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IMAGE SEQUENCE SIMULATION AND DEEP LEARNING FOR ASTRONOMICAL
OBJECT CLASSIFICATION

In this thesis, a new sequential classification model for astronomical objects based on a
recurrent convolutional neural network (RCNN) which uses sequences of images as inputs is
proposed. This approach avoids the computation of light curves or difference images. This
is the first time that sequences of images are used directly for the classification of variable
objects in astronomy. Another contribution of this work is the image simulation process.
Synthetic image sequences that take into account the instrumental and observing conditions
were simulated, obtaining a realistic, unevenly sampled, and variable noise set of movies
for each astronomical object. The simulated dataset is used to train the RCNN classifier.
This approach allows to generate datasets to train and test the RCNN model for different
astronomical surveys and telescopes. Moreover, using a simulated dataset is faster and more
adaptable to different surveys and classification tasks. The aim is to build a simulated dataset
whose distribution is close enough to the real dataset, so that a fine tuning could match the
distributions and solve the domain adaptation problem between the simulated dataset and
real dataset. To test the RCNN classifier trained with the synthetic dataset, real-world data
from the High cadence Transient Survey (HiTS) was used, obtaining an average recall of
85% among 5 classes, improved to 94% after performing fine tuning with 1000 iterations
using 10 real samples per class. The results of the proposed RCNN model were compared
with those of a light curve random forest classifier. The proposed RCNN with fine tuning
has a similar performance on the HiTS dataset compared to the light curve random forest
classifier, trained on an augmented training set with 100 copies of 10 real samples per class.
The RCNN approach presents several advantages in an alert stream classification scenario,
such as a reduction of the data pre-processing, faster online evaluation and easier performance
improvement using a few real data samples. The results obtained encourage us to use of the
proposed method for astronomical alert brokers that will process alert streams generated by
new telescopes such as the Large Synoptic Survey Telescope. Ideas for a multi-band classifier
and a better image simulator are proposed based on the difficulties faced in this work.
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Resumen

En esta tesis, se propone un nuevo modelo de clasificación secuencial para objetos astronómi-
cos basado en el modelo de red neuronal convolucional recurrente (RCNN) que utiliza secuen-
cias de imágenes como entradas. Este enfoque evita el cálculo de curvas de luz o imágenes
de diferencia. Esta es la primera vez que se usan secuencias de imágenes directamente para
la clasificación de objetos variables en astronomía. Otra contribución de este trabajo es el
proceso de simulación de imagen. Se simularon secuencias de imágenes sintéticas que toman
en cuenta las condiciones instrumentales y de observación, obteniendo una serie de películas
de ruido variable, realistas, muestreadas de manera irregular para cada objeto astronómico.
El conjunto de datos simulado se utiliza para entrenar el clasificador RCNN. Este enfoque
permite generar conjuntos de datos para entrenar y probar el modelo RCNN para diferentes
estudios astronómicos y telescopios. Además, el uso de un conjunto de datos simulado es más
rápido y más adaptable a diferentes surveys y tareas de clasificación. El objetivo es crear un
conjunto de datos simulado cuya distribución sea lo suficientemente cercana al conjunto de
datos real, de modo que un ajuste fino sobre el modelo propuesto pueda hacer coincidir las
distribuciones y resolver el problema de adaptación del dominio entre el conjunto de datos
simulado y el conjunto de datos real. Para probar el clasificador RCNN entrenado con el
conjunto de datos sintéticos, se utilizaron datos reales de High Cadence Transient Survey
(HiTS), obteniendo un recall promedio del 85 % en 5 clases, mejorado a 94 % después de
realizar un ajuste fino de 1000 iteraciones con 10 muestras reales por clase. Los resultados
del modelo RCNN propuesto se compararon con los de un clasificador de bosque aleatorio o
random forest de curvas de luz. El RCNN propuesto con ajuste fino tiene un rendimiento
similar en el conjunto de datos HiTS en comparación con el clasificador de bosque aleatorio
de curva de luz, entrenado en un conjunto de entrenamiento aumentado con 100 copias de
10 muestras reales por clase. El enfoque RCNN presenta varias ventajas en un escenario de
clasificación de streaming de alertas astronómicas, como una reducción del preprocesamiento
de datos, una evaluación más rápida y una mejora más sencilla del rendimiento utilizando
unas pocas muestras de datos reales. Los resultados obtenidos fomentan el uso del método
propuesto para los sistemas astronomical alert brokers que procesarán streamings de alertas
generados por nuevos telescopios, como el Large Synoptic Survey Telescope (LSST). Se pro-
ponen ideas para un clasificador multibanda y un mejor simulador de imágenes en función
de las dificultades encontradas en este trabajo.
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Chapter 1

Introduction

Astronomy is faced with the challenge of increasingly large streams of data produced by large
survey telescopes. New telescopes, such as the Large Synoptic Survey Telescope [1] and the
Zwicky Transient Facility [2] are designed to study variables and transients on wide areas of
the sky. Variable stars, such as pulsating (e.g., RR Lyrae, Cepheids) or eclipsing stars; or
transients, such as supernovae, are expected to be produced in large numbers. These objects
have characteristic timescales from hours to months, and can be detected and characterized
by repeatedly observing the same region of the sky. Obtaining these repeated images with
large cameras will generate a very large volume of data. For example, it is estimated that
the LSST will generate 30 TB of data per night to produce a complete image of the southern
sky every 3 days.

Some research areas in astronomy require the classification of a large number of objects:
e.g, supernovae are used to estimate cosmological distances for studies about the expansion
of the universe [3, 4] and variable stars such as RR Lyrae or Cepheids are needed to map
the structure of the Milky Way as they serve as cosmic distance ladders [5, 6]. In order to
classify different astronomical objects in these large data streams it is necessary to apply fast
and accurate classification methods capable of managing large amounts of data in real-time.
This problem will be addressed by systems called astronomical alert brokers e.g., ALeRCE,
LASAIR, ANTARES [7], which are capable of receiving, processing, classifying and reporting
relevant information about the alert streams generated by large survey telescopes in real time.

Traditional methods to classify variable astronomical objects are based on pre-processing
a sequence of images (calibration) followed by feature extraction (measurement). One way to
extract features from a sequence of images is doing photometry [8], which is the calculation
of the total amount of light arriving from the source to the camera as a function of time,
generating a time series called a light curve. In principle, a point–like source’s light curve
should contain all the relevant information to classify the source, but when the detection is
spurious the information contained in the images becomes more relevant for the classification.
Additionally, extragalactic sources such as supernovae tend to be near extended sources, i.e.
galaxies, whereas galactic variable stars tend to be relatively isolated, information which is
also contained in the pixels.
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Obtaining the light curve reliably requires performing difference imaging first for certain
sources (e.g., when the object occurs in a bright galaxy), which is the process of aligning,
convolving and differencing pairs of images to show only those pixels which have changed
from frame to frame [9]. Computing the difference image presents some problems, most of
the time it is necessary to reduce the quality of one of the two images to subtract them
correctly and it is also very sensitive to alignment errors between the frames.

Once the full light curves are computed, additional features can be extracted by manual
design or automatic learning from the data. In the case of manual feature extraction, the
scientist must design attributes that are expressive enough to contain relevant information
for the classification, which usually requires a lot of effort and time [10, 11, 12, 13, 14, 15].
Learning features directly from data is one way to avoid manual design and can be very useful
to find informative attributes for classification [16, 17, 18, 19, 20, 21, 22, 23]. However, even
though representative features were obtained, if the data from the pre-processing step is not
informative enough or contains errors from the procedure it would be difficult to obtain a
good classification. Furthermore, in the case of an alert stream, for a new incoming sample
of a light curve, it is desirable to update the feature value using the last point instead of
using the entire light curve to avoid unnecessary computation and data retrieving [24].

Deep learning techniques are examples of data-driven solutions extracting features auto-
matically that have proven to be successful in classification problems. Convolutional neural
networks [25] have been applied to spatially correlated data such as images [26, 27] and tem-
poral correlated data such as audio [28, 29] among others. Recurrent neural networks, e.g.,
those containing Long Short Term Memory units [30, 31, 32], have been applied to many
natural language processing problems [33] like translation [34] and speech recognition [35].

Recently, deep learning has been successfully applied to astronomical problems using con-
volutional neural networks, for example, for real/bogus separation [16, 17], photometry com-
putation [36], calculation of an image comparable to the difference image [18], gravitational
wave detection [19] and exoplanet detection [20]. Recurrent neural networks have been used
for light curve classification [21, 22, 23, 24].

Recurrent convolutional neural networks are a special type of neural network where con-
volutional layers are combined with recurrent layers. Usually, a first stage of convolutional
layers extract features from the raw data and generate high-level representations in deeper
layers, then a second stage of recurrent layers uses the features yielded by the convolutional
layers to learn time dependencies. Examples of applications are action recognition in videos
[37, 38, 39] and speech recognition [40].

The first contribution of this work is the proposal of a model to classify variable astronom-
ical objects based on a recurrent convolutional neural network (RCNN), which uses sequences
of images directly as inputs. In this way, it is possible to estimate the class probability of
a specific astronomical object by using the alert stream directly. With this approach, there
is no need for recomputing features when a new observation arrives, only feed the recurrent
model with the incoming image. The information about previous images of the source is
encoded in the network state. The computational cost of the proposed model scales linearly
with the number of images within a sequence, encouraging us to use it when facing large data
stream. Furthermore, it is ensure that all the information available on the images is fed to
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the classifier without inducing errors by computing the light curve (e.g., in spurious sources)
or the difference images (e.g., in badly convolved images). The proposed model consists
of convolutional layers aimed at learning spatial correlations automatically from the images
at each epoch, followed by a recurrent layer aimed at learning time dependencies between
frames of an image sequence. To the best of our knowledge, this is the first time that image
sequences are used directly to classify astronomical objects.

The second contribution of this work is the image simulation process that generates syn-
thetic image sequences that take into account the instrumental and observing conditions,
obtaining a realistic, unevenly sampled, and variable noise set of movies for each astronom-
ical object. The simulated dataset is used to train the RCNN classifier. This procedure
is faster and more adaptable to different surveys and classification tasks, as compared to
collecting real labeled data which is time-consuming and fixed to a specific survey. Further-
more, by randomizing simulations correctly it could be possible to generate a virtually infinite
number of labeled samples, avoiding the problem of manually labeling a large number of real
objects. Simulating a dataset allows, for example, creating data samples for telescopes that
are still under construction such as the LSST. Simulation parameters can be tuned according
to specific classification tasks and scientific objectives.

Since the simulated data distribution may differ from those of real image sequences, a
transfer learning technique called fine tuning [41, 42] is used to adapt the RCNN model
trained over simulated images to solve the classification task on real images. By just using a
few real labeled image sequences, the RCNN model performance improved substantially on
the real dataset.

The structure of this thesis is the following: in Chapter 2, important concepts for devel-
oping this thesis are visited, astronomical concepts and machine learning among others. In
Chapter 3 the methodology used in this work is presented. In particular, the process of sim-
ulating synthetic images is described in Section 3.1 and the proposed RCNN image classifier
model is explained in Section 3.2, along with the random forest light curve classifier used for
comparison purposes. In Chapter 4, the results are presented in Section 4.1 and an analysis
of the results is presented in Section 4.2 along with classification examples in Section 4.3. In
Section 4.4, assumptions, difficulties and proposed improvements are discussed. In Chapter
5, important conclusions, implications and future steps are commented.

1.1 Hypothesis

• It is possible to use the sequence of astronomical images directly as input to the RCNN
classifier to discriminate between astronomical objects. Using raw images produce equal
or better accuracy than using only the light curve since the image provides additional
information.
• Training a classifier with realistic simulated astronomical objects produce good models

in terms of accuracy when is applied to real data, which can be fine tuned later on.
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1.2 General Objectives

In order to avoid the aforementioned pre-processing, the general goal, is to develop a method
of classification of astronomical objects based on convolutional neural networks and recurrent
networks, which uses the sequence of images of an object directly as input to the classifier.

1.3 Specific Objectives

• Design a simulator of astronomical images of transient objects considering observation
conditions and telescope parameters. The simulator must be configurable for different
surveys.
• Design a neural network based classifier, with convolution layers and recurrence layers,

using the sequence of images simulated as input.
• Compare the proposed model with a model that uses light curves and Random Forest

classifier
• Train the image sequence classifier using synthetic images and then apply it to real

images.
• Fine tune the model obtained with a few real samples.
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Chapter 2

Background

In this chapter, the important concepts for the development of this thesis are explained, in-
cluding related work and examples. In particular, basic concepts of astronomy are described,
the process of obtaining astronomical images, also astronomical objects of study such as su-
pernovae, variable stars, among others. Then, concepts associated with deep learning, neural
networks, convolutional networks, training methods, are reviewed.

2.1 Astronomy

Astronomy is the study of celestial objects and the composition of the universe on a small and
large scale. Astronomers apply mathematical, physical and chemical knowledge to explain the
existence and evolution of various objects in the universe. There are different observational
methods to study objects. Depending on the observational method, different aspects of an
astronomical object can be measured. Most telescopes focus on measuring electromagnetic
waves emitted by astronomical objects, in different wavelength ranges such as ultraviolet,
optical or infrared. Other observational methods are gravitational wave measurement [43]
or neutrino detection [44, 45]. This thesis is focused on optical astronomy (visible and near
infrared range), but many of these concepts and methods may apply to other kinds of signals.

2.1.1 Astronomical Surveys and Big Data

A survey corresponds to the execution of an observation plan using a particular instrument
and the collection of the resulting images. In summary, an observation plan defines what
regions of the sky will be captured, light frequencies and times to observe. In the case of
a survey, the observation plan is not focused on observing a particular object, but instead
takes data of regions of the sky and then analyzes it depending on the research task. For
example, in the HiTS Survey [9] they observed the same region of the sky 5 times per night
every two or three nights in order to find supernovae at the very beginning of the explosion
and perform fast follow up (take the spectra of the source) and find evidence of the Shock
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Breakout [46, 47]. They also used g band to take most of the images since it increases the
detection efficiency. Examples of other surveys are MACHO [48], ASAS [49] and EROS [50],
among others.

The Zwicky Transient Facility (ZTF [1]) and the Large Synoptic Survey Telescope (LSST
[2]) are surveys covering large regions of the sky at a relatively high cadence. Figure 2.1
shows the field of view (area of the sky observed in a single exposure by the telescope) vs
the light collecting area (or telescope diameter), where each circle in the plot is a different
telescope. The product between both quantities is shown as the area of the circle for each
telescope and is defined as etendue which corresponds to a measure of the volume of the
universe that the telescope is able to observe in a single exposure. Note the large volume of
the universe that the LSST is capable of capturing in comparison to the rest of the telescopes.

Figure 2.1: Etendue for different telescopes. The etendue is a measurement of the volume
of the universe that a telescope is able to observe in a single exposure. It is the product
between the field of view in [deg2] and the light collecting area in [m2], represented as the
area the circle for each telescope.

One of the main objectives of the new telescopes is to find transients in large quantities.
Transients are astronomical events of finite duration, such as supernovae or gamma rays
burst. In particular, supernovae can be used as standard candles, useful for measuring
long distances in the universe. Also, other astronomical objects exist that serve to measure
distances, variable stars for example, but they are used to measure distances within the Milky
Way and nearby galaxies [6, 5]. On the other hand, supernovae can be detected at much
greater distances and they are used for cosmological studies such as the expansion of the
universe [3, 4]. In order to measure a transient adequately to calculate its distance from the
earth, it is necessary to carry out “follow up” observations in order to measure the spectra
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of the transient. The decision to execute follow up on a transient must be fast and with a
low rate of false positives since the transient may be of short duration and it is not desirable
to allocate observation time to false transients, which could be caused by camera errors or
image pre-processing errors.

