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Abstract

Let G be an undirected simple graph. The signless Laplacian spread of G
is defined as the maximum distance of pairs of its signless Laplacian eigen-
values. This paper establishes some new bounds, both lower and upper, for
the signless Laplacian spread. Several of these bounds depend on invariant
parameters of the graph. We also use a minmax principle to find several
lower bounds for this spectral invariant.
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1. Introduction

In this paper we study an spectral invariant called signless Laplacian
spread, defined as the difference between the maximum and minimum signless
Laplacian eigenvalues. We deal with an undirected simple graph G with
vertex set V(G) of cardinality n and edge set E(G) of cardinality m; we call
this an (n,m)-graph. An edge e ∈ E(G) with end vertices u and v is denoted
by uv, and we say that u and v are neighbors. A vertex v is incident to
an edge e if v ∈ e. NG(v) is the set of neighbors of the vertex v, and its
cardinality is the degree of v, denoted by d(v). Sometimes, after a labeling of
the vertices of G, a vertex vi is simply written i and an edge vivj is written
ij, and we write di for d(vi). The minimum and maximum vertex degree of G
are denoted by δ(G) (or simply δ) and Δ(G) (or simply Δ), respectively. As
usual, Kn, Cn and Pn denote, respectively the complete graph, the cycle and
the path with n vertices. The complete bipartite graph with the part sizes
p and q is denoted by Kp,q. We denote by G ∪ H the vertex disjoint union
of graphs G and H. We only consider graphs without isolated vertices. Let
d1, d2, . . . , dn be the vertex degrees of G. Denote by AG = (aij) the adjacency
matrix of G. The spectrum of AG is called the spectrum of G and its elements
are called the eigenvalues of G. The vertex degree matrix DG is the n × n
diagonal matrix of the vertex degrees di of G. The signless Laplacian matrix
of G (see e.g. [9]) is defined by

QG = DG + AG. (1)

So, if QG = (qij), then qij = 1 when ij ∈ E(G), qii = di, and the remaining
entries are zero. The signless Laplacian matrix is nonnegative and symmetric.
The signless Laplacian spectrum of G is the spectrum of QG. Similarly, the
matrix

LG = DG − AG

is the Laplacian matrix of G ([9, 16, 17]). For all these matrices we may omit
the subscript G if no misunderstanding should arise. Moreover, the matrices
QG and LG are positive semidefinite.

For a real symmetric matrix WG, associated to a graph G, its spectrum
(the multiset of the eigenvalues of WG) is denoted by σWG

, and we let ηi(WG)
denote the i-th largest eigenvalue of WG. The i-th largest eigenvalue of
AG (LG, QG, respectively) is denoted by λi(G) (μi(G), qi(G), respectively).
Sometimes they are simply denoted by λi (μi, qi, respectively).
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Note: We treat vectors in Rn as column vectors, but identify these with
the corresponding n-tuples.

1.1. The spread of symmetric matrices

This subsection collects some general results that are known for the spread
of a symmetric matrix.

Let ωi be the i-th largest eigenvalue of a symmetric matrixW . The spread
of W is defined by

s(W ) = ω1 − ωn.

There are several papers devoted to this parameter, see for instance [22, 23,
29, 31]. For a square matrix W = (wij), let ‖W‖F = (

∑
ij |wij|2)1/2 and trW

be its Frobenius matrix norm and trace, respectively. In 1956, Mirsky proved
the following inequality.

Theorem 1. ([29]) Let W be an n× n matrix. Then

s(W ) ≤
(
2 ‖W‖2F −

2

n
(trW )2

)1/2

(2)

with equality if and only if W is normal and the eigenvalues ω1, ω2, . . . , ωn of
W satisfy the following condition

ω2 = ω3 = · · · = ωn−1 =
ω1 + ωn

2
.

Concerning lower bounds, among the results obtained for the spread of a
symmetric matrix W = (wij) , we mention the following obtained in [3].

Theorem 2. ([3]) Let W = (wij) be an n× n Hermitian matrix. Then

s(W ) ≥ max
i,j

(
(wii − wjj)

2 + 2
∑
s�=j

|wjs|2 + 2
∑
s�=i

|wis|2
)1/2

. (3)

Some other lower bounds for the spread of Hermitian matrices are found
in [22], and in some cases these improve the lower bound in (3).
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Theorem 3. ([22]) For any Hermitian matrix W = (wij)

s(W )2 ≥ max
i �=j

{
(wii − wjj)

2 + 2
∑
k �=i

|wik|2 + 2
∑
k �=j

|wjk|2 + 4eij

}
,

where eij = 2fij if wii = wjj and otherwise

eij = min

{
(wii − wjj)

2 + 2
∣∣(wii − wjj)

2 − fij
∣∣ , f 2

ij

(wii − wjj)
2

}

with

fij =

∣∣∣∣∣
∑
k �=i

|wik|2 −
∑
k �=j

|wjk|2
∣∣∣∣∣ .

1.2. Spreads associated with graphs

Let G be an (n,m)-graph. We now consider different notions of spread
based on matrices associated with G.

As before AG is the adjacency matrix of G and we consider

s(G) = s(AG)

which is called the spread ofG ([15]). Let μ(G)= (μ1, μ2, . . . , μn) be the vector
whose components are the Laplacian eigenvalues of G (ordered decreasingly,
as usual). The Laplacian spread, denoted by sL(G), is defined ([41]) by

sL(G) = μ1 − μn−1.

