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Abstract

Using 1D and 2D particle-in-cell simulations of a plasma with a growing magnetic field B, we show that ions can
be stochastically accelerated by the ion-cyclotron (IC) instability. As B grows, an ion pressure anisotropy

∣∣>p̂ pi i, , arises due to the adiabatic invariance of the ion magnetic moment ( ∣∣p i, and p⊥,i are the ion pressures
parallel and perpendicular to B). When initially βi=0.5 ( ∣ ∣b pº Bp8i i

2, where pi is the ion isotropic pressure),
the pressure anisotropy is limited mainly by inelastic pitch-angle scattering provided by the IC instability, which in
turn produces a nonthermal tail in the ion energy spectrum. After B is amplified by a factor of ∼2.7, this tail can be
approximated as a power law of index ∼3.4 plus two nonthermal bumps and accounts for 2%–3% of the ions and
∼18% of their kinetic energy. On the contrary, when initially βi=2, the ion scattering is dominated by the mirror
instability, and the acceleration is suppressed. This implies that efficient ion acceleration requires that initially,
βi1. Although we focus on cases where B is amplified by plasma shear, we check that the acceleration occurs
similarly if B grows due to plasma compression. Our results are valid in a subrelativistic regime where the ion
thermal energy is ∼10% of the ion rest-mass energy. This acceleration process can thus be relevant in the inner
region of low-luminosity accretion flows around black holes.
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1. Introduction

Stochastic (or second-order Fermi) acceleration by plasma
turbulence is considered a viable mechanism for producing
nonthermal particles in several astrophysical environments.
This process can, in principle, be driven by MHD plasma
waves (e.g., Chandran 2003; Cho & Lazarian 2006; Lynn et al.
2014) and kinetic plasma modes (e.g., Dermer et al. 1996;
Petrosian & Liu 2004). In this work, we use particle-in-cell
(PIC) plasma simulations to show that ions can be stochasti-
cally accelerated by ion-cyclotron (IC) waves driven unstable
in the presence of an ion pressure anisotropy with ∣∣>p̂ pi i, ,
(where p⊥,i and ∣∣p i, are the ion pressures perpendicular and
parallel to the local magnetic field B, respectively).

The condition ∣∣¹p̂ pi i, , is naturally expected in turbulent,
weakly collisional plasmas. In these environments, Coulomb
collisions are not able to break the adiabatic invariance of the
magnetic moment μi of ions, which is defined as m º v̂ Bi i,

2 ,
where v⊥,i is the ion velocity perpendicular to B and ∣ ∣= BB .
Thus, if B grows (decreases), the conservation of μi will
naturally produce a pressure anisotropy with ∣∣>p̂ pi i, ,
( ∣∣<p̂ pi i, , ). Examples of weakly collisional astrophysical
plasmas where the condition p⊥,i¹pP,i is possible are low-
luminosity accretion disks around compact objects (e.g.,
Sharma et al. 2006), the intracluster medium (ICM; Schekochihin
et al. 2005; Lyutikov 2007), and the heliosphere (e.g., Bale et al.
2009; Maruca et al. 2011; Verscharen et al. 2019).

In these systems, the growth of ion pressure anisotropy is
expected to be regulated by kinetic instabilities, which break
the adiabatic invariance of μi via pitch-angle scattering of the
ions. In the p⊥,i>pP,i regime, there are two relevant
instabilities: the mirror and the IC instabilities. The mirror
instability consists of nonpropagating, compressional modes,

with their dominant modes having wavevectors k oblique to the
direction of B (Hasegawa 1969; Southwood & Kivelson 1993).
The IC instability, on the other hand, consists of propagating
electromagnetic modes, with their dominant waves having k B
(Anderson et al. 1991; Gary 1992). Whether the ion pitch-angle
scattering is dominated by the IC or mirror instability
essentially depends on how fast the instabilities grow for a
given plasma regime. In this work, we show that, in a regime
dominated by the IC instability, significant nonthermal ion
acceleration can occur due to scattering by the IC waves.
Our study will use PIC plasma simulations to study a

homogeneous plasma in which ion and electron pressure
anisotropies are self-consistently produced by the continuous
growth of a background magnetic field B. In our simulations,
the magnetic field will grow on timescales significantly longer
than the initial, exponential growth regime of the mirror and IC
instabilities. This will allow us to capture the long-term,
saturated state of the instabilities, which should be the
dominant regime in astrophysical systems where B experiences
significant amplifications. In most of our simulations, the
magnetic field will be amplified through imposing a slow shear
motion in the plasma, which will increase B due to magnetic
flux conservation. However, we will also use simulations of
compressing plasmas to show that our main results are fairly
independent of the specific mechanism that drives the growth
of B. In this study, we focus on conditions applicable to the
inner regions of low-luminosity accretion flows around black
holes. This will be done by assuming in all of our runs a hot
plasma with initially equal ion and electron temperatures
(Ti=Te) and with =k T m c 0.05B i i

2 (where kB is the
Boltzmann constant, mi is the mass of the ions, and c is the
speed of light).
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Our paper is organized as follows. In Section 2 we present
our simulation method and setup. In Section 3 we use 2D
simulations to show that ions can be accelerated by the IC
instability under the condition that initially, βi1
( ∣ ∣b pº Bp8i i

2, where pi is the ion isotropic pressure). In
Section 4 we use 1D simulations to clarify the role of the IC
and mirror modes in the acceleration, as well as to show that
our results are independent of the rate at which B is amplified
and the numerical ion-to-electron mass ratio, mi/me. In
Section 5 we describe the acceleration in further detail,
connecting the growth of IC modes of different wavenumber
k with the acceleration of ions of different energy. In Section 6
we show that our results are fairly independent of whether B is
amplified via plasma shear or compression. In Section 7 we
summarize our results and present our conclusions. Addition-
ally, in Appendix A we provide details on the implementation
of our 1D simulations, and in Appendix B we use linear theory
to analyze the applicability of our simulation results to realistic
astrophysical environments.

2. Simulation Setup

We use the PIC code TRISTAN-MP (Buneman 1993;
Spitkovsky 2005) to simulate both a shearing and a compressing
plasma made of ions and electrons. In the shearing case, the
plasma is initially in the presence of a homogeneous initial
magnetic field that points along the x-axis, ˆ=B B x0 . This field is
amplified by imposing a shear plasma velocity ˆ= -v sxy
(represented by red arrows in Figure 1(a)), where x is the distance
along x̂ and s is the shear rate. This way, the background
magnetic field B in the simulation permanently increases and
changes direction due to magnetic flux conservation, with its
y-component evolving as dBy/dt=−sB0, while dBx/dt=
dBz/dt=0 (Figure 1(b) shows how B changes orientation for
t>0). Due to μj conservation, this magnetic growth drives

∣∣>p̂ pj j, , during the whole simulation, allowing the triggering
of kinetic instabilities that limit the pressure anisotropies.

Our 2D shearing runs use initially square simulation domains
(as depicted in Figure 1(a)) that follow the mean shear motion
of the plasma. Therefore, the 2D domain acquires a
parallelogram shape for t>0 (as shown in Figure 1(b)). The
positions of the plasma particles are therefore given in terms of
the so-called “shearing coordinates,” which are described both
in Appendix A of this paper and in the Appendix of Riquelme
et al. (2012). In our 1D shearing runs, on the other hand, the
simulation domain corresponds to the blue lines shown in
Figures 1(a) and (b), which also move with the shearing flow.

Since the symmetry axis of this 1D domain is permanently
parallel to B, our 1D approach allows us to capture waves that
propagate parallel to B. The self-consistent implementation of
the 1D runs requires a small change in the definition of our
shear coordinates, which is explained in detail in Appendix A.
In Section 4.1 we show that our 1D runs give essentially the
same results as our 2D runs as long as the dominant instabilities
produce modes parallel to B, such as the IC instability.
In our compressing plasma runs, on the other hand, the

simulation box is compressed along the two directions
perpendicular to the background field B, producing the
permanent growth of both B and p⊥,j/pP,j. For this, we use
the same setup as in Sironi & Narayan (2015). In this case, B
evolves as ˆ ( )= +B xB qt10

2, where the constant q provides
the timescale for the plasma compression.
Our plasma parameters are the initial temperature of ions and

electrons (Ti and Te), the initial ratio between ion pressure and
magnetic pressure (b i

init), the ion-to-electron mass ratio mi/me,
and the ion “magnetization,” which is defined as the ratio
between the initial cyclotron frequency of the ions (wc i,

init) and s
(for shearing plasma runs) or q (for compressing plasma runs).
The initial cyclotron frequency of the ions is defined as
w = eB m cc i i,

init
0 , with e and B0 being the magnitude of the

electron and ion electric charges and the initial magnetic field.
As mentioned above, all of our shearing and compressing

simulations initially have Ti=Te and =k T m c 0.05B i i
2 .

Also, these runs use mi/me and ion magnetizations much
smaller than expected in real astrophysical settings.7 Because
of this, the dependence of the ion acceleration on these

Figure 1. Panels (a) and (b) show a sketch of the simulation domain in our 2D
shearing simulations at t=0 and t>0, respectively. The 2D domain follows
the shearing flow of the plasma (red arrows), acquiring a parallelogram shape.
Magnetic flux conservation changes the magnitude and orientation of the
background magnetic field B, which is always parallel to the nonhorizontal
sides of the parallelogram. The blue lines show the domain of our 1D runs.

