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GENERATIVE ADVERSARIAL NETWORK BASED MODEL FOR MULTI-DOMAIN
FAULT DIAGNOSIS

Con el uso de las redes neuronal profundas ganando terreno en el área de PHM, los sensores
disminuyendo progresivamente su precio y mejores algoritmos, la falta de datos se ha vuelto
un problema principal para los modelos enfocados en datos. Los datos etiquetados y aplica-
bles a escenarios específicos son, en el mejor de los casos, escasos.
El objetivo de este trabajo es desarrollar un método para diagnosticas el estado de un roda-
miento en situaciones con datos limitados.
Hoy en día la mayoría de las técnicas se enfocan en mejorar la precisión del diagnóstico y
en estimar la vida útil remanente en componentes bien documentados. En el presente, los
métodos actuales son ineficiente en escenarios con datos limitados.
Se desarrolló un método en el cual las señales vibratorias son usadas para crear escalogramas
y espectrogramas, los cuales a su vez se usan para entrenar redes neuronales generativas y
de clasificación, en función de diagnosticar un set de datos parcial o totalmente desconocido,
en base a uno conocido.
Los resultados se comparan con un método más sencillo en el cual la red para clasificación
es entrenada con el set de datos conocidos y usada directamente para diagnosticar el set de
datos desconocido.
El Case Western Reserve University Bearing Dataset y el Machine Failure Prevention Tech-
nology Bearing Dataset fueron usados como datos de entrada. Ambos sets se usaron como
conocidos tanto como desconocidos.
Para la clasificación una red neuronal convolucional (CNN por sus siglas en inglés) fue di-
señada. Una red adversaria generativa (GAN por sus siglas en inglés) fue usada como red
generativa. Esta red fue basada en una introducida en el paper StarGAN: Unified Generative
Adversarial Networks for Multi-Domain Image-to-Image Translation.
Los resultados fueron favorables para la red CNN mientras que fueron -en general- desfavo-
rables para la red GAN.
El análisis de resultados sugiere que la función de costo es inapropiada para el problema
propuesto.
Las conclusiones dictaminan que la traducción imagen-a-imagen basada en la función ciclo
no funciona correctamente en señal vibratorias para diagnóstico de rodamientos.
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GENERATIVE ADVERSARIAL NETWORK BASED MODEL FOR MULTI-DOMAIN
FAULT DIAGNOSIS

With the use of deep neural networks gaining notoriety on the prognostics & health manage-
ment field, sensors getting progressively cheaper and improved algorithms, the lack of data
has become a major issue for data-driven models. Data which is labelled and applicable for
specific scenarios is scarce at best.
The purpose of this works is to develop a method to diagnose the health state of a bearing
on limited data situations.
Now a days most techniques focus on improving accuracy for diagnosis and estimating re-
maining useful life on well documented components. As it stands, current methods are
ineffective on limited data scenarios.
A method was developed were in vibration signals are used to create scalograms and spec-
trograms, which in turn are used to train generative and classification neural networks with
the goal of diagnosing a partially or totally unknown dataset based on a fully labelled one.
Results were compared to a simpler method in which a classification network is trained on
the labelled dataset to diagnose the unknown dataset.
As inputs the Case Western Reserve University Bearing Dataset (CWR) and the Society for
Machine Failure Prevention Technology Bearing Dataset. Both datasets are used as labelled
and unknown.
For classification a Convolutional Neural Network (CNN) is designed. A Generative Ad-
versarial Network (GAN) is used as generative model. The generative model is based of a
previous paper called StarGAN: Unified Generative Adversarial Networks for Multi-Domain
Image-to-Image Translation.
Results were favourable for the CNN network whilst generally negative for the GAN network.
Result analysis suggests that the cost function is unsuitable for the proposed problem.
Conclusions state that cycle based image-to-image translation does not work correctly on
vibration signals for bearing diagnosis.
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One must imagine Sisyphus happy - Albert Camus
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Introduction

Over the last few years the use of deep neural network has gained notoriety on the prognostics
health management field[7]. Based on a concept first proposed in the seventies by Seppo
Linnainmaa and popularized in 1986 by Geoffrey Hinton and David Rumelhart in their paper
"Learning representations by back-propagating errors"[13].
Neural networks have seen a resurgence since advances in technology -both hardware and
software- have made their widespread implementations feasible. Specially, the development
of ever more powerful Graphic Processing Units and improved learning algorithms have paved
the way for a deep learning algorithms and data analytic apogee.
In prognostics although traditional model-based approaches, are still considered to be more
accurate and effective [7], data-driven approaches -such as the use of neural networks- present
themselves as enticing alternatives for both complex systems where the amount of data makes
traditional methods non-feasible and models in which a physical representation is hard to
portray.
Conventionally data-driven methods focus on Condition Monitoring and Anomaly Detection,
where the system is monitored and the data extracted is examined periodically in search of
abnormalities.
Further methods incorporate diagnosis aspects to determine the source and/or implications
of such abnormalities.
As with most neural network applications one of the key limitations on the use of data-
driven approaches to maintenance is the scarcity of relevant data, specially labelled data,
where signals from every possible state of each specific part are available to work with.
This work "Generative Adversarial Network Based Model for Multi-domain Fault Diagnosis"
tackles this issue by providing a method where relevant data can be forged and labelled using
previous data and computational methods.
On the following chapters motivation for this study as well as the scope and the objectives
will be outlined. Afterwards background and literary reviews on the topics hereby treated
will be presented. The next chapter will introduce the methodology followed. Then results
shall be presented and discussion on them will follow. Finally conclusions on the study will
be drawn and suggestions on further work will be included.
To better comprehend the purpose of this research a clarifying example will be made using
pumps as an ever so slightly more tangible parallel to bearings. The hypothetical situation
is that of a pumping station in which a working pump has been thoroughly studied and its
vibration signal is well known and documented for all possible fault conditions .
As time would have it the hypothetical plant is upgraded in order to expand its capacity.
Due to changing market conditions and availability a different pump is acquired for the
expansion.

1



Starting from the assumption that the valuable data collected on the original pumps has
been used to train and implement a self diagnosing system. The incorporation of the new
pumps presents a few options for the plants maintenance. The first option is to abandon the
self diagnosing system and deploy a crew specifically for the new pump, this approach goes
against the hypothetical company’s cutting edge, state of the art, future focused mentality
and thus will not be considered.
In this scenario two options seem plausible, the first would be to use the algorithm tailored
for the original pumps to try and diagnose the new pumps, with a limited effectiveness. This
will be considered as the base line approach.
The second option as proposed in this work, is to use the data from the previous pumps
along with the knowledge of the baseline state of the new pumps and advanced deep learning
algorithms to effectively diagnose the unknown component’s fault states.
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0.1 Motivation

In an ever more global marketplace where suppliers are faced with a price scenario in which
cost and production capacity are dictated by widely available manufacturing technology;
maintenance and reliability, their cost, and their effect on availability became critical differ-
entiating factor for generating revenue.
All though promising results have been shown: optimised availability, reducing excessive
component replacement, and early detection, to mention a few. As the academic approach
to deep learning algorithms and their applications in fault diagnosis develops, the hurdles
that maintain it’s applications to the industry constrained become ever more apparent.
To effectively provide advantages as diagnostics methods within maintenance programs 3
data-related issues must be sorted:

1. Lack of data
2. Unavailable or insufficient labelled data
3. Limited cases on available data

In this particular work’s case, bearing use is quite widespread. It’s failure modes have been
thoroughly studied and documented. Despite this, under different conditions key parame-
ters will change, previous data will be render useless and training a proper machine learning
model will be an unfathomable task.
Bearings are an interesting case study for automated fault diagnosis methods, as mentioned
they are common place for most manufacturing equipment, and -for reasons which will be
later explored- are not good candidates for preventive maintenance. To develop an efficient
diagnostics method with the use of machine learning techniques would allow for better main-
tenance plan, saving on excessive component replacement, enhanced plant security with early
fault detection and -if compared with other predictive techniques such as vibration analysis-
it would allow for a complex system to be developed by specialist but implemented by a less
trained workforce.
This considerations make the proposal for a multi-domain fault diagnosis system based off of
generative adversarial networks and Convolutional neural networks, an interesting proposal.
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0.2 Objectives

• General Objective
The global objective pursued by the present work is to develop and evaluate a model
to diagnose the health state of a bearing vibration signal sample on a multi-domain
approach with the use of a generative adversarial network and a Convolutional Neural
Network.
• Specific Objectives

– Build a GAN network capable of translating vibration signals across different
domains.

– Build a CNN that effectively classifies vibrational data when trained on images
provided by the aforementioned GAN network.

– Study the effect of different parameter on the effectiveness of the model (e.g. train
vs test datasets, Scalograms vs Spectrograms, etc.)

– Compare the effectiveness of the novel approach to a simplified deep learning
approach
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0.2.1 Scope

The reach of this work is constrained to the research and study of generative adversarial
networks and simple classification networks and its possible applications to multi-domain
fault diagnosis in bearing vibration signals.
The work will only be concerned with the MFPT bearing dataset and the CWR bearing
dataset, no other mechanical elements nor different condition monitoring variables will be
within the reach of this investigation.

Additional research on statistical analyses to quantify the effectiveness of the method or
comparison to other similar works may be included, as well as suggestions for future works
to further complement this investigation. In any case those are not in the intended plan.
The scope of this research focuses on the elaboration of a novel technique for fault diagnosis
in limited data situations, based on multi domain generative networks and deep learning
networks, specifically to determine if it is a suitable path to pursue in order to overcome
previously stated difficulties in the application of deep neural networks to maintenance.

5



Chapter 1

Background and literature review

1.1 Maintenance vibration analysis and bearing

Condition based maintenance is currently considered the most efficient strategy for mainte-
nance work in various industries [11]. Within the scope of ’Predictive Maintenance’, is the
concept of building a maintenance plan on the perceived condition of operating machines,
rather than running them until break-down, or in a time-based fashion -Corrective and pre-
ventive maintenance respectively-.
A corrective maintenance task is "a maintenance task, performed to identify, isolate and
rectify a fault so that the failed equipment, machine, or system can be restored to an oper-
ational condition"[4]; hence a Corrective Maintenance plan is based on this Ex-Post type of
maintenance task. A corrective approach often maximises times between shut-downs, yet it
can often imply larger times to repair, higher costs in spare parts, and catastrophic failure.
Catastrophic failure refers to failure of a specific part or machine results in severe damage to
itself, other components and even human costs. Due to such inconveniences corrective main-
tenance has fallen out of fashion, being used almost exclusively on low threat, non critical
processes and industries where the temporary loss of one machine does not have a meaningful
impact on production levels.