Note that μn = 0. Let q(G) = (q1, q2, . . . , qn) be the vector whose components
are the signless Laplacian eigenvalues ordered decreasingly. The signless
Laplacian spread, denoted by sQ(G), is defined ([26], [32]) as

sQ(G) = q1 − qn.

Remark 4. Some basic properties of these notions are as follows:

(i) Let G be a graph of order n with largest vertex degree Δ. From The-
orem 2 one can easily see that s(G) ≥ 2

√
Δ. Moreover, if G = K1,n−1,

equality holds.
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(ii) If G is a regular graph, then sQ(G) = s(G), ([26]).

(iii) From the relation QG = 2AG + LG it follows that q1 ≥ 2λ1 as LG is
positive semidefinite (and it is known that equality holds if and only if
G is a regular graph), (see e.g [8, 12]). Moreover, as λ1 is the spectral
radius of AG, 2λ1 ≥ λ1 − λn = s(G) with equality if and only if G is a
bipartite graph. Therefore

s(G) ≤ q1

with equality if and only if G is a regular, bipartite graph.

(iv) We recall the Weyl’s inequalities for a particular case in what follows.
Consider two n × n Hermitian matrices W and U with eigenvalues
(ordered nonincreasingly) ω1, ω2, . . . , ωn and x1, x2, . . . , xn, respectively,
and the Hermitian matrix T = W + U with eigenvalues τ1, τ2, . . . , τn
(ordered nonincreasingly). Then the following inequalities hold

ωn + xi ≤ τi ≤ ω1 + xi (i ≤ n).

Thus ωn + x1 ≤ τ1 ≤ ω1 + x1 and ωn + xn ≤ τn ≤ ω1 + xn. Therefore

x1 − xn + ωn − ω1 ≤ τ1 − τn ≤ ω1 − ωn + x1 − xn

which gives the following inequalities for the spread of these matrices

|s(U)− s(W )| ≤ s(T ) ≤ s(W ) + s(U).

(v) Let G be a graph with minimum and maximum vertex degree δ and Δ,
respectively. By the previous item, as QG = DG+AG, |Δ− δ − s(G)| ≤
sQ(G) ≤ s(G) + Δ− δ. By all the previous items we conclude that

| sQ(G)− s(G)| ≤ Δ− δ.

The next inequality establishes a relation between the largest Laplacian
eigenvalue and the largest signless Laplacian eigenvalue.

Lemma 5. ([40]) Let G be a graph. Then

μ1(G) ≤ q1(G).

Moreover if G is connected, then the equality holds if and only if G is a
bipartite graph.
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The second smallest Laplacian eigenvalue of a graph G is known as the al-
gebraic connectivity ([13]) of G and denoted by a(G). If G is a non-complete
connected graph, then a(G) ≤ κ0(G), where κ0(G) is the vertex connectiv-
ity of G (that is, the minimum number of vertices whose removal yields a
disconnected graph). Since κ0(G) ≤ δ(G), it follows that a(G) ≤ δ. The
graphs for which the algebraic connectivity attains the vertex connectivity
are characterized in [25]. One also has ([2, 39])

sL(G) ≥ Δ(G) + 1− δ (G) . (4)

For a survey on algebraic connectivity, see [1]. Moreover, it is worth to
conclude that the result in (4) together with the result in Remark 4 (v)
imply that

sQ(G) ≤ s(G) + sL(G)− 1.

Remark 6. If G is a connected (n,m)-graph such that m ≤ n − 1, then G
does not have cycles and thus, it is bipartite. Therefore sQ (G) = q1 = μ1.
As in the literature there are many known lower and upper bounds for this
eigenvalue,see for instance, [28, 35], from now on we only treat the case
m ≥ n.

Some other results on sQ(G) can be found, for instance, in [26, 32, 42].

The minimum number of vertices (resp., edges) whose deletion yields a bipar-
tite graph from G is called the vertex bipartiteness (resp., edge bipartiteness)
of G and it is denoted υb (G) (resp., εb(G)), see [11]. Let qn be the smallest
eigenvalue of QG. In [11], one established the inequalities

qn ≤ υb(G) ≤ εb(G). (5)

In [42] some important relationships between εb(G) and sQ(G) were found,
and it was shown that if G � Pn and G � C2k+1 then

sQ(G) ≥ 4

with equality if and only if G is one of the following graphs: K1,3, K4, two
triangles connected by an edge, and Cn with n even.
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2. Lower bounds

We now present some new lower bounds for the signless Laplacian spread.
The first result gives an upper bound for qn as function of the vertex bipar-
titeness, vb(G), and the independence number of G. It is therefore natural
to ask how difficult this parameter is to compute. The vertex bipartization
problem is to find the minimum number of vertices in a graph whose deletion
leaves a subgraph which is bipartite. This problem is NP-hard, even when
restricted to graphs of maximum degree 3, see [10]. Actually, this problem
has several applications, such as in via minimization in the design of inte-
grated circuits ([10]). Exact algorithms and complexity of different variants
have been studied, see [33]. For the parameterized version, where k is fixed
and one asks for k vertices whose deletion leaves a bipartite subgraph, an
algorithm of complexity O(3k · kmn) was found in [34]. Similarly, it is NP-
hard to compute the edge bipartiteness εb(G), even if all degrees are 3, see
([10]). Finally, more general vertex and edge deleting problems were studied
in [38], and NP-completeness of a large class of such problems was shown.
Recall that an induced subgraph is determined by its vertex set. In fact,
deleting some vertices of G together with the edges incident to those vertices
we obtain an induced subgraph. A set of vertices that induces an empty
subgraph is called an independent set. The number of vertices in a maxi-
mum independent set of G is called the independence number of G and it
is denoted by α (G). The problem of finding the independence number of a
graph G is also NP-hard, see [14, 24], whereas the spectral bounds can be
determined in polynomial time.