Table 1
Parameters of the Simulations

Runs w sc i,
init mi/me b i

init Nppc L RL i,
init[D]

(or w qc i,
init )

S2m2b0.5 800 2 0.5 160 60[2]
S2m2b2 800 2 2 160 60[2]
S2m10b0.5 800 10 0.5 160 60[2]
S2m10b2 800 10 2 160 60[2]
S1m2b0.5 800 2 0.5 640 150[1]
S1m2b2 800 2 2 640 150[1]
S1m8b0.5 800 8 0.5 640 150[1]
S1m32b0.5 800 32 0.5 640 150[1]
S1m128b0.5 800 128 0.5 1280 150[1]
S1m8b0.5b 400 8 0.5 640 150[1]
S1m8b0.5c 1600 8 0.5 640 150[1]
S1m8b0.5d 3200 8 0.5 3600 150[1]
C1m8b0.5a 1600 8 0.5 3600 190[1]
C1m8b0.5b 3200 8 0.5 3600 190[1]
C1m16b0.5a 1600 16 0.5 3600 190[1]
C1m16b0.5b 3200 16 0.5 3600 190[1]

Note.Simulation parameters: the initial cyclotron frequency of the ions wc i,
init (in

units of s in the shearing runs and q in the compressing runs), mi/me, b i
init, the

number of particles per cell Nppc (considering ions and electrons), and the
initial box size in units of the initial ion Larmor radius L RL i,

init (with the number
of dimensions D in brackets). In 2D, L corresponds to the height and width of
the box. In all runs, initially, =k T m c 0.05B i i

2 , Te=Ti, the electron skin
depth c/ωp,e/Δx=15 (where Δx is the grid point separation), and the speed of
light c=0.225Δx/Δt (shearing runs) and 0.15Δx/Δt (compressing runs),
where Δt is the simulation time step.

7 For instance, at ∼10 Schwarzschild radii from the supermassive black hole
Sgr A*, one expects ωc,i/s∼108 (e.g., Ponti et al. 2017), where we have
approximated s as the Keplerian angular frequency at that radius.
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parameters will be carefully assessed, with our main conclusion
being that neither mi/me nor w sc i,

init (or w qc i,
init ) play a

significant role.
The numerical parameters in our runs are the number of

macroparticles per cell (Nppc), the electron skin depth in terms of
grid point spacing (c/ωp,e/Δx, where w p= n e m4p e e e,

2 2 is the
square of the electron plasma frequency and ne is the electron
number density), and the box size in terms of the initial ion Larmor
radius (L RL i,

init; w=R vL i i c i,
init

th, ,
init, where =v k T mi B i ith,

2 ).
Table 1 shows a summary of our key simulations. We ran a
series of simulations ensuring that the numerical parameters do not
affect our results. The runs used just for numerical convergence are
not in Table 1.

3. Ion Acceleration by the IC Instability

We use 2D shearing plasma simulations to show that ions
can be stochastically accelerated by the IC modes. First, we
show the example of runs dominated by the IC instability (with
b = 0.5i

init ), demonstrating that in this case, a prominent
nonthermal tail appears. Then, using simulations with
b = 2i

init , we show that for b  1i
init , the mirror instability

dominates, with a corresponding suppression of the accelerat-
ing effect of the IC modes. We use 2D simulations with
mi/me=2 and 10 to show that, as far as the ion physics is
concerned, our results are fairly independent of the value of
mi/me.

3.1. IC- versus Mirror-dominated Regimes

With solid blue and red lines, Figure 2(a) shows the
respective evolutions of p⊥,i and pP,i for run S2m2b0.5, which
uses b = 0.5i

init , mi/me=2, and w =s 800c i,
init . We see that

until t·s≈1, the evolutions of both p⊥,i and pP,i are in
agreement with the “double adiabatic” prediction (dashed lines;
Chew et al. 1956), which is due to the conservation of μi and
the second adiabatic invariant. At t·s1, the adiabatic
evolution of p⊥,i and pP,i is broken by the appearance of ion
pressure anisotropy instabilities, which produce rapid pitch-
angle scattering of the ions. The electron pressures p⊥,e and pP,e

evolve similarly to the ion case, as shown by the dashed–dotted
blue and red lines in Figure 2(a). The break in the adiabatic
evolution of the electrons is caused by the pitch-angle
scattering provided by the whistler instability, as we will show
in Section 5.2.
Figure 3 shows that the ion pitch-angle scattering in run

S2m2b0.5 is dominated by the IC instability. Indeed,
Figures 3(a)–(c) show a snapshot at t·s=2 of the three
components of dB (where d º - á ñB B B and áñ denotes an
average over the entire box volume). We see that δBx and δBz

are the largest components of dB. And, considering that the
black arrows represent the direction of á ñB , we see that δBx and
δBz (and, therefore, dB) are dominated by nearly parallel
modes, which are consistent with the presence of transverse,
circularly polarized IC modes. The whistler modes are also
nearly parallel and should appear in δBx and δBz as well.
However, their amplitude is expected to be less significant than
that of the IC modes, due to the smaller mass of the electrons
relative to the ions.8 Here δBy shows a mixture of the nearly
parallel modes, plus oblique (nearly perpendicular) modes,
which are consistent with the presence of mirror modes.
Indeed, these modes mainly contribute to the dB components
parallel to the plane of the simulation (they show no δBz

component), which is in line with the expectation that dB of the
mirror modes is nearly perpendicular to ´k B (Pokhotelov
et al. 2004).
The presence of the nearly parallel IC modes can also be

seen from the fluctuations in the electric field, dE, shown in
Figures 3(d)–(f).9 This electric field is expected, since the IC
modes have finite phase velocities, vf, which are related to dE

Figure 2. Panel (a): solid blue and red lines show, respectively, p⊥,i and pP,i for the 2D run S2m2b0.5 (mi/me=2 and b = 0.5i
init ). The dashed–dotted blue and red

lines show p⊥,e and pP,e for the same run. The dashed blue and red lines show the theoretical double adiabatic (CGL) prediction for p⊥,j and pP,j, respectively ( j=i or
e; Chew et al. 1956), while the dotted blue and red lines correspond to p⊥,i and pP,i for the analogous 1D run S1m2b0.5. Panel (b): volume-averaged derivative of the
ion internal energy density dUi/dt (black) and the AV prediction rΔpi (green; see Equation (1)) for the same 2D and 1D runs, S2m2b0.5 (solid) and S1m2b0.5
(dashed). Both dUi/dt and rΔpi evolve very similarly in 1D and 2D, and in both cases, the ion energy gain reproduces the AV prediction fairly well.

8 This is because, for the resonant interaction between ions (electrons) and IC
modes (whistler modes), the effective ion (electron) scattering rate is expected
to be νeff,i∼ωc,i δB

2/B2 (νeff,e∼ωc,eδB
2/B2; see, e.g., Riquelme et al. 2016).

Thus, given that in this setup, one expects νeff,i∼νeff,e∼s (see discussion in
Section 4.3), the contribution of the whistler modes to dBx

2 and dBz
2 in run

S2m2b0.5 should be ∼two times smaller than that of the IC modes.
9 Since our simulations are performed in the “shearing coordinate” frame
(Riquelme et al. 2012), there is no electric field associated with the large-scale
shearing motion of the plasma. Therefore, dE corresponds to the entire electric
field present in the simulation.

3

The Astrophysical Journal, 880:100 (16pp), 2019 August 1 Ley et al.



by ∣ ∣ ∣ ∣d d= fE B v c (this is a consequence of Faraday’s law
applied to the transverse IC modes). The mirror modes, on the
other hand, are “purely growing” (see, e.g., Southwood &
Kivelson 1993), which means that their phase velocity
vanishes. This implies that, as we see in Figure 3, no electric
field associated with the subdominant mirror modes should be
present.

The dominance of the IC modes in run S2m2b0.5 can also be
inferred from the Fourier transforms (FTs) of the three
components of dB (FT(δBx), FT(δBy), and FT(δBz)), shown in
Figure 4. Figures 4(a) and (c) show that essentially all of the
power in FT(δBx) and FT(δBz) is well aligned with the direction
of the mean magnetic field á ñB (shown by the solid black line),
which is consistent with δBx and δBz being dominated by the IC
modes, with a smaller contribution from the whistler waves.10

On the other hand, Figure 4(b) shows that the contribution of
the oblique (nearly perpendicular) mirror modes to FT(δBy) is
comparable to that of the IC modes. However, since δBx and
δBz are the largest components of dB (as seen in Figure 3), our
Fourier analysis confirms that the IC instability contributes the
most to dB.

This scenario, however, changes in the b  1i
init regime, in

which the mirror instability becomes dominant. The transition
from IC-dominated to mirror-dominated regimes can be seen
by directly comparing simulations that only differ in their b i

init.
Figure 5(a) shows (solid lines) the magnetic energy of dB along

different axes as a function of time for run S2m2b0.5
(mi/me=2 and b = 0.5i

init ). This energy is expressed in terms
of the dB components parallel to á ñB (δBP; blue), perpendicular
to á ñB but parallel to the plane of the simulation (δBxy,⊥; red),
and perpendicular to both á ñB and the plane of the simulation
(δBz; green). During most of the simulation, the energy of the
magnetic fluctuations is indeed contained mainly in δBxy,⊥ and
δBz, implying that the IC modes have the largest amplitude
during most of the simulation time. By the end of the run
(t·s=2.5), however, dB 2 becomes comparable to d ^Bxy,

2 and

dBz
2, implying that in the long-term, the mirror fluctuations can

still reach amplitudes comparable to the IC modes. We have
thus decided to concentrate on the regime where the IC
instability clearly dominates the pitch-angle scattering of the
ions by running the simulations until t·s=2.5 (thus with a
maximum B amplification factor of ∼2.7).
Figure 5(b), on the other hand, shows the evolution of the

same magnetic energy components for run S2m2b2
(mi/me=2 and b = 2i

init ). In this run, the ions are under the
same conditions as in run S2m2b0.5 but with a smaller initial
background magnetic field, so that b = 2i

init . We see that in this
case, δBz and δBxy,⊥ are subdominant in the saturated stage of
the instabilities, and the energy in the magnetic fluctuations is
dominated by dB 2. This result indicates that the oblique mirror
modes are more prominent than the IC modes in this case, with
the transition from IC-dominated to mirror-dominated regimes
happening at b ~ 1i

init .
The dominance of the mirror modes in run S2m2b2 can also

be seen from the FT of the three dB components at t·s=2,
which we show in Figure 6. In this case, FT(δBx) and FT(δBy)

Figure 3. Panels (a)–(c): x, y, and z components of the magnetic fluctuation dB for run S2m2b0.5 at t·s=2. The black arrows show the direction of the total
magnetic field B. Panels (d)–(f): same components but for the electric field fluctuation dE.