Preventive Maintenance, also referred to as Calendar-based, is maintenance done at regu-
lar intervals. Usually set in accordance with statistical information of elements, the concept
runs on replacing the components when reliability starts to decay.
On the other hand preventive strategies allow for maintenance work to be planned in advance
and greatly reduced catastrophic failure occurrence, however a small number of unforeseen
failures can still occur and replacement is often times done in excess consuming unnecessary
amounts of spare part components. Some parts with large statistical spread around the mean
failure time can be replaced with half or more of it’s useful life still remaining. Still, preven-
tive maintenance is widely used in most industries as maintenance strategy. It’s persistence
can be in part attributed to the high capital costs preventive maintenance requires.
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Predictive strategies aim to perform maintenance at optimum time, therefore reducing
overall costs. Based on regularly monitoring machine condition with -primarily- two tech-
niques, vibration analysis and lubricant analysis. All though other techniques are available
such as termography and performance monitoring which are more application-specific, the
two aforementioned ones are the main ones when monitoring internal conditions [11].

1.1.1 Lubricant Analysis

Lubricant analysis is the routine analysis of a machine lubricant health state, contamination
and additive availability through sampling of the oil and posterior analysis.
Oil analysis can be divided into multiple categories:

• Chip Detectors
• Spectrographic Analysis Procedures
• Ferrography

Chip Detectors corresponds to filters and magnetic Plugs which study debris contained in oil
samples, usually from worn parts or degraded oil.
Spectrographic analysis Procedures look for trace elements of wear as well as amount of ad-
ditives, contamination or leaks of other fluids into the lubricant’s circuit.
Ferrography is a microscopic investigation of magnetic debris -typically smaller than what is
detected with chip detectors- and other non-magnetic elements that get carried by ferrous
elements.
A typical oil analysis would also incorporate tests for viscosity, spectrometric analysis and
moisture.
It’s main drawbacks are the relative difficulty to identify the specific part of the system which
is originating the abnormal results and the discrete nature of the technique. Oil analysis im-
plies sampling, changing and refilling of the lubricant. Lubricant analysis are usually reserved
for oil lubricants, all though grease sampling kits are available, it is much more difficult to
apply this type of analysis to grease lubricants.

1.1.2 Vibration Analysis

Vibration analysis studies what is referred to as vibration signatures. Even in good conditions
machine generate vibrations. Many of them are linked to periodic events, particular events
from the machine’s operation, hence the frequency with which such events repeat can provide
strong evidence on the source of the event. This tight correlation is exploited by powerful
diagnostics tools based on frequency analysis. Even when vibrations are not directly related
to periodic events, if the correct techniques are used, they can act as powerful indicators to
help diagnosis. vibrations is an extensive terms but -when talking about vibration analysis-
it will frequently refer to signals as measured by an accelerometer.
’Rolling element Bearings are on of the most widely used elements in machines and their
failure on of the most frequent reasons for machine breakdown’ [11]. Furthermore they have
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a very high statistical spread on their mean time to failure. Anyhow the vibration signals
from faults in this particular type of bearing have been widely studied and well-proven
techniques are available for their diagnostic. Figure 1.1 exemplifies acceleration signals with

Figure 1.1: Typical signals and envelope signals in roller element bearings, [11]p.49

faults present in the different components of a ball bearing. The referenced frequencies from
the image correspond to the modulation patterns from faults originating in this different
components which are as follow:

• Ballpass Frequency
– Outer Race

BPFO =
nfs
2

(
1− d · cos(φ)

D

)
(1.1)

– Inner Race
BPFO =

nfs
2

(
1 +

d · cos(φ)
D

)
(1.2)

• Fundamental Train Frequency

FTF =
fs

2

(
1− d · (cosφ)

D

)
(1.3)

• Ball Spin Frequency

BSF =
D

2d

[
1−

(d · (cosφ)
D

)2]
(1.4)

On this frequencies it is important to note that they correspond to kinematic frequencies
assuming no slip, this is the cause for the advantage of envelope analysis over raw frequency
analysis.
Envelope Analysis correspond to the application of a band-pass filtered in a high frequency
band to the signal. With this, fault impulses are amplified by structural resonances. This
is subsequently amplitude demodulated to produce the envelop signal. This procedure is
demonstrated in the figure1.2.
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Figure 1.2: Envelope analysis procedure, [11]p.201

It is important at this point to note the difference between fault and failure. From now
on fault shall be defined as ’the inability or incorrect functioning of an entity. It can be an
inherent weakness of the design or implementation,and can result in a failure’. Whilst A
failure is defined as ’the state or condition of not meeting a desired or intended objective,
e.g. a service stops performing its required operation’[7]p.246.

1.2 Machine Learning, Deep Neural Networks, MLPs and
GANs

Arthur Samuel in 1959 defined Machine Learning as the ’field of study that gives computers
the ability to learn without being explicitly programmed to do so’ as quoted in [5] Machine
Learning algorithms work by recognising underlying patterns on training data. They allow for
reduced workload to the people responsible and can reveal unsuspected or otherwise ignored
relationships between parameters.

1.2.1 CNN

Convolutional Neural Networks are networks specially designed to work with images. Their
architecture is composed of 3 distinct layers: Input layers, convolutional layers, and pooling
layers. Dropout layers are often incorporated as well.

• Input Layers: They correspond to the first layer of the network and their objective is
to incorporate information as it is to the network
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• Convolutional layers are the heart of this type of network, they corresponds to filters
swept over the image. this filters detect the presence of particular features in the image,
having higher outputs when the learnt feature is present and lowers when is not, as
shown in Figure 1.3.
• Pooling layers are downsampling layers which is to mean that they reduce the size

of the image, they do this by outputting a smaller sample than what they take in.
Maxpooling is the most commonly used pooling layer, it takes an input of a given size
-such as 4x4- and outputs the highest value among them. Depicted by Figure 1.4
• Dropout layers are meant to reduce computational cost for the network and increase

redundancy inside the network, they work by "dropping" a series of activations setting
them to 0.

Figure 1.3: Example of a convolutional layer learning to recognise features from a simple key
symbol. Learnt features allow the layer to output a high value if the feature is present and
a low value when is not.

A Deep CNN is a neural network with several convolutional and pooling layers and a fully
connected output.
Some examples of the application of CNN to vibrational data can be found on [8] and [18].

1.2.2 Generative Adversarial Networks

First introduced by Goodfellow in [3] Generative Adversarial Networks are ’ generative mod-
els’ i.e. a model that ’take[s] a training set, consisting of samples drawn from a distribution
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Figure 1.4: Example of a max-pooling layer, for each section only higher values are kept

p data and learns to represent an estimate of that distribution somehow. The result is a
probability distribution p model’ [2]p.2. Based on the idea of a game between two players, a
generator and a discriminator who compete against each other. The parallel to a forger and
a policeman is often drawn to clarify the role of the generator to create images as close as
possible to the distribution from which the sample images are drawn and the discriminators
role in discerning which images are real and which are "fakes".
On technical terms GANs are a structured probabilistic model with latent and observed vari-
ables. The two "players" in the game are two functions with inputs and parameters, which
must be differentiable. Cost functions are independent for both players yet they depend on
parameters from both players. In other words the Generator tries to minimize a function
dependent on parameters PG and PD whilst only controlling PG and the Discriminator vice-
versa. The solution to the game is a Nash equilibrium which corresponds to the tuple of
parameters that optimize the "global" cost function. GANs’ posses two cost functions one
for the generator and one for the Discriminator.
The discriminators loss is almost always a somewhat standard cross entropy.

J(D)(Pd, Pg) =
1

2
Ex∼pdata [LogD(x)] +

1

2
Ez[1− LogD(G(Z))] (1.5)

This corresponds to the the sum of 2 cross entropy functions, one with value 0 for fake images
and one with value 1 for real images.
On the other hand different approaches are commonplace for the generators cost, the first
and most simple of which is a zero-sum game. This approach presents the generator loss as
the additive inverse of the discriminators loss:

J(G) = −J(D) (1.6)

A second approach which seems to perform better in practice is :

J(G) = −Ez[LogD(G(Z))] (1.7)

A strong conceptual difference sets this two approaches apart, the first one minimises the
probability of the discriminator guessing when the image comes from the generator, whilst
the second one maximises the chances of the discriminator being wrong.
Some other cost functions have also been applied in literature, such as a maximum likelihood
with the use of a logistic sigmoid function, as presented in [3]. In any case, and despite
theory suggesting otherwise, there does not seem to be a generator’s cost functions which
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yields overall better results according to [2].
It is worth mentioning that there are some issue with generative adversarial networks which
are ubiquitous throughout their implementations. The most notable of which is non-convergence,
where the network fails to advance towards optimisation. this can be expressed as never sta-
bilising losses, failing to produce legitimate images or on mode collapse, amongst others.
Mode collapse refers to the case when a subset (or all of) the inputs result in similar (o
completely identical) outputs.So far mini-batch discrimination seems to be the best solution
for this problem.
Other issues GANs seem to struggle with:

• Counting: an excessive amount of parts such as eyes or paws.
• perspective: when dimensionality is misunderstood by the network.
• global structure: figures which contain all relevant parts of objects in unnatural or

impossible ways
• Cherry-Picking : When good results are a small subset of a much larger not-so-good

pool of results
• Cost v/s Quality: Most times there does not seem to be a strong correlation between

the networks cost and the qualitative results.

1.2.3 StarGAN

StarGAN is a neural network model first presented in [1]. Its focus is to find a solution to
the limitation of current generative neural networks to handle more than two domains in
image to image translation. Centred around the idea of building an infrastructure capable of
handling multiple domains without the need of specific neural network for each combination.
For this purpose, three major changes are introduced with respect to the original GAN:

Figure 1.5: StarGAN’s advantage relies on the reduced number of networks needed to trans-
late in between multiple datasets. On the left the approach taken by traditional image-
translation networks. On the right a graphical representation for StarGANs concept. image
from [1]

The first of this changes is the incorporation of the target domain label into the image prior
to the first layer of the neural network. The label is configured as a concatenation of one-hot
labels and each position is tessellated and incorporated as a layer of depth to the image.
The second change is the addition of a feedback loop to the generator. When training,
after an image has been translated to the target domain it is passed through the generator
once more to create what they refer to as "reconstructed image". the reconstructed images
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will serve as a metric of preservation of the original images characteristics other than the
translated feature.
Finally, the last major change -with respect to the original GAN- is a mask vector which
is "a simple but effective approach that enables joint training between domains of different
datasets by adding a mask vector to the domain label. [Their] proposed method ensures
that the model can ignore unknown labels and focus on the label provided by a particular
dataset"[1]. The mask vector is a one-hot label with length equal to the number of datasets
used for training. This vector is part of the concatenated label mentioned in the first point.
Also relevant is the second role for the discriminator in classification.
The loss for StarGAN is divided in: Adversarial Loss, Domain Loss and Reconstruction Loss.

