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IONOSPHERIC ANALYSIS USING INCOHERENT 

SCATTER RADAR AND IN-SITU MEASUREMENTS 

 

 

Existen problemas de ambigüedad en la estimación de los parámetros del plasma ionosférico 

entre los 130 y los 300 km en los Radares de Dispersión Incoherente (ISR). En esos rangos, el ISR 

es incapaz de distinguir entre diferentes mezclas de iones moleculares (NO+ y O2
+) y iones 

atómicos de oxígeno (O+). Los métodos comúnmente utilizados para solucionar este problema son 

el uso de modelos empíricos o teóricos de la Ionosfera, o añadir información conocida a priori de 

parámetros del plasma obtenidos de la Línea de Plasma del radar ISR. Por otro lado, algunos 

estudios han demostrado que se pueden estimar de forma no ambigua los parámetros del plasma 

analizando señales casi sin ruido, aunque esas características de ruido no son típicamente 

obtenidas en las mediciones rutinarias de los radares ISR. En este trabajo de tesis se define un 

entorno teórico para cuantificar el problema de la ambigüedad y determinar los niveles de 

fluctuación de señal máximos para estimar de forma no ambigua las señales ISR. Realizamos 

diversas simulaciones Monte Carlo de diferentes parámetros de plasma que nos permiten evaluar 

el desempeño de la estimación del algoritmo de optimización de mínimos cuadrados no lineal 

(NLLS) más comúnmente utilizado en ISR. Los resultados de estas simulaciones se muestran 

como curvas de probabilidad de convergencia válida y estimación ‘correcta’. Además, realizamos 

simulaciones para cuantificar el error de estimación que se obtiene cuando se utilizan modelos 

ionosféricos para determinar las condiciones iniciales de los parámetros de plasma del algoritmo 

de optimización. A su vez, determinamos el efecto del conocimiento a priori de diferentes 

combinaciones de parámetros obtenidos de la Línea de Plasma, la información que contribuyen 

cada uno de los parámetros del plasma, y el impacto de incrementar la incertidumbre de esos 

parámetros conocidos a priori. Los resultados sugieren que el conocimiento a priori de la densidad 

de electrones y la temperatura de electrones permite estimar de forma no ambigua incluso en 

niveles de fluctuación de señal elevados. Mediciones in-situ de sensores en satélites o cohetes 

pueden obtener esos parámetros de plasma conocidos a priori para ayudar a la estimación correcta 

de los radares. Los resultados obtenidos en este estudio ayudan a determinar los límites de 

estimación de la técnica ISR y proveen nuevas herramientas que mejoran la probabilidad de 

estimación no ambigua de los parámetros del plasma.  
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Unambiguously estimating the plasma parameters of the ionosphere at altitudes between 

130 and 300 km presents a problem for the Incoherent Scatter Radar (ISR). At these ranges, ISR 

is unable to distinguish between different mixtures of molecular ions (NO+ and O2
+) and atomic 

oxygen ions (O+). Common solutions to this problem are either to employ empirical or theoretical 

models of the ionosphere, or to add a priori known plasma parameter information obtained from 

the Plasma Line of the ISR spectrum. Studies have demonstrated that plasma parameters can be 

unambiguously estimated from ISR signals in almost noiseless scenarios, not commonly feasible 

during routine monitoring. In this thesis work, we define a theoretical framework to quantify the 

ambiguity problem and determine the maximum signal fluctuation levels of the ISR signal to 

unambiguously estimate plasma parameters. We conduct Monte Carlo simulations for different 

plasma parameters to evaluate the estimation performance of the most commonly used Non-Linear 

Least Squares optimization algorithm. Results are shown as probability curves of valid 

convergence and ‘correct’ estimation. We also use simulations to quantify the estimation error 

when using ionospheric models as initial conditions of the optimization algorithm. We also 

determine the contribution to the estimation process of different combinations of parameters 

known from the Plasma Line, the particular contribution of each plasma parameter, and the effect 

of increasing the level of uncertainty of the parameters known a priori. Results suggest that 

knowing a priori both electron density and electron temperature parameters allows an 

unambiguous estimation even at high fluctuation levels. In-situ measurements of sensors onboard 

of satellites or rockets could measure these a priori plasma parameters to help determine the 

correct estimation parameters. Results obtained in this study help determine the estimation limits 

of the ISR technique and provide new tools that improve the probability of unambiguous 

estimations of plasma parameters. 
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it be consistent with the laws of nature; and in such things as these, experiment is the best test of 

such consistency.” 

 

 

Michael Faraday 
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     CHAPTER 1 

1. INTRODUCTION 

1.1. MOTIVATION 

The Incoherent Scatter Radar (ISR) is one of the most powerful ground-based sounding 

techniques to measure the ionosphere [Evans, 1969] [Beynon and Williams, 1978]. This method 

is a radar that transmits a powerful electromagnetic pulse the ionosphere and receives a 

backscatter signal due to the Thomson Scatter effect on the ionospheric electrons. Plasma 

parameter estimates are obtained from the analysis of the ISR backscattered signal 

autocorrelation function (ACF) or its Fourier Transform, the Incoherent Scatter Spectra (ISS).    

At altitudes varying from 120 km to 300 km approximately, the estimation of plasma 

parameters from ISR signals is ambiguous because of the existence of a mixture of different ions 

in the ionosphere [Oliver, 1979]. ISR signals at the Ion Acoustic frequency band of the radar are 

dependent on the ratio of ion temperature and mass (𝑇𝑖/𝑚𝑖) [Oliver, 1979] [Vallinkoski, 1988]. 

Therefore, similar backscatter signals are obtained with different combinations of molecular ions 

(𝑁𝑂+ and 𝑂2
+) and atomic (𝑂+) ions found at these altitudes [Aponte et al., 2007]. Two possible 

solutions of ion composition are obtained with almost symmetric values [Lathuillere et al., 1983] 

[Wu et al., 2015]. Also, different temperatures are obtained related to the solutions of ion 

composition, hindering the correct estimation of plasma parameters. This Temperature-Ion 

Composition Ambiguity (TICA) is a relevant scientific issue that affects the determination of 

long-term trends of ionospheric and thermospheric variables currently under discussion [Perrone 

& Mikhailov, 2017] [Zhang et al., 2018] [Perrone & Mikhailov, 2018]. 

1.2. PROBLEM STATEMENT 

The TICA problem has been typically solved in the literature by providing additional 

information that constrained the feasible solutions [Aponte et al., 2007]. The most common 

method to solve the ambiguity is by the use of theoretical or empirical models of ionospheric 

plasma parameters [Waldteufel, 1971] [Evans & Oliver, 1972] [Oliver, 1979] [Cabrit & Kofman, 

1996] [Litvine et al., 1998]. Nevertheless, the use of ionospheric models may induce to 

estimation errors when these models are inaccurate, or when particular physical phenomena are 

not properly represented or are smoothed by these models.  

An alternative method used to solve the ambiguity is to provide simultaneously estimated 

plasma parameters from the Plasma Line frequency band of the radar and from the total power 

received at the antenna [Wand, 1970] [Waldteufel, 1971] [Bjørnå & Kirkwood, 1988] [Nicolls 

et al., 2006] [Aponte et al., 2007]. Nevertheless, Plasma Line information is not routinely 

available at most ISRs because of the small signal strength of this frequency band, although 

occasional enhancements allow its detection under energetic events [Akbari et al., 2017].  
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A different method to unambiguously estimate plasma parameters is based on the 

determination of the two possible solutions of ion composition and the selection of the solutions 

which provide the smoother altitude profile [Oliver 1979] [Lathuillere et al., 1983] [Lathuillere 

& Pibaret, 1992]. Nevertheless, this method requires the use of almost noiseless ISR signals 

[Oliver, 1979]. Long integration times were required to obtain small signal fluctuations in 

previous studies of this technique [Lathuillere et al., 1983] [Lathuillere & Pibaret, 1992]. 

However, the integration of signals coming from different radar pulses requires the assumption 

of stationary plasma conditions during the integration period [Farley, 1969]. The stationary 

plasma assumption can smooth and hide the dynamic phenomenon occurring in the ionosphere.   

Recently, a new optimization algorithm (i.e. the Particle Swarm Optimization algorithm, 

PSO) has been used to unambiguously estimate plasma parameters of ISR signals with small 

fluctuation characteristics [Wu et al., 2015]. These signals were obtained with Signal-to-Noise 

Ratio (SNR) values in the range of 15 to 25, by using the simultaneous frequency transmission 

[Sulzer, 1986a] and the Coded Long Pulse [Sulzer, 1986b] techniques at the Arecibo 

Observatory. In this case, the PSO algorithm obtained much better estimations than the standard 

Non-Linear Least Squares (NLLS) optimization algorithm commonly used [Wu et al., 2015].  

Results from [Lathuillere et al., 1983], [Lathuillere & Pibaret, 1992], and [Wu et al., 2015] 

suggest the feasibility to unambiguously estimate plasma parameters from signals with very 

small fluctuations. Nevertheless, no previous study has reported the unambiguous estimation of 

plasma parameters of signals with very small fluctuations using the most commonly used NLLS 

fitting algorithm in the ISR literature: the Levenberg-Marquardt (L-M) optimization algorithm 

[Levenberg, 1944] [Marquardt, 1963]. Furthermore, no previous study has assessed the required 

signal fluctuation level to unambiguously estimate plasma parameters in the TICA problem. 

1.3. RESEARCH QUESTIONS  

Considering the problem stated in Chapter 1.2, this doctoral thesis addresses the following 

general research question:  

“It is possible to unambiguously estimate plasma parameters from ISR signals with very 

small signal fluctuation using the most commonly used NLLS optimization algorithm without 

providing additional information?”. 

This general research question generates further relevant secondary research questions:  

1) “What is the signal fluctuation level required to solve the ambiguity?”,  

2) “Does the addition of information change the signal fluctuation threshold?”,  

3) “What information would help solve the TICA problem at high signal fluctuations?”.  

These questions intend to provide a general study framework to determine the solvability 

of the TICA problem using the most commonly used NLLS optimization algorithm at different 

fluctuation levels. Furthermore, this framework can compare the effectiveness of the different 

methods of adding information previously studied in the literature.    
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1.4. HYPOTHESES  

The hypotheses presented in this doctoral thesis are the following:  

• It is possible to unambiguously estimate plasma parameters from ISR signals with 

small fluctuation levels, even in the case when no additional information is 

provided, using the most commonly used NLLS fitting algorithm: the Levenberg-

Marquardt (L-M) optimization algorithm.  

 

• The signal fluctuation level required to solve the ambiguity is dependent on the a 

priori information provided (i.e. type and uncertainty of plasma parameters 

provided from the analysis of the Plasma Line or from in-situ sensors). 

1.5. RESEARCH OBJECTIVES 

1.5.1. GENERAL OBJECTIVE 

The main objective of this doctoral thesis is to provide an assessment framework to 

quantify the Temperature-Ion Composition Ambiguity (TICA) problem of the Incoherent Scatter 

Radar (ISR) at different scenarios using the most commonly used NLLS optimization algorithm. 

1.5.2. SPECIFIC OBJECTIVES 

The specific objectives of this research are summarized below. 

• Implement an ISR estimation simulation framework to study the ambiguous 

estimation at different signal fluctuation levels using the most commonly used 

NLLS optimization algorithm. 

 

• Propose a methodology to determine the validity of the estimated solutions 

obtained and quantify the probability of unambiguous estimation.  

 

• Determine the signal fluctuation level required to estimate unambiguously plasma 

parameters in the case when no additional information is provided. 

 

• Determine the effect of providing a priori plasma parameters (obtained from the 

analysis of the Plasma Line frequency band of the radar or from in-situ sensors) in 

the ambiguous estimation of ISR signals.  

 

• Determine the impact of providing a priori plasma parameters with different levels 

of uncertainty in the ambiguous estimation of ISR signals. 

 

• Determine the effectiveness of using ionospheric models to set the initial guess of 

plasma parameters of the optimization algorithm search. 
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1.6. CONTRIBUTIONS OF THIS WORK 

The main contributions of this doctoral thesis are summarized below. 

New methodology to analyze the ambiguous estimation of ISR signals: 

• A method to quantify the estimation performance of the most commonly used 

NLLS optimization algorithm in ISR (i.e. the Levenberg-Marquardt optimization 

algorithm) at different signal fluctuation levels by running a Monte Carlo 

estimation analysis of multiple input plasma parameters uniformly selected from 

the search range. 

 

• A new estimation method independent on the selection of the initial parameters of 

the optimization algorithm search by executing multiple times the estimation 

process with different initial parameters uniformly selected from the search range. 

 

• A new method to determine the convergence of the estimated solutions based on 

the statistical distribution of the reduced Chi-square cost function (𝜒𝑟
2). 

 

• A new method to determine which solutions are ‘correct’ (i.e. select the global 

minima) or ‘incorrect’ based on the estimation error of the ion composition 

parameter using the Expectation Maximization clustering algorithm. 

 

• A new ambiguity quantification method based on the probability of unambiguous 

estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡) calculated as the ratio between the number of ‘correct’ 

solutions and the number of convergent solutions. 

Unambiguous estimation of ISR signals with very small fluctuation levels:  

• Demonstration that the probability of unambiguous estimation increases when the 

signal fluctuation level gets reduced. Results indicate that it is possible to solve the 

TICA problem (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≥ 95.45%) estimating with very small fluctuations (𝛿 ≤
0.045%), even in the case when no additional information is provided. 

Impact of adding additional information of plasma parameters: 

• Demonstration that the addition of different plasma parameters improves the 

probability of unambiguous estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡) at different signal fluctuation 

levels. Results demonstrate that knowing the ion drift parameter (𝑉𝑖) does not 

provide any information to solve the ambiguous estimation. 

 

• Previous studies assumed that the ambiguity problem was solved by the addition 

of 𝑁𝑒 and 𝑇𝑒/𝑇𝑖 plasma parameters. Results indicate that, in this case, the 

ambiguity is solved (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≥ 95.45%) only for signal fluctuations levels 𝛿 ≤
0.57%. Furthermore, results suggest that knowing 𝑁𝑒 and 𝑇𝑒 plasma parameters 

solves the ambiguity problem even at high signal fluctuations (𝛿 ≤ 7.93%). 
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Impact of adding additional information of plasma parameters with uncertainty: 

• Demonstration that the increase of uncertainty of a priori known parameters 

decreases the convergence of solutions (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑). Results indicate that 

convergences are similar to simulations without uncertainty when the signal 

fluctuation level (𝛿) is larger than the uncertainty level (𝛿 ≥ 𝜖). 

 

• Demonstration that the increase of uncertainty of a priori known parameters 

decreases the probability of unambiguous estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡). Results indicate 

that the probability of unambiguous estimation is similar to simulations without 

uncertainty when the uncertainty level is 𝜖 ≤ 1%. Also, results indicate that the 

ambiguity is solved independently of the uncertainty level (𝜖) for very signal small 

fluctuation levels (𝛿 ≤ 0.05%). 

Effect of using ionospheric models to determine the initial set of parameters of the 

optimization algorithm search: 

• Demonstration that the increase of uncertainty on the initial guess of plasma 

parameters (𝛽) decreases the probability of unambiguous estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡). 

Results indicate that for very small signal fluctuations (𝛿 ≤  0.05%) parameters 

were unambiguously estimated (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≥ 95.45%) independently on the 

uncertainty of the initial guess (𝛽). 

 

• Previous studies assumed that providing an accurate initial guess would obtain an 

unambiguous solution. Results indicate that even with an accurate initial guess 

(𝛽 =  1%), unambiguous estimations (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≥ 95.45%) are obtained only for 

signal fluctuation levels smaller than 𝛿 ≤ 0.54%. Furthermore, even with an 

accurate initial guess (𝛽 = 1%), it is more probable to obtain the ‘incorrect’ solution 

(𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 < 50%) for signal fluctuations larger than 𝛿 > 5%. 
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1.8. OUTLINE OF THE THESIS 

Chapter 2 shows the basic principles of the ISR method, describes the most relevant ISR 

observatories, explains the general procedure to obtain ISR measurements from the ionosphere, 

describes the methods to analyze these measurements, determines the backscatter power strength 

received, explains the Plasma Line and the methods used to estimate plasma parameters from 

this frequency band, and explains the ambiguous estimation of the temperature and ion 

composition and the methods commonly used to solve this ambiguity. 

Chapter 3 describes the Monte Carlo simulation method implemented, and the statistical 

methods implemented to determine the convergence and ‘correctness’ of the estimation results. 

Chapter 4 describes the results of using different levels of inaccuracy in the initial guess 

of parameters of the optimization algorithm search at different signal fluctuation values.  

Chapter 5 describes the resulting probabilities obtained at different signal fluctuation 

values with different parameters assumed to be known a priori from the Plasma Line. 

Chapter 6 describes the probabilities obtained by assuming each plasma parameter known 

a priori individually to determine the most relevant parameters required to solve the ambiguous 

estimation. 

Chapter 7 describes simulations with different levels of uncertainty in the a priori known 

parameters at different signal fluctuation values with different parameters assumed to be known 

a priori from the Plasma Line. 

Chapter 8 summarizes the conclusions of this thesis, new improvements suggested to be 

applied to the ISR technique resulting from this work, and discusses possible future works 

related.  

Annexes are included in this work to provide a more detailed explanation of some subjects 

of relevance for this study:  

- Annex 1 describes the ISR spectrum model used and shows graphics of variability for 

different values of plasma parameters of the Ion Acoustic frequency band of this 

spectrum model.  

- Annex 2 describes the standard estimation technique of ISR for Range-Gate analysis.  

- Annex 3 describes the Levenberg-Marquardt optimization algorithm used and its 

configuration.  

- Finally, Annex 4 describes the Expectation Maximization algorithm used and its 

configuration.  
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    CHAPTER 2 

2. BACKGROUND 

2.1. INCOHERENT SCATTER RADAR 

One of the most powerful and effective ground-based instruments to study the ionosphere 

is the Incoherent Scatter Radar (ISR). This is because of its capacity to obtain the most relevant 

plasma parameters from the entire ionospheric profile, from altitudes between 100 to beyond 

1000 km altitude. The ionospheric plasma parameters estimated are the electron density (𝑁𝑒), 

electron temperature (𝑇𝑒), ion temperature (𝑇𝑖), ion composition (𝑝), and plasma ion drift 

velocity (𝑉𝑖). Other secondary parameters can also be derived from the previous estimates, such 

as the neutral atmospheric temperature or the static electric field. For a detailed review of the 

ISR method see [Evans, 1969] [Beynon and Williams, 1978] [Bauer, 1975] [Walker, 1979] and 

references therein. 

The ISR is a radar technique that sends a powerful electromagnetic pulse to the ionosphere 

and receives the backscattering generated by the ionospheric electrons due to the Thomson 

Scatter effect (see Annex 1. The Incoherent Scatter Spectrum). In this effect, the electrons get 

accelerated by the electric field of the transmitted signal, making them re-radiate energy in the 

form of electromagnetic waves with the same frequency as the incident wave. Only waves that 

satisfy the Bragg conditions would contribute to the returning signal: 𝑘𝐵𝑟𝑎𝑔𝑔 = 2𝑘𝑟, where 𝑘𝑟 =

2𝜋𝑓𝑟/𝑐 is the wavenumber, being 𝑓𝑟 the frequency of the radar and 𝑐 the speed of light.  

Due to the higher mass of ions, the ion acceleration is much smaller than the electron 

acceleration of the Thomson Scattering, so the electromagnetic radiation contribution of ions is 

almost negligible. For this reason, the backscatter signal was initially assumed to be generated 

by independent movements of electrons. This initial assumption was made by William E. 

Gordon when proposed the idea of a radar to measure the ionosphere [Gordon, 1958]. In this 

assumption, due to the randomness of the electrons in the plasma, electrons would be scattering 

incoherently. Therefore, received signal would have a Gaussian shaped spectrum, reflecting the 

Doppler effect of the Maxwellian distribution of electron speeds. Kenneth L. Bowles was the 

first to test this radar idea and measure a Thomson Scatter from the ionosphere [Bowles, 1958] 

[Bowles, 1961]. Those initial tests presented a different spectrum behavior and a more powerful 

backscattered signal. As Bowles correctly supposed from his observations, this effect was related 

to collective interactions between ions and electrons that came from macroscopic field 

fluctuations. Nevertheless, although the initial supposition of Gordon was found invalid, this 

ionospheric radar method has continued with the “incoherent” naming. A more suitable and 

commonly used naming for this radar technique is “Thomson” Scatter Radar method.  
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2.2. ISR FACILITIES 

ISR observational facilities are formed by a large antenna, and a radio-frequency (RF) 

transmitter and receiver. Due to the small backscatter echo returned from the ionosphere, very 

high antenna gains and low noise temperature characteristics are required at reception. Typically, 

a radar with a mega-watt RF transmitter (𝑃𝑡𝑥 ~ 1 [𝑀𝑊] = 106[𝑊]) constructed with klystrons 

amplifiers is used to obtain backscatter signals in the order of femto-watts (𝑃𝑟𝑥 ~ 1 [𝑓𝑊] =
10−15[𝑊]), which is slightly higher than the achievable reception noise power.  

Typical ISR radar frequencies are between 30 MHz and 1.3 GHz, which are higher than 

the frequencies used by other sounding methods (such as Ionosondes). The ISR technique uses 

transmission frequencies (𝑓𝑟) higher than the plasma frequency at the maximum density peak of 

the ionosphere (𝑓0𝐹2 = (2𝜋)−1√𝑁𝑒,𝑚𝑎𝑥𝑒2/𝑚𝑒𝜖0 [𝐻𝑧]). This characteristic (𝑓𝑟 ≫ 𝑓𝑜𝐹2) implies 

not receiving a specular reflection and allows measure backscatters from the entire ionospheric 

profile. Furthermore, the radar wavelength selected (𝜆 = 𝑐/𝑓𝑟[m]) is much larger than the Debye 

length of the plasma (𝜆𝐷 = √𝜖0𝑘𝑇𝑒/𝑒2𝑁𝑒   ≅ 69√𝑇𝑒/𝑁𝑒  [m]). This later characteristic (𝜆 ≫

𝜆𝐷) allows the radar signal to affect the plasma collectively and obtain a backscattered signal 

proportional to density fluctuations of the plasma. Otherwise (𝜆 ≪ 𝜆𝐷), the scale length of the 

transmitted variations would make the particles to act almost freely, obtaining a backscattered 

power extremely small and below detection limits [Evans, 1969].  

Characteristics of world major ISR facilities are shown in Table 2.1 and their geographic 

locations in Figure 2.1. Radar parameters of observatories indicated in Table 2.1 have been 

obtained from [Yao et al., 2014a] [McKay and McCrea, 2009] [Erickson et al., 2008] [Balsley 

and Gage, 1980] [Sato et al., 2014] [Ding et al., 2018] and others. Further facilities were 

constructed but nowadays are unavailable. Decommissioned ISR observatories are the San 

Santin facility (France) [Bauer et al., 1974], and the Malvern radar (UK) [Williams and Taylor, 

1974]. Also, the Chatanika radar (Alaska, USA) [Leadabrand et al., 1972] was moved to the 

Sondrestrom facility (Greenland, Denmark) in 1982 [McCready and Heinselman, 2013]. 