10 Because of the small-scale separation between ions and electrons in run
S2m2b0.5, Figures 4(a) and (c) do not allow for distinguishing the
contributions from the IC and whistler modes. This distinction, however, can
be achieved by performing FTs of the fields in time and space, which is done in
Section 5.2 using 1D simulations.
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are dominated by the oblique mirror modes,11 and FT(δBz) is
still dominated by the nearly parallel IC modes, which is
consistent with the expectation that the magnetic fluctuations
caused by the mirror modes should be nearly parallel to the
plane of the simulation (Pokhotelov et al. 2004). However, the

fact that δBz is the smallest component of dB (as seen in
Figure 5(b)) implies that in run S2m2b2, the mirror modes
contribute the most to dB.
In order to explore the sensitivity of these results to mi/me, in

Figures 5(a) and (b), we overplot dB 2, δBxy,⊥, and δBz for
simulations S2m10b0.5 and S2m10b2, which have the same
ion conditions as in runs S2m2b0.5 and S2m2b2 (i.e., the same
values of b i

init, k T m cB i i
2, and w sc i,

init ) but with mi/me=10
instead of mi/me=2. We see that for the two b i

init, the

Figure 4.Magnitude of the FTs of δBx, δBy, and δBz for run S2m2b0.5 at t·s=2. The three FTs are normalized by their maximum values. The solid and dotted black
lines indicate the directions parallel and perpendicular to the background magnetic field.

Figure 5. The solid lines show the volume-averaged magnetic energy of dB along different axes and as a function of time for runs S2m2b0.5 (mi/me=2 and
b = 0.5i

init ; panel (a)) and S2m2b2 (mi/me=2 and b = 2i
init ; panel (b)). Here δBP (blue) is the component parallel to á ñB , and δBxy,⊥ (red) and δBz (green) are the

components perpendicular to á ñB but, respectively, parallel and perpendicular to the simulation plane. The thick dotted black and red lines represent the volume-
averaged values of á ñBx

2 and á ñBy
2, respectively, which show how á ñB grows during the simulation. The thin dotted lines show the same quantities but for runs

S2m10b0.5 (mi/me=10 and b = 0.5i
init ; panel (a)) and S2m10b2 (mi/me=10 and b = 2i

init ; panel (b)).

Figure 6. Same as Figure 4 but for run S2m2b2.

11 Figure 6(b) shows a prevalence of the mirror modes quasi-parallel to the x-
axis. This is likely due to the action of the shear, which, due to magnetic flux
freezing, may favor the growth of dB components parallel to the shear velocity.
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evolutions of δBxy,⊥, δBz, and δBP are fairly independent of
mi/me. Thus, the mass ratio does not appear to significantly
affect the relative importance of the IC and mirror instabilities
in the different b i

init regimes.
This result also implies that the effect of the electron pressure

anisotropy on the mirror and IC instabilities is captured well by
our runs. Indeed, although the electron pressure anisotropy is
expected to mainly drive the growth of whistler modes (Gary &
Wang 1996), it can also have an effect in reducing (increasing)
the growth rates of the IC (mirror) modes (Remya et al. 2013;
Riquelme et al. 2016). The fact that in our runs, the dominance
of the IC instability for βi1 occurs similarly for mi/me=2
and 10 implies that this effect is also fairly independent of the
value of mi/me.

Additionally, in Appendix B we use linear theory calculations
to show that the condition b  1i

init for the dominance of the IC
instability should continue to hold even in realistic astrophysical
plasma conditions, with mi/me=1836, w s 800c i,

init , and
Te=Ti. In the next section, we show that this IC dominance also
results in a significant nonthermal ion acceleration, which is
strongly suppressed when the mirror modes dominate.

3.2. Ion Heating and Acceleration

It is well known that in a collisionless, shearing plasma, the
particles are heated by the so-called “anisotropic viscosity”
(AV). Indeed, for a homogeneous plasma subject to shear, the
internal energy density for species j, Uj, evolves as (Kulsrud
1983; Snyder et al. 1997)

( )= D
dU

dt
r p , 1

j
j

where r is the growth rate of the magnetic field (r≡(dB/dt)/
B). Equation (1) is fairly well reproduced in our simulations, as
can be seen from Figure 2(b), which shows the volume-
averaged heating rate of ions dUi/dt (solid black) and rΔpi
(solid green) for run S2m2b0.5.

Since dUi/dt is dominated by the ion pressure anisotropy,
the ion heating is ultimately regulated by the pitch-angle
scattering provided by either the IC or mirror instabilities. In
this section, we show that when this scattering is provided
mainly by the IC modes, it can also give rise to significant
stochastic ion acceleration.

Figure 7(a) shows the evolution of the ion spectrum for run
S2m2b0.5 (b = 0.5i

init , mi/me=2), with the color bar indicating
the time for each spectrum. This simulation shows the rapid
growth of a nonthermal tail that starts once the IC instability grows
and saturates (t·s∼1, as seen in Figure 5(a)). By t·s=2.5, the
tail can be approximated by a power law ( )g gµ - a-dn d 1i i i

s

with spectral index αs≈3.4 plus two bumps (γi is the ion Lorentz
factor). The nonthermal tail at t·s=2.5 reaches Lorentz factors
γi∼10 and contains ∼2%–3% of the ions and ∼18% of their
energy.12 The solid black line in Figure 7(a) represents the final
(t·s=2.5) spectra for the analogous run S2m10b0.5 (with
mi/me=10 instead of 2). The small difference between the
mi/me=2 and 10 cases shows that, as long as the ion
parameters k T m cB i i

2, b i
init, and w sc i,

init are the same, the ion-
to-electron mass ratio does not play a significant role in
determining the ion acceleration efficiency. The independence
of the acceleration mechanism on mi/me, as well as on w sc i,

init ,
will be further tested using 1D simulations in Section 4.
Figure 7(b) shows the evolution of the ion spectra for the 2D

run S2m2b2 (mi/me=2 and b = 2i
init ). In this case, the

growth of the nonthermal energy tail is also present, but with a
slower growth throughout the whole simulation. By t·s=2.5,
the tail can be approximated by a much less pronounced power
law with spectral index αs≈5.9. The solid black line
represents the final spectrum for the analogous run S2m10b2,
with mi/me=10. The small difference between the mi/me=2
and 10 cases suggests that, as in the IC-dominated case, the
ion-to-electron mass ratio is fairly unimportant in determining
the ion acceleration efficiency.
These results strongly suggest that the presence of IC modes

is key for the acceleration of ions. In Section 4 we show that
this is indeed the case, making use of 1D simulations in which
the mirror modes are artificially suppressed. In Section 4 we
will also make use of the low computational cost of 1D
simulations to test the effect of using values of mi/me and
wc i,

init/s that are much larger than the ones used in the 2D runs.
As we will see, we find no significant dependence of the ion
acceleration on these parameters.

Figure 7. Evolution of the ion spectra for runs S2m2b0.5 ( =m m 2i e , b = 0.5i
init ; panel (a)) and S2m2b2 (mi/me=2, b = 2i

init ; panel (b)), which correspond to
regimes dominated by the IC and mirror instabilities, respectively. The color bar indicates the time for each spectrum. The overplotted black lines correspond to the
final spectra of runs S2m10b0.5 (mi/me=10, b = 0.5i

init ; panel (a)) and S2m10b2 (mi/me=10, b = 2i
init ; panel (b)), which, apart from using different mass ratios,

assume the same plasma conditions as runs S2m2b0.5 and S2m2b2, respectively.

12 After fitting the low-energy part of dni/dγi to a thermal Maxwell–
Boltzmann distribution, we define the nonthermal tail through the condition
that dni/dγi is at least a factor of 2 larger than the expectation for the thermal
distribution.
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4. 1D Shearing Simulations

Since the IC modes propagate mainly parallel to the
background magnetic field á ñB , in this section, we study the
ion acceleration due to the IC instability by only capturing
modes with wavevector k parallel to á ñB . We do so by using the
1D version of our shear coordinate simulations (Riquelme et al.
2012). Analogous to what happens in 2D and 3D, in our 1D
shearing runs, the spatial domain of the simulation evolves with
time, following the shearing flow of the plasma. This implies
that the domain rotates and stretches so that the resolved k is
always parallel to á ñB . A detailed description of our 1D setup is
in Appendix A.

In the next section, we show the suitability of the 1D setup to
study problems dominated by modes with k B by comparing
1D runs with 2D simulations that are dominated by the IC
instability. Then, we use the 1D runs to (i) provide further
evidence that the IC modes are the essential ingredient for the
ion acceleration and (ii) explore the dependence of the ion
acceleration on mi/me and w sc i,

init , which will make use of the
low computational cost of the 1D runs.

4.1. 1D versus 2D Comparison

We use runs S1m2b0.5 (1D) and S2m2b0.5 (2D) to compare
the 1D and 2D results. First, we check whether our 1D and 2D
runs give similar ion spectra. Figure 8(a) shows the evolution
of the ion spectrum for run S1m2b0.5 (1D) from t·s=0 to
2.5. We see that the 1D spectral evolution is very similar to the
one of the 2D run S2m2b0.5, shown in Figure 7(a). Indeed,
both spectra can be described as a power law of index αs≈3.4
plus two bumps, with the intermediate-energy bump appearing
at t·s2. A more detailed comparison can be made by
overplotting the final (t·s=2.5) spectrum for run S2m2b0.5
in Figure 8(a) (solid black line). We see that the two final
spectra are very similar, with the main difference being an
∼two times larger maximum energy in the 1D run. This small
difference is to some extent expected, due to the presence of
mirror modes in the 2D case. Indeed, in 2D, we have some
contributions of mirror modes, which, however, are not
conducive to ion acceleration. This explains why the 2D setup
leads to somewhat lower energy gains than in 1D.

