
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Optimal shape of an underwater moving bottom generating surface waves
ruled by a forced Korteweg-de Vries equation

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1007/s10957-018-1400-8

PUBLISHER

© Springer Verlag

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This paper was accepted for publication in the journal Journal of Optimization Theory and Applications and the
definitive published version is available at https://doi.org/10.1007/s10957-018-1400-8

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Dalphin, Jeremy, and Ricardo Lopes-Barros. 2019. “Optimal Shape of an Underwater Moving Bottom
Generating Surface Waves Ruled by a Forced Korteweg-de Vries Equation”. figshare.
https://hdl.handle.net/2134/35138.

https://lboro.figshare.com/
https://doi.org/10.1007/s10957-018-1400-8


JOTA manuscript No.
(will be inserted by the editor)

Optimal Shape of an Underwater Moving Bottom

Generating Waves with a Forced Korteweg-de Vries Equation

Jeremy Dalphin · Ricardo Barros

Received: date / Accepted: date

Abstract It is well known since Wu & Wu (1982) that a forcing disturbance
moving steadily with a transcritical velocity in shallow water can generate, con-
tinuously and periodically, a succession of solitary waves propagating ahead
of the disturbance in procession. One possible new application of this phe-
nomenon could very well be surfing competitions, where in a controlled envi-
ronment, such as a pool, waves can be generated with the use of a translating
bottom. In this paper, we use the forced Korteweg-de Vries equation to inves-
tigate the shape of the moving body capable of generating the highest first
upstream-progressing solitary wave. To do so, we study the following opti-
mization problem: maximizing the total energy of the system over the set of
non-negative square-integrable bottoms, with uniformly bounded norms and
compact supports. We establish analytically the existence of a maximizer sat-
urating the norm constraint, derive the gradient of the functional, and then
implement numerically an optimization algorithm yielding the desired optimal
shape.
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1 Introduction

The generation of water-waves is a complex phenomenon and the artificial
reproduction of such processes has many interesting applications for the engi-
neering industry. In this paper, we consider a specific mechanism, initially dis-
covered by Wu & Wu [1], which has recently been used to develop a patented
wavemaker prototype [2]. The operating principle consists in translating a
moving bottom underwater to produce waves upstream the forcing disturbance
[3], which could have a new important application to surfing competitions,
where in a controlled environment, such as a pool, waves can be generated at
low operating costs (see [2]).

With this specific application in mind, the translating bottom is assumed to
move steadily in shallow water with a transcritical velocity. We are interested
in a reduced long-wave phenomenon and weakly dispersive as well as non-
linear effects will be considered, since experiments display the successive and
continuous propagation of solitary waves ahead the moving disturbance. As
shown by Wu in [3], under such conditions, the free surface can be effectively
described by the forced Korteweg-de Vries (fKdV) equation. The realm of
validity of this model has been extensively studied in the literature and it
has been shown to be in good agreement, for a wide range of parameters,
with laboratory experiments and numerical solutions of much more elaborate
models (the generalized Boussinesq, fully non-linear Euler, and Navier-Stokes
equations). We refer to [3–6] and references therein.

In this article, we investigate how the shape of an underwater moving
bottom can affect the amplitude of the first upstream-progressing solitary
wave. Under some practical constraints, we wish to find an efficient wave maker
capable of generating the highest possible wave. This will be accomplished by
considering the optimization problem (2), which consists on maximizing the
total energy of the system.

Paramount to this study is the well-posedness of the fKdV equation with
homogeneous initial data (see eq. (4)). The time global well-posedness in
Hs(R,R), with s > 0, has been established by Bona & Zhang [7]. The exten-
sion of this result to lower regularity forcing functions is not straightforward
since, contrary to the case when s > 0, L2-conservation laws are absent when
s < 0. Nonetheless, in the particular case when the flow is critical, the fKdV
equation is endowed with a scaling property (Lemma B.1) that can be used to
obtain a priori estimates as in the KdV case (see [8,9]). These rather elaborate
techniques, combined with local well-posedness results known in the literature
[7,10], allowed Tsugawa [9] to prove the existence of a unique global solution
to the initial-value problem (4) for low-regular bottoms.

We recall that there is a vast literature about the controllability and sta-
bilization of the KdV equation (see e.g. [11] and references therein). However,
the control problems related to the KdV equation are usually studied on a
bounded interval, a periodic domain, or the half-line. To our knowledge, the
control of the KdV equation by its second member on the whole real line
has not been studied in the literature. Another novelty is that, although the
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non-linear problem (2) is stated in terms of an optimal control problem, it is
studied here by adopting a shape optimization viewpoint.

A related problem was recently addressed by Nersisyan et al. [12]. In their
work, opposed to the one presented here, the bottom velocity is not neces-
sarily constant, thus both the piston trajectory and shape of the underwater
wave maker are optimized, subject to practical constraints. The underlying
mathematical model of their study is the generalized Benjamin-Bona-Mahony
(BBM) equation, which similarly to the fKdV equation can be deduced from
the generalized Boussinesq equations [3,13]. (1) becomes a distributed L2-
control function inside the infinite domain R of the fKdV equation (4). In that
form, the optimization of the bottom shape is modelled by the optimal control
problem (2). We refer to the references given in [12] for other applications of
control theory to the BBM and KdV equations.

One of the reasons to retain the fKdV model in the present study is the
mathematical challenges it presents, given that:

(i) theoretically, the existence of a maximizer to (2) for low-regular bottoms
is not straightforward, as it is the case for smoother ones [12, Theorem 2];

(ii) numerically, the fKdV equation is known to be quite unstable, being its
regularized version often preferred for computations [3].

These will be carefully investigated in this paper organized as follows. In § 2,
we introduce some necessary notation, formulate the optimization problem,
and state our main result in Theorem 2.1, which establishes the existence of
maximizer saturating the L2-constraint. In § 3 we present the mathematical
model and summarize briefly the results in the literature. The optimization
problem is then thoroughly discussed in § 4. In § 5, we provide an efficient
numerical algorithm yielding an optimal shape. This consists of an Usawa-
type algorithm that converges iteratively to a critical point of (2), thanks to
the evaluation of a shape gradient, which requires an adjoint formulation of
the fKdV equation. The fKdV solver is also tested against other well-known
numerical methods [16–18] regarding its efficiency and accuracy. Finally, the
obtained numerical results are presented and discussed in § 6, including the
behaviour of the optimal shape with respect to its initial guess, the location
and length of its support, and some open problems and perspectives.

2 Problem Formulation

In this study, the admissible moving bottoms will be required to belong to the
set B defined as:

B :=
{
b ∈ L2(R,R) : supp b ⊆ [−K,K], b > 0 and ‖b‖L2(R,R) 6M

}
, (1)

where K, M are fixed positive constants, and ‖b‖L2(R,R) :=
(∫

R b
2(x) dx

)1/2
.

We then propose an energy functional F for which the following optimization
problem is considered:

sup
b∈B

F (b) . (2)
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The functional F : b ∈ B 7→ F (b) ∈ R is defined by

F (b) := ‖ub‖2L2(0,T ;L2(R,R)) =

∫ T

0

∫
R
u2
b (x, t) dxdt, (3)

where T > 0 is fixed and ub(x, t) denotes the free-surface elevation ruled by a
fKdV equation with zero initial data:

∂ub
∂t

+ ub
∂ub
∂x

+
∂3ub
∂x3

= − db

dx
∈ H−1 (R,R) , x ∈ R, t > 0,

ub(x, 0) = 0, x ∈ R.

(4)

As usual, the partial derivatives in (4) are understood in a distributional sense.
For convenience, we assume the dimensionless form of all variables and func-
tions. Moreover, the problem is set in the body frame of reference and, follow-
ing common practice, x and t denote space and time coordinates, respectively.

We shall prove in Proposition 4.1 that (3) is a well-defined application from
L2(R,R) into R. The choice of admissible bottoms (1) deserves some expla-
nation, but, as it will be made clear, it turns out to be a rather natural one.
Clearly, non-negative bottoms with compact support must be considered for
manufacturing purposes. Also, the constraint imposed on the support guaran-
tees the continuity of the functional (3) with respect to the L2-weak topology
(Proposition 4.3). Furthermore, from the physics viewpoint, to remain within
the regime of validity of the mathematical model, the forcing function b must
be small enough. In that regard, an L∞-bound on the control function b could
have been imposed, rather than an L2-one. However, numerical simulations
suggest that an L∞-version of problem (2) would simply yield the step func-
tion saturating the constraint, which, from a realistic perspective, would be a
very unsatisfactory wavemaker. We also show in Proposition B.4 that by dis-
carding such an L2-norm constraint, (2) becomes an ill-posed problem in the
sense that the supremum is not achieved, even with smooth forcing functions.

Theoretically speaking, one could argue that it would have been more nat-
ural to consider the fKdV equation (4) in the L2-sense, and thus choose an
H1-setting for (1). However, a corresponding numerical algorithm based on a
steepest descent method would compute an irregular Lagrangian perturbation
∂bL = ∂bF − 2λ(b − bxx) ∈ H−1(R,R). In comparison, the set of admissible
shape (1) is stable with respect to such gradient perturbations, since, in this
case, we will simply prove that ∂bL = ∂bF − 2λb ∈ L2(R,R).