• Adversarial loss

Ladv = Ex[logDsrc(x)] + Ex,c

[
log(1−Dsrc(G(x, c)

]
(1.8)

• Domain Loss
LR

c,s = Ex,c′

[
− logDcls(c

′|x)
]

(1.9)

LF
c,s = Ex,c

[
− logDcls(c|G(x, c)

]
(1.10)

• Reconstruction Loss
Lrec = Ex,c,c′

[
||x−G(G(x, c), c′)||1

]
(1.11)

Here x : Real Images, c′ : Original Domain,c :Target Label, Dsrc : discriminator’s source
output(Real or Fake), Dcls : discriminator’s class output, G(a, b) : generated image from
input ’a’ and target label ’b’, F : superindex for Fake, R: superindex for Real.
Hence the full objective is:

• Full Objective:

LD = Ladc + λcls · LR
clsLD = Ladc + λcls · LF

cls + λrec · Lrec (1.12)

The λ factors correspond to hyper-parameters to tune the importance of each loss.
The architecture of StarGAN is as follows: Generator:

1. (3 x) Convolutional Layer
• Instance Normalization
• ReLU

2. (6 x) Resnet Blocks
• Convolutional Layer
• Instance Normalization
• ReLU
• Convolutional Layer
• Instance Normalization → Result
• Result + Input

3. (2 x) Deconvolutional Layer
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• Instance Normalization
• ReLU

4. tanh

Discriminator:

1. (6x) Convolutional Layer
• Leaky ReLU

2. • Class: Convolutional Layer
• Source: Convolutional Layer

In StarGAN’s architecture the discriminator has two outputs, one with the size of the number
of classes which corresponds to the one-hot label classifying the image as one specific class.
The other is a one vector output which corresponds to the classic role of the discriminator
identifying the source of the image as either real or generator-made.

Figure 1.6: StarGAN’s novel approach relies on changes to the discriminators roll and to the
generators methodology

Some example results from [1] are presented in figures 1.7 and 1.9.

Figure 1.7: StarGAN vs other image translation networks
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Figure 1.8: StarGAN Example Results

1.2.4 Other Networks

CycleGAN is a neural network proposed in [19] it was proposed as a response to other image
translation networks limitations in regards to datasets without paired images. Paired images
refers to datasets which contain the same image or an equivalent image for each domain:
[Example] It was the network responsible for introducing the cyclic loss previously mentioned
in StarGAN. It’s concept is that of training to ’collaborative’ pairs of GAN, implying two
generators and to discriminators, one for the translation F : Y → X and G : Y ← X. In
this configuration cyclic loss is dependent on the two networks, so it is imperative to train
both, they cannot by disengaged.
Loss is defined by the authors as

Ly
adv = Ey

[
logDy(y)

]
+ Ex∼pdata

[
log(1−Dy(G(x))

]
(1.13)

Lx
adv = Ex

[
logDx(x)

]
+ Ey∼pdata

[
log(1−Dx(G(y))

]
(1.14)

LCyc = Ex∼pdata

[
||F (G(x))− x||1

]
+ Ey∼pdata

[
||G(F (y))− y||1

]
(1.15)

And the full objective becomes:

Lfull = LCyc + Ly
adv + L

x
adv (1.16)

The models architecture is as follows: Generator:

1. (3 x) Convolutional Layer
• Instance Normalization
• ReLU

2. (9 x) Resnet Blocks
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• Convolutional Layer
• Instance Normalization
• ReLU
• Convolutional Layer
• instance Normalization → Result
• ReLU(Input + Result)

3. (3 x) Deconvolutional Layer
4. tanh

Discriminator:

1. Convolutional Layer
• ReLU

2. (2 x) Convolutional Layer
• Instance Normalization
• ReLU

3. Convolutional Layer

While training, the negative log-likelihood was replaced by the least-square loss, and the
discriminator was trained on a history of generated images rather than the ones produced by
the last generator.
It is Mentioned by the authors that in some cases, specially when translating art-styles the
addition of identity mapping which is a loss of function:

Lid = Ex∼pdata(y)

[
||G(y)− y||

]
(1.17)

This helps avoid unnecessary changes such as background colour.
Some limitations to this network are:

• All though it performs well when texture and colour change, it does not perform well
changing the shape of objects
• When new elements not present in the dataset appear on the testing images it does not

react well.
• Performance is way behind that of networks trained on paired data

CycleGAN applications are abundant, some note worthy examples are shown below as well
as some particularly faulty images, all images are taken from [19]. Unable to be reproduced
in this written work are videos made with this network which work by translating all the
frames from the original video.
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Figure 1.9: CycleGAN examples

Figure 1.10: CycleGAN faulty examples.
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Chapter 2

Methodology

In order for the proposed objectives to be carried out the following methodology is proposed.
A process of six steps to go from an accelerator vibration signal to a predictive model is
implemented.
The process begins with a segregation of the original data in categories which will later be the
domains. Signals are then transformed into images through the application of mathematical
methods. The output of this step are images of a 256 x 256 pixels size. Such images are
either subsequently fed as training input to the GAN-like neural network or left out for the
later stages. Another portion is provided to the previously trained generative network and
the outcome is utilised to train a CNN classifier. Finally the remaining portion of the signal
images is used to evaluate the results. The evaluation of the result is performed through a
confusion matrix and other relevant indicators. Figure 2.1 illustrates the procedure using
arbitrary datasets for clarifying purposes.

The procedure is further discussed below.

2.1 Procedures

2.2 Datasets

Limited availability of robust datasets implied reduced decision making in selection.
Used datasets are Case Western Reserve University Bearing Data Center (CWR) and the
one from the Society of Machine Failure Prevention Technology (MFPT):

• CWR: Case Western Reserve University provides a bearing dataset originated from the
set-up shown in figure 2.3. With Samples taken at 12,000 Samples per second and
48,000 Samples per second, this set of data was generated using a 2 hp motor, a torque
transducer, a dynamometer and control electronics. The test bearing work supporting
the motor shaft.
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Figure 2.1: a sketch of the methodology. 1. corresponds to pre-processing. 2 corresponds
to training of the GAN network.3 is the implementation of the GAN. 4 is training and
implementation of the CNN. MFPT and cwr are in arbitrary stages for demonstration

Figure 2.2: An image of the test rig used in the CWR Dataset[17]

Using electrodischarge machining single point faults were introduced with diameters of
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7,14,21,28 and 40 mils. 1 mill is equivalent to 0.001 inches.
Data was collected from an accelerometer placed at 12 o’clock position with a magnetic
base.
Taking in considerations the stationary nature of outer race faults, experiments were
made with the fault positioned at 3 o’clock, 6 o’clock and o’clock.
Bearing Specifications:
– Inside Diameter = 0.9843 inches
– Outside Diameter = 2.0472 Inches
– Thickness = 0.5906 Inches
– Ball Diameter = 0.3126
– Pitch Diameter = 1.537
– Elements= 9

Where inside and outside diameters correspond to the dimensions of the outer and
inner casing of the bearing, respectively.
• MFPT: The Society for Machine Failure Prevention technology makes available a bear-

ing dataset from what is described as "a normal test rig" with "the hope that researchers
and CBM practitioners will improve upon techniques, and consequently, mature CBM
systems, faster"[16].
samples where taken at
– 48,828 samples per second and at 0,50,100,150,200,250 and 300 lbs of load for

inner race fault.
– 48,828 samples per second and 25, 50, 100 150 200, 250 and 300 lbs of load for

outer race fault.
– 97,656 samples per second and 270 lbs of load for another outer race fault set
– 97,656 samples per second and 270 lbs of load for baseline condition

Samples are taken at 48,828 samples per second and at 0,50,100,150,200,250 and 300
lbs of load for inner race fault, at 48,828 samples per second and

Bearing Specifications:

• Thickness = 0.5906 Inches
• Ball Diameter = 0.235
• Pitch Diameter = 1.245
• Elements = 8

No information is provided on the casing sizes of the bearing used for the MFPT Dataset.

2.3 Classification

Classification necessarily begins with an examination of the information available for every
dataset. The CWR Dataset was categorised according to Fault Diameter, Motor Load, Motor
Speed, sampling frequency and fault condition. MFPT on the other hand was categorised by
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load, sampling frequency and by fault condition. The most robust of the parallels is the fault
condition. The sampling frequency was considered as well but for another purposes. The
CWR motor loads were considered at some point but were dropped for divergence issues.

2.4 Signal Pre-processing

The first step hat must be taken is to eliminate the differences in sampling frequencies. This
is down through down-sampling, where points samples from the original signals are taken
sparsely so that the time difference between them becomes the same. The specific type of
neural networks proposed for this study is image-centred, hence the data had to be pre-
processed in order to make images out of the accelerometers vibration signals. An image size
of 256x256 was established.
Data pre-processiong was carried out through two different methods: Short Time Fourier
Transform Spectrograms and Wavelet Analysis Scalograms.

Short Time fourier transform: A short time fourier transform is a method in which signal
is segmented in the time dimension and a fourier transform is applied on each segment.
This transform is described by the formula:

s(f, λ) =

∫ ∞
−∞

x(t) · w(t− λ) · exp(−jπft)dt (2.1)

where w corresponds to a zero centred window. The discrete case is homologous.The size of
the window necessarily implies a trade-off between time resolution and frequency resolution
The squared amplitude is used to plot a time-frequency diagram, referred to as Spectrogram.

|s(f, λ)2| = SquaredAmplitude (2.2)

a window length equal to three revolutions was used to create each spectrogram.
Wavelet Transform: Wavelet analysis is a type of time frequency analysis. The signal is
decomposed in a "family" of wavelets, ergo, a fixed shaped wavelet which is shifted and
dilated in time.