In terms of the ion pressure anisotropy, Figure 2(a) shows
pi,P (red) and pi,⊥(blue) for runs S1m2b0.5 (1D; dotted) and

S2m2b0.5 (2D; solid). For both pi,P and pi,⊥, the 1D and 2D
simulations give essentially the same results. In dashed lines,
we show the corresponding double adiabatic behavior (Chew
et al. 1956), which is followed quite well by the two
simulations until t·s≈1. With respect to energy conserva-
tion, Figure 2(b) shows the volume average dUi/dt (black) and
rΔpi (green) for the same runs, S1m2b0.5 (1D; dashed) and
S2m2b0.5 (2D; solid). Here dUi/dt behaves very similarly in
1D and 2D, and in the two cases, it corresponds quite well to
the heating due to AV.
In order to compare the behavior of the magnetic fluctuations

dB, we use δBz, since in the 2D runs, this component is mainly
produced by the IC modes, and it is essentially not affected by
the (subdominant but still present) mirror modes. Figure 9(a)
shows a snapshot of δBz at t·s=2 for the 1D run S1m2b0.5.
We see that in terms of both the dominant wavelength
(» R30 L i,

init) and its amplitude, δBz behaves fairly similarly to
the 2D case, shown in Figure 3(c). Figures 9(b)–(d) show
power spectra of δBz at different simulation times for a more
detailed comparison. In order to reduce the effects of time
variability, we take averages during 1.1<t·s<1.2,
1.8<t·s<2, and 2.2<t·s<2.4, respectively. We see
that the 1D and 2D spectra look quite similar. Their main
difference consists of a small (by a factor of ∼1.5) shift in the
peak of the 1D spectra toward longer wavelengths and a factor
of ∼2 increase in the peak amplitude.
These differences in the δBz spectra can be explained to a

large extent by the small differences in the ion energy spectra.
Indeed, in Section 5.2 we show that the wavenumber k at the
peak of the IC wave spectrum is determined by the resonance
condition with the highest-energy ions, with k∝1/γi. Thus,
since the 1D runs produce maximum ion energies ∼two times
larger than in the 2D case, the wavenumber at the peak should
be reduced by a similar factor.
Something similar occurs with the difference in amplitude of

δBz. For relativistic ions interacting resonantly with parallelly
propagating waves, the effective scattering frequency νeff,i
should scale as (Kulsrud & Pearce 1969)

( )
( )

( )n
w
g

d
µ

B

d B

d kln
. 2i

c i

i

z
eff,

,

0
2

2

Thus, since the ions in the 1D and 2D runs are scattered at
roughly the same rate (given their similar evolution of pP,i and

Figure 8. Evolution of the ion spectra for the 1D runs S1m2b0.5 (mi/me=2, b = 0.5i
init ; panel (a)) and S1m2b2 (mi/me=2, b = 2i

init ; panel (b)). The color bar
indicates the time for each spectrum. The solid black lines show the final spectra (t·s=2.5) of the 2D runs S2m2b0.5 (mi/me=2, b = 0.5i

init ; panel (a)) and S2m2b2
(mi/me=2, b = 2i

init ; panel (b)), which, apart from the different number of dimensions, assume the same plasma conditions as runs S1m2b0.5 and S1m2b2, respectively.
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p⊥,i, as shown in Figure 2(a)), Equation (2) implies that the
peak value of dB k dkz

2 in the 1D case should be roughly two
times larger than in the 2D case, which is seen in panels (b)–(d)
of Figure 9.

Thus, besides a factor of ∼2 difference in the highest energy
of ions (which is likely due to the weak presence of mirror
modes in the 2D runs), the 1D runs reproduce the 2D results
reasonably well and provide a valuable tool to study the effect
of IC waves on ion acceleration. In the next two sections, we
use 1D runs to provide further evidence that the IC modes are
indeed the essential ingredient for ion acceleration and explore
the dependence of the acceleration on mi/me and w sc i,

init .

4.2. The Role of IC and Mirror Modes

Simulations in 1D can be used to further clarify the role of
IC and mirror modes in the acceleration of ions. We do this by
comparing the ion spectra from a 2D simulation where the
mirror modes dominate (b = 2i

init ) with an analogous 1D run
where these modes are artificially suppressed. This is done in
Figure 8(b), which shows in black the final spectrum of the 2D
run S2m2b2, where the mirror modes dominate. In addition,
Figure 8(b) shows the ion spectra at different times for the 1D
run S1m2b2, where the plasma is under the same conditions as
in run S2m2b2. It can be seen that ions tend to be significantly
more accelerated in the 1D case, in which the IC modes
dominate. This shows that the main ingredient for the
acceleration of ions is indeed the scattering by the IC modes,

with the mirror instability suppressing the acceleration. This
suppression is in line with the lack of electric field associated
with the mirror modes, as shown in Figure 3. Thus, when the
mirror modes dominate, the scattering of ions tends to be
elastic, and no acceleration effect should be present.

4.3. mi/me and wc i,
init Dependence

We use 1D simulations to explore the dependence of the ion
acceleration by the IC instability on mi/me and w sc i,

init ,
focusing on the case with b = 0.5i

init . In terms of the evolution
of p⊥,i and pP,i, Figure 10(a) shows the cases of runs S1m8b0.5
(w =s 800c i,

init , mi/me=8; dotted line), S1m128b0.5
(w =s 800c i,

init , mi/me=128; solid line) and S1m8b0.5d
(w =s 3200c i,

init , mi/me=8; dashed line). No significant
difference can be seen between the different mass ratios and
magnetizations. The same thing happens when we look at the
ion energy gain. Figure 10(b) shows dUi/dt (black) and rΔpi
(green) for the same runs. We see that the ion energy gain is
fairly independent of mi/me and w sc i,

init , and in all cases, it
agrees reasonably well with the heating prediction through AV.
Figure 11(a) shows the final ion spectra (t·s=2.5) for

simulations with mi/me=2, 8, 32, and 128 (runs S1m2b0.5,
S1m8b0.5, S1m32b0.5, and S1m128b0.5 in Table 1). In all
simulations, the ions share the same parameters—w =sc i,

init

800, b = 0.5i
init , and = =k T k T m c0.05B i B e i

2—so the only
difference is the value of mi/me. In all cases, the nonthermal

Figure 10. Panel (a): pi,P (red) and pi,⊥ (blue) for 1D runs S1m8b0.5 (dotted),
S1m128b0.5 (solid), and S1m8b0.5d (dashed), all with b = 0.5i

init . Panel (b):
volume-averaged dUi/dt (black) and rΔpi (green) for the same 1D runs and
using the same line styles. Both dUi/dt and rΔpi evolve very similarly in all
runs, and in all cases, the ion energy gain reproduces reasonably well the AV
prediction rΔpi (Equation (1)).

Figure 11. Final ion spectra (t·s=2.5) for 1D simulations with the same
parameters b = 0.5i

init and = =k T k T m c0.05B i B e i
2. The runs in panel (a) have

w = 800c i,
init and mi/me=2, 8, 32, and 128 (respectively, runs S1m2b0.5,

S1m8b0.5, S1m32b0.5, and S1m128b0.5 in Table 1). The runs in panel (b)
have mi/me=8 but with w =s 400c i,

init , 800, 1600, and 3200 (runs S1m8b0.5b,
S1m8b0.5, S1m8b0.5c, and S1m8b0.5d, respectively).

Figure 9. Panel (a) is a snapshot of δBz at t·s=2 for the 1D run S1m2b0.5, which is analogous to the 2D run S2m2b0.5, whose δBz component at t·s=2 is shown
in Figure 3(c). Panels (b)–(d) show the average power spectra of δBz,  k dB dkz

2 , for the same 1D and 2D runs during the periods 1.1<t·s<1.2, 1.8<t·s<2,
and 2.2<t·s<2.4, respectively. Here kP denotes the k component parallel to B in the 2D case, which corresponds to simply k in the 1D case.
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ion tail can be fairly well described as a power law of spectral
index αs≈3.4 plus two bumps occurring at roughly the same
energies. This result shows that, as long as the electrons are
somewhat less massive than the ions, their effect on the ion
acceleration by IC modes becomes negligible. This is
expected given the resonant nature of the interaction between
the unstable IC modes and the ions, which requires the modes
to be left-handed and circularly polarized (e.g., Gary 1992).
This polarization requirement naturally makes it significantly
more difficult for the electrons to interact resonantly with the
IC modes, even for a mass ratio as small as mi/me=2.

Similarly, Figure 11(b) shows the final spectra for simula-
tions with mi/me=8, b = 0.5i

init , and kBTi=kBTe=0.05mic
2

but with w =s 400c i,
init , 800, 1600, and 3200 (runs

S1m8b0.5b, S1m8b0.5, S1m8b0.5c, and S1m8b0.5d, respec-
tively). The spectra get slightly harder as w sc i,

init increases, with
the difference between them being progressively less signifi-
cant as w sc i,

init grows. However, in all cases, the tail can be well
described as a power law of spectral index αs≈3.4 plus two
bumps.