The earliest ISR facilities are the Arecibo Observatory (AO) at Puerto Rico (USA) and the 

Jicamarca Radio Observatory (JRO) at Jicamarca (Peru). The AO is the world largest antenna 

currently in operation, with a diameter of 305 meters (1000 feets), conceived by William E. 

Gordon in 1958 to receive the theoretically faint incoherent backscatter from the ionospheric 

electrons [Cohen, 2009]. Simultaneously to the construction of the AO, Kenneth L. Bowles 

designed and constructed the JRO. The JRO facility is a phased array antenna of 288m x 288m 

almost perfectly perpendicular to Earth magnetic fields, formed by 18432 half-wave dipoles 

working at a 49.92 [MHz] [Bowles et al., 1962]. 

Recent advances on ISR design are based in the use of modular phased array antennas, 

Software Defined Radio (SDR) technology, and low power solid-state transmitters [Valentic et 

al., 2013] [Grydeland et al., 2005] [Yao et al., 2014a] [Yao et al., 2014b]. The most recent ISR 

is the EISCAT_3D, which is an European Holographic ISR based on multiscatic phase array 

radars (still under development) [Wannberg et al., 2010] [McCrea et al., 2015]. Some of the new 

characteristics proposed in EISCAT_3D have been already tested at the Kilpisjärvi Atmospheric 

Imaging Receiver Array (KAIRA) located in Finland [McKay-Bukowski et al., 2015]. 
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Table 2.1. System Specification of the World Major Incoherent Scatter Radar Facilities 

ISR  

system 

Location fradar 

(MHz) 
radar 

(m) 

Ptx 

(MW) 
  

(%) 

Tnoise  

(K) 

Antenna  

type 

Beamwidth 

(º) 

G  

(dBi) 

EISCAT 

UHF 
Troms,  

Norway 

928 0.33 1.30 12.5 90/ 

110 

32m Cassegrain dish 0.6 48.1 

EISCAT 

VHF 
Troms, Norway, 

Receivers:  

Kiruna, Sweden 

Sodankylä, Finland  

224 1.34 3.00 12.5 250 Four 30×40 m steerable 

parabolic cylinders (Tromsø); 

32 m steerable 

parabolic dish (receivers) 

0.6x1.8 46 

EISCAT 

ESR 

Longyearbyen, 

Svalbard 

500 0.60 1.00 25.0 65 32m Cassegrain dish 0.6 42.5 

Sondrestrom Kangerlussuaq, 

Greenland 

1290 0.23 3.50 3.0 65 32m parabolic dish 0.6 50 

RISR Resolute Bay, 

Canada 

430-

450 

0.67 2.00 10.0 120 2x 30m x 30m dipole crossed 

phased array 

1.0 43 

PFISR Poker Flat,  

Alaska 

430-

450 

0.67 2.00 10.0 120 30m x 30m dipole crossed 

phased array 

1.0 43 

Jicamarca Jicamarca,  

Peru 

49.92 6.00 4.0-5.0 6.0 3000 300m x 300m phased array 

(18432 dipoles) 

1.06  

Arecibo Arecibo,  

Puerto Rico 

430 0.70 2.50 6.0 75 305m spherical reflector 0.17-0.25 ~60 

Millstone 

Hill 

Massachussets,  

USA 

440 0.68 2.50 6.0 120 68m zenithal and 46m 

steerable dish 

0.6 45 

Kharkiv  Kharkiv,  

Ukraine 

158 1.90 2.6/ 

3.6 

6.0 100-250 100m zenithal and 25m 

steerable dish 

1.3/5.1  

Irkutsk Irkutsk,  

Siberia 

154-

162 

1.85-

1.95 

3.20  400 246m x 12m sectorial horn 0.5 35 

MU Shigaraki,  

Japan 

46.5 6.45 1.00 4.0  Circular array of 103m 

diameter (475 yagis) 

3.6  

EAR West Sumatra, 

Indonesia 

47 6.38 1.00 5.0 627 100-300m across phased array 

(560 yagi antennas) 

3.4 33 

ALTAIR Kwajalein, 

Marshall Islands 

155/ 

415 

1.94/ 

0.72 

6.00 1.5/ 

5 

992 150-ft (45.72m) Steerable dish 2.8/1.09 34.7 

Qujing Qujing,  

China 

500 0.6 2 5  29m Steerable parabolic dish 1.6 42 

PANSY Syowa Station, 

Antartic 

47 6.38 0.52   160m diam. phased array 

(1045 yagi antennas) 

~4  

 

 

Figure 2.1. Location of World Major Incoherent Scatter Radar Facilities 
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2.3. ISR MEASUREMENTS  

Signals received by the ISR are the backscatter of radio pulses generated by the Thomson 

Scatter effect on ionospheric electrons (a more detailed explanation of the signals received can 

be seen in Annex 1. The Incoherent Scatter Spectrum). The ionospheric backscatter (𝑧(𝑡)) is a 

random process that provides information of the ions and electrons of the ionosphere. There are 

a large number of non-stationary electrons contained in the scattering volume that contribute 

with a backscatter, generating a Gaussian stochastic process according to the Central Limit 

Theorem [Lehtinen and Huuskonen, 1996]. These backscattered contributions are governed by 

electromagnetic forces in the plasma that cause some regularity in the plasma fluctuations, 

generating the Incoherent Scatter Spectra (ISS). At a given range and during a finite time, this 

process is assumed Wide Sense Stationary (WSS) in the sense that its first and second order 

moments (i.e. mean and covariance) are constant [Nikoukar et al., 2012].  

Embedded with the random backscatter signal there is a contribution of noise (𝑛(𝑡)) that 

comes from background electromagnetic radiations (i.e. sky noise) and from the internal receiver 

system noise (i.e. thermal noise) [Lehtinen and Huuskonen, 1996]. The bandwidth of this noise 

is much broader than the receiver bandwidth, and consequently it is commonly assumed a white 

noise filtered by the receiver impulse response. It is traditionally considered Gaussian, 

stationary, and independent from the radar signal [Nikoukar et al., 2012]. This noise is complex 

(i.e. with real and imaginary contributions) and it is modeled as proper complex normal random 

variable [Vierinen, 2012]. The filtered and discretized measurement errors are assumed 

identically distributed proper complex Gaussian normal random variables and independent. 

Since both random processes are assumed to have Gaussian distributions with zero mean, 

these processes can be described by the Auto-Correlation function (ACF) of the lagged products 

of the signal with noise (𝑧(𝑡) = 𝑣(𝑡) + 𝑛(𝑡)) [Lehtinen and Huuskonen, 1996]:  

𝐴𝐶𝐹(𝜏) = 〈𝑧(𝑡)𝑧∗(𝑡′)〉 = 〈(𝑣(𝑡) + 𝑛(𝑡))(𝑣(𝑡′) + 𝑛(𝑡′))
∗
〉 (1) 

where 𝜏 is the lag time (𝜏 = 𝑡 − 𝑡′), and the operator 〈 . 〉 represents the expected value. 

Assuming both random processes independent, the ACF of uncorrelated stationary 

processes is the sum of two independent ACFs [Lehtinen and Huuskonen, 1996]: 

𝐴𝐶𝐹(𝜏) =  〈𝑣(𝑡)𝑣∗(𝑡′)〉 + 〈𝑛(𝑡)𝑛∗(𝑡′)〉 (2) 

It is not possible to obtain an estimate of the ACF using only a single pulse transmission 

[Nikoukar et al., 2008]. Due to the random nature of the plasma backscatter, to compute an 

accurate statistical estimate of the real plasma ACF it is required to average signals obtained 

from many pulse transmissions [Farley, 1969]. This process is known as “integration”. The 

“integration period” of the experiment is defined as the time span over which the 𝑁-pulse 

average is performed [Erickson, 1998], and the number of transmitted trains of pulses 𝑁 is 

defined as the “integration length” [Kudeki, 2010].  
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Assuming a stationary process (i.e. plasma parameters varying slowly in the scattering 

radar volume), the statistical accuracy of the estimate will improve as much as the integration 

lenght is increased [Farley, 1969]. Nevertheless, for long integration periods this assumption can 

smooth and hide the dynamic phenomenon occurring in the ionospheric plasma. The increase of 

accuracy of the ACF estimate with the integration length is illustrated in Figure 2.2, where an 

ISS obtained using Particle In-Cell (PIC) simulations is reconstructed with different number of 

integrations. The results shown in Figure 2.2 were simulated without sky nor thermal noises. 

 

Figure 2.2. Incoherent Scatter Spectrum (ISS) for different number of independent spectra integrated, from [Diaz et al., 2008]. 

The ISR signal fluctuation (𝛿) is a measure of the variability of the estimated signal. It is 

equivalent to the Root Mean Square (RMS) error of the ACF estimate (i.e. standard deviation in 

unbiased estimators). This RMS error can be obtained as [Farley, 1969] [Sulzer, 1986a]: 

𝛿 = 𝑅𝑀𝑆 =
(1 + 𝑆𝑁𝑅−1)

√𝑁
 

(3) 

The signal fluctuation (𝛿) is inversely proportional to the square root of the integration 

length (√𝑁) and the Signal-to-Noise Ratio (SNR) of the backscattered signal received at the 

antenna [Farley, 1969] [Mathews et al., 1982]. The SNR value at the antenna can be directly 

calculated as indicated in Chapter 2.5. Received Power.  

An increase of the number of integrations would reduce the estimate RMS representation 

error. Alternatively, increasing the 𝑆𝑁𝑅 to values higher than one (𝑆𝑁𝑅 > 1) will not generate 

a significant reduction of the estimate errors [Farley, 1969] [Sulzer, 1986a]. In such high 𝑆𝑁𝑅 

cases, the signal power can be distributed into multiple frequency transmissions to increase the 

number of simultaneous samples obtained, increasing the integration length (𝑁) [Sulzer, 1986a].  
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2.4. ISR ANALYSIS METHODS 

There exist two different methods to analyze the ISR signal and estimate plasma 

parameters (i.e. inversion process): the “Range-Gate analysis” and the “Full Profile analysis”, 

The “Range-Gate analysis” is the standard technique to estimate the plasma parameters 

from the ISR signal backscatter. It is also called “Heigh-by-Height analysis”  or “Gated analysis” 

because each height is processed separately [Hysell et al, 2008] [Nikoukar, 2010]. The range 

spacing of this method is commonly defined by the pulse length [Nikoukar et al., 2008]. This 

method assumes that the ionospheric plasma has a slow spatial variation over each range-gate 

[Lehtinen et al., 1997]. Summation rules are applied to compensate range smearing effects at 

each range-gate when using Long Pulse transmission codes [Holt et al., 1992] [Swoboda et al., 

2017]. Finally, plasma parameters are estimated from the measured signal using a Non-Linear 

Least-Squares (NLLS) optimization algorithm, as indicated in Annex 2. Standard ISR 

Estimation Technique. This individual range fitting is done in the lag domain, comparing ACF 

values, or in the frequency domain, comparing ISS values (i.e. the Fourier transform of the 

ACF). This technique suffers from the assumption of constant plasma parameters in the study 

volume during measurements and a coarse resolution of the estimated parameters [Nikoukar et 

al., 2008].  

Alternatively, the “Full Profile analysis” technique estimates simultaneously the complete 

ionospheric profile [Hysell et al, 2008]. This analysis is performed using the Inverse Problem 

theory over the entire column vector of lag profile estimates. In this case, the inversion theory 

considers the estimate sufficiently close to the real solution to assume a linearized ISR model. 

In this technique the plasma parameters are modelled using B-spline [Holt et al., 1992] or 

Lagrangian [Lehtinen et al., 1996] interpolations with user-defined range resolution of the 

parameters. Then, the ACF or ISS estimates are fitted to the theoretical ISR model using two-

dimensional ambiguity functions [Virtanen et al., 2008]. The fitting is performed typically using 

the Levenberg-Marquardt (L-M) or Gauss-Newton (GN) methods.  

The “Full Profile” analysis improves the accuracy of the estimates because uses the 

information completely and all corrections are included in the calculus (including filter 

corrections, plasma gradient corrections, sidelobe deconvolutions of short phase codes, 

ambiguity deconvolutions of ambiguous codes, spatial post-integration to specified resolutions, 

etc.) [Lehtinen, 1986]. This technique is optimal in the sense that uses all the available 

information to compute the plasma parameters, including the ambiguity function and the full 

error covariance matrix [Nikoukar et al., 2008].  

Nevertheless, the “Full Profile” method is more sensitive to noise and interferences, and it 

is highly dependent on the initial guess of plasma variables to converge to the correct solution 

[Hysell et al., 2009]. The accuracy of this method is dependent on the resolution of the range 

grid of the parameters, and it has a very significant computational cost for a fine spatial 

resolution [Nikoukar et al., 2008]. Furthermore, solutions may not be unique or even become 

unstable, requiring the application of regularization techniques [Aster et al., 2012] that apply 

theoretical models and assumptions about the behavior of the ionospheric plasma that may be 

inappropriate in certain cases.  
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2.5. RECEIVED POWER 

The backscatter power received (𝑃𝑟𝑥) from an ionospheric volume located at a distance 𝑟 

of the antenna can be calculated using the Soft Radar Equation [Evans, 1969] given by:  

𝑃𝑟𝑥 =
𝑃𝑡𝑥T𝐿c𝜆𝑟

2𝑁𝑒𝜎

2(4𝜋)3𝑟2
∫ ∫𝐺𝑡

2(𝜃)
𝜃

sin(𝜃) 𝑑𝜃
𝜙

𝑑𝜙  
(4) 

where 𝑃𝑡𝑥 is the transmitted signal power, T is the transmitted pulse duration, 𝐿 is a Loss Factor 

that takes into account internal ohmnic losses, 𝜆𝑟 is the radar wavelength (𝜆𝑟 = 𝑐/𝑓𝑟), 𝐺𝑡 is the 

radar antenna gain, and 𝜎 is known as the Radar Cross-Section (RCS).  

The RCS (𝜎) is defined as the cross-sectional area of a perfectly conducting sphere that 

produces the same amount of energy obtained by the measured object. In the ionospheric plasma, 

the volumetric RCS is dependent on the electron density variations (〈|𝑛(𝑘, 𝜔)|2〉). The RCS (𝜎) 

of a thermal unmagnetised plasma can be written as [Evans, 1969] [Yao et al., 2014b] [Lu et al., 

2016]: 

𝜎 =
𝜎𝑒

(1 + 𝛼2)(1 + 𝑇𝑒/𝑇𝑖 + 𝛼2)
 (5) 

where 𝜎𝑒 is the cross-section of each electron (𝜎𝑒 = 4𝜋(𝑟𝑒sin (𝜃))2 ≅ 10−28(sin2( 𝜃)), being 𝜃 

the polarization angle of the scattered signal), and 𝛼 = 4𝜋𝜆𝐷/𝜆𝑟 (being 𝜆𝐷 = √𝜖0𝑘𝑇𝑒/𝑒2𝑁𝑒 the 

plasma Debye length) [Evans, 1969].  

For parabolic antennas in monostatic radars, the total power received is [Evans, 1969]: 

𝑃𝑟𝑥 = [0.76
𝐿c𝐴𝑒𝜎𝑒

16𝜋
]

𝑃𝑡𝑥T

r2

𝑁𝑒

(1 + 𝛼2)(1 + 𝑇𝑒/𝑇𝑖 + 𝛼2)
 

(6) 

where 𝐴𝑒 is the antenna effective aperture that corresponds to the physical collecting area of an 

ideal antenna (computed as 𝐴𝑒 = 𝐺𝑡𝜆𝑟
2/4𝜋). 

Alternatively, the received power noise level 𝑃𝑛 is defined by the equivalent noise 

temperature 𝑇𝑛 and the reception bandwidth 𝐵 of the radar as [Lu et al., 2016]: 

𝑃𝑛 = 𝑘𝐵𝑇𝑛𝐵 (7) 

Consequently, the Signal-to-Noise Ratio (SNR) of a parabolic antenna radar can be 

computed as [Taran, 1988] [Yao et al., 2014b] [Lu et al., 2016]: 

𝑆𝑁𝑅 =
𝑃𝑟𝑥

𝑃𝑛
= [0.76

𝐿c𝐴𝑒𝜎𝑒

32𝜋

1

𝑘𝐵𝑇𝑛𝐵
]

2𝑃𝑡𝑥T

𝑟2

𝑁𝑒

(1 + 𝛼2)(1 + 𝑇𝑒/𝑇𝑖 + 𝛼2)
 

(8) 

The section in brackets of Equation (8) is known as the radar system constant (𝐾𝑠𝑦𝑠), and 

it is typically obtained during operation by a calibration of radar measurements [Lu et al., 2016].  
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2.6. PLASMA LINE 

ISR backscatter signals are located at two different frequency bands (see Annex 1. The 

Incoherent Scatter Spectrum):  

a) the Ion Acoustic band, with a kilohertz bandwidth and the strongest signal power, this 

frequency band is commonly used to estimate plasma parameters; and  

b) the Plasma Line band [Akbari et al., 2017], which is a frequency peak located near the 

plasma frequency (𝑓𝑝) that can be used to obtain an estimate of the electron density.  

Both spectral bands provide complementary and simultaneous information of ionospheric 

parameters. The first detection of the ISR Plasma Line was done by [Perkins et al., 1965] at the 

Arecibo Observatory. Few years later, [Wand, 1970] was the first to compare the values of 

electron-to-ion temperature ratio (𝑇𝑒/𝑇𝑖) observed using the Plasma Line and the Ion-Acoustic 

Line simultaneously. Results of this later study demonstrated a very good agreement of the 

estimates obtained at both spectral lines. The study of [Wand, 1970] suggested the use of the 

information obtained from the Plasma Line to solve ambiguous estimation of ion composition 

in the Ion-Acoustic analysis. 

The equation to obtain the Plasma Line frequency (𝑓𝑃𝐿) in presence of magnetic fields is 

[Yngvesson and Perkins, 1968]: 

𝑓𝑃𝐿
2 = 𝑓𝑝

2 +
12𝑘𝐵𝑇𝑒

𝜆𝑟
2𝑚𝑒

+ 𝑓𝑐
2 sin2 Θ 

(9) 

where 𝜆𝑟 is the wavelength of the radar, 𝑇𝑒 is the electron temperature, 𝑓𝑝 is the plasma frequency 

(𝑓𝑝 = (2𝜋)−1√𝑁𝑒𝑒2/𝑚𝑒𝜖0 ≈ 8.97√𝑁𝑒(𝑐𝑚−3) [𝑘𝐻𝑧]), 𝑓𝑐 is the electron gyro frequency (𝑓𝑐 =

𝑒𝐵/2𝜋𝑚𝑒), and Θ is the angle between the radar wavevector and the magnetic field. 

Figure 2.3 shows an ISR spectrum highlighting the Ion Acoustic, Plasma, and Gyro lines 

(see [Janches and Nichols, 2007] for more information about Gyro Line).  

 

Figure 2.3. Full ISS showing the Ion, Plasma, and Gyro Lines. Measured at Arecibo at 275km, from [Aponte et al., 2007]. 
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For a radar transmission frequency much smaller than 1 [GHz] (e.g. at the Arecibo Radio 

Observatory with 𝑓𝑟 = 430 𝑀𝐻𝑧), it is possible to extract a highly accurate estimate of electron 

density from the Plasma Line resonance frequency, even when electron temperatures are not 

accurately known [Aponte et al., 2007]. The combination of the information of the electron 

density and the total power received at the antenna (𝑃𝑟𝑥) can provide highly precise estimates of 

the 𝑇𝑒/𝑇𝑖 temperature ratio. At these frequencies the value of RCS in Equation (5) can be 

approximated to 𝜎 ≈ 𝜎𝑒/(1 + 𝑇𝑒/𝑇𝑖). In this case, the 𝑇𝑒/𝑇𝑖 temperature ratio value can be 

inferred from the total received power (𝑃𝑟𝑥) of Equation (6) and the 𝑁𝑒 parameter estimated from 

the Plasma Line as [Wand, 1970] [Waldteufel, 1971] [Aponte et al., 2007]: 

𝑇𝑒

𝑇𝑖
=

𝐾𝑠𝑦𝑠𝐺𝑡(𝑟)

𝑟2

𝑁𝑒

𝑃𝑟𝑥(𝑟)
− 1 

(10) 

where 𝐾𝑠𝑦𝑠 is the radar system constant that includes all fixed parameters of the radar experiment 

(as indicated in Chapter 2.5) and 𝐺𝑡 is the antenna gain. In large antennas, the antenna gain 

depends on range (𝐺𝑡(𝑟)) at the altitudes of interest, and a precise antenna calibration is required 

to correctly estimate plasma parameters using this formulation [Aponte et al., 2007].  

Alternatively, when the radar transmission frequency is sufficiently elevated (e.g. at 

EISCAT UHF radar with 𝑓𝑟 = 933 𝑀𝐻𝑧), the Plasma Line resonance frequency depends also 

on the 𝑇𝑒 parameter. In this case, it is possible to estimate unambiguously the ion composition 

by fitting together the Ion Acoustic Band and the resonance frequency [Bjørnå and Kirkwood, 

1988]. 

A different method to determine the electron temperature from the Plasma Line has been 

implemented by measuring the asymmetries between the up- and down-shifted Plasma Line 

frequencies [Nicolls et al., 2006]. This shift depends on 𝑇𝑒, currents, photoelectrons, and other 

minor effects. In quiet ionospheric conditions, the difference between the Plasma Line 

frequencies (Δ𝑓𝑃𝐿) can be approximated as [Nicolls et al., 2006]:  

Δ𝑓𝑃𝐿 = 𝑓𝑃𝐿− − 𝑓𝑃𝐿+ ≈
𝑓𝑟

𝑐
(4𝑉𝑒 −

12𝑘𝐵𝑇𝑒

𝑐𝑚𝑒
) 

(11) 

where 𝑉𝑒 is the line-of-sight electron drift velocity in [m/s].  

Using Equation (11), and assuming equal electron and ion drift velocities (𝑉𝑒 ≈ 𝑉𝑖), high-

resolution measurements of electron temperature were obtained at Arecibo [Nicolls et al., 2006]. 

The values calculated using the frequency asymmetry agree within 5-10% of the temperatures 

obtained from the Ion Acoustic band, verifying the high accuracy of the method.  

The study of [Bjørnå, 1989] has been able to unambiguously estimate the ion-neutral 

collision frequency of the plasma (𝜈) at lower ionospheric E regions by providing information 

of parameters estimated from the Plasma Line. Similar to the case of the ion composition and 

temperature ambiguity problem, there exist an estimation ambiguity related to the collision 

frequency and the plasma temperature in the ISR method.  
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2.7. TEMPERATURE-ION COMPOSITION AMBIGUITY 

Different species of ions exist in the ionosphere at different altitudes. Figure 2.4 shows a 

simulation of the model IRI [Bilitza et al., 2017] of the most relevant ions located at altitudes 

between 100 km to 2000 km above the Arecibo Observatory. This figure shows the typical 

occupancy of the different ions depending on the altitude. Atomic oxygen ions (𝑂+) are 

dominant over ionospheric altitudes between 200 km to 1000 km, approximately. More weighty 

molecular ions (𝑁𝑂+ and 𝑂2
+) are predominant at the bottom section of the ionosphere, as 

demonstrated by early rocket and satellite measurements [Hoffman et al., 1969] [Evans & 

Oliver, 1972]. Finally, more lightly atomic ions (𝐻+ and 𝐻𝑒+) are found at the upper ionospheric 

section. At high altitudes the ionosphere is mainly governed by atomic hydrogen ions (𝐻+).  

