ \H\2dt+030/ T2t
0 0
(4.3.1)

where C' is a positive constant independent of ¢ty and s > s*.

e The second part consists in prove a similar estimate for the L*((0,7) x §;)-norm of the
spatial derivatives of Z; for j = 1,2:

T T
so/ |8xZ1|2da:dt+so/ 0, Zs|*dxdt
0 Ql 0 QZ
T T T T
SC’/ |F1|2dxdt+C'/ |F2|2dxdt+C’50/ |GN|2dt—i-Cso/ |H|*dt (4.3.2)
o Jou 0 Joo 0 0

T
+ C'sg / | J|2dt.
0

Clearly, if we add the estimates (4.3.1]) and (4.3.2)) the proof of the Lemma [£.3]is complete.

Then, we start proving the inequality (4.3.1]). Before going further, let us bring a brief
orientation of the proof. First, we will use the Fourier transform in time in order to get
good estimates in frequency domain. However, it is not evident that these estimates are
uniform on the frequency parameter in the Fourier domain. In order to prove that, we
divide in some frequency ranges to analyze our estimates saying, Low, intermediate and
high frequencies. That is, this phenomenon depends where the information comes from
it.

For a function h € L*(R), we introduce the partial Fourier transform in time defined
by

h(r) = F(h)(r) = /R h(t)e~ " dt. (4.3.3)

where ¢ is the imaginary unit. Now, we extend the variables Z; and Z; of system (4.2.5)
by zero, and we do the same for the functions H, J and F} and F5.
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Thus, applying the Fourier transform (4.3.3)) to the system (4.2.5)), we obtain

( (010: + 0100150 + 7) (010, + 01020150 — 7)21 = —Fl, V(z,7) € O xR,
(020, + 020:0250 + V) (020, + 020, 0250 — 7)22 = _F), V(z,7) € Qs x R,
Z5(0,7) = Z,(0,7), vVt € R,

020, 75(0,7) = 020, Z,(0,7) + (my — Myos)s02,(0,7) + H(7), V7 €R,
Zy(=Ly,7) =0, Vr e R,
Oy Zo(Lo, 7) = —migoy Y59 Zo(Ly, 7) + J(7), Vr € R,

|0:21(—L1,7) = Gn(7), vr € R.

(4.3.4)

Here, v = (1) is defined by

(4.3.5)

T

B |7|e'T, if >0,
e |Tle™"1, if 7 <.

It is clear that R (v(7)) = v/|7|/2 > 0 and 4* = i7 , for all 7 € R. Now, inspired in
the structure of the operator in (4.3.4)); and (4.3.4))5, we define the auxiliar variables:

A

W; = (0,05 + 0,0:0;50 — )25,  j=1,2.

4.3.1 First estimates

Proposition 4.9 Let Wi be the solution of the following system:

(4.3.6)

(010; + 0100150 + ’}/>W1(ZL‘,T> = —Fl(a:,T), V(z,7) € Q1 x R,
Wl(—Ll, T) = aléN(T), VT e R.

Then, each solution Wy of (4.3.6) satisfies

(s2 4+ /I7]s0) | Wiz, 7)]2dx + so|W1(0,7)]? < C [ |Fi(z,7)[*dz 4+ Cso| G (1),
Ql Ql
(4.3.7)

for all T € R for some constant C = C(oy,my) independent of s.

Proof. Let 7 € R fixed. We multiply the equation (4.3.6); by SOW_1(T) and we integrate
on Qli

0150 / 83;[;[/1 (T)W_l(T)dl' + 0'183 / &E(bl\Wl (T)‘de + ’Y(T)So ’Wl (T)’le'
Ql Ql

1951

o (4.3.8)
:—SO/Q Fy(r)Wy(r)dx.
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Integration by parts yields

0'150 0'%80

orsoR | QWA ()W (1)de = ——2| W1 (0, 7)|* — 5
951

G (7). (4.3.9)

Taking the real part in (4.3.8)) and using (4.3.9)), we see that

018 A A/ |T ~
— W (0, T)\2+alsO/ 81,(/51\W1(x,7)\2dx+—2’ Lo [ W )P
Q1
010, ~ 2
=—soR | Fi(z, T)W (z,7)dx + 5 |Gn(T)|%.
1951

Applying Young’s inequality, we have

o152 / Opths [ Wi (i, 7) 2 + R(v(7))s0 / \Vvl(m)\?dw
Ql Q1

0150

[W3(0,7)[?

~ 1 ~
<—5; |W1(x,7')|2dx+ — \Fl(x,T)|2d:L‘+
0 le ol

S Gr(T)I.

The proof of Proposition is complete since m;0~! is a lower bound of 9,¢;. O

Proposition 4.10 Let Wy be the solution of the system

(020 + 02050250 + Y)Wz, 7) = —Fy(z, 7), V(z,7) € Q x R,
oW (0,7) = oy Wi (0,7) + (01 — 02)7Z2(0,7) + H(7), V7 €R, (4.3.10)
WZ(L%T) :7(7)22(L277—)+j(7_)a VT e R.

Then, there exists a constant C' = C(my, mg, 01, 09) such that each solution of (4.3.10))
satisfies

(s2 + mso)/ \Wa(7)[2da + so|Wa(r, Ly)|?
Q2

B (D)2da +C | [By(r)Pde + CsoGa (D)2 + Clrlsol Zo(r,0)2  (4311)

Ql QZ

+ Csol H (1),

for each 7 € R.

Proof. Using the same ideas of Proposition it is easy to check that

(s2 + |T|so)/ Vo(7) [2dar + 8|V, L) 2 < o/ |By(7)[2da + Cso|TWa(r, 0)2,
QQ Q2
(4.3.12)

for all 7 € R, where the constant C' in the inequality above depends only on msy and o».
Our next task is to estimate the local term of W5 at the interface. In order to do that,
we use the boundary condition (4.3.10))2 to get the following estimate:

so|Wa(T,0)|? < Cso|[Wi(7,0)|? + C|7|s0| Zo(7, 0)|? + Cso | H (7). (4.3.13)
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Substituting (4.3.13) into (4.3.12) and applying the Proposition we can assert that

(2 + |ﬂ%)/ 1(7)|2d + 0| W (Lo, 7))
Q2

SC |F1(T)\2dx—|—0 ’ﬁ2(7’)|2dx+CSO‘GN(T”Q+C|T’80‘ZAQ<O’7_)|2 (4314)

Ql Q2
+ CsolH (7)),
which is the desired conclusion. O

Proposition 4.11 Let Z; be the solution of

(010, + 0100150 — ’Y)ZAl(fL’a T) = Wl(xﬂ')’ V(z,7) € xR, (4.3.15)
Zi(—Lnt) =0, vr R -