One of our main contributions is the proof of existence of an optimal bot-
tom saturating the L2-constraint, i.e. the following result holds:

Theorem 2.1 Let T > 0, M > 0, and K > 0. We consider the set B and the
functional F : b ∈ B 7→ F (b) defined in (1) and (3), respectively. Then, the
optimization problem (2) is well posed in the following sense:

∃bopt ∈ B, F
(
bopt

)
= max

b∈B
F (b) .

Moreover, any maximizer bopt of (2) satisfies ‖bopt‖L2(R,R) = M .
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This is a rather unexpected result since in our H−1-setting, the lack of con-
servation laws for (4) could in principle prevent obtaining an explicit C0

t (H2
x)-

control of the solution ub in terms of the L2-norm of the bottom b. Nev-
ertheless, we manage to obtain such a priori estimates (Proposition 4.2) by
combining Tsugawa’s results [9] with technical relations inspired from the con-
served quantities available in the KdV case. Another main difficulty related
to the lower-semi-continuity of the functional (3) is the lack of compactness of
the embedding H2(R,R) ⊂ H1(R,R), so that standard arguments of Aubin-
Lions-Simon Lemma [14, Section 8 Corollary 4] cannot apply. We succeed in
overcoming this difficulty by working directly with the non-linear equation
(4) thanks to an integration-by-part technique available for Sobolev-Bochner
spaces [15, Lemma 7.3], which is also used to prove the Fréchet differentiability
of (3) (Proposition 4.5).

Another important contribution is the description in § 5 of an efficient
numerical algorithm providing an optimal shape, which could be useful for
practical applications.

3 Mathematical Model

Consider a layer of water initially uniform in depth. Suppose we introduce at
the bottom floor a disturbance moving steadily with speed U . Then, depend-
ing on the magnitude of U , different responses of this fluid-mechanical system
can be obtained. One, particularly intriguing, arises when the flow is transcrit-
ical. As discovered by Wu & Wu [1], near resonance, a long-wave phenomenon
takes place and solitary waves, propagating ahead of the disturbance, are pe-
riodically generated. Although originally discovered numerically based on the
generalized Boussinesq equations, it is desirable to have a simpler model to
carry out analytical and numerical investigations of the phenomenon. One such
model, known as forced Korteweg-de Vries equation, was proposed by Wu [3]
and it consists on a one-directional, weakly non-linear and weakly dispersive
long wave model that is able to retain much of the physics of the problem.
The model governs the free-surface elevation ζ(x, t) and reads in dimensional
variables as follows:

2

c0

∂ζ

∂t
− 2

(
U

c0
− 1

)
∂ζ

∂x
+

3

h0
ζ
∂ζ

∂x
+
h2

0

3

∂3ζ

∂x3
+

db

dx
= 0. (5)

For our purposes, U is assumed positive and the equation holds for right-
going waves. Here t (> 0) is the time, x = X − Ut is the horizontal space
variable expressed in the body frame of reference, z = −h0 + b(x) indicates
a topography b(x) moving over the bottom floor at depth h0, and c0 is linear
long wave speed defined as c0 :=

√
gh0, with g the gravitational acceleration.

As shown by [4–6], the model has a surprisingly wide range of validity, and
a remarkable agreement with experiments and numerics for the fully non-linear
Euler equations is achieved for 0.9 < U/c0 < 1.1 and ‖b/h0‖L∞(R,R) < 0.15.
Moreover, if the translating bottom is sufficiently regular and the motion is
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assumed to start impulsively from rest, then it can be shown that the initial
value problem for (5) is well-posed:

Lemma 3.1 Let T , U , h0 be given fixed positive constants, and b a sufficiently
regular bottom, such that b ∈ H∞(R,R) := ∩s>0H

s(R,R). Then, there exists
a unique solution ζ ∈ C∞(0, T ;H∞(R,R)) of (5) with zero initial data.

The proof consists in applying [7, Theorem 1.1] and using the fKdV equa-
tion (5) to gain, recursively, regularity in time. In § 4.1, this well-posedness
result will be extended for lower regular forcing functions.

Near resonance, the generic behaviour of the free-surface elevation pre-
dicted by the fKdV equation with zero initial data can be depicted as in Fig. 1.
According to Wu [3], five different regions can be distinguished: some uniform
states of depth h0 far upstream and downstream on ] − ∞, x0] t [x2,+∞[;
a cnoidal-like1 wavetrain downstream on [x0, x1]; an almost uniform state of
depth h1 (< h0) behind the disturbance on [x1,−K]; periodic succession of
upstream advancing solitary waves on [K,x2].
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Fig. 1 Illustration of the generic behaviour of the solutions to the fKdV equation (5)
near resonance. The translating body at the floor bottom has a cosine shape and moves at
transcritical speed, i.e. U/c0 ≈ 1. For comparison, the profile of a solitary-wave solution
ζKdV(x, t) (dashed line) in (7) is superposed to the first upstream-progressing wave.

1 Here, the term cnoidal simply refers to the profile of the periodic travelling-wave solu-
tions to the KdV equation (see [19]).
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For simplicity, here and hereafter, we shall limit ourselves to the critical
case of U = c0. In this situation, the fKdV equation reduces to

2

c0

∂ζ

∂t
+

3

h0
ζ
∂ζ

∂x
+
h2

0

3

∂3ζ

∂x3
+

db

dx
= 0, (6)

and can be cast, by a simple change of variables, into the canonical form given
in (4), better suited to the theoretical study of the optimization problem (2):

Lemma 3.2 Set x := 33/5x/h0 and t := 34/5c0t/(2h0). Consider the functions
u(x, t) := 34/5ζ(x, t)/h0 and b(x) := 33/5b(x)/h0. Then u(x, t) is a solution of
(4) with forcing term b(x) if and only if ζ(x, t) solves (6) with zero initial data.

Remark that the classical KdV equation can be recovered from (6) when the
forcing disturbance vanishes, i.e. b = 0, in which case we have the well-known
family of solitary-wave solutions

ζKdV (x, t) = a sech2

[√
3a

4h3
0

(
x− x0 −

ac0
2h0

t

)]
. (7)

Figure 1 illustrates how well the “runaway” solitons of the fKdV equation
can be captured by the classical soliton profile (7) for the KdV equation. If the
motion starts impulsively from rest, we observe that it takes a certain time Tg
until the first upstream-progressing solitary wave is fully formed and breaks
away from the disturbance. As time evolves, multiple (almost identical) copies
of the leading wave will be produced in a periodic way. If a is the amplitude
of such upstream-progressing solitary waves, then the period of generation Ts
can be estimated accordingly to Wu [3] by

Ts =
64h0

c0

(
h0

3a

) 3
2

. (8)

The formula reveals a somewhat counterintuitive feature of the system: the
higher the amplitude of the upstream waves, the shorter the period of gener-
ation Ts. The times Tg and Ts are somewhat related and numerical evidence
seem to suggest that Tg is less (greater) than Ts for positive (negative) forcing
functions (see e.g. [3]).

The presence of a non-constant forcing term in (6) has the effect of de-
stroying the invariance with respect to spatial translations, and so the excess
energy integral 1

2

∫
R ζ

2 dx is not a constant of motion. Indeed, by multiplying
(6) by ζ and integrating the resulting equation over the real line, one obtains

d

dt

∫
R
ζ2 dx = c0Dw,

where Dw is given by Dw(t) :=
∫
R b(x) ∂xζ(x, t) dx and can be physically

interpreted as the drag, or the resistance due to unsteady wave making. As a
consequence, we obtain

∀t > 0, ‖ζ (•, t) ‖2L2(R,R) = c0

∫ t

0

Dw(s) ds. (9)
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Furthermore, numerics strongly suggest that the function t 7→ ‖ζ(•, t)‖2L2(R,R)

can be reasonably approximated by t 7→ c0Dw t, with Dw the average value of
Dw over the wave period Ts. By mass and energy considerations, such value
can also be estimated as Dw = a3/(4h0) (see [3]). Hence, we can say that
qualitatively∫ T

0

∫
R
ζ2(x, t) dxdt and c0Dw

T 2

2
=

c0T
2a3

8h0
(10)

have similar behaviours, provided the elapsed time T exceeds the time Tg
necessary to allow the generation of the first upstream solitary wave.

4 Optimization Problem

For the purposes of our work, the flow is assumed to be critical and proper-
ties of the corresponding fKdV solutions are exploited to formulate the op-
timization problem. For convenience, the problem is stated in terms of non-
dimensional variables as in § 2. In particular, the parameters in (1) must be
chosen appropriately to remain within the range of validity of the fKdV model:
we set K := Kdim/h0 = O(1) and M = Mdim/h0 = O(10−1). Moreover, for
obvious manufacturing reasons, only non-negative forcing functions with com-
pact support will be admitted.

An efficient wave maker is one capable of generating a wave of high am-
plitude. Since the dynamics is well described by the fKdV model, we can rely
on the description given in Fig. 1 to assert that from the moment the wave
maker starts moving steadily at critical speed, an upstream-progressing soli-
tary wave will be generated after a certain time Tg. This wave will suddenly
unlatch from the moving bottom and will propagate throughout large distances
without altering its form. It depends on one single parameter (its amplitude a)
and moves with an excess speed c = ac0/2h0 relative to the bottom (cf. (7) in
dimensional variables). From a practical point of view, once the leading wave
is fully formed, the wave maker could then be stopped, without that same
wave being affected. In the surfing context, this elevation wave would be the
wave of interest, and the one that we wish to maximize. In other words, we
would like to solve

sup
b∈C∞c (R,[0,+∞[)
supp b⊆[−K,K]

a(b).