Telescopes with large etendue will be able to observe a large number of transient can-
didates, called “alerts” which are triggered when there is a considerable variation in the
brightness between 2 images (explained later in Section 2.1.6). For example, in the case of
LSST, it will produce 10 million alerts per night at a rate of 10,000 alerts every 37 seconds
approximately. To have an idea, each step of processing the data should last a maximum of
37/10,000 = 3.7 milliseconds to avoid the accumulation of pending alerts to be processed in
the queue (assuming single thread of processing). As mentioned, it is necessary to perform
this processing quickly in order to trigger follow up observations with other telescope facili-
ties on interesting alerts. A precursor work of this kind of processing is the HiTS survey [9],
designed to find transients on time scales from hours to days and focused on early stages of
the supernova explosion. This problem will be addressed by systems called astronomical alert
brokers, such as ALeRCE (Automatic Learning for the Rapid Classification of Events), LA-
SAIR, ANTARES (The Arizona-NOAO Temporal Analysis and Response to Events System)
[7], which are capable of receiving, processing, classifying and reporting relevant information
about the alert streams generated by large survey telescopes in real time.

2.1.2 Basic Concepts

In optical astronomy, the brightness in a specific frequency band of an astronomical source
is characterized by the magnitude of the source, which corresponds to a logarithmic scale of
the energy flux rate produced by the source. Two kinds of magnitudes are important for this
work.

Apparent magnitude: Measure of the brightness of a star perceived on earth. The
apparent magnitude can be defined as a function of the photons rate coming from the source
registered by the detector:

m =− 2.5 log10

(
Fs
Fref

)
(2.1)

=− 2.5 log10(Fs) + zp (2.2)

where m is the magnitude value, Fs is the flux measured from the source and Fref is a
reference flux. Notice that brighter objects observed from the earth have lower magnitudes.
The Fref term in equation 2.1 can be removed from the logarithm and define it as zp called
zero point. The zero point enclose information such as absorption and color diffraction
corrections produced by the atmosphere. The value of the zero point is usually chosen to
match the apparent magnitude of a known star measured using a different instrument. More
details about the flux measuring process are explained in Section 2.1.6.

Absolute magnitude: Correspond to the measured flux of a source as it was placed at
a distance of 10 parsecs. From the inverse square law of light, the absolute magnitude M
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can be computed using the apparent magnitude m and the luminosity distance D (Stars and
their spectra [51]):

M = m+ 5− 5 log10(D). (2.3)

When the source is a nearby object, the luminosity distance D, which corresponds to the
distance traveled by the light from the source, is a good approximation for the distance in
space. When the source is distant enough to consider cosmological effects, the luminosity
distance is related to the transverse comoving distance DM [52] by D = (1 + z)DM where z
is called redshift, which is explained later.

The absolute magnitude is an important quantity since relates the distance to a source
with the luminosity measured by the instrument. In some cases, astronomers can calculate
the absolute magnitude of a source from other measurements, for example, using a relation
of the period with the luminosity of RR Lyrae or Cepheids stars which are periodic stars.
Then, using equation 2.3 astronomers can infer the distance to the source and use it as a
standard candle.

Light Curve: Usually, many images of the same astronomical object are generated in
a survey, these images are irregularly taken in time, having variable time gaps between
each image that have a duration from a couple of seconds to months, these gaps are due
mainly to observational constraints like seasonal and day/night availability of the sources.
By computing the magnitude for each image, we can build a time series called “light curve”,
that corresponds to the brightness of the source as a function of time. The light curve is
one of the ways to discriminate among different types of astronomical objects and it is used
for classification tasks [10, 13, 53] and for testing physical models [47]. Further explanation
of light curves and its computation is given in Section 2.1.6. For time units, astronomers
usually use Modified Julian Date (MJD), which is the number of solar days since midnight
of November 17, 1858, Universal Time.

Redshift: According to the work about the expansion of the universe, meritorious of
a Nobel Prize in 2011 [4], the universe is expanding at an accelerated rate. The speed at
which galaxies are moving apart from each other due to the expansion follows the Hubble’s
Law v = H0D, where v is called recessional velocity (velocity of objects moving away from
earth), H0 is called the Hubble’s constant and D is the distance to the source. Then, further
astronomical objects are moving faster compared to near ones. If the source has a very high
recessional velocity (which means it is very far), then a relativistic effect called “redshift” must
be considered for analysis. The redshift is a Doppler Effect for light. If a source that emits
light is moving away from the earth at high speed, every wavelength of the light signal is
elongated, the wavelength elongation can also be produced by a gravitational field. The term
“red shift” is based on the human perception of light as colors, where longer wavelengths are
redder than shorter ones. The opposite effect is “blueshift”, which occurs when the source of
light is moving towards the earth. The redshift z is related to the emitted wavelength λem and
observed wavelength λob, the speed of light c and with the recessional velocity (considering
a Minkowsky Space) by

1 + z =

√
1 + v

c

1− v
c

=
λob

λem
(2.4)
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Figure 2.2 shows an example of redshifted spectra of a Type IIP supernova. The atten-
uation of the observed spectra is because the source is further away due to cosmological
expansion with higher redshift. By using Hubble H0 constant and the recessional velocity
v given by the redshift z, the distance to the source D can be computed and also the flux
attenuation which is given by the inverse square law for light Fob = Fem/D

2 with Fob the flux
observed and Fem the flux emitted.
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Figure 2.2: Supernovae spectra for different redshifts [54]. Each emitted wavelength λem

is mapped to an observed wavelength λob by equation 2.4. The distance is estimated from
Hubble’s law and the given redshift, then the inverse square law for light is applied to the
flux.

2.1.3 Astronomical Objects

An astronomical object is a physical body or natural event that exists or occurs in the uni-
verse. Examples of astronomical objects are stars, planets, galaxies, black holes, supernovae,
among others. In this section, the astronomical objects used in this work are explained,
in terms of physical behavior and light curve characterization. The objects were grouped
based on their light curve variability, these groups are Transients, Periodic and Non Variable
objects.

Transients

Astronomical transients are events with limited duration. Some examples of transients are
supernovae, tidal disruptions events, gamma-ray bursts, etc. Observing these objects helps to
understand their underlying physical mechanism and some of them can be used to indirectly
study other objects that have generated or influenced the transient event [55, 56]. The
transients related to this work are Type Ia and Type II supernovae.
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• Type Ia Supernova: This kind of supernovae may occur on binary systems where
one of the stars consumes material from the companion, in a process called accretion.
If the mass of the fed star reaches the Chandrasekhar mass of 1.38 solar masses, then
a nuclear explosive reaction is triggered producing the supernova Type Ia explosion.
[57, 58]. An example of a light curve of a Type Ia supernova is depicted in Figure 2.3.
• Type II Supernova: Occur in stars with a mass between 8 and 40 solar masses.

During the life of a star, the energy produced by the fusion of elements such as hydrogen
and helium prevents the star from collapsing under its own gravity, generating an
equilibrium between those two forces. At the core of the stars, heavier elements like
carbon, oxygen, silicon, among others, begin to be produced as a result of the fusion.
When this process reaches iron and nickel, the synthesis of these elements no longer
produce energy that can compensate the gravitational pressure, so the core is compacted
and supported by the electron degeneracy pressure (two fermions cannot be in the same
quantum state, this satisfies the Pauli exclusion principle). Once the inner core reaches
the Chandrasekhar mass, the degeneracy pressure is not enough to prevent the core
collapse produced by its own gravity. The core of the star is compressed even more in a
matter of seconds, the formation of neutrons and neutrinos takes place and the inward
collapse bounce outward producing a shock wave which is the supernova explosion. The
energy released by the explosion ionize the hydrogen in the outer layers increasing the
opacity of the surrounding material. Then, when hydrogen recombines due to cooling
the opacity slowly decrease releasing the energy. This effect can be noticed in the light
curve, where a plateau is formed right after the explosion due to recombination. An
example of a light curve of a Type II supernova is depicted in Figure 2.3.
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Figure 2.3: Type Ia and Type II supernovae simulated light curves. Type Ia supernova light
curve is based on Hsiao models [58], type II supernova is based on Moriya models [59].

Periodic Objects

Some astronomical objects change their luminosity in time due to their physical mechanism,
as in the case of transient objects. A subset of variable objects are periodic objects, where
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a luminosity pattern is repeated through time. Examples of periodic objects are Cepheids,
RR Lyrae, eclipsing binaries, delta scuti, long period variables, among others. In this thesis,
the following periodic objects were used:

• RR Lyrae: Variable stars with periods between 0.2 to 1 day, and masses between
0.6 to 0.8 solar masses. RR Lyrae are very important since they only appear in very
old stellar population (older than 10 Gigayears) [60]. By using the period-luminosity
relation, RR Lyrae can be used as standard candles to calculate distances to these old
stellar systems. Figure 2.4 shows a light curve example of an RR Lyra in different
bands.
• Cepheids: Variable stars with periods between 1 to 100 days, and masses between 2

to 20 solar masses. Cepheids can be found further than RR Lyrae since the former are
more luminous, and they are used to measure distances to nearby galaxies such as the
Magellanic Cloud and the Andromeda Galaxy. These variable stars are found in stellar
systems with recent star formation, for example, Cepheids are found within the young
stellar population disk in the Milky Way [60]. Figure 2.4 shows a light curve example
of a Cepheid in different bands.
• Eclipsing Binaries: In this case, the variation in luminosity of the source is not

caused by an intrinsic variation of the brightness of a star. Eclipsing binaries occur in
binary systems when two stars are orbiting around each other. When the orbit plane of
the binary system is aligned with the line of sight, then, the luminosity of the system,
observed from earth, decays when one star blocks the light of their companion. Binary
systems are important since the orbit can be used to estimate the mass, along with
other parameters such as the density of the stars, their luminosity and distance. Figure
2.4 shows a light curve example of an eclipsing binary in different bands.

Figure 2.4 shows examples of different variable stars. The upper plots are the time based
light curves, i.e, the magnitude as a function of time. Because of the irregular sampling
and noise, most of the time is hard to see a periodic structure in this representation. A
better way to work with periodic signals is by transforming the time to phase space, which
corresponds to mapping each time sample to a position in the phase of the periodic pattern.
This transformation is also called “folding” the light curve and can be written mathematically
as:

θi = bticP ·
1

P
(2.5)

where θi is the phase for sample i , ti is the time in days, P is the period of the signal and
b·cP denotes the module P operator. Then θi ∈ [0, 1], and usually the phased light curves
are plotted with two periods for visualization purposes. The lower plot in Figure 2.4 show
the folded light curves for RR Lyra, Cepheid and eclipsing binary.

Non-variable Objects

This section refers to astronomical objects which their brightness does not change in a human
time scale. For this thesis, two types of non-variable or constant objects are considered, non-
variable stars and galaxies, which differs between them in their image shape.
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Figure 2.4: Examples of light curves for (a) RR Lyra, (b) Cepheid and (c) eclipsing binary.
The upper plots show the magnitude vs time of simulated observation with irregular sampling
and noise. The bottom plots show the magnitude vs phase after folding the original light
curve.

• Non-variable stars: Luminous astronomical object. Different kinds of stars belong
to this category, depending on their composition, localization, etc. For this work, we
will characterize these objects as a point-like sources with constant brightness on each
band.
• Galaxies: Correspond to structures compound by an enormous amount of stars, gas,

dust and dark matter, gravitationally bound. Depending on the image resolution,
galaxies are observed with an elongated structure, and they exist in different shapes
such as elliptical, spirals and irregulars [61].

Further details about each object are given in Chapter 3, where some astronomical pa-
rameters must be considered in order to simulate their light curve and image. Furthermore,
each type of object has properties in addition to their underlying physical mechanism, for
example, their abundance in the universe, biases of finding certain objects depending on the
detection system or the pointing of the survey.

2.1.4 Astronomical Image Formation

In optical telescopes, roughly speaking, the process of taking an astronomical image is the
following:

• The telescope is pointed in the desired direction to observe the sky. In addition, a
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bandpass filter for light is selected in order to register photons in a given range of
frequencies. Examples of these bandpasses are shown in Figure 2.5, where the filters
response of the Dark Energy Camera (DECam [62]) as a function of the wavelength is
depicted. The amount of flux that is able to pass through the filter is proportional to
the relative transmission.
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Figure 2.5: DECam Filter response

• The camera shutter is opened, the light coming from the source goes through the atmo-
sphere, and the telescope structure (mirror, lens, filter, etc). The light gets distorted
during this path. This distortion is characterized as a function called Point Spread
Function (PSF) detailed later. The distorted version of the light arrives at the Charge-
coupled device (CCD) camera and starts to fill each pixel with a charge package ([e-]
units) proportional to the intensity of light in that region. The shutter is closed after
a period of time called exposure time.
• Once the shutter is closed, the charges on each pixel are read and converted to a matrix

of integer numbers in Analog to Digital Units (ADUs). Usually, the telescope moves to
the next position (slew) while the CCD charges are been read.

An example of an astronomical image taken using DECam is shown in Figure 2.6.

Camera Specifications

Usually, charge-coupled device (CCD) cameras are used to take the images in optical tele-
scopes. In each pixel of the image, a conversion is made of the number of photons detected in
the pixel to electron charges using a semiconductor material. The camera pixels are exposed
to light during the exposure time, which is controlled by the shutter. The relevant parameters
to understand for this work are:

• Camera gain: The gain G of the camera corresponds to the conversion between the
number of electron charges C[e−] in a pixel and the final measurement of the pixel in
units of “counts” or ADU (Analog-to-digital units) that follows ADUs = C · G−1, so
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the gain has units of [e−/ADU]. The images of the CCD cameras are delivered for
pre-processing in units of counts or ADUs.
• Pixel Saturation: Each pixel of the camera has a maximum capacity of charges

that can store, the maximum number of charges that a pixel can contain is called
the saturation value of the pixel. Once the level of saturation is reached, the pixel
"overflows" of charges and begins to fill the surrounding pixels with the excess of
electron charges, this phenomenon is called blooming effect [63]. The saturation value
is in units of [e−].
• Pixel scale: The region of the sky that is being observed for each pixel. This parameter

is not only related to the CCD, but also to the entire optical system prior to the arrival
of the photon to the CCD and it could vary within the same CCD. It is in units of
[arcsec / pixel].
• Dark current: Electrons charges added to the pixel by a thermal effect. It is generated

at every moment even after reading and resetting pixels before exposure. It could be
avoided by cooling the CCD.
• Read noise: Once the exposure is done and the shutter is closed, the electron charges

are read and the reading process has an associated noise, modeled as a Gaussian noise
characterized by its standard deviation in units of charges [e−].
• Filter or Band: Usually, optical telescopes observe light around a wavelength called

a band or filter. For example, in the case of The Dark Energy Camera (DECam [64])
used in HiTS, has filters called g, r, i and z around a wavelength of 400-550, 560-710,
700-850 and 830-100 nanometers respectively. See Figure 2.5.

