State-of-the-art in nonlinear finite element modeling of isolated planar reinforced

concrete walls

Kolozvari, Kristijan

Biscombe, Lauren

Dashti, Farhad

Dhakal, Rajesh P.

Gogus, Aysegul

Gullu, M. Fethi

Henry, Richard S.

Massone, Leonardo M.

Orakcal, Kutay

Rojas, Fabian

Shegay, Alex

Wallace, John

© 2019 Elsevier LtdA number of finite element modeling approaches for reinforced concrete (RC) structural walls have recently become available for both research purposes and design applications. Five conceptually-different state-of-the-art finite element models for RC walls are described and evaluated in this paper, including models based on either a fixed-crack or a rotating-crack approach for simulating the biaxial behavior of concrete under plane-stress state, models characterized with either a single- or a multi-layered representation of the wall cross-section, and models with or without consideration of various individual failure mechanisms (e.g., buckling of reinforcement, out-of-plane instability). Modeling approaches were validated against experimental data obtained for five benchmark RC wall specimens, all with rectangular cross-sections, yet are differentiated by a range of salient response characteristics (e.g., aspect ratio, axial load, failure mechanism), in order to asses