Moreover, we can use (10) to argue that, at least qualitatively, maximizing the
functional b 7→ a(b) should yield similar results to those obtained by maximiz-
ing the functional b 7→ F (b) given in (3). Alternatively, one may address the
problem

sup
b∈C∞c (R,[0,+∞[)
supp b⊆[−K,K]

∫ T

0

∫
R
u2
b(x, t) dxdt, (11)
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where ub is the solution corresponding to the forcing function b in (4), and
where the choice of a final time T > 0 is discussed below. The formulation
(11), which is a smooth unconstrained version of (2), also allows us to carry
out the numerical procedure developed in § 5.1, since the employed gradient
method relies on the directional derivative of the functional (3). Furthermore,
the L2-setting is considered for the set (1) of admissible bottoms, ensuring the
numerical stability of the optimization algorithm. In particular, an L2-norm
constraint on the forcing functions is imposed, otherwise the supremum is not
achieved, cf. Appendix B.

We now comment the choice of a final time T . One could be tempted to
examine the asymptotic behaviour of (2) as T → +∞. Indeed, for problems
involving conservation laws and propagation phenomena, the introduction of
a finite time T (and a backward adjoint system) can potentially create unde-
sirable artificial and numerical phenomena. Consequently, it would be more
convenient to replace a time-dependant optimal control problem by the time-
independent one associated with its asymptotic behaviour. The issue is im-
portant and still open, apart from some recent work of Trélat & Zuazua [20],
where in some cases, they estimate the error made on such approximation.
However, in the considered setting, we have some good reasons not do so.

Heuristically, from (10), regardless the bottom considered, the integral over
time of the energy should go to infinity as T → +∞. In addition, the dynam-
ics of our system is completely determined in advance. As described in § 3,
once the time Tg is reached and a first upstream-progressing solitary wave is
produced, copies of such wave are generated every interval of time of length
Ts, given by (8). All of these propagate ahead of the translating bottom and
remain permanent in form, regardless whether or not the bottom keeps its
procession. This periodic pattern in time of the system motivates the picking
of a finite time T . Lastly, in real applications, the phenomenon takes place in
a finite pool, so that the final time T must also be finite to ensure that some
waves, potentially reflected from the pool ends, do not affect our system. We
address the reader to § 5.2 for an algorithmic description of how T is chosen
in practice.

To prove Theorem 2.1, a number of steps will be introduced in this section.
Following closely Tsugawa [9], we start by establishing in § 4.1 the time global
well-posedness of (4) and proving that the functional F proposed in (3) is well-
defined. We then proceed by providing in § 4.2 some explicit a priori estimates
that allow us to prove the existence of an optimal bottom in § 4.3. Finally, in
§ 4.4 the Fréchet differentiability of (3) is established giving us access to the
gradient of (3) via the adjoint formulation of (4). All the proofs and technical
details are included in Appendix A and B.1 for a better readability.

4.1 Global Well-Posedness of the fKdV Equation

We start by recalling the following result of Tsugawa [9, Theorem 1.2]: the
initial value problem for the equation ∂tu+ u∂xu+ ∂xxxu = f(x) ∈ Hσ(R,R)
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with σ > − 3
2 and u(•, 0) ∈ Hs(R,R), s ∈] − 3

4 , σ + 3] is globally well-posed
in time. We also mention that the proof of this result not trivial and uses a
rather sophisticated tool: the I-method developed by T. Tao et al. [8].

Although there is no conservation law for the (f)KdV equation in Hs(R)
for any s < 0, we have managed to perform on (4) a kind of integration-by-
part technique for Sobolev-Bochner space [15, Lemma 7.3] still available in
our H−1-setting. As a consequence, we are able to recover an estimate, merely
giving the sequential continuity of the map b ∈ L2 7→ ub ∈ C0

t (L2
x).

Proposition 4.1 Let T > 0 and b ∈ L2(R,R). Then, the initial-value problem
(4) is well posed i.e. it has a unique global solution ub ∈ C0(0, T ;H2(R,R)).
Moreover, given any other pair (b, ub) formed by a forcing term b ∈ L2(R,R)
and its corresponding solution ub ∈ C0(0, T ;H2(R,R)), we have:

sup
t∈[0,T ]

‖ub(•, t)− ub(•, t)‖2L2(R,R) 6 4CTeCT ‖b− b‖L2(R,R),

where C := max(‖ub‖C0(0,T ;H2(R,R)), ‖ub‖C0(0,T ;H2(R,R))). In particular, the
functional F (b) in (3) is a well-defined application from L2(R,R) into R.

4.2 Explicit A Priori Estimates

Again, the absence of conservation laws for (4) gives few hope for an explicit
C0
t (H2

x)-control of the solution ub in terms of the L2-norm of the bottom b.
Nevertheless, such an estimate is fundamental for the theoretical study of (2).
Fortunately, Tsugawa was able to prove in [9] that a global C0

t (L2
x)-estimate is

achieved, with an explicit expression in terms of final time and second-member.
One of our important contributions here has been to improve his estimate

by discovering some relations for the fKdV case with smooth data, namely
(20)–(21), inspired from the conserved quantities of the KdV equation. How-
ever, (20)–(21) can only hold under the assumption that b and ub have enough
regularity, so that we can differentiate under the integral sign and commute
the order of the mixed partial derivatives.

Therefore, we have to proceed in two steps. In Proposition A.1, we first
obtain an explicit global C0

t (H2
x)-control of ub in terms of the L2-norm of b

but we have to assume that b and ub are very smooth. Then, thanks to the
the quantitative estimate of Proposition 4.1 and an approximation argument,
we are able to extend the result as follows.

Proposition 4.2 Let T > 0 and b ∈ L2(R,R). Then, the unique solution
ub ∈ C0(0, T ;H2(R,R)) given in Proposition 4.1 satisfies the inequality:

‖ub‖C0(0,T ;H2(R,R)) 6 P0

(
T, ‖b‖L2(R,R)

)
+ P1

(
T, ‖b‖L2(R,R)

)
+ e

T
(

1+ 1
3‖b‖

2
L2(R,R)

)
P2

(
T, ‖b‖L2(R,R)

)
,

where P0, P1, and P2 are the polynomials introduced in Proposition A.1.
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4.3 Existence of an Optimal Bottom

To prove the existence of an optimal bottom, as in Theorem 2.1, a suitable
topology must be introduced on the set of admissible bottoms ensuring:

– the compactness of any maximizing sequence of the supremum in (2);
– the closedness of the set of admissible bottoms (1);
– the (upper-semi)continuity of the energy functional (3).

From Proposition 4.1, the functional (3) is a well-defined map from L2(R,R)
into R, thus adopting the L2-weak topology would seem rather natural. In
addition, the compactness of B follows from the fact that positivity, uniform
upper bound and support are preserved by the L2-weak convergence.

Lemma 4.1 Let K > 0 and M > 0. Then, the set of admissible bottoms (1)
is sequentially compact for the weak topology of L2(R,R).

However, the continuity of the functional (3) is not straightforward. Indeed,
we are now dealing with the weak convergence of bottoms and the results of
§ 4.2 such as the quantitative estimate of Proposition 4.1 are useless since they
involve the strong topology of L2(R,R).

A standard technique to recover the some continuity usually consists in
exploiting the a priori estimates thanks to a compact embedding, usually
given by the Aubin-Lions-Simon Lemma [14, Section 8 Corollary 4]. However,
it does not apply to our case because the embedding H2(R,R) ⊂ H1(R,R)
is not compact. Nevertheless, we have managed to overcome this difficulty by
using the fact the supports of the admissible bottoms (1) are all contained in
a fixed compact set.

Proposition 4.3 Let T > 0, K > 0 and b ∈ L2(R,R) with support included
in [−K,K]. Consider any sequence (bn)n∈N of square-integrable maps with
supports all included in [−K,K] converging weakly to b in L2(R,R). Then,
the sequence (ubn)n∈N converges strongly to ub in C0(0, T ;L2(R,R)), where
ub and ubn are the unique maps of C0(0, T ;H2(R,R)) associated to b and bn,
respectively, as in Proposition 4.1 for any n ∈ N.

4.4 Fréchet Differentiability of the Functional

In this section, we derive the Fréchet differentiability of F with respect to
L2-perturbations. If the formal computation is quite straightforward, its proof
requires careful arguments, such as the non-trivial continuity of the map b ∈
L2 7→ ub ∈ C0

t (H1
x), studied in Appendix B.1. Hence, we obtain an explicit

expression for the gradient of F by introducing the adjoint formulation of (4).

Proposition 4.4 Let T > 0, b ∈ L2(R,R), and consider the unique solution
ub ∈ C0(0, T ;H2(R,R)) of Proposition 4.1 satisfying (4). Then, the following
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final-value problem (understood as a distributional equality) is well-posed:
∂v

∂t
+ ub

∂v

∂x
+
∂3v

∂x3
+ 2ub = 0 ∈ H−1 (R,R) x ∈ R, t ∈ [0, T ]

v(x, T ) = 0 x ∈ R,

(12)

in the sense that it has a unique global solution vb ∈ C0(0, T ;H2(R,R)).