Figure 2.6: HiTS Survey image example. This image is one CCD out of 62 CCD array of
DECam, with a resolution of 2048 by 4096 pixels, pre-processed for visualization purposes.
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Observation Conditions

The observation conditions are the variables related to the atmospheric conditions when the
astronomical image is taken. It is strictly related with the observation plan which defines
which region of the sky the telescope will point at, at what time and in which band. De-
pending on the time and the region of the sky observed, the important parameters related
to the image quality are the following:

• Sky brightness: It is the light emitted by the atmosphere by scattering and diffusion
of light coming from different sources. The sky brightness varies depending on several
sources, the Sun and Moon position when the image is taken and light pollution from
near town or cities. The units of the sky brightness are [mag/arcsec2] and can be
converted to [ADU/pixel] depending on the need.
• Point Spread Function (PSF): It is the function that describes how everything

between the light source and the CCD camera spread the photons before arriving to
the CCD. This can also be understood as the response of the atmosphere and the
telescope to a point source modeled as a delta function. One of the important features
used to describe the PSF is the full width at half maximum (FWHM), and it can
be computed fitting a Gaussian function to an estimated PSF and finding the points
where the Gaussian is half of its maximum value, then, the FWHM is the distance
between those points. It is related width the standard deviation σ of the Gaussian by
the expression FWHM = 2

√
2 ln 2σ. For a given exposure time, the astronomer usually

registers the FWHM of the PSF at the zenith as shown in Figure 2.7. The FWHM is
called seeing when is measured at the zenith and it partially characterizes the quality
of the atmospheric conditions for astronomical observation. Larger seeing means worse
observation conditions since the light from the source will be more spread. In Figure
2.7 we show an example of how the point spread function affects the image for different
FWHM.
• Zero Point: Constant that shifts the conversion between magnitude and flux shown

in equation 2.1. Computed to match the apparent magnitude of stars with a given
reference magnitude. Ideally, one zero point should be calculated for each exposure,
but sometimes it is approximated as a constant value for all exposures, this is not
always a good approximation since the zero point also contains important information
related to losses in flux due to atmosphere dispersion and differential color refraction.
• Airmass: A measure of the amount of atmosphere between the telescope and the

source. It is estimated by computing the zenith angle shown in Figure 2.7 denoted
by θ, then taking the airmass as sec(θ). Observing with an angle far from zenith will
produce large airmass estimation, observing at zenith has an airmass of 1. Higher
airmass increase the magnitude resulting in a fainter source, this makes sense since a
larger amount of atmosphere will scatter more light before arriving at the camera.
• Limiting Magnitude: The maximum relative magnitude necessary for an object in

order to produce a signal within the image that is 5 standard deviation above the
noise. Objects with a magnitude lower than the limiting magnitude will produce a
considerable signal and will be considered as a detection.
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Figure 2.7: Zenith angle and distortion depending on the angle of observation. For the same
source, observations closer to the zenith will have better quality in most of the cases since the
light goes through less amount of atmosphere as compared to observing in different angles θ1

and θ2, for example. Here, from direction a to c, the airmass increases and also the FWHM
of the PSF. The spreading of the light is larger and the flux loss due to scattering in the
atmosphere is higher.

Noise sources

Astronomical images have different sources of noise, some of them are related to observation
conditions, others with the quality of the camera. In this section, we explain each source of
noise, its modeling and how affects the signal to noise ratio of the image. For a more detailed
explanation see http://www.ucolick.org/~bolte/AY257/. For this section, we will use r
as the radius of aperture in pixels, that is the area of the image where we are measuring the
signal, texp as the exposure time, np = πr2 is the number of pixels in the aperture. All these
noise effects apply to electron charges C[e−], so to return to ADU units we divide by the gain
G.

• Source noise: It is the intrinsic noise of the source, which is the astronomical object
that we are observing. The electron charges arrived to the CCD C in [e−] units coming
from the source distributes as Poisson, so E(C) = V ar(C) where E(C) is the expec-
tation value and V ar(C) is the variance. Considering the registered flux of the source
F = C/texp, then the standard deviation of the source is σs =

√
F · texp.

• Sky noise: As described in Section 2.1.4, the sky has its own brightness produced by
scattering of light coming from different sources such as the moon or nearby cities. It
could be considered as a counting noise, so it is often approximated as an independent
Poisson distribution per pixel. Actually, there is a correlation of sky noise between
close pixels within the CCD camera due to the point spread function. For further
explanation see Section 2.1.6. Denoting the sky flux per pixel as Fsky in [e−/pixel/s],
then the sky noise within the aperture area could be taken as σsky =

√
np · Fsky · texp.

• Read noise: According to the previous section, read noise is modeled as a Gaussian
distribution and characterized by its standard deviation σreadout in [e−] units and zero
mean. Then, the noise within the aperture area is σr =

√
np · σ2

readout.
• Dark current: Usually produced by random generation of holes an electrons in a

semi-conductor material. This source of noise could be modeled as a positive mean
Gaussian distribution, but it has a heavy tail towards higher noise values [65]. Dark
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current σdark has [e−/pixel/s] units, then the noise produced by dark current within
the aperture area is σd =

√
σ2

dark · np · texp

• Extra sources: Astronomical images may contain other light sources besides the
target astronomical object. For instance, supernovae explosion tend to occur near a
host galaxy, which increases the background brightness and thus the noise in the image.
A simple way to approximate the noise due to extra source in the image is by considering
the light of the extra source that falls into the aperture area, then add their variance
considering Poisson noise. If s(xi , yj) is the flux rate of the source in pixel coordinates
xi , yj, then the noise of the extra source within the aperture area A is

σextra =

√∑
i ,j

s(xi , yj) · texp (2.6)

where for every (i, j), (xi, yj) ∈ A. In the latter expression, pixel correlation is not
considered.

Using all previously discussed noise sources, the signal to noise ratio of the source image
is defined as:

S/N =
F · texp√

σ2
s + σ2

sky + σ2
r + σ2

d + σ2
extra

(2.7)

2.1.5 Difference Image

The basic idea behind the computation of the difference image is that if two images taken
at different times but pointing to the same region of the sky are subtracted, everything that
varied between the two images will remain, and everything unchanged will be canceled. This
procedure is very suitable to find transients like supernovae and asteroids. Usually, for a
sequence of images of a source, a reference image is chosen, then every other new image of
the object, the science images, are compared against the reference image.

The procedure to compute the difference image can be summarized as the following:

1. Align the two images, i.e., move the center of each source at the same image coordinate
frame. This part is very important because errors in alignment could generate dipoles.
An example of a dipole due to alignment error is depicted in Figure 2.8

2. Subtract the sky from both images, so the resulting average background of the image
is statistically zero.

3. Estimate the PSF for both images and find a convolution kernel that brings the shape of
the highest quality PSF (the one with lower FWHM) to the shape of the lowest quality
PSF. In the example shown in Figure 2.8, the reference image has a larger FWHM as
compared to the science image. This process is called "PSF Matching" since the kernel
is used to change the PSF of one of the images to the PSF of the other image.

4. Convolve the kernel with the highest quality PSF image (science image in this example),
resulting in a new science image, as if it had been seen with the PSF of the reference
image.
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5. Subtract both images, which are the reference image with background subtracted, and
the science image with background subtracted and convolved with the kernel found in
step 2.

Reference Science PSF match kernel Difference Dipole

150 200 250 100 200 300 0.00 0.05 0 25 50 0 25

Figure 2.8: Difference image computation example. In this case, the reference image has a
larger FWHM than the science image, so the PSF match kernel maps the PSF from science
image to the PSF from reference image through convolution. The resulting difference image
is the product form the procedure explained. The dipole shown here was simulated by
generating an alignment error of 0.5 pixels.

2.1.6 Light Curve Calculation

As mentioned in the previous section, computing the light curve of an astronomical object
is useful to characterize it. In this work, Naylor’s optimal photometry [8] is used to estimate
light curve from a series of stamps, which are a reduced version of the original image with
the source centered.

For each of the available stamps of an object, which could be the science or the difference
image, the procedure to estimate the flux of a source from the image is the following (for
further details, see Naylor’s original paper [8]):

1. Estimate the PSF Pi ,j from the image, where (i , j) is the position in pixels. Align the
center of the target source with the center of the PSF.

2. Compute the variance per pixel

Vi,j = Vs +
Di,j − Si,j√

G
, (2.8)

where Di ,j is the original value of the image in the pixel (i , j) in ADU units, Si ,j is the
estimated background level (sky plus known extra sources), G is the camera gain, and
Vs is the variance of the background. The variance of the background can be estimated
directly from the image, or using assumptions about noise distribution as explained in
previous section.

3. Compute the counts CADU from the source in ADU units as

CADU =
∑
i ,j

Wi ,j(Di ,j − Si ,j), Wi ,j =
Pi ,j/Vi ,j∑
k,l P

2
k,l/Vk,l

, (2.9)
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whereWi,j is called weight mask, which gives more importance to pixels where the PSF
has a higher value.

4. The error of the flux estimation Cerr is

Cerr =
∑
i ,j

W 2
i ,jVi ,j (2.10)

5. Move from counts to flux F = CADU·G/texp, then from flux to magnitude using equation
2.1.

The estimation of the variation of brightness of a source is a basic step to determine if the
object is of interest or not. For example, if the flux F of the source is estimated to be n times
larger than the estimation error Ferr (usually n = 5, this is five sigma detection), then
the source is considered to be an astronomical object. Furthermore, if the sigma detection
is from the flux computed using the difference image, this means that an object increases its
flux in time, and it is labeled as an “alert” since could be an interesting transient object to
perform follow up, like a supernova explosion.

The light curve could be computed from the science image or the difference image. When
the science image is used, extra sources, different from the target of photometry, may appear
and they should be removed from the source. This could be complicated in cases where a
known catalog of sources is not available since it is necessary to determine which part of the
flux is coming from the target object or from an extra source. Figure 2.9 shows an example
of a light curve extracted from a series of science image stamps. Using the difference image to
compute the light curve presents the advantage that extra sources disappear in the resulting
difference image if they have a constant brightness, however, dipoles due to alignment errors
could trigger an alert of a transient.

2.1.7 Traditional Classification Methods

As we mentioned in Section 2.1.1, some research areas in astronomy require the classification
of a large number of objects: e.g., supernovae are used to estimate cosmological distances
for studies about the expansion of the universe [3, 4], and variable stars such as RR Lyrae
or Cepheids are needed to map the structure of the Milky Way and serve as cosmic distance
ladders [6, 5].

Traditional methods to classify variable astronomical objects are based on light curve
computation. Then, features are extracted from the light curve, for example, the Lomb
Scargle periodogram [66, 67], which is a Fourier transform for irregularly sampled signals,
also statistics such as mean, variance, skewness and kurtosis, and model fitting to use the
parameters of the model as features [13]. All these features were manually designed to
discriminate between different type of astronomical objects by looking at the light curve,
some of the features are known to be important for this task such as the period to discriminate
among periodic stars. Examples of this methodology are [13, 53, 11, 12, 14, 15].

Sometimes, the manual design of expressive features for the classification task could be
hard to accomplish. This requires a notion about what kind of features are more suitable to
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Figure 2.9: Light curve obtained from a series of stamps. Applying Naylor’s photometry to
each of images taken by a telescope forms a light curve shown in orange. Each point of the
light curve is a noisy version of one point sampled from the underlying physical model. In
this example, the alert is triggered in the third observation (frame 3 of stamps), since the
flux is at least 3 times the background noise. Here, the science image is used to compute
the light curve, so the host galaxy must be subtracted from the image (term Si ,j in equation
2.9).

discriminate between classes, which is not always clear. Furthermore, to quantify the gain
of adding a certain feature could require expensive computation, such as feature selection
algorithms [68, 69], or training a classifier to compute feature relevance [70, 71, 72]. One way
to avoid manual feature design is learning features directly from the data (either the light
curve or the difference image). Representative features are learned during the training of
the classification model, avoiding manual feature computation. This approach presents some
disadvantages, since learned features could be hard to interpret and also could be biased in
some undesirable way as a product of an artifact of the data. By manually designing features
both problems can be controlled. Example of features learned from data for classification
problems are [16, 17, 23, 22, 18, 21, 24].
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2.2 Deep Learning

In this section, Deep Learning and related concepts are explained, starting with the ba-
sics of artificial neural networks. Then, convolutional neural networks and recurrent neural
networks are visited. Next, important considerations during neural networks training are
discussed, in order to present some techniques to improve the training process. Finally, deep
learning methods applied to astronomical problems are reviewed.

2.2.1 Artificial Neural Networks

Artificial neural networks (ANN) are a special kind of machine learning method, which are
inspired on the biological functioning of the brain. The building block for ANNs is the
artificial neuron, also called perceptron, usually described as:

y = f

(∑
i

wixi + b

)
, (2.11)

where wi are called the synaptic weights of the neuron that ponderates the input xi , then
the product is mixed with other inputs through a sum plus a bias term b, the combination of
inputs goes through an activation function f(·) giving an output value y. A representation
of a single artificial neuron is depicted in Figure 2.10a.

To build an ANN, a set of artificial neurons are grouped by layers, then each layer is
stacked, so the input of the next layer is the output of the previous one. A single ANN
neural network layer can be expressed with matrix notation as the following:

y = f
(
W Tx + b

)
, (2.12)

where x ∈ Rn with n the input dimension, y ∈ Rm with m the number of neurons within
the layer which also defines the output dimension. Here the weights of each neuron in the
layer correspond to the columns in W ∈ Rn×m and the bias of each neuron is b ∈ Rm. The
activation function f(·) is applied element-wise to the vector. Typical choices for f are the
logistic sigmoid, hyperbolic tangent or rectifying linear unit ReLU [73], shown in Figure 2.11
respectively. The layer in equation 2.12 is called fully connected layer since every output
neuron is connected through a weight to all the components of the input x.

An ANN is built by stacking layers. The inner layers, which are not the input or output
are called hidden-layers. This kind of structure is known as multi-layer perceptron (MLP).
For example, the output of a 2-layer perceptron can be expressed with a matrix notation as
the following:

yout = f2

(
W T

2 f1

(
W T

1 x + b1

)
+ b2

)
. (2.13)

If yout ∈ Rm and x ∈ Rn, then it has been proven that the MLP in equation 2.13 is an
universal approximator for any continuous function g : x ∈ Rn → y ∈ Rm in a compact
subset of Rm, and under certain assumptions on the activation function [74, 75]. Because
of this property, ANNs are used for classification or regression tasks where g maps, for
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(a) Single neuron.

x y

(b) Multi-layer neural network.

Figure 2.10: Graphical representation of (a) a single artificial neuron or perceptron and (b)
a MLP network.
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Figure 2.11: Typical activation functions.

example, a handwritten digit image to a label that represents the number in the image [76].
A representation of a multi-layer perceptron is depicted in Figure 2.10b.