The independence of the ion acceleration on w sc i,
init can be

inferred from the way the effective ion scattering rate νeff,i
provided by the IC waves is related to s. This scattering rate can
be estimated from the evolution of pP,i in a homogeneous
plasma with no heat flux, assuming that B evolves on time and
length scales much larger than w-

c i,
1 and RL,i (which is the case

in our runs). This evolution is given by Equation (1) of Sharma
et al. (2007),

· ( ) ˆ ˆ ( )
  n

¶

¶
+  +  = Dv bb v

p

t
p p p2 :

2

3
, 3

i
i i i

,
, , eff,

where v is the plasma bulk velocity and ˆ ºb B B. In the case
of the shearing plasma ( ˆ= -v sxy), · ( ) =vp 0i, and
ˆ ˆ ˆ ˆ =bb v b b s: x y . Figure 10(a) shows that, after the saturation
of the IC modes, pP,i changes at a rate much smaller than s, so
we can approximate ∂pP,i/∂t≈0. Additionally, ˆ ˆb bx y ranges
between 0.5 at t·s=1 and 0.34 at t·s=2.5. Thus, we
simply assume ˆ ˆ »b b 1 2x y , and Equation (3) becomes

( ) ( )/n » Ds p p
3

2
. 4i i ieff, ,

By comparing the evolution of p⊥,i and pP,i for runs S1m8b0.8
(w =s 800c i,

init ; dotted line) and S1m8b0.8d (w =s 3200c i,
init ;

dashed line), Figure 10(a) shows that the factor pP,i/Δpi is
fairly independent of w sc i,

init . Thus, Equation (4) implies that
νeff,i∝s.
This proportionality between νeff,i and s means that the

average number of scatterings experienced by the ions after
t=2.5 s−1 (at the end of the simulations) should be about the
same in all runs. This property, if the IC modes’ properties are
the same in all simulations (as occurs with the runs shown in
Figure 11(b)), should make the accelerating effect of the IC
modes independent of w sc i,

init .
Our 1D simulations, therefore, show that the ion acceleration

by IC modes is fairly independent of mi/me and w sc i,
init . In the

next section, we use 1D and 2D simulations to describe in
further detail the way that ions of different energy get
accelerated, emphasizing the role played by their resonant
interaction with the IC waves.

5. The Acceleration Mechanism

The two possible sources of energy for the ions in our
simulations are the energy gains due to AV (Equation (1)) and
the work done by the electric field associated with the IC waves
(considering that the electric field associated with the mirror
modes is negligible). In Section 5.1 we identify the contribu-
tions of each of these energy sources to producing the
nonthermal ion spectra.

5.1. IC Work versus AV

Figure 12 shows the different contributions to the energy
gain of three ion populations from the 2D run S2m2b0.5,
separated according to their final energy at t·s=2.5. These
populations are as follows.

1. The “thermal ions,” corresponding to ions in the bulk of
the ion distribution, with their energy gain plotted in
Figure 12(a). These ions are chosen so that at t·s=2.5,
their Lorentz factors satisfy 0.09<γi−1<0.1
(marked by the vertical red line in Figure 7(a)).

2. The ions in the “intermediate-energy” bump of the tail
(shown in Figure 12(b)). These ions have Lorentz factors

Figure 12. For three different ion populations, we show the energy gain due to the work done by the electric field of the IC waves, WIC (blue lines), and the ion AV
(green lines). All of the energies are normalized by m ci

2. Panels (a)–(c) correspond to the “thermal,” “intermediate-energy,” and “highest-energy” ions, which are
chosen so that at t·s=2.5, they have g< - <0.09 1 0.1i , 1<γi−1<1.03, and 4.8<γi−1. In the three cases, we show that the sum of WIC and AV (red)
corresponds quite well to the average variation in the ion energy, áD ñEi (black).
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in the range 1<γi−1<1.03 at t·s=2.5 (marked by
the vertical dark green line in Figure 7(a)).

3. The ions in the “high-energy” bump of the tail (shown in
Figure 12(c)). This population corresponds to the highest-
energy ions, defined by γi−1>4.8 at t·s=2.5
(marked by the gray region in Figure 7(a)).

For each of these populations, we plot the following
contributions to their energy gain:

1. the work done by the electric field of the IC waves, WIC,
which is shown by the blue lines of Figure 12, and

2. the energy gain by AV, shown by the green lines in
Figure 12.13

The blue line in Figure 12(a) shows that the energy given by
the electric field of the IC waves to the thermal ions, WIC, is
negative. This implies that the scattering process, on average,
subtracts energy from the thermal ions and transfers it to the
waves. The total gain in energy of the thermal ions is still
positive and dominated by viscous heating. On the other hand,
Figure 12(b) shows that the work done by the IC waves on the
ions of the intermediate-energy bump is positive and larger
than the heating by AV, which means that these ions are mainly
energized by the scattering caused by the IC waves. This
energization occurs mainly after t·s≈2, which is consistent

with the late-time appearance of the intermediate-energy bump,
as shown by the time evolution of the ion spectrum depicted in
Figure 7(a). Finally, Figure 12(c) shows that WIC is about three
times larger than AV, implying that the IC acceleration for the
highest-energy ions is even larger than for the intermediate-
energy ions.
In Figures 12(a)–(c), we also plot the sum of AV and WIC

(red lines) and the average change in energy of the three ion
populations, áD ñEi (black lines). We see that these two
quantities are essentially the same for the three populations,
implying that the energy gain due to AV and the electric field
of the IC modes accounts quite well for the total ion energy
evolution in the three populations.

5.2. Resonance with IC Waves

In Section 5.1 we show that a nonthermal ion tail is produced
by the scattering of ions off IC waves, which, in turn, obtain
their energy from the pressure anisotropy of the thermal ions.
This implies that this acceleration mechanism requires the
resonance condition between ions and IC waves to be satisfied
by both the thermal and nonthermal ions. The resonance
condition is

( )∣∣
w w

g
- =

k
v

k
, 5c i

i

,

where ω and k are the real part of the frequency and the
wavenumber of the modes, ∣∣v is the ion velocity parallel to B,

Figure 13. The four panels show ∣ ˜ ( ) ˜ ( )∣d w d w+ ^B k i B k, ,z xy,
2 for different 1D simulations and time intervals, where ˜ ( )d wB k,z and ˜ ( )d wB̂ k,xy, are the FTs in time and

space of the two mutually perpendicular components of dB, δBz and δB⊥,xy (both perpendicular to á ñB ). The combination ˜ ( ) ˜ ( )d w d w+ ^B k i B k, ,z xy, makes the
contributions to dB of the circularly polarized IC waves (left-handed) and whistler waves (right-handed) appear at ω>0 and <0, respectively. Panels (a) and (b)
correspond to run S1m2b0.5 (b = 0.5i

init , mi/me=2, w =s 800c i,
init ) at 1.1<t·s<1.2 and 2.2<t·s<2.3, respectively. Panels (c) and (d) correspond to run

S1m8b0.5 (b = 0.5i
init , mi/me=8, w =s 800c i,

init ) also at 1.1<t·s<1.2 and 2.2<t·s<2.3, respectively. Here ω is normalized to the “instantaneous” cyclotron
frequency ωc,i ( wº B Bc i,

init
0), while k is normalized to ωc,i/c. With dashed lines, we show the theoretical IC and whistler dispersion relations ωtheo(k) obtained with the

linear Vlasov solver NHDS (Verscharen & Chandran 2018).

13 For each ion population, this energy gain is calculated as the integral in time
of the rate of energy gain due to viscosity, ò Ddt r pi (see Equation (1)), where
Δpi is calculated using only the ions of each population.
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and ωc,i (≡eB/mic) is the nonrelativistic cyclotron frequency of
the ions.

In order to check that this resonance condition is satisfied by
ions of all energies, in Figures 13(a) and (b), we measure the ratio
ω/k for the IC waves at two different time intervals for the 1D run
S1m2b0.5 (b = 0.5i

init , mi/me=2, w = 800c i,
init ). We do this by

plotting ∣ ˜ ( ) ˜ ( )∣d w d w+ ^B k i B k, ,z xy,
2, where δBz(ω, k) and δB⊥,xy

correspond to two mutually perpendicular components of dB that
are also perpendicular to á ñB (see caption of Figure 5), the tilde
( ˜ ) denotes the time and space FT of a quantity, and = -i 1 .
Thus, the combination ˜ ( ) ˜ ( )d w d w+ ^B k i B k, ,z xy, allows us to
separate the contributions to dB provided by IC waves (left-
handed, circularly polarized) and whistler waves (right-handed,
circularly polarized), with the latter expected to be destabilized by
the pressure anisotropy of electrons (Gary & Wang 1996). In the
case of run S1m2b0.5, the IC waves contribute to
∣ ˜ ( ) ˜ ( )∣d w d w+ ^B k i B k, ,z xy, only for ω>0, while the whistler
wave contribution appears for ω<0. This way, calculating
∣ ˜ ( ) ˜ ( )∣d w d w+ ^B k i B k, ,z xy,

2 allows us to separate the IC and
whistler contributions to dB and estimate ω(k) for these two
modes.

Figure 13(a) corresponds to the time interval 1.1<t·s<
1.2 of run S1m2b0.5. The IC modes have a phase velocity of
ω/k≈0.5c. Additionally, we measure the rms ion velocity
parallel to B at 1.1<t·s<1.2, which is  »v c0.16rms ,14

implying that, to a good approximation, we can neglect the vP
term on the left-hand side of Equation (5). The resonance
condition at 1.1<t·s<1.2 can thus be written as

( ) ( )g w »kc 2. 6i c i,

At 1.1<t·s<1.2, γi is in the range 1<γi2 (see
Figure 8(a)), implying that most of the power of the IC modes
should be in the range 1kc/ωc,i2, which coincides well
with the range of k in which most of the IC power is observed
in Figure 13(a).