Then, there exists a constant C = C(mq,01) such that each solution A of (4.3.15)
with source term Wo(T) € L*(Q) for all 7 € R satisfies

rovss || Zi(x,7)Pde + s2 / (01050150 — R(Y(1)))?| 21 (2, 7) [P da

Q1 Q1

+ o1(myso — R(Y(1))s2121(0, 7)) < C | |Fy(x,7)]2de + Cso|Gu ()2, Vr e R.
951

(4.3.16)

Proof. Let 7 € R. We multiply the equation (4.3.15) by (010,¢150 — %(7))51 and we
integrate on (2;:

~

O'l/ﬂ (01050150 — () Z1 (¢, 7) Zy (1) da
+ /Q (0100180 — V) (0100150 — 3‘%(7))|21 (z,7)|*dx (4.3.17)

zlgm@%%—wwm«aﬂiwmmD

Integration by parts yields,

o1R | (010:0150 — %(7))09021@, T)Zl (x,7)dz
Q1
s (4.3.18)

_ / | 2 (w, 7) P — %(mlso — R 20, 7).
Q1

2

Taking the real part in (4.3.17) and using (4.3.18)), we have

2
T [ dlZita e+ [ (mi0iinse - RO\ e, 7P
Q1 Q1

— o1(muso — R(7))|Z:(0,7)[?

=K#m@%%—WﬂmM%ﬂZ@ﬁﬂw
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By the Young inequality and the assumptions on ¢, we see that

roise || Zi(x,7)|Pdx + / (0105150 — R(Y))?| Z1 (, 7)) 2de
& o ) (4.3.19)
T o (maso — ROZ(0,7) < / 1 (2, 7).

1951

Finally, we multiply (4.3.19) by s2 and apply the Proposition , and the proof is
complete. O

Proposition 4.12 Let Zs be the solution of

(0205 + 020p 0250 — V) Zo(,7) = Wa(,7), V(w,7) € Q xR, (4.3.20)
2:(0.7) = 2:(0,7), vreR h

Then, there exists a constant C' > 0 independent of sy such that for every solution Zs

of (4.12), we have

raonsy | | Za(e,7)Pdz + 80/ (020250 — R(y(7)))| Za(, 7) [P
QQ Q2

+ 03(masg — R(¥(7)))s5| Za(La, ) (4.3.21)

<C | |Fi(z,7)de+C | |Fy(z,7)|*da
Ql QQ

+ Csol G (T)[* + Clrls0] Z2(0, 7)|* + Ciso | H(7)
for each 7 € R.

Proof. Firstly, as in the proof of Proposition each solution Z5 of (4.3.20) satisfies

raoast | | Za(e,7) P + 2 / (020562 — R(V(7))| Zale, 7) P
QQ QQ
+ 09 (masg — R(Y(7))) 82| Zy(La, 7)) (4.3.22)

353 ‘W2($a 7')|2dx + 09 (Masg — R(y(7))) 50122(0,7')|2, V1 € R.
Qo

Then, it remains to estimate the global term of WQ and the local term of ZQ at the
interface. To do this, notice that from the Proposition m, the global term of W, can be
bounded as follows:

sg |W2(m,7')|2dx <C \Fl(m,7)|2dx+0 |FQ($,T)|2d$+CSO|éN(T)|2
0 o 2 (4.3.23)

+ C|7|50| Z2(0,7) > + Cso|H(7)|?.

On the other hand, since My < m; and Z; = Z, at the interface for all 7 € R, we deduce
that

(Mzsg — R(1(7))) ] Z2(0,7)|* <(mso — R((7)))s5] Z1(0,7)[?

<C [ |Fi(z,7)dx + Cso|Gn(7)]?, VreR. (4.3.24)
Qo

Finally, we substitute (4.3.23) and (4.3.24]) into (4.3.24) and the proof is complete. m
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4.3.2 Global estimates in the Fourier domain

Our next task is prove the following inequality
s |Zl(x,7)|2dx+58 ]Zz(a:,r)|2dx—|—38\Z1(O,7)|2+53\ZQ(L2,7)|2
Ql QQ
<C |Fy(x,7)|?dx + C |Fy(z, 7)2dx + C'so| Gy ()2 + Csol H(7)|? + Cso| J (1) 2,

Ql QZ
(4.3.25)

for all 7 € R by using the estimates of Propositions [4.10] [4.11] and [4.12] TIn order to
do that, let 6 and ¢’ be two positive numbers such that

§ < V2my < V2My < 8 < V2m;.

Then, we divide the real line into three subsets, namely Low frequencies, Intermediate
frequencies and High frequencies. These intervals are ilustrated in the following Figure:

1
Low frequencies Intermediate frequencies H High frequencies
!

.
Vit

0 dsp V2m.s, V2 Mys &'sy E V2mys, i
Case 1 i Case 2
Figure 4.2: Sketch of different ranges in frequency domain
e Case 1: Low frequencies Suppose that 7 € R is such that
0 <+/|7| < dso. (4.3.26)
We note that the condition above implies
1 T
E (\/§m1 — (5,> Sop < M1Sg — %
By Proposition we see that
% (V2mi = &) sl (0,72 < C | |Fi(w,7)Pde + CsolGu ()] (4.3.27)
1971

Then, we can estimate the global term of 7, and its local term at the interface as
follows:

sg/ | Zy(, 7)) 2dx + 53| Z5(0,7) |2 < C | |Fy(z, 7)[2dx 4+ Cso| G (7). (4.3.28)
Ql Q1

On the other hand, the condition (4.3.26]) also implies

(\/§m2 — 5)80 < MgSy — @

1

V2
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Thus, similarly to the estimate (4.3.27), we can assert that

s | | Zo(x,7)|Pdx + $3| Zo(Ly, 7) 2 <C | |Fi(x,7))Pdz+C | |Fy(7)Pda + Cso|Gu(7))?
QQ Ql QZ

+ Cso|H(7) P,
(4.3.29)

where we applied the Proposition [£.12] Finally, we add the inequalities ([£.3.27) and
(4.3.29)), and the proof of (4.3.25) in the case of Low frequencies is complete.

e Case 2: Intermediate frequencies Suppose that 7 € R is chosen such that
0sp < \/m < V/2m; so.
To do this, we consider two cases (see figure 1.2)
e We assume that 7 € R is such that

dso < V/|1| < &'so.