The universal approximation theorem states that a value of W and b exists that approxi-
mate g, but it doesn’t specify which are the specific values ofW , b and number of hidden lay-
ers. In order to findW and b for each layer that map a target function g : x ∈ Rn → y ∈ Rm,
a dataset of examples of input-output of g, {(x1,y1), (x2,y2), ..., (xN ,yN)} are required. De-
noting the function of the MLP as h : x→ ŷ, it is desirable that ∀i, h(xi) = ŷi is close to yi .
A loss function is defined to evaluate how close is y to ŷ. For classification problems with M
classes, y, ŷ ∈ RM are the probabilities of x belonging to a certain class c. Usually, y has a
one-hot encoding format, where yc = 1 if the sample belongs to class c and 0 elsewhere. For
classification problems, the most common choice to compare y and ŷ is the cross entropy
H(y, ŷ), leading to the average cross entropy Lcross along all the examples as loss function,
as follows:

Lcross =
1

N

N∑
i=1

H(yi , ŷi), H(y, ŷ) = −
M∑
c=1

yc log(ŷc). (2.14)

For regression problems, the most common choice is the mean square error (MSE):

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2. (2.15)

The smaller the loss function, the closer are y and ŷ. To find the parameters of the MLP
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that better maps the samples, the loss function must be minimized. For a MLP with more
than one layer, the loss function is non-convex in the network parameters, this means that
the function could have more than one minimum (or maximum) value. The loss is minimized
by iteratively computing the gradient ∇WL using the back-propagation algorithm [77] (using
the chain rule for neural networks), then using the gradient, it is possible to find a new
network W t+1 that leads to a lower loss value by computing:

W t+1 = W t − α∇WL (2.16)

where t is the iteration index, and α is called the learning rate. This method to minimize the
loss function is called gradient descent. When the dataset is too large, not all the examples
within the dataset can be used to compute the gradient mainly due to GPU/RAM memory
or computation time, so each iteration is done by using a mini-batch of the data, with fewer
samples that estimate the gradient, this leads to the stochastic gradient descent method.
The process of finding the weights and biases of a network iterating over the samples, and
computing the gradient to correct the weights as explained here is called training.

As we mentioned before, since the loss is a non-convex function, this optimization could
lead to a local-minimum solution. To speed up the procedure, there are other versions of the
update rule in equation 2.16, for example, stochastic gradient descent with momentum [78].
There also variations that have an adaptive learning rate, such as Adagrad [79], Adadelta
[80], ADAM [81], AMSGrad [82], among others.

One of the problems that an MLP has during the training process is the vanishing
gradient. When more than two or three layers are stacked and trained, the gradients for
the input layers (the ones further from the output, i.e., the error between y and ŷ) gets
smaller. Consider the graph shown in Figure 2.12 that represents a single layer of a ANN,
where yl−1 is the output of the previous layer l − 1, Wl, bl are the weights and biases for
layer l, zl = Wl · yl−1 + bl are the weighted input sum before the activation function fl(·)
and yl = fl(zl) is the layer output. For simplicity, consider every quantity as a scalar (this
does not harm the conclusion), by taking the derivative of the output yl with respect to the
weights of k layers before Wl−k, the following is obtained:

yl−1 yl

Wl bl

zl
mul + (⋅)fl

Figure 2.12: Graph representation of a single ANN layer, where mul denotes matrix multi-
plication
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∂yl
∂Wl−k

=
∂yl
∂yl−1

∂yl−1

∂yl−2

· · · ∂yl−k
∂Wl−k

(2.17)

=(fl
′(zl) ·Wl)(fl−1

′(zl−1) ·Wl−1) · · · (fl−k ′(zl−k) · yl−k−1) (2.18)

=

[
l∏

i=l−k

fi
′(zi)

]
︸ ︷︷ ︸

f∗

[
l∏

i=l−k+1

Wi

]
︸ ︷︷ ︸

W∗

yl−k−1, (2.19)

where fl′(zl) denotes the derivative of the activation function of the layer l. If fl(·) for any
layer is either a sigmoid function or an hyperbolic tangent, then its derivative takes values
fl
′(·) ∈ (0, 1) and the first term f ∗ in equation 2.19 gets smaller while k increases, this means

that the derivative ∂yl/∂Wl−1 gets smaller when more k layers are stacked in the architecture.
This is one of the reasons to prefer ReLU functions rather than sigmoid or hyperbolic tangent,
the last two present saturation regions where the input |x| is large enough, while ReLU only
saturates for x < 0. Furthermore, if the value of the weights distributes as a Gaussian
N (0, 1), then the second term W ∗ that multiplies the values of the weights Wl of each layer
will be small too. Small values of the gradient does not allow to train the layers that are too
far from the output, this is the vanishing gradient problem.

In 2006, Geoffrey Hinton showed that it is possible to train deep architectures with more
than 3 layers by initializing in a “good starting point” for the optimization by using Restricted
Boltzmann Machine [83, 84]. The problem of the vanishing gradient was not attenuated but
bypassed, by the fact that the intermediate representation of hidden layers was already good
because of the smart initialization. This was the proof that deep architectures can be trained
effectively and that they perform better than shallow ones, starting the field known as Deep
Learning. Since this breakthrough, deep architectures in terms of the number of layers and
time dependencies, are being applied in different fields producing state of the art results.
Deep learning methods are particularly useful when a large amount of data is available. In
addition, when good features to extract from the data and solve the problem are not clear,
deep architectures learn the features directly from the data. A variety of architectures have
been developed that solve the vanishing gradient in different ways, also adapted for different
input data formats, training performance in term of accuracy or computation time, the goal
of the task such as classification, clustering or data generation. Some of the architectures
and their advantages are described in the following sections.

2.2.2 Convolutional Neural Networks

For a certain type of data, where features are spatially or temporally correlated, there is a
special kind of neural networks called Convolutional Neural Networks (CNN). They are based
on the biological visual system of animals [85, 86] and they have been applied to spatially
correlated data such as images [26, 27] and temporal correlated data such as audio [28, 29]
among others.

The convolutional layers within the CNN apply convolutional operations to their inputs.
The most popular one is the convolution over images done by adaptive filters, which are
adjusted through the training process. The convolution y of an image x with a filter W plus
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a bias b is expressed as:

yi,j,k =
∑
m,n,p

xi−m,j−n,p ·Wm,n,p,k + bk, (2.20)

where x and y are 3D tensors, with values x and y respectively, i, j are the image coordinates,
the indexes m,n run over the filter and the index p runs over the depth or the number of
input channels, and k is the number of output channels. The filters move over the image by
skipping a defined number of pixels in the spatial dimension, this is called stride. The filters
W have four dimensions, height, width, number of input channels and number of output
channels. W is usually chosen to be much smaller in the height and width dimension than
the image, 3× 3 or 5× 5 for example. On the other hand, the output channel is commonly
much larger than the input channel. For example, for an RGB image, the number of input
channels is 3, architectures with 32, 64 or even more output channels per layer are frequent
[26, 27]. Right after the convolution operation, a non-linear activation function is used, the
same way as in the fully connected layer. An example of the convolution operation is shown
in Figure 2.13, where a single channel is used for simplicity, but the convolution may also
occur in the channel dimension.

3⋅1 4⋅-2

6⋅-1 2⋅1

8

4

2

1

1 3 8 6

8 4 7 9

1 -2

-1 1

Filter

-9 -10

4 -1
Convolution

0

1

-2-10-9

Figure 2.13: Convolution operation example. Using stride 1 and a single channel for both,
the input image and the filter.

Convolutional layers have the interesting property of invariance to a translation of features
within the image, because the same weights of the filter are applied to different groups of
pixels, this is called parameter sharing. For example, if the filter gets activated when
finding a corner in a certain direction within the image, then the same corner found in
another part of the image will produce the same activation of the filter. Furthermore, the
fact that the filter is much smaller in the first two dimensions means that it is “seeing” a
small portion of the image detecting local features, then the next layer sees a bigger portion
of the image and is able to combine features detected from the previous convolutional layer.
In practice, it has been observed that layers closer to the input detect lines and textures,
then the next layer uses the previous layer activations to detect corners or curved lines, the
complexity of the detected features increases as more layers are stacked in the network [87].

Another type of operation used in CNNs are the pooling layers [88]. These layers are
applied to reduce the dimensionality of the representation through the network and act as
a regularizer. In this work, max pooling operations were used, which return the maximum
value within a sub-matrix of the image, Yi,j = max

(
Xi:(i+n),j:(j+m)

)
where i, j are the image

coordinates and n,m are the coordinates of the sub-matrix. An example of the pooling
operation is shown in Figure 2.14.
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Figure 2.14: Max pooling operation example. In this case, the stride is 2, so the patch moves
every two pixels of the input image and selects the largest value within the patch.

Different kinds of architectures have been designed. For example, a special kind of CNN
called Deep Residual Neural Network or ResNet [89], which bypasses the input x to the
output of the convolutional layer y, this is:

y = x + Conv(x) (2.21)

where Conv(·) denotes the regular convolutional layer. By doing this, the error gradient
can go through the bypass directly, allowing architecture training with hundreds of layers
without suffering from the vanishing gradient problem. Another example of architecture is
the Densely Connected Convolutional Network or DenseNet [90], which connects each
convolutional layer to every other layer, mitigating the vanishing gradient problem.

2.2.3 Recurrent Neural Networks

Just as CNNs are specialized to process spatially correlated data, Recurrent Neural Networks
or RNNs are used to process sequential data or time series. There are many types of RNNs
[91] but most of them have a feedback connection to the input from previous time steps or a
state (or both), where a state is an arbitrary representation of a memory of previous inputs.
This recurrent structure can be expressed as yt, st = h(x, st−1), where yt is the model output
at time t, xt is the input, st is the state (which could also include the output yt) and h(·)
is the forward function of the RNN. An example of a simple RNN graph is shown in Figure
2.15. There are two representation, the forward graph and the unfolded graph, the latter
shows the time dependencies explicitly.

In order to compute the gradients and train this kind of networks, back-propagation is per-
formed through time and the network forward operation. In principle, the back-propagation
through time (BPTT) could be computed from the last point in the time series yN to the
first one y1. This is not always possible due to memory and computational time issues. In
practice the back-propagation in time is truncated to a time shorter than the total length
of the time series. For example, for the unfolded network shown in Figure 2.15 the gradient
could be propagated until k time steps in the past from t.

For long time dependencies, the BPTT has the following problem. Consider the recurrent
neural network layer shown in Figure 2.16 and expressed in equation 2.22. If the dependency
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Figure 2.15: Recurrent neural network representation. The graph on the left represents the
recurrent structure of yt, st = h(xt, st−1), which is unfolded on the right side of the figure to
depict the time dependencies of previous inputs and states explicitly.
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Figure 2.16: Recursive layer graph, the output yt depends on the current input xt and the
previous output yt−1.

of yt is explicitly unrolled until k previous time steps, then equation 2.26 is obtained,

yt =W Txt + V Tyt−1 (2.22)
=W Txt + V T

(
W Txt−1 + V Tyt−2

)
(2.23)

=W Txt + V TW Txt−1 +
(
V T
)2

yt−2 (2.24)

=W Txt + V TW Txt−1 +
(
V T
)2 (

W Txt−2 + V Tyt−3

)
(2.25)

...

yt =
k∑
i=0

(
V T
)i
W Txt−i +

(
V T
)k+1

yt−k, (2.26)

Let V admits an eigenvalue decomposition V T = BTAB and replacing in equation 2.26, we
get:

yt =
k∑
i=0

BTAiBW Txt−i +BTAk+1Byt−k, (2.27)

with eigenvalues λi and eigenvectors ai (taken from The Deep Learning Book, Chapter 10
[92]). Then, the gradient with respect to any parameter of the network for longer dependen-
cies than k will be multiplied by Ak+1. If any of the values λi < 1, then the vanishing gradient
problem will arise for directions aligned with ai as k increases. If λi > 1, then the gradient
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will increase by a factor of λk+1
i in the corresponding direction ai, this is called exploding

gradients.

In this work, we use a special kind of recurrent model called Long-Short Term Memory
or LSTM [30, 31, 32]. The main characteristic of LSTMs is the use of gates that control the
content of the state in order to learn longer time dependencies than conventional recurrent
networks. The LSTM cell (or layer) is described by the equations 2.28 to 2.32. For a given
input vector xt and previous outputs ht−1, the LSTM controls what is written and deleted
from the cell state ct using three gates: the forget gate ft in equation 2.28 removes part of
the state using the information from current input and previous output, the input gate it
in equation 2.29 updates the state, and the output gate ot in equation 2.30 combines input,
state, and previous output to give a new output ht. Each gate uses weights Wf ,Wi,Wo,Wc

that multiplies the current input, weights Uf , Ui, Uo,Wc that multiplies the previous outputs,
biases bf , bi, bo, bc and sigmoid function σ. The gate mechanism of LSTM allows the cell
state ct in equation 2.31 (∗ denotes the element-wise product) to keep track of long-term
dependencies within a sequence, this can be easily achieved by saturating the sigmoid function
of the forget gate to 1 in the right components. A graphical representation of an LSTM cell
is depicted in Figure 2.17. Some variants of LSTM are, for example, the Gated Recurrent
Unit [93] and the Phased LSTM [94].

ft =σ(Wfxt + Ufht−1 + bf ) Forget gate (2.28)
it =σ(Wixt + Uiht−1 + bi) Input gate (2.29)
ot =σ(Woxt + Uoht−1 + bo) Output gate (2.30)
ct =ft ∗ ct−1 + it ∗ tanh(Wcxt + Ucht−1 + bc) Cell state update (2.31)
ht =ot ∗ tanh(ct) Output vector (2.32)

σ σ σtanh

tanh

x +

x x

[ht-1,xt]

Ct-1 Ct

ht

ft it
ot

Figure 2.17: LSTM graphical representation. Boxes with activation functions σ or tanh
denotes a fully conected layer as shown in equations 2.28 to 2.31.
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2.2.4 Deep Learning Training

Usually, deep neural network architectures present a large number of free parameters that
can be tuned to map any function. The larger the number of free parameters θ, the larger
the space of functions that is able to map, also called the model capacity. If the capacity
of a model ŷ = hθ(x) is high enough, through training described in Section 2.2.1, it is
possible to achieve an arbitrary small value of the loss function to any sufficiently small
set {(x1,y1), (x2,y2), ..., (xN ,yN)} that are examples of a function g : x ∈ Rn → y ∈ Rm.
This is not always desirable since the estimated map hθ could be adjusted to only map the
available data, instead of learning the underlying structure given by g, so when new data is
fed to the model for inference ŷ = hθ(xnew), ŷ it will be very far from the real value ynew,
since the model is only able to map the presented data during training. This phenomenon is
called overfitting, and the capacity of a model to describe correctly new data not presented
during the training is called generalization. The inverse effect is called Underfitting and
it occurs when the capacity of the model is not large enough to fit the training data.

In order to monitor the training process and overfitting, the available data is usually split
into three subsets, the training set used to find the parameters of the model, the validation
set used to monitor the generalization capacity of the model, and the test set which is used
only to evaluate the model. Decisions about the model design and training procedure could
be led by its performance on the validation set, this is an undirected flow of information from
the validation set to the final model. The test set is the part of the data that the model
never “sees” in any way to choose the parameters.

The example shown in Figure 2.18 consists of simulated data sampled from a parabola,
the data was divided into training and test set. Then, the training data was used to fit a
polynomial model y =

∑N
i=0 αix

i. In this cases, models with N = 1, 2, 5, 10 were used. The
model with N = 1 is not able to correctly fit the training data since the capacity of this
model is to low causing underfitting. For N = 2 the model approximate reasonably well
both, the training data and validation data. For N = 5, the model map perfectly some of
the points in the training data, for N = 10 the model maps every point in the training data,
but the latter two models perform poorly in the validation data since they are overffited to
the training data.