Lemma 7. Let G be a graph with n vertices and independence number α (G).
Then

qn ≤ υb(G) ≤ εb(G) ≤ (n− α(G)) (n− α(G)− 1)

2
. (6)

Proof. Let S ⊆ V (G) be an independent set of vertices with cardinality
α = α (G) and H be an induced subgraph of G such that V (H) = V (G) \S.
The adjacency matrix of G becomes

AG =

(
0 C
CT AH

)

where 0 is the square zero matrix of order α and the matrix C corresponds
to the adjacency relations between the vertices in S and the vertices in H.
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Note that the cardinality of the set of edges of H satisfies

|E(H)| ≤ (n− α) (n− α− 1)

2
.

The result is obtained since deleting all the edges of H yields a bipartite
graph from G.

Corollary 8. Let G be an (n,m)-graph with independence number α =
α (G). If

n (n− α) (n− α− 1) ≤ 8m, (7)

then

sQ (G) ≥ 2λ1 − υb (G) ≥ 4m

n
− υb (G) ≥ 0.

Proof. The first inequality in the corollary follows directly from the fact
that q1 ≥ 2λ1 and Eq. (5). The second inequality follows from below:

2λ1 ≥ 2

(
eT (AG) e

eTe

)
=

4m

n
.

As (7) is equivalent to

4m

n
− (n− α) (n− α− 1)

2
≥ 0,

by Lemma 7

4m

n
− υb (G) ≥ 4m

n
− (n− α)(n− α− 1)

2
≥ 0,

and the desired inequalities follow.

Remark 9. Note that if α (G) = n − k and as m ≤ n(n−1)
2

a necessary
condition for (7) is 4 (n− 1) ≥ k (k − 1) .

Recall the identity
α(G) + τ(G) = n,

where τ(G) is the vertex cover number of G (that is the size of a minimum
vertex cover in a graph G). Replacing in (6) we conclude that

τ(G) ≥ 1 +
√
1 + 8εb (G)

2
.
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Finding a minimum vertex cover of a general graph is an NP-hard problem.
However, for the bipartite graphs, the vertex cover number is equal to the
matching number. Therefore, from the previous remark a necessary condition
for (7) is, in this case, 4(n− 1) ≥ τ(G)(τ(G)− 1).

Now, using Theorems 2 and 3 we derive the following results.

Theorem 10. Let G be a graph of order n with maximum and minimum
vertex degree Δ and δ, respectively. If Δ− δ ≥ 2, then

sQ(G) ≥ ((Δ− δ)2 + 2Δ + 2δ
)1/2

.

and otherwise (when Δ− δ ≤ 1)

sQ(G) ≥ 2
√
Δ.

Equality holds for G ∼= K2.

Proof. Let QG = (qij) be the signless Laplacian matrix of G. By Theorem
2

sQ(G) = s(QG) ≥ Υ

where

Υ = maxi,j

(
(qjj − qii)

2 + 2
∑

s�=j |qjs|2 + 2
∑

s�=i |qis|2
)1/2

= maxi,j
(
(dj − di)

2 + 2(dj + di)
)1/2

.

In this maximization we may assume (by symmetry) that dj ≥ di. Moreover,
by fixing dj − di to some number k ∈ {0, 1, . . . ,Δ− δ}, we get

Υ = maxk maxdj−di=k

(
(dj − di)

2 + 2(dj + di)
)1/2

= maxk maxdj−di=k (k
2 + 2(2di + k))

1/2

= maxk (k
2 + 2(2(Δ− k) + k))

1/2

as k2 + 2(2di + k) is increasing in di. So Υ = maxk (k
2 + 4Δ− 2k)

1/2
. But

k2 + 4Δ − 2k is a convex quadratic polynomial in k so its maximum over
k ∈ {0, 1, . . . ,Δ− δ} occurs in one of the two endpoints. Therefore

Υ = max{2
√
Δ,
(
(Δ− δ)2 + 2(Δ + δ)

)1/2}
which gives the desired result.

Let V (Δ) = {v ∈ V (G) : d (v) = Δ} and V (δ) = {v ∈ V (G) : d (v) = δ}.
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Theorem 11. Let G be a graph of order n with maximum and minimum
vertex degree Δ and δ, respectively.

sQ(G) ≥ ((Δ− δ)2 + 2Δ + 2δ + 4
) 1

2 .

We have equality, for instance, when G ∼= K1,3.