W (a, b) =
1√
a

∫ ∞
∞

x(t)ψ∗(
t− b
a

)dt (2.3)

Where ψ(t) corresponds to the "mother" wavelet translated by b and dilated by a. a which
is usually referred to as "scale" is an inverse representation of the log frequency.
Wavelets can be thought of as impulse response filters with zero phase shift and constant
percentage bandwidth properties.
Wavelets are particularly good at time localisation at high frequencies which is a key factor
in their use for detecting local events in a signal. They have been used for detecting local
faults in gears and bearings as shown in [12][10][15].
In general wavelets should be chosen to have the greatest similarity to the features in the signal
which are to be extracted. Often the information contained in the graphical representation
of the transform, Scalogram is not obvious and image analysis techniques are needed to
characterise them.
To compensate for unbalanced datasets, salt and pepper noised images and horizontally
flipped images where generated as data augmentation.
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Figure 2.3: Data is sorted according to the signal and the transformation

2.5 GAN Network

For The Generative Adversarial Network, the model was based off of the StarGAN paper
mentioned in Chapter 1.
The network loads the images in batches of 8 and for each one, the image is read in black and
white. A random target is designated for training purposes. Just as in StarGAN the target
label is separated, teselated and concatenated in dimensional space as figure 2.4 illustrates.
As the final version for the network only includes images from one dataset for training, there is
no mask label. The Generator and discriminator performs similarly to the starGAN network

Figure 2.4: Target labels inclusion in the networks

with a discriminator/classifier and a generator with a cyclic loss. The main differences are:
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Loss Function, optimiser and architectures.
The Loss function for all components is changed from cross entropy to least-square loss, as
per CycleGAN. The change allows for a more stable training. This change helps avoiding fast
divergence on the early iterations-to which the network is prone-. To avoid mode collapse
mini batch discrimination and identity discrimination are added to the loss function of the
generator with a λ factor.
Generator Loss:

LG = Lcyc · λcyc + Ladv · λadv + Lclass · λclass + Lmb · λmb + LId · λid (2.4)

Cyc : Stands for Cyclic, Adv : Stands for adversarial, Class : Stands for classification, mb :
Stands for mini-batch and Id : Stands for identity.

Discriminator Loss:

LD = LR
adv · λRadv + LF

adv · λFadv + Lclass · λclass (2.5)

AdvF : Stands for adversarial evaluated over fake images, Adv :R Stands for adversarial
evaluated over real images, Class : Stands for classification.
Changes in the optimiser are evaluated: RMSprop, ADAM and Gradient Descent are tested.
a Different architecture has been proposed. All though it is heavily based on Stargan, due
to the dataset size being considerably smaller, the amount of Resnet Blocks is reduced.
Proposed changes of activation functions and normalisation layer from ReLU to Leaky ReLU
and from Instance Normalisation to Batch Normalisation.
Learning Rate is set to 10−6 with a linear decay to 0, from half of the total iterations to the
end.

2.6 CNN Network

The convolutional neural network is based on the one introduced in [8]. architecture:

• convolutional layer

– ReLU

• Max Pooling

– Stride=2

• ReLU

• Dropout Layer

• ArgMax Layer

The network is trained during 20.000 iterations with a learning rate of 10−6. It reads images
of 256x256 pixels in grey scale in batches of 8.
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2.7 Evaluation Criteria

To measure the results with the objectives in mind, a confusion matrix and the indexes for
precision, sensitivity, specificity and F-1 score were used.
all though 3 classes exist other than accuracy and confusion matrix, the metrics will evaluate
the amount of positives and negatives, being baseline case positive and fault cases negatives.
Accuracy is the measure of correctly classified images. It will be measured both for class
accuracy and for fault state accuracy: Class accuracy then considers each class individually,
while fault state class only considers baseline vs faulty, ergo an inner race fault considered
as an outer race fault, is still counted as correct. Class Accuracy:

ClassAccuracy =
Correctly Classified Images

Total Images

Fault State Accuracy:

FSAccuracy =
True Positives + True Negatives

Total

Precision is a measure of how frequently positive predictions correspond to true positives.
Precision:

Precision =
True Positives

True Positives+ False Positives
formula Sensitivity measures how well real positives are classified, hence:

Sensitivity =
True Positives

TruePositives+ FalseNegatives

Specificity is used as a measure of false positives, it corresponds to the ratio of true negatives
to total negatives:

Specif icity =
TrueNegatives

TrueNegatives+ FalsePositives

F-measure is used as a measurement of the balance between precision and sensitivity

F1 =
2xTrue Positive

2xTrue Positives+ False Positives+ FalseNegatives

in Addition to this final evaluation criteria, some methods were used to evaluate intermediate
steps, in an effort to isolate the results from the different GAN networks.

• CNN:
To evaluate the effectiveness of the CNN model, the network is trained on the original
datasets, a section of the original datasets are used to evaluate the results
• GAN:

To evaluate the effectiveness of the GAN model, the network is trained on the original
images, then the translated images are classified by the previously mentioned CNN.

It is important to note that this type of evaluation is merely for guidance purposes, a network
must be tailored to the real images it is meant to work with, in any case they provide helpful
insights of the location of the weaknesses in the complete build.
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Chapter 3

Results

The model was run on both datasets as per the methodology presented on previous sections
and codes presented in the annex section.
Using Matlab and parameters later described, scalograms and spectrograms were created
with the data from aforementioned datasets.
With spectrograms and scalograms (in parallel) A base model with all ReLUs as Leaky ReLU,
a Gradient Descent Optimiser, no minibatch, no identity loss, resnet blocks as per StarGAN,
and Instance Normalisation is proposed, parameters are evaluated on the table

To obtain results, signals from MFPT and CWR were processed in Matlab in order to
create both spectrograms and scalograms.
For both a window length of 3 revolutions was used -in accordance with each signals frequency-
and down-sampling as to make signals with different sampling rates comparable, an overlap
of half a window length was used to better capture the signal. Matlab’s native CWT and
STFT functions were used for the process.
This images were run on parallel through the methodology described in the previous section.
The code included as an annex details the application of such methodology.
Different parameters were tested to optimiser the final model, for this the activation function
used in the model, the optimiser, the normalisation method and the weight of the different
losses, as well as some particular options - mini-bath and identity loss inclusions- were ad-
justed.
This variations are part of the final tuning stages of the model. Major decisions were made
in the development stages within the strive for convergence. Such changes did not provide
quantifiable and therefore are not illustrated in this section.
Testing of parameters was carried out by running the model on a low iteration basis for each
variation and thus, obtaining the results portrayed on table 3.1

In light of this results, the Adam Optimiser was used, activation functions were set as
ReLU functions, instance normalisation was applied, losses were weighted as suggested in [1]
and it was decided not to use identity loss nor mini batch discrimination.
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Table 3.1: Parameter evaluation
Class Accuracy Fault State Accuracy Precision Sensitivity Specificity F-1 Score

Base 0.28 0.66 1.0 0.03 1.0 0.06
Resnet Block 0.35 0.64 Null 0.0 1.0 0.00
Adam 0.32 0.66 0.75 0.07 0.97 0.13
Mini Batch 0.31 0.67 Null 0.0 1.0 0.0
Identity Loss 0.34 0.65 Null 0.0 1.0 0.0
Relu’s 0.37 0.69 0.41 0.08 0.91 0.13
Batch Normalization 0.29 0.30 0.30 1.0 0.0 0.45
Equal Losses 0.349 0.7 0.0 0.0 0.98 0.0
Adam+ReLU 0.30 0.30 0.30 1 0.0 0.46
No GAN 0.57 0.78 0.58 1.0 0.57 0.73

3.1 CWR to MFPT

At first Data was sorted as exemplified in image 2.1. Here the GAN network was trained using
images from the MFPT, and so, transforming CWR images into the MFPT fault domain.

3.1.1 Scalograms

Greyscaled scalograms were used as one of the alternative images. Results were evaluated
using metrics as per section 2.7
The baseline model was run for comparison with the same inputs for training and evaluating.
Results are shown on table 3.2.

Iterations Class Accuracy Fault State Accuracy Precision Sensitivity Specificity F-1 Score
30000 iters 0.29 0.49 0.36 0.94 0.008 0.52
No GAN 0.41 0.58 0.4 1.0 0.21 0.58

Table 3.2: Proposed Model vs Simple Model

Tables 3.3 and 3.4 show confusion matrices for classification as to clarify the nature of the
results, on the generative approach and the baseline approach.

Table 3.3: Confusion Matrix for classification based off of fake images
Predicted
Baseline Inner Race Outer Race

Real Baseline 131 0 8
Inner Race 152 2 14
Outer Race 77 85 0

The evolution of the cost of the loss function for both the generator and the discriminator
is illustrated in figures 3.1 and 3.2.
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Table 3.4: Confusion Matrix for classification without GAN network
Predicted
Baseline Inner Race Outer Race

Real Baseline 137 0 0
Inner Race 102 30 32
Outer Race 97 47 24

Figure 3.1: Scalogram Discriminators loss with the MFPT scalograms as training images.

Figure 3.2: Scalogram Generator loss with the MFPT scalograms as training images.

3.1.2 Spectrograms

Grey-scaled scalograms were used as one of the alternative images. Results were evaluated
using metrics as per section 2.7
The baseline model was run for comparison with the same inputs for training and evaluating.
Results are shown on table 3.1.2.

Table 3.5: Proposed model vs Simple model
Iterations Class Accuracy Fault State Accuracy Precision Sensitivity Specificity F-1 Score
30000 iters 0.35 0.69 Null 0.0 1.0 0.0
No GAN 0.35 0.69 Null 0.0 1.0 0.0
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Tables 3.6 and shows confusion matrix for classification as to clarify the nature of the
results.

Table 3.6: Confusion Matrix for classification with GAN network
Predicted
Baseline Inner Race Outer Race

Real Baseline 0 0 147
Inner Race 0 0 153
Outer Race 0 0 134

The evolution of the cost of the loss function for both the generator and the discriminator
is illustrated in figures 3.3 and 3.4.

Figure 3.3: Spectrogram Discriminators loss with the MFPT spectrograms as training images.

Figure 3.4: Spectrogram Generator loss with the MFPT spectrograms as training images.

3.2 MFPT to CWR

Afterwards the data was inversely sorted, training the generative adversarial network on
the Case Western Reserve University dataset and using baseline Machine Failure Prevention
Technology Society dataset translated on the GAN to train the convolutional neural network.

28



3.2.1 Scalograms

Grey-scaled scalograms were used as one of the alternative images. Results were evaluated
using metrics as per section 2.7
The baseline model was run for comparison with the same inputs for training and evaluating.
Results are shown on table 3.7.