One way to prevent overfitting is by reducing the capacity of the model until a good
compromise between the performance in training and validation is reached. The process of
reducing the capacity of a model to prevent overfitting is called regularization. There are
many methods to regularize a model, for example:

• Reducing the number of free parameters of the model.
• Reducing the search space of possible solutions by restricting the values of possible

parameters. One way of doing this is by adding a penalization term on the loss func-
tion, such as ‖θ‖2 or ‖θ‖1, these are called Ridge [95] and Lasso [96] regularization
respectively. For example, in the case of ‖θ‖2, the larger the norm of the parameters,
the larger the loss function value, then points of θ that are closer to the origin are
preferred during the optimization, excluding θ with large norm from the search space.
The extra term added to the loss function is usually λ‖θ‖2, where λ is a constant that
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Figure 2.18: Polynomial models with different capacity fitted to (a) simulated data. The
capacity of (b) each model is regulated by the degree of its polynomial function, for degrees
with N = 1 the model is underfitted, N = 2 approximates the correct solution and N = 5, 10
are overfitted due to the excess of model capacity.

controls the weight of the penalization in the loss function.
• Stopping training iterations before the model starts to overfit to the training data. This

is called early stopping. For iterative methods, it is convenient to monitor the loss
function for training and validation set while the model is being trained. If a further
adjustment to the training data is increasing the loss function for the validation data,
then the training is stopped. This method can be understood as reducing the number
of functions that the model can map by limiting the exploration time.
• For ANNs, turning off some neurons during training acts as a regularized. This method

is known as Dropout [97]. The method consists of keeping a neuron with a probability
p on each iteration, the rest are turned off. By doing this, for each iteration, a thinned
network is sampled and trained, sharing variables between each sampled network. Then,
during inference, all the neurons are turned on and the expected output is computed
by multiplying each weight by the probability of being active during training p. This
method produces some sort of mixed network using the thinned ones sampled during
training, in practice, this reduces the overfitting, acting as a regularization.

Another aspect of neural network training is the data normalization. The most common
way to normalize the input data is by doing x′ = x−µ

σ
, where x is the original input data, µ

is the mean of the available data, σ is the standard deviation and x′ is the normalized data.
In general, normalizing the data helps the training process since the model does not need to
learn the scale of the data, but the relative difference between data examples. Another way
to deal with the data scale is by using Batch Normalization [98] which standardizes the
values of the internal representation by shifting and scaling them. Batch normalization is
sometimes used at the input of the network in order to normalize the input data, and also
it is used between layers to normalize internal representations. Some of the effects of batch
normalization are faster training speed and better regularization. In this work, a variant of
batch normalization was used called Batch renormalization [99] that helps to match the
normalization process for training and inference while preserving advantages from regular
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batch normalization. The batch renormalization operation during training is:

y =

(
x− µbatch

σbatch
· r + d

)
γ + β, (2.33)

where x is the layer input, y is the normalized version of the input, µbatch is the mean
and σbatch is the standard deviation for the current batch, and γ and β are trainable pa-
rameters. The renormalization extension corresponds to r = clip[1/rmax,rmax]

(
σbatch
σd

)
and

d = clip[−dmax,dmax]

(
µbatch−µd

σd

)
, where µd and σd are the mean and standard deviation of the

different inputs during training computed using a moving average µd = αµd + (1− α)µbatch

with α a momentum parameter, r and d are taken as constant when computing the gradients
and setting r = 1 and d = 0 we recover the original batch normalization. In the case of
convolutional layer outputs, this operation is applied to each channel independently.

2.2.5 Deep Learning in Astronomy

Traditional methods based on features for astronomical object classification has been visited
in Section 2.1.7. Deep learning methods learn features directly from the data, avoiding the
manual design. These methods have been applied to astronomical problems using convolu-
tional neural networks, for example, for real/bogus separation [16, 17], photometry computa-
tion [36], calculation of an image comparable to the difference image [18], gravitational wave
detection [19] and exoplanet detection [20]. Recurrent neural networks have been used for
light curve classification in [21, 22, 23, 24].

In the cases where stamps are used as input data, they have the advantage of giving all the
information available from the image to the model. These methods usually analyze a group
of stamps, science, template and difference image, which are samples of two points in time,
not considering long-term dependencies between stamps. For some classification problems
e.g., detecting periodic sources long-term dependencies are very important. Furthermore, the
difference image described in Section 2.1.5 could present some problems such as dipoles.

Other deep learning models have been applied to light curves which were described in
Section 2.1.6. Some of these methods use the light curve directly as inputs without computing
designed features. Even though these models consider long-term dependencies by using many
measurements from the same source, the light curve does not describe the local information
within the image stamp.

The proposed methodology described in Chapter 3 mixes both approaches. It learns the
features from a sequence of stamps without computing the difference image, in order to keep
local information within the science image, but also learns the long-term dependencies that
describe better some astronomical objects.
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Chapter 3

Methodology

In this work, we use the sequence of science images directly as input to the classifier. The
proposed methodology bypasses possible errors and loss of information produced by light
curve and difference image computation.

One of the difficulties of the new approach is the availability of a sufficiently large training
dataset. Given a certain survey, it is not always possible to have a large amount of the
entire sequence of images for each type of objects, especially for rare objects like supernovae.
Astronomical surveys usually have biases in terms of the number of specific objects found
depending on scientific goals and observation limitations. Moreover, the properties of the
images highly depend on the survey. For example, the cadence, sky brightness or zero points,
are different among different surveys. This issue difficults the use of a model learned in one
survey to another. This problem is known as Transfer Learning. One way to elude or
at least facilitate the solution to the aforementioned problems, the number of real samples
available and the transfer learning problem between surveys, is by simulating images for each
of the classes of astronomical objects considering realistic weather conditions and instrument
specification of a specific survey. In Section 3.1, the image simulation process we used to
build a training set is detailed. Simulating the dataset presents some advantages at the cost
of imposing additional assumptions.

Having the necessary information, it is possible to simulate images for any survey in
the optical range that uses CCD cameras. The information needed for the simulation are
observation conditions and camera parameters visited in Section 2.1.4, then the image
properties of a survey can be reproduced. This has an implicit assumption, which is that the
physical process of the real image formation is sufficiently well known. The image formation
process is constituted of many effects but only the main ones are modeled in this work. Due
to discrepancies between the simulated dataset distribution and real images distribution a
Domain Adaptation problem arise. The model trained to solve the classification task in
the simulated dataset is adjusted to the domain of the simulations. To solve the same task
for the real dataset, the difference between the domain of simulated data and real data has to
be considered, since the simulation does not take into account every physical effect, nor has
exactly the same distribution compared to real data. Weather conditions forecasting errors
must be considered too, since the conditions used for simulating the data are probably not
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exactly the same as the real data.

If a new class of astronomical object is needed in the dataset, the only necessary infor-
mation is a model of the light curve in the corresponding bands, along with a distribution of
parameters to sample from and get different instances of the same astronomical object. When
choosing the parameters distribution of the light curve model, the survey must be considered
to avoid undesirable effects when simulating. For example, the magnitude distribution of the
object is related with the maximum depth that the survey is able to see, characterized as the
limiting magnitude. If a considerable part of the magnitude sampled from the distribution
lies above the limiting magnitude, then the simulated image sequences would not have any
significant signal from the source, becoming useless or even harmful for training a classifier.
In the case of periodic stars, it could happen that the time span and cadence of the survey is
not able to observe a complete period of the object or either some of the periodic components
such as eclipses in the cases of eclipsing binaries. In the last example, if the eclipse of an
eclipsing binary is not observed because of the time span or cadence, then the resulting light
curve will be indistinguishable from constant stars. As these examples show, there could be
other important effects related to the prior distribution of object parameters.

Once the image sequence dataset is simulated, a Recurrent Convolutional Neural Network
(RCNN) is proposed as a classifier, explained in detail in Section 3.2.2. The proposed model
is trained on the simulated dataset, then by using a few real samples, the model is fine-tuned
[41, 42] this allows adapting the model from the simulated domain to the real domain. In
addition, for comparison purposes a Random Forest model is trained using the recovered
light curve from stamps, as explained in Section 3.2.3.

Training with synthetic dataSynthetic

Time

Machine Learning 
Classifier Model

After training
Predict class with real dataReal Data

Machine Learning 
Classifier Model

Real objects 
classification

● No need for computing 
difference image or the 
light curve.

● Simulation allows us to 
have samples of any star 
model without observing it 
with real instruments.

If real labeled data is available, 
perform fine tuning

Figure 3.1: Main steps of the proposed methodology. First, simulate data using realistic
consideration about observation conditions and camera parameters. Train the RCNN model
to solve the classification problem in the simulated dataset. If real data is available, fine tune
the model using a few real samples and classify the rest of real samples.

Summarizing, in a real case scenario, the proposed methodology for classification of as-
tronomical objects coming from an alert stream is the following: Collect survey information
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and simulate the images, train the RCNN model to solve the classification problem on the
trained dataset, then when real data is available, fine tune the model with real examples to
adjust the model from simulated domain to real domain. The methodology is summarized
in Figure 3.1.

3.1 Data Simulation

The simulated dataset of labeled image sequences was created using the following procedure.
First, all the information required to mimic realistic observing conditions which corresponds
to instrument specifications, observation dates, exposure times and atmospheric conditions
was gathered. These parameters are specified in Section 3.1.1. In this work, observing
conditions for the HiTS survey 2015 on band g [9, 47, 53] were simulated. Next, light curves
were simulated based on physical and empirical models resulting in a continuous function of
the magnitude as a function of time, then light curves are built by sampling this function
using the observation dates. The instrument specifications, exposure times and atmospheric
conditions are used to generate an image for each point of a light curve, and finally noise is
added to each image. In this way, the result of the procedure is an irregularly sampled movie
of 21x21 pixels for each astronomical object.

3.1.1 Synthetic data simulation parameters

The simulation process is adjustable to different observing conditions, so the proposed model
can be trained and applied to different instruments. To apply the RCNN classifier to a
different survey, it is required to gather representative parameters, simulate images and train
a new model on the simulated dataset. Ideally the distribution of the simulated data should
be equal to the distribution of the real data. In practice, this is not always possible, so
a domain adaptation problem arises where the features and tasks are the same but the
distributions are different. The aim is to build a simulated dataset whose distribution is
close enough to the real one, so that during a fine tuning phase with a few real samples could
match the distributions of the simulated and real training set used to train the model and
solve the domain adaptation problem.

Table 3.1: Image Simulation Parameters: Camera parameters are constant for a given in-
strument, but exposure parameters vary in time.

Camera parameters
Gain [e-/ADU] Read Noise [e-]

Saturation [ADU] Pixel Scale [arcsec/pixel]
Exposure parameters

Date [MJD] Seeing [pixels]
Airmass Sky brightness [ADU]

Zero Point [mag] Filter [g, r, i or z]
Exposure Time [sec] Limiting magnitude [mag]
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The observing condition parameters are composed of camera and exposure parameters.
A camera has a unique list of parameters describing the conversion from photons to digital
units. An exposure has a unique list of parameters which describe the time and duration
of the exposure, as well as the relevant atmospheric conditions during exposure. These
parameters are summarized in Table 3.1. The parameter values used in this work were taken
from the HiTS survey, which consists of 50 fields observed by DECam [62] with 62 CCD
cameras per field, and between 25 and 30 observations per field. In this work, empirical
observing conditions were sampled from real observations from HiTS. The typical observing
conditions are described in [9].

The simulated images are produced assuming a given point spread function (PSF), which
is sampled from a collection of empirical PSFs, an efficiency of conversion from physical units
to analog digital units given by the camera and exposure parameters, and the sky level given
in the exposure parameters. More details are given in Section 3.1.3.

3.1.2 Light curve simulation

Seven classes of astronomical objects were simulated (see Table 3.2): two non–variable (non–
variable stars and galaxies) and five variable or transient (RR Lyrae, Cepheids, eclipsing
binaries, supernovae and asteroids). Variable sources are simulated in two steps: 1) sampling
from either a physical model or empirical data, and 2) adjusting their brightness by sampling
from certain magnitude distributions as explained below. In order to sample each type of
light curve for a given observation date, different interpolation methods were used as shown
in Table 3.2.

1https://www.lsst.org/scientists/simulations/catsim
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Figure 3.2: Magnitude density distribution of the simulated data.
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Table 3.2: Class description, astronomical sources simulated in this work.

Astronomical Object Generation model

Supernovae Simulations based on physical models of SNe II from [59]
and SNe Ia spectrophotometric templates from [58]

RR Lyrae 483 light curve templates, sampling
a random phase and average magnitude [100]

Cepheids 600 real cepheids light curve [101] fitted
with a Gaussian process for interpolation [102]

Eclipsing Binaries 375 Eclipsing binaries templates from
CatSim1, part of the LSST simulation tools

Non-Variable objets Constant brightness value
for each time of observation

Galaxies Exponential and De Vaucouleur’s luminosity profile
using parameters from SDSS galaxy catalog [103]

Asteroids Simulated as a bright source
in just a single time of observation

The process starts by sampling a light curve either from a physical model or from empirical
data. Supernova redshifts and light curves are obtained from simulations which take into
account cosmology and supernova rates, the telescope parameters, and physical models for
SNe II from [59] and spectrophotometric templates for SNe Ia from [58]. For both type of
supernovae, the explosion occurs within the time span of the simulated survey, and at least
1 point of the light curve must lie above the limiting magnitude in order to have a detection.
RRlyrae light curves were sampled from Gatspy package templates [100]. Cepheids were
sampled using real light curves from M33 CFHT variability survey [101], by folding the
real light curves using the reported period, and performing a Gaussian Process regression
[102] using a periodic kernel for interpolation of the survey cadence. Eclipsing binaries
were sampled using templates from the LSST Catalog Simulation database (https://www.
lsst.org/scientists/simulations/catsim, CatSim). In the case of eclipsing binaries,
it was imposed that the eclipse of the light curve must be detected with 5 sigma above
noise between the constant regime and the eclipse. Light curves for non–variable objects
were simply simulated as a constant light curve, and asteroids as a single peak. Galaxy
simulations are explained in Section 3.1.3.

Light curves were sampled using the empirical exposure parameters from HiTS and scaling
them to follow a magnitude distribution that reproduces the HiTS observations. Magnitudes
for non–variable sources, eclipsing binaries, Cepheids, and asteroids are sampled from the
green curve (rest of the classes) in Figure 3.2. This distribution was obtained by fitting an
exponential function to the distribution of stars in HiTS. A constraint was added to smooth
the decay at large magnitudes in order to follow the supernovae magnitude distribution.
This was performed by multiplying the exponential density distribution by a cutoff function
f(m,mcutoff) = 1− erf(m−mcutoff)/2, where erf is the error function and mcutoff is the value
where f(m,mcutoff) = 0.5. The supernovae magnitude distribution decay at large magnitudes
can be mimicked by using mcutoff = 22.8 for all the classes, except for RR Lyrae and galaxies.
For RR Lyrae, mcutoff = 21.5 was chosen to make the distribution with magnitude boundaries
based on [104].
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At this point, simulated light curves have no noise. Errors of flux in real light curves are
estimated using statistical assumptions about measurement noise within the image, so the
noisy versions of simulated light curves are recovered from noisy simulated images in later
steps. Fig. 3.3 shows examples of light curves for each category (except for the galaxy class).