Proposition 4.5 Let T > 0 and F : L2(R,R) → R be well-defined by (3)
(cf. Proposition 4.1). Then, for any b ∈ L2(R,R) and any h ∈ L2(R,R), the
following expansion holds:

F (b+ h) = F (b) +

∫
R
h(x)

(∫ T

0

∂vb
∂x

(x, t) dt

)
dx+ o

(
‖h‖L2(R,R)

)
,

where vb ∈ C0(0, T ;H2(R,R)) is the unique global solution of (12) introduced
in Proposition 4.4. In particular, the map Fb : h ∈ L2(R,R) 7→ F (b + h) ∈ R
is Fréchet differentiable at the origin for any bottom b ∈ L2(R,R) and the
gradient of F at b is given by

∂bF : x ∈ R 7−→ ∂bF (x) :=

∫ T

0

∂vb
∂x

(x, t) dt. (13)

Henceworth, the map b ∈ L2(R,R) 7→ ∂bF ∈ L2(R,R) is referred to as the
shape gradient of F .

5 Numerical Approach to the Problem

In this section, we present the numerical procedure used to solve problem
(2). In particular, we aim to develop a numerical scheme allowing a fast and
precise resolution of the fKdV equation on account of being incorporated in
the loop of the optimization algorithm. Here and hereafter, the dimensional
form (6) for the fKdV equation will be used. All simulations in this work were
performed on a standard laptop with Matlab and with fixed values h0 = 1 m
and g = 9.81 m.s−2.

5.1 Numerical Scheme for the fKdV Equation

A naive discretization of equation (6) using finite differences is expected to
perform rather poorly. Contributing to this is the fact that, most likely, some
physical properties are not conserved, the third-order derivative introduces
numerical dispersion, and the forcing term breaks some possible symmetries.
For the KdV equation, which is just a particular case of (6), some well-known
efficient methods can be found in the literature (see e.g. [16–18]). All these
three methods are, however, subject to a drastic stability condition of the
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form ∆t = O(∆x3). To overcome this inconvenience, Furihata proposes in
[21] an implicit finite-difference scheme that is unconditionally stable. This
numerical scheme is known to be very stable because it also preserves the
physical properties of the equation, namely the mass and the Hamiltonian.

Such method can be easily adapted to discretize (6), as follows. Noticing
that (6) can be cast into the form (2/c0)∂tu = ∂x(δuG), where we have set
δuG := −(3/2h0)u2 − (h2

0/3)∂xxu− b, we have

G

(
∂u

∂x
, u

)
= − 1

2h0
u3 +

h2
0

6

(
∂u

∂x

)2

− b u.

First, considering a small space step ∆x > 0 and a small time step ∆t > 0,
the domain is uniformly discretized: R × [0, T ] ≈ (xi, tn)(i,n)∈Z×J0,NK with
xi = i∆x, tn = n∆t and N∆t = T . In the numerical scheme, Uni approximates
uni := u(xi, tn). We then introduce the discrete operators δ+

i (•) = [(•)i+1 −
(•)i]/∆x and δ−i (•) = [(•)i − (•)i−1]/∆x. According to the general procedure
described by Furihata [21, Section 5.1], and adopting the same notation, we
thus have Gd(U)i := −(1/2h0)U3

i +(h2
0/12)[δ+

i Ui)
2 +(δ−i Ui)

2]−Bi Ui, and so:
δGd

δ(U, V )i
:= −U

2
i + Ui Vi + V 2

i

2h0
− h2

0

6
δ+
i δ
−
i (Ui + Vi)−Bi

2

c0

Un+1
i − Uni
∆t

=
1

2∆x

(
δGd

δ(Un+1, Un)i+1
− δGd
δ(Un+1, Un)i−1

)
.

The remarkable feature of the above discretization is that the solutions ob-
tained (Uni )(i,n)∈Z×J0,NK for this set of non-linear equations satisfy (see [21]):

∀n ∈ J0, NK,
∑
i∈Z

Gd(U
n)i∆x = 0 and

∑
i∈Z

U in∆x = 0. (14)

In other words, the scheme preserves, at a discrete level, the mass and the
Hamiltonian structure of equation (6).

With the view of incorporating a fast numerical scheme into the loop of the
optimization algorithm, we propose to simplify the numerical method by lin-
earizing it thanks to the approximation (un+1

i )2 + (uni )2 = 2un+1
i uni +O(∆t2),

valid for any i ∈ Z and u(xi, •) ∈ C2(R,R). Our discretization of (6) amounts
to solving the following linear system:

2
c0

Un+1
i −Un

i

∆t = −h
2
0

6

(Un+1
i+2 −2Un+1

i+1 +2Un+1
i−1 −U

n+1
i−2 )+(Un

i+2−2Un
i+1+2Un

i−1−U
n
i−2)

2∆x3

− 3
2h0

Un
i+1U

n+1
i+1 −U

n
i−1U

n+1
i−1

2∆x − Bi+1−Bi−1

2∆x .
(15)

This will be the numerical scheme retained in this work, given that it offers a
good compromise between a fast and accurate resolution and has some good
numerical properties, cf. Appendix B.2. In particular, it is consistent and un-
conditionally stable, and preserves mass.
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To test the performance of our numerical scheme, we set b = 0, in which
case the KdV equation is recovered, and compare it against the efficient meth-
ods given in [16–18]. As we know, in the particular case when the forcing term
is absent, we have a family of solitary-wave solutions ζKdV defined by (7).
This traveling-wave solution corresponds to the solution of the KdV equation
with initial condition ζKdV(•, 0), i.e. the initial profile remains unaltered as it
propagates, which can be used as a benchmark test for the different schemes.
The equation is solved numerically on [−L,L] × [0, T ] with initial condition
ζKdV(•, 0), by imposing periodic boundary conditions. The numerical errors
obtained with respect to the exact solution and computational time required
by each one of the methods are depicted in Fig. 2.

As it can be seen from the figure, as long as the stability condition ∆t =
O(∆x3) is required, although slower, our scheme is as precise as its competi-
tors. However, thanks to Proposition B.3, such constraint can be relaxed, say
by considering ∆t = O(∆x), allowing to drastically reduce the computational
time while keeping the same order of precision, as shown in the last entry of
the chart legend in Fig. 2.
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Fig. 2 Performance comparison between different numerical schemes for the KdV equation.
The problem is solved on [−L,L]× [0, T ] with periodic boundary conditions, and the numer-
ical solutions are compared against the analytical solitary-wave solution. The computational
time required by each one of the methods is specified in the chart legend. Parameters are
set as: a = 0.2, x0 = 0, ∆x = 0.1, L = 15, ∆t = 0.00025, and T = 100. The last line of the
chart legend has been obtained by changing the value of ∆t (= 0.1) while keeping the same
values of the other parameters.
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5.2 Numerical Boundary Conditions

In contrast to what was seen in § 5.1, in the absence of a forcing term, we will
solve equation (6) on a finite domain, say from −L to L, without imposing
periodic boundary conditions. Since the flow is assumed to be critical, a posi-
tive constant L is chosen large enough to contain all the five distinct regions
depicted in Fig. 1. We may then introduce I ∈ N such that I∆x = L and we
have Un+1

i = Uni = 0 for any i /∈ J−I, IK. In particular, the discretization (15)
becomes a linear system of 2I + 1 equations, which reads AnUn+1 = Bn in
matrix form. Instead of increasing the execution time with the choice of a large
L that would depend on T , a smooth filter f is applied on the approximated
map at each time step. The introduction of a filter has the aim of suppressing
the waves at the left-end of the domain [−L,−L+∆L], with ∆L ∈]0, L[ being
the interval size on which the filter acts, while preserving the solution behavior
outside this region. More precisely:

Un+1
i = f (xi)

[
(An)

−1
Bn
]
i

f(x) =
1

2

[
1 + cos

(
π
∆L− (L+ x)

∆L

)]
1[−L,−L+∆L](x) + 1]−L+∆L,L](x),

where 1[−L,−L+∆L] (respectively 1]−L+∆L,L]) is valued one on [−L,−L+∆L]
(resp. ]−L+∆L,L]), otherwise zero. This procedure ensures a smooth decreas-
ing of Un+1 to zero on [−L,−L+∆L] and it does not affect the approximation
of u(•, tn+1) on [−L+∆L,L] as shown in Fig. 3. More importantly, it allows
a small numerical domain, which greatly reduces the computational time of
our simulations. Finally, concerning the right-end of the domain, knowing that
waves entering this region are solitary waves, we can use their explicit expres-
sion (7) and their generation period (8) in order to tune the final time T and
prevent them from reaching the boundary.

To choose the final time T , we proceed as follows. Consider an educated
initial guess b0 and a sequence of bottoms bk converging to an optimal one
bopt thanks to an optimization procedure ensuring that the amplitudes of the
corresponding “runaway” waves are not decreasing. In particular, we have
a(b0) 6 a(bk) and by (8), we get Ts(b

0) > Ts(b
k). Recalling that Ts > Tg, we

deduce that Ts(b
0) > Tg(b

k) for any k ∈ N, and similarly Ts(b
0) > Tg(b

opt).
Note that Ts(b

0) is explicit from (8) and a measure of a(b0) given by any
simulation. Hence, any choice of T greater than Ts(b0) is appropriate because
it guarantees that the first upstream-progressing solitary wave depicted in
Fig. 1 is always fully formed at time T throughout the iterative scheme.