There exist two transitions of major ion species at the altitudes measurable by the ISR: a) 

a transition at altitudes from ~130 km to 250-350 km changes between molecular ions (𝑁𝑂+ 

and 𝑂2
+) to atomic oxygen ions (𝑂+) [Wand, 1970] [Litvine et al., 1998]; and b) at altitudes 

higher than ~500 km atomic oxygen ions (𝑂+) are replaced by atomic hydrogen (𝐻+) and helium 

(𝐻𝑒+) ions. Typically, at this second transition the helium ion (𝐻𝑒+) percentage is lower than 

15% and, consequently, almost negligible [González and Sulzer, 1996]. Nevertheless, the helium 

species is very sensitive to solar activity, reaching peach values of percentage of 50% depending 

on season and solar cycle level [Gonzalez et al., 2004]. 

 
Figure 2.4. Most relevant ion composition percentages depending on altitude over Arecibo (model IRI of 8th March, 2005) 
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Estimating plasma parameters from the ISR signal is not always directly solvable and 

several problems arise from the analysis of the signal backscatter [Nikoukar et al., 2008]. Of 

relevance is the Temperature-Ion Composition Ambiguity (TICA) problem, which is generated 

by the mixture of different ions populating the ionosphere at lower altitudes [Oliver, 1979]. This 

ambiguity is related to the dependency of the theoretical ISR spectrum on the thermal speed of 

different ion species (Equation (30) of Annex 1. The Incoherent Scatter Spectrum), which is, in 

turn, proportional to √𝑇𝑖/𝑚𝑖  [Evans and Oliver, 1972] [Oliver, 1979] [Vallinkoski, 1988].  

As the masses of molecular ions 𝑁𝑂+ and 𝑂2
+ are almost identical, their final effects are 

indistinguishable by the ISR [Oliver, 1979]. It is not possible to know the exact mixture of these 

ions. Molecular ions are assumed to behave as a single molecular specie (𝑀+) with mass 30.5 

amu for a mixture of 25% 𝑂2
+ and 75% 𝑁𝑂+ [Lathuillere et al., 1983] [Cabrit & Kofman, 1996]. 

At the lower ionic transition of the ionosphere, the estimation of the relative abundance of 

atomic oxygen (𝑂+) and molecular (𝑀+) ions is ambiguous. This ion determination ambiguity 

is because those species have a mass ratio between them of approximately 𝑚𝑀+/𝑚𝑂+ ≈ 2 

[Oliver, 1979]. Therefore, combinations of temperatures and abundances of molecular (𝑀+) and 

atomic (𝑂+) ion species can obtain almost identical Ion Acoustic spectra, hindering the correct 

estimation of signals [Oliver, 1979] [Aponte et al., 2007]. Two different possible solutions of 

estimates of plasma parameters are obtained ambiguously [Oliver, 1979] [Lathuillere et al., 

1983]. To determine unambiguously the ionospheric plasma parameters, additional information 

is then required [Aponte et al., 2007]. 

Figure 2.5 shows two examples of the TICA problem, representing similar Incoherent 

Scatter Spectrums obtained with two different combinations of parameters.          

 

Figure 2.5. Incoherent Scatter Spectrum for 4 different parameters showing the ion composition ambiguity. 



19 

 

The ion composition (𝑝) is defined as the molecular ion fraction, computed as the relative 

abundance of molecular ions (𝑛(𝑀+)) with respect to the total ion concentration (assuming 

charge neutrality, 𝑁𝑒 = 𝑁𝑖) [Lathuillere et al., 1983] [Aponte et al., 2007] [Wu et al., 2015]: 

𝑝 =
𝑛(𝑀+)

𝑁𝑒
 

(12) 

Two different values of ion composition are obtained as possible solutions located 

approximately symmetric with respect to 0.5 [Lathuillere et al., 1983] [Wu et al., 2015].  

This ambiguity problem has been widely studied in the literature and different methods 

have been proposed to solve it. Early methods were based on theoretical models of the behavior 

of ionospheric plasma parameters that assumed equal ion and neutral temperature profiles or 

considered a smooth altitude variation of parameters [Waldteufel, 1971] [Evans & Oliver, 1972].  

Models first used at high latitudes assumed constant electron temperatures to cope with the ion 

temperature and composition changes generated by Joule heating [Kelly & Wickwar, 1981]. A 

widely used parametric model of ion composition and temperature was developed based on 

rocket and satellite measurements to solve this ambiguity [Oliver, 1979]. Models of ion 

composition have been also created to unambiguously apply the Full Profile inversion method 

[Cabrit & Kofman, 1996] [Litvine et al., 1998]. Different models have also been developed to 

estimate parameters of plasma disturbances generated by strong electric fields in the auroral 

region [Blelly et al., 2010] [Zettergren et al., 2011].  

An alternative to use theoretical or empirical models is to use complementary information 

extracted from the Plasma Line frequency band and from the total power received at the antenna 

[Wand, 1970] [Bjørnå & Kirkwood, 1988] [Nicolls et al., 2006] (see Chapter 2.6. Plasma Line). 

The addition of a priori information constrains the feasible solutions, allowing an unambiguous 

ion composition estimate [Waldteufel, 1971] [Bjørnå & Kirkwood, 1988] [Aponte et al., 2007].  

Another method for unambiguous estimation of ISR parameters was proposed in [Oliver, 

1979] by the analysis of signals with very small fluctuations. Two possible solutions of ion 

composition can be obtained from the estimation of almost noiseless signals. The correct ion 

composition parameter can be determined by selecting the solutions that provide the smoother 

ion composition profile at different altitudes. Initial tests of this method made by [Oliver, 1979] 

obtained only partial success mainly because of a lack of signals almost without variability. The 

studies of [Lathuillere et al., 1983] and [Lathuillere & Pibaret, 1992] successfully demonstrated 

the efficacy of this method with experimental data. These studies reduced the fluctuation of 

signals by post-integrating multiple radar pulses with integration times of 5 minutes. 

Recently, the study of [Wu et al., 2015] used a new optimization algorithm to 

unambiguously estimate plasma parameters of ISR signals with very small fluctuations. In their 

work, signals with very high SNR values, in the range of 15 to 25, were obtained at the Arecibo 

Radio Observatory using simultaneous frequency transmission [Sulzer, 1986a] and Coded Long 

Pulse [Sulzer, 1986b] techniques. This study used the Particle Swarm Optimization (PSO) 

algorithm [Kennedy & Eberhart, 1995] to analyze ISS data with the addition of a priori 

information from the Plasma Line, obtaining much better estimations than the standard NLLS 

algorithm commonly used in ISRs. 
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      CHAPTER 3 

3. METHODOLOGY 

3.1. SIMULATION METHODS 

3.1.1 IMPLEMENTATION OF THE INCOHERENT SCATTER RADAR MODEL 

To perform the estimation process, an ISR spectrum model was implemented based on the 

formulation of [Kudeki & Milla, 2011] (shown in Annex 1. The Incoherent Scatter Spectrum). 

To simplify the required calculations, the magnetic field aspect angle was not included in the 

used model, which limits the validity to magnetic aspect angles greater than 5° [Longley et al., 

2018]. Ion-neutral collisions were not included in the model because they are only relevant at 

the lower E region of the ionosphere [Bjørnå, 1989]. Therefore, this model represents the 

backscatter signal received at altitudes above 120km by radars not pointing perpendicular to the 

magnetic fields. Plasma parameters were electron density (𝑁𝑒), electron temperature (𝑇𝑒), ion 

temperature (𝑇𝑖), ion drift radial velocity (𝑉𝑖), and ion composition (𝑝).  

To improve computational speed and accuracy of simulations, the Gordeyeve integral 

(Equation (29)) was computed using the Imaginary Error Function (ERFI) implemented in the 

Faddeyeva Dawson function library of [Johnson, 2012]. A radar frequency of 450 MHz was 

considered in the simulation because many observatories use similar frequencies (i.e. Arecibo, 

Millstone Hill, AMISR, and ESR).  

To avoid additional ACF conversion times at fitting comparisons, the estimation analysis 

was done by directly comparing the difference between simulated and theoretical Incoherent 

Scatter Spectra (ISS) at each range, similarly as in [Wu et al., 2015]. Theoretical spectrums were 

obtained at the Ion Acoustic frequency band, having frequencies between ±10 kHz.  

3.1.2. NOISE ADDITION SCHEME 

To consider realistic radar conditions, simulated ISR signals were calculated as the 

theoretical backscatter signal plus a random noise (as indicated in Chapter 2.3. ISR 

Measurements). According to the Central Limit Theorem, the integration of multiple backscatter 

signals provides it Gaussian characteristics [Vallinkoski, 1988]. Therefore, the added noise was 

an Additive Gaussian White Noise (AWGN) [Lehtinen & Huuskonen, 1996].  

A Gaussian random noise with zero mean was added directly to the ISR spectrum signals. 

The standard deviation (𝜎) of this noise was determined by the signal fluctuation percentage 

(𝛿(%)) assumed to be given by the RMS error of the ACF estimator (shown in Equation (3)) 

[Farley, 1969]. This standard deviation is calculated relative to the maximum absolute value of 

the spectrum amplitude (𝜎 = 𝛿(%)/100 · max (|𝑓(𝒙)|)), similarly as in [Aponte et al., 2007].  
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Noise contributions were assumed to be independent from the plasma parameters. This 

assumption requires the reception of signals with 𝑆𝑁𝑅 ≪ 1 [Huuskonen & Lehtinen, 1996]. 

Achievable signal fluctuation percentages (𝛿(%)) under this weak 𝑆𝑁𝑅 condition are shown in 

Figure 3.1 for different integration lengths and periods. The signal fluctuation values shown in 

this figure were calculated using Equation (3) and an Inter-Pulse Period (IPP) of 1 millisecond.  

 

Figure 3.1. Theoretical fluctuation percentage (𝛿(%)) in logarithmic scale obtained at different integration times (in seconds 

and hours) for different signal 𝑆𝑁𝑅 values. Upper horizontal axis indicates the required integration length. 

Recent ISR simulators [Swoboda et al., 2017] implement the effect of the random 

backscatter contribution of electrons and the range smearing (i.e. the Range-Lag ambiguity 

function [Lehtinen & Huuskonen, 1996]). To reduce simulation complexity and computing time 

requirements, these effects were not considered in the present work. Therefore, in our study 

weak SNR and no range ambiguity are assumed. These same characteristics have been assumed 

in recent studies of the TICA problem [Aponte et al., 2007] [Wu et al., 2015] and are commonly 

obtained in Multi-Pulse or Alternating Code experiments [Vallinkoski, 1988]. Therefore, 

simulated spectra were considered to be the Fourier transform of the final ACF estimate 

calculated by the radar processing chain, obtained by subtracting range smearing effects (i.e. 

using summation rules [Holt et al., 1992]) and noise correlation estimates, following the standard 

Range-Gate analysis criterion explained in [Swoboda et al., 2017].  
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3.1.3. PLASMA PARAMETERS ESTIMATION METHOD 

In this thesis work, we consider the estimation of plasma parameters using the Range-Gate 

analysis method (see Chapter 2.4. ISR Analysis Methods). Although the Full Profile method 

provides an optimum solution because it uses measurements of the entire ionospheric column, 

this method requires the use of theoretical models and assumptions about plasma parameters that 

may be inaccurate in certain cases. Furthermore, the Range-Gate analysis has been previously 

used in recent studies of the ISR estimation ambiguity [Aponte et al., 2007] [Wu et al., 2015]. 

The estimation method implemented in this work is the standard ISR estimation process 

indicated in Annex 2. Standard ISR Estimation Technique. This method assumes theoretical 

signals with Gaussian noise added and no correlation between measurement errors (i.e. weak 

SNR conditions). The Maximum Likelihood Estimator (MLE), which in this case is equivalent 

to the Least Squares Estimator (LSE), corresponds to the minimization of the Chi-Square cost 

function 𝜒2 (shown in Equation (38) of Annex 2. Standard ISR Estimation Technique).  

Unbiased estimates of signals with AWGN characteristics and with known variances (𝜎𝑖
2) 

obtain a Chi-Squared (𝜒2) cost function value approximately equal to the number of Degrees of 

Freedom (𝐷𝑜𝐹) of the estimation problem [Taylor, 1997] [Bevington & Robinson, 2003]. To 

normalize the resulting cost function value, the Reduced Chi-Square (𝜒𝑟
2) cost function criteria 

has been used in this study [Taylor, 1997] [Bevington & Robinson, 2003]:  

𝜒𝑟
2 =

𝜒2

𝐷𝑜𝐹
 

(13) 

The 𝐷𝑜𝐹 is typically assumed to be 𝐷𝑜𝐹 = 𝑀 − 𝑃, where 𝑀 is the input signal vector 

length, and 𝑃 is the number of parameters of the estimation problem. This assumption is 

commonly used in standard error analysis studies [Taylor, 1997] [Bevington & Robinson, 2003], 

although it is known that this is an approximation only valid for linear models with linearly 

independent basis functions [Andrae et al., 2010].  

Due to the randomness of signals to estimate, the 𝜒𝑟
2 values have a Probability Density 

Function (PDF) that corresponds to a Chi-Squared (𝑓𝜒2) statistical distribution, dependent on 

the 𝐷𝑜𝐹 value [Bevington & Robinson, 2003] [Andrae et al., 2010]:  

𝑓𝜒2(𝑥, 𝐷𝑜𝐹) =
𝑥(

𝐷𝑜𝐹−2
2

) 𝑒−(
𝑥
2

)

2(
𝐷𝑜𝐹

2
) 𝛤 (

𝐷𝑜𝐹
2 )

  

(14) 

where 𝛤(𝑧) is the Gamma function (𝛤(𝑧) = ∫ 𝑡(𝑧−1)𝑒−𝑡𝑑𝑡
∞

0
). 

The Gaussian distribution that best approximates the Chi-Squared statistical distribution 

(𝑓𝜒2) has a mean 𝜇𝑟 = 1 and a standard deviation 𝜎𝑟 = √2/DoF [Andrae et al., 2010]. Figure 

3.2 shows the Chi-Squared statistical distribution and the Gaussian distribution that best 

approximates for different values of 𝐷𝑜𝐹.  
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Figure 3.2. Probability density functions of the Chi-Square distribution and Gaussian approximation for different 𝐷𝑜𝐹 values. 

Figure 3.3 shows an example of the 𝜒𝑟
2 cost function for different projections of electron 

temperature (𝑇𝑒), ion temperature (𝑇𝑖), and ion composition (𝑝) parameters, assuming that 

electron density (𝑁𝑒) and ion velocity (𝑉𝑖) are parameters known a priori. These images were 

generated selecting the minimum 𝜒𝑟
2 value of the non-represented parameter, allowing a 2D 

representation of a 3D structure. These simulations were done for different fluctuation levels to 

represent the impact of the increase of signal variability in the estimation performance. In 

scenarios with almost no fluctuation (𝛿 = 0.01%), Figure 3.3 (Top) shows one of the two 𝜒𝑟
2 

cost function minimums with a much smaller value, indicating that it is the global minimum (i.e. 

the ‘correct’ solution). In this case, it is possible to determine the ‘correct’ set of parameters by 

selecting the solution with the lowest 𝜒𝑟
2 value. Alternatively, Figure 3.3 (Medium and Bottom) 

demonstrate that it is more difficult to discriminate the ‘correct’ solution by selecting the lowest 

𝜒𝑟
2 value in more noisy scenarios (𝛿 = 1% and 10%, respectively).  

The existence of two minimums in Figure 3.3 verifies the presence of the TICA problem. 

These two minimums are located at almost opposite ion composition values, symmetric with 

respect to 0.5, as initially indicated by [Lathuillere et al., 1983] and more recently verified by 

[Wu et al., 2015]. As the ‘incorrect’ ion composition solution (𝑝𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡) is an almost symmetric 

solution of the ‘correct’ solution (𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡), those solutions are associated as 𝑝𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≈ 1 −
𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡. Consequently, the ‘incorrect’ solution is related to the abundance of atomic oxygen 

ions (𝑝𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≈ 𝑛(𝑂+)/𝑁𝑒) (see Equation (12)). These two minimums of the cost function are 

obtained because the ISR spectrum has a dependency on the ratio 𝑇𝑖/𝑚𝑖. Therefore, as molecular 

ion mass (𝑚𝑀+) is almost double that of atomic ions (𝑚𝑂+), almost identical results would be 

obtained with molecular ion temperatures which also double those of atomic temperatures 

(𝑇𝑀+ ≈ 2𝑇𝑂+), as indicated by [Oliver 1979].  

Incorrectly calibrating the radar constant (𝐾𝑠𝑦𝑠) or wrongly estimating the equivalent noise 

temperature (𝑇𝑛) would obtain an incorrectly estimated SNR value, as indicated in Chapter 2.5. 

The use of an invalid 𝑆𝑁𝑅 estimate would generate wrong estimates of signal fluctuation (𝛿), as 

seen in Equation (3). Therefore, these misconfigurations would generate the use of incorrect 

measurement error variances (𝜎𝑖
2) in the 𝜒𝑟

2 cost function criteria, affecting the correct estimation 

of plasma parameters. The effect of such misconfigurations should be analyzed in a future study. 
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Figure 3.3. Graphic representation of the 𝜒𝑟
2 cost function minimum value (in logarithmic scale) for different combinations of 

plasma parameters at different fluctuation levels (Top 𝛿 = 0.01%, Middle 𝛿 = 1%, and Bottom 𝛿 = 10%). Data has been 

obtained from the simulation of plasma parameters of spectrum Case a1 of Figure 2.5 (𝑇𝑒=520 ºK, 𝑇𝑖=480 ºK, and 𝑝=0.2), 

assuming 𝑁𝑒  known a priori, and consequently not represented.  
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3.1.4. NON-LINEAR LEAST SQUARES OPTIMIZATION ALGORITHM USED 

The minimization of the 𝜒𝑟
2 cost function is performed by the most commonly used NLLS 

optimization algorithm of ISR analyses, both for Range-Gate [Erickson, 1998] [Swoboda et al., 

2017] and for Full Profile [Hysell et al., 2008] [Nikoukar et al., 2008] analyses: the Levenberg-

Marquardt (L-M) algorithm [Levenberg, 1944] [Marquardt, 1963]. This algorithm is explained 

in Annex 3. The Levenberg-Marquardt Optimization Algorithm. 

The L-M optimization algorithm suffers from the local minimum determination problem. 

When several minimums of the cost function exist, iterative descent search algorithms may 

provide suboptimal results when selecting the first minimum found during the search [Wu et al., 

2015]. The determination of the solution is subject to the initial search parameters of the 

algorithm, the parameter search range, and the algorithm configuration [Gavin, 2017]. To reduce 

the effect of this drawback, other optimization algorithms have been studied in the ISR literature 

such as the Trust-Region algorithm [Milla et al., 2013] or the Particle Swarm Optimization 

(PSO) algorithm [Wu et al., 2015]. These algorithms improve some characteristics of the 

estimation but also increase the computation time requirements.  

Initial estimation tests were done with the Simulated Annealing (SA) optimization 

algorithm. The SA algorithm is an iterative probabilistic technique [Kirkpatrick et al., 1983] 

based on the Metropolis algorithm. The SA algorithm implementation was coded based on the 

library of [Vandekerckhove, 2008]. No previous study in the literature has analyzed the SA 

algorithm to estimate IS parameters. Nevertheless, the study of [Erickson, 1998] indicated that 

this algorithm should be computationally expensive to evaluate and consequently impractical to 

use in ISR estimation. The estimation tests were done considering the ion composition parameter 

a priori known and no random noise was added to the theoretical ISR signal. These simulation 

characteristics were considered to verify the capability of this algorithm to estimate the most 

basic ISR signals. Results of these estimation tests obtained computing times approximately 

2000 times larger than the computing times required by the L-M algorithm in identical 

conditions. Furthermore, the convergence of the SA algorithm was much lower than the L-M 

algorithm in identical conditions, with convergence percentages of 87.48% and 99.5%, 

respectively. These results indicate that the SA algorithm cannot be used as a routinely algorithm 

for estimating ISR parameters, as previously indicated by [Erickson, 1998]. 

Despite PSO provided much better performance than the standard NLLS algorithm in [Wu 

et al., 2015], in their study they considered only signals with a very small signal fluctuation. 

Therefore, the results obtained by [Wu et al., 2015] may be related to the use of a particularly 

small signal fluctuation level. To verify the effectiveness of using PSO it is required to compare 

it against a standard Non-Linear Least Squares (NLLS) algorithm at different signal fluctuations. 

The determination of the improvement obtained by PSO requires the previous knowledge of the 

performance at different signal fluctuations of the L-M algorithm, which is the main focus of 

this thesis. The PSO algorithm performance is currently being analyzed and will be presented in 

a future study.  
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3.1.5. ADDITION OF PLASMA LINE INFORMATION  

To unambiguously estimate plasma parameters, several methods that provide information 

measured from the Plasma Line and from the total power received by the radar have been 

implemented in the literature (as indicated in Chapter 2.7. Temperature-Ion Composition 

Ambiguity). The Plasma Line band provides complementary and simultaneous information of 

some ionospheric plasma parameters [Wand, 1970].  

In our simulations, we quantified the effect of providing information from the Plasma line. 

To account for realistic cases, different combinations of plasma parameters were assumed known 

a priori in the estimation process by fixing these values during the optimization algorithm 

search. Similar fittings were made by [Wu et al., 2015] for different combinations of i-unknown 

parameters (i=1, 2, and 3). The combinations of parameters assumed known in our study were:  

a) no a priori information;  

b) electron density (𝑁𝑒);  

c) electron-to-ion temperature ratio (𝑇𝑒/𝑇𝑖) and electron density (𝑁𝑒); and  

d) electron temperature (𝑇𝑒) and electron density (𝑁𝑒).  

The a priori knowledge of 𝑁𝑒 and 𝑇𝑒/𝑇𝑖 parameters was assumed to be extracted from the 

Plasma Line frequency and from the total power received from the antenna, respectively, 

following previous studies [Waldteufel, 1971] [Aponte et al., 2007] [Wu et al., 2015]. 

Alternatively, the a priori information of 𝑇𝑒 was assumed to be extracted from the Plasma Line 

resonance frequency [Bjørnå & Kirkwood, 1988] or from its asymmetry [Nicolls et al., 2006].  

All a priori known plasma parameters were initially considered without uncertainty, 

assuming a perfect determination of plasma parameters, as in [Wu et al., 2015]. Although this 

assumption is unrealistic, the estimation using deterministic a priori information provides the 

best case estimate that can be obtained. The analysis of information with uncertainty in the a 

priori known parameters was studied separately. Simulations were done as indicated in Chapter 

3.1.9 and results of those simulations are shown in Chapter 7. Determination of the Impact of 

the Uncertainty of a-priori Known Parameters. 