Table 3.7: Proposed Model vs Simple Model
Iterations Class Accuracy Fault State Accuracy Precision Sensitivity Specificity F-1 Score
30000 iters 0.32 0.62 0.0 0.0 75 0.0
No GAN 0.47 0.94 0.94 0.83 0.95 0.88

Tables 3.8 and 3.9 show confusion matrices for classification as to clarify the nature of the
results, on the generative approach and the baseline approach.

Table 3.8: Confusion Matrix for classification with GAN network
Predicted
Baseline Inner Race Outer Race

Real Baseline 0 209 8
Inner Race 75 250 0
Outer Race 9 240 0

Table 3.9: Confusion Matrix for classification without GAN network
Predicted
Baseline Inner Race Outer Race

Real Baseline 170 34 0
Inner Race 11 162 156
Outer Race 0 215 43

The evolution of the cost of the loss function for both the generator and the discriminator
is illustrated in figures 3.5 and 3.2.

Figure 3.5: Scalogram Discriminators loss with the CWR scalograms as training images.
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Figure 3.6: Scalogram Generator loss with the CWR scalograms as training images.

3.2.2 Spectrograms

Grey-scaled spectrograms were used as one of the alternative images. Results were evaluated
using metrics as per section 2.7
The baseline model was run for comparison with the same inputs for training and evaluating.
Results are shown on table 3.10.

Table 3.10: Proposed Model vs Simple Model
Iterations Class Accuracy Fault State Accuracy Precision Sensitivity Specificity F-1 Score
30000 iters 0.32 0.32 0.32 1.0 0.0 0.48
No GAN 0.40 0.59 0.44 0.69 0.35 0.54

Tables 3.11 and 3.12 show confusion matrices for classification as to clarify the nature of
the results, on the generative approach and the baseline approach.

Table 3.11: Confusion Matrix for classification with GAN network
Predicted
Baseline Inner Race Outer Race

Real Baseline 82 0 0
Inner Race 85 0 0
Outer Race 92 0 0

Table 3.12: Confusion Matrix for classification without GAN network
Predicted
Baseline Inner Race Outer Race

Real Baseline 61 27 0
Inner Race 40 43 0
Outer Race 39 49 0

The evolution of the cost of the loss function for both the generator and the discriminator
is illustrated in figures 3.1 and 3.2.
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Figure 3.7: Spectrogram Discriminators loss with the CWR spectrograms as training images.

Figure 3.8: Spectrograms Generator loss with the CWR spectrograms as training images.
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Chapter 4

Result Analysis

Firstly, RMSprop is not present in the result section because it had an intrinsic tendency
to drive the model to divergence within the first 100 iterations. This meant it was dropped
early on in the tuning stages.With this in mind it’s important to note that the network had
a strong tendency towards divergence, even when a total mode collapsed -generating com-
pletely grey images- was averted.
As shown in tables 3.1, 3.1.2, 3.7, 3.2, 3.10. the non generative approach was consistently
better than the one proposed, this suggests issues with the generative network.
Confusion Matrices and -in less obvious manner- metrics, show a strong tendency to mode
collapse, even when apparently different images were outputted for each class. In some cases,
the metrics would show considerable differences between one experiment and the next, ceteris
paribus. In this cases the confusion matrix showed that the results from classification had
switched from diagnosing the whole test set as a faulty state to classifying the test set as
baseline. This two can be attributed to mode collapse, were the seed or the random initiali-
sation of the variables switched the mode into which the networked collapsed i.e. the network
learned to generate all images from one domain more favourable for metrics once and one
less favourable on the next depending on randomly initialised values.
The amount of Iterations was always limited by the tendency to divergence, in a much higher
degree than equipment availability. yet, some loss results suggest that in some cases the net-
work may have benefited from a longer training session.
The rather simple design of the Convolutional Neural Network proved not to be a limiting
factor in the combined experiments. But had been the GAN results better, the CNN’s sim-
plicity might have been an issue.
Mini Batch Discrimination, identity loss and the use of Batch normalisation over Instance
normalisation, all though proven effective for [19] and [14]. Resulted in no significant im-
provements.
As with many other GAN networks there was no clear co-relation between loss values and
image quality, even less so between loss value and classification accuracy down the line. The
use of grey scale images instead of RGB might have introduced additional complications to
the network. all though in theory it reduces the complexity of the model, it is possible that
it favoured completely grey images. Also it is possible that reducing the ratio of layers to
labels, made the filters to simple for the information.
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The proportion Amongst the different losses that compose both the generator’s and the dis-
criminator’s complete loss were key factors in convergence. On the other hand this role
implied little to no space to use them to improve classification accuracy. Fine tuning might
improve this limitation but it implies unreasonable amounts of runs, considering the amount
of loss components.
The selection of datasets and their categorisation implied the generative network had no ab-
straction on higher levels. The use of a single dataset gives no parameter to avoid over-fitting.
The inclusion of baseline images from the allegedly unlabelled dataset proved no advantage
in this respect. The use of a 3rd dataset would most likely reduce over-fitting on high levels
of abstraction, and might improve results.
As [8] mentions attempting to diagnose without extracted features is an extension of the
scope of the model. A less ambitious approach could include relevant features, diminishing
the autonomy of the model but improving results.
Non Generative results might be explained by the detection of higher frequencies from the
faults, without differentiation in between them, only to the baseline ones. this is congruent
with the results shown.
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Chapter 5

Discussion & Future Works

From the analysis is clear that the proposed methods is not an effective way of accomplishing
the objective of an effective diagnostic of vibration signals in limited data situation through
the use of deep learning generative models.
The reasons might be partly explained on result analysis training and decisions made on pa-
rameters. It is this works conclusion though, that the main reason for the model not working
goes beyond parameters and training methods.
First of all, vibration analysis for bearing is based on the fundamental frequencies introduced
in section 1.1.2. This frequencies are dependant on bearing characteristics and , all though
this was a known challenge of the model, it played a role in it incapacity to perform due
to negative interactions with the other main complications. Moreover StarGAN’s proposed
method for image to image translation might be more disguise than translation.
As illustrated in 5.1 the generator does not consider the input label of the image which is

Figure 5.1: On the left this works comprehension of StarGAN, on the right the author
conceptualisation of StarGAN

translating, it merely looks for the features to translate and pastes some features from the
target domain on top of the existing features. In StarGan this can be seen in some pictures
where a change in the expression domain (angry,sad,happy, etc.) changes eye colour.
StarGAN translation feature is heavily based off of cycleGAN, and in [19] it is mentioned
that all though it has good results in colours and textures, it performs badly when shaped
must be changed.
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Faces are great candidates for image translation, lots of small distinctive features. this is
an advantage for cyclic image translation. On the other hand Scalograms and spectrograms
contain information across the whole image, and diagnostics often rely on the relationship
between different sections of the images.
Cyclic loss -fundamental for both Stargan and Cyclegan- aims to achieve a linear resemblance
between the generated images and, as specified above, for an effective diagnose, requires a
relation between certain parameters underlying in each image. For the method to work as
it is expected to, the relationship drawn between domains must be of a proportional nature
whilst with cycle loss is one of locations.
The proposed model required of the network to discover patterns within the image and repli-
cate such internal patterns on images from the new set.

Training methods can have a significant impact on results, but not event the best training
method can make up what is a fundamental concept error.
For future works the author does not discard the possible application of image-to-image
translation networks to bearing diagnosis, but this works conclusion is that cycle loss based
image-to-image translation is not an effective method.
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Conclusion

In this work, a novel method for improving fault diagnosis in scenarios with little data avail-
able was studied.
The proposed method consisted in the use of an image-translation GAN in order to obtain
theoretical fault signals and use them to subsequently train a CNN.
Generative Networks such as StarGAN from [1], CycleGAN from [19] and others such as
[6], where studied to design a generative network.For the elaboration of a classificator, CNN
networks such as those presented by [9] and [18] where studied.
Bearing datasets from the Society for Machine Failure Prevention technology and from the
Case western Reserve University were used. The data was categorised and filtered, leaving as
domain the fault state present in both sets. The wavelet and Short Time Fourier Transform
were applied to the vibration signals to make images, scalograms and spectrograms respec-
tively.
Networks were trained using both types of images and in both directions (MFPT to CWR
and vice-versa). Performance was measured using Confusion Matrix, accuracy, precision,
sensitivity, specificity and F-1 Score indexes.

The general objective is achieved only partially, the proposed method is developed and
evaluated, yet the results show effective classification is not achieved by it. on the specific
objectives, both a Generative adversarial network and a Convolutional neural network are
designed and implemented, different parameters are tested for effectiveness and the novel
method is compared to a simpler one. Yet again the GAN network falls far behind it’s ex-
pected performance.

The Convolutional neural network proves to have an acceptable performance despite it’s
simple model, and scalograms prove to be much more effective in classification than spectro-
grams, all though neither proved to work with the generative method.
The best performance achieved by the network was 0.35 for class accuracy and 0.69 for Fault
State accuracy, which corresponds to a total model collapse on a favourable class for statistics.

The parameters which can help improve the network are studied thoroughly in chapter
four, the irreconcilable tendency for fast divergence of the RMSProp optimiser, the diagnosis
of the GAN as the main issue with the method, iterations are proposed as an improvable
aspect, as well as the colour pallet for the images. Mini batch discrimination, identity loss
and batch normalisation are all shown to be ineffective in improving results. Fine tuning
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of loss weights is pointed out as an improvable aspects yet most-likely it will prove to be
inefficient in regards of the T imeNeeded

marginaldifference
ratio.