Proof. Let Q(G) = (qij) be the signless Laplacian matrix of G, then QG is
an n× n symmetric matrix and by Theorem 3 we derive

sQ(G) = s(QG) ≥ Γ

where

Γ = max
i �=j

(
(qii − qjj)

2 + 2
∑
s�=j

|qjs|2 + 2
∑
s�=i

|qis|2 + 4eij

)1/2

,

and eij and fij are given in Theorem 3.
Let vi0 ∈ V(Δ) and vj0 ∈ V (δ). If qj0j0 = qi0i0 , then ei0j0 = 2fi0j0 ;

otherwise

ei0j0 = min

{
(qi0i0 − qj0j0)

2 + 2
∣∣(qi0i0 − qj0j0)

2 − fi0j0
∣∣ , f 2

i0j0

(qi0i0 − qj0j0)
2

}

with

fi0j0 =

∣∣∣∣∣
∑
k �=i0

|qi0k|2 −
∑
k �=j0

|qj0k|2
∣∣∣∣∣ = |d (vi0)− d (vj0)| = Δ− δ.

Therefore,

ei0j0 = min
{
(Δ− δ)2 + 2

∣∣(Δ− δ)2 − (Δ− δ)
∣∣ , 1} = 1.

Thus Γ ≥ ((Δ− δ)2 + 2Δ + 2δ + 4
) 1

2 and the result follows.

For G = K1,3 it is clear that sQ(G) = q1 = 4. Moreover, (Δ− δ)2 +2Δ+
2δ + 4 = 16. Taking square root, the equality is shown in this case.

The next Corollary is a direct consequence of the previous theorem.
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Let G be a graph with vertex degrees d1, d2, . . . , dn. Let

M1(G) =
n∑

i=1

d2i ,

be the first Zagreb index [18]. In [30] the following inequality related to the
Cauchy-Schwarz inequality is shown. It follows directly from the Lagrange
identity (see [36] concerning Lagrange identity and related inequalities).

Lemma 12. [30] Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two
vectors with 0 < m1 ≤ ai ≤ M1 and 0 < m2 ≤ bi ≤ M2, for i = 1, 2, . . . , n,
for some constants m1,m2,M1 and M2. Then(

n∑
i=1

a2i

)(
n∑

i=1

b2i

)
−
(

n∑
i=1

aibi

)2

≤ n2

4
(M1M2 −m1m2)

2 . (8)

By using the above result in what follows, we will obtain a lower bound
for the sQ(G) in terms of M1(G), n and m.

Theorem 13. Let G be a connected graph with n ≥ 2 vertices. Then

sQ(G) ≥ 2

n

√
nM1(G)− 4m2 + 2mn. (9)

Proof. In this proof we use Lemma 12 with ai = 1 and bi = qi, for
1 ≤ i ≤ n. Since 0 < 1 ≤ ai ≤ 1, and 0 < qn ≤ bi ≤ q1, 1 ≤ i ≤ n. Thus
M1M2 = 1q1 and m1m2 = 1qn. By Lemma 12

n∑
i=1

1
n∑

i=1

q2i −
(

n∑
i=1

qi

)2

≤ 1

4
n2 (q1 − qn)

2

then

n (2m+M1 (G))− 4m2 ≤ 1

4
n2 (q1 − qn)

2 .

This gives
8m+ 4M1 (G)

n
− 16m2

n2
≤ s2Q(G)

and

sQ(G) ≥ 2

√
nM1(G)− 4m2 + 2mn

n2
.

Thus the result follows.
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3. Lower bounds based on a minmax principle

In this section we introduce a principle for finding several lower bounds
for the signless Laplacian spread of a graph.

Let Bn denote the unit ball in Rn, that is, the set of vectors in Rn such
that ‖x‖ ≤ 1. The next theorem gives a lower bound on the spread of a
real symmetric matrix A. The result is actually known in a slightly different
form (see below), but we give a new proof of this inequality, using ideas from
minmax theory.

Theorem 14. Let A be a real symmetric matrix of order n. Then

s(A) ≥ 2‖Ax− (xTAx)x‖ for all x ∈ Bn. (10)

Proof. Lemma 1 in [22] says that s(A) = 2mint∈R ‖A − tIn‖ where the
minimum is over all t ∈ R (this follows easily from the spectral theorem).
Therefore

(1/2)s(A) = mint∈R ‖A− tIn‖
= mint∈R maxx∈Bn ‖(A− tIn)x‖
≥ maxx∈Bn mint∈R ‖Ax− tx‖
= maxx∈Bn ‖Ax− (xTAx)x‖.

(11)

The inequality above follows from standard minmax-arguments. In fact,
for any function f = f(x, t) defined on sets X and T , we clearly have
inft′∈T f(x, t′) ≤ f(x, t) ≤ supx′∈X f(x′, t) for all x ∈ X and t ∈ T . The
desired inequality is then obtained by taking the infimum over t in the last
inequality, and then, finally, the supremum over x. The final equality in (11)
follows as this is a least-squares problem in one variable t, for given x ∈ Bn,
so geometrically t is chosen so that tx is the orthogonal projection of Ax
onto the line spanned by x. The desired result now follows from (11).

Below we rewrite the bound in the previous theorem. First, however, note
from the proof that the bound in (11) expresses the following: for any unit
vector x, twice the distance from Ax to the line spanned by x is a lower bound
on the spread. Thus, the bound has a simple geometrical interpretation. This
may be useful, in specific situations, in order to find an x which gives a good
lower bound.