3.1.6. MONTE CARLO SIMULATIONS OF PLASMA PARAMETERS 

To quantify the effect of the ambiguous estimation of plasma parameters from ISR signals 

in realistic conditions, Monte Carlo simulations of the estimation of plasma parameters were 

performed. These simulations were done either for 1000 or 2000 (𝑁𝑀𝐶) different true input 

parameters (𝒙𝑡𝑟𝑢𝑒) uniformly selected between the following parameter ranges:  

• Electron density (𝑁𝑒): 109 ≤ 𝑁𝑒 ≤ 1012 𝑚−3;  

• Electron temperature (𝑇𝑒): 300 ≤ 𝑇𝑒 ≤ 5000 º𝐾;  

• Ion temperature (𝑇𝑖): 300 ≤ 𝑇𝑖 ≤ 3000 º𝐾;  

• Electron-to-ion temperature ratio (𝑇𝑒/𝑇𝑖): 0.1 ≤ 𝑇𝑒/𝑇𝑖 ≤ 5;  

• Ion drift velocity (𝑉𝑖): −250 ≤ 𝑉𝑖 ≤ 250 m/s; and 

• Ion composition (𝑝): 0 ≤ 𝑝 ≤ 1.  
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The ranges of 𝑁𝑒, 𝑇𝑒, and 𝑇𝑖  parameters selected resemble the maximum and minimum 

values of measurements obtained by SROSS-C2 satellite and models above the ionospheric F2 

layer peak at low-latitude regions with different solar conditions [Sharma et al., 2016]. The range 

of electron-to-ion temperature ratios (𝑇𝑒/𝑇𝑖) and ion drift velocities (𝑉𝑖) used were larger than 

the typical measurements obtained at standard mid-latitude ionospheric conditions shown in 

[Wand, 1970] [Scherliess et al., 2001].  

In this work, the ion drift velocity parameter (𝑉𝑖 ) was assumed to be known a priori. As 

it generates a shift of the spectrum center due to the Doppler effect, it does not affect the 

determination of other parameters and it can be estimated independently [Wu et al., 2015]. 

Results of simulations shown in Chapter 6 verify the ion drift estimation independence. 

To study the effect of increasing the variability of ISR signals in the estimation process, 

Monte Carlo simulations were done at different signal fluctuation levels. First, different ISS 

signals were created using the uniformly selected true input plasma parameters (𝒙𝑡𝑟𝑢𝑒) and the 

theoretical ISR spectrum model explained in Annex 1. The Incoherent Scatter Spectrum. The 

noise contribution scheme indicated in Chapter 3.1.2 was applied to these ISS signals, adding a 

Gaussian random vector with zero mean and a standard deviation defined by a selected signal 

fluctuation level (𝛿(%)). The same set of uniformly selected true input plasma parameters 

(𝒙𝑡𝑟𝑢𝑒) was used in all simulations, allowing a direct comparison of results for different 

fluctuation levels. Finally, the plasma parameters were estimated using the L-M optimization 

algorithm, minimizing the Reduced Chi-Square cost function (𝜒𝑟
2), as indicated in Chapter 3.1.3. 

To provide sufficient statistical representation, 500 (𝑁𝑟𝑒𝑝) repetitions of the estimation process 

were done for each set of input parameters were done with a different random noise added.  

3.1.7. UNIFORMLY SELECTED INITIAL PARAMETERS  

The solution of the optimization algorithm depends on the configured initial parameters of 

the search [Lathuillere et al., 1983]. Very different results are obtained assuming different initial 

parameters, as shown in previous studies [Wu et al., 2015]. In practical ISR observatories, the 

most common method is to set the initial parameters as those calculated by an ionospheric model, 

such as the International Reference Ionosphere (IRI) [Bilitza et al., 2017] or the Mass 

Spectrometer Incoherent Scatter Radar (MSIS) models [Picone et al., 2002]. However, because 

of the TICA problem, this method would generate ‘incorrect’ estimates when theoretical model 

considerations were significantly different from actual values.  

To ensure solutions independent of the initial parameters selected, different initial 

parameters were used at each repetition of the estimation process. Therefore, each estimation of 

plasma parameters is repeated with a different noise added and a different initial guess of 

parameters. The initial parameters were uniformly selected from the full search range of 

parameters (indicated in Chapter 3.1.6). Identical uniformly selected initial parameters were 

used in all simulations to allow a direct comparison of results of the different simulations done.  

Figure 3.4 shows the graphic representation of the complete Monte Carlo analysis method, 

including the uniform selection of both input parameters (𝒙𝑡𝑟𝑢𝑒) and initial parameters (𝒙𝑖𝑛𝑖𝑡𝑖𝑎𝑙). 

The number of different Monte Carlo input parameters (𝑁𝑀𝐶) was 2000 or 1000, depending on 

the simulation, and the number of estimation repetitions of each input parameter (𝑁𝑟𝑒𝑝) was 500.  
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Figure 3.4. Graphic representation of the Monte Carlo simulation at each signal fluctuation value (𝛿(%)). Each plasma 

parameter estimated (𝒙̂) and the cost function values obtained (𝝌𝒓
𝟐) are matrices of 𝑁𝑀𝐶𝑥𝑁𝑟𝑒𝑝 elements. 

3.1.8. SIMULATION OF INACCURACY OF INITIAL PARAMETERS  

To determine the effects derived from the use of an inaccurate initial guess of plasma 

parameters obtained from an ionospheric model, Monte Carlo simulations were done with 

different configurations of initial parameters at different signal fluctuation levels. Results of 

these simulations are shown in Chapter 4. Determination of the Impact of the Inaccuracy on the 

Initial Parameters.  

The initial parameters (𝒙𝑖𝑛𝑖𝑡𝑖𝑎𝑙) of simulations shown in Chapter 4 were selected randomly 

using a uniform distribution centered on the true input plasma parameters (𝒙𝑡𝑟𝑢𝑒). The selection 

range was configured relative to the full search range of parameters as: 

𝒙𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝒙𝑡𝑟𝑢𝑒 +
𝛽

100
· (𝒙𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑎𝑥 − 𝒙𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑖𝑛) · (𝑟𝑎𝑛𝑑(𝑛) − 0.5) 

(15) 

where 𝛽 is the initial parameters range percentage (𝛽(%) ∈ [0, 100]), and 𝑟𝑎𝑛𝑑(𝑛) is a random 

function generator with a uniform distribution between 0 and 1.  

Consequently, the initial search parameters were located randomly in the parameter space 

defined as:  

𝒙𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∈ [𝒙𝑡𝑟𝑢𝑒 − Δ/2 , 𝒙𝑡𝑟𝑢𝑒 + Δ/2] (16) 

where Δ = 𝛽/100 · (𝒙𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑎𝑥 − 𝒙𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑖𝑛) is the size of the initial search range. This 

parameter (Δ) resembles the uncertainty of the solution of an ionospheric model used as an initial 

guess of the optimization algorithm search.  
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3.1.9. SIMULATION OF UNCERTAINTY OF A-PRIORI KNOWN PARAMETERS  

To provide a more realistic radar framework, different levels of uncertainty in the plasma 

parameters known a priori from the Plasma Line have been analyzed. Results from these 

simulations are shows in Chapter 7 Determination of the Impact of the Uncertainty of a-priori 

Known Parameters.The study of [Vallinkoski and Lehtinen, 1990] analyzed the effect of the 

level of uncertainty of the a priori given parameters, demonstrating the dependence of the 

estimation error on the a priori accuracy. 

Previous studies obtained experimental Plasma Line parameter uncertainties for 𝑁𝑒 

between 1% and 3% at different altitudes [Djuth et al., 1994] [Nicolls et al., 2006], for 𝑇𝑒/𝑇𝑖 of 

approximately 0.5% [Aponte et al., 2007], and for 𝑇𝑒 of 5% to 6% using the frequency 

asymmetry method [Nicolls et al., 2006].  

The a priori uncertainty error (𝜖) has been simulated as a random variation of the a priori 

known parameters (𝒙𝑎 𝑝𝑟𝑖𝑜𝑟𝑖). Simulations were done assuming a fixed value of a priori known 

parameters selected randomly from the range defined by the uncertainty error (𝜖) and centered 

at the true input parameter value (𝒙𝑡𝑟𝑢𝑒). The a priori known parameters were obtained with a 

uniform selection in the range of parameters defined by:  

𝒙𝑡𝑟𝑢𝑒 (1 −
|𝜖|

100
) ≤ 𝒙𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 ≤ 𝒙𝑡𝑟𝑢𝑒 (1 +

|𝜖|

100
) 

(17) 

where 𝜖 is the a priori parameter uncertainty percentage and 𝒙𝑡𝑟𝑢𝑒 is the a priori known true 

input parameter.  

Therefore, the a priori known values would be selected uniformly in the range defined by 

𝒙𝑡𝑟𝑢𝑒 ± Δ𝒙𝑡𝑟𝑢𝑒, where the term Δ𝒙𝑡𝑟𝑢𝑒 = 𝒙𝑡𝑟𝑢𝑒 ⋅  𝜖/100 corresponds to the absolute uncertainty 

and the term 𝜖 to the percentage of relative uncertainty.  

In these simulations each of the 𝑁𝑟𝑒𝑝 (500) estimation repetitions of the true input 

parameters was done with a different random noise added, with initial parameters selected 

uniformly from the entire search space of parameters, and with a priori known parameters 

uniformly selected from an uncertainty range defined by 𝜖. 
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3.2. STATISTICAL ANALYSIS 

3.2.1. DETERMINATION OF CONVERGENCE  

Results from Monte Carlo simulations were analyzed statistically to determine the impact 

of the ambiguity in different signal fluctuation scenarios. In some cases, the optimization 

algorithm did not converge to a valid solution. To identify which solutions converged to a 

minimum of the 𝜒𝑟
2 cost function, the goodness of the fit was calculated based on the Chi-Squared 

(𝑓𝜒2) statistical distribution [Taylor, 1997] [Bevington & Robinson, 2003] shown in Equation 

(14). 

Figure 3.5 shows results obtained from the Monte Carlo simulation of 2000 plasma 

parameters with signal fluctuation values (Top) 𝛿 =  0.01%, (Middle) 𝛿 = 0.1%, and (Bottom) 

𝛿 = 1%. These simulations were done estimating 3 unknown plasma parameters (𝑇𝑒, 𝑇𝑖, and 𝑝), 

assuming known a priori the electron density (𝑁𝑒) parameter. In this figure, the histogram of the 

𝜒𝑟
2 cost function (blue bars) obtains very similar values to the Chi-Squared (𝑓𝜒2) statistical 

distribution (continuous black line) calculated with 𝐷𝑜𝐹 = 47 (with 𝑀 = 50 and 𝑃 = 3). In this 

figure it is also shown (red line) the Gaussian distribution that best approximates the Chi-

Squared distribution (with 𝜇𝑟 = 1 and 𝜎𝑟
2 = 2/𝐷𝑜𝐹, as indicated in Chapter 3.1.3) normalized 

to the histogram maximum value [Andrae et al., 2010]. The good agreement between the 

theoretical Chi-Squared statistical distribution and the histogram suggests the use of this 

distribution to determine the probability of obtaining a range of 𝜒𝑟
2 cost function values.  

Estimated parameters (𝒙̂) with 𝜒𝑟
2 smaller than a maximum cost function value (𝜒𝑟

2 ≤
𝜒𝑟,𝑚𝑎𝑥

2 ) were considered to have a valid convergence fit. The 𝜒𝑟,𝑚𝑎𝑥
2  value has been selected to 

have a probability of 𝑃(𝑥 > 𝜒𝑟,𝑚𝑎𝑥
2  ; 𝑥~𝑓𝜒2) = 0.00317% , which corresponds to the 

probability of the 4𝜎 criterion of a normally distributed function (i.e. 𝑃(𝑥 > 𝜇 +
4𝜎 ;  𝑥~𝒩(𝜇, 𝜎2)) = 0.00317%). The selected probability is small enough to ensure that a fit 

with 𝜒𝑟
2 > 𝜒𝑟,𝑚𝑎𝑥

2  is obtained by an invalid convergence. Figure 3.5 shows the maximum value 

to consider a valid convergence (𝜒𝑟,𝑚𝑎𝑥
2 ) with a vertical black dotted line. In this figure, most 

solutions are found below the 𝜒𝑟,𝑚𝑎𝑥
2  convergence limit. In our study, maximum and minimum 

values of 𝜒𝑟,𝑚𝑎𝑥
2  are 2.073 and 2.0317, for a spectrum vector length of 50 (𝑀) and 5 and 2 plasma 

parameters (𝑃), respectively.  

Figure 3.6 shows the bi-dimensional histogram of the absolute estimation error of 

parameters (|𝒙𝑡𝑟𝑢𝑒 − 𝒙|) and the corresponding cost function 𝜒𝑟
2 values obtained at different 

signal fluctuation values. Values shown in this figure are obtained from the simulations shown 

in Figure 3.5. The maximum cost function value (𝜒𝑟,𝑚𝑎𝑥
2 ) shown in Figure 3.6 is represented as 

a horizontal black dotted line. This figure shows large absolute estimation errors when 𝜒𝑟
2 >

𝜒𝑟,𝑚𝑎𝑥
2  in all signal fluctuation cases studied. This result verifies the assumption that the 

optimization algorithm did not converge to a valid solution when the cost function value is larger 

than 𝜒𝑟,𝑚𝑎𝑥
2 . 
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Figure 3.5. Histograms of 𝜒𝑟
2 (blue bars) at different signal fluctuations. The black line of the histogram represents the PDF of 

the Chi-Square distribution (𝑓𝜒2). This graphic is limited to values of 𝜒𝑟
2 in the range [0, 3] for a detailed representation of 

the histogram. 

 Simulated cases with very small signal fluctuation shown in Figure 3.6 (left column with 

𝛿 =  0.01%) obtained small absolute estimation errors when 𝜒𝑟
2 ≤ 𝜒𝑟,𝑚𝑎𝑥

2 . This result indicates 

that only ‘correct’ solutions are found below 𝜒𝑟,𝑚𝑎𝑥
2 , verifying the initial hypothesis that it is 

possible to estimate unambiguously at very small signal fluctuations. Alternatively, when the 

signal fluctuation value increases in Figure 3.6 (at middle and right columns with 𝛿 =  0.1% 

and 𝛿 =  1%, respectively), solutions with large absolute estimation errors are obtained below 

𝜒𝑟,𝑚𝑎𝑥
2 , indicating the existence of an ambiguous estimation. 
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Figure 3.6. Bi-dimensional histograms of 𝜒𝑟
2 and absolute errors of (Top) ion composition (𝑝), (Middle) electron temperature 

(𝑇𝑒), and (Bottom) ion temperature (𝑇𝑖) parameters at signal fluctuation values of 𝛿 = 0.01%, 𝛿 = 0.1% and 𝛿 =1% at left, 

middle, and right columns, respectively. The horizontal black dotted line corresponds to the maximum value to consider a 

valid convergence (𝜒𝑟,𝑚𝑎𝑥
2 ). 

3.2.2. DETERMINATION OF CORRECTNESS 

Due to the ambiguity problem, in some cases a local minimum of the cost function (𝜒𝑟
2) 

was selected instead of the global minimum. A solution is selected as ‘correct’ or ‘incorrect’ 

depending on the distance between the estimated (𝒙̂) and the true input parameters of the 

simulation (𝒙𝑡𝑟𝑢𝑒). Near parameters were assumed ‘correct’ and distant values ‘incorrect’. Note 

that the ‘correct’ statement is not an indication of exact estimation without uncertainty (or 

deterministic), but of global minimum selection. As the estimation process is a stochastic process 

due to the randomness of the added noise, the estimated plasma parameters also have stochastic 

distributions. Therefore, the distance discrimination criterion depends on the characteristics of 

the probability distributions of the estimated results. The process to obtain the statistical 

parameters of both ‘correct’ and ‘incorrect’ distributions of parameters is equivalent to the 

selection of different data groups in a clustering analysis where some of the statistical 

information is hidden or unknown [Jain et al., 1999].  
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3.2.3. CLUSTERING ALGORITHM 

In this work, the Expectation Maximization (EM) algorithm was used [Depmster et al., 

1977] for clustering ‘correct’ and ‘incorrect’ estimated solutions. The EM algorithm is a general 

method commonly used for partitional clustering [Jain et al., 1999]. The EM algorithm and its 

configuration are explained in Annex 4. The Expectation Maximization Algorithm.  

A total of 500 repetitions of the estimation process were done for each input parameter of 

the Monte Carlo simulation. Therefore, it was assumed that both ‘correct’ and ‘incorrect’ 

solutions had Gaussian probability distributions, according to the Central Limit Theorem. 

Consequently, the statistical distribution to be determined by the EM algorithm was a bimodal 

Gaussian Mixture Model (GMM) given by: 

𝑓𝐺𝑀𝑀(𝑥 | 𝛼, 𝜇0, 𝜎0
2, 𝜇1, 𝜎1

2) = 𝛼 · 𝒩(𝑥 | 𝜇0, 𝜎0
2) + (1 − 𝛼) · 𝒩(𝑥 | 𝜇1, 𝜎1

2) (18) 

where 𝛼 is the weight of the mixture distribution (𝛼 𝜖 [0, 1]), and 𝒩(𝑥 | 𝜇𝑖, 𝜎𝑖
2) is the Probability 

Density Function (PDF) of the Gaussian or Normal distribution, being 𝜇𝑖 and 𝜎𝑖
2 the mean and 

variance of the distribution, respectively. Therefore, 𝒩(𝑥 | 𝜇0, 𝜎0
2) and 𝒩(𝑥 | 𝜇1, 𝜎1

2) are the 

PDFs of ‘correct’ (𝒙̂𝑐𝑜𝑟𝑟𝑒𝑐𝑡) and ‘incorrect’ (𝒙̂𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡) results, respectively. 

In this study, the EM algorithm was used to analyze the statistical distribution of the ion 

composition estimation error (ℇ𝑝 = 𝑝𝑡𝑟𝑢𝑒 − 𝑝̂, where 𝑝𝑡𝑟𝑢𝑒 is the true input ion composition and 

𝑝̂ is the estimated value). This parameter was selected as a discriminator of correctness because 

of the known existence of two different solutions of ion composition [Oliver, 1979] [Lathuillere 

et al., 1983] [Wu et al., 2015] and the limited range of this parameter (i.e. ℇ𝑝 ∈ [−1, 1]). 

Parameters obtained with a convergent solution (𝜒𝑟
2 ≤ 𝜒𝑟,𝑚𝑎𝑥

2 ) were clustered as ‘correct’ or 

‘incorrect’ based on the distance of each ion composition estimation error (ℇ𝑝) to the GMM 

PDFs. Figure 3.7 shows a histogram of ion composition estimation errors (ℇ𝑝) and the 

corresponding GMM PDFs obtained by the EM algorithm. The estimate errors of this figure 

were obtained with the plasma parameters indicated as Case a1 in Figure 2.5. 

The ‘correct’ distribution mean is approximately equal to zero (𝜇0 ≈ 0), because results 

obtained with a small ion composition error are ‘correct’ solutions (𝑝̂𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≈ 𝑝𝑡𝑟𝑢𝑒). To 

improve the accuracy of the estimation in noisy scenarios, the mean of the ‘correct’ distribution 

was fixed to zero in the EM algorithm (𝜇0 = 0). Otherwise, results obtained without this fixing 

obtained highly variable results and an increase of the probability of ‘correct’ estimation at high 

signal fluctuations (𝛿 > 10%). 

Figure 3.8 shows the (red) ‘correct’ and (blue) ‘incorrect’ solutions of ion composition 

obtained from simulations at different signal fluctuations (δ = 0.01%, 0.1%, 1%, and 10%), 

assuming electron density parameter (𝑁𝑒) known a priori. This figure shows that ‘incorrect’ 

solutions are approximately symmetric with respect to 0.5 to the ‘correct’ solutions (i.e. 

𝑝̂𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≈ 1 − 𝑝𝑡𝑟𝑢𝑒), as indicated by [Lathuillere et al., 1983] and [Wu et al., 2015]. 

Therefore, the ‘incorrect’ distribution mean value could be approximated to 𝜇1 ≈ 2𝑝𝑡𝑟𝑢𝑒 − 1. 

Nevertheless, due to the high variability of the ‘incorrect’ solutions obtained in noisy scenarios 

(𝛿 ≥ 1%), this approximation can be used accurately only for small fluctuation cases. 
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Figure 3.7. (Grey line) Histogram of error of ion composition estimations (𝜀(𝑝) = 𝑝𝑡𝑟𝑢𝑒 − 𝑝̂) obtained from a Monte Carlo 

simulation with signal fluctuation 𝛿 = 1%. Input plasma parameters of this simulation were those of spectrum Case a1 of 

Figure 2.5, assuming electron density parameter known a priori. The red and blue curves show respectively the ‘correct’ and 

‘incorrect’ distributions of the Gaussian Mixture Model (GMM) calculated using the EM algorithm.  

 

Figure 3.8. (Red) ‘Correct’ and (Blue) ‘Incorrect’ results of ion composition obtained by the EM algorithm at signal 

fluctuation values of (Top Left) 𝛿 = 0.01%, (Top Right) 𝛿 = 0.1%, (Bottom Left) 𝛿 =1%, and (Bottom Right) 𝛿 =10%.  
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3.2.4. PROBABILITIES OF CONVERGENCE AND CORRECTNESS 

Different types of probabilities were calculated to quantify the estimation ambiguity at 

different signal fluctuation values. These probabilities provide information about the maximum 

signal fluctuation thresholds (𝛿𝑡ℎ) that can be assumed to obtain unambiguous estimates.  

The probability of valid convergence of the fit (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑), defined as the probability of 

finding a minimum of the 𝜒𝑟
2cost function by the L-M optimization algorithm, was calculated 

as: 

𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 = 𝑁𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑/𝑁𝑡𝑜𝑡𝑎𝑙 (19) 

where 𝑁𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 is the number of valid convergence results from the simulation (𝜒𝑟
2(𝒙̂) ≤

𝜒𝑟,𝑚𝑎𝑥
2 ), and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of parameters simulated. Note that 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑀𝐶 · 𝑁𝑟𝑒𝑝, 

where 𝑁𝑀𝐶 is the number of different input parameters of the Monte Carlo simulation (i.e. 

𝑁𝑀𝐶=1000 or 2000 depending on the simulation), and 𝑁𝑟𝑒𝑝 is the number of repetitions of each 

input parameter of the simulation (i.e. 𝑁𝑟𝑒𝑝=500). 

Alternatively, the probability of ‘correct’ estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡), which represents the 

probability to successfully select the global minimum of the cost function having already 

converged to a valid solution, was calculated as: 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑁𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 (20) 

where 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number of ‘correct’ results of a simulation (i.e. 𝒙̂ ≈ 𝒙𝑡𝑟𝑢𝑒) calculated by 

the EM clustering algorithm. 