In § 5.3, we explain how the shape gradient (13) of the functional (3) is
computed. Then, the L2-constrained optimization problem (2) is replaced by
an infinite sequence of unconstrained problems as in (17) thanks to the intro-
duction of a Lagrange multiplier in § 5.4. Finally, the Usawa-type procedure
is discussed in § 5.5, relying on the combination of two projected gradient
methods.
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5.3 Computation of the Shape Gradient of the Functional

The techniques used to obtain (12) in Proposition 4.4 can be easily adapted to
obtain the adjoint formulation of (6) with ζ = u. Formally, calculations yield
(2/c0)∂tv+ (3/h0)u ∂xv+ (h2

0/3)∂xxxv+ 2u = 0 on R× [0, T ] and v(•, T ) = 0.
Then, the discretization is performed in the same way as (15) was obtained
from (6), with the result:

2
c0

V n+1
i −V n

i

∆t = −h
2
0

6

(V n+1
i+2 −2V n+1

i+1 +2V n+1
i−1 −V

n+1
i−2 )+(V n

i+2−2V n
i+1+2V n

i−1−V
n
i−2)

2∆x3

− 3Un+1
i

2h0

V n+1
i+1 −V

n+1
i−1

2∆x − 3Un
i

2h0

V n
i+1−V

n
i−1

2∆x −
(
Un+1
i + Uni

)
.

(16)

As time is reversed, the system gets the matrix form An+1V n = Bn+1. Using
the trick of § 5.2, a filter f is applied at each time step to ensure a smooth
decreasing of V n to zero on [−L,−L+∆L] and [L−∆L,L], where ∆L ∈]0, L[
is the interval size on which the filter acts. We thus have:

V in = f (xi)
[(
An+1

)−1
Bn+1

]
i

f(x) := f(x)− 1[L−∆L,L](x) +
1

2

[
1 + cos

(
π
∆L+ x− L

∆L

)]
1[L−∆L,L](x).

As illustrated in Fig. 3, the filter f alters severely the numerical solution
of (16) on the whole computational domain [−L,L], whereas the filter f only
interfered on the interval [−L,−L+∆L] where it acts. Fortunately, the effects
of the filter are negligible on the computation of the shape gradient (13),
which is the pertinent quantity for the numerical calculations. We can also
observe that the corresponding shape gradients ∂bF and ∂bFfilter are almost
proportional, i.e. ∂bFfilter = (1+γfilter)∂bF , where γfilter is small. Consequently,
∂bF and ∂bFfilter can be used indifferently in the optimization algorithm since
the new bottom is evaluated by b + γ∂bFfilter = b + γ(1 + γfilter)∂bF , where
γ > 0 is small. Finally, note that the adjoint equation is a linearization of (6).
In particular, similar results as those presented in (14) and Propositions B.2–
B.3 can be obtained for (16). To conclude, at each step of the optimization
algorithm, (15) and (16) must be solved to compute (13), whose integral is
approximated according to Simpson’s rule.

5.4 Description of the Optimization Algorithm

Let L : (b, λ) ∈ L2(R,R)× [0,+∞[7→ L(b, λ) ∈ R be the Lagrangian associated
with (2) and defined by L(b, λ) := F (b) + λ(M2 − ‖b‖2L2(R,R)), then consider:

G(λ) := sup
b∈L2(R,[0,+∞[)
supp b⊆[−K,K]

L(b, λ). (17)
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Fig. 3 Illustration of the effects on the solution due to the filters. The numerical simulation
is implemented with the parameters: ∆x = 0.05, L = 50, ∆L = 20, ∆t = 0.1, and T = 30.

Usawa’s method consists in relaxing the L2-constraint by solving infλ>0G(λ)
instead of (2). In general, the two problems are not equivalent. We only have:

inf
λ>0

G(λ) > sup
b∈B

F (b). (18)

We were not able to prove analytically that equality holds in (18). Adapting
some arguments of § 4, we could however show the existence of λ > 0 and
a non-negative square-integrable map bλ such that L(bλ, λ) = infλ>0G(λ).
If one could show the uniqueness of such map bλ, then we could prove that
‖bλ‖L2(R,R) = M , in which case (18) would be an equality and the global
maximizer of (2) unique. Despite the lack of a theoretical proof, every sin-
gle numerical simulation we performed solving infλ>0G(λ) yielded a criti-
cal point bopt saturating the L2-constraint to a very high order of precision
(‖bopt‖L2(R,R) = M up to 8 digits). This strongly suggests the validity of our
claim and justifies, at least numerically and a posteriori, the use of Usawa’s
method to our problem. We thus combine:

(i) a gradient method for the primal problem (17), in which the shape gradient
of the Lagrangian is needed and given by ∂bL(b, λ) := ∂bF − 2λb;

(ii) a projected gradient method for the dual problem infλ>0G(λ), using the ex-
plicit expression of the projector on [0,+∞[, given by P+(•) := max(0, •).
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Remark that (17) still contains the non-negativity and support constraint of
the bottom. Therefore, we have to replace in (i) a gradient descent by a pro-
jected gradient method. The algorithm thus reads:


bnew = P+

[
bold + γ∂bL

(
bold, λold

)]
1[−K,K]

λnew = P+

[
λold − κ

(
M2 − ‖bnew‖2L2(R,R)

)]
,

where γ, κ > 0 are parameters to tune, and where 1[−K,K] equals one on
[−K,K] otherwise zero.

5.5 Behaviour of the Usawa-Type Algorithm

The general behaviour expected from the algorithm is depicted in Fig. 4. The
initial bottom b is a cosine-shaped profile satisfying the L2-constraint. In par-
ticular, λ = 0 and L(b, λ) = F (b). Hence, the initial deformation is only ruled
by the functional. Then, it is expected from the algorithm to increase the bot-
tom height because the wave elevation is very sensitive to it. However, after
some iterations, the bottom will not satisfy the L2-constraint and thus λ > 0.
The L2-constraint begins to act in the deformation process in order to bring
back the bottom into the admissible set.

Consequently, oscillations of the Lagrangian are expected around a sad-
dle point corresponding to an equilibrium between the will of the functional
and the constraints. The convergence of the algorithm mainly depends on how
quickly the L2-constraint intervenes in the optimization process, which is thus
ruled by the parameter κ. As shown in Fig. 4, the convergence occurs if the
parameter κ is able to reduce progressively the oscillations observed on the evo-
lution of all the characteristic parameters, such as the functional, the Lagrange
multiplier and the amplitude of the solitary wave. An educated choice of κ has
been difficult to set up. Indeed, too small κ mean a delay in the process of
penalization of the functional whereas high values make the constraints imme-
diately significant. In both cases, high oscillations will be observed. A typical
value is κ = 30 000.

Then, we comment the choice of γ. The setting up of (17) via the gradient
method (i) relies on the optimal local direction for steepest descent. Hence, the
parameter γ must be small since Taylor expansions around zero are involved.
A typical value is γ = 10−4. Moreover, if γ is too important, the new bottom
will always leave the admissible set or violate the physical limit of the fKdV
model. Finally, a stopping criterion ι > 0 is chosen small. It corresponds to
the tolerance allowed on the precision of variables. The algorithm stops when
the constraints are satisfied and ‖bnew − bold‖L2(R,R) < ι. A typical value is

ι = γ10−3. Indeed, we have ‖bnew − bold‖L2(R,R) 6 γ‖L(bold, λold)‖L2(−K,K)

and numerics suggest that equality hold if γ is chosen small enough.



Optimal Shape of an Underwater Moving Bottom 19

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

Number of iterations in the optimization algorithm

F
un

ct
io

na
l

Functional F(b)
Lagrangian L(b,λ)

0 50 100 150 200
0

200

400

600

800

Number of iterations in the optimization algorithm

N
or

m
 o

f t
he

 g
ra

di
en

t |
d

b
L|

L
2 (−

K
,K

)

Evolution of the optimality condition

0 50 100 150 200
0

1000

2000

3000

4000

Number of iterations in the optimization algorithm

La
gr

an
ge

 m
ul

tip
lie

r

Evolution of the Lagrange multiplier

−50 0 50
−0.5

0

0.5

1

Space variable in the bottom frame

W
av

e 
el

ev
at

io
n 

at
 fi

na
l t

im
e

Initial elevation
Optimal elevation

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

Space variable in the bottom frame

B
ot

to
m

 to
po

gr
ap

hy

Initial bottom
Optimal bottom

Fig. 4 Illustration of the algorithm convergence. The computational time is 20 minutes
for the parameters: M =

√
0.03, supp b ⊆ [−1, 1], ∆x = 0.05, L = 50, ∆t = 0.1, T = 30,

κ = 30 000, γ = 0.00005, and ι = γ10−3.

6 Numerical Results and Perspectives

Figure 4 illustrates how, given an initial cosine-shaped profile satisfying the
L2-constraint, our method converges to an optimal bottom responsible for
generating a leading solitary wave with almost a two-fold increase of amplitude
with respect to the one generated by the initial bottom. Both initial bottom
and optimal bottom have the same support restriction, but while the initial
profile is continuous (when viewed as a function over the real line), the optimal
one is not. A discontinuity can be observed at both ends of the support. The
oscillating behaviour of the algorithm, and especially its difficulty to converge,
is well present in this figure. This indicates that the soliton height is highly
sensitive to the amplitude of the bottom topography and corroborates the
findings in [6].