Analogously, Figure 13(b) shows ∣ ( ) ( )∣d w d w+ ^B k i B k, ,z xy,
2

for the same simulation but in the time range 2.2<t·s<2.3. In
this case, Figure 13(b) shows that ω/k≈0.7c. Thus, making a
similar analysis as in the case 1.1<t·s<1.2, we obtain15

( ) ( )g w »kc 1.5. 7i c i,

Since in this time interval, 1<γi8, we obtain that most of
the power of the IC modes should be in the range
0.2kc/ωc,i1.5. This interval coincides reasonably well
with the range of k where the most power is concentrated in
Figure 13(b). Notice that this power appears to be enhanced in
two intervals of k. The high-k interval corresponds to
0.7kc/ωc,i1.5, which, according to Equation (7), implies
resonance with ions with 1<γi2. Remarkably, this is a
range of γi with abundant IC scattering at 2.2t·s2.3, as
shown by the rapid formation of the “intermediate-energy”
bump, which mainly occurs at 2t·s2.5. The low-k
enhancement occurs for 0.2kc/ωc,i0.5, which, according
to Equation (7), corresponds to 3γi8. This γi interval

coincides well with the “high-energy” bump shown in
Figure 8(a) at t·s∼2.2–2.3 and is also consistent with the
rapid increase in energy of this bump.
Thus, we have shown that the range of k in which the

amplitude of the IC modes is significant is consistent with the
resonance condition occurring for both the thermal and
nonthermal ions in the tail. Figures 13(c) and (d) show the
same quantities as Figures 13(a) and (b) but for simulation
S1m8b0.5, where the ions are under the same conditions as in
run S1m2b0.5, but with mi/me=8 instead of mi/me=2. The
quantity ∣ ˜ ( ) ˜ ( )∣d w d w+ ^B k i B k, ,z xy,

2 essentially preserves the
same properties for the IC modes (ω>0). The fact that ω(k) of
the IC modes is fairly independent of mi/me is consistent with
the near-independence of the ion acceleration process on
mi/me. The whistler modes, on the other hand, do significantly
change their properties as mi/me is increased, for instance, by
getting weaker (which is consistent with the discussion in
footnote 14) and increasing their frequency. This is expected,
since quantities like ωc,e/ωp,e, ωc,e/s, and kBTe/mec

2 do change
when varying mi/me.
Finally, the four panels in Figure 13 also include IC and

whistler theoretical dispersion relation calculations, ωtheo(k)
(dashed lines), obtained with the linear Vlasov solver NHDS
(Verscharen & Chandran 2018). These calculations assume the
ion and electron conditions obtained in the simulations in terms
of their temperatures, pressure anisotropies, mass ratio, and
Alfvén velocity. However, they do not consider departures from
Maxwell–Boltzmann distributions or relativistic effects. In the
four panels, ωtheo(k) well reproduces the behavior of
∣ ˜ ( ) ˜ ( )∣d w d w+ ^B k i B k, ,z xy,

2 for the case of the IC modes, which
shows that the phase (and group) velocity of the IC waves
obtained from the simulations is not significantly affected by the
nonthermal or relativistic effects in the ion velocity distribution.
Most discrepancies occur for whistler waves when mi/me=8. In
this case, the discrepancy is most likely due to the electrons being
significantly relativistic (Lorentz factor γe?1), which is a
regime strictly not captured by NHDS.

6. Comparing Shear versus Compression

The ion acceleration presented in this paper occurs during the
nonlinear, saturated stage of the IC instability. This stage is
reached through the continuous amplification of a background
magnetic field á ñB , which in previous sections has been driven by
an imposed shear plasma motion. In this section, we show that, as
long as the ion conditions are similar, the specific process that
amplifies á ñB does not play an important role in the acceleration.
We do this by running 1D simulations in which á ñB grows due to
plasma compression. The simulation setup is the same as in
Sironi & Narayan (2015). The plasma is compressed along the y-
and z-axes, with á ñB pointing along x. In this setup, á ñB is
amplified due to magnetic flux conservation (see Figure 1 of
Sironi & Narayan 2015). In this situation, the background field
grows as ∣ ∣ ( )á ñ = +B B qt10

2, where q is a constant that
roughly corresponds to the compression rate of the plasma. These
1D simulations only capture modes with á ñk B , which means
that the mirror modes are artificially suppressed.
The compression runs use the same initial plasma parameters

as the shearing runs that show significant ion acceleration
—b = 0.5i

init , kBTi/mic
2=0.05, and Ti=Te—which allows a

direct comparison between the two setups. Figure 14(a) shows
the evolution of T⊥,i (solid blue) and TP,i (solid red) for run
C1m8b0.5a, which uses mi/me=8 and w =q 1600c i,

init

14 This can be estimated by the factor of ∼2 decrease in pi,P seen in
Figure 2(a) and considering that initially, =k T m c 0.05B i i

2 .
15 Here we also assume ω/k (≈0.7c)?vP, which allows neglecting vP in
Equation (5). This is a reasonable approximation, considering that at
2.2<t·s<2.3, vP (measured directly from the simulation) is always smaller
than ∼0.4c, even considering the highest-energy particles in the nonther-
mal tail.
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( =^ ^k T p nB i i i, , and  =k T p nB i i i, , , where ni is the ion
density).16 Both temperatures initially follow the double
adiabatic evolution reasonably well, which is marked with
the dashed blue and red lines, respectively (Chew et al.
1956).17 The adiabatic evolution breaks at t·q≈0.6, after the
exponential growth of the IC modes begins. This exponential
growth and subsequent saturation can be seen in Figure 14(b),
which shows the dBy

2 and dBz
2 components of run C1m8b0.5a,

which evolve quite similarly to the δB⊥,xy and dBz
2
fluctuations

of analog shearing runs (see, e.g., the cases of runs S2m2b0.5
and S2m10b0.5 in Figure 5(a)).

The evolution of the ion spectrum of run C1m8b0.5a is
shown in Figure 14(c). We see a remarkable similarity with the
spectral evolution of the shearing runs with b = 0.5i

init , shown
in Figures 7(a) and 8(a). Indeed, also in the compressing case,
there is a growth of a nonthermal tail that, by t·q=2.5, can
be described as a power law of index α≈3.5 plus two bumps.

We also test the dependence of this acceleration on both
mi/me and ion magnetization w qc i,

init . Figure 14(d) shows a
comparison between cases with mi/me=8 and 16 (black and
red, respectively) and ωc,i/q=1600 and 3200 (solid and

dashed, respectively), which share the same initial parameters:
b = 0.5i

init , =k T m c 0.05B i i
2 , and Ti=Te. We see essentially

no difference between the runs with different values of mi/me

and only a slight hardening of the tail as ωc,i/q increases, in
agreement with the shearing results of Section 4.3.
These results essentially reproduce our shearing runs, both in

terms of the significance of the ion acceleration in the regime,
b = 0.5i

init , =k T m c 0.05B i i
2 , and Ti=Te, and in terms of the

almost independence on mi/me and ωc,i/q.
As in the shearing case, the independence on mi/me can be

understood as due to the resonant nature of the ion–IC
interaction. The independence on w qc i,

init implies, similarly to
the shearing case, that the effective ion scattering rate νeff,i has
to be ∝q. This can indeed be inferred by applying Equation (3)
to the compressing runs. In this case, ˆ ˆ  =bb v: 0, and
thus (using the continuity relation ·¶ ¶ = -  vn t ni i )
ni∂TP,i/∂t=(2/3) νeff,iΔpi. However, Figure 14(a) shows
that, after the saturation of the IC waves, ∂TP,i/∂t∼(q/2) TP,i,
which suggests

( ) ( )/n » Dq p p
3

4
. 8i i ieff, ,

The ratio pP,i/Δpi evolves fairly independently of w qc i,
init , as

can be seen from Figure 14(a), which shows T⊥,i and TP,i for
runs C1m8b0.5a (w =q 1600c i,

init ; solid line) and C1m8b0.5b

(w =q 3200c i,
init ; dotted–dashed line). Therefore, Equation (8)

implies that νeff,i∝q.
The similarity between Equations (4) and (8) is consistent

with the ion spectra being similar in the two setups when
comparing spectra at equal values of ts and tq. Indeed,
considering that in the shearing and compressing cases,
pP,i/Δpi ∼1/2 during most of the saturated IC regime (see
Figures 2(a) and 14(a)), at equal values of ts and tq, the ions
must have experienced a similar number of effective scatter-
ings. Thus, if the properties of the IC modes are comparable,
their acceleration effects by the end of the shearing and
compressing simulations should also be comparable.18

7. Summary and Conclusions

Our 1D and 2D PIC plasma simulations show that ions can
be stochastically accelerated by the inelastic scattering
provided by the IC instability. This acceleration occurs in the
nonlinear, saturated state of the instability, which is reached
due to a permanent amplification of the background magnetic
field á ñB .
In the regime in which initially, kBTi=kBTe=0.05mic

2, we
show that the IC ion acceleration is significant if b  1i

init . This
is demonstrated by comparing 2D simulations with b = 0.5i

init

and 2. When b = 0.5i
init , the ion scattering is dominated by the

IC instability, which produces a nonthermal tail in the ion
energy spectrum. After B is amplified by a factor of ∼2.7, the
tail can be approximately described as a power law of index
∼3.4 plus two nonthermal bumps. The maximum ion Lorentz

Figure 14. Panel (a) shows the evolution of T⊥,i (blue) and TP,i (red) for
compressing runs C1m8b0.5a (mi/me=8 and w =q 1600c i,

init ; solid) and
C1m8b0.5b (mi/me=8 and w =q 3200c i,

init ; dashed–dotted), both with
b = 0.5i

init and = =k T k T m c0.05B i B e i
2. The double adiabatic predictions

are shown with dashed lines (Chew et al. 1956). Panel (b) shows dBy
2 (red) and

dBz
2 (blue) normalized to B0

2. The dotted line shows ∣ ∣á ñB 2. Panel (c) shows the
evolution of the ion spectrum of run C1m8b0.5a. Panel (d) shows a comparison
of the spectra at t·q=2.5 for runs with mi/me=8 and ωc,i

init/q=1600
(C1m8b0.5a; solid black), mi/me=8 and w =q 3200c i,

init (C1m8b0.5b;
dashed black), mi/me=16 and w =q 1600c i,

init (C1m16b0.5a; solid red),
and mi/me=16 and w =q 3200c i,

init (C1m16b0.5b; dashed red).