The probability of valid convergence and ‘correct’ estimation (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 & 𝑐𝑜𝑟𝑟𝑒𝑐𝑡), defined 

as the total number of parameters calculated without an ambiguous solution, was calculated as 

the product of previous probabilities: 

𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 & 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 · 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑁𝑡𝑜𝑡𝑎𝑙 (21) 

Note that 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 & 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 represents the probability of solving a set of parameters and 

estimating it without ambiguity, and consequently indicates the total probability of unambiguous 

estimation when the convergence of the solution (𝜒𝑟
2(𝒙̂) ≤ 𝜒𝑟,𝑚𝑎𝑥

2 ) is not verified. 
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CHAPTER 4 

4. DETERMINATION OF THE IMPACT OF THE 

INACCURACY ON THE INITIAL PARAMETERS 

Different Monte Carlo simulations have been done to determine the effect of using an 

ionospheric model to determine the initial parameters of the optimization algorithm search with 

different levels of accuracy. The initial parameters of these simulations were configured as 

indicated in Chapter 3.1.8. Simulation of Inaccuracy of Initial Parameters.  

These simulations were done for 1000 different true input values (𝒙𝑡𝑟𝑢𝑒) estimating 

electron density (𝑁𝑒), electron temperature (𝑇𝑒), ion temperature (𝑇𝑖), and ion composition (𝑝) 

parameters. This configuration of plasma parameters corresponds to the typical estimation 

process for ISR radars, when no a priori information is provided. Results from these simulations 

demonstrate the necessity to study the ambiguous estimation using an uniform selection of initial 

parameters (as indicated in Chapter 3.1.7. Uniformly Selected Initial Parameters). 

Figure 4.1 shows the results of Monte Carlo simulations with initial parameter range 

percentages of 𝛽=1%, 5%, 10%, 20%, 30%, 40%, 50%, and 100%, demonstrating the effects of 

increasing the uncertainty on the initial parameters.  

4.1. ACCURATE INITIAL GUESS  

The most remarkable result shown in Figure 4.1 was obtained in the case of an almost 

perfect guess of the initial parameters (𝛽 = 1%). Even if the initial parameters were extremely 

accurate, unambiguous estimates (i.e. 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≈ 100%) were obtained only with signal 

fluctuations smaller than 𝛿 < 0.1%. This result implies the existence of a threshold on the 

fluctuation level that can be tolerated to completely solve the TICA problem, even when using 

a precise ionospheric model as initial guess.  

To obtain a 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≥ 95.45% (i.e. a 2𝜎 probabilistic criterion), the signal fluctuation 

threshold was 𝛿𝑡ℎ(𝛽=1%) = 0.54% in the case of 𝛽 = 1%. Alternatively, 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 decayed to 

less than 50% for signal fluctuations 𝛿 > 5%, indicating that in noisy scenarios it was more 

probable to select the ‘incorrect’ solution. On the other hand, the probability of valid 

convergence (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑) was almost 100% in all signal fluctuation scenarios, indicating that the 

L-M optimization algorithm was always able to converge to a minimum of the cost function.   
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Figure 4.1. Probability of convergence (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑) and probability of ‘correct’ estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡) at different signal 

fluctuation percentages (𝛿(%)) obtained by simulations of the estimation of four plasma parameters (𝑁𝑒, 𝑇𝑒, 𝑇𝑖, and 𝑝 

parameters) without parameters given a priori, for different ranges of initial search parameters (𝛽(%)). 



38 

 

4.2 INCREASING THE UNCERTAINTY OF INITIAL PARAMETERS  

The increase of the uncertainty of the initial parameters (𝛽 > 1) produces a reduction of 

both probabilities 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 and 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (Figure 4.1). Nevertheless, the reduction of 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 

was localized in the low fluctuation regime (𝛿 ≤ 0.5%), while the reduction of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 was 

obtained at high fluctuations (0.1% ≤ 𝛿 ≤ 10%). These different ranges indicate that two 

different estimation issues occurred at different ranges of signal fluctuation.  

The inversely proportionality of 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 to 𝛽 occurs because increasing this uncertainty 

is equivalent to increase the distance between the initial and the true input parameters, making 

it more difficult to find the global minimum. This effect is shown in Figure 4.2, where the 

number of computing iterations is proportional to the uncertainty of the initial parameters (𝛽). 

Furthermore, this figure shows that more iterations are required to estimate plasma parameter at 

higher signal fluctuation values. 

Nevertheless, the decrease of 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 was found only at the low fluctuation regime in 

Figure 4.1. A decrease of signal fluctuation (𝛿) is equivalent to a reduction of the estimated 

signal variance (𝜎2) in Equation (38), resulting in higher 𝜒𝑟
2 cost function values (Equation (13)). 

It is assumed that the increase of 𝜒𝑟
2 obtained non-convergent ‘incorrect’ estimates 

(𝜒𝑟,𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
2 > 𝜒𝑟,𝑚𝑎𝑥

2 ) at the low fluctuation regime. This effect is shown in the example of 

Figure 3.3 (Top), where the 𝜒𝑟
2 cost value of the local minimum was larger than 𝜒𝑟,𝑚𝑎𝑥

2  for small 

signal fluctuations (𝛿 = 0.01%). This effect would reduce the number of convergent solutions 

and increase the number of ‘correct’ estimates when the signal fluctuation level decreases, as 

shown in Figure 4.1.  

At highly noisy scenarios (𝛿 > 5%), 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 probabilities were smaller than 50% and had 

almost identical values with different uncertainties. This result indicates that ‘incorrect’ 

solutions were more selected at high fluctuation levels, independently of the uncertainty of initial 

parameters (𝛽). Alternatively, at very small signal fluctuations (𝛿 ≤ 0.05%) 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≈ 100% 

independently of the initial guess uncertainty (𝛽). This latter result indicates that all solutions 

were ‘correctly’ estimated even when initial parameters were far from true input parameters. 

Therefore, this result verifies the assumption that, independently of the initial guess accuracy, 

there is a threshold of signal fluctuation to completely solve the TICA problem (𝛿𝑡ℎ(∀𝛽) ≈

0.05% to obtain a 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≥ 95.45%).  

In summary, the use of ionospheric models to determine initial plasma parameters leads to 

obtaining erroneous plasma parameters unless signals have almost no fluctuation. Even with a 

very good model prediction (i.e. 𝛽 = 1%), there is always ambiguity in the estimation of noisy 

signals. In these noisy scenarios, ‘incorrect’ solutions are more likely to be selected. 
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Figure 4.2. (Top) The average number of iterations required to obtain a valid convergence, (Middle) average number of 

iterations required to obtain a ‘correct’ estimation, and (Bottom) linear regression of average computing times of each fitting. 

Simulations were done estimating four plasma parameters (𝑁𝑒, 𝑇𝑒, 𝑇𝑖, and 𝑝) without information given a priori, for different 

ranges of initial search parameter selected uniformly around the true input value (𝛽(%)). Average computing times were 

obtained at the NLHPC supercomputer by parallelizing fitting simulations. 
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4.3 PROPOSED ESTIMATION TECHNIQUE  

Consequently, to obtain results independent of the configuration of initial parameters, the 

use of a Monte Carlo selection scheme of initial parameters is suggested. This technique consists 

of executing the optimization algorithm several times with different initial parameters uniformly 

selected from the global search space of parameters, as indicated in Chapter 3.1.7. Uniformly 

Selected Initial Parameters. The estimated solution would correspond to the set of parameters 

most frequently obtained. The following sections show the probability results that are obtained 

using this estimation technique.  
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      CHAPTER 5 

5. ANALYSIS OF THE TEMPERATURE-ION 

COMPOSITION AMBIGUITY PROBLEM  

Monte Carlo simulations were done to analyze the TICA problem adding different 

information from the Plasma Line without uncertainty. These simulations were done for 2000 

different true input plasma parameters at different signal fluctuation levels. In these simulations, 

the combinations of parameters studied were:  

a) 4 unknown parameters (𝑁𝑒, 𝑇𝑖, 𝑇𝑒, and 𝑝) without information given a priori;   

b) 3 unknown parameters (𝑇𝑖, 𝑇𝑒, and 𝑝) given a priori 𝑁𝑒;  

c) 2 unknown parameters (𝑇𝑖 and 𝑝) given a priori 𝑁𝑒 and 𝑇𝑒/𝑇𝑖; and  

d) 2 unknown parameters (𝑇𝑖 and 𝑝) given a priori 𝑁𝑒 and 𝑇𝑒.  

5.1. AMBIGUOUS ION COMPOSITION ESTIMATE 

Figure 5.1 shows estimated ion composition parameters obtained from these simulations, 

where the different colors represent values estimated at different signal fluctuations (𝛿). In the 

study case d of Figure 5.1 (Bottom Rigth), the addition of a priori knowledge of 𝑁𝑒 and 𝑇𝑒 

information obtained ‘correct’ solutions (i.e. 𝑝̂𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≈ 𝑝𝑡𝑟𝑢𝑒) at all signal fluctuation scenarios. 

This result implies that this combination of a priori known parameters solved the ambiguity 

problem, as proposed by [Bjørnå & Kirkwood, 1988] and [Nicolls et al., 2006]. In the other 

study cases (a, b, and c), unambiguous estimates were only possible at scenarios with almost no 

fluctuation (𝛿 = 0.01%, red colored). At middle signal fluctuations (0.05% ≤ 𝛿 ≤ 1%, colors 

cyan to orange) ‘incorrect’ ion composition values were also obtained (i.e. 𝑝̂𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≈
1 − 𝑝𝑡𝑟𝑢𝑒). In high fluctuation cases (𝛿 ≥ 5%, blue colored), estimated results were obtained 

spread throughout the entire ion composition parameter range. This latter result indicates that in 

noisy scenarios estimates had a high uncertainty and were also ambiguous. 

The ‘incorrect’ ion composition values (𝑝̂𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡) were dependent on the a priori 

information provided. Simulations without a priori information obtained values of ‘incorrect’ 

ion compositions with a parabolic curve dependent on the true input parameter (𝑝𝑡𝑟𝑢𝑒). 

Alternatively, results with the a priori knowledge of 𝑁𝑒 or 𝑁𝑒 and 𝑇𝑒/𝑇𝑖 parameters were 

described by 𝑝̂𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 1 − 𝑝𝑡𝑟𝑢𝑒. These latter results agree with previous studies that 

obtained ‘correct’ and ‘incorrect’ solutions approximately equidistant to 𝑝 = 0.5 [Lathuillere et 

al., 1983] [Wu et al., 2015]. The variability of the ion composition value increased in the vicinity 

of the intersection between ‘correct’ and ‘incorrect’ results (𝑝 ≈ 0.5), indicating a higher 

estimation uncertainty near the intersection point. This increase of uncertainty near the 

intersection point was previously indicated in [Aponte et al., 2007].  
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Figure 5.1.  Scatter plot of estimated and input values of ion composition, obtained from the analysis of different combinations 

of parameters known a priori from the Plasma Line: (a) without a priori information, (b) given 𝑁𝑒, (c) given 𝑁𝑒 and 𝑇𝑒/𝑇𝑖, 

and (d) given 𝑁𝑒 and 𝑇𝑒. Each color represents results obtained by simulations with a particular signal fluctuation percentage 

(𝛿(%)).  

5.2. UNCERTAINTY OF THE ION COMPOSITION ESTIMATE  

Figure 5.2 shows the standard deviation of both ‘correct’ and ‘incorrect’ distributions of 

the GMM PDFs calculated by the EM algorithm (𝜎𝑐𝑜𝑟𝑟𝑒𝑐𝑡 and 𝜎𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, respectively) at 

different signal fluctuation levels. These values resemble the average uncertainty of the ‘correct’ 

and ‘incorrect’ estimated ion compositions. At the low and middle signal fluctuation regimes 

(𝛿 < 5%), both standard deviations increased linearly with the signal fluctuation percentage. 

Estimated linear regressions of standard deviation (𝜎𝑒𝑠𝑡) calculated for study cases a, b, c, and d 

were 𝛿/10, 𝛿/30, 𝛿/50, and 𝛿/150, respectively (Figure 5.2). These different estimated 

increases indicate that the uncertainty of the ion composition estimate was dependent on the type 

of a priori information provided. 
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For all study cases, both ‘correct’ and ‘incorrect’ standard deviations have a maximum 

value of approximately 𝜎𝑠𝑎𝑡 = 0.18. This saturation value is the maximum standard deviation 

value that was estimated by the EM algorithm in the ion composition error range (−1 ≤ 𝜖𝑝 ≤

1). These saturation values were reached at signal fluctuation levels approximately equal to 

𝛿𝑐𝑟𝑜𝑠𝑠, where 𝛿𝑐𝑟𝑜𝑠𝑠 is the signal fluctuation level at which 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 50% in Figure 5.3. 

Consequently, 𝛿𝑐𝑟𝑜𝑠𝑠 represents the maximum signal fluctuation threshold required to obtain a 

higher number of ‘correct’ than ‘incorrect’ estimates 

 

Figure 5.2.  Average values of standard deviation (in logarithmical scale) of correct (blue) and incorrect (red) statistical 

distributions obtained by simulations of the estimation of different combinations of known a priori plasma parameters from the 

Plasma Line at different signal fluctuation percentages (𝛿(%)). Vertical dotted line represents the estimated fluctuation value 

(𝛿𝑐𝑟𝑜𝑠𝑠) at which the standard deviation reaches its maximum value (𝜎𝑠𝑎𝑡). Black line represents the estimated linear 

regression (𝜎𝑒𝑠𝑡) before arriving to saturation, and the horizontal dotted line represents the saturation value (𝜎𝑠𝑎𝑡). 

 



44 

 

5.3. PROBABILITY RESULTS OF PLASMA LINE INFORMATION 

ADDITION   

The probability of convergence of the optimization algorithm (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑), the probability 

of having a ‘correct’ estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡), and their joint probability (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 & 𝑐𝑜𝑟𝑟𝑒𝑐𝑡), are 

shown in Figure 5.3 for different combinations of known a priori parameters (study cases a, b, 

c, and d).  

Each of the different study cases shown in Figure 5.3 gradually improved 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 

displacing the signal fluctuation threshold (𝛿𝑡ℎ) to higher values. This indicates that the a priori 

knowledge of different parameters provides different amounts of information to solve the TICA 

problem. Furthermore, this figure shows the signal variability effect on the ambiguous 

estimation.  The signal fluctuation thresholds for obtaining a 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≥ 95.45% were found at: 

𝛿𝑡ℎ(𝑛𝑜 𝑖𝑛𝑓𝑜) = 0.045%, 𝛿𝑡ℎ(𝑁𝑒) = 0.137%, 𝛿𝑡ℎ(𝑁𝑒 𝑎𝑛𝑑 𝑇𝑒/𝑇𝑖) = 0.568%, and 𝛿𝑡ℎ(𝑁𝑒 𝑎𝑛𝑑 𝑇𝑒) =

7.93%, for study cases a, b, c, and d, respectively. This latter threshold value indicates that the 

addition of 𝑁𝑒 and 𝑇𝑒 information solved the TICA problem even for highly noisy signals, as 

previously indicated.  

A previous study of the TICA problem [Aponte et al., 2007] simulated the estimation 

process at a signal fluctuation of 𝛿 = 0.5% knowing a priori 𝑁𝑒 and 𝑇𝑒/𝑇𝑖 parameters from the 

Plasma line. The results of [Aponte et al., 2007] were obtained without ambiguity, agreeing with 

the threshold found in our work. Nevertheless, the study of [Aponte et al., 2007] did not consider 

the convergence of the estimated results, and invalid solutions could be obtained depending on 

the configurations of the fitting. To account for non-convergent estimates, the probability of 

unambiguous estimation of this study should be determined by the value of 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 & 𝑐𝑜𝑟𝑟𝑒𝑐𝑡. 

The addition of a priori information also improved the convergence of the optimization 

algorithm (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑). The addition of 𝑁𝑒 and 𝑇𝑒 information (study case d) obtained a probability 

of valid convergence 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 > 99% at all studied signal fluctuation values. In this case, the 

optimization algorithm was always able to find a minimum of the cost function independently 

of the signal fluctuation level. Other study cases (a, b, and c) obtained a reduction of 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 

for 𝛿 < 0.5%. These reductions were assumed to be related to the effect of decreasing the 

estimated variance (𝜎2) in the calculus of the cost function 𝜒𝑟
2, previously indicated in Chapter 

4.2. Therefore, at small signal fluctuation cases, ‘incorrect’ estimates were not convergent 

(𝜒𝑟,𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
2 > 𝜒𝑟,𝑚𝑎𝑥

2 ) and only ‘correct’ solutions were obtained. 

The number of computing iterations required was gradually reduced by the addition of a 

priori information at the different study cases. Figure 5.4 shows the average number of iterations 

required for convergence and ‘correct’ estimation. Computing times of simulations with a priori 

knowledge of 𝑁𝑒 and 𝑇𝑒 parameters (study case d) were approximately a quarter of those 

obtained without a priori information (study case a).  

Furthermore, the results shown verify that the use of a large initial parameter uncertainty 

(i.e. 𝛽 =100% in Figure 4.1) is equivalent to having initial parameters uniformly selected from 

the entire search range (case a in Figure 5.3, blue color line). 
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Figure 5.3.  Probability of convergence (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑) and probability of ‘correct’ estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡) (in percentage) at 

different signal fluctuation percentages (𝛿(%)) obtained by simulations of the estimation of different combinations of known a 

priori plasma parameters from the Plasma Line: without a priori information (blue circles), given 𝑁𝑒 (orange squares), given 

𝑁𝑒 and 𝑇𝑒/𝑇𝑖 (yellow crosses), given 𝑁𝑒 and 𝑇𝑒 (purple rhombus).  
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Figure 5.4. (Top) The average number of iterations required to obtain a valid convergence and (Middle) a ‘correct’ estimation 

of parameters of simulations with different a priori known parameters. (Bottom) Average computing times of each fitting can 

be approximated by the linear regression indicated in the graphic. Average execution times were obtained at the NLHPC 

supercomputer parallelizing the fitting simulations. 
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Figure 5.5. Integration times and 𝑆𝑁𝑅 values required to obtain the signal fluctuation thresholds of unambiguous estimation 

of (blue) no a priori information provided, (red) given 𝑁𝑒, (yellow) given 𝑁𝑒 and 𝑇𝑒/𝑇𝑖, and (purple) given 𝑁𝑒 and 𝑇𝑒 

parameters.  

Figure 5.5 shows the integration times and corresponding 𝑆𝑁𝑅 values required to obtain 

the unambiguous signal fluctuation thresholds of study cases a, b, c, and d. These values have 

been calculated using Equation (3) at the signal fluctuation thresholds previously calculated. 

Integration times have been calculated assuming an Inter-Pulse Period (IPP) of 1 millisecond 

and it has not been considered the simultaneous reception of signals at multiple frequencies 

[Sulzer 1986a]. The results shown in this figure indicate that very large integration times are 

required when no a priori information is provided or when only 𝑁𝑒 parameter is given a priori 

(study cases a and b). In such cases, the assumption of stationary plasma conditions [Farley, 

1969] may not be fulfilled due to possible variations of the plasma parameters during these long 

integration times. The non-stationary effect could make infeasible the unambiguous plasma 

parameters estimation, as indicated in Chapter 7.3. Stationarity of Unambiguous Radar 

Measurements. Alternatively, integration times of study cases c and d (assuming the a priori 

knowledge of 𝑁𝑒 and 𝑇𝑒/𝑇𝑖 parameters and 𝑁𝑒 and 𝑇𝑒 parameters, respectively) are feasible by 

common IS radars under stationary plasma conditions. 
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5.4. RELATIONSHIPS BETWEEN ESTIMATION ERRORS OF 

PARAMETERS 

Histograms of estimation error of plasma parameters are shown for different study cases 

of addition of plasma parameters information in Figure 5.6, Figure 5.7, Figure 5.8, and Figure 

5.9. In the study cases a (Figure 5.6), b (Figure 5.7), and c (Figure 5.8), histograms show a non-

linear dependence between the estimation errors of 𝑁𝑒, 𝑇𝑒, and 𝑇𝑖 parameters and the estimation 

error of the ion composition (ℇ𝑝). These dependences indicate that 𝑁𝑒, 𝑇𝑒, and 𝑇𝑖 parameters are 

directly related to the ion composition ambiguity. Alternatively, results of study case d (Figure 

5.9) showed no relationships between the estimation error of 𝑇𝑖 and ℇ𝑝, indicating that there was 

no estimation ambiguity in the case of knowing a priori 𝑁𝑒 and 𝑇𝑒.  
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5.4.1. ESTIMATED ERRORS OF FOUR PARAMETERS (𝑵𝒆, 𝑻𝒆, 𝑻𝒊, AND 𝒑) 

  

Figure 5.6. (Top) Histogram of estimated parameters errors, and (bottom) relationship between plasma parameters errors (in 

percentage) and the ion composition error. These results were obtained from the estimation of four plasma parameters (𝑁𝑒, 

𝑇𝑒, 𝑇𝑖, and 𝑝) given no a priori information at different signal fluctuation values (𝛿(%)).  
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5.4.2. ESTIMATED ERRORS OF THREE PARAMETERS (𝑻𝒆, 𝑻𝒊, AND 𝒑) GIVEN A PRIORI 𝑵𝒆 

 

 

Figure 5.7.  (Top) Histogram of estimated parameters errors, and (bottom) relationship between plasma parameters errors (in 

percentage) and the ion composition error. These results were obtained from the estimation of 𝑇𝑒, 𝑇𝑖, and 𝑝 plasma 

parameters and knowing a priori 𝑁𝑒 from the Plasma Line at different signal fluctuation values (𝛿(%)).  
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5.4.3. ESTIMATED ERRORS OF TWO PARAMETERS (𝑻𝒊 AND 𝒑) GIVEN A PRIORI 𝑵𝒆 AND 𝑻𝒆/𝑻𝒊 

 

 

Figure 5.8. (Top) Histogram of estimated parameters errors, and (bottom) relationship between plasma parameters errors (in 

percentage) and the ion composition error. These results were obtained from the estimation of 𝑇𝑖 and 𝑝 plasma parameters 

and knowing a priori 𝑁𝑒 and 𝑇𝑒/𝑇𝑖 from the Plasma Line at different signal fluctuation values (𝛿(%)).  
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5.4.4. ESTIMATED ERRORS OF TWO PARAMETERS (𝑻𝒊 AND 𝒑) GIVEN A PRIORI 𝑵𝒆 AND 𝑻𝒆 

 

 

Figure 5.9. (Top) Histogram of estimated parameters errors, and (bottom) relationship between plasma parameters errors (in 

percentage) and the ion composition error. These results were obtained from the estimation of 𝑇𝑖 and 𝑝 plasma parameters 

and knowing a priori 𝑁𝑒 and 𝑇𝑒 from the Plasma Line at different signal fluctuation values (𝛿(%)). 
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5.4.5. VERIFICATION OF WALDTEUFEL ANALYTICAL FORMULATION  

Parameters estimation error percentages (ℇ𝑋(%) = 100 · (𝑋𝑡𝑟𝑢𝑒 − 𝑋̂)/𝑋𝑡𝑟𝑢𝑒) obtained 

from our Monte Carlo simulations were compared to the theoretical errors calculated with the 

analytic formulation of [Waldteufel, 1971]. Figure 5.10 shows the theoretical estimation errors 

obtained by the direct application of Equation (10) of [Zettergren et al., 2011]. This figure shows 

that both errors were similar, indicating that the approximation made by [Waldteufel, 1971] 

provides good error predictions. Nevertheless, electron temperature and electron density errors 

were much more disperse than those predicted by the analytical formulation. Regression 

formulas are provided in Figure 5.10 for each estimated parameter error obtained from 

simulations with different number of plasma parameters fitted. 