We were interested in determining how this optimal shape depended on dif-
ferent prescribed initial conditions. As we know, for non-linear optimization
problems endowed with non-convex functionals, several distinct critical points,
local and global maxima can in general arise, preventing a gradient-based al-
gorithm to converge to a global maximum. In such situations, we often rely on
experience to provide an educated initial guess leading to a meaningful solu-
tion. Figure 5 displays the results obtained for different initial guesses for the
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bottom. A very unusual result that warrants further investigation can be ob-
served here: regardless of the starting shapes, the optimization algorithm seems
to converge to the same shape. This observation is quantified on the lower panel
of Fig. 5, in which we present the distance between the optimal bottom bref

opt,

resulting from an initial cosine shape and satisfying ‖bref
opt‖L2(R,R) = M up to

8 digits, and the optimal bottoms obtained from the other five initial shapes.
Discrepancies were found to be of order 10−7. Also included in the figure is
the value of the first-order optimality condition, i.e. the shape gradient of the
Lagrangian, for which obtained values are of order 10−4.
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Fig. 5 The optimization algorithm is performed for various initial bottoms. Each optimal
shape has been computed in 4 minutes for 90 iterations with the parameters: M =

√
0.03,

supp b ⊆ [−1, 1], ∆x = 0.05, L = 50, ∆L = 20, ∆t = 0.1, T = 30, κ = 30000, γ = 0.00025,
and ι = γ10−3.

These are strong evidence of the uniqueness of a critical point for the
optimization problem (2), which would imply that the shape obtained by the
algorithm corresponds to a unique maximizer for (2), the optimal one described
in Theorem 2.1, and gives further support to our claim made in § 5.4 about
the equality in (18).

We also investigate how the support constraint supp b ⊆ [K−,K+] influ-
ences the discontinuities of the optimal bottom that may manifest at the ends
of the support considered. On the left panel of Fig. 6, we set K+ = 1 matching
the right-end support of the initial condition, and display the optimal pro-
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files computed for K− ∈ {−3.5,−2.5,−1.5,−0.5}. On the right panel, we set
K+ = 1.5 and consider the cases K− ∈ {−3,−2,−1, 0}. In all cases, the right-
end discontinuity is present (although not at the same height). In contrast,
the left-end discontinuity seems to strongly depend on the support restriction.
Also, it is striking how resemblant the shapes are in the cases K+ = 1 and
K+ = 1.5; in fact, almost indiscernible (of order 10−4) upon translation. It
would be interesting to corroborate analytically these numerical observations,
in particular that the optimal bottom is not H1-regular over the real line.
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Fig. 6 Influence of the support restriction. For the same initial bottom, we determine how
the optimal shape of the bottom varies with different supports. Each optimal shape has
been computed in 4 minutes for 90 iterations with the same parameters as in Figure 5.

It is worth pointing out the shortcomings of an inviscid model as the one
adopted here. However the gains in amplitude were rather important in the
case displayed in Fig. 4, this only seems to be the case because the initial
bottom is far from saturating the L2-constraint. As a matter of fact, when in
Fig. 5 the shape of the optimal bottom is compared to the highest admissible
cube (rectangle to be more precise), the difference in amplitudes between the
two leading waves is not that significant. Even if in reality that could be the
case, it is not difficult to imagine that drag forces due to a cube would be
much more important than those due to the optimal shape computed here
(which reminds a section of an airfoil), hence with a far greater energy con-
sumption associated to it. For a more realistic description of the problem, weak
dissipative effects should be included in the model allowing in particular to
characterize the adherence of the water on the bottom to better study the de-
pendency between its shape and the amplitude of the generated wave. Despite
the limitations, we are able to recover results which look very like those used
in practice [2].

To conclude, we justify numerically the choice of the L2-setting to study the
optimization problem (2). Clearly, from a theoretical viewpoint, it would have
been much easier to consider admissible bottoms b ∈ H1

0 (] − K,K[, [0,+∞[)
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satisfying ‖b‖H1(R,R) 6 M . However, in this case, our numerical approach
provides an irregular perturbation ∂bL(b, λ) = ∂bF−2λ(b−∂xxb) ∈ H−1(R,R).
The computation immediately diverges, leading to errors and oscillations. The
well-posedness of (4) is only proved at least for bottoms in H−

1
2 , although it

is actually not known whether this exponent is optimal [9, Remark 1.2]. Even

for the KdV equation, the space H−
3
4 is critical for well-posedness [8]. Hence,

there is few hope to get a stable program. In comparison, the great advantage
of the L2-setting is that the shape gradient of our Lagrangian remains a square
integrable map so our numerical algorithm is stable with respect to the class
of admissible bottoms.

7 Conclusion

In this article, the forced Korteweg-de Vries equation (4) is used to investigate
how the shape of an underwater (steadily) moving bottom at a critical speed
can affect the amplitude of the first upstream-progressing solitary wave. With
the view of increasing the amplitude of such wave, under some practical con-
straints, we consider the non-linear optimal control problem (2) from a shape
optimization perspective. This amounts to maximizing the total energy (3) of
the system over the set (1) of non-negative square-integrable bottoms, with
uniformly bounded L2-norms and supports embedded in a given fixed compact
set.

To the expense of a lengthy article, we have tried to exhibit here a rather
thorough study of this design optimization problem. The paper contains in-
deed argued choices for the modelling, the proof of Theorem 2.1 stating the
existence of a maximizer saturating the L2-constraint, the derivation of a
shape gradient, the setting up of a numerical Usawa-type algorithm yield-
ing the desired optimal shape, an analysis of its efficiency and stability, and
the behaviour of the optimal shape with respect to different initial guesses and
support constraints. We believe our approach is original since it is motivated
by very concrete applications (modelling the generation of artificial waves in
surfing pools), numerical purposes (studying the design of an optimal shape
with shape-gradient perturbations that are stable with respect to the set of ad-
missible shapes), and theoretical considerations (controlling the Korteweg-de
Vries equation by its low-regular second member on the whole real line).
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Appendix A Proofs of the Main Results

A.1 Global Well-Posedness of the fKdV Equation

Proof of Proposition 4.1 Assume T > 0 is fixed and b ∈ L2(R,R) is given. As a particular
case of [9, Theorem 1.2], with σ = −1, f = − db

dx
, and initial data u0 ≡ 0, there exists a

solution ub ∈ C0(0, T ;H2(R,R)) to the initial-value problem (4). Consider any other bottom
b ∈ L2(R,R), with corresponding solution ub ∈ C0(0, T ;H2(R,R)), then set δb = b− b and
δu = ub − ub. Clearly, one has:

∂ (δu)

∂t
+

∂

∂x

[
(δu)2

2
+ ub δu+

∂2 (δu)

∂x2

]
= −

d (δb)

dx
∈ H−1(R,R), t ∈ [0, T ],

δu(x, 0) = 0, x ∈ R.
(19)

Although the partial derivatives in (19) have to be handled with care, since they are under-
stood in distributional sense, we can still apply the integration-by-parts formula stated in
[15, Lemma 7.3] by considering the Gelfand triple H1(R,R) ⊂ L2(R,R) ⊂ H−1(R,R) and
the fact that we have δu ∈ {w ∈ L2(0, T ;H1(R,R)) : ∂tw ∈ L2(0, T ;H−1(R,R))}. We thus
obtain for any t ∈ [0, T ]:

‖δu (•, t) ‖2
L2(R,R) = ‖δu(•, 0)‖L2(R,R) + 2

∫ t

0
〈∂t(δu) | δu〉H−1(R,R),H1(R,R) (•, s) ds.

We get 〈∂t(δu) | δu〉H−1(R,R),H1(R,R) = 〈 (δu)
2

2
+ub δu+∂xx(δu)+δb | ∂x(δu)〉L2(R,R),L2(R,R)

and δu(•, 0) = 0 by using (19), from which it follows for any t ∈ [0, T ]:

‖δu (•, t) ‖2
L2(R,R) = 2

∫ t

0

∫
R
δb
∂(δu)

∂x
dx ds−

∫ t

0

∫
R

(δu)2
∂ub

∂x
dx ds.

We may then write, by introducing C := max(‖ub‖C0(0,T ;H2(R,R)), ‖ub‖C0(0,T ;H2(R,R))),
which is a finite constant:

∀t ∈ [0, T ], ‖δu (•, t) ‖2
L2(R,R) 6 4CT‖δb‖L2(R,R) + C

∫ t

0
‖δu (•, s) ‖2

L2(R,R) ds.

Since t ∈ [0, T ] 7→ ‖δu(•, t)‖L2(R,R) ∈ R is a continuous function [15, Lemma 7.3], we can
apply Grönwall’s Lemma, which yields

∀t ∈ [0, T ], ‖ub (•, t)− ub(•, t)‖2L2(R,R) 6 4CTeCt‖b− b‖L2(R,R).