16 We show T⊥,i and TP,i instead of p⊥,i and pP,i in order to disentangle
variations in ni through the compression from the variation through double
adiabatic and instability-induced effects.
17 The small initial discrepancies (t·s0.6) between the double adiabatic
predictions and TP,i and T⊥,i are because these predictions assume that the ions
are nonrelativistic, which is mildly broken for our ~k T m c 0.1B i i

2 ions.

18 Notice, however, that, although the initial ion conditions in the shearing and
compressing runs are the same, the final conditions are somewhat different. For
instance, in the shearing runs with b = 0.5i

init , the final value of the parallel ion
β is b ~ 0.025i,

final (considering the evolution of pP,i seen in Figure 2(a) and the
expected evolution of B), while in the analogous compressing runs, b ~ 0.1i,

final

(considering the evolution of TP,i seen in Figure 14(a) and the expected
evolutions of ni and B). This, plus the different factors on the right-hand sides
of Equations (4) and (8), implies that the final ion spectra in these two setups
should be similar but not necessarily the same.
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factor at that time is γi∼10, but it continues to grow at the end
of the simulation. Also, the tail accounts for 2%–3% of the ions
and ∼18% of their kinetic energy. On the other hand, when
b = 2i

init , the ion scattering is dominated by the mirror
instability (the IC modes are subdominant), and the accelera-
tion is significantly suppressed.

In the IC-dominated regime, as the ion scattering increases
the energy of the ions of the tail, it reduces the energy of the
ions in the thermal part of the spectrum (see Figure 12). This is
consistent with the IC modes being driven unstable mainly by
the pressure anisotropy of the thermal ions. This way, the role
of the IC modes is to absorb part of the energy of the thermal
ions and give it to the nonthermal ions. This process is very
similar to the stochastic acceleration of electrons by the
whistler instability found by Riquelme et al. (2017). The
efficiency of the ion acceleration, therefore, relies on the IC
modes being able to provide resonant scattering to both thermal
and nonthermal ions. We analyzed the consistency of this
scenario by calculating the k numbers and phase velocities of
the dominant IC modes, showing that they can resonate with
ions of all energies (see discussion in Section 5.2).

Given that our simulations cannot use realistic values of
mi/me and w sc i,

init , one important aspect of our study is to
ensure that these parameters do not affect the acceleration.
Thus, we first ensure that the dominance of the IC modes for
b = 0.5i

init does not depend on mi/me and w sc i,
init . This was

done by comparing 2D simulations with mi/me=2 and 10
(see Section 3.1) and also using theoretical, linear dispersion
relation calculations to determine the pressure anisotropy
needed for the growth of the IC and mirror instabilities in
astrophysically realistic conditions (see Appendix B). Both
analyses show that, in realistic astrophysical plasmas, the IC
instability dominates in the regime b  1i

init , at least for the
case of Te=Ti explored here.

Then, using the fact that the dominant IC wavevectors k
satisfy á ñk B , we use computationally cheaper 1D shear
simulations to test the ion acceleration using a significantly
larger range of values for mi/me and w sc i,

init . While mi/me almost
does not affect the acceleration, increasing w sc i,

init only produces
a slight hardening of the nonthermal tail (see Section 4.3). This
almost complete independence of the acceleration on w sc i,

init is
consistent with the effective ion scattering rate νeff,i being
proportional to s. This condition is indeed needed in order to have
the continuous driving of the ion pressure anisotropy being nearly
compensated by the pitch-angle scattering.

In order to assess the importance of the specific large-scale
mechanism that amplifies the background magnetic field, we
also ran compressing-box PIC simulations like in Sironi &
Narayan (2015). We find essentially no difference in the ion
acceleration efficiency between the shearing and compressing
cases (see Section 6).

Our work is valid in a subrelativistic regime in which
initially, = =k T k T m c0.05B i B e i

2. This regime can be relevant
in the inner region of low-luminosity accretion disks around
black holes (where the collisionless plasma condition is
expected). In these systems, the condition b  1i

init required
for the acceleration is most likely satisfied in the coronal region
of the disks (e.g., Chael et al. 2018).

Nevertheless, assessing the importance of the presented
acceleration mechanism in these and other astrophysical
systems requires a more complete understanding of its
dependence on plasma parameters, as well as clarifying the

importance of possible long-term evolution effects. Indeed, in
this work, we focus on a single value of kBTi and use
Te/Ti=1. However, varying these parameters may affect the
IC physics and, therefore, the efficiency of the ion acceleration.
For instance, having Te/Ti=1 may significantly increase the
values of b i

init for which the IC instability dominates
(Sironi 2015; Sironi & Narayan 2015). Since the condition
Te/Ti=1 is most likely satisfied in low-luminosity disks
(Narayan & Yi 1995; Yuan et al. 2003), this could increase the
importance of the presented ion acceleration in these systems.
In terms of the long-term evolution of the acceleration

process, in the turbulent environment of accretion disks, we
expect many successive δB/B∼1 amplifications and decreases
of the field (see also Verscharen et al. 2016). So a more realistic
picture of this process should consider the acceleration presented
in this work occurring many times as the plasma is gradually
accreted. We will study these aspects of the acceleration process
in future investigations.
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Appendix A
1D Shear Setup

The goal of our 1D shear runs is to simulate a shearing
plasma, assuming that its properties depend only on the
direction parallel to the mean background magnetic field á ñB .
This is equivalent to assuming that the wavevectors k captured
in the simulations satisfy á ñk B . Since, in a shearing plasma,
the direction of á ñB evolves with time, the orientation of the
wavevectors that can be consistently resolved needs to evolve
accordingly.
Our 1D setup is built upon the “shearing coordinates” setup

presented by Riquelme et al. (2012). This setup was designed so
that the simulation domain follows the shearing flow of the
plasma, which is given by the shear velocity v ( ˆ=vy).
Figures 1(a) and (b) illustrate the way the shape of the domain
evolves as seen by an inertial observer at t=0 and t>0,
respectively. Formally, the shearing coordinates (x′, y′, z′, t′) are
defined in terms of the regular, inertial coordinates (x, y, z, t) as

( )
( ) ( )

¢ = ¢ = G - ¢ =
¢ = G -

x x y y vt z z

t t vy c

, , , and

, 92

where ( )G = - -v c1 2 2 1 2, ( )= -v c sx carctanh ,19 c is the
speed of light, and s is the shear rate of the plasma.

19 Notice that, in the limit ∣ ∣ v c, the ( )= -v c sx carctanh expression is
equivalent to v=−sx, as we assume in Figures 1(a) and (b). Since

( )= -v c sx carctanh ensures that ∣ ∣ <v c, this expression was adopted in
Riquelme et al. (2012) in order to deduce the equations that describe the
dynamics of the plasma in the shearing coordinate system. However, both in
Riquelme et al. (2012) and in this paper, we are interested in the plasma
dynamics in the regime ∣ ∣ v c.
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Our 1D domain is defined by y′=0, and it is shown by the
blue lines in Figures 1(a) and (b). These figures show how the
length and orientation of the 1D domain change over time. This
in turn changes the orientation of the wavevectors k that can be
captured within the domain. In addition, there is an initially
homogeneous magnetic field, B, pointing parallel to the 1D
domain at t=0. Magnetic flux conservation ensures that á ñB
will always be parallel to the 1D domain at t>0, as also
depicted in Figures 1(a) and (b). Therefore, if the problem of
interest is dominated by waves that propagate parallel to á ñB ,
our 1D simulations will be able to capture the essence of the
phenomenon.

In order for our 1D simulations to consistently satisfy á ñk B ,
we need to replace x′ with a new coordinate, ¢x1 , which we
define as

( )¢ º ¢ -
¢ ¢

+ ¢
x x

y st

s t1
. 101 2 2

Indeed, if we assume ∣ ∣ v c and sy′=c, the partial
derivatives with respect to the spatial coordinates in the inertial
frame are

( )

¶
¶

=
+

¶
¶ ¢

+
¶
¶ ¢

¶
¶

=
-
+

¶
¶ ¢

+
¶
¶ ¢

¶
¶

=
¶
¶ ¢

x s t x
st

y

y

st

s t x y

z z

1

1
,

1
, and

. 11

2 2
1

2 2
1

Thus, if we impose the 1D condition, namely, that the fields
depend only on ¢x1 , with ¶ ¶ ¢ = ¶ ¶ ¢ =y z 0, Equation (11)
implies that the gradient of any field component in the inertial
frame will have coordinates proportional to the vector (1, −st,
0). In the inertial frame, the background magnetic field á ñB has
components (B0, 0, 0) at t=0, then, due to magnetic flux
freezing, at t>0, these components will be B0(1, −st, 0).
Thus, after imposing ¶ ¶ ¢ = ¶ ¶ ¢ =y z 0, our 1D simulations
are able to capture all of the modes with wavevectors k parallel
to á ñB , despite the fact that á ñB changes orientation over time.

The assumptions ∣ ∣ v c and sy′=c are equivalent to
assuming that the plasma region of interest has a typical size, L,
that satisfies L=c/s. For the study of kinetic instabilities, L is
typically of the order of the Larmor radius of the particles.
Thus, the restriction L=c/s applied to species j becomes
[γjs/ωc,j][vj,⊥/c]=1, where γj, ωc,j, and vj,⊥ are the Lorentz
factor, (nonrelativistic) cyclotron frequency, and velocity
perpendicular to B of particles j, respectively. In typical
astrophysical environments, ωc,j is many orders of magnitude
larger than s; therefore, the assumption L=c/s is reasonable
for the study of kinetic instabilities.

In what follows, we will give expressions for the evolution
of fields and particle momenta and positions in our 1D shear
setup. The condition L=c/s is assumed in all of these
expressions.