In this case, we already have the estimate (4.3.27]). Besides, the estimate (4.3.29))
does not hold. To deal with this issue, by the boundary condition (4.3.10))3 we can
assert that

‘T’SO‘ZQ(LQ, T)’Z S 280’W2<L2, 7')’2 —+ 250’j(7’)’2. (4330)

From Proposition we have the following upper bound of Wy (7, Ls):

so|WalLo, T2 < C | |Fi(z,7)Pde+C | |Fy(z, 7)[2dx + C|7]so| Z2(0,7)|? + Cso| H(7)|>.
Ql Q2

(4.3.31)

Combining (4.3.30) and (4.3.31)) with (4.3.27) we see that

58| Zy(Lo, T2 < C | |Fy(z,7)de+ C | |Fo(z, 7)*de + Cso| G (7)|* + Cso|H(7)|? + CsolJ (7))
Ql Q2
(4.3.32)

Hence, by Proposition and we get

ﬁsﬂz@Jngcsﬂﬁ@me+oKJE@JWM+C%mMﬂF+awﬁuW
2 1 2

+ ClsolJ ()]
(4.3.33)

Thus, we add (4.3.28), (4.3.32) and (4.3.33), this is precisely the claim in the case
1 of Intermediate frequencies.

e We consider 7 € R such that

8so < /|| < V2myso.
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In this case, we adopt a different strategy in order to estimate the local terms of Z
and Z, at the interface. Roughly speaking, we will descompose the solution Zs into
two components: the first one is unknown in the sense that this one depends of the
local term 22(7', 0), and the second one can be estimated using the same machinery
introduced in the Propositions above.

Before to start with the proof in this case, let us state some definitions. We consider
the functions Z, and Zj, defined as the solution of the following problems:

(O'Qagg + 028x¢280 - V)ZAu(ma 7—) = U(.%’, T>7 V(.CE, 7_)92 x R7 (4 3 34)
Zu(Lo,7) = Lu(Ls, 7) vreR B
and
(0200 + 020,650 — ) Zi(,7) = k(w,7), V(z,7) € % xR, (4.3.35)
ZilLay7) = k(Lo 7) = L (7), vrEeR, B
respectively. Here, the functions u and £ solve
(020, + 020,250 + Y)u(w,7) =0, V(z,7) € A x R, (4.3.36)
u(0,7) = 1222y 24(0,7), vr € R, B
and
(020; + 020,250 + V)k(z,7) = —Fa(z,7), V(2,7) € Qg xR, (4.3.37)
k(O,T)_le(O )+ ULH(T> vr €R. B

respectively. It is clear that Zg = Zu + Zk and W2 =u+kin R x Qy. Let us
compute the explicit solution of Z,. Firstly, by Duhamel’s formula, the expression

of v in (4.3.306)) is given by

) = (772 ) ) 20 7) ex (02(0) = na)so — 217

02

a:) . (4.3.38)

02

Then, using Duhamel’s formula once again, the explicit solution of 7, in terms of
u is given by

. 1

Zule,7) =——u(r, L) exp (<¢2<L2> ~ a0~ 21, - x>)

()
1 =
— —exp (Mx - gbg(x)so) / exp <¢2( )So — Mw) u(z, 7)dz.
D) 09 . 02
(4.3.39)
Substituting (4.3.38) by (4.3.39) and evaluating at « = 0, we have
N 01— 09 2v(71) Lo
Z,(0,7) = Z5(0, —— ) —1].
(0,7) 200 2(0,7) (3 exp < =
Therefore, since Z5(0,7) = Z,(0,7) + Z(0,7), we obtain
A(7)Z(0,7) = Z4(0,7), (4.3.40)
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where A = A(7) is defined by

Aw)_”“+U2+3®”_m)wp(—zﬁﬂéﬁ.

20’2 20'2 (o)

Now we will show that there exists a constant C' > 0 independent of sq such that
|Z5(7,0)]* < C|Zi(7, 0) .
Indeed, suppose that 0 < o1 < g9. Then, it is easy to check that

1<0'1+O'2

5 < 52 SR,

and the assertion follows directly. Now, we want to show the same inequality when
0 < 09 < 01. In that case, we consider the following assumptions: we suppose that

T20¢

82 22a

and

log(3)o
My, > —>——=.
= 2L,

In particular these conditions implies that sy > 1 and

\/m > log(3)o
T V2L,

or equivalently

02

<\/2|T|L2> 1
exp | == <2

Hence, notice that under these conditions, we can assert that
R(A(T)) > 1. (4.3.41)

This implies the desired claim. It remains to prove a estimate for Z,. at the interface.
In order to do that, using the same ideas of Proposition we can assert that

(s5+ VI7)so [ |k(z,7)]*dx + solk(La, 7)|?
o (4.3.42)
<C |Fy(z, 7)*dx + C'so|W1(0, 7)|? + Cso|H ()%
Q2

Furthermore, we can prove the following estimate for Zo:

7“20250/Q |Zk(0a 7')|2dx + /Q (20,0250 — %(7(7)))2|Zk(1'7 7)|2d$
+ ao(R(y(7)) — Mzso)\Zk(O, 7')]2 (4.3.43)

1 .
<C |k(x,T)|2d:E+C'—| |(|k(L2,T)I2+ [ J(T)).
Qo T
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Now, since we are in the second case of Intermediate frequencies, we have
R(v(1)) — Masg > (0" — My) so.

Then, from (4.3.43), we deduce that
\AfbdégaLTHQS;c\ATh/ \k(z, 7)*da 4+ Csolk(La, 7)|* + Cso|J (7). (4.3.44)
Qo

Multiplying by sg the inequality above and using the lower and upper bound of

\/|7|, we see that

38|2k(0,7)|2 <C ‘FQ(SL’,T)’ZdJ? + C50]W1(O,T)|2 + Cso| H(T)|* + Cso\j(7)|2.
Qo

Moreover, applying the Proposition [4.9] we obtain

so|Zx(0,7))? <C g |Fy(z,7)|2dx + C g |Fy (v, 7)[2da + C'so| G (7))
1 2

+ Cso| H(T)|* + Csol J (1)[*
Therefore, using the relation (4.3.40f), we obtain

@@mmmgc/|ﬂumwm+c/ﬁggmww+o%mvw
o o (4.3.45)

+ Cso|H(7)|? + Csol J (7).

The rest of the proof runs as before. Thus, we proved the desired inequality in the
second case of Intermediate frequencies.

e High frequencies:

Now, we consider the case of high frequencies, that is, we take 7 € R such that

V2myse < /7). (4.3.46)

In this case, we will apply the same strategy as the case before. However, we can not
estimate directly the term |7|sq|Zo(7,0)|? in (4.3.44]). To avoid this difficulty, we note that

the condition (4.3.46|) implies

VIl
NG < R(y(7)) = Maso.