Now, a straightforward computation shows that

‖Ax− (xTAx)x‖2 = xTA2x− (xTAx)2

12



so Theorem 14 says that

s(A) ≥ 2max
x∈Bn

√
xTA2x− (xTAx)2. (12)

Therefore this result is actually the result presented in [27, Theorem 4].
In [27] the authors state that this result, in fact, goes back to Bloomfield and
Watson in 1975, [4, (5.3)], and it was rediscovered by Styan [37, Theorem 1].
See also [20, section 5.4] and [21].

The result in Theorem 14 may also be reformulated in terms of a nonzero
vector y = (y1, y2, . . . , yn). Then x = (1/‖y‖)y is a unit vector, and a simple
calculation, using (12), gives

s(A) ≥ 2

(∑
i y

2
i

∑
i τ

2
i − (

∑
i yiτi)

2)1/2∑
i y

2
i

(13)

where
τ = Ay = (τ1, τ2, . . . , τn).

Remark 15. From the equality case of Cauchy-Schwarz Theorem, the bound
in (13) is equal to zero when the vector τ and y are a linear combination of
the vector e.

We may now obtain different lower bounds on the signless Laplacian
spread sQ(G), for a graph G, by applying Theorem 14 to the signless Lapla-
cian matrix QG and choosing some specific unit vector x, or a nonzero vector
y, and use (13).

For instance, consider the simple choice x = ei, the ith coordinate vector.
Then QGei− (eTi QGei)ei = Q(i)− diei (where Q

(i)
G is the i-th column of QG).

This gives
sQ ≥ 2max

i

√
di = 2

√
Δ

which gives a short proof of the second bound (when Δ − δ ≤ 1) in Theo-
rem 10. Another application of this principle is obtained by using x as the
normalized all ones vector, which gives the following lower bound.

Corollary 16. Let G be a graph of order n. Then

sQ(G) ≥ 4

n

√
nM1(G)− 4m2. (14)
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Proof. We consider (12) with A = QG and x = (1/
√
n)e where e denotes

the all ones vector. Then xTA2x = (1/n)eTQ2
Ge. Let d = (d1, d2, . . . , dn) be

the vector whose components are the vertex degrees. So AGe = d and

eTQ2
Ge = eT (D + AG)

2e
= eTD2e+ eTA2

Ge+ eTAGDe+ eTDAGe

= M1(G) + ‖AGe‖2 + (AGe)
Td+ (De)TAGe

= 4M1 (G) .

Thus (12) gives

sQ(G) ≥ 2
√
4M1(G)/n− (4m/n)2

= (4/n)
√
nM1 (G)− 4m2,

and the result follows.

Remark 17. The lower bounds (14) and (9) are incomparable. Note that for
regular graphs (14) is worse than (9) as it is equal to zero and (9) becomes
2
√
r, with r vertex degree of the graph. However, for G = K1,n−1 (14) is

equal to 4(n−2)√n−1
n

and (9) is 2(n−2)√n−1
n

.

The following result characterizes the cases which the lower bound in (9)
is better than the lower bound in (14) and the proof follows directly by
equivalence of the inequalities.

Remark 18. The lower bound (9) improves the lower bound in (14) if and

only if 2m
n
≥ 3M1(G)

6m+n
.

Next, we apply Theorem 14 using the degree vector d = (d1, d2, . . . , dn).
This gives the following result; it follows directly from (13).

Corollary 19. Let G be a graph. Then

sQ(G) ≥ 2

(∑
i d

2
i

∑
i α

2
i − (
∑

i diαi)
2)1/2∑

i d
2
i

(15)

where αi = di+dimi, for i ≤ n, where mi is the average degree of the vertices
that are in NG(i).

14



Next, since G is a graph without isolated vertices, we may use (13) with

y = (d−11 , d−12 , . . . , d−1n ),

the n-tuple of the reciprocal of the vertex degrees of G.

Corollary 20. Let G be a graph without isolated vertices. Then

s2Q(G) ≥ 4(∑
i d
−2
i

)2 ·
⎛
⎝∑

i

d−2i

∑
j

⎛
⎝ ∑

vjvk∈E(G)

d−1k + 1

⎞
⎠

2

−
⎛
⎝∑

i

(
∑

vivk∈E(G)

(didk)
−1 + d−1i )

⎞
⎠

2⎞
⎠ .

Proof. The vector τ =(τ1, τ2, . . . , τn) = Qy then satisfies

τi = 1 +
∑

vivj∈E(G)

d−1j .

Moreover,

(1) (
∑n

i=1y
2
i )

2
=

(
n∑

i=1

1
d2i

)2

.

(2)

(
n∑

i=1

τ 2i

)
=

n∑
i=1

(
1 +

∑
vivj∈E(G)

1
dj

)2

.

(3)

(
n∑

i=1

yiτi

)2

=

(
n∑

i=1

(
1
di
+

∑
vivk∈E(G)

1
dkdi

))2

.

Then, considering x = (1/‖y‖)y in (13), the result follows.

We now establish some other lower bounds on sQ(G) based on other
principles. In what follows the vector of second degrees, denoted by d(2), is
the vector whose components are dimi, where mi is the average degree of the
vertices that are in NG(i).

Theorem 21. Let G be a graph with vector degrees d =(d1, d2, . . . , dn). More-

over, consider d(2)=
(
d
(2)
1 , d

(2)
2 , . . . , d

(2)
n

)
the vector of second degrees of G.