3.1.3 Image simulation using light curves

Having sampled simulated light curves with the corresponding cadence, the zero point values
Zp(t) were used to convert each point of the light curve from magnitudes to ADU using:

m(t) = Zp(t)− 2.5 log

(
ADUs(t)
T (t)

)
, (3.1)

which is the same expression as equation 2.1, where in this case t is the observation time and
T (t) is the exposure time for an image at time t. Usually, there are other terms in this con-
version associated with airmass and color, but these Zp’s were computed using PanSTARRS1
[105] to fit the resulting magnitude of known sources. For each light curve, a random CCD
array was chosen and its exposure parameters at different epochs were used. Then, for each
point in ADU units of the light curve, a PSF pt(x, y) is used to generate a source image,
where x, y are pixel coordinates and

∑
x,y pt(x, y) = 1. The source image (see the example

shown in Figure 3.6) was generated by creating an empty image of 21× 21 pixels and adding
ADUs(t) ·pt(x−x0, y−y0) where x0, y0 is the center of the source in the image, sampled from
a uniform distribution within the single image central pixel to simulate random centering
errors. The PSF pt is estimated by averaging real source images from the HiTS survey and
computing its FWHM by fitting a 2D-Gaussian function as an estimation of size. The PSF
estimations have different sizes, but for each observation time t, a single pt was matched
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Figure 3.3: Light curve examples for six classes of astronomical objects in the dataset. Galax-
ies are simulated by using the method described in Section 3.1.3.
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with the current FWHM(t). Dates with FWHMs larger than 2” were not used. A random
rotation and mirroring is applied to make the classifier invariant to rotations of the PSF.

Some sources may have a host galaxy, which were simulated by using Sérsic profiles [106],
described by

I(r) = I0 exp

{
−bn

[(
r

Re

)1/n

− 1

]}
, (3.2)

where I(r) is the intensity as a function of the radius r, I0 is the intesity at the effective
radius Re, n is called the Sérsic index and defines the shape of the profile, and bn is a
constant defined so that Re is the half-light radius. [107]. For n = 4, b4 = 7.669, the
function is called De Vaucouleurs profile used to model the bulge of the galaxy. For n = 1,
b1 = 1.678 the function is called exponential profile used to model the disk of the galaxy.
The complete profile was obtained by a linear combination of both profiles described. The
parameters for exponential and De Vaucouleurs profiles were obtained from the Sloan Digital
Sky Survey [103], including the following (if many bands are used, these quantities are per
band): radii, ellipticities, proportion between the two profiles, and the luminosity of the
galaxy in magnitudes. Examples of simulated profiles for different bands are shown in Figure
3.4. For each of the supernovae, the redshift was matched with the corresponding one of
the sampled galaxy, in order to be consistent with shapes and the magnitude of the galaxy
due to its distance. In order to simulate a SN in a host galaxy, the position of the star
was sampled from a distribution following the exponential profile in the g band, as shown in
Figure 3.4. The magnitudes were converted to ADUs and distributed using the exponential
and De Vaucouleurs profiles. These profiles have a spike at the center, concentrating most of
the flux in the central pixel. In order to avoid this issue, 20 uniform random positions in the
range of the central pixel were sampled, computed the bulge profile and averaged them to
distribute the flux across the image. We finally convolved this image with pt(x, y) generating
a galaxy image IMgal. Examples of the resulting galaxy image per band (without noise) is
depicted in Figure 3.5.
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Figure 3.4: Simulated galaxy profile for bands g, r, i and z. The magnitude per band
was spread within the image according to the profile (plotted in log scale for visualization
purposes). The last image at the right shows an histogram of possible positions for the
transient within the galaxy, which follows the disk profile in g band.

The last step for image simulation is to produce a joint image by adding up the PSF-
like image, the galaxy, and the sky brightness Sky(t) for time t. Then, we convert ADU
pixels to electrons e− multiplying by the corresponding Gain of the camera, in order to
apply independent Poisson noise to each pixel and Gaussian readout noise. Finally, the
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Figure 3.5: Simulated galaxy images. After the random averaging of the bulge to distribute
the luminosity correctly, the magnitude per pixel was converted to ADU units using equation
3.1. Then convolved with the corresponding PSF pt. The location of the source is sampled
from the disk of the galaxy, then the galaxy image is displaced in order to put the location
of the source in the center of the image.

image is converted back to ADUs. The resulting image sequence for each object is unevenly
sampled. Also, the noise on each stamp is variable and consistent with a realistic observation
since it depends on the observation conditions such as the PSF size, sky brightness, zero
point estimation, presence of a galaxy, along with the CCD readout noise. An example of a
simulated SN with a host galaxy image is shown in Figure 3.6.

Host galaxies were added on to 50% of the supernovae objects and 5% of the rest of
the classes. This proportions are due to the fact that the supernovae positions tend to
follow the host galaxy light as opposed to the other variable classes used in this work.As
mentioned before, the galaxy class is a simulated image of a host galaxy with varying exposure
parameters. Extra structures like galaxies were added to prove that the proposed model is
able to learn extra information aside from the source for the classification task.

In Figs. 3.7 to 3.9, examples of simulated images compared to the real ones are shown.
Given a real non–variable source with a known magnitude, the same observation conditions
where the real source was observed were used to simulate a non–variable source. Sample
time goes from left to right, top to bottom. Since the estimated point spread function used
for simulations is computed by averaging single PSFs, simulated images have bigger PSFs
than real ones because of the blurring effect when averaging. As can be observed, the pixel
distribution on the simulated images is very close to the real ones, including the brightness
of the source and background levels.
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Sky and poisson noise

Figure 3.6: Summary of the image simulation process. The light coming from a source is
spread in the Source Image. A simulated host galaxy is added to the source image. The sky
brightness is added as a constant value to all the pixels and Poisson noise is sampled with
variance equal to the number of photons in each pixel along with CCD readout noise.
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Figure 3.7: Image simulation example 1
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Figure 3.8: Image simulation example 2
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Figure 3.9: Image simulation example 3
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3.2 Classification Models

In Section 3.2.1 the input of the proposed RCNN model based on the science image is ex-
plained. Then, the proposed model architecture is shown in Section 3.2.2, along with the
light curve classifier based on features from light curves in Section 3.2.3. Finally, in Section
3.2.4 the training processes for both classifiers are detailed.

3.2.1 Sequence input to the model

Before inputting an image to the classifier a pre-processing step is performed, that consists in
subtracting the sky in counts to the image as a constant value. Then, each pixel is multiplied
by a factor γ that ensures the same number of counts for a given magnitude. This factor γ
can be derived by equating the ADU units for the same magnitude m which is the inverse
function in equation 3.1, but with different zero point as follows:

10
Zref
p −m

2.5 · T ref = 10
Zp(t)−m

2.5 · T (t) · γ (3.3)

γ = 10
Zref
p −Zp(t)

2.5 , (3.4)

where Zref
p and T ref are the zero point and the exposure time at the reference time which is

taken as the first exposure for each field, Zp(t) and T (t) are the zero point and the exposure
time at the current exposure. Using the same exposure time for the entire survey, the resulting
zero point correction factor γ is the one shown in equation 3.4. Then, the pre-processing
operation is:

IMproc(x, y) = (IMorig(x, y)− sky) · γ, (3.5)

where IMproc(x, y) is the resulting preprocessed image, IMorig(x, y) is the original image.
IMproc(x, y) was used to build the inputs to the model.

Objects where the source is detectable in at least one of the images within a sequence
i.e., at least one point of the original light curve in magnitude must be above the limiting
magnitude, are candidates to supernovae or asteroids, the first point when this happens is
the “first alert” triggered by the rise of flux in time.

Because we are interested in classifying supernovae in the early stages of their explosion,
once an alert is triggered (supernova explosion or asteroid appearance) at time ti, the five
images previous to the alert are queried and form a stack of nw consecutive images using ti−5

as the first image of the stack. In this work nw = 3 is used, so if the alert occurs at time
ti, then the input images for the first stack are at time (ti−5, ti−4, ti−3), then next time step
input will be at (ti−4, ti−3, ti−2), then (ti−3, ti−2, ti−1) and so on. Therefore the input to the
model is a stack of nw consecutive images forming an input tensor of shape (21× 21× nw).
Figure 3.10 shows a scheme that represent the inputs for the proposed classifier.

Nd is defined as the number of available dates, which corresponds to the number of points
between five images before the first detection and last exposure on the respective field. Nd

depends on the first detection date for supernovae or asteroids. The same Nd dates were
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used to build the input sequence of the remainder of classes (RR Lyrae, Cepheids, eclipsing
binaries, non variables and galaxies), in order to have variable size and observation conditions
for every class in the dataset. The maximum number of available dates was truncated to
Nd = 22 for every object to evaluate the model.

A nw > 1 number of stacked images at the input was used, and not just a single image
because convolutional layers can learn short timescale dependencies between these nw con-
secutive images, letting the recurrent layer learn about longer timescale dependencies. The
difference in sampling time between the first image of the sequence and the rest of the images
was fed to the model to consider the irregular sampling for each image.

Limit of magnitude

First alert

First input
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titi-3ti-4ti-5 ti+2ti-1ti-2 ti+1 ti+3 ti+5ti+4

Figure 3.10: Input sequence for RCNN classifier. The red curve is a supernova light curve
representation, where red circles are the points observed. The first point observed above the
limiting magnitude is the first alert or detection, with time defined as ti. The last 5 images
are retrieved and starting from ti−5 the first input tensor is built (red box at left). The next
input for each time step is created by moving the red box one image per time step until no
image is available. Because of this construction, the first alert will be always at the fourth
of nw images input, and the sixth image of the sequence would be fed to the model.

3.2.2 Image sequence classifier architecture

A new model is proposed to classify astronomical objects based on a recurrent convolutional
neural network (RCNN), which uses sequence of images as input. Convolutional layers are
able to automatically learn the spatial correlation between pixels in the input image and
extract high-level features, which are used by the recurrent layer to learn time dependencies
among images sampled at irregular times. The RCNN model uses high-level representations
of the image obtained by convolutional layers as inputs to the recurrent layer. In this way,
we can add information to the memory of the classifier while the images are received by
changing one image at a time. The LSTM units in the recurrent layer contain memory cells
that store learned knowledge from past input images.

As mentioned above, the input is a 3D tensor of size (21, 21, nw), made by nw consecutive
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Figure 3.11: RCNN architecture. An input tensor with shape (21, 21, nw) is shown at the left
of the image. Every layer is described at the bottom and the shape of the data is indicated
at the top.

21 × 21 images. First, a batch renormalization layer is applied, followed by a convolutional
layer to increase the number of channels from nw to 64 and an extra batch renormalization
layer. 64 filters and a stride of 1 were used on each convolutional layer with ReLU as
activation function. Also at the output of each convolutional layer a batch renormalization
layer is implemented for each channel, then a pool layer after the first three convolutional
layer + batch renormalization, followed by three convolutional layers + batch renormalization
and a final pool layer.

The output of the pool layer is flattened to a vector of size 6× 6× 64 = 2304, which is the
input to the first fully connected layer with 1024 hidden units. The time difference between
the date of observation of the nw images and the first image of the entire sequence (nw size
vector) is added to the input of the LSTM layer which has 512 units. The initial state of
the LSTM is an array filled with zeros and the state is updated for every input tensor with
nw stacked images. Finally, the LSTM output is passed through a fully connected layer with
softmax activation functions. The details of each layer are shown in Table 3.3. Fig. 3.11
shows an illustration of the RCNN architecture.

3.2.3 Light curve random forest classifier

For comparison purposes, a light curve classifier using feature extraction and a random forest
(RF) classifier [70] was designed. The light curves in ADUs were extracted from the same set
of simulated stamp images given to the RCNN using optimal photometry [8]. All the features
available in FATS [13] were computed for each light curve, except for the features associated
with color, Color, Eta_color, Q31_color, StetsonJ, StetsonL since the HiTS survey uses
mostly the g band. In order to evaluate the accuracy of the light curve RF classifier on the
real dataset as a function of time, FATS features were recomputed for each new point added
to the light curve. FATS includes the estimation of the period of the light curve and other
features from Lomb Scargle Periodogram [66], which are known to be important for variable
star classification. The light curves are almost perfectly derived from the images, since the
same information used to simulate them is used in the light curve extraction such as the
PSF, presence of a galaxy and the background value to extract the light curve correctly. In
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Table 3.3: Recurrent Convolutional Neural Network architecture.

Layer Layer Parameters Output Dim
Input Layer 21× 21× na

w 21× 21× nw

BRN nw (mean and std) 21× 21× nw

Conv + BRN 3× 3× 64, 64 21× 21× 64
Conv + BRN 3× 3× 64, 64 21× 21× 64
Conv + BRN 3× 3× 64, 64 21× 21× 64
Max pooling 2× 2, stride 2 11× 11× 64
Conv + BRN 3× 3× 64, 64 11× 11× 64
Conv + BRN 3× 3× 64, 64 11× 11× 64
Conv + BRN 3× 3× 64, 64 11× 11× 64
Max pooling 2× 2, stride 2 6× 6× 64

Fully connected
(with dropout) 2304× 1024 1024

LSTM 1024 + ∆t of samples
512 units 512

Output softmax 512× 7 7 (n◦ classes)
anw is the number of images stacked in the input tensor, BRN stands for Batch Renormalization

practice, these parameters should be estimated from the images. Finally, a RF classifier is
trained to discriminate among the seven classes. Feature based random forest classifiers are
commonly used in astronomy [108, 109, 9, 53].

3.2.4 Training Process

Recurrent neural networks are trained using variants of gradient descent, by using backprop-
agation through time. Since features are extracted from the images using convolutional layers
and are fed to the recurrent layer, the gradients through time are also used to adjust the
parameters of the convolutional layers. For the proposed RCNN model, cross-entropy was
used as loss function to compare the outputs of the model with the labels. The total loss of
a single example is loss =

∑Nd

t loss(t) where loss(t) is the cross-entropy at time step t. The
training algorithm is AMSGrad [82] which is an adaptive learning rate algorithm. The batch
size was 256 sequences of simulated images and the training was done by running 30,000 it-
erations presenting a single batch per iteration to the image sequence classifier, using 5 ·10−4

as learning rate. The final model was chosen by selecting the one that had the lower loss in
the validation set during the training process. Graphic processor units (GPUs) were used
to train the models. Each model takes approximately 8 hours to complete 30,000 iterations,
equivalent to 9.5 epochs, in a GeForce GTX 1080 Ti. For the fine-tuning phase, after training
RCNN with the simulated dataset, 1000 extra iterations with 10 image sequences per class
randomly selected from the real dataset were used. The code was implemented on Tensorflow
1.7 [110]

For the light curve classifier, a RF was trained using the light curves extracted from the
simulated images, on which 58 FATS features were computed, also running a grid search
for the best max depth of each decision tree and the number of them. The best results in
the validation set of the simulated dataset were obtained with 25 estimators and a depth of
15. In order to make a fair comparison with the fine tuned version of the RCNN, the RF
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model was trained by adding 10 samples of light curves per class from the real dataset to the
simulated training set, resulting in an augmented training set. Each real sample added to
the augmented training set was copied 100 times on the training set, which is comparable to
the number of times that the RCNN observed every additional real example during the 1000
extra iterations.
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3.3 Methodology summary

Figure 3.12 shows a step by step summary of the methodology proposed in this work. Starting
from observation conditions and camera parameters of a survey, light curves are simulated,
and then images are simulated. Simulated images are used as input directly for the proposed
RCNN classifier, which is trained on the simulated dataset, and then fine tuned with real
data. Noisy versions of the light curve are recovered from the images, then FATS features
are computed and used to train a random forest classifier. Finally, real samples are added to
the training set of the random forest to simulate a fine tuning of the light curve model.