Therefore, from the estimate of Zj in (4.3.43)), we have

02

VIl

(|k(r, L) |2 + [T (7)]?). (4.3.47)

Wﬂ&hmﬁgc/MvWM+C
Qo
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Equivalently,

7|50 Ze(7,0)]> < C'y \T!/ |k(7)[*da: + Coysolk(T, Ly)|* + Coasol J (7, L)|*.
Qo

Using the estimate of k in (4.3.42), we obtain
[7[501Z5(0,7)
<Clrls0| Zi(0,7)[?
SC’/ |y (, 7)|*da + C’/ |Fy(, 7)Pda 4 Cso| G (7))? + Cso|H(T) [ + Csol J (7).
Ql Q2

We proceed for estimate the term of 22(7', Ls) as before. This conclude the proof of

(4.3.25) in the case of high frequencies. Hence, we have proved the estimate (4.3.25) for
all 7 € R. Now, integrating on R in 7, we deduce that

%/ |Z@¢WMﬁ+£/ 2o, 7) 2t
R JO

R J Qg

gc/ yﬂwﬁwmm+/ |E@JW®M+C%/@M%T (4.3.48)
R JO R JQo R

+a@/mvwm+c%/ﬁﬁwm.
R R

Finally, we use the Parseval’s identity and the fact that all functions are supported in
an open subset of (0,77). This concludes the proof of the inequality

4.3.3 Estimates of the spatial derivatives

The goal of this section is show that the spatial derivatives Z; and Z, of (4.2.5) with
source terms F; € L*(Q; x (0,7)) j = 1,2, Neumann data Gy € L*(0,7T) and residual
terms H,J € L*(0,T) satisfies the following:

T T
%/' |@&@JWM&+%/‘ 10, 7o ()| 2dadt
0 (921 0 Qo

T T T T
gO/ / \Fl(x,7)|2dxdt+0/ / ‘FQ(.%',T)’Qdmdt_'_CSO/ |GN\2dt+Cso/ \H\th
o Jou o Ja, 0 0

T A
+ CSO/ |J|2dt,
0
(4.3.49)

where the constant C' = C'(my, mg, 11,79, 01, 02) is independent of sg. We start multiplying
the first equation by Z; and we integrate on €);:

i |Z1(:v,t)|2dx—01/

o (0p + 500,01)° Z1 (2,t) - Z1 (2, t)dx = / Fi(x,t)Z1(x, t)dx,
Ql Q1

951
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for all ¢ € (0,7) where by definition

(0p + 50,01)*Z1 = 0271 + 500,010: 71 + 800201 21y + |800.01°Z1,  ¥(x,t) € Q x (0,T).

Then,

- ‘7%/ (02 + 500:¢1)* Z1 (2, t) - Zy (2, t)da
1951

=—0o0 | 0.Z1(x,t)Z(w,t)dx — 20%50/ 0, $10. 71 (x, ) Z1 (x, t)dx (4.3.50)
Q1 Ql

_ o5 / Pon|Za(z,)2de — 2 [ 10u61 2121 (1) P
Ql Q1

Integration by parts yields

- 8§Zl(x,t)Z1(x,t)dx = |8$21($,t>|2d$ —8:521(0,25)21(0725),
Ql Q1

where we used the condition Z;(Lo,t) = 0 for each ¢t € (0,7) and

—280/ e 1 Z1 (2, 1) Zy (x, t)dx = 8o | O2n|Z1(z,t)[Pdw — s00:01(0)| Z1(0,¢) .
951

951
Therefore, we can rewrite the equation (4.3.50|) as follows:

- 0%/ (0x + 308x¢1)2Z1<x7 t)Z1(x, t)dx
Q1

:af |0, 21 (, t)|2d$ — Ufsg \8x¢1|2|Z1(:E, t)|2d:1: — my0180|21(0, 7f)|2
Ql Ql

- 0%21 (O> t>ale(07 t)

Thus,
d
— | N Zi(z,t)Pde + oy | 0.2 (x,t)Pda
dt o 01
2 2 2 2 (4.3.51)
=015 lamgbl] |Zl<l’,t)| dl’+ F1<I,t)Z1(CL’,t)dZE+m10'180|21<0,t>|
Q1 Q1

+ O'%Zl (07 t)@le (0, t)

On the other hand, multiplying by Z, the second equation of (£.2.5) and integrating
on )y, we have:

% . | Z5(t)|dz — o3 /Qz(ax + 500202)> Z(t) Zo(t)d = /92 B(t)Zs(t)dw.  (4.3.52)
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Integration by parts yields

N / (On + 500002)* Zs(, 1) - Zo(x, t)dx
Qo

Q2

Qo

— 5(t0) 02 (La)| Zo (Lo, 1)? + 0upa| Z2(0,)|* — 0. Z2(Lo, t).

Moreover, from the boundary condition (4.2.5))g, we can assert that

—0,Z5(La, 1) Zo( Lo, t) = 500560(Lo)|Za(Lost)|2 — J (Lo, t) Zo(Lost), Vt € (0,T).
(4.3.54)

Furthermore, applying the boundary conditions (4.2.5); and (4.2.5))4
— O'gaxZQ(O, t)ZQ(O, t)
= — 020, Z,(0,1)Z1(0,t) — 02(020,¢1(0) — 090,$2(0))s0| 21 (0, 1)|? (4.3.55)
— 03 H(0,1)Z5(0,1).

Combining (4.3.52)) with (4.3.53)), (4.3.54)) and (4.3.55)), gives:

a4 | Zy(, 1) |*dx + o3 0, Zo(,t)|*dx
dt Qs Qs
_ 2.2 2 2 2 (4.3.56)
=055y | |Outo|*| Za(z,t)|de + | F(x,t)Zs(x,t)dx — 070, 2Z1(0,t)Z1(0, )
QQ QQ

— (m101 — MQUQ)SO’ZQ(O,t)’Q — U;J(t)ZQ(LQ,t)

Combining the inequality (4.3.51)) with (4.3.56) and integrating on (0,7"), we obtain:

T T
0%50/ 10,71 (0, t) P dxdt + 0350/ |0, Zo (0, t) P dxdt
0 Q1 0 Ql

T T T
§C’s(3)/ | Zy(z,t)]Pdx + Cs} / | Zy(, t) P dxdt + C/ |Fy (2, t)|*dwdt
0 Q4 0 0 1951

Qo

T T T
CSQ/ |Zl(0, t)|2dl’ + CSO / |Z2(L27 t)’2dt + CSO / |H|2dt
0 0 0

T
+ C/ | J|2dt.
0

Consequently, combining the inequality above with (4.3.48)), we have

T T
30/ 10,71 (0, t) |*dxdt + 30/ 0, Zo (0, t) |*ddt
o Ja, o Ja,

T T T T
gc/ \Fl(:c,t)\zd:cdwrc/ \FQ(x,t)FdxdtJrCso/ \GN\2dt+Oso/ |H|?dt
0 91 0 0 0

Qo

T
+ CS() / |J|2dt,
0
(4.3.57)
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which is the desired conclusion.