Then

sQ(G) ≥

∣∣∣∣∣∣∣∣

n∑
i=1

d3i +
n∑

i=1

did
(2)
i

M1 (G)
−Υ

∣∣∣∣∣∣∣∣
(16)

15



with

Υ = min
vpvq∈E(G)
d(vq)=Δ

⎧⎨
⎩Δ+ dp

2
−
√(

Δ+ dp
2

)2

+ 1−Δdp

⎫⎬
⎭ .

Note that if G is a bipartite graph then Υ = 0 = qn(G).

Proof. In [29, Theorem 6] the following lower bound for the spread s(B)
of an Hermitian matrix B = (bij) was shown

s(B) ≥ max
p �=q

∣∣∣∣∣∣
eTB3e

eTB2e
−

bpp + bqq ±
√
(bpp − bqq)

2 + 4 |bpq|2
2

∣∣∣∣∣∣ .
Replacing B by Q = QG one has

eTQ3e = 4

(
n∑

i=1

d3i +
n∑

i=1

did
(2)
i

)
.

By the proof of Corollary 16 we get

eTQ2e = 4M1 (G) .

Then

eTB3e

eTB2e
=

eTQ3e

eTQ2e
=

4

(
n∑

i=1

d3i +
n∑

i=1

did
(2)
i

)
4M1 (G)

.

Moreover, from the proof of Theorem 6 in [29] one sees that

bpp + bqq ±
√

(bpp − bqq)
2 + 4 |bpq|2

2

corresponds to the smallest eigenvalue of the 2× 2 submatrix of B,(
bpp bpq
bpq bqq

)
,

and we will see that the minimum (for the case of Q) corresponds to the

smallest eigenvalue of some 2 × 2 submatrix of Q with the form

(
dp 1
1 dq

)
.

Two cases must be considered.

16



(1) The submatrix is

(
dp 1
1 dq

)
. By a direct computation, of the mentioned

eigenvalue, we obtain

λ− =
dp + dq

2
−
√(

dp + dq
2

)2

+ 1− dpdq.

Let x = dp+dq
2

and consider the function

f (x) = x−
√
x2 + α, x ∈ (0,∞) ,

with α < 0. From the derivative f ′ (x) = 1 − x√
x2+α

, one easily sees

that f ′ (x) < 0, so f (x) is strictly decreasing, thus the minimum

Υ = min
vpvq∈E(G)

⎧⎨
⎩dp + dq

2
−
√(

dp + dq
2

)2

+ 1− dpdq

⎫⎬
⎭

can not be obtained for small degrees. Recall that the maximum vertex
degree is denoted by Δ. We conclude that

Υ = min
vpvq∈E(G)
d(vq)=Δ

⎧⎨
⎩Δ+ dp

2
−
√(

Δ+ dp
2

)2

+ 1−Δdp

⎫⎬
⎭ .

(2) The submatrix is

(
dp 0
0 dq

)
.

It is clear that its smaller eigenvalue is

min {dp, dq} ,
thus Υ = δ is the minimum vertex degree of G. We recall the above
function f (x) = x − √x2 + α, x ∈ (0,∞) with α < 0. If x = δ, then
δ ≤ dp+dq

2
, implies

f (δ) = δ −
√
δ2 + α ≥ f

(
dp + dq

2

)
=

dp + dq
2

−
√(

dp + dq
2

)2

+ α.

17



As the constant α in function f equals the negative number α = 1 − dpdq,
we have

f (δ) = δ −
√
δ2 + α ≥ dp + dq

2
−
√(

dp + dq
2

)2

+ 1− dpdq.

Moreover, as

δ ≥ δ −
√
δ2 + α ≥ dp + dq

2
−
√(

dp + dq
2

)2

+ 1− dpdq,

the result follows.

4. Upper bounds

In [6], using the Mirsky’s upper bound mentioned above, it was shown
that for a graph G with n ≥ 5 vertices and m ≥ 1 edges, the following
inequality holds

sL (G) ≤
√
2M1(G) + 4m− 8m2

n− 1
.

Here equality holds if and only if G is one of the graphs Kn, G(n
4
, n
4
), K1 ∨

2Kn−1
2
, K n

3
∨2Kn

3
, K1∪Kn−1

2
,n−1

2
, Kn

3
∪Kn

3
,n
3
. The graph G(r, s) is the graph

obtained by joining each vertex of the subgraph Ks of Kr ∨ Ks to all the
vertices of Ks of another copy of Kr ∨ Ks. Here G ∨ G′ is the usual join
operation between two graphs G and G′.

Theorem 22. Let G be an (n,m)-graph. Then

sQ(G) ≤
√√√√2

(
n∑

i=1

d2i + 2m

)
− 8m2

n
=

√
2M1 (G) + 4m− 8m2

n
. (17)

The equality is attained if and only if G � Kn
2
,n
2
.

Proof. Since Q = Q(G) is a normal matrix, by applying Theorem 1 to Q
we obtain

sQ(G) = s(Q) ≤
√
2 ‖Q‖2F −

2

n
(trQ)2

18



with equality if and only if the eigenvalues q1, q2, . . . , qn satisfying the fol-
lowing condition

(∗) q2 = q3 = · · · = qn−1 =
q1 + qn

2
.