Synthetic images

Time

Synthetic light curve model

Time

RCNN 
training

Synthetic noisy light curves

Time

Feature extraction
(FATS)

Fine tuning
(Real images)

Random Forest 
training

Augmented dataset
(Real light curves)

Observation 
conditions and 

Camera 
parameters

Figure 3.12: Flow chart of the methodology. The first step is the light curve simulation,
then image simulation using the light curves. The second step is the RCNN training using
simulated images and fine tuned with real data. Third, light curves are extracted from
simulated images, the features are computed to train a random forest classifier to finally add
real examples to the RF training set.
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Chapter 4

Results and Analysis

In this chapter, the results of experiments proposed in chapter 3 are detailed. In Section
4.1 the main results for the proposed RCNN classifier are shown and compared against the
random forest light curve classifier. Both classifiers were tested on simulated and real data.
Next, the results are discussed in Section 4.2, identifying the most important advantages
of the proposed model, also showing particular evaluation cases in Section 4.3. Finally,
assumptions and difficulties about the methodology are visited, proposing future experiments
to find improvements for some of them in Section 4.4.

4.1 Results

After completing the training process on the simulated dataset, the image RCNN and the
light curve classifier were evaluated both on the simulated dataset and on the real image
dataset. The RCNN was evaluated both with and without fine-tuning. The light curve RF
classifier performance is evaluated both using the simulated training set and the augmented
training set as explained in Section 3.2.4. In the case of real supernovae and asteroids, the
first detection is defined as the first point where the number of counts on the estimated light
curve is five times higher than the counts error, then the input to the models is built in the
way described in Section 3.2.1. For the rest of the classes, the sequence of real data starts
at the first exposure. Figure 4.1 shows a comparison between the image sequence classifier
(RCNN) and the light curve RF classifier, in terms of the accuracy evolution for simulated
data as a function of the number of samples, images in case of the RCNN and light curve
points in case of the light curve RF classifier. Standard deviations were estimated by training
5 different models. Figure 4.2 shows the average recall over all classes when the models are
applied to real images, weighting every class equally. The curves in Figure 4.2 show the
average recall for real data using the models trained over the simulated dataset, as well as
the RCNN with fine tuning and the RF classifier trained with the augmented training set,
where the test set does not include samples used to fine tune the models. The errors in Figure
4.2 were computed by taking 5 trials of 10 samples per class randomly selected to fine tune
the model. Figure 4.3 shows the accuracy as a function of the magnitude of the simulated
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Figure 4.1: Accuracy on the simulated dataset as a function of the number of samples of
the sequence available to the classifiers. The accuracy obtained at the last point (after 22
samples) for each curve is: Training RCNN: 0.961 ± 0.005, Training Random Forest: 0.941
± 0.001, Test RCNN: 0.953 ± 0.002 and Test Random Forest: 0.923 ± 0.002.

objects for both models, and the recall for real objects after fine tuning separated for each
class, with standard deviations estimated using 5 different fine tuned models.

Figures 4.4a and 4.4b show confusion matrices for the RCNN and RF classifiers, respec-
tively, on the simulated dataset after using all the points on each sequence to classify. Figures
4.5a and 4.5b show confusion matrices on the real dataset for both models when trained on
simulated data only. Figures 4.6a and 4.6b show confusion matrices for both models, after
fine tuning the RCNN model and training the light curve RF classifier with the augmented
training set.
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Figure 4.2: Average recall on the real dataset without and with fine tuning as a function
of the number of samples of the sequence available to the classifiers. The average recall
obtained at the last point (after 22 samples) for each curve is: RCNN: 0.85 ± 0.02, Random
Forest: 0.88 ± 0.01, RCNN with fine tuning: 0.94 ± 0.01 and Random Forest trained with
augmented training set: 0.94 ± 0.01. For the last two cases, the test set does not include
samples used to fine tune the model.
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Figure 4.3: Results comparison between the image sequence RCNN classifier (top row) and
light curve RF classifier (bottom row). The left plot shows the accuracy on the simulated
dataset as a function of the object magnitude and the number of images. The right plot
shows the recall for each class available on the real dataset as a function of the number of
samples presented to the classifier.
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Figure 4.4: (a) Confusion matrix on simulated test set obtained with the image sequence
RCNN classifier using all samples available on each sequence to feed the neural network. (b)
Confusion matrix on simulated test set obtained with the light curve RF classifier using all
the points available on each light curve.
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Figure 4.5: (a) Confusion matrix on the HiTS real dataset obtained with the image sequence
RCNN classifier without fine tuning. (b) Confusion matrix on the HiTS real dataset obtained
with the light curve RF classifier trained on simulated data.
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Figure 4.6: (a) Confusion matrix on the HiTS real dataset obtained with the image sequence
RCNN classifier with fine tuning. Real samples used to fine tune the model are not in this
evaluation set. (b) Confusion matrix on the HiTS real dataset obtained with the light curve
RF classifier trained with the augmented training set. Real samples used to augment the
training set are not in this evaluation set.
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4.2 Discussion

As can be observed in Figure 4.1, the RCNN achieved a higher accuracy on the simulated
dataset as compared to the light curve RF classifier. The proposed RCNN model is partic-
ularly better on variable star classification (Cepheids, RR Lyrae and eclipsing binaries) as
can be observed in the confusion matrices shown in Figures 4.4a and 4.4b. This result sug-
gests that the image sequence RCNN classifier is able to retrieve the necessary information
directly from images to solve the classification task. Since there is not much bias on each
class apart from the light curve shape, my conjecture is that the model must learn to perform
some form of photometry and extract the flux generated by the object on the image. On
the other hand, Figure 4.2, and confusion matrices in Figures 4.5a and 4.5b show that the
light curve RF classifier outperforms the RCNN classifier on the real dataset without fine
tuning. This might be explained by a kind of “Domain Overfitting”. If the RCNN were more
overfitted to the domain of the simulated images than the light curve RF classifier, then its
generalization capacity to the domain of real images would be diminished. In fact, the light
curve RF classifier achieved a lower accuracy on the simulated dataset, likely producing less
overfitting to it, but obtained a higher accuracy on the real dataset. There could be other
factors as the models are not directly comparable.

The domain overfitting of the RCNN and RF can be fixed by adjusting the models using
a few real labeled data. Figure 4.2, and confusion matrices in Figures 4.6a and 4.6b show
that both models perform substantially better when a few real samples are used, achieving
results comparable to those obtained with the simulated dataset. Notice in Figure 4.2 the
improvement in accuracy at low number of samples, which is the moment previous to the
first detection in the cases of asteroids and supernovae. From this, it can be inferred that the
RCNN model is able to use additional information from the stamps than just the flux of the
source, such as the presence of a host galaxy improving the initial guess between asteroid and
supernovae for moments before the first detection This effect can be seen on the right plot
of Figure 4.3 where asteroids are highly miss-classified by the light curve RF classifier until
their first detection (sample number 6). In Section 4.3 some examples of the image sequence
classifier applied to real supernovae are shown, where we can clearly observe this effect once
again. This effect seems to be more important for fainter sources, which tend to be more
distant and have smaller angular size galaxies, as can be observed on the left plot of Figure
4.3, where there is a clear improvement in accuracy for fainter sources when using the image
sequence RCNN classifier in comparison to the light curve RF classifier.

It is worth to mention the fact that the simulations are good enough to classify correctly
most of the real objects in the HiTS dataset without fine tuning. We can see in Figure 4.5a
that real non–variable objects are perfectly classified using the image sequence classifier, as
well as the majority of supernovae (74%), RR Lyrae (95%), eclipsing binaries (66%) and
asteroids (98%), resulting in an average recall of 85% on the HiTS dataset. This means that
the process of obtaining the right distribution that represents the physical effects of the light
passing through the atmosphere, lenses and being captured by the CCD camera, by using the
estimated exposure conditions, camera parameters and point spread function from empirical
data is close enough to real conditions, making the simulation approach suitable to train a
good model. The resulting model is used as a starting point to perform fine tuning with a
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Figure 4.7: 2D projection of simulated and real light curves, represented by the 6 most impor-
tant FATS features, according to random forests, using t-SNE. The six features areMeanVari-
ance, PercentDifferenceFluxPercentile, CAR_mean, PercentAmplitude, Mean, Max_slope.
2000 light curves from the simulated dataset were used along with all the real light curves
available, using a perplexity value of 40 and 1000 iterations.

few real samples, and get excellent results as shown in the confusion matrices in Figures 4.6a
and 4.6b.

Figure 4.7 shows a 2D projection of both the simulated and real light curves, using a
technique called t-Distributed Stochastic Neighbor Embedding (t-SNE [111]). Each light
curve is represented by a vector composed of the 6 most relevant features, according to random
forests, and then projected to two-dimensions. The left and center plots show that there is
partial overlap between the simulated and real light curves, particularly on supernovae, RR
Lyrae and asteroids. On the other hand, there are stronger discrepancies for non–variables
and eclipsing binaries, indicating some discordance between simulated and real datasets. The
right plot in Figure 4.7 shows the 2D projection of the augmented dataset, i.e. the simulated
dataset plus 10 real light curves per class randomly sampled. It can be clearly seen that
this new distribution contains samples of eclipsing binaries and non–variables, among others,
that are not present on the left plot. Each real sample added can be weighted with more
importance through the fine-tuning phase of the RCNN by iterating these examples more
times than the simulated ones, or making more copies of each real sample in the augmented
training set in the case of the light curve RF classifier.

For practical usage and deployment in an alert streaming classification scenario, the RCNN
classifier presents some advantages compared to the light curve RF classifier. First, it is
not necessary to compute neither the difference image nor the light curve, which avoids
wrong subtractions due to alignment errors or PSF matching, it also reduces the amount of
previous computation and information retrieval necessary to compute them. Second, for the
RCNN the evaluation time increases linearly with the number of samples within the sequence,
while for the light curve RF classifier the evaluation time depends on the complexity of the
features used. Preliminary results show that the RCNN model evaluation running in GPU
is considerably faster compared to the feature computation of FATS in CPU per example.
Further analysis regarding evaluation speed should be done, but the RCNN seems as a good
candidate where time limitations are important. Furthermore in the case of a streaming,
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with the proposed approach it is not necessary to recompute any feature when a new sample
from a source is received, only the current sample and the nw − 1 previous images, plus the
network state is needed to evaluate the model while RF requires the complete light curve
data retrieving and recomputation of features, this can be improved with a good design of
the database, for example, predicting possible data retrieving depending on the observed
region of the sky. Also, designing online features to reduce computation and memory, as
well as implementing features using GPUs processors when possible, considering that GPU
processors are convenient when the operations involved are highly parallelizable. Third, the
RCNN model is able to recognize other sources (stars or galaxies) from the image stamps
beyond the flux from the main source. The RCNN model learns the distribution of these extra
sources from the training set and applies it automatically when the evaluation is performed,
without needing additional image pre-processing, to create a flag or feature associated with
these extra sources. This is particularly useful when a detailed catalog of nearby objects such
as other stars or galaxies is not available. Fourth, the RCNN model trained using simulated
images can be fine tuned when receiving real images from a stream, using a few labeled real
images.

On the other hand, the feature based light curve RF classifier still presents some desirable
properties such as the interpretability of the features, the feature relevance for the classifica-
tion task, easy implementation (except for the need to recompute features using the entire
light curve at every time step) and so far a better generalization capacity without fine tuning.
In a realistic setup, combining both approaches may improve the overall performance.

4.3 Visual evaluation of the proposed model

In this section some examples are shown of the image sequence RCNN classifier working on
HiTS supernovae examples. From Figures 4.8 to 4.10, the light curve in counts of a supernova
and the first detection time (upper plot) is depicted, also probabilities of the objects being of a
certain class according to the model through time (mid plot) and the stamps corresponding
to each observation date used as input (bottom plot). As mentioned in Section 4.1, the
performance of the classifier gets better around the first detection of the supernovae (image
number six), for some of the examples shown, the RCNN is able to observe some non-zero
flux below the detection threshold.
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Figure 4.8: Example 1 of SN classification using the image sequence RCNN classifier.
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Figure 4.9: Example 2 of SN classification using the image sequence RCNN classifier.
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Figure 4.10: Example 3 of SN classification using the image sequence RCNN classifier.
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4.4 Current difficulties and proposed solutions

In this section, the assumptions and difficulties of the proposed methodology are discussed.
The analysis is divided into two parts. First, the proposed RCNN classifier problems and
possible improvements. Then, the image simulation methodology is reviewed, also the main
properties and proposals to improve the methodology under certain scenarios.

4.4.1 Classification model

The proposed RCNN classifier presents some properties that are discussed in this section,
some are disadvantages compared to other classifiers, others are opportunities to extend the
current model for better results and usability in real case scenarios.

Hyperparameters and architecture selection: The final proposed RCNN model was
a product of trial and error of different architectures. The first model architectures had
very unstable training curves. By removing the batch normalization layer between the con-
volutional layers [98], the training got stable enough to train the model properly. Then
adding batch renormalization layers [99], improved the results without producing instability.
A comparison of the two learning curves is shown in Figure 4.11a and Figure 4.11b. The
cause of this effect is not clear, it could be produced by an implementation error on the
batch normalization code. Another cause could be the renormalization factor, which reduces
the difference of statistics (mean and variance) between training and inference of the input,
that may help the training for a recurrent structure since the statistics of inputs is different
between time steps. Furthermore, other normalization techniques were applied, such as layer
normalization [112], which also presented acceptable training curve, but more unstable com-
pare to batch renormalization. It is possible that most of the changes in architectures when
finding the best model were masked by the unstable training due to normalization, therefore
further work of architecture selection and hyperparameter selection (learning rates, dropout
probability, gradient method) is recommended.

Adding extra information: Some high-level features could be useful for classification
tasks of astronomical objects. The light curve and the estimated period from the light curve
are known for being helpful for classification of variable stars. A possible next step could be
adding the light curve to the classifier, this could be done by feeding the estimated brightness
of the source to the recurrent layer. In the case of the ZTF alert streaming [113], an estimation
of the magnitude of the source is reported in the alert package, so it could be added as extra
information to the classifier. The period and other useful features could be extracted from
the light curve, but in order to not harm the online advantage of the proposed model, ideally
the extracted features should be calculated online, in the sense that updating the features
does not involve recomputing the entire sequence, but only a subset of the points of the light
curve and previous estimations of the feature.

Features related to the context within the image could be useful too. The presence of
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Figure 4.11: Unstable training curve (a) of the RCNN which was improved to (b) by removing
the batch normalization layers between convolutions. It is not clear what is the cause of this
effect, it could be either due to an implementation error or due to the recurrent structure.

nearby objects or possible bad pixels seem good options. Also, features that describe the
shapes of the source in the difference image could help to detect dipoles or other errors.
Previous work on this is the original HiTS paper where they designed features of the science,
template and difference image [9]. Furthermore, concatenating the template and difference
image within the input is something not tested but should be easy to implement.

Model interpretability: Interpretability of deep neural networks is a challenging problem.
Efforts have been done in this area [87, 114]. Particularly, the Layer Relevance Propagation
(LRP) method [115, 116] is interesting in this specific case. It could be possible to prove by
using this tool that the structure within the image that is not the target source is used by the
classifier to make a decision about the class. Furthermore, so far LRP have not been applied
to recurrent neural networks combined with convolutions, therefore extending this method
for this particular model might be a good way to find interpretability for the proposed model.