The authors conclusions on the application of image-to-image translation are exposed in
chapter five, where the proposal to not pursue efforts to use Cycle loss translation but rather
other image transformation methods or similar networks with losses capable of representing
proportion over location.
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storgonC.py
# -*- coding: utf-8 -*-
"""
Created on Sun Dec  2 20:06:30 2018

@author: jp
"""
import tensorflow as tf
from data_loaderC import *
from set import set_
from modelD import *
import glob
import logging
from scipy.misc import imsave
import time
import os
import imageio

for handler in logging.root.handlers[:]:
    logging.root.removeHandler(handler)
logging.basicConfig(filename='SGlog.txt',format='%(levelname)s:%(message)s', 
level=logging.ERROR)

class storgon:
    def __init__(self,set_):
        self.set=set_
        self.DATA={}
        self.glr=self.set['g_lr']
        self.dlr=self.set['d_lr']
        self.z=[]
        self.mode=self.set['mode']
        
    def testline(self):
        lt=self.dataloader(self.set['test_im'],'test_c')
        self.inputs=input_fn(lt[0],lt[1],self.set,self.DATA,lt[2],lt[3])
        print(len(lt[0]))
        self.size=len(lt[0])
    
    def pipeline(self):
        l1=self.dataloader(self.set['DAT1_image_dir'],'c_a1')
        #l2=self.dataloader(self.set['DAT2_image_dir'],'c2_a1')
        #self.size=len(l2[0]+l1[0])
        
#self.inputs=input_fn(l1[0]+l2[0],l1[1]+l2[1],self.set,self.DATA,l1[2]+l2[2],l1[3]+l
2[3])
        self.size=len(l1[0])
        print(len(l1[0]),len(l1[1]))
        self.inputs=input_fn(l1[0],l1[1],self.set,self.DATA,l1[2],l1[3])
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storgonC.py
    def dataloader(self,path,dims):#(DAT=dictionarios para el 
dataset,set_=configuraciones, dims= string con las categorias del dataset)
        imgs=glob.glob(path)
        lbls=[]
        onehots=[]
        lbl_list=self.set[dims]
        Z=[]
        for a in imgs:
            for b in range(len(lbl_list)):
                if lbl_list[b] in a:
                    lbls.append(b)
        for a in lbls:
            OH=[]
            for b in range(len(lbl_list)):
                OH.append(0)       
            OH[a]=1
            onehots.append(OH)
            Z.append(0)

        return [imgs,lbls,onehots,Z]
        #return input_fn(imgs,lbls,self.set,DAT,onehots,Z)
    
        
    
    def build_model(self):
        #onehot to trg
        
        self.global_step= tf.Variable(0, name="global_step", trainable=False)
        with tf.variable_scope('alpha',reuse=tf.AUTO_REUSE):
            
self.alpha=tf.Variable(tf.random_uniform([self.set['batch_size'],1,1,1],maxval=0.99)
)
        with tf.variable_scope('model',reuse=tf.AUTO_REUSE):
            self.CTRG=target_label(self.inputs['DS'],self.inputs['labels'])
            if self.mode=='test':
                self.CTRG=tf.reshape(self.target,[8,-1])
            self.pre_G=gen_pre_input(self.inputs['images'],self.CTRG)
            self.G=gen_setup(self.pre_G)
            if np.random.randint(1,4)==3:
                self.G=gaussian(self.G)
            
            
#self.Gc=gen_setup(gen_pre_input(self.G,tf.reshape(self.set['target3'],[8,-1])))
            if self.mode != 'test':
                self.Gc=gen_setup(gen_pre_input(self.G,self.inputs['onehot']))
            self.Fsrc,self.Fcls=dis_setup(self.G)
            self.Rsrc,self.Rcls=dis_setup(self.inputs['images'])
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storgonC.py
            
            self.gp_hat=self.alpha*self.inputs['images']+(1-self.alpha)*self.G
            self.Gp_src,_=dis_setup(self.gp_hat)
            self.clasif=tf.reduce_mean(self.Fcls)            
    def losscalc(self): 
        #disc real
        
LD_real=tf.squared_difference(tf.reshape(tf.reduce_mean(tf.reduce_mean(self.Rsrc,2),
1),[8]),[0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9])
        #disc Fake
        
LD_fake=tf.squared_difference(tf.reshape(tf.reduce_mean(tf.reduce_mean(self.Fsrc,2),
1),[8]),[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

        
LD_cls=tf.nn.softmax_cross_entropy_with_logits_v2(labels=self.inputs['onehot'],logit
s=self.Rcls)
        #generator1
        
LG_src=tf.reduce_mean(tf.squared_difference(tf.reshape(tf.reduce_mean(tf.reduce_mean
(self.Fsrc,2),1),[8]),[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]))

        
LG_cls=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=self.CTRG,lo
gits=self.Fcls))

        LG_cyc=tf.reduce_mean(tf.abs(self.inputs['images']-self.Gc))
        
        LG_id=tf.reduce_mean(tf.abs(self.inputs['images']-self.G))
        LG_mb=minibatch(self.G)

        
        gloss=LG_src+LG_cls*10+LG_cyc*5
        dloss=LD_real*2+LD_fake+10*LD_cls
        
self.ldtuple=(tf.reduce_mean(LD_fake),tf.reduce_mean(LD_real),tf.reduce_mean(LD_cls)
)
        self.lgtuple=(LG_cls,LG_src)
        
        self.goptimizer=tf.train.GradientDescentOptimizer(self.glr,name='gop')
        self.doptimizer=tf.train.GradientDescentOptimizer(self.dlr,name='dop')
       # 
self.goptimizer=tf.train.AdamOptimizer(self.glr,beta1=0.5,beta2=0.99,name='gop')
       # 
self.doptimizer=tf.train.AdamOptimizer(self.dlr,beta1=0.5,beta2=0.99,name='dop')
        self.model_vars = tf.trainable_variables()
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storgonC.py
        d_vars = [var for var in self.model_vars if 'dis' in var.name]

        g_vars = [var for var in self.model_vars if 'gen' in var.name]

       # a_vars = [var for var in self.model_vars if 'alpha' in var.name]

        with tf.variable_scope('op',reuse=tf.AUTO_REUSE):
            self.dtrainer = self.doptimizer.minimize(dloss, var_list=d_vars)

            self.gtrainer =self.goptimizer.minimize(gloss, var_list=g_vars)
            #self.atrainer = self.aopti.minimize(self.Gp_src, var_list=a_vars)
        
        self.gloss_sum=tf.summary.scalar("gloss", gloss)
        self.LGcyc=tf.summary.scalar("LGcyc", LG_cyc)
        self.LGsrc=tf.summary.scalar("LGsrc", LG_src)
        self.LGcls=tf.summary.scalar("LGclass", LG_cls)
        self.lgmb=tf.summary.scalar("LGmb", 0)
        
        self.dloss_sum=tf.summary.scalar("dloss", tf.reduce_mean(dloss))
        self.LDreal=tf.summary.scalar("LDreal", tf.reduce_mean(LD_real))
        self.LDfake=tf.summary.scalar("LDfake", tf.reduce_mean(LD_fake))
        self.LDcls=tf.summary.scalar("LDclass", tf.reduce_mean(LD_cls))
        
    def DEBUG(self):
        
        self.build_model()
        self.losscalc()
        self.saver=tf.train.Saver()
        init = (tf.global_variables_initializer(),tf.local_variables_initializer())
        if not os.path.exists(self.set['sample_dir']):
            os.makedirs(self.set['sample_dir'])
        if not os.path.exists(self.set['model_save_dir']):
            os.makedirs(self.set['model_save_dir'])
        if not os.path.exists(self.set['result_dir']):
            os.makedirs(self.set['result_dir'])
        if not os.path.exists(self.set['log_dir']):
            os.makedirs(self.set['log_dir'])
        
        

        with tf.Session() as sess:
            sess.run(init)
            sess.run(self.inputs['iterator_init_op'])
            if self.set['mode']=='restore':
                print('shit')
            writer=tf.summary.FileWriter(self.set['log_dir'])
            timer=time.time()
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storgonC.py
            timex=timer-time.time()
            batchcount=0
            adams=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='op')
            adams_init=(tf.variables_initializer(adams))
            sess.graph.finalize()
            for epoch in range(0,self.set['num_iters']):
                if self.size-batchcount<20:
                        print(batchcount)
                        sess.run(self.inputs['iterator_init_op'])
                        
                        batchcount=0
               
                sess.run(adams_init)
                timex=timer-time.time()
                #logging.info(timex)
                #logging.info(str(epoch))
                if epoch%1000==0:
                    
disc,gen,r,s=sess.run([self.ldtuple,self.lgtuple,self.inputs['onehot'],self.CTRG])
                    logging.error('LD:'+str(disc[0])+str(disc[1])+str(disc[2])+'    
   LG:'+str(gen[0])+str(gen[1]))
                    batchcount+=8
                if epoch%500==0:
                    
                        
                    timex=timer-time.time()
                    
                    #logging.info(timex)
                    
                    print('epoch:',epoch)
                    
output,ctrg,onehots,Gc,image=sess.run([self.G,self.CTRG,self.inputs['onehot'],self.G
c,self.inputs['images']])
                    batchcount+=8
                    i=0
                    if not os.path.exists(self.set['sample_dir']+'/'+str(epoch)):
                        os.makedirs(self.set['sample_dir']+'/'+str(epoch))
                    for out in output:
                        
imageio.imwrite(self.set['sample_dir']+'/'+str(epoch)+'/G_'+str(i)+'.jpg',out)
                        
imageio.imwrite(self.set['sample_dir']+'/'+str(epoch)+'/Gc_'+str(i)+'.jpg',Gc[i])
                        
imageio.imwrite(self.set['sample_dir']+'/'+str(epoch)+'/IMAGE_'+str(i)+'.jpg',image[
i])
                        

                        i+=1
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                if epoch>self.set['lr_update_step']:
                    
self.glr=self.set['g_lr']*(1-(epoch-self.set['lr_update_step'])/(self.set['lr_update
_step']))
                    
self.dlr=self.set['d_lr']*(1-(epoch-self.set['lr_update_step'])/(self.set['lr_update
_step']))
                
                
                
                if epoch%self.set['n_critic']==0:
                    #optimize G
                    
_,summary,lgsrc,lgcyc,lgcls,lgmb=sess.run([self.gtrainer,self.gloss_sum,self.LGsrc,s
elf.LGcyc,self.LGcls,self.lgmb])
                    #_=sess.run(self.gtrainer)

                    writer.add_summary(summary,epoch)
                    writer.add_summary(lgsrc,epoch)
                    writer.add_summary(lgcyc,epoch)
                    writer.add_summary(lgcls,epoch)
                    writer.add_summary(lgmb,epoch)
                    batchcount+=8
                
                if self.size-batchcount<20:
                    sess.run(self.inputs['iterator_init_op'])
                    batchcount=0
                if epoch+1%100==0:
                    
self.saver.save(sess,self.set['model_save_dir'],global_step=epoch)
                    
                #optimize D
                
_,summary,ldreal,ldfake,ldcls=sess.run([self.dtrainer,self.dloss_sum,self.LDreal,sel
f.LDfake,self.LDcls])
                #_=sess.run(self.dtrainer)
                writer.add_summary(summary,epoch)
                writer.add_summary(ldreal,epoch)
                writer.add_summary(ldfake,epoch)
                writer.add_summary(ldcls,epoch)
                batchcount+=8
                self.epoch=epoch
                