In particular, the uniqueness of solution to the initial-value problem (4) follows and the
functional F : b 7→ F (b) given by (3) is a well defined application from L2(R,R) into R. ut

A.2 Explicit A Priori Estimates

Proposition A.1 Let T > 0 and b ∈ H∞(R,R) := ∩s>0H
s(R,R). Then, there exist three

polynomials P0, P1, P2 in two variables with (non-negative) constant coefficients, such
that the following estimates hold for the unique solution ub ∈ C∞(0, T ;H∞(R,R)) to the
initial-value problem (4):

(i) sup
t∈[0,T ]

‖ub (•, t) ‖L2(R,R) 6 P0

(
T, ‖b‖L2(R,R)

)
,

(ii) sup
t∈[0,T ]

‖∂xub (•, t) ‖L2(R,R) 6 P1

(
T, ‖b‖L2(R,R)

)
,

(iii) sup
t∈[0,T ]

‖∂xxub (•, t) ‖L2(R,R) 6 e
T

(
1+ 1

3
‖b‖2

L2(R,R)

)
P2

(
T, ‖b‖L2(R,R)

)
.
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Proof Let T > 0 and b ∈ H∞(R,R) := ∩s>0H
s(R,R). Lemmas 3.1 and 3.2 imply the

existence of a unique smooth solution ub ∈ C∞(0, T ;H∞(R,R)) of (4). Since b ∈ L2(R,R),
we may apply [9, Proposition 3.1] with final time T + 1(> 1), σ = −1, f = − db

dx
, and

homogeneous initial data u0 ≡ 0, to establish the inequality:

sup
t∈[0,T ]

‖ub(•, t)‖L2(R,R) 6 sup
t∈[0,T+1]

‖ub(•, t)‖L2(R,R) 6 C
(

1 + (1 + T )3 ‖∂xb‖3H−1(R,R)

)
,

for some positive constant C, which does not depend on T , b, or ub. This proves assertion
(i) with P0(x, y) := C(1 + (1 +x)3y3), using here the fact that ‖∂xb‖H−1(R,R) 6 ‖b‖L2(R,R).

We now exploit the Hamiltonian structure of equation (4) (see [22]). Although energy is not
conserved, as already pointed out, an extra conserved quantity is available for the fKdV
equation, which is in fact a Hamiltonian for the system. Let H be such Hamiltonian. Then,

∀t ∈ [0, T ], H(t) :=

∫
R

[(
∂ub

∂x

)2

−
1

3
u3b − 2b ub

]
dx = 0. (20)

The Cauchy-Schwarz inequality and ‖g‖2
L∞(R,R) 6 2‖g‖L2(R,R)‖∂xg‖L2(R,R) 6 ‖g‖2

H1(R,R)
valid for any g ∈ H1(R,R) are combined with the well-known inequalities 2xy 6 x2 + y2

and
√
x+ y 6

√
x+
√
y, valid for any x, y > 0, so that one can deduce from (20):

‖∂xub (•, t) ‖L2(R,R) 6

√
7

5

(
‖ub (•, t) ‖L2(R,R) + ‖ub (•, t) ‖2

L2(R,R) + ‖b‖L2(R,R)

)
.

This proves the estimate (ii) of our Proposition A.1 with P1(x, y) := 2[y+P0(x, y)+P 2
0 (x, y)].

Finally, the same method is used to determine P2. We first show for any t ∈ [0, T ]:

d

dt

∫
R

[
(∂xxub)

2 + 2b ∂xxub −
5

3
ub (∂xub)

2 +
2

3
b u2b +

5

36
u4b

]
dx =

2

3

∫
R
b I ∂xub dx, (21)

with I := ∂xxub + 1
2
u2b + b. Notice that both sides of (21) depend only on time t. Denote

by G(t) the left-hand side of the equation. Straightforward calculations lead to:

G(t) =

∫
R

2∂xtub [−∂xxxub − bx]︸ ︷︷ ︸
=∂tub+ub∂xub

−
10

3
ub∂xub∂xtub −

5

3
∂tub (∂xub)

2 +
4

3
bub∂tub

+
5

9
u3
b
∂tub

=

∫
R

4

3
ub ∂tub︸︷︷︸

=−Ix

[
∂xxub +

u2b
2

+ b

]
︸ ︷︷ ︸

:=I

−
1

3
∂tub︸︷︷︸
=−Ix

(∂xub)
2 −

1

9
u3b ∂tub︸︷︷︸

=−Ix

=

∫
R

2

3
∂xub I b.

Integrating equality (21) on [0, t] for any t ∈ [0, T ], following the same strategy above yields

‖∂xxub(•, t)‖2L2(R,R) 6 2

(
1 +
‖b‖2

L2(R,R)

3

)∫ t

0
‖∂xxub(•, s)‖2L2(R,R)ds+P01

(
T, ‖b‖L2(R,R)

)
where we have set

P01(x, y) := 2x

[
y2
(

1 +
P1(x, y)2

3

)
+
P0(x, y)2

4

(
P0(x, y)2 + P1(x, y)2

)]
+ 2

[
2y2 +

5P1(x, y)

6

(
P0(x, y)2 + 2P1(x, y)2

)
+
y

3

(
2P0(x, y)2 + P1(x, y)2

)
+

5P0(x, y)2

36

(
P0(x, y)2 + P1(x, y)2

)]
.

Consequently, we apply Grönwall’s Lemma to the last inequality above, from which the
assertion (iii) follows by setting P2(x, y) := 1 + P01(x, y), and concluding the proof. ut
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Proof of Proposition 4.2 Let T > 0 and b ∈ L2(R,R). First, according to Proposition 4.1,
we can consider the unique solution ub ∈ C0(0, T ;H2(R,R)) of (4). Moreover, by density,
a sequence (bn)n∈N of smooth maps with compact support is strongly converging to b in
L2(R,R). In addition, Proposition A.1 ensures that the sequence (ubn )n∈N of associated
smooth maps also satisfies (4) and the a priori estimates for any n ∈ N. We deduce from
the quantitative estimate of Proposition 4.1 the strong convergence of (ubn )n∈N to ub in
C0(0, T ;L2(R,R)). In particular, we can correctly let n → +∞ in the inequality (i) of
Proposition A.1 applied to (ubn , bn) in order to get ‖ub‖C0(0,T ;L2(R,R)) 6 P0(T, ‖b‖L2(R,R)).

Then, let t ∈ [0, T ] fixed. Since (bn)n∈N is bounded, the sequence (∂xubn (•, t))n∈N
is uniformly bounded in H1(R,R). Consequently, there exists a subsequence that weakly
converges in H1(R,R) to a certain map, which has to be ∂xub(•, t) by considering the con-
vergence in distributional sense. We emphasize the fact that here the subsequence depends
on the time variable so it is denoted by (∂xubn(t)

)n∈N. Considering the lower-semicontinuity

of the norm with respect to the weak convergence, we obtain for any t ∈ [0, T ]:

‖∂xub(•, t)‖H1(R,R) 6 lim inf
n∈N

‖∂xubn(t)
(•, t)‖H1(R,R) 6 P2

(
T, ‖b‖L2(R,R)

)
e
T+T

3
‖b‖2

L2(R,R)

+P1

(
T, ‖b‖L2(R,R)

)
.

Hence, the inequality of Proposition 4.2 holds with (b, ub), concluding the proof. ut

A.3 Existence of an Optimal Bottom

Proof of Proposition 4.3 The proof is very similar to the one of Proposition 4.1. Let T > 0,
K > 0 and b ∈ L2(R,R) with support included in [−K,K]. From Proposition 4.1, the
initial-value problem (4) has a unique solution ub ∈ C0(0, T ;H2(R,R)). Consider now
any sequence (bn)n∈N of square-integrable maps with supports all included in [−K,K]
that is weakly converging to b in L2(R,R). In particular, such a sequence is bounded so
Propositions 4.1–4.2 ensure that the sequence (ubn )n∈N of associated maps satisfies (4)
and the a priori estimate for any n ∈ N. We deduce that ub and (ubn )n∈N are uniformly
bounded in C0(0, T ;H2(R,R)). First, we consider the two following compact embeddings:
H2(]−K,K[,R) ⊂ H1(]−K,K[,R) ⊂ H−1(]−K,K[,R). We can apply the Aubin-Lions-
Simon Lemma [14, Section 8 Corollary 4] to obtain that the following one is also compact:

W :=
{
w ∈ L∞

(
0, T ;H2 (]−K,K[ ,R)

)
: ∂tw ∈ L∞

(
0, T ;H−1 (]−K,K[ ,R)

)}
↪→ C0

(
0, T ;H1 (]−K,K[ ,R)

)
.

From the foregoing and (4), ‖ubn‖L∞(0,T ;H2(]−K,K[,R)) +‖∂tubn‖L∞(0,T ;H−1(]−K,K[,R)) is

uniformly bounded i.e. (ubn )n∈N is uniformly bounded in W . We deduce that there exists
uK ∈ C0(0, T ;H1(]−K,K[,R)) and a subsequence (ubn′ )n∈N that is strongly converging to

uK in C0(0, T ;H1(]−K,K[,R)). Then, let n ∈ N. We introduce the quantities δb = bn′ − b
and δu = ubn′ −ub. One can check they satisfy the initial-value problem (19). We emphasize

again the fact that the partial derivatives in (19) have to be handled with care since these are
understood in a distributional sense. But we can still apply the integration-by-parts formula
of [15, Lemma 7.3] by considering the Gelfand triple H1(R,R) ⊂ L2(R,R) ⊂ H−1(R,R)
and the fact that δu ∈ {w ∈ L2(0, T ;H1(R,R)) : ∂tw ∈ L2(0, T ;H−1(R,R))}. Following the
same calculations than we did in the proof of Proposition 4.1, we get for any t ∈ [0, T ]:

‖δu (•, t) ‖2
L2(R,R) = 2

∫ t

0

∫
R
δb
∂(δu)

∂x
dxds−

∫ t

0

∫
R

(δu)2
∂ub

∂x
dxds.