Finally, adding the inequalities (4.3.48) and (4.3.57)) yields

T T T
s / |Z1 (2, t)|*dzdt + s / | Zy(, t)|*dwdt + 30/ | Z1(— Ly, t)|%dt
0 91 0 Q2 0
T T T
+%/]%@Mﬁ%+%/j/|@&@¢Wm&+%/‘/]&%@¢WMﬁ
0 0 951 0 Qo

T T T T
SC’/ |F1(:E,t)|2dxdt+0/ |F2(:E,t)|2dmdt+030/ |GN|2dt—I—C’so/ |H|*dt
o Jou 0 0 0

Qo
T

+CSO/ | J|?dt,
0

and the proof of the Lemma [4.3]is complete. O

4.4 Proof of the Corollary

This section is devoted to proof the Corollary In order to do that, let (y1,y2) be the
solution of

(O — 010y =0, V(x,t) € O x (0,7),
Oys — 0202y, =0, V(z,t) € Qp x (0,7),
y1(x,0) = yP(x), Vo €y,

0 (4.4.1)
y2(x,0) = y5(x), YV € (o,
yi(—Ly,t) =o(t), Vte (0,T),
\amyQ(LQ, t) = 0, Vt € (O,T),
where 01,09 > 0, y9 € L*(Q;), j = 1,2 and v € L*(0,T).
For an easier comprehesion, we divide the proof into three steps:
e Step 1: Duality
Let us consider the following adjoint system:
(—@wl — Ufﬁiwl = O, V(Z‘, t) S Ql X (O,T),
—Oywy — 020%wy = 0, V(x,t) € Ny x (0,7),
wy(z,T) = wl(x), Vo € (1, (4.42)
wy(z,T) = wl(x), Vi € Q, o
wl(—Ll,t) = O, vVt € (O, T),
kﬁsz(Lg, t) = O, Vt S (O, T)

It is clear that the null controllability of the system (4.4.1)) is equivalent to proof the
so-called observability inequality of the adjoint system (4.4.2)): There exists a constant
C > 0 such that each solution of (4.4.2)) satisfy

T
w1 (, 0) 2z + |W@ﬁwwgc/|@m@h@&w (4.4.3)
Q1 Qo 0
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Thus, we restrict to attention to prove the inequality (4.4.3). In order to do that, we
will use the Carleman estimate of the Theorem [4.11

e Step 2: Applying the Carleman estimate

We apply the Theorem to the system [4.4.2] i.e., there exist constants C' > 0 and
s« > 0 such that for each s > s,, each solution of satisfy

T T
83/ / e~ 21328 ) (o, t)|*dadt + 83/ / e~ 2502030728 |, (o, t) |Pdadt
0 Ql 0 Q2

: (4.4.4)
<Cs / 2501 (110G B9y (= Ly ¢, )P,
0

where we use dyw; + 0707w, = 0, for each j = 1,2. Since the Carleman weights ¢; and
9 are bounded, it is easy to check that

37/4 3T/4
/ / \wi (z,t)|*dxdt + C / \wy(x,t)|Pdzdt
(951 T/4 Qo

(4.4.5)
<s,? / e 2328y (2, 1) dx + 5,3 / e~ 25wy (x, ) Pdzdz,
Ql Q1

and

T T
8*/ 67239@1(*L1)9°‘*ﬁ|&Ew1(—L1),t\z S C/ ]&Cwl(—Ll,t)]th (446)
0 0

Combining (4.4.5) and (4.4.6) with (4.4.6) we obtain

37/4 37/4 T
C/ lwy (x, t)|*dadt + C/ |wa(x, t)|dedt < C/ |0pwy (— Ly, t)|?dt.
0

T/4 Ql T/4 QQ
(4.4.7)
e Step 3: Observability inequality
Multiplying the equation (4.4.2); by w; for j = 1,2, we obtain
——— [ |wi(x,t)|*dx — |w2 z,t))?dr + o} [ |Opw(z,t)|*dw
2dt Jo, 2 dt o
(4.4.8)

+ 03 |0, wy(, 1) |Pdz = 0,
Qo

where we used integration by parts. Now, integrating on (0,%), t € (0,T), we have

|wy (z,0)[Pdx + |ws(z,0)[Pdr = lwy () |2dx + lws (1) [2dx
1951 Qo 9] Q2

t i
- O-% / |aacw1|2dxdt - 0'3 / |3xw2|2dxdt.
0 JN 0 JQy
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Integrating on (T'/4,3T/4) on t, we see that

\wi(z,0)]?dx + [ |wa(z,0)]*dx
Ql Q2

3T/4 3T/4
SC/ lwi (z,t)Pdzdt + C’/ lwy (2, t)|*dxdt.

T/4 Ql T/4 Q1

Thus, combining (4.4.7) with (4.4.9), we obtain

T
|w1(:1:,0)\2d$ + ]wg(x,0)|2d:1: < C/ |8$w1(—L1,t)]2dt,
0

Q1 Qo

(4.4.9)

(4.4.10)

(4.4.11)

and the proof of observability inequality is complete. Hence, system (4.4.1) is null-

controllable.
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Conclusions

In this thesis we have obtained theoretical results about inverse and control problems on
some hyperbolic and parabolic problems. In particular, we have focused in wave systems
with potential in cascade and heat equation with dynamic boundary conditions. We
conclude this thesis with some final remarks and perspectives related to these subjects.

In Chapter [2| we studied the simultaneous potential reconstruction for a hyperbolic
system in cascade when some components of the system are not accesible. Specifically,
we analyzed this inverse problem where we cannot get any measurements on the last
component. Our results are based on a suitable Carleman estimate on a hyperbolic
system with measurements of all components except the last one. Then, we have adapted
the Bukhgeim-Klibanov method to get a Lipschitz stability result for this inverse problem.

First of all, concerning the special structure of the cascade system we considered in
this study, notice that in (2.3.7), the source terms f;,..., f, arise in the estimate of Fj,
for each 7 = 1, ..., n, because of the cascade structure of system and the Carleman
estimate of Proposition see also Remark This is the main difficulty to recover the
potentials (q1,...,q,) with less components of . Then, the stability of the inverse
problem treated in this thesis with two or more inaccessible components is open.

Regarding relationships of the present work with controllability, let us notice that in the
particular case of h; = 0 for each j = 1,...,n in (2.2.15) and under strong assumptions
on the regularity of the solutions of (2.2.14), one can obtain a Carleman inequality of
(2.2.14) with internal measurements of the first component of the system. To be more
precise, for each j = 1,...,n, we define o such that

{Oéj+1+1<06]’<06j+1+2, 7=1,...,n—1,

a, = 0.