A.1. Evolution of ¢E and ¢B

Considering the evolution of ¢E and ¢B in terms of ¢J in the
shearing coordinates presented in Equations (A14) and (A26)
of Riquelme et al. (2012), after replacing x′ with ¢x1
(Equation (10)) and assuming ∂/∂y′=∂/∂z′=0, the field

dynamics is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

¶ ¢

¶ ¢
=

¢
+ ¢

¶ ¢

¶ ¢
¶ ¢

¶ ¢
=

+ ¢
¶ ¢

¶ ¢
- ¢

¶ ¢

¶ ¢
=

-
+ ¢

¶ ¢

¶ ¢
+ ¢

¶ ¢

¶ ¢

B

t
c

st

s t

E

x

B

t
c

s t

E

x
sB

B

t

c

s t

E

x
st

E

x

1
,

1

1
,

1
,

12

x z y z
x

z y x

2 2
1

2 2
1

2 2
1 1

and
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In Equations (12) and (13), ¢E , ¢B , and ¢J , are defined
according to the conventional relativistic transformation of the
electric field, magnetic field, and current density from the
inertial frame to the frame of an observer that moves with
velocity v (Equations (A2) and (A28) of Riquelme et al. 2012).
This means that ¢J can be calculated directly from the motion
of the particles in the shear coordinates, assuming that their
momenta ¢p can be obtained from their momenta in the inertial
frame p, using the conventional relativistic momentum
transformation (see Equation (A30) of Riquelme et al. 2012).

A.2. Evolution of Particle Momenta

Since our 1D setup uses the same definitions of time (t′) and
particle momenta ( ¢p ) as in the shearing coordinate system of
Riquelme et al. (2012), the evolution of ¢p will not change and
will be given by

⎛
⎝⎜

⎞
⎠⎟ ˆ ( )¢

¢
= ¢ +

¢
´ ¢ + ¢p

E
u

B
d

dt
q

c
sp y , 14c x

where qc is the particles’ electric charge and g¢ = ¢ ¢u p m , with
m and γ′ being the particle mass and Lorentz factor,
respectively. Equation (14) corresponds to Equation (A31) of
Riquelme et al. (2012) in the limit L=c/s.

A.3. Evolution of Particle Positions

By taking the derivative of Equation (10) with respect to t′
and applying the limit L=c/s to the expressions for dx′/dt′
and dy′/dt′ given by Equation (A35) of Riquelme et al. (2012),
we find

( )
¢

¢
= ¢

+ ¢
- ¢ ¢

+ ¢
dx

dt
u

s t
u

st

s t

1

1 1
, 15x y

1
2 2 2 2

where ¢ux and ¢uy are the x and y components of ¢u .

Equation (15) implies that ¢dx1/dt′ is the scalar product between
¢u and ∣ ∣á ñ á ñB B ( ( ˆ ˆ) ( )= - ¢ + ¢x st y s t1 2 2 1 2), corrected by

the “expansion” of the 1D domain (represented by the y′=0
region depicted in blue in Figures 1(a) and (b)), which provides
the extra common factor ( )+ ¢s t1 1 2 2 1 2 on the right-hand
side of Equation (15). This implies that ¢x1 correctly represents
particle displacements along á ñB .
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A.4. Charge Conservation

The evolution of particle positions in our simulations is
consistent with the conservation of electric charge density. This
can be checked by considering Gauss’s law in the inertial frame:

· pr =E 4 c, where E and ρc are the electric field and charge
density in that frame. Indeed, applying the transformations given
by Equation (9) to Gauss’s law in the limit L=c/s, and
assuming first the more general problem in 3D described in
Riquelme et al. (2012),

( )
( )

r¶ ¢

¶ ¢
+

¶ ¢

¶ ¢
+

¶ ¢ + ¢ ¢

¶ ¢
+

¶ ¢

¶ ¢
=

t

J

x

J st J

y

J

z
0, 16c x y x z

where r¢c is the charge density of the plasma calculated using
the shearing coordinates, which, as shown in Equation (A29) of
Riquelme et al. (2012), is equal to ρc in the limit L=c/s.
Thus, according to Equation (16), in order to satisfy charge
conservation in our multidimensional shearing coordinate,
particle motions in y′ lead to an effective current along the y′
direction of ¢ + ¢ ¢J st Jy x. Thus, charge conservation is ensured in
our multidimensional shearing coordinate simulations by
evolving x′, y′, and z′ according to

( )¢
¢
= ¢ ¢

¢
= ¢ + ¢ ¢ ¢

¢
= ¢dx

dt
u

dy

dt
u st u

dz

dt
u, , and , 17x y x z

which we do in the 2D simulations presented in this paper and
in our previous works (e.g., Riquelme et al. 2017).
Equation (17) is equivalent to Equation (A35) of Riquelme
et al. (2012) in the limit L=c/s.20

Finally, by making an analogous analysis in the case of the
1D setup, we show that charge conservation implies
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¢
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-
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+ ¢
=

t x

J

s t

st J

s t1 1
0. 18c x y

1
2 2 2 2

Thus, according to Equation (18), in order for our 1D runs to
conserve charge, ¢x1 must evolve so that the effective current
along á ñB is ( ) ( )¢ - ¢ ¢ + ¢J st J s t1x y

2 2 , which is indeed satisfied

by the evolution of ¢x1 given by Equation (15).

Appendix B
IC versus Mirror under Realistic Conditions: Linear

Theory Analysis

In order to inquire whether the dominance of the IC instability
for b  1i

init continues to be valid in realistic, astrophysically
relevant regimes (mi/me=1836 and ωc,i/s?800, which we
cannot study with our 2D simulations), we make use of linear
theory. Thus, we calculate the threshold ion pressure anisotropy,

( )  D º -^p p p p pi i i i i, , , , , needed for the growth of IC and
mirror modes at a rate s, using the linear Vlasov solver NHDS
(Verscharen & Chandran 2018, which assumes bi-Maxwellian,
nonrelativistic ion velocity distributions).21 This condition is
motivated by the assumption that, in order to maintain Δpi/pP,i
at a nearly stationary level (as we see in Figures 15(a) and (b)),

the modes that provide the pitch-angle scattering must grow at
roughly the rate at which the anisotropy is driven, which is ∼s.
Thus, if nonlinear effects did not play any significant role, the
dominant instability should be the one with the lowest
theoretical anisotropy threshold for a given value of s.
However, nonlinear effects are expected to be important and

to affect the IC and mirror instabilities differently. Indeed,
in situ observations in the solar wind show significant
discrepancies between linear theory and the measured ion
anisotropy in regions of parameter space in which the IC
instability should dominate (Hellinger et al. 2006; Bale et al.
2009). One possible explanation is the departure from bi-
Maxwellian ion velocity distributions observed in the solar
wind, which may affect the efficiency of the resonant scattering
between ions and the IC modes (Isenberg et al. 2013). Another
possibility is the inhomogeneity in the magnetic field produced
by the (subdominant but still present) mirror modes, which may
also affect this resonance (Southwood & Kivelson 1993). Our
approach is thus to estimate these nonlinear effects using the
simulated cases. These simulations thus provide us with a
calibration of the linear theory criterion for determining the
dominant instability, which can then be applied to astrophy-
sically realistic regimes.
Figures 15(a) and (b) show the linear anisotropy threshold

given by the mirror (solid red) and IC (solid blue) instabilities
with growth rate s in runs S2m2b0.5 and S2m2b2, which have
b = 0.5i

init and 2, respectively (both with mi/me=2 and
w =s 800c i,

init ), and compare them with the anisotropies
obtained from the simulations (solid green). First, in the IC-
dominated regime (run S2m2b0.5), the IC threshold is ∼three
times smaller than the ion anisotropy obtained from the
simulation, showing that, in the case of the IC instability,
nonlinear effects give rise to ion anisotropies that are
significantly larger than what is implied by the linear theory
threshold. Also, the IC threshold is at least ∼two times smaller
than the mirror threshold (Figure 15(a)), while in the mirror-
dominated case (Figure 15(b)), the IC threshold is at most ∼1.5
times smaller. These results suggest that, in order for the IC
instability to dominate, the IC threshold should be at least
∼two times smaller than the mirror threshold.
We thus apply this criterion to astrophysically realistic cases,

in which mi/me=1836 and the instabilities grow at a rate of

Figure 15. Mirror (solid red) and IC (solid blue) linear anisotropy thresholds
(assuming growth rate s) in 2D runs S2m2b0.5 (mi/me=2 and b = 0.5i

init ;
panel (a)) and S2m2b2 (mi/me=2 and b = 2i

init ; panel (b)). The anisotropies
obtained directly from the simulations are in solid green. The dotted lines show
analogous linear anisotropy thresholds for the mirror (dotted red) and IC
(dotted blue) instabilities, assuming mi/me=1836 and a growth rate equal
to w-10 c i

6
, .

20 Notice that the notation used in Equation (A35) of Riquelme et al. (2012) is
different from the one used in this work, and that we interpret their ¢ux , ¢uy, and
uz′ as our dx′/dt′, dy′/dt′, and dz′/dt′.
21 Modern linear solvers to the linear Vlasov–Maxwell system of equations
can account for relativistic effects and non-Maxwellian background distribu-
tions (Verscharen et al. 2018). Studies using this type of solver can evaluate
these effects; however, their application is beyond the scope of this paper.
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w-10 c i
6

, . Figures 15(a) and (b) show in dotted lines the
corresponding linear anisotropy thresholds for the mirror (red)
and IC (blue) instabilities for b = 0.5i

init and 2, respectively. In
the b = 0.5i

init case, the IC threshold is always at least ∼three
times smaller than the mirror threshold, implying that, under
realistic conditions, the IC modes continue to dominate in the
b = 0.5i

init case. In b = 2i
init , on the other hand, the linear IC

threshold is smaller than the mirror threshold by a factor of2
during most of the simulations. Since we estimate that, in order
for the IC instability to dominate, the mirror anisotropy
threshold should be at least ∼two times larger than that of the
IC modes, this suggests that the mirror instability continues to
dominate in this case.
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