The values shown in Figure 5.10 agree with the ion temperature increase calculated by 

[Zhang et al., 2018] in the case of positive ion composition errors (ℇ𝑝 > 0). Nevertheless, 

negative ion composition errors obtained larger ion temperature errors. A more detailed study 

should be done to determine the differences found between the ISR and ionosonde 𝑓0𝐹1 methods 

in long-term exospheric temperatures variations [Perrone & Mikhailov, 2017] [Zhang et al., 

2018] [Perrone & Mikhailov, 2018]. 

Estimated errors of 𝑇𝑒 and 𝑇𝑖 parameters shown in Figure 5.10 were approximately 

−100% and 50% for ion composition error values of ℇ𝑝 = −1 and ℇ𝑝 = 1, respectively. This 

indicates that the maximum erroneously estimated values of temperature were approximately 

𝑇̂𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡(ℇ𝑝 = −1 ) = 2𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡 and 𝑇̂𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡(ℇ𝑝 = 1 ) = 𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡/2.  
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Figure 5.10. (Blue) The relationship between plasma parameters error percentage (ℇ𝑥(%) = 100(𝑋𝑡𝑟𝑢𝑒 − 𝑋̂)/𝑋𝑡𝑟𝑢𝑒) and ion 

composition estimation error (ℇ𝑝 = 𝑝𝑡𝑟𝑢𝑒 − 𝑝̂), (black line) the estimated regression of errors, and (red) the theoretical error 

of plasma parameters errors that should be obtained by applying the formulations of [Waldteufel, 1971] to the ion 

composition errors obtained. Different rows show simulation results of (top) four parameters at 𝛿 = 0.1%, (middle) three 

parameters given 𝑁𝑒 at 𝛿 = 0.2%, and (bottom) two parameters given 𝑁𝑒 and 𝑇𝑒/𝑇𝑖 at 𝛿 = 0.5%. Estimated regression 

formulas computed using non-linear robust regression are shown at bottom row. 
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       CHAPTER 6 

6. DETERMINATION OF THE MOST RELEVANT 

A-PRIORI KNOWN PARAMETERS 

To determine which a priori known parameter would be the most relevant to solve the 

ambiguity problem, the amount of information provided by each plasma parameter must be 

identified. Monte Carlo simulations of 2000 true input plasma parameters were done assuming 

the a priori knowledge of each plasma parameter at different signal fluctuation levels. The 

different study cases analyzed were:  

i) 5 unknown parameters (𝑁𝑒, 𝑇𝑖, 𝑇𝑒, 𝑉𝑖, and 𝑝) without a priori information;  

ii) 4 unknown parameters (𝑁𝑒, 𝑇𝑖, 𝑇𝑒, and 𝑝) given a priori 𝑉𝑖;  

iii) 4 unknown parameters (𝑇𝑖, 𝑇𝑒, 𝑉𝑖, and 𝑝) given a priori 𝑁𝑒;  

iv) 4 unknown parameters (𝑁𝑒, 𝑇𝑖, 𝑉𝑖, and 𝑝) given a priori 𝑇𝑒/𝑇𝑖;  

v) 4 unknown parameters (𝑁𝑒, 𝑇𝑖, 𝑉𝑖, and 𝑝) given a priori 𝑇𝑒; and  

vi) 4 unknown parameters (𝑁𝑒, 𝑇𝑒, 𝑉𝑖, and 𝑝) given a priori 𝑇𝑖.  

The study case ii (assuming 𝑉𝑖 is known a priori) has been already analyzed in the Chapter 

5 as study case a. Also, the study case iii (assuming 𝑁𝑒 is known a priori) is similar to the study 

case b from Chapter 5, but without considering known the 𝑉𝑖 parameter. It is relevant to review 

study case iii separately because solutions may depend on the number of parameters to estimate. 

Previous studies, [Vallinkoski, 1988] and [Vallinkoski & Lehtinen, 1990] analyzed the 

effects of providing a priori plasma parameters assuming no collisions, a fixed value of ion 

composition, and signal fluctuations of 𝛿 = 1%. Results from these studies indicated that the 

addition of a priori parameters are useful only when parameters have highly correlated errors 

with ion composition (𝑝). As a negative correlation coefficient exists between 𝑇𝑖 and 𝑝 

parameters, the addition of 𝑇𝑖 information completely solved the ambiguity. In these studies 

([Vallinkoski, 1988] and [Vallinkoski & Lehtinen, 1990]), the unambiguous estimation was 

found to be dependent on the signal fluctuation level. 

6.1. AMBIGUOUS ION COMPOSITION ESTIMATE  

Figure 6.1 shows the estimated ion composition values obtained for all the study cases 

previously indicated. The different colors of this figure represent values estimated at different 

signal fluctuations (𝛿), similarly as in Figure 5.1. 

No differences were found on the estimated ion composition values of simulations without 

a priori information and simulations assuming the ion drift (𝑉𝑖) known a priori. This result 

implies that the knowledge of the 𝑉𝑖 parameter does not modify the ion composition estimate. 
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The addition of ion temperature (𝑇𝑖) information obtained no ambiguous estimation in any 

of the simulation results shown in Figure 6.1. This later result is in agreement with the results of 

[Vallinkoski & Lehtinen, 1990], verifying the high impact generated by information of highly 

correlated parameters. Also, the addition of electron temperature (𝑇𝑒) information obtained most 

of the ion composition solutions ‘correct’ (i.e. in the vicinity of 𝑝̂ ≈ 𝑝𝑡𝑟𝑢𝑒), but some solutions 

were obtained with larger uncertainty than in the case of adding 𝑇𝑖 information.  

 

Figure 6.1. Scatter plot of estimated and input values of ion composition obtained from the analysis of plasma parameters with 

a parameter known a priori: (a) without a priori information, (b) given 𝑉𝑖, (c) given 𝑁𝑒, (d) given 𝑇𝑒/𝑇𝑖, (e) given 𝑇𝑒, and (f) 

given 𝑇𝑖. Each color represents results obtained with simulations with a particular signal fluctuation percentage (𝛿(%)).  
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6.2. UNCERTAINTY OF THE ION COMPOSITION ESTIMATE  

Figure 6.2 shows the standard deviation values obtained for all the study cases indicated. 

This figure shows that the estimated uncertainties of ion composition (𝜎𝑒𝑠𝑡) for study cases i, ii, 

iii, iv, v, and vi were 𝛿/10, 𝛿/10, 𝛿/30, 𝛿/25, 𝛿/60, and 𝛿/60, respectively. These values 

indicate that the addition of temperatures (𝑇𝑒 and 𝑇𝑖) provide a similar amount of information. 

 

Figure 6.2. Average values of standard deviation (in logarithmical scale) of ‘correct’ (blue) and ‘incorrect’ (red) statistical 

distributions obtained with simulations of the estimation of different known a priori plasma parameters at different signal 

fluctuation percentages (𝛿(%)). Vertical dotted line represents the estimated fluctuation value (𝛿𝑐𝑟𝑜𝑠𝑠) at which the standard 

deviation reaches its maximum value (𝜎𝑠𝑎𝑡). Black line represents the estimated linear regression (𝜎𝑒𝑠𝑡) previous to 

saturation, and the horizontal dotted line represents the saturation value (𝜎𝑠𝑎𝑡). 
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6.3. PROBABILITY RESULTS OF SINGLE PARAMETER ADDITION 

Figure 6.3 shows the probabilities obtained with the simulations of the study cases 

previously indicated. The most relevant outcome is that study cases i and ii (without a priori 

information and knowing a priori 𝑉𝑖 parameter, respectively) obtained almost identical 

probabilities. This result implies the knowledge of the 𝑉𝑖 parameter does not affect the ion 

composition estimate, and consequently it does not contribute to solve the TICA problem. 

Nevertheless, at very high signal fluctuations (𝛿 > 10%), small differences of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (<3%) 

were found. These probability differences found at very high signal fluctuations were assumed 

to be related to the estimate variability generated by the addition of different random noise at 

each simulation. Furthermore, study case iii (knowing a priori 𝑁𝑒) and study case b of Chapter 

5 (knowing a priori 𝑁𝑒 and 𝑉𝑖, shown in Figure 5.3) obtained similar probabilities. This latter 

result verifies that the parameter 𝑉𝑖 does not provide information to solve the ambiguity.  

Results of simulations of study case iii (having the a priori knowledge of 𝑁𝑒) obtained an 

almost constant increase of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡, but simulations of study case iv (with the a priori 

knowledge of 𝑇𝑒/𝑇𝑖) had no increase of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 at some signal fluctuation levels. This effect 

implies that the knowledge of 𝑁𝑒 provided more information than the knowledge of 𝑇𝑒/𝑇𝑖. Even 

so, both simulations obtained similar signal fluctuation thresholds for unambiguous estimation 

(𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≥ 95.45%) at 𝛿𝑡ℎ (𝑁𝑒) = 0.14% and 𝛿𝑡ℎ (𝑇𝑒/𝑇𝑖) = 0.11% for study cases iii and iv, 

respectively. Nevertheless, 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 values of study case c (knowing a priori 𝑁𝑒 and 𝑇𝑒/𝑇𝑖, 

shown in Figure 5.3) were much higher than the obtained values from study case iii or iv 

(knowing a priori 𝑁𝑒 or 𝑇𝑒/𝑇𝑖 parameters, respectively). This latter result implies that the 

information provided by 𝑁𝑒 and 𝑇𝑒/𝑇𝑖 parameters was different and complementary. 

Alternatively, 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 of study case iv was the smallest. It is assumed that this decrease in 

convergence was related to the difficulty of obtaining values of 𝑇𝑒 and 𝑇𝑖 that satisfy the 𝑇𝑒/𝑇𝑖 

ratio imposed by the a priori knowledge during the estimation process.  

Study cases v and vi (knowing a priori 𝑇𝑒 and 𝑇𝑖, respectively) highly improved the values 

of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡. Signal fluctuation thresholds for those cases were 𝛿𝑡ℎ(𝑇𝑒) = 1.54% and 𝛿𝑡ℎ(𝑇𝑖) =

3.06%. As these signal fluctuation values are commonly obtained in real ISR measurements 

[Vallinkoski & Lehtinen, 1990], common ISR radars could avoid the TICA problem by the direct 

addition of plasma temperature information. Both study cases obtained similar values of 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡, but presented different shapes at highly noisy scenarios. The probability curve of study 

case vi had a more pronounced decay as a function of signal fluctuation. Convergences obtained 

were 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑(𝑇𝑒) > 96% and 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑(𝑇𝑖) > 98%. Consequently, the a priori knowledge of 𝑇𝑖 

provided the most relevant information for solving the TICA problem, as indicated by 

[Vallinkoski, 1988] and [Vallinkoski & Lehtinen, 1990]. Nevertheless, the a priori knowledge 

of 𝑇𝑒 obtained similar probabilities to the results of knowing a priori 𝑇𝑖. 



59 

 

 

Figure 6.3.  Probability of convergence (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑) and probability of ‘correct’ estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡) (in percentage) at 

different signal fluctuation percentages (𝛿(%)) obtained from the analysis of plasma parameters without a priori information 

(blue circles), given 𝑉𝑖 (orange crosses dotted line), given 𝑁𝑒 (yellow hexagons), given 𝑇𝑒/𝑇𝑖 (purple rhombs), given 𝑇𝑒 (green 

stars), and given 𝑇𝑖 (cyan squares).  
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6.4. RELATIONSHIPS BETWEEN ESTIMATION ERRORS OF 

PARAMETERS 

Histograms of parameters estimate errors and their relationships with the ion composition 

estimate error (ℇ𝑝) are shown in Figure 6.4, Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8, and 

Figure 6.9. These graphics show correlations between 𝑇𝑒 and 𝑇𝑖 estimation errors and the ion 

composition error, verifying the high impact of parameter information with highly correlated 

errors [Vallinkoski & Lehtinen, 1990].  
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6.4.1. ESTIMATED ERRORS OF FIVE PARAMETERS (𝑵𝒆, 𝑻𝒆, 𝑻𝒊, 𝑽𝒊, 𝒑)  

 

 

Figure 6.4. (Top) Histogram of estimated parameters errors, and (bottom) Scatter plot of parameters errors and ion 

composition error, obtained from the estimation of five plasma parameters (𝑁𝑒, 𝑇𝑒, 𝑇𝑖, 𝑉𝑖, 𝑝) without a priori information, at 

different signal fluctuation values (𝛿(%)).  
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6.4.2. ESTIMATED ERRORS OF FOUR PARAMETERS (𝑵𝒆, 𝑻𝒆, 𝑻𝒊, AND 𝒑) GIVEN A PRIORI 𝑽𝒊 

 

Figure 6.5. (Top) Histogram of estimated parameters errors, and (bottom) Scatter plot of parameters errors and ion 

composition error, obtained from the estimation of four plasma parameters (𝑁𝑒, 𝑇𝑒, 𝑇𝑖, 𝑝) given a priori 𝑉𝑖, at different signal 

fluctuation values  (𝛿(%)).  
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6.4.3. ESTIMATED ERRORS OF FOUR PARAMETERS (𝑻𝒆, 𝑻𝒊, 𝑽𝒊, AND 𝒑) GIVEN A PRIORI 𝑵𝒆 

 

 

Figure 6.6. (Top) Histogram of estimated parameters errors, and (bottom) Scatter plot of parameters errors and ion 

composition error, obtained from the estimation of four plasma parameters (𝑇𝑒, 𝑇𝑖, 𝑉𝑖, 𝑝) given a priori 𝑁𝑒, at different signal 

fluctuation values  (𝛿(%)).  
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6.4.4. ESTIMATED ERRORS OF FOUR PARAMETERS (𝑵𝒆, 𝑻𝒊, 𝑽𝒊, AND 𝒑) GIVEN A PRIORI 𝑻𝒆/𝑻𝒊 

 

 

Figure 6.7. (Top) Histogram of estimated parameters errors, and (bottom) Scatter plot of parameters errors and ion 

composition error, obtained from the estimation of four plasma parameters (𝑁𝑒, 𝑇𝑖, 𝑉𝑖, 𝑝) given a priori 𝑇𝑒/𝑇𝑖, at different 

signal fluctuation values  (𝛿(%)).  
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6.4.5. ESTIMATED ERRORS OF FOUR PARAMETERS (𝑵𝒆, 𝑻𝒊, 𝑽𝒊, AND 𝒑) GIVEN A PRIORI 𝑻𝒆 

 

 

Figure 6.8. (Top) Histogram of estimated parameters errors, and (bottom) Scatter plot of parameters errors and ion 

composition error, obtained from the estimation of four plasma parameters (𝑁𝑒, 𝑇𝑖, 𝑉𝑖, 𝑝) given a priori 𝑇𝑒, at different signal 

fluctuation values  (𝛿(%)).   
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6.4.6. ESTIMATED ERRORS OF FOUR PARAMETERS (𝑵𝒆, 𝑻𝒆, 𝑽𝒊, AND 𝒑) GIVEN A PRIORI 𝑻𝒊 

 

Figure 6.9. (Top) Histogram of estimated parameters errors, and (bottom) Scatter plot of parameters errors and ion 

composition error, obtained from the estimation of four plasma parameters (𝑁𝑒, 𝑇𝑖, 𝑉𝑖, 𝑝) given a priori 𝑇𝑖, at different signal 

fluctuation values (𝛿(%)).   
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       CHAPTER 7 

7. DETERMINATION OF THE IMPACT OF THE 

UNCERTAINTY OF A-PRIORI KNOWN 

PARAMETERS 

To provide a more realistic radar framework, different levels of uncertainty in the plasma 

parameters known a priori from the Plasma Line have been analyzed. The study of [Vallinkoski 

& Lehtinen, 1990] analyzed the effect of the level of uncertainty of the a priori given parameters. 

Results from this study demonstrated the dependence of the estimation error on the a priori 

accuracy. Uncertainty levels analyzed in our study were 𝜖 = ±0.05%, ±0.1%, ±0.5%, ±1%, 

±5%, ±10%, ±25%, ±50%, and ±100%.  

Monte Carlo simulations of 1000 different true input parameters were done to analyze the 

impact of adding Plasma Line information with uncertainty, as indicated in Chapter 3.1.9. 

Simulation of Uncertainty of a-priori Known Parameters. The different combinations of 

parameters studied were:  

1) 3 unknown parameters (𝑇𝑖, 𝑇𝑒, and 𝑝) given a priori 𝑁𝑒;  

2) 2 unknown parameters (𝑇𝑖 and 𝑝) given a priori 𝑁𝑒 and 𝑇𝑒/𝑇𝑖; and  

3) 2 unknown parameters (𝑇𝑖 and 𝑝) given a priori 𝑁𝑒 and 𝑇𝑒.  

7.1. PROBABILITY RESULTS OF PLASMA LINE INFORMATION 

ADDITION WITH UNCERTAINTY 

Figure 7.1 shows the probabilities obtained from simulations with different levels of 

uncertainty in the addition of Plasma Line information. The probabilities of simulations without 

uncertainty (Figure 5.3) are shown for visual comparison in Figure 7.1 as black dotted lines. As 

expected, when the uncertainty level was reduced, the probabilities obtained were similar to the 

probabilities calculated without uncertainty in the a priori known parameters. 

A relevant result of these simulations is that 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 values were similar to the results 

obtained without uncertainty at fluctuation percentage values larger than the uncertainty level 

(𝛿 ≥ |𝜖|), but at lower fluctuation levels the values of 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 rapidly decayed to zero when 

reducing the signal fluctuation value. It is assumed that simulations with 𝛿 ≪ |𝜖| did not 

converge because the a priori given parameters of these simulations were not a valid solution of 

the estimation problem. This result agrees with the results of [Vallinkoski & Lehtinen, 1990] 

that demonstrate the existence of maximum and minimum signal fluctuation levels to obtain 

valid solutions when providing a priori known parameters with uncertainty.  
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Figure 7.1. (90° Left Rotated) Probabilities obtained from the analysis of plasma parameters with a priori information having 

different levels of uncertainty. Columns correspond to simulations with different combinations of known a priori plasma 

parameters from the Plasma Line: given 𝑁𝑒 (left), given 𝑁𝑒 and 𝑇𝑒/𝑇𝑖 (middle), given 𝑁𝑒 and 𝑇𝑒 (right). Black dotted lines 

represent simulation results with plasma parameters known a priori without uncertainty (Figure 5.3).  
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Therefore, to avoid wrongly estimated results when providing a priori information, 

verifying the convergence of the solutions by using the method indicated in Chapter 3.2.1 is 

strongly suggested. Furthermore, verifying that the uncertainty of the known a priori 

measurements is higher or equal than the fluctuation level of the ISR signal to estimate (𝛿 ≥ |𝜖|) 
is also suggested. 

Results of simulations with uncertainty levels |𝜖| ≤ 1% obtained values of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 similar 

to simulations without uncertainty (black dotted lines). This suggests that knowing a priori 

information with uncertainty levels ≤ 1% would solve the ambiguity problem similarly as if 

these a priori known parameters were deterministically known. Results with larger uncertainty 

levels (|𝜖| > 1%) obtained a decrease of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 dependent on the uncertainty level.  

Alternatively, for signal fluctuation levels 𝛿 ≤ 0.05%, solutions were ‘correct’ 

(𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ≈ 100%) independently of the uncertainty and type of information provided. This 

latter result implies the existence of a global minimum threshold (𝛿𝑡ℎ = 0.05%) to solve the 

TICA problem, independently of the type of a priori information provided from the Plasma Line.   

7.2. USE OF IN SITU SENSORS 

Simulations with known a priori information of 𝑁𝑒 and 𝑇𝑒 parameters (shown in Figure 

5.3 and Figure 7.1, without and with uncertainty, respectively) obtained the best unambiguous 

estimation performance. This result suggests that measurements from in situ sensors onboard 

satellites and rockets, such as Langmuir Probes or Retarding Potential Analyzers (RPA), could 

also be used as a priori known parameters to solve the TICA problem. The sensor type and its 

characteristics should be considered to determine its uncertainty and calculate the corresponding 

unambiguous estimation probability in Figure 7.1. Alternatively, measurements from in situ 

sensors could also be used to compare with the parameters estimated by the radar. 

Although satellite measurements at altitudes below 300 km are scarce, present trends in 

nano-satellite design (i.e. Cubesat standard) are increasing the number of platforms that could 

be used in a future scenario for a sustained monitoring at these altitudes. These measurements 

could be obtained at a particular time and orbital altitude, providing information of the ion 

composition at a single range gate of the radar. Nevertheless, determining how these 

measurements could be used to unambiguously estimate the entire ion composition profile 

should be studied in a future work. 
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7.3. STATIONARITY OF UNAMBIGUOUS RADAR MEASUREMENTS 

Simulation results shown in Figure 5.3 suggest that it is possible to unambiguously 

estimate plasma parameters from ISR signals with very small signal fluctuations without 

providing a priori information. Furthermore, the addition of a priori information allows increase 

the signal fluctuation level required to solve the ambiguity problem. Different combinations of 

a priori known parameters from the Plasma Line provide different signal fluctuation thresholds.  

To obtain the signal fluctuation levels required to solve the TICA problem it must be 

considered the spatial and temporal stationarity of the plasma being measured. The acquisition 

of signals with small fluctuations (𝛿) require large SNR values or large number of integrations 

(𝑁) in Equation (3), as shown in Figure 5.5. Nevertheless, assuming noise contributions 

independent from plasma parameters requires the reception of signals with 𝑆𝑁𝑅 ≪ 1, as 

indicated in Chapter 3.1.2. Noise Addition Scheme. Therefore, to provide small signal 

fluctuation levels it is mandatory to increase the number of integrations. This effect can be 

accomplished by increasing the integration time or by simultaneously receiving multiple signals.  

Increasing the integration time to unambiguously estimate plasma parameters was 

previously studied in [Lathuillere et al., 1983] and [Lathuillere & Pibaret, 1992] using 

integration periods of 5 minutes at EISCAT. However, the integration of signals requires to 

assume stationary plasma conditions during the integration period [Farley, 1969] [Nikoukar et 

al., 2012]. Long integration periods could affect this stationary assumption if plasma parameters 

vary during the measurement period, finally obtaining incorrect plasma estimates. Note that the 

determination of the maximum integration time is dependent on particular ionospheric events 

and their temporal and spatial dynamics. Furthermore, the use of a priori information assumes 

that the a priori known parameters, obtained from the Plasma Line or from in situ sensors, are 

measured simultaneously to the radar signal measurement and also have spatial and temporal 

stationary conditions. The use of a priori known parameters different than the ionospheric 

parameters integrated during long periods would affect the unambiguous estimation of plasma 

parameters by increasing the uncertainty of the a priori parameters, as shown in Figure 7.1.  