Then, there exist two constants C' = C(Q,w,T,z9) > 0 and sy > 1 such that for all
s > sg, the following inequality holds:

on— 1

n T
ZI(O&j,Uj,Q) < CZ 5% / / 62880‘85@1|2dxdt7
j=1 j=0 T Jwe

for each solution of system (2.2.14)) and for some positive constants 3;, j =0, ...,2" % In
principle, this would allow to construct a control that would require stronger regularity
assumptions.
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Finally, let us remark that a slight change in the proof of Proposition [2.6] shows that
T T
1(0,v,Q) < C/ / e**?|0v + pv|*dxdt + Cs/ / e?*? |Vl dxdt, (4.4.12)
—T Jwsy —T Jwa

for allv € L*(—T,T; Hy(2)) such that Ov+pv € L*(Qx (=T, 7)), O,v € L*(002x (=T,T))
and v(£T) = 0 in . The main ingredient of the proof are the part b) of Lemma [2.4] and
the weighted Poincaré inequality (see [II]). Under that form, estimate can be
used in the study of wave systems with first order coupling terms.

In Chapter [3, we studied the null controllability for a suitable class of parabolic equa-
tions with dynamic boundary conditions. The main result is based on the proof of the
observability inequality for the associated adjoint system. In order to get it, we used a
suitable Carleman estimate for a heat equation with dynamic boundary conditions.

Moreover, we present other results based on the fact that parabolic equations with this
kind of boundary conditions can be viewed as a limit of heat equations with discontinuous
diffusion coefficients.

The results presented in this chapter can be extended naturally to higher dimensions.
Indeed, let d > 1 and set Q C R? be an open set with smooth boundary. In addition, let us
consider I' C 99 be a nonempty open subset. Let (u,ur) € L2(2x (0,T)) x L*(T' x (0,T))
be a solution of

(O — Au = v in Q% (0,7),

(u(-,0),ur(-,0)) = (ug,urp), inQxT,

ur = u, on I' x (0,7, (4.4.13)
u=0, on (OQ\T) x (0,7T),
k8tu+&,u=O, on ' x (0,7,

where 0, denotes the outward normal derivative and w C 2. Then, one can formulate the
problem of null controllability for system (4.4.13)) for any time 7" > 0, i.e., given T > 0
and (ug,ugr) € L*(Q) x L*(T), there exists a control v € L*(w x (0,7)) such that the

associated solution of (4.4.13)) fulfills

Then, following the approach given in Section we have to prove the observability
inequality associated to the adjoint system of (4.4.13) by using a suitable Carleman es-
timate. In this context, one can use weight functions which satisfy similar estimates as

in (3.3.22) and (3.3.23)). In particular, when {2 has radial symmetry we shall consider

explicit weight functions based on ¢ and 0 used in Section 3.

As we mentioned in Section parabolic equations with discontinuous diffusion coeffi-
cients can be used to approximate parabolic equations with dynamic boundary conditions.
Additionally, it is well known that for each K > 0, ug € L?(Q) and T > 0, is null-
controllable at time 7' > 0, see for example [38],[19],[20] and [2I]. However, the constant
C' > 0 appeared in the observability inequality depends (for instance) on the diffusivity
parameter, and therefore if we adapt these settings to problem , the observability
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constant may depends on K > 1. This means that the sequence of controls (v)g~g in
(3.1.4) may not be uniformly bounded in L?(w x (0,T)).

In order to avoid this difficulty, one can build a Carleman estimate where the weight
functions depends on K > 0. In the following, we present a result in this direction. From
now on, fora > land K > 1,¢v: QCR — Rand #: (0,7) C R — R denotes the
functions given by

1 —
Ui(r) = = " w420y, Ve eQy
1
1 1 —
wR(.CE) :—Mﬂfz—l—ﬁl’—l—2[;1, Vx € QR;

O(t) =t(T —t))"*, Vte (0,T).
We point out that ¢ > 2L, in € and
¥r(0) = ¥r(0),  K*¢Yp(0) = ¢1(0),

i.e., 1 satisfies the same transmission conditions of u* in (3.4.1))5 and (3.4.1))s across the
interface x = 0. Moreover, notice that 1, stands for the same weight function used in

Section [3.3]

Then, we have the following result:

Lemma 4.13 Let a > 1,0 < Ko < K, T > 0, define ¢ = 8, with ¢ and 6 defined as
above and o® given by (3.1.3). Then, there exists two positive constants C = C(a,Q,T)
and s* = s*(a, Q,T) independent of K such that for all s > s* we have

T T
5 / / =22 (oK) L (T — 1))~ |y[2dudt + s / 226K (1T — 1))\, 2 dadt
0 Q 0 Q
T T

+ 53 / e~ 200D (H(T — 1)) 73¢y(0, t)|2dt + s / e 290D (H(T — 1)) 7% 0,y/(0, ) |*dt
0 0

T T
b K2 / e~ 200 (4T — 1)) ~30y(— Ly, £)|2dt < C / / 2|0y + AKy2dudt
0 o Ja
T T
€ [ e loy(-Ly P+ Ot [ e HROT < ) (Lo
0 0
(4.4.14)
for ally € HY(0,T; L*(Q2)) N L*(0,T; D(AX)), where AX is defined by
AKy = am(UKaxy)a
with domain

D(A") ={y € Hy(Q); o"y € H'(Q)}.

The proof is based on the classical approach of Carleman estimates introduced in
the context of parabolic equations by O. Imanuvilov et al. We emphasize that, for our
purposes, the main difficulty here is to track the dependence on K > 1 of the constant
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C in (4.4.14). In fact, in this context we cannot absorb the last term of the right-hand
side of (4.4.14)). Thus, the question of uniform controllability for parabolic problems in
the form (3.1.4]) remains open.

Inspired in the ideas of [9] (see also [67] and the references therein) problems in the
form can be viewed as limit of another class of parabolic problems. In order to get
an idea, for simplicity we set I = (0,1) and denote z* =1 — K~! with K > 0. Then, we
define the subsets

I, =(0,2") and Ig = (z*,1).

For K > 0, let us consider the following problem

(1+ (K —1)xz,) O — 02uf = fK V(x,t) € I x(0,7T),
u (2,0) = u, Vr e I, (4.4.15)
u(0,t) = 9,u™(1,t) =0, vVt € (0,7).

On the other hand, we introduce the problem

Oy — 0%y = g, V(z,t) € I x(0,7T),
y(x,0) = yo(x), Va €1, (1.4.16)
y(0,¢) =0, vi e (0,7), .

Owy(1,t) + 0,y(1,t) =0, Vte (0,7),

with g € L*(I x (0,T)) and yo € H'(I). Then, we have the following result

Lemma 4.14 Let 0 < Ky < K and ug € H'(Q). Suppose that
5 — f weakly in L*(I x (0,T)).