                
            writer.add_graph(sess.graph)
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            output=sess.run(self.G)
            i=0
            for out in output:
                imageio.imwrite(self.set['sample_dir']+'/LG_'+str(i)+'.jpg',out)
                i+=1
            self.saver.save(sess,self.set['model_save_dir'])
                
    def test(self,num):
        if num==1:
              self.target=self.set['target1'] #IR
        elif num==2:
              self.target=self.set['target2'] #OR_
        elif num==3:
              self.target=self.set['target3'] #N
        self.build_model()
        self.saver=tf.train.Saver()
        self.class_d=0
        classcounter=0
        batchcount=0

        init = (tf.global_variables_initializer(),tf.local_variables_initializer()) 
      
        with tf.Session() as sess:
            sess.run(init)
            sess.run(self.inputs['iterator_init_op'])
            i=0
            Iter=0
            if not os.path.exists(self.set['result_dir']+'/'+str(num)):
                  os.makedirs(self.set['result_dir']+'/'+str(num))
            self.saver.restore(sess,self.set['model_save_dir'])
            while 100>Iter:
                while (self.size-batchcount)>8:
                      output,clasif=sess.run([self.G,self.clasif])
                      self.class_d+=clasif
                      classcounter+=1
                      batchcount+=8
                      for out in output:
                          
imageio.imwrite(self.set['result_dir']+'/'+str(num)+'/'+str(i)+'.jpg',out)
                          i+=1
            
                Iter+=1
            self.class__d=self.class_d/classcounter
            #batchcount=0tf.reset_default_graph()

            #for epoch in range(self.set['out_imgs']):
             #   output=sess.run(self.G)
              #  i=0
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               # for out in output:
                #    
imsave(self.set['result_dir']+'/'+str(epoch)+'_'+str(i)+'.jpg',out)
                 #   i+=1
                #batchcount+=8
                #if self.size-batchcount<8:
                #    sess.run(k.inputs['iterator_init_op'])
                #    batchcount=0        
                    

"""
    def train(self):
        
        self.build_model()
        self.losscalc()
        self.saver=tf.train.Saver()
        init = (tf.global_variables_initializer(),tf.local_variables_initializer())
        if not os.path.exists(self.set['sample_dir']):
            os.makedirs(self.set['sample_dir'])
        if not os.path.exists(self.set['model_save_dir']):
            os.makedirs(self.set['model_save_dir'])
        if not os.path.exists(self.set['result_dir']):
            os.makedirs(self.set['result_dir'])
        if not os.path.exists(self.set['log_dir']):
            os.makedirs(self.set['log_dir'])
        
        
        
        with tf.Session() as sess:
            sess.run(init)
            sess.run(self.inputs['iterator_init_op'])
            
            if self.set['mode']=='restore':
                print('shit')
            writer=tf.summary.FileWriter(self.set['log_dir'])
            timer=time.time()
            timex=timer-time.time()
            logging.info(timex)
            batchcount=0
            for epoch in range(sess.run(self.global_step),self.set['num_iters']):
                timex=timer-time.time()
                #logging.info(timex)
                #logging.info(str(epoch))
                if epoch%100==0:
                    timex=timer-time.time()
                    logging.info(str(epoch))
                    #logging.info(timex)
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                    print('epoch:',epoch)
                    
output,ctrg,onehots,Gc,image=sess.run([self.G,self.CTRG,self.inputs['onehot'],self.G
c,self.input['images']])
                    batchcount+=8
                    i=0
                    if not os.path.exists(self.set['result_dir']+'/'+str(epoch)):
                        os.makedirs(self.set['result_dir']+'/'+str(epoch))
                    for out in output:
                        
imageio.imwrite(self.set['result_dir']+'/'+str(epoch)+'/G_'+str(i)+'.jpg',out)
                        
imageio.imwrite(self.set['result_dir']+'/'+str(epoch)+'/GC_'+str(i)+'.jpg',Gc[i])
                        
                        
                        logging.info('ctrg,hots')
                        logging.info(ctrg[i])
                        logging.info(onehots[i])
                        i+=1
                    
self.saver.save(sess,self.set['model_save_dir'],global_step=epoch)
                    
                if epoch>self.set['lr_update_step']:
                    
self.glr=self.set['g_lr']*(1-(epoch-self.set['lr_update_step'])/(self.set['lr_update
_step']))
                    
self.dlr=self.set['d_lr']*(1-(epoch-self.set['lr_update_step'])/(self.set['lr_update
_step']))
                
                if self.size-batchcount<8:
                    sess.run(k.inputs['iterator_init_op'])
                    batchcount=0
                #optimize G
                _,summary=sess.run([self.gtrainer,self.gloss_sum])
                writer.add_summary(summary,epoch)
                batchcount+=8
                if self.size-batchcount<8:
                    sess.run(k.inputs['iterator_init_op'])
                    batchcount=0
                #optimize D
                _,summary=sess.run([self.dtrainer,self.dloss_sum])
                writer.add_summary(summary,epoch)
                batchcount+=8
                self.epoch=epoch
            writer.add_graph(sess.graph)
            output=sess.run(self.G)
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            i=0
            for out in output:
                imageio.imwrite(self.set['result_dir']+'/'+str(i)+'.jpg',out)
                i+=1
"""    
  
    
 

tf.reset_default_graph()
logging.error('storgon has began')
print('a')
timer=time.time()
timex=timer-time.time()
logging.info(timex)        
k=storgon(set_)
k.pipeline()

timex=timer-time.time()
#logging.info(timex)     

k.DEBUG()

tf.reset_default_graph()  
IR_t=storgon(set_) 
IR_t.mode="test" 
IR_t.testline()
IR_test=IR_t.test(1)

tf.reset_default_graph()
OR_t=storgon(set_) 
OR_t.mode="test" 
OR_t.testline()
OR_test=OR_t.test(2)

tf.reset_default_graph()
N_t=storgon(set_) 
N_t.mode="test" 
N_t.testline()
N_test=N_t.test(3)

timex=timer-time.time()
logging.info('END')
logging.info(timex)
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"""
k.build_model()
init = (tf.global_variables_initializer(),tf.local_variables_initializer())
N=[]
R=[]
with tf.Session() as sess:
    sess.run(init)
    sess.run(k.inputs['iterator_init_op'])
    
#output,ctrg,onehots,Gc,image=sess.run([k.G,k.CTRG,k.inputs['onehot'],k.Gc,k.inputs[
'images']])
    output=sess.run(k.Gc)
    print('done')       
"""
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# -*- coding: utf-8 -*-
"""
Created on Mon Nov 12 18:10:28 2018

@author: jp
"""

import tensorflow as tf
import numpy as np
from set import set_
import logging

def Resnet(inputing, dim, name="res"):
    with tf.variable_scope(name):
        outres=tf.contrib.layers.conv2d(inputing,dim,3 , 1, padding='SAME', 
activation_fn=None)
        outres=tf.contrib.layers.instance_norm(outres)
        outres=tf.nn.relu(outres)
        outres=tf.contrib.layers.conv2d(outres,dim,3, 1, padding='SAME', 
activation_fn=None)
        outres=tf.contrib.layers.instance_norm(outres)
        outres=tf.nn.relu(outres+inputing)
        
        return (outres)

def gen_setup(input_A, name="gen"):
    with tf.variable_scope(name,reuse=tf.AUTO_REUSE):
        #k=[]
        #k.append(tf.shape(input_A))
        out=tf.contrib.layers.conv2d(input_A,set_['g_conv_dim'] ,7 , 1, 
padding='SAME', activation_fn=None)
        #k.append(tf.shape(out))
        out=tf.contrib.layers.instance_norm(out)
        out=tf.nn.relu(out)
        curr_dim=set_['g_conv_dim']
        for i in range(2):
            out=tf.contrib.layers.conv2d(out,curr_dim*2,4 , 2, padding='SAME', 
activation_fn=None)
            #k.append(tf.shape(out))
            out=tf.contrib.layers.instance_norm(out)
            out=tf.nn.relu(out)
            curr_dim=curr_dim*2
        
        for i in range(set_['g_repeat_num']):
            out=Resnet(out,curr_dim,name='res'+str(i))
            #k.append(tf.shape(out))
        #out=tf.cast(out,dtype='float32')
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        for i in range(2):
            out=tf.contrib.layers.conv2d_transpose(out,int((curr_dim) / 2),4 , 2, 
padding='SAME', activation_fn=None)
            #k.append(tf.shape(out))
            out=tf.contrib.layers.instance_norm(out)
            out=tf.nn.relu(out)
            curr_dim=curr_dim/2
        out=tf.contrib.layers.conv2d(out,1,7 , 1, padding='SAME', 
activation_fn=tf.tanh)
        #k.append(tf.shape(out))
        return out
    
def dis_setup(input_B, name='dis',reuse=tf.AUTO_REUSE):
    k=[]
    with tf.variable_scope(name,reuse=tf.AUTO_REUSE):
        out=tf.contrib.layers.conv2d(input_B,set_['d_conv_dim'] ,4, 2, 
padding='SAME', activation_fn=None)
        k.append(tf.shape(out))
        out=tf.nn.leaky_relu(out,alpha=0.01)
        curr_dim=set_['d_conv_dim']
        for i in range(1,set_['d_repeat_num']):
            out=tf.contrib.layers.conv2d(out,curr_dim*2 , 4, 2, padding='SAME', 
activation_fn=None)
            k.append(tf.shape(out))
            out=tf.nn.leaky_relu(out,alpha=0.01)
            curr_dim=curr_dim*2    
        kernel_size=int(set_['image_size']/np.power(2,set_['d_repeat_num']))
        out1=tf.contrib.layers.conv2d(out,1 ,3, 1, padding='SAME', 
activation_fn=None)
        out2=tf.contrib.layers.conv2d(out,3 ,kernel_size, 1, padding='VALID', 
activation_fn=None)
        out2=tf.reshape(out2,[8,3])
        k.append(tf.shape(out1))
        k.append(tf.shape(out2))
        return out1,out2

def n256n(a):
    multi=tf.constant([1,65536])
    theta1=tf.tile(a,multi)
    jj=tf.reshape(theta1,[256,256,tf.size(a)])
    return jj
    
def gen_pre_input(inp,OHL,name='preinput'):
    with tf.variable_scope(name):
        squares=tf.map_fn(lambda x:n256n([x]), OHL)
        squares=tf.cast(squares,dtype='float32')
        r=tf.concat([inp,squares],3)
        return r
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def nrond(a,tope,n1,n0):
    b=np.random.randint(0,tope)
    while b==a:
        b=np.random.randint(0,tope)
    n=n0+n1[b]+n1[1]
    return tf.constant(n)
def nnorond(a,n1,n0):
    n=n0+n1[a]+n1[1]
    
    return tf.constant(n)

def lrond(a,tope,l1):
    b=np.random.randint(0,tope)
    while b==a:
        b=np.random.randint(0,tope)
    zero=[0,0]
    f=[1,0]
    n=l1[b]+zero+f
    return tf.constant(n)
def lnorond(a,l1):
    zero=[0,0]
    b=[1,0]
    n=l1[a]+zero+b
    return tf.constant(n)       
    