Alternatively, the simultaneous transmissions and reception at different frequencies was 

proposed by [Sulzer, 1986a]. These frequencies contribute with independent information of the 

same plasma, improving the final signal fluctuation level obtained. The simultaneous reception 

of 7 frequencies was implemented at Arecibo [Sulzer, 1986a], and 8 simultaneous frequencies 

were implemented at EISCAT [Folkestad et al., 1983]. Recently, a multistatic and multibeam 

radar estimation method has been proposed [Virtanen et al., 2014] using the tristatic facilities of 

EISCAT VHF and the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA). This latter 

method combines the signals obtained from all receivers and obtains significant accuracy 

improvements of plasma parameter estimates [Virtanen et al., 2014]. In this case, different 

plasma parameters projections were assumed at each receiver, finally obtaining ion temperature 

estimates perpendicular and aligned to the magnetic field lines and tridimensional ion drifts. 

It is suggested to implement the simultaneous transmission and reception at multiple 

frequencies and/or the multistatic reception to reduce the required integration time, helping to 

avoid the non-stationarity of the plasma during long measurement periods.  
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       CHAPTER 8 

8. CONCLUSIONS 

8.1. SUMMARY OF THE THESIS WORK 

This thesis has studied the TICA problem conducting Monte Carlo simulations for 

different plasma parameters of the ISR estimation process at different signal fluctuation values. 

These simulations were done using the most commonly used Non-Linear Least Squares (NLLS) 

optimization algorithm: the Levenberg-Marquardt (L-M) algorithm. The convergence of the 

estimated solution was determined using the statistical distribution of the Reduced Chi-Squared 

(𝜒𝑟
2) cost function. Results were clustered using the Expectation Maximization (EM) algorithm 

to determine the ‘correctness’ of the result depending on the distance of the ion composition 

estimate error to the ‘correct’ and ‘incorrect’ probability distribution functions.  

The probability of convergence of the optimization algorithm (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑) was computed as 

the ratio between the number of convergent solutions and the total number of simulations. The 

probability of ‘correct’ estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡) was computed as the ratio between the number of 

‘correct’ solutions and the number of convergent solutions. Finally, the probability of valid 

convergence and ‘correct’ estimation (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 & 𝑐𝑜𝑟𝑟𝑒𝑐𝑡) was computed as the product of 

previous probabilities. Simulations were done at different fluctuation levels (𝛿) to determine the 

maximum fluctuation threshold required to avoid the TICA problem. These thresholds (𝛿𝑡ℎ) 

were selected to have a probability of ‘correct’ estimation of 2𝜎 (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 95.45%). 

Ionospheric models are commonly used in the ISR estimation process to determine the 

initial parameters of the fitting. To study the effects of an inaccurate initial guess of parameters, 

simulations with different values of uncertainty on the initial parameters (𝛽) were performed. 

Results indicate that for very small signal fluctuations (𝛿 ≤ 𝛿𝑡ℎ = 0.05%) almost all parameters 

were estimated ‘correctly’ independently of the uncertainty of the initial guess. For noisier cases, 

the value of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 was highly dependent on the distance between the initial guess and the true 

input parameters. Results show that even with an accurate initial guess (𝛽 = 1%), estimations 

are ambiguous (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 < 95.45%) for signal fluctuation levels higher than 𝛿𝑡ℎ(𝛽=1%) =

0.54%. These results might suggest changes in the typical estimation process of ISRs.  

Probabilities of valid convergence (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑) and of ‘correct’ estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡) were 

computed for different combinations of plasma parameters known a priori from the Plasma Line. 

Results indicate that the combination of a priori information of 𝑁𝑒 and 𝑇𝑒 solved the ambiguity 

problem even in highly noisy scenarios (𝛿𝑡ℎ(𝑁𝑒 𝑎𝑛𝑑 𝑇𝑒) = 7.93%). To further determine the 

information provided by each plasma parameter, simulations knowing a priori a single 

parameter were done. Results indicate that plasma temperatures (𝑇𝑒 and 𝑇𝑖) provide the most 

information. This agrees with previous studies ([Vallinkoski, 1988] and [Vallinkoski & 



72 

 

Lehtinen, 1990]) that indicate that highly correlated error parameters have the greatest impact 

on solving the ion composition ambiguity.  

The effect of increasing the uncertainty of the a priori known parameters (𝜖) was also 

studied. Solutions were not convergent for signal fluctuation levels much smaller than the 

uncertainty value (𝛿 ≪ |𝜖|). The value of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 was found dependent on the uncertainty level. 

For uncertainties |𝜖| ≤ 1%, 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 values were similar to the results of simulations without 

uncertainty. Furthermore, results suggest that a global minimum threshold (𝛿𝑡ℎ = 0.05%) solves 

the TICA problem independently of the amount of uncertainty and type of information provided 

from the Plasma Line. Given the importance of a priori estimates of 𝑁𝑒 and 𝑇𝑒 parameters for 

unambiguously solve the estimation problem, it is suggested that in situ sensors onboard 

satellites or rockets could be used to obtain these a priori estimates at particular ranges. Finally, 

it is suggested to use multiple transmission frequencies  [Sulzer 1986a] and/or a multistatic and 

multibeam reception [Virtanen et al., 2014] to increase the number of integrations without 

affecting the stationary plasma assumption. 

 

8.2. IMPROVEMENTS TO THE ISR TECHNIQUE 

The results obtained in this study suggest several operational improvements of the ISR 

estimation process:  

1) To verify the solution convergence. It is suggested to use the Reduced Chi-Square 

(𝜒𝑟
2) cost function to normalize the estimation results (as shown in Chapter 3.1.3), determine a 

maximum cost function value (𝜒𝑟,𝑚𝑎𝑥
2 ) that corresponds to a 4𝜎 probability criterion depending 

on the Degrees of Freedom (𝐷𝑜𝐹) of the estimation problem (as shown in Section 3.2.1), and 

then determine the convergence of the estimated solutions by selecting 𝜒𝑟
2 ≤ 𝜒𝑟,𝑚𝑎𝑥

2 .  

2) To obtain results independent of the initial guess accuracy (shown in Chapter 4.3). 

It is suggested to execute several fittings with different initial parameters uniformly selected 

from the range of parameters, and then select the most frequently obtained solution. Due to the 

ambiguity problem the most frequent solution could be the ‘incorrect’ solution, as shown in the 

example of Figure 3.7. The probability to select the ‘correct’ solution can be obtained as the 

value of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 shown in Figure 5.3 and Figure 7.1.  

3) To increase the probability of unambiguous estimation when adding a priori 

information (shown in Chapter 7). It is suggested to determine the probability of unambiguous 

estimation as the value of 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 shown in Figure 7.1 depending on the fluctuation level of the 

radar signal (𝛿) and the uncertainty of the a priori known parameters (𝜖). When the solution 

convergence is not verified, the probability of unambiguous estimation should be approximated 

by 𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑 & 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 in Figure 7.1. It is also suggested to ensure the convergence of the solutions 

by selecting a signal fluctuation 𝛿 ≥ |𝜖|.  
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8.3. FUTURE WORK 

Several studies are planned as a direct continuation of the results of this thesis work:  

- Study of the ion composition ambiguity at the 2017 Eclipse ISR data of the MIT 

Haystack Observatory, in collaboration with MIT researchers (L. Goncharenko et al.). 

 

- Study of the effect of using different radar frequencies in the ion composition 

estimation ambiguity, as suggested by a reviewer of the manuscript. 

 

- A review of current estimation methods at ISR facilities, as suggested by a reviewer 

of the manuscript. 

 

- Verification of the capability of the Particle Swarm Optimization (PSO) algorithm to 

solve the TICA problem at different signal fluctuation levels, in collaboration with IDS 

Research Group of the Universidad de Chile (F. Jaramillo, M. Orchard, and J. Silva). 

 

- Implementation of a Bayesian Estimator to provide optimally information of plasma 

parameters from the Plasma Line, in collaboration with IDS Group. 
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GLOSSARY 

 

ACF – Auto-Correlation Function 

AMISR – Advanced Modular ISR 

AO – Arecibo Observatory (Puerto Rico, 

USA) 

AWGN – Additive White Gaussian Noise 

𝐷𝑜𝐹 – Degrees of Freedom 

EISCAT – European Incoherent SCATter 

Radar 

EISCAT_3D – New EISCAT holographic 

radar design 

ERFI – Imaginary Error Function 

ESR – EISCAT Svalbard Radar 

𝑓0𝐹2 – Plasma Frequency at 𝐹2-layer 

Maximum  

𝑓𝑟 – Radar transmission frequency 

𝑓𝑃𝐿 – Plasma Line frequency 

GN – Gauss-Newton search method 

IDS – Information and Decision Systems 

Group 

IRI – International Reference Ionosphere  

ISR – Incoherent Scatter Radar  

ISS – Incoherent Scatter Spectrum  

IPP – Inter-Pulse Period 

JRO – Jicamarca Radio Observatory 

(Jicamarca, Peru) 

KAIRA – Kilpisjärvi Atmospheric Imaging 

Receiver Array 

L-M – Levenberg-Marquardt algorithm 

LSE – Least Squares Estimator 

MAP – Maximum A Posteriori Estimator 

MC – Monte Carlo simulation 

MLE – Maximum Likelihood Estimator 

NLLS – Non-Linear Least Squares 

MSIS – Mass Spectrometer Incoherent 

Scatter Radar 

RCS – Radar Cross-Section  

RF – Radio Frequency 

RMS – Root Mean Square Error  

SD – Steepest Descent search method 

SDR – Software Defined Radio 

SNR – Signal to Noise Ratio 

TICA – Temperature-Ion Composition 

Ambiguity 

UHF – Ultra High Frequency 

VHF – Very High Frequency 

WSS – Wide-Sense Stationary process 
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ANNEXES 

ANNEX 1. THE INCOHERENT SCATTER SPECTRUM  

The signals received by ISRs are generated by the Thomson Scatter effect on ionospheric 

electrons. An electron located at a distance 𝑟 from the transmitter would get excited by an incident 

wave (𝐸𝑖). Then, an electric field amplitude (𝐸𝑠) would be backscattered [Kudeki and Milla, 2011]: 

𝐸𝑠 = −
𝑟𝑒

𝑟
sin (𝜃)𝐸𝑖𝑒

−𝑗𝑘𝑟 (22) 

where 𝑘 (= 2𝜋𝑓𝑟/𝑐) is the wavenumber, 𝑟𝑒 is the classical electron radius (𝑟𝑒 = 𝑒2/4𝜋𝜖0𝑚𝑒𝑐2  ≈
2.818 × 10−15[𝑚]), and 𝜃 is the polarization angle of the scattered signal that indicates the 

backscatter reception angle with respect to the transmission.  

A “monostatic” radar system uses the same antenna (𝜃 = 𝜋/2) for the transmission of the 

signal pulse and the reception of the backscatter signal. In the case of using different antennas to 

receive the scattering, the radar system can be “bi-static” (two antennas are used) or “multi-static” 

(more than two antennas are used). In this work we focus on the study of monostatic radar systems 

because are the most common ISR implementation.  

The radar antenna receives the backscattering from a volumetric profile of ionosphere 

equivalent to the solid angle of the antenna beam. A particular sub-volume Δ𝑉 of the beam will 

generate the backscatter signal from the ionosphere given by [Kudeki and Milla, 2011]: 

𝐸𝑠(𝑡) ≈ −
𝑟𝑒

𝑟
𝐸𝑖𝑛𝑒 (𝒌, 𝑡 −

𝑟

𝑐
) (23) 

where the density 𝑛𝑒(𝒌, 𝑡) is the 3D spatial Fourier transform of the electron number density 

𝑛𝑒(𝒓, 𝑡) that relates the electron motions and density wave effects on the backscattering volume 

Δ𝑉. The propagation time to receive the signal at the radar antenna is considered in the 𝑟/𝑐 time 

offset.  

As the electron positions and movements of the plasma are random processes, it is required 

to study these processes using statistical measures. The frequency behavior of a Wide-Sense 

Stationary (WSS) process can be described using the Power Spectral Density (PSD), or its inverse 

Fourier transform, the Auto-Correlation Function (ACF), thanks to the Wiener-Khinchin theorem: 

〈|𝐸𝑠(𝜔)|2〉 = ∫〈𝐸𝑠
∗(𝑡)𝐸𝑠(𝑡 + 𝜏)〉𝑒−𝑗𝜔𝜏 𝑑𝜏 

〈𝐸𝑠
∗(𝑡)𝐸𝑠(𝑡 + 𝜏)〉 = ∫

1

2𝜋
 〈|𝐸𝑠(𝜔)|2〉𝑒+𝑗𝜔𝜏𝑑𝜔 

(24) 
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The radar spectrum signal can be computed using the Fourier transform over time lags of the 

ACF of the received backscattered signals. This spectrum is related to the frequency fluctuations 

of the ionospheric electron density [Kudeki and Milla, 2011]: 

〈|𝐸𝑠(𝜔)|2〉 =
𝑟𝑒

2

𝑟2
|𝐸𝑖|

2〈|𝑛𝑒(𝒌, 𝜔)|2〉 
(25) 

The electron density frequency fluctuations 〈|𝑛𝑒(𝒌, 𝜔)|2〉 are obtained as the Fourier 

transform over time lags of the ACF of the random density 𝑛𝑒(𝒌, 𝑡): 

𝑆(𝜔) = 〈|𝑛𝑒(𝒌, 𝜔)|2〉 = ∫ 〈𝑛𝑒
∗ (𝒌, 𝑡 −

𝑟

𝑐
) 𝑛𝑒 (𝒌, 𝑡 −

𝑟

𝑐
+ 𝜏)〉 𝑒−𝑗𝜔𝜏 𝑑𝜏 

(26) 

Many authors have developed the theoretical framework of the Incoherent Scatter Spectra 

(ISS) using different approaches with identical results [Evans, 1969], verifying the interaction 

between electrons and ions in the spectrum. For a detailed explanation of the theoretical spectrum 

refer to [Sheffield et al., 2011].  

In this work we use the ISR spectrum formulation of [Kudeki and Milla, 2011]:   

〈|𝑛𝑒(𝒌, 𝜔)|2〉 =
|𝑗𝜔𝜖0 + 𝜎𝑖|

2〈|𝑛𝑡𝑒(𝒌, 𝜔)|2〉

|𝑗𝜔𝜖𝑜 + 𝜎𝑒 + 𝜎𝑖|2
+

|𝜎𝑒|2〈|𝑛𝑡𝑖(𝒌, 𝜔)|2〉

|𝑗𝜔𝜖𝑜 + 𝜎𝑒 + 𝜎𝑖|2
 

(27) 

where the 〈|𝑛𝑡𝑒(𝒌, 𝜔)|2〉 and 〈|𝑛𝑡𝑖(𝒌, 𝜔)|2〉 are independent thermal density spectra of electrons 

and ions, respectively. These density parameters are obtained considering a plasma in 

thermodynamic equilibrium with a Maxwellian velocity distribution and in the absence of 

collective interactions. Also, 𝜎𝑒 and 𝜎𝑖 are the electron and ion conductivities, respectively.  

The thermal electron an ion densities (〈|𝑛𝑡𝑒(𝒌, 𝜔)|2〉 and 〈|𝑛𝑡𝑖(𝒌, 𝜔)|2〉, respectively) and 

the corresponding electron and ion conductivities (𝜎𝑒 and 𝜎𝑖) are computed using the following 

formulation [Kudeki and Milla, 2011]: 

〈|𝑛𝑡𝑠(𝒌, 𝜔)|2〉 = 2𝑁0𝑅𝑒{𝐽𝑠(𝜔𝑠)} 

𝜎𝑠(𝒌, 𝜔) = 𝑗𝜔𝜖0

1 − 𝑗𝜔𝑠𝐽𝑠(𝜔𝑠)

𝑘2𝜆𝐷𝑠
2  

(28) 

where 𝑁0 is the total electron density in the volume of study Δ𝑉, 𝜆𝐷𝑠
2  is the Debye length, and 𝜔𝑠 

is the Doppler-shifted frequency (𝜔𝑠 = 𝜔 − 𝒌 · 𝑽𝒔) of the specie generated by the bulk velocity 𝑽𝒔 

(drift velocity). Finally, the parameter 𝐽𝑠(𝜔) denotes the Gordeyev integral of species in a plasma 

in thermal equilibrium calculated as [Kudeki and Milla, 2011]: 

𝐽𝑠(𝜔) = ∫ 〈𝑒𝑗𝒌·Δ𝐫𝐬〉𝑒−𝑗𝜔𝜏𝑑𝜏

+∞

0

 

(29) 
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This integral considers all the possible particle displacements Δ𝐫s without external collective 

effects (i.e. no macroscopic fields). The expectation 〈𝑒𝑗𝒌·Δ𝐫𝐬〉, called “single-particle ACF”, 

represent the characteristic function of the particle displacement in a thermalized plasma. 

Considering the simplest case, in which the plasma has no collisions and it is no magnetized, the 

single-particle ACF can be obtained as [Kudeki and Milla, 2011]: 

〈𝑒𝑗𝒌·Δ𝐫𝐬〉 = 𝑒− 
1
2

𝑘2𝐶𝑠
2𝜏2

 
(30) 

where 𝐶𝑠 = √𝑘𝐵𝑇𝑠/𝑚𝑠 is the thermal speed of species.  

The Gordeyev integral can be calculated using the identity [Kudeki and Milla, 2011]: 

𝑗𝑍(𝜃) = ∫ 𝑒−
𝑡2

4 𝑒−𝑗𝜃𝑡𝑑𝑡

+∞

0

= √𝜋(𝑒−𝜃2
) − 2𝑗(𝑒−𝜃2

) ∫ 𝑒𝑡2
𝑑𝑡

𝜃

0

 

(31) 

Assuming no collisions and no magnetic field, we can consider 𝜃 = 𝜔𝑠/√2𝑘𝐶𝑠 and 𝑡 =

√2𝑘𝐶𝑠𝜏. The Dawson integral can be used to compute (𝑒−𝜃2
) ∫ 𝑒𝑡2

𝑑𝜏
𝜃

0
 [Kudeki and Milla, 2011].  

The formulation of the spectral density 〈|𝑛𝑒(𝒌, 𝜔)|2〉 can be divided in two separated bands:  

a) The first term is the Langmuir mode, also known as Electron-Line or Plasma-Line 

[Akbari et al., 2017]. It is a high frequency band (in the MHz range) centered on the electron 

plasma frequency (𝑓𝑝 = (2𝜋)−1 √𝑁𝑒𝑒2/𝑚𝑒𝜖0[𝐻𝑧] ≈ 8.97 √𝑁𝑒(𝑐𝑚−3)[𝑘𝐻𝑧]).  

b) The second term is the Ion-Acoustic mode or Ion-Line. It is a low frequency band (tens 

of kHz) that contains most of the signal power received. Its shape depends upon electron 

and ion temperature ratio, electron densities, ion drift velocity, and ion composition.  

Figure Annex 1 (Left) shows separately the contribution of these two bands (i.e. Ion Acoustic 

and Plasma Line) in logarithmic scale. In this figure, the Ion Line contribution (in red) is 

responsible of most of the power received. Alternatively, the Plasma Line (in blue) shows the 

characteristic frequency peak in the MHz range.  

The ISR spectra at the Ion Acoustic frequency band is shown in Figure Annex 1  (Right). 

This figure shows the typical bi-Maxwellian shape of the Ion Acoustic band, formed by two 

Gaussians joined together smoothly at the center. This characteristic "double-humped shape" 

spectrum is created by the Landau damping effect on the plasma. In thermal equilibrium (𝑇𝑒 = 𝑇𝑖), 

the peak frequencies of the spectrum are related to the Ion-Acoustic velocities 𝑣𝐼𝐴 = √𝑘𝐵2𝑇𝑖/𝑚𝑖 

Doppler shifted by the radar frequency (𝑓𝐼𝐴 = 𝑘𝑣𝐼𝐴 = 2𝑓𝑟𝑣𝐼𝐴/𝑐).  

In Figure Annex 1 the central frequency of the spectrum is located at the radar transmission 

frequency (𝑓𝑟), but for a visual simplification it has been set to zero. This representation resembles 

the frequency displacement done in the down-conversion mixer of a radar system to process radar 

signals in base-band.  
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Figure Annex 2 shows the normalized real part of the ACF calculated as the inverse Fourier 

transform of the Ion Line spectrum of Figure Annex 1 (Right). Radars measure amplitude and 

phase information of backscatter signals, being the data acquisition system an analog quadrature 

detection scheme, and therefore the obtained signals are complex [Alker, 1978] [Holt et al., 2000]. 

Consequently, the resulting ACF is an imaginary (complex) measure [Farley, 1969]. The imaginary 

part of the ACF is often very small comparing to the real part, but information of ion velocities is 

embedded into the phase of the ACF complex signal [Erickson, 1998].  

 

Figure Annex 1. Incoherent Scatter density spectrum showing (Left) the Ion Line in red and Plasma Line in blue frequency bands, 

and (Right) the total spectrum at the Ion-Acoustic frequency band. The spectrum calculus has been done with 𝑁𝑒 = 1𝑒10[𝑚−3], 
𝑇𝑒 = 500[º𝐾], 𝑇𝑖 = 300[º𝐾], and radar frequency 𝑓𝑟 = 500 [𝑀𝐻𝑧]   

 

Figure Annex 2. Real part of the Auto Correlation Function (ACF) of the spectrum shown in Figure Annex.1.  
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The ISR spectrum is a non-linear function of the plasma parameters. Several spectrum 

simulations have been done to show the effects of varying the input parameters. Figure Annex 3 

shows the effect of changing (Left) the electron to ion temperature ratio (𝑇𝑒/𝑇𝑖) and (Right) the 

value of the electron temperature (with 𝑇𝑒 = 𝑇𝑖). Figure Annex 4 shows the effects of varying (Left) 

the electron density (𝑁𝑒) and (Right) the composition percentage of molecular ions (𝑝 =
𝑛(𝑀+)/𝑁𝑒). Finally, Figure Annex 5 shows the effect of (Left) using a different transmission 

frequency (𝑓𝑟) and (Right) varying the horizontal speed of ions (𝑉𝑖). All these figures have been 

done without considering magnetic field effect, assuming the antenna beam not perpendicular to 

the field lines. Furthermore, these simulations have been done without coulomb collisions between 

species. Collision effects are considered negligible in the upper ionosphere above 120 km. 

Simulation have been considered for a plasma composition with atomic oxygen ions (𝑂+) and 

otherwise noted.  

The impact of varying plasma parameters in the ISR spectrum seen in Figure Annex 3, Figure 

Annex 4, and Figure Annex 5 could be summarized as: 1) The increase in temperature ratio (𝑇𝑒/𝑇𝑖) 

sinks the spectrum center valley. 2) The increase of electron temperature (𝑇𝑒) spreads out the 

spectrum to higher frequencies and lowers the peak power. 3) The increase of electron density (𝑁𝑒) 

in an ionospheric volume improves exponentially the power received. 4) The change of ion 

composition (𝑝) modifies both height and width of the spectrum. 5) The use of a higher radar 

frequency (𝑓𝑟) spreads the spectrum over higher frequencies and decreases the backscatter power 

peak received. And 6) the increase of the horizontal ion drift velocity (𝑉𝑖) changes the center 

frequency of the spectrum, indicating a Doppler effect due to the collective plasma drift movement. 