As ‖Q‖2F = M1(G) + 2m and trQ = 2m, the result follows. If condition (∗)
holds then

trQ = nq2

so

q2 =
2m

n
=

1

2

eTQ (G) e

eTe
≤ 1

2
q1,

by [35, Lemma 1.1]. Then

q1 + qn = 2q2 ≤ q1

so qn = 0 and q2 =
1
2
q1. This gives

q1 = 2q2 =
4m

n
.

Thus, G is a regular bipartite graph and the statement holds. Conversely, if
G � Kn

2
,n
2
, by a standard verification, the inequality in Theorem 22 holds

with equality.

Corollary 23. Let Gk be a k-regular graph with n vertices. Then

sQ(G) ≤
√
2nk.

Here equality is attained if and only if G � Kn
2
,n
2
.

Proof. We get M1(Gk) = nk2 and m = nk
2
. Thus,

2M1(Gk)+4m− 8m2

n
= 2nk2+4

nk

2
− 8

n

(
nk

2

)2

= 2nk2+2nk−2nk2 = 2nk.

By Theorem 22, the result now follows. If G � Kn
2
,n
2
, then G is a reg-

ular bipartite graph with k = n
2
, so

√
2nk =

√
2nn

2
= n = μ1(Kn

2
,n
2
) =

sQ(Kn
2
,n
2
).
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Corollary 24. Let G be an (n,m)-graph. Then

sQ(G) ≤
√
2m(

2m

n− 1
+

n− 2

n− 1
Δ + (Δ− δ)(1− Δ

n− 1
)) + 4m− 8m2

n
. (18)

The equality is attained if and only if G � Kn
2
,n
2
.

Proof. In [7] it was shown that

M1(G) ≤ m(
2m

n− 1
+

n− 2

n− 1
Δ + (Δ− δ)(1− Δ

n− 1
)) (19)

with equality if and only if G is either a star, a regular graph or a complete
graph KΔ+1 with n − Δ − 1 isolated vertices. Replacing M1(G) in (17) by
its upper bound in (19) the result follows. Equality holds in (18) if and only
if equality holds in both (17) and (19), or equivalently G � Kn

2
,n
2
.

5. Comparison of bounds

This section deals with a comparison of some of the bounds presented
in this work. We firstly compare the bound in Theorem 11 with the lower
bound for sQ(G) (depending on same parameters) found in [26, Corollary
2.3]:

sQ(G) ≥ 1

n− 1

(
(nΔ)2 + 8(m−Δ)(2m− nΔ)

) 1
2 .

Let L1(G) and L2(G) denote the bound from Theorem 11 and [26], re-
spectively, so

L1(G) =
(
(Δ− δ)2 + 2Δ + 2δ + 4

) 1
2 ,

L2(G) = 1
n−1 ((nΔ)2 + 8(m−Δ)(2m− nΔ))

1
2 .

Observe that L1(G) only depends on the minimum and maximum degrees,
not n and m. Let d̄ = (1/n)

∑n
i=1 di = 2m/n denote the average degree in

G. So

L2(G) = n
n−1

(
Δ2 + 8(m−Δ)(2m−nΔ)

n2

) 1
2

= n
n−1
(
Δ2 + (4d̄− 8Δ

n
)(d̄−Δ)

) 1
2

which shows that L2(G) is determined by the maximum and average degree
as well as n. Here d̄−Δ ≤ 0, and d̄−Δ = 0 precisely when G is regular.

The next result relates the two lower bounds as a function of certain
graph properties.
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Remark 25. Let G be a an (n,m)-graph with n > 2.

(i) Assume G is a k-regular graph. Then L1(G) = 2
√
k + 1 and L2(G) =

n
n−1k. Therefore, L2(G) > L1(G) except when k ≤ 3 (and n arbitrary)
or k = 4 and n ≥ 10.

(ii) Assume G is connected and contains a pendant vertex. Then L2(G) ≤
n

n−1Δ and L1(G) =
√
Δ2 + 7. In particular, L2(G) < L1(G) holds if

2n−1
(n−1)2Δ

2 < 7.

In fact, for (i) consider the case when G is regular, say of degree k. The
two expressions follow from the calculation above as d̄ = δ = Δ = k. Then
L2(G) ≤ L1(G) gives n

n−1k ≤ 2
√
k + 1, or 1 − 1

n
≥ k

2
√
k+1

. Here the right
hand side is greater than 1 precisely when k ≥ 5, and the conclusion then
follows.

(ii) Since there is a pendant vertex, δ = 1. This gives

L1(G) =
√
(Δ− 1)2 + 2Δ + 2 + 4 =

√
Δ2 + 7.

We have Δ > δ = 1, for if Δ = 1, G would be a perfect matching, contra-
dicting that G is connected and n > 2. Therefore d̄ −Δ < 0. Moreover, as
G is connected, m ≥ n− 1 ≥ Δ. So m ≥ Δ, and using that 2m =

∑
i di, we

easily derive 4d̄ ≥ 8Δ/n. Therefore

L2(G) =
n

n− 1

(
Δ2 + (4d̄− 8Δ

n
)(d̄−Δ)

) 1
2

≤ n

n− 1

(
Δ2
) 1

2 =
n

n− 1
Δ.