Then, there exists a subsequence (u™)g~o of solutions for the problem (4.4.15) which
converges to u in the following way

u® — w weakly in L*(0,T; H*(I)) N H*(0,T; L*(1)).

Moreover, u is a strong solution of (4.4.16) with g = f and yo = uo.

Of course, all the above questions in the context of controllability can be considered

for (4.4.15)).

In Chapter |4, the null controllability of heat equation with discontinuous diffusion
coefficients was studied. Following the arguments presented above, the idea is to prove
the observability inequality for the associated adjoint system. This was done for a suitable
Carleman estimate for this kind of problems. The novelty is based on the combination of
microlocal analysis ideas with localization in time functions.

In this sense, we believe that the proof of this Carleman estimate allow us to deduce
some insights about these systems. The original idea was to use this kind of estimates to
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prove uniform observability results for systems like (3.2). However, some difficulties on
the proof suggest that we might use localization in time functions which also depends on
space. This is a work in progress.
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Appendix A

Carleman estimate for heat equation
with dynamic boundary conditions by
using Classical weights

A.1 Introduction and main result

The goal is to prove a Carleman estimate which allow us to prove the following Observ-
ability inequality

T
1 0oy + [ (O < c/o /]z\%lxdt, (A1)

for each (27, 27r) € L*(Qr) x R, where (z, zr) € L*(Q2, x (0,T)) x L?(0,T) is a solution
of the adjoint system

Opz(x,t) + 0%z (x, t) = 0, V(x,t) € Qp x (0,7,

(2(2,T),2r(T)) = (2r(x, 27r)), €y, (A19)
2(—Ly,t) =0, vt € (0,7), o
21(t) — 0,2(0,t) = 0, vVt e (0,7).

In order to do that, we will consider the Classical weight functions introduced by A.
Fursikov and O. Imanuvilov. We recall that these ones are based on an auxiliary function
whose existence is given by the following result:

Lemma A.1 Given nonempty open set w CC Sy, there is a function ny € C*(Qy) such
that

Mo > 0 in QL, 770(—L1> = 770(0) = O, ‘776’ >0 1n QL \ Ww.

We notice that the functions given by the above lemma fulfills

mo(—L1) >0, 15(0) <0.
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From now on, we fix w’ CC Qp, A\,m > 1 and 7y as in the previous lemma. We define
the weight functions o and 7 by

afz,t) =T — 1))~ (62)\7””770\\00 — ek(mllnoHooJrno(w))) 7 (A.1.3)
n(z,t) =(t(T — t))~Lermimllectmo@) (A.1.4)

for each (z,t) € Qp x (0,T). Now we have all the ingredients to state the Carleman
estimate for heat equation with dynamic boundary conditions:

Theorem A.2 Let T > 0, w CC Qy be a nonempty and open interval. In addition, we
choose w' CC w. Define a,no, & as above with respect to w'. Then, there exists constants
C >0, \1 > 1 and s1 > 1 such that the following inequality holds

T T
33)\4/ / 6230‘53\30\2dxdt+$)\/ / e**°¢|0,p|*dxdt
0 QL 0 QL

T T
+ s_l/ / e ¢ oppPdadt + 8_1/ / e? ¢ 02| drdt
0 QL 0 QL

T T
+ 55\3 / 0D (0, 1)|(0,1)|2dt + s\ / ?019,0(0, 1) |*dt
0 0 (A.1.5)

T T

s [ 00000, dt+ ) [ OG- Lo~ Lo P

g ’ T
< C/ / e*¥ 0,0 + |2 dadt + C/ e?0D19,0(0, 1) — 0p(0,1)|?dt
0o Ja 0
T
+ C'S3)\4/ /e2sa§3\g0|2dxdt,
0 w

for all X > X\ and s > s; and for all ¢ € C*(Q x [0,T7).

The rest of this appendix is devoted to prove the above Theorem.

A.2 Proof of the Carleman estimate
Let o € C*(Qp x [0,T]), A > 1 and s > s > 1 be given. Define

v=e"p, f=e 0+ %), g=e (O —0pp), V(x,t)€Qpx(0,T).

Direct computations show that
e—saaﬁp = at(ﬂ + SatOﬂﬂ, e P = ax¢ + Saza%
e 020 = 0% + 250,00, + 5*| 0, + s0%ar).

In the following, we shall use the abbreviations

My = s%|0,a*t) + 0% + sOianh, Moth = s02a + Optp + 250,01,
N = s0war) — 0,0, Notp = 0y — s0,).
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Then, according to this notation, it is clear that v satisfies the following equations:

M1¢ + Mgw = f, and le + N2¢ =4, in Q_L X (O, T) (A21)

Applying || - |lz2( <o) and || - |z2¢0,7) to the equations (A.2.1) we get

Myl 20, x 0.y + 1Mo 220, x 0.0y + IN19(0, ) 720,y + 1N28(0, ) 122007
(M, Mayh) 120, x(0,ry) + (N190(0, ), Not(0, ) 201y = 111200, x0y) + 11900, 720,09
(A.2.2)

Our next task is to compute the inner products in the right-hand side of (A.2.2)). In
order to do that, we shall use the notation

3
(Mitp, Ma) 20, x(0.1)) = Z Lk,
k=1

where I;; stands for the scalar product in L?(Q; x (0,7)) between the j™ term of M;1
and the k™ term of My1. Then, I;; reads as follows

T
=5 [ [ 10.aPoaludsdt
0 Qp,

On the other hand, using the identity $¢0,1 = 8,(|¢|*) in Qp, x (0,T), we have

T T
I = 52/ / |0, *YOppdadt = —/ / 0,0, 0pttp|Pdadt,
0 QL 0 QL

where we are used the fact that o blows up as t — 07 and t — T—. Moreover, integration
by parts shows that

T
[13 :253 / / \8za\3¢8mwdxdt
0 Qr,

T T
— 3¢ / / 9,020l dudt + 5 / 19,00, 8) (0, 1),
0 Qr, 0

where we used (—Ly,t) = 0 for all £ € (0,7). In the same way, the term I3 can be
estimated as follows

T
I =— s/ D2 apO>ypdxdt
0o Jar

T T T
=5 / DO pdrdt — s / 2|0, |*dwdt + s / 02 (0, 1) (0,1)0,4(0, t)dt.
0 Qp 0 Qr, 0

In addition, the term Iy reads as follows:

T
0 Qr,

T T
- / 0,10, dudt + / 96 (0, )0, (0, ).
0 Qp, 0
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Notice that the first term in the above equality is given by