    
    
def ctrgn(oh):
    n1=[[1,0],[0,1]]
    n0=[0,0,0]
    tope=2
    n3=np.random.randint(0,tope)
    n3_1=tf.constant(n3)
    
n=tf.cond(tf.equal(oh,n3_1),lambda:nrond(n3,tope,n1,n0),lambda:nnorond(n3,n1,n0)) 
#if new one hot= original retry, if not, continue
    return n

def ctrgl(oh):  
    l1=[[1,0,0],[0,1,0],[0,0,1]]
    tope=3
    l2=np.random.randint(0,tope)
    l2_1=tf.constant(l2)
    n=tf.cond(tf.equal(oh,l2_1),lambda:lrond(l2,tope,l1),lambda:lnorond(l2,l1))
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    return n
        
    
def target_label_null(ds,oh):
    labels=ds
    labelsun=tf.unstack(labels,num=8)
    ohsun=tf.unstack(oh,num=8)
    out=[]
    zero=tf.constant(2)
    i=0
    for t in labelsun:
        out.append(tf.cond(tf.equal(t,zero),lambda: ctrgn(ohsun[i]),lambda: 
ctrgl(ohsun[i])))
        i+=1

    out=tf.concat(out,0)

    out=tf.reshape(out,[8,-1])

    return out

def PP1(t,l):
    non=t
    p=np.random.randint(0,3)
    while non==p:
        p=np.random.randint(0,3)
    return l[p]
def PP2(t,l):
    return (l[t])

def target_label(ds,oh):
    labels=ds
    labelsun=tf.unstack(labels,num=8)
    ohsun=tf.unstack(oh,num=8)
    out=[]
    zero=tf.constant(2)
    i=0
    for t in labelsun:
        eq=np.random.randint(0,3)
        eq2=tf.constant(eq)
        l1=[[1,0,0],[0,1,0],[0,0,1]]
        out.append(tf.cond(tf.equal(ohsun[i],eq2),lambda: 
PP1(eq2,l1),lambda:PP2(eq,l1)))
        i+=1

    out=tf.concat(out,0)

    out=tf.reshape(out,[8,-1])
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    return out

def gaussian(imgs):
      a=np.random.normal(0.0,0.1,[8,256,256,1])
      tf.convert_to_tensor(a)
      return (imgs+a)
      
def minibatch(a):
    a=a*1
    images=tf.unstack(a,num=8)
    i=0
    cost=0
    while i<8:
        i2=0
        while i2<8:
            if i2!=i:
                cost+=tf.abs(images[i]-images[i2])
            i2+=1
        i+=1
    return tf.reduce_mean(cost)
                
#def Eqtarget(oh,ctrg):
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mymlp.py
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 16 11:37:16 2019

@author: jp
"""
import tensorflow as tf
from sett import sett
from input_loader import *
import glob
import os
import sklearn.metrics
import numpy as np

def Model(input_1, name='model'):
    with tf.variable_scope(name,reuse=tf.AUTO_REUSE):
          out = tf.reshape(input_1, [-1, 256, 256, 1])
          out = tf.layers.conv2d(inputs=out, name='convolution_1',
                                 filters=32, kernel_size=3,
                                 padding='same', activation=tf.nn.relu)   
          
          out = tf.layers.max_pooling2d(inputs=out, pool_size=2, strides=2)
          out = tf.layers.conv2d(inputs=out, name='convolution_2',
                                 filters=64, kernel_size=3,
                                 padding='same', activation=tf.nn.relu)    
          out = tf.layers.max_pooling2d(inputs=out, pool_size=2, strides=2)  
          out = tf.layers.conv2d(inputs=out, name='convolution_3',
                                 filters=64, kernel_size=3,
                                 padding='same', activation=tf.nn.relu)
          out = tf.layers.max_pooling2d(inputs=out, pool_size=2, strides=2)
          out = tf.layers.flatten(out)
          out = tf.layers.dense(inputs=out, name='layer_fc1',units=128, 
activation=tf.nn.relu)
          out = tf.layers.dropout(out, rate=0.5, noise_shape=None,seed=None, 
training=(True))
          out = tf.layers.dense(inputs=out, name='layer_fc_2',units=3)
          out_cls = tf.argmax(out, axis=1)
          
          shape=tf.shape(out)
          return shape,out,out_cls

class MLP:
    def __init__(self,sett):
        self.set=sett
        self.DATA={}
        self.mode=self.set['mode']
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    def testline(self):
        lt=self.dataloader(self.set['test_im'],'test_c')

        self.inputs=input_fn(lt[0],lt[1],self.set,self.DATA) 
                

        self.size=len(lt[0])
        
    def pipeline(self):
        l1=self.dataloader(self.set['image_dir'],'c_a1')
        self.size=len(l1[0])
        self.inputs=input_fn(l1[0],l1[1],self.set,self.DATA)
    
    def dataloader(self,path,dims):#(DAT=dictionarios para el 
dataset,set_=configuraciones, dims= string con las categorias del dataset)
        imgs=glob.glob(path)
        lbls=[]
        lbl_list=self.set[dims]
        for a in imgs:
            for b in range(len(lbl_list)):
                if lbl_list[b] in a:
                    lbls.append(b)
                #else: 
                #    print (a)
                    

        return [imgs,lbls]
        #return input_fn(imgs,lbls,self.set,DAT,onehots,Z)
    def build_Model(self):        
          self.shape,self.mod,self.out_cls=Model(self.inputs['images'])
          self.accuracy=tf.metrics.accuracy(self.inputs['labels'], self.out_cls)
    def loss_calc(self):
        cross = 
tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.inputs['labels'],logits=s
elf.mod)
        self.loss = tf.reduce_mean(cross)
        with tf.variable_scope('op',reuse=tf.AUTO_REUSE):
              self.optimizer = tf.train.AdamOptimizer(learning_rate=self.set["lr"])

              self.model_vars = tf.trainable_variables()
              self.trainer=self.optimizer.minimize(self.loss, 
var_list=self.model_vars)
        
    def train(self):
          self.build_Model()
          self.loss_calc()
          self.saver=tf.train.Saver()
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          init = 
(tf.global_variables_initializer(),tf.local_variables_initializer())
          with tf.Session() as sess:
                sess.run(self.inputs['iterator_init_op'])
                sess.run(init)
                batchcount=0
                for epoch in range(0,self.set['num_iters']):
                      sess.run(self.trainer)
                      batchcount+=8
                      if batchcount+8>self.size:
                            sess.run(self.inputs['iterator_init_op'])
                self.metric=sess.run(self.accuracy)
                if not os.path.exists(self.set['model_save_dir']):
                      os.makedirs(self.set['model_save_dir'])
                self.saver.save(sess,self.set['model_save_dir'])
    def Predict(self):
          self.out_labels=[]
          self.out_pred=[]
          self.build_Model()
          self.loss_calc()
          self.saver=tf.train.Saver()
          init = 
(tf.global_variables_initializer(),tf.local_variables_initializer())
          with tf.Session() as sess:
                sess.run(init)
                self.saver.restore(sess,self.set['model_save_dir'])
                sess.run(self.inputs['iterator_init_op'])
                batchcount=0
                while self.size>batchcount+8:
                      
label,prediction=sess.run([self.inputs['labels'],self.out_cls])
                      for a in range(0,7):
                            self.out_labels.append(label[a])
                            self.out_pred.append(prediction[a])
                      batchcount+=8
                self.metric=sess.run(self.accuracy)   
                

print("friendly coding")                 
k=MLP(sett)
k.pipeline()
k.train()
print("training accuracy:")
print(k.metric)
tf.reset_default_graph()
mp=MLP(sett)
mp.testline()
mp.Predict()
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print (mp.metric)
print(sklearn.metrics.confusion_matrix(mp.out_labels,mp.out_pred))
i=0
l0_0=0
l0_1=0
l0_2=0
l1_0=0
l1_1=0
l1_2=0
l2_0=0
l2_1=0
l2_2=0

for a in mp.out_labels:
      if a==0:
            if mp.out_pred[i]==0:
                  l0_0+=1
            elif mp.out_pred[i]==1:
                  l0_1+=1
            elif mp.out_pred[i]==2:
                  l0_2+=1
      elif a==1:
            if mp.out_pred[i]==0:
                  l1_0+=1
            elif mp.out_pred[i]==1:
                  l1_1+=1
            elif mp.out_pred[i]==2:
                  l1_2+=1
      elif a==2:
            if mp.out_pred[i]==0:
                  l2_0+=1
            elif mp.out_pred[i]==1:
                  l2_1+=1
            elif mp.out_pred[i]==2:
                  l2_2+=1
      i+=1
 
    
      
tots=l0_0+l0_1+l0_2+l1_0+l1_1+l1_2+l2_0+l2_1+l2_2      
c_accuracy=(l0_0+l1_1+l2_2)/(tots)
FS_accuracy=(l0_0+l1_1+l2_2+l1_0+l0_1)/tots

sensitivity=(l2_2)/(l2_0+l2_1+l2_2)
specificity=(l1_1+l0_0)/(l1_1+l0_0+l0_2+l1_2)
f_1=(2*l2_2)/(2*l2_2+l0_2+l1_2+l2_1+l2_0)
precision=(l2_2)/(l2_2+l1_2+l0_2)
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print('class:');print(str(c_accuracy));print('Fault:');print(str(FS_accuracy));print
('precision:');print(str(precision));print('sensitivity');print(str(sensitivity));pr
int('specificity');print(str(specificity));print('F1');print(str(f_1))

"""
n=k.build_Model()
init = (tf.global_variables_initializer(),tf.local_variables_initializer())+'/n'+
with tf.Session() as sess:
      sess.run(init)
      sess.run(k.inputs['iterator_init_op'])
      b=sess.run()
print (b)
"""
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