Therefore, if n
n−1Δ <

√
Δ2 + 7, then L2(G) < L1(G). The last statement

follows from this.
Consider again our lower bound on the signless Laplacian spread sQ(G)

η(G) := 2max
x∈Bn

‖Qx− (xTQx)x‖. (20)

In the proof we obtained the bound by some calculations in which a single
inequality was involved, namely when we used that “minmax” is at least as
large as “maxmin”, for the function involved. Unfortunately, we cannot show
that equality holds here. The reason for this is basically that ‖(Q − tIn)x‖
is not a concave function of x and, also, Bn is not a convex set, so general
minmax theorems may not be applied to our situation.
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However, it is interesting to explore further the quality of the best bound
one gets from the minmax principle. To do so, consider the function

f(x) = 2‖Qx− (xTQx)x‖

so that η(G) = maxx∈Bn f(x). Note that f is a complicated function, ob-
tained from a multivariate polynomial of degree six (by taking the square
root, although that can be removed for the maximization). We consider an
extremely simple approach to approximately maximize f over the unit ball;
we perform a few iterations K of the following gradient method with a step
length s > 0:

Algorithm: Simple gradient search.

1. Let x = (1/
√
n)e, and η = f(x).

2. for k = 1, 2, . . . , K
(i) compute a numerical approximation g to the gradient of f at x,
(ii) gradient step and projection: let y := x+ s · g and y := (1/‖y‖)y,
(iii) update: η := max{η, f(y)} and x := y.

3. Output η.

In each iteration, we make a step in the direction of the (numerical) gradient,
even if the new function value could be less. Thus we avoid line search. The
disadvantage is that we may not approximate a local maximum so well, but
the advantage is that we can escape a local maximum and go towards another
with higher function value. The procedure is very simple, and heuristic, and
we typically only perform a few iterations K (around 10 or 20). We have
used constant step length s, but also variable step length (being a decreasing
function of the iteration number).

In the table below we give some computational results, for 5 random,
connected graphs, showing all previous lower bounds we have discussed and
the new bound η. The notation in the table is the following:
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liu2.2 = [26],Theorem 2.2

liu2.3 = [26],Corollary 2.3

meg1 = bound in Theorem 13

meg2 = bound in Theorem 11

Ncon = bound in Corollary 16

Z1 = from Theorem 14 (minmax principle), using inverse of degrees

Z2 = from Theorem 14, using vector of d−3i

η = best bound from simple gradient method for the function η(x), 10 iterations

spread = exact sQ spread.

n m Δ δ liu2.2 liu2.3 meg1 meg2 Ncon Z1 Z2 η spread
40 634 36 27 32.60 28.68 11.91 14.53 7.76 11.76 19.31 38.39 39.19
40 519 32 20 26.99 21.38 11.81 15.87 11.96 17.75 26.68 31.07 36.03
40 322 23 9 17.07 11.06 9.97 16.25 11.83 17.79 23.16 25.14 26.34
40 273 19 9 14.42 9.69 8.98 12.65 10.22 14.87 18.41 20.48 22.50
40 346 22 12 18.01 13.74 9.66 13.11 9.81 15.00 21.82 23.94 26.33

For the last example above we next show the value of η during the 10
iteration of the gradient search algorithm, and we see that that maximum,
in this case, was found in iteration 4:

iteration 1 2 3 4 5 6 7 8 9 10
f(x) 9.80 21.77 23.41 23.94 22.81 18.77 22.34 17.32 23.20 19.34

These, and similar, experiments clearly show that η(G) is a very good
lower bound on the signless Laplacian spread sQ(G). Although the exact
computation of η(G) may be hard, we see that a simple gradient algorithm
finds very good approximations, and lower bounds on sQ(G), in a few itera-
tions. Of, course, the result of such an algorithm is not an analytical bound
in terms of natural graph parameters. But every bound needs to be com-
puted, and, in practice, its computational effort should always be compared
to the work of using an eigenvalue algorithm for computing the largest and
smallest eigenvalue of Q, and finding sQ(G) in that way.

Finally, we remark that it is possible to use the results above to find
such an analytical bound which is quite good: compute the exact gradient
(of f(x)2) at the constant vector and make one iteration in the gradient
algorithm; let x̂ be the obtained unit vector, and compute the bound f(x̂).
We leave this computation to the interested reader.
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spread of graphs: Lower bounds and relations with invariant param-
eters, Linear Algebra Appl. 486 (2015): 494–503.

[3] E. R. Barnes, A. J. Hoffman. Bounds for the spectrum of normal matri-
ces, Linear Algebra Appl. 201 (1994): 79–90.

[4] P. Bloomfield, G. S. Watson. The inefficiency of least squares,
Biometrika 62 (1975): 121–128.

[5] R. A. Brualdi, H.J. Ryser. Combinatorial Matrix Theory, Cambridge
University Press, Cambridge, 1991.

[6] X. Chen, K. Ch. Das. Some results on the Laplacian spread of a graph,
Linear Algebra Appl. 505 (2016): 245–260.

[7] K. Ch. Das. Maximizing the sum of the squares of the degrees of a graph,
Discrete Math. 285 (2004): 57–66.

[8] K. Ch. Das, S. A. Mojallal. Relation between signless Laplacian energy,
energy of graph and its line graph, Linear Algebra Appl. 493 (2016):
91–107.
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