 

Figure Annex 3. Incoherent Scatter theoretical spectrum varying (Left) the electron to ion temperature ratio (𝑇𝑒/𝑇𝑖) and (Right) 

the electron temperature (𝑇𝑒) for 𝑇𝑒 = 𝑇𝑖. Simulations have been done considering a radar frequency 𝑓𝑟 = 450 [𝑀𝐻𝑧] and 

𝑁𝑒=1𝑒12 [𝑚−3]. 
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Figure Annex 4. Incoherent Scatter theoretical spectrum varying (Left) the electron density (𝑁𝑒) and (Right) the molecular 

composition percentage (𝑝 = 𝑛(𝑀+)/𝑁𝑒). Simulations have been done considering a radar frequency 𝑓𝑟 = 450 [𝑀𝐻𝑧] and 𝑇𝑒 =
𝑇𝑖 = 1000 [º𝐾]. 

 

Figure Annex 5. Incoherent Scatter theoretical spectrum varying (Left) the radar transmission frequency (𝑓0) and (Right) the 

horizontal velocity of ions (𝑉𝑖). Simulations have been done with 𝑓𝑟 = 450 [𝑀𝐻𝑧], 𝑁𝑒=1𝑒12 [𝑚−3] and 𝑇𝑒 = 𝑇𝑖 = 1000 [º𝐾]. 
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The ambient magnetic field (𝑩) also affects the shape of the spectrum depending on the 

aspect angle (𝛼) that forms the backscatter wave-vector (𝑘) with magnetic field lines. The plasma 

particles that interact with wave components parallel (𝑘∥) and perpendicular (𝑘⊥) to the magnetic 

field suffer different displacements. In particular, the parallel contribution is not being affected by 

the magnetic field, but the perpendicular contribution is modified depending on the particle 

gyrofrequency (Ω = 𝑞𝐵/𝑚) [Kudeki and Milla, 2011] [Milla and Kudeki, 2011]. This effect is 

increased almost exponentially when the radar aspect angle is pointed perpendicular to the 

magnetic lines. This effect can be visualized in the Incoherent Scatter spectra showed in Figure 

Annex 6, obtained from [Kudeki et al., 1999], that have been computed (Left) for 𝛼 =
30º, 60º, 90º and (Rigth) for 𝛼 = 0.005º, 0.01º, 0.015º, 0.02º. In this figure, the spectrum has 

almost no variation for aspect angles higher than 20º, but for very small angles the spectrum gets 

stretched and tolled almost exponentially. 

The Jicamarca Radio Observatory (JRO) located at Jicamarca (Peru) was constructed near 

the Earth magnetic equator, obtaining aspect angles almost equal to zero. This ISR obtains an 

extremely narrowed spectrum, shown in Figure Annex 7 from [Kudeki et al., 1999]. This 

characteristic spectrum allows a very precise Doppler measurements of ion drift velocities. 

 

Figure Annex 6. Incoherent Scatter Doppler spectra for (Left) α=30º,60º,90º  and (Rigth) α=0.005º,0.01º,0.015º,0.02º. The curves 

are obtained for an O+ plasma with 𝑇𝑒 = 𝑇𝑖 = 1000 [º𝐾] and a radar frequency 𝑓𝑟 = 50 𝑀𝐻𝑧, from [Kudeki et al., 1999]. 

 

Figure Annex 7. Incoherent Scatter Doppler spectra measured at Jicamarca on September 29, 1996. The spectrum represents 5 

minutes of time integration at 15 km height resolution. The dashed curve represents nonlinear least squares fit, and the bottom 

dashed line indicates the system noise level, from [Kudeki et al., 1999]. 
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ANNEX 2. STANDARD ISR ESTIMATION TECHNIQUE 

In the standard estimation process of the Range-Gate analysis method of ISRs, the received 

signals (𝒎) are assumed to be describable as a function (𝑓(𝒙)) that depends on the plasma 

parameter vector (𝒙) and an additional noise contribution (𝜺) [Vallinkoski, 1988]:  

𝒎 = 𝑓(𝒙) + 𝜺 (32) 

where 𝑓(𝒙) function represents the backscatter signal spectra (indicated in Annex 1. The Incoherent 

Scatter Spectrum), or its inverse Fourier transform (i.e. the ACF, Equation (2)). Both the theoretical 

signal (𝑓(𝒙)) and the noise contribution (𝜺) are vectors of data points with values distributed at the 

different frequencies of the spectra or at different time lags of the ACF. 

The integration of many pulses of the signal provides Gaussian characteristics according to 

the Central Limit Theorem [Vallinkoski, 1988]. Therefore, the noise (𝜺) was assumed to be an 

Additive Gaussian White Noise (AWGN) with a variance-covariance matrix 𝐂𝑚 = 〈𝜺𝜺𝑻〉 [Lehtinen 

& Huuskonen, 1996]. The diagonal elements of the covariance matrix (𝚺𝑚) are the measurement 

variances 𝜎𝑖
2 and the non-diagonal elements are 𝜎𝑖𝑗 = 𝜎𝑖𝜎𝑗𝜌𝑖𝑗, where 𝜌𝑖𝑗 is the correlation 

coefficient of measurement errors.  

The conditional probability densities (𝐷(𝒎|𝒙)) of measurements 𝒎 supposing known 

parameters 𝒙 are then given by [Vallinkoski, 1988] [Nikoukar, 2010]: 

𝐷(𝒎|𝒙) =
1

(2𝜋)𝑀/2|𝐂𝑚|1/2
exp (−

1

2
(𝒎 − 𝑓(𝒙))

𝑇
𝑪𝑚

−1(𝒎 − 𝑓(𝒙))) 
(33) 

where 𝑀 is the number of elements of the measurement vector m, and |𝑪𝑚| is the determinant of 

the measurement error covariance matrix 𝑪𝑚. 

The “a posteriori” density (𝐷𝑝𝑜𝑠𝑡(𝒙)) as function of parameters 𝒙 can be calculated from the 

Bayes theorem as [Vallinkoski, 1988]: 

𝐷𝑝𝑜𝑠𝑡(𝒙) = 𝐷(𝒙|𝒎) = 𝐾 𝐷𝑝𝑟𝑖𝑜𝑟(𝒙) 𝐷(𝒎|𝒙) (34) 

where 𝐾 is a constant independent of 𝒙 (𝐾 = 1/∫ 𝐷(𝒙, 𝒎)𝑑𝒙), and the “a priori” distribution 

is defined as 𝐷𝑝𝑟𝑖𝑜𝑟(𝒙) = ∫ 𝐷(𝒙, 𝒎)𝑑𝒎.  

Therefore, the un-normalized “a posteriori” distribution for a parameter vector 𝒙 given 

measured values 𝒎̅ is [Vallinkoski, 1988]: 

𝐷𝑝𝑜𝑠𝑡(𝒙) = 𝐷(𝒙|𝒎̅) = 𝐾′ 𝐷𝑝𝑟𝑖𝑜𝑟(𝒙) exp (−
1

2
(𝑓(𝒙) − 𝒎̅)𝑇𝑪𝑚

−1(𝑓(𝒙) − 𝒎̅)) 
(35) 
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If the “a priori” distribution (𝐷𝑝𝑟𝑖𝑜𝑟(𝒙)) is considered uniform (i.e. no information provided), 

the “a posteriori” distribution (𝐷𝑝𝑜𝑠𝑡(𝒙)) will be maximized when the exponent of the exponential 

function gets maximized. Then, the set of parameters 𝒙 with maximum probability corresponds to 

minimize the function 𝑆(𝒙) [Vallinkoski, 1988] [Nikoukar, 2010]: 

𝑆(𝒙) =  (𝑓(𝒙) − 𝒎̅)𝑇𝐂𝑚
−1(𝑓(𝒙) − 𝒎̅) (36) 

The Maximum Likelihood Estimator (MLE) corresponds to the parameter (𝒙𝑀𝐿) that 

minimizes 𝑆(𝒙) [Vallinkoski, 1988], and it is equivalent to the Least Squares Estimator (LSE) 

when considering Gaussian noise additions: 

𝒙𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒙{𝑆(𝒙)} (37) 

For strong radar SNR, the stochastic nature of the plasma dominates the variability of the 

signal [Huuskonen & Lehtinen, 1996]. Therefore, signals obtained with a strong backscatter from 

the Ionosphere, due to high electron densities or obtained using high power transmissions, have a 

signal-dependent noise (𝜺) [Nikoukar et al., 2008]. Alternatively, for weak SNR conditions, the 

thermal and sky noises are responsible for the signal variability [Sulzer, 1986a].  

In weak SNR conditions the noise (𝜺) is independent from the signal (𝑓(𝒙)). Therefore, the 

matrix 𝑪𝒎 is diagonal and only populated by measurement variances (𝜎𝑖
2) [Vallinkoski, 1988] 

[Erickson, 1998]. Previous studies of the TICA problem [Aponte et al., 2007] [Wu et al., 2015] 

considered those weak SNR and no range smearing effects (i.e. Range-Lag ambiguity [Lehtinen & 

Huuskonen, 1996]). Those assumption can be accomplished in Multi-Pulse or Alternating Code 

experiments [Vallinkoski, 1988].  

Considering no correlation between measurement errors (i.e. assuming 𝑪𝒎 diagonal, with 

𝜎𝑖𝑗 = 0 ∀𝑖 ≠ 𝑗), the minimization of 𝑆(𝒙) can be reduced to a minimization of the squared sum of 

differences weighted by the variances of the measurement errors (i.e. the Chi-Squared cost 

function) [Erickson, 1998] [Nikoukar, 2010]: 

𝜒2 =  ∑
(𝑚̅𝑖 − 𝑓𝑖(𝒙))

2

𝜎𝑖
2

𝑀

𝑖=1
 

(38) 

This minimization process is identified as an Unconstrained Weighted Least-Squares fitting 

process [Erickson, 1998], and it is typically computed using a Non-Linear Least Squares (NLLS) 

optimization algorithm. The Levenberg-Marquardt (L-M) algorithm is the most commonly used 

NLLS optimization algorithm of ISR analyses, both for Range-Gate [Erickson, 1998] [Swoboda et 

al., 2017] and for Full Profile [Hysell et al., 2008] [Nikoukar et al., 2008] analyses. The L-M 

algorithm is explained in more detail in Annex 3. The Levenberg-Marquardt Optimization 

Algorithm.  
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ANNEX 3. THE LEVENBERG-MARQUARDT OPTIMIZATION 

ALGORITHM 

Due to the non-linear characteristics of the ISR model (see Annex 1. The Incoherent Scatter 

Spectrum), a non-linear optimization algorithm is required to estimate plasma parameters from the 

ISR signal by the minimization of a cost function (i.e. Equation (38) or Equation (13)). This 

minimization process is a Non-Linear Least Squares (NLLS) optimization problem.  

Many optimization algorithms approximate the results of a non-linear function using the first 

order Taylor expansion. Such algorithms use the Jacobian matrix of the cost function to determine 

the subsequent step of the iterative descent search. This approximation provides linear or quadratic 

convergences to the optimum solution [Madsen et al., 2004]. One of the most commonly used 

optimization methods that uses this criterion is the Levenberg-Marquardt (L-M) optimization 

algorithm [Levenberg, 1944] [Marquardt, 1963].  

The L-M algorithm has become a standard optimization method for NLLS unconstrained 

problems thanks to its very fast computation performance. This algorithm is a line search in the 

descent direction that combines the Steepest Descent (SD) method (or gradient method) and the 

Gauss-Newton (GN) method to accelerate the solution to the optimum minimum [Gavin, 2017] 

[Madsen et al., 2004] [Lourakis, 2005]. The SD method is a general minimization algorithm which 

considers the minimum search in the direction opposite to the gradient of the function. 

Alternatively, the GN method assumes a second order Taylor approximation of the function near 

the optimum solution. The L-M method is a damped method that adaptively varies the parameter 

update step between SD and GN methods [Gavin, 2017]. Initially, it is assumed that the optimum 

solution is far from the initial parameters selected. In this case, the parameter update should be 

large, and the SD method is then used. When the parameters are near the local minimum, the fine 

step is computed using the GN method, reaching the minimum in a smaller number of steps. The 

pseudo-code of the L-M algorithm is shown in Figure Annex 8. 

In this work, the implementation of the L-M algorithm to minimize the cost function (𝜒𝑟
2) 

was based on the library created by [Gavin, 2017]. The search range of the parameters 

(𝒙𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑖𝑛 ≤ 𝒙 ≤ 𝒙𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑎𝑥) was configured to be equal to the input parameter ranges of the 

Monte Carlo simulation (explained in Chapter 3.1.6). To ensure that the two possible ambiguous 

solutions of temperature were obtained into the search range, electron and ion temperatures search 

ranges were configured broader than the input parameter ranges, with values ranging from 200 to 

6000 ºK.  Resolution problems arise in the calculus of the Jacobian matrix due to differences of 

orders of magnitude of plasma parameters. To avoid this problem, electron density parameter (𝑁𝑒) 

values were converted to a logarithmic scale (𝑙𝑜𝑔10(𝑁𝑒)), as in [Cabrit & Kofman, 1996].  

To determine the number of iterations required by the L-M optimization algorithm to obtain 

the maximum number of convergent and ‘correct’ solutions, several Monte Carlo simulations were 

done with different configurations of the optimization algorithm. Simulations were done fitting five 

plasma parameters (𝑁𝑒, 𝑇𝑒, 𝑇𝑖, 𝑉𝑖, and 𝑝) for different fluctuation levels to ensure that the 

optimization algorithm would be able to solve the most difficult estimation case (i.e. without 

considering a priori information). Therefore, it is assumed that this configuration would be able to 

estimate optimally when assuming a priori information.  



Annex - 94 

 

  

Figure Annex 8. Pseudo-code of Levenberg-Marquardt algorithm, from [Lourakis, 2005]  

Simulations to determine the optimum value of 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 were configured with a zero 

tolerance of the cost function (𝜒𝑟,𝑡𝑜𝑙
2 =0), a tolerance of the gradient of parameters 𝐺𝑟𝑎𝑑𝑇𝑜𝑙 = 1𝑒 −

12, and a tolerance for parameters values of 𝑃𝑎𝑟𝑇𝑜𝑙 = 1𝑒 − 16. These tolerances are restrictive 

enough to ensure finding a minimum of the fitting function. A zero tolerance of the cost function 

(𝜒𝑟,𝑡𝑜𝑙
2 = 0) is required to ensure that the fitting achieves a minimum of the cost function. 

Simulations with a less restrictive cost function tolerance (𝜒𝑟,𝑡𝑜𝑙
2 >0) obtained estimated parameters 

biased. In particular, simulations done with a tolerance equal to the convergence limit (𝜒𝑟,𝑡𝑜𝑙
2 =

𝜒𝑟,𝑚𝑎𝑥
2 ) obtained the electron density parameter highly biased at high signal fluctuations.   
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Figure Annex 9.  Probability differences of valid (|𝛥𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑|) and ‘correct’ (|𝛥𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡|) estimation for different configurations 

of maximum number iterations of the L-M algorithm (𝑀𝑎𝑥𝐼𝑡𝑒𝑟). These differences were calculated against results obtained with 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟=1000. 

Probabilities of convergence (𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑) and of ‘correct’ estimation (𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡) were calculated 

with different values of 𝑀𝑎𝑥𝐼𝑡𝑒𝑟. Simulations were done with 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 values of 50, 100, 200, 

300, 400, 500 and 1000. The absolute values of the differences of those probabilities (|Δ𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑| 

and |Δ𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡|) were obtained to determine the optimum value of maximum iterations (𝑀𝑎𝑥𝐼𝑡𝑒𝑟). 

The probability differences were calculated comparing each simulation result against the 

probability results with the highest configuration value (i.e. 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 1000). Figure Annex 9 

shows the probability differences in a logarithmical scale. In this figure, |Δ𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑| was found 

highly dependent of the 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 configuration value, but |Δ𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡| obtained very small 

differences for 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ≥ 200. The configuration value 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 300 was selected because it 

obtained probability differences smaller than 1% in all cases of signal fluctuations with a reduced 

number of iterations. A small number of iterations is required to reduce the computation time 

required for estimation. A probability difference value of 1% was considered enough to estimate 

the probabilities with high precision because the random noise added at each estimation generates 

an estimate variability, and therefore it is not possible to obtain identical probabilities.  

Further tests have been also done to determine the optimum tolerances of the L-M algorithm 

when using 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 =300. Results of simulations for different values of Tolerance of Parameters 

(𝑃𝑎𝑟𝑇𝑜𝑙) are shown in Figure Annex 10. Simulations were done with 𝑃𝑎𝑟𝑇𝑜𝑙 values of 1e-16, 1e-

12, 1e-9, 1e-6, and 1e-3. This figure (Top) shows the average number of iterations required to 

obtain convergent and ‘correct’ results at different fluctuation levels and (Bottom) the absolute 

values of the differences of the probabilities of those results (|Δ𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑| and |Δ𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡|). The 

probability differences were calculated comparing each simulation result against the probability 

results with the most restrictive configuration value (𝑃𝑎𝑟𝑇𝑜𝑙 = 1𝑒 − 16). A configuration of 

𝑃𝑎𝑟𝑇𝑜𝑙 = 1𝑒 − 9 was selected because the number of iterations obtained was smaller than 300 

iterations and obtained almost identical probabilities than simulations done with more restrictive 

tolerances.  
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Figure Annex 10.  (Top) Average number of iterations of valid and ‘correct’ results and (Bottom) probability differences of valid 

(|𝛥𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑|) and ‘correct’ (|𝛥𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡|) estimation obtained with different tolerances of parameters (𝑃𝑎𝑟𝑇𝑜𝑙).  

Results of simulations for different values of Tolerance of the Gradient of Parameters 

(𝐺𝑟𝑎𝑑𝑇𝑜𝑙) are shown at Figure Annex 11. Simulations were done with 𝐺𝑟𝑎𝑑𝑇𝑜𝑙 values of 1e-16, 

1e-12, 1e-9, 1e-6, and 1e-3. This figure is similar to Figure Annex 10 but for changes of a different 

configuration parameter. The probability differences were calculated comparing each simulation 

result against the probability results with the most restrictive configuration value (𝐺𝑟𝑎𝑑𝑇𝑜𝑙 =
1𝑒 − 16). In this case, a value of 𝐺𝑟𝑎𝑑𝑇𝑜𝑙 = 1𝑒 − 9 was selected because simulations with 

𝐺𝑟𝑎𝑑𝑇𝑜𝑙 = 1𝑒 − 12 and 1𝑒 − 16 required very similar number of iterations. This indicates that 

almost no improvement was obtained with more restrictive tolerances.  

Therefore, the configuration values selected for the L-M optimization algorithm were 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 300, 𝑃𝑎𝑟𝑇𝑜𝑙 = 1𝑒 − 9, and 𝐺𝑟𝑎𝑑𝑇𝑜𝑙 = 1𝑒 − 9. 
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Figure Annex 11.  (Top) The average number of iterations of valid and ‘correct’ results and (Bottom) probability differences of 

valid (|𝛥𝑃𝑓𝑖𝑡 𝑣𝑎𝑙𝑖𝑑|) and ‘correct’ (|𝛥𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡|) estimation obtained with different gradients of parameters (𝐺𝑟𝑎𝑑𝑇𝑜𝑙). 
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ANNEX 4. THE EXPECTATION MAXIMIZATION ALGORITHM 

In this work, the Expectation Maximization (EM) was used to identify solutions as ‘correct’ 

or ‘incorrect’ (i.e. selecting the global or local minimum, respectively). Our implementation of the 

EM algorithm uses the library of [Tsui and Boedigheimer, 2006]. The EM algorithm [Depmster et 

al., 1977] obtains the Maximum Likelihood (ML) estimates of PDFs statistical parameters [Moon, 

1996]. The process first determines the PDFs of the GMM of the ion composition error estimate 

(ℇ𝑝 = 𝑝𝑡𝑟𝑢𝑒 − 𝑝̂) of each simulation (see Equation (18)). Once these statistical distributions are 

obtained, a clustering of is done based on the distance of each solution to these distributions.  

The EM algorithm is commonly used in signal processing application when some data is 

missing or cannot be directly accessed [Moon, 1996]. The convergence of the EM algorithm 

solution is guaranteed because it increases the likelihood function at every iteration [Depmster et 

al., 1977] [Moon, 1996]. Nevertheless, this algorithm suffers from the local maximum selection 

problem in cases of likelihood functions with multiple maxima [Moon, 1996]. 

The EM algorithm is based on two different phases [Depmster et al., 1977] [Moon, 1996]:  

1) an Expectation step (E-step) in which the expected value of the likelihood function is 

calculated assuming a particular set of statistical parameters; and  

2) a Maximization step (M-step) that selects the statistical parameters that maximize the 

likelihood function.  

The algorithm iterates these two steps (E-step and M-step) until reaches the configured 

likelihood convergence threshold or the maximum number of iterations [Moon, 1996]. In this work, 

the EM algorithm was configured with a maximum tolerance of the likelihood function step of 1e-

16, and a maximum of 500 iterations.  

The EM algorithm requires an initial guess of the statistical parameters of the probability 

density functions (𝜇𝑖 and 𝜎𝑖
2) and mixture weight parameter (𝛼). The mean of the ‘correct’ 

distribution was fixed to zero in all cases (𝜇0 = 0). Due to the local maximum selection problem 

[Moon, 1996], it was required to configure the initial set of statistical parameters near the expected 

solution. The initial parameters of the ‘correct’ and ‘incorrect’ distributions were configured as 

(𝜇0, 𝜎0
2)𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = (0, (𝛿/10)2) and (𝜇1, 𝜎1

2 )𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = (2𝑝𝑡𝑟𝑢𝑒 − 1, (𝛿/10)2), respectively. The 

initial search parameter of the mixture weight was set to 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  1 − (𝑙𝑜𝑔10(𝛿) + 3)/10).  

The optimization algorithm was not allowed to search parameters outside of the configured 

search range. Therefore, wrongly estimated solutions were obtained near the limits of the search 

space range (i.e. 𝑝 = 0 or 𝑝 = 1). To avoid a wrong determination of the statistical distributions, 

estimated values found near of the maximum and minimum ion composition values were not 

considered in the EM algorithm analysis (i.e. 𝑝̂ ≤ 𝜖 and 𝑝̂ ≥ 1 − 𝜖, with 𝜖 = 0.0025).  

Wrong estimates of the statistical parameters could occur when only one distribution is 

present. Therefore, if both distributions obtained similar statistical means (i.e. |𝜇0 − 𝜇1 | ≤ 0.2) it 

was assumed that the global distribution could be represented by a single ‘correct’ Gaussian 

distribution. In this case, the estimation is repeated fixing the GMM mixture weight to 𝛼 = 1.   
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