In order to find some relationship between the activations and the state of the recurrent
model and possible useful features for the classification problem, the following “straightfor-
ward” method is proposed: First, project the state of the trained network using the training
data, to a 2D or 3D space where the evolution of the state as a function of time steps can
be visualized depending on the class, in a way that is easy to identify classes. Then, define a
target feature to study, for example, period, variance, amplitude, etc. Generate a synthetic
sequence that varies on the selected feature, for example, a frequency modulated signal in
order to study how the period affects the classification. When evaluating the synthetic signal,
project the state of the recurrent model into the 2D (or 3D) space and see how the projection
moves through this space and through different classes. A similar way of doing this last
step could be creating a set of sequences with different frequencies and inspect where the
projection of the state lies in the 2D space. This proposed method could be understood as
seeing the response of the classifier as a system, in a way that it is interpretable through the
projected space (output) and the control of the parameters in the input to the model.
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Multi-band approach: Convolutional neural networks naturally deal with inputs with
more than one channel. For RGB images, for example, colors are represented using one
channel per color. In astronomy, more than one band could be used to observe the same ob-
ject, for example, LSST will use six different bands. The main problem of these observations
in different bands is that they are taken at different irregular times, and not at the same
time for each band, so the natural way of adding observations in different bands in the input
tensor as concatenated images in the channel dimension is probably not the best way for the
following reasons.

First, it is not always possible to have every band measured, objects measured only in
some of the bands will certainly exist and the fixed number of channels force to some sort of
data imputation method, furthermore it is not clear how to integrate the time dependencies
to the model. Second, fixing the channel seems reasonable following the RGB image example,
but by doing this, it could randomly sort the time order between channels. For instance,
assume that the model receives images from band g and r where channel dimension is fixed,
this means channel one is for g and channel two is for r. For times t, t + 1 and t + 2 it
could happen that the model receive images denoted by their respective bands and times as
gt, rt+1, gt+2. Then, concatenating these images in a similar way as was done for the proposed
model, the first input could be [gt, rt+1] and the second [gt+2, rt+1]. In the proposed model,
the time difference between images ∆t in the input tensor is given to the recurrent layer, but
it is clear in this case that the second input breaks the time order which leads to ∆t < 0,
generating an ambiguity about the meaning of ∆t, which could be going back in time of the
sequence or the actual difference between the images within the tensor. Processing more than
two bands is even more complicated. There could be other ways to integrate information
of different band preserving time and using a single input tensor, but it should be possible
to solve this by separating the process for each band to integrate then in a common space
within the architecture, as shown later.

The model in Figure 4.12 is proposed as a multiband image sequence classifier. This
model uses different convolutional neural networks per band that are connected to the same
recurrent neural network at the output. This architecture accounts for the differences between
images from different bands since different filters will process each band. The statistical
sampling time and the corresponding band are added to the model in the common network
at the top. The model is evaluated only using the image available at a certain time, then the
gradient is propagated only in the corresponding convolutional neural network depending on
the band of the available image. This model naturally improves the cadence of the input
sequence since it is not necessary to wait for an incoming image of a specific band. Instead,
for each time the model is able to process every incoming image using a different part of the
network depending on the band, being able also to integrate information between bands in
the common space.

Robustness of observation conditions: In this work, real observation conditions were
used to simulate the image sequence of each astronomical object. Then, the real images
examples to fine tune and evaluate the model have roughly the same observation conditions.
Obviously, this is not always possible, especially in cases where observations have not been
made, such as the LSST. In order to apply this methodology for future observations, it might
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Figure 4.12: Proposed multi-band classifier. Every incoming image is processed by different
convolutional layers depending on the band, then the information is projected to a com-
mon space, in this way, the model is able to integrate information from different bands and
improves the cadence of the input sequence. The gradient is propagated in a regular way
depending on the available band for each time step.

be necessary to do observation conditions forecasting to simulate the images. It is reasonable
to assume that most forecasting methods will have a prediction error, so it is important
to make the model more robust to differences between observation conditions on training
data and observation conditions for evaluation data. One way to achieve this is by adding
noise somehow or sorting the observation conditions for simulated data, so the model gain
invariance or robustness to changes in observation conditions between training and test data.

4.4.2 Simulation-Classification methodology

Applying the proposed method (simulating a sequence of images and training the proposed
model as explained in Chapter 3) in a real case scenario, give rise some questions regarding
the objects that are possible to find using this methodology. One of the main issues is how
to find objects that have not been observed with real instruments, even objects that are not
known to exist.

Another issue is the simulation of physical effects and prior assumptions about the image
structures that are different from the source. The implemented process for image simulation
used in this work only consider a couple of physical effects and single elliptically shaped
galaxies, and do not considers, for instance, the correlated noise between nearby pixels, satu-
ration effects, hot pixels, bad columns, crowded fields with many sources, galaxies with more
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complex shapes such as arms or irregular galaxies, among others. In order to approach these
problems and some of the ones presented in Section 4.4.1, it is proposed the following scheme
shown in Figure 4.13 of different systems to isolate important parts of the methodology.
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Sequence
Generator

Classifier

PSF, zero point ... Noisy light curves

PSF, sky brightness, zero point

Image sequence
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Real data
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Figure 4.13: Proposed system separation

First, defining an observation plan and the telescope (target survey) determines the ob-
servation dates of the survey and the camera parameters, then it should be possible to apply
a forecasting method to determine the observation conditions for each exposure. This fore-
casting process should be isolated from the light curve generator and the image generator
since it shouldn’t be necessary to consider information from these other two parts.

The information about observation dates, observation conditions, and camera parameters
goes from the forecasting block to the light curve generator. Again, the light curve generator
should be independent of the image generator. This makes easier to add new astronomical
objects to the light curve generator to simulate their images later, which may help to find
objects not observed before with real instrument but for which a light curve model is available.

The image generator receives information from both, the forecasting block and generated
light curves. It is proposed to simulate images independently of the shape of the light curve
and only consider each point of the light curve to create the images, in other words, only
instantaneous information of the astronomical objects should be considered, so the image
generator could create objects with an arbitrary shaped light curve, as well as arbitrary
observation conditions which were defined by the forecasting block. This facilitates the
addition of new astronomical objects by only adding the light curve model to the generator.
Then the shape of the light curve that describes the object is managed in the light curve
generator model and not the image generator.

Although, the image generator should consider instant information from observation con-
ditions and the light curve, there is some sequential information that the image generator
must consider to create realistic image sequences, this information corresponds to the struc-
tures within a stamp. For example, the presence of galaxies or other sources different from
source simulated using the light curve. Through the entire sequence, the underlying struc-
ture of other sources should remain constant, independent of the observation conditions or
variations in brightness of the source generated by the light curve shape. Furthermore, prior
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distributions for the occurrence of certain features within the stamp sequence such as hot
pixels, bad columns or the shape of the PSF could be learned from real data.

An option is to use of an architecture based on Generative Adversarial Networks
(GANs) [117, 118] that manage part of the issues discussed. In Figure 4.14, a general idea of
the proposed architecture is depicted, which is a mix of conditional and convolutional GANs
[119, 120]. In principle, variables that could be learned from data should be encoded in
the latent space through training, variables that are defined by the light curve or observation
conditions are given to the model to “condition” the image generation. Then this model could
be designed to learn the distributions of occurrence and shapes of effects, for which the user
doesn’t want to set a prior distribution manually, such as the shape of the galaxy or presence
of a bad column in the stamps. At the same time, keeps important variables to generate the
image under the control of the user, such as the brightness of the source controlled by the
light curve and the observation conditions (background level, PSF size, etc). In summary,
for variables for which is better to learn the prior distributions, those are left to be encoded
in the latent space. Variables that the user wants to control, could be used to condition the
image generation. As mentioned before, some sequential information is still important, this
is why the proposed architecture also has a recurrent structure, where should be able to keep
sequence information in the state.

Latent space
(random)

Observation
conditions 

Image structure 
(Galaxy or crowded) 

Time

Generator

Target source 
brightness

Recurrence 
for structure 
consistency

Every controlled parameter C
Image properties 

learned from data Z

Z C

Discriminator

C

Simulated

Real Sim / Real

Figure 4.14: Generative model for image simulation. The generator receives a random vari-
able sampled from the distribution of the latent space Z, and also extra variables C that
condition the image generation. The discriminator also receives the controlled parameters C
to force the generator to correctly produce images with the right parameters.

The proposed generative model does not require labeled object sequences, it only requires
sequences of stamps for which the controlled parameters C are known, in other words, unla-
beled raw images from a telescope is the only data needed since the parameters in C could be
inferred from the images. Then, sequence of a specific object can be generated and labeled
according to the light curve model. This way to simulate sequence of images do not have
the advantage of having a dataset before real data is available, so the alternative approach
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of adding physical effects manually should not be abandoned. The choice of each approach
will depend on the problem and data availability.

The classifier block in Figure 4.13 is the last step, which could receive information from
every other previous step. The proposed RCNN developed in this work is a good candidate
and could be improved as explained in Section 4.4.1. Keeping each problem in the right
block helps to encapsulate each problem and solve them independently. Although the code
integration was not discussed in this work, it is an important factor when building large
systems. Defining the right communication between each block and considering usability for
different cases and applications is just as important as any of the issues discussed in this
section.
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Chapter 5

Conclusion

In this thesis, a new sequential classification model for astronomical objects based on a recur-
rent convolutional neural network is proposed, which uses directly sequences of images, and
it does not require computing the light curve nor the difference image. Using empirical and
astrophysical models of different astronomical objects, data from the High cadence Transient
Survey (HiTS) was simulated, generating a dataset of image sequences for seven classes of
astronomical objects, considering realistic atmospheric conditions and camera specifications.
This synthetic dataset was used to train the image sequence classifier (RCNN), then the pro-
posed model was evaluated on real images from the HiTS survey. Fine tuning was performed
to adjust the models obtained with the simulated dataset using a few real samples per class.
The results show that the proposed RCNN model is able to classify correctly the simulated
test set, as well as the real dataset after performing fine tuning. This is the first time that
a sequential classifier based on recurrent convolutional neural networks using sequences of
images as inputs, and without computing the light curve or the difference images, has been
proposed in time-domain astronomy.

In order to assess the advantage of using images directly, light curves were extracted using
optimal photometry on the simulated images and we trained a feature based light curve RF
classifier using Feature Analysis for Time Series package (FATS). Although the proposed
RCNN model obtained similar results to those of the more traditional approach, it presents
several advantages in an alert streaming classification scenario: no need for expensive pre-
processing such as difference imaging and light curve computation, a faster evaluation, early
detection compared to RF due to extra information aside from the source presented in the
stamp such as the presence of a nearby galaxies, and an easy way to fine tune the model
after receiving new images from the data streaming.

This work also shows that having images at the location of a transient event from before
their first detection, can be very useful for the classification of astronomical alert streams.
For example, in the proposed RCNN model having images of a supernova very early rise,
before crossing a given threshold on the light curve, helps the classifier report better class
probabilities.

Using realistic image simulations makes the domain adaptation problem from synthetic
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to real images easier to solve. As mentioned before, the performance of the proposed model
was substantially improved by doing fine tuning with only 10 real samples per class. Using
synthetic data is a reliable way to train models before acquiring real images from telescopes,
as long as we have good light curve models available and the correct parameter distributions
to represent well objects for a specific classification task and science goal. The fact that the
RCNN classifier works well on real-world images after being trained with synthetic data and
improves its performance after fine tuning, encourages further use of this methodology to
train classifiers for new telescopes such as the Large Synoptic Survey Telescope [1] and the
Zwicky Transient Facility [2]. In this way, it could be possible to have a sequential classifier
model available even before receiving real data, and as new data becomes available we can
easily adjust the proposed model.

5.1 Future Work

As discussed in section 4.4.1, the proposed model could be improved in many ways. Hy-
perparameters search and architecture selection is not completely done in this work, it is
important to find the best configuration in order to improve performance on simulated and
real data, and also reduce the architecture size if possible.

More information could be given to the classifier in order to facilitate the classification
task and the domain adaptation problem between simulated and real data. The most obvi-
ous candidate of extra information could be the light curve (since is reported in ZTF alert
streaming), observation condition information or other contextual feature such the presence
of a nearby galaxy. We could also use features used by the random forest. Hopefully, features
computed in an efficient fashion to not harm the advantages of the proposed model.

Interpretability of the model is an interesting topic, especially in this case where the
model encodes spatial and temporal information of the astronomical object. Layer relevance
propagation (LRP) is proposed to interpret how the model discriminates among the classes.
LRP has not been applied to a convolutional and recurrent architecture, therefore is a great
opportunity to develop a new tool for interpretability in astronomical classification tasks.

The proposed model is currently trained in band g, but it could be adapted to classify the
image sequence combining information from more than one band, i.e., a multi-band image
sequence classifier. Since images from different bands are sampled at an irregular time and
not at the same instant, an architecture (see 4.12) is proposed to process images from different
bands with different parts of the network, which also integrates the information from each
band in a common space and improves the cadence of the input sequence.

An important assumption in this work is the availability of good observation conditions
to simulate images. In order to simulate images for which data is not available yet (LSST
for example), it is necessary to estimate or forecast future observation conditions and it is
reasonable to expect errors in the forecasting. An alternative is to make the proposed model
more robust or invariant to observation conditions, so the discrepancies between training and
test data do not harm the performance in classification.
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In terms of the proposed methodology, many improvements to the approach could be done
considering certain issues. For instance, how to find objects that have never been observed
with real instruments, or how to simulate better images considering realistic physical effects.

In this work, it is proposed to separate blocks to tackle each problem independently.
Starting from the observation conditions forecasting block, light curve generator, the image
generator, and classifier. Each of these blocks should solve their particular problems inde-
pendently allowing easy integration of the entire system. For example, in order to add a new
object to the dataset, in principle it is required a mathematical or empirical model only, that
describes the light curve for the corresponding bands of the survey. This enables the attempt
to find objects that have not been observed before but for which a model is available.

To improve the image simulator, it is proposed to use a generative model based on Gen-
erative Adversarial Networks (GANs). The proposed model (see 4.14) is designed to learn
part of the physical effects of the images that are present in the data, and for which it is hard
to make assumptions about the prior distributions, such as camera errors or galaxy shapes.
At the same time, it keeps control for some of the parameters by conditioning the generator.
In particular, it could be used to generate a sequence of images with realistic characteristics
for any arbitrary shaped light curve. The original approach of adding physical effects to
the simulator should not be abandoned because the generative approach needs real data for
training which is not always available.

5.2 Last Remarks

The two main contributions of this work were the image simulator program and the image
sequence RCNN classifier. By developing these tools, it was proved that the direct use of
images to classify astronomical objects is reliable and it is very suitable for an alert streaming
scenario.

The topics discussed in chapter 4 open many possibilities to solve problems such as the
following: Interpretation of recurrent neural networks, by using LRP, for example. How
to correctly condition and add knowledge to a generative model, like the proposed model
for image generation. Integrating useful information within the neural network to solve the
classification task, and how to combine the information for a multi-band classifier as the
proposed architecture in Figure 4.12.

Of course, before any of these proposed approaches are definite, further analysis and
research has to be done, but having a notion of the question or the problem that wants to
be solved is a good starting point.
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Appendix

FATS features

FATS features used in this work, see FATS documentation for more details [13].

Amplitude, AndersonDarling, Autocor_length, Beyond1Std, CAR_mean, CAR_sigma,
CAR_tau, Color, Con, Eta_color, Eta_e, FluxPercentileRatioMid20, FluxPercentileRa-
tioMid35, FluxPercentileRatioMid50, FluxPercentileRatioMid65, FluxPercentileRatioMid80
Freqi_harmonics_amplitude_j (i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3}), LinearTrend, MaxSlope,
Mean, Meanvariance, MedianAbsDev, MedianBRP, PairSlopeTrend, PercentAmplitude, Per-
centDifferenceFluxPercentile, PeriodLS, Period_fit, Psi_CS, Psi_eta, Q31, Q31_color, Rcs,
Skew, SlottedA_length, SmallKurtosis, Std, StetsonJ, StetsonK, StetsonK_AC, StetsonL.
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