1

T
——/ 0, (|0,0|*)dxdt = 0.
2 0 Qr,

On the other hand, using the equations (A.2.1) for g we have

T
Iy = / 0,16(0, )0, (0, )t
0T T
:/ ]&w(o,t)IZdt—i—s/ Or(0,1)1(0, )9, (0, t)dt
0 0

—S/T@QWJWﬂLﬂ@wQJMﬁ—/T@wmjmmjﬂt

Moreover, I3 can be estimated in the following way

T
123 :28/ 0xa0x¢8§¢d$dt
0 Qr,
T T
— s / a0, Pdudt + s / D,01(0, 1)) 000, £)2dt
0 Qp, 0

T
s / Dot =L, 0)|0utb(— Lo, )Pt
0

By definition, I3; reads as follows

T
I3 = 32/ Oradaly|*dxdt.
o Ja,

Once again, since « blows up as t — 0" and ¢t — T~ we get

T 1T
I3 = s/ / oo Oppdxdt = —53/ / OFal|*dxdt.
0 QL 0 QL

Finally, I35 is given by

T
I3 :232/ 0ra0;ap 0 pdxdt
0 Jaog

T T
=— 32/ / 02(0,0,0) || * ddt + 32/ 9, (0,1)0,x(0, 1) |(0, )| 2dt.
o Jag 0
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Gathering all the terms we have

(My3), Mav)) 120, x(0,1))

=—2s° / / 0,22 aly? dxdt—?s/ / 02| 0, | dadt
QL QL

+s3/ |8$a(0,t)\3|¢(0,t)|2dt—|—3/ 0,(0,1)|0,4(0, t)|*dt
0

0
T T
+/ |8t¢(0,t)|2dt—s/ Op(— Ly, 1)|0,0(— Ly, t)|*dt
0 0

T T
_ s/ P apdpdrdt + S/ 920, 1)1(0,1)0,4(0, t)dt (A.2.3)
0 Qr, 0

T T
b5 [ 9,0(0,6)0(0,4)0,5(0, )dt — s / 0,0 (0, £)3(0, £)0,(0, ) dt
0 0

T T
—/ g(0,1)0,4(0,t)dt + 82/ Orad2ay|*drdt
0 o Jog

1

T T
— 58/ 8t2aw|2dxdt+82/ 3,0, 1),(0, )[4 (0, 1) [Pt
o Jo, 0

Similar computations shows that the second inner product of (A.2.2) is given by

<N1¢(O7 t)7 N2¢(07 75)>L2(0,T)

g 2 4 2
s /0 Drn(0,£)06(0, )0 (0, )t — /0 00,0000, 0[O0 (3 5y
T T
—/ amw(o,t)aﬂb(o,t)dws/ 0, (0,1)20(0,1)0,2(0, t)dt
0 0

Now we focus on some estimates on weight functions. According to the definitions of
a and 7, we get

|Ora(@, )] < C(HT — 1) "'¢(x, 1), [OFa(z,t)| < C(UT —t)~*¢(x, 1), (A.2.5)

for each (z,t) € Qr x (0,T) and for some constant C' dependent of T’ but independent of
A, m and s. On the other hand, a direct computations on spatial derivatives of a gives

8$a(x,t) = —/\Ué(x)f(%t)a aia(x7t) = —/\(778(95) + M%(@P)f(%t)a (A26)

for each (x,t) € Qp, x (0,T). We point out that the second derivative of o can be bounded
by below in the following way

Oalx,t) > —Nnh(2)E(x,t), V(z,t) € Qp x (0,T). (A.2.7)

Then, substituting (A.2.3) and (A.2.4) into (A.2.2]) and by using the estimates (A.2.5)),
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(A.2.6) and (A.2.7) we obtain
|’M1¢H%2(QL><(O,T)) + HMQwH%P(QLX(O,T)) + |’N1¢(0>t)|’%2(0,T) + "N2w<O’T)‘|%2(O,T)
T T
+ 3\ / E |2 drdt + s / |0, dxdt
0 QL 0 QL
T T
#8000 dede+ ) [ €0.0jo0 0.0 P
0 Q 0
T " T
+ [ 1ow0.0Pd+ o) [ e-Linlos-Lib P
0 0

T T T
<cl/ / ]f]Qda:dt+Cl/ \g(O,t)]th+Cls3)\4/ /gwdm
0 Qr, 0 0 w’!

T
+013A/ / E|opPdadt + X +Y
0 w!
(A.2.8)

where X and Y are defined by

X 0152)\2/ /Q ~1e2)y)| d:cdt+0152)\2/ /Q 1)) 23| P dadt

+Cls)\3/ |Y)|0p1|dxdt,
0 Qp,
and
T T
Y —CysA? / £(0,6)|0(0, 6)]|0(0, £)|dt + Cys / (H(T — £))72€(0, )[(0, 1)[|82(0, 1) dt
‘ T : T
+015A/ 5(0,t)]w(o,t)lyaxw((),t)\dt+Cl/ 1900, 8)[10,2(0, £)|dt
0 0
T T
+a&y/a@—wr@mwwmﬁﬂﬁ+a/W@M@M@M&Mﬁ
0 0

+ 018/0 (H(T = £))7'&(0, 1) [ (0, 8)[10:(0, 1) |dt + ClsA/O £(0,0)|1(0,1)[|0:4(0, 1) .

Now, it is clear that there exists A\ > 1, s; > 1 such that for all A > \; and s > s; we
have the following estimates:

T 1 T
X< Loy / S[f2dwdt + ~s) / €|0,0 2, (A.2.9)
0 Qr, 2 0 Qr,
and

1 333 g 3 2 1 g 2
v<ysn [ e0.0lv.0Pded+ gon [ e0.0/0.00.0
0 0 (A.2.10)

]' 4 2 1 2 r 2
+ 5 [ 1aw0,0Pd+ S0 [ lg(0, ).
2 Jo 277 ),

104



Then, using (A.2.9) and (A.2.10) in (A.2.8) we get
IM 17200, <0y T M2l 2200, x 0.y + IN19(0, )220y + 1N20(0, )Tz (0.

T T
+ 33)\4/ Eep|Pdadt + S)\/ €10, P dxdt
0 Qr, 0

Qr

T T
T / £3(0, 0)1(0, £) Pddt + s) / £(0,6)|06(0, 1)t
0 Qp, 0

T T
+/ ’atw(O,t)Ith—i—s)\/ 5(—L1,t)\8xw(—L1,t)\2dt
OT OT .
S02/ / \f]2dxdt+02/ ]g(O,t)]2dt+Cgs3)\4/ / &P ddt,
0 Qr, 0 0 W

where the local term of 0,1 in w' can be absorbed as in [48]. Moreover, global terms
of 9;1p and 9% can be obtained by using the equations (A.2.1) and Young’s inequality.
Finally, we come back on the original variables and the proof is complete. O]
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