Finally, we use the Cauchy-Schwarz inequality and the fact that all the supports of the
considered bottoms are included in [−K,K]. We thus get for any t ∈ [0, T ]:

‖
(
ubn′ − ub

)
(•, t) ‖2

L2(R,R) 6 2

∫ T

0

∫ K

−K
(bn′ − b) (x)

[
∂ubn′

∂x
−
∂ub

∂x

]
(x, s) dx ds

+ ‖ub‖C0(0,T ;H2(R,R))

∫ t

0
‖
(
ubn′ − ub

)
(•, s) ‖2

L2(R,R) ds.
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Since t ∈ [0, T ] 7→ ‖δu(•, t)‖L2(R,R) ∈ R is a continuous function [15, Lemma 7.3], we can
apply Grönwall’s Lemma and we obtain:

‖ubn′ − ub‖
2
C0(0,T ;L2(R,R)) 6 C

∫ T

0

∫ K

−K
(bn′ − b) (x)

[
∂ubn′

∂x
−
∂ub

∂x

]
(x, s) dx ds,

where we have set C := 2e
T‖ub‖C0(0,T ;H2(R,R)) . Hence, it remains to prove that the right-

member of the above inequality converges to zero as n→ +∞. For this purpose, let us now

introduce the integrand Rn : t 7→
∫K
−K δb(x) ∂x(δu)(x, t) dx. Since bn′ converges weakly to

b in L2(] − K,K[,R) and ubn′ strongly to uK in C0(0, T ;H1(] − K,K[,R)), we get that

Rn(t) converges to zero for any t ∈ [0, T ]. Moreover, the a priori estimate of Proposition
4.2 ensures that Rn(t) is uniformly bounded. Hence, Lebesgue’s Dominated Convergence

Theorem applies and
∫ T
0 |Rn(t)|dt→ 0 as n→ +∞. One concludes from the last inequality

that (ubn′ )n∈N strongly converges to ub in C0(0, T ;L2(R,R)). We also have proved the

uniqueness of the limit for any other converging subsequence. Recalling that (ubn )n∈N is
uniformly bounded, we deduce that the whole sequence converges to ub. ut

Proof of Theorem 2.1 Combining Lemma 4.1 and Proposition 4.3, it is possible to extract
from any maximizing sequence of (2) a subsequence (bn′ )n∈N that is weakly converging
in L2(R,R) to a certain b∗ ∈ B, and such that ubn′ → ub∗ in C0(0, T ;L2(R,R)). From

the continuity of the embedding C0(0, T ;L2(R,R)) ⊂ L2(0, T ;L2(R,R)), we deduce that
F (b∗) = limn→+∞ F (bn′ ) = supb∈B F (b) with b∗ ∈ B so the supremum is a maximum and
problem (2) has a global maximizer. To conclude the proof, it remains to show that such a
maximizer saturates the L2-constraint, which is proved as in Proposition B.4. Indeed, if it
not the case, then choose θ ∈]1, (M/‖bopt‖L2(R,R))

2/7] and the bottom boptθ of Lemma B.1

is admissible. One can check that F (boptθ ) > F (bopt) and the optimality of bopt yields to

ubopt = 0 on [T, θ3T ]. Considering now (4), we obtain ∂xbopt = 0 so ubopt = 0 also on [0, T ]
and F (bopt) = 0, which is a contradiction. ut

A.4 Fréchet Differentiability of the Functional

Proof of Proposition 4.4 Formally speaking, if vb is a solution of (12), then the equation
satisfied by ∂xvb is already studied in [7]. However, we need to specify a bit the existence
result because it is stated in terms of the so-called Bourgain space Ys,β (see [7, §2] for
details). First, we apply [9, Proposition 2.1] with σ = −1, f = −∂xb, u0 ≡ 0, s = σ + 3 = 2
and β = ε + 1

2
, where ε > 0 is chosen small enough. This local existence result combined

with standard global arguments [7, Proposition 5.1] establishes that the unique solution ub
of (4) is the [0, T ]-restriction of a map Ub ∈ Y2,ε+1/2.

Then, we introduce new variables (ξ, τ) := (−x, T − t) to transform (12) into an initial-
value problem. We set U(ξ, τ) := Ub(−x, T − t) and we still have U ∈ Y2,ε+1/2 ⊂ Y1,ε+1/2

but we also get ∂ξU ∈ Y1,ε+1/2 [7, above Theorem 5.5]. We can now apply [7, Theorem

2.6] with s = 1, β = ε + 1
2

, and f = 2∂ξU . We deduce that there exists a unique solution
W ∈ Y1,ε+1/2 satisfying W (•, 0) = 0 and ∂τW + ∂ξ (U W ) + ∂ξξξW = 2∂ξU on R× [0, T ].

Finally, it remains to get back to (12). For this purpose, we consider the [0, T ]-restrictions
u ∈ C0(0, T ;H2(R,R)), w ∈ C0(0, T ;H1(R,R)) of the maps U and W [7, Lemma 2.3]. Using
the equations they satisfy, we get u(2− w) ∈ W 1,1(0, T ;H−2(R,R)). From standard linear
semi-group theory [7, Section 1 §III], there exists a unique function v ∈ C0(0, T ;H1(R,R))
satisfying v(•, 0) = 0 and the Airy equation ∂τv + ∂ξξξv = u(2− w) on R× [0, T ]. Looking
at the equation satisfied by w − ∂xv, we deduce that ∂xv = w. In particular, we obtain
v ∈ C0(0, T ;H2(R,R) and getting back to the original variables (x, t) := (−ξ, T − τ), one
can check that the map vb(x, t) := v(ξ, τ) is a global solution of (12) in C0(0, T ;H2(R,R)).

At last, we prove such a solution is unique. Consider two maps of C0(0, T ;H2(R,R)) solv-
ing (12), denoted v1 and v2, and introduce the quantity δv := v1− v2. From the linearity of
(12), one can check that δv satisfies δv(•, T ) = 0 and ∂t(δv)+ub ∂x(δv)+∂xxx(δv) = 0. This
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last equality is understood in distributional sense but we can still apply the integration-by-
parts formula of [15, Lemma 7.3] with the Gelfand triple H1(R,R) ⊂ L2(R,R) ⊂ H−1(R,R)
and the fact that δv ∈ {w ∈ L2(0, T ;H1(R,R)) : ∂tw ∈ L2(0, T ;H−1(R,R))}. Proceeding
as below (19), we get:

∀t ∈ [0, T ], ‖δv(•, t)‖2
L2(R,R) 6 ‖∂xub‖C0(0,T ;H1(R,R))

∫ T

t
‖δv(•, s)‖2

L2(R,R)) ds.

It follows from the continuity of the map t ∈ [0, T ] 7→ ‖δv(•, t)‖L2(R,R) ∈ R [15, Lemma 7.3]

and Grönwall’s Lemma that δv ≡ 0 on [0, T ]× R i.e. v1 = v2. To conclude the proof, there
exists a unique global solution vb ∈ C0(0, T ;H2(R,R)) satisfying (12). ut
Proof of Proposition 4.5 Let T > 0 and (b, h) ∈ L2(R,R)×L2(R,R). From Proposition 4.1,
there exists two associated global solutions ub and ub+h in C0(0, T ;H2(R,R)) such that
(b, ub) and (b + h, ub+h) satisfy (4). Introducing again the quantities δu := ub+h − ub and
δb := (b+ h)− b = h, one can check (δb, δu) satisfies (19), which has to be understood in a
distributional sense. Still, we can apply the integration-by-parts formula of [15, Lemma 7.3]
with the Gelfand triple H1(R,R) ⊂ L2(R,R) ⊂ H−1(R,R) and the fact that δu belongs to
{w ∈ L2(0, T ;H1(R,R)) : ∂tw ∈ L2(0, T ;H−1(R,R))}. Proceeding as below (19), we get:

∀t ∈ [0, T ], ‖δu(•, t)‖2
L2(R,R) = 2

∫ t

0

∫
R
δb
∂(δu)

∂x
dxds−

∫ t

0

∫
R

(δu)2
∂ub

∂x
dxds.

Using the Cauchy-Schwarz inequality, we obtain for any t ∈ [0, T ]:

‖δu(•, t)‖2
L2(R,R) 6 C

∫ t

0
‖δu(•, s)‖2

L2(R,R) ds+ 2T‖h‖L2(R,R) ‖δu‖C0(0,T,H1(R,R),

where we have set C := ‖ub‖C0(0,T,H2(R,R). We can now apply Grönwall’s Lemma to the

map t ∈ [0, T ] 7→ ‖δu(•, t)‖L2(R,R) ∈ R, which is continuous [15, Lemma 7.3], and it comes:

‖ub+h − ub‖2C0(0,T ;L2(R,R)) 6 2TeCT ‖h‖L2(R,R)‖δu‖C0(0,T,H1(R,R). (22)

Combined with the continuity of the map b ∈ L2 7→ ub ∈ C0(0, T,H1(R,R)) ensured by
Corollary B.1, we can deduce from (22) that ‖δu‖2

C0(0,T ;L2(R,R)) = o(‖δb‖L2(R,R)).

Then, Proposition 4.4 ensures (12) has a unique global solution vb ∈ C0(0, T ;H2(R,R)).
Hence, we can correctly compute again the integration-by-parts formula given in [15, Lemma
7.3] by considering the Gelfand triple H1(R,R) ⊂ L2(R,R) ⊂ H−1(R,R) combined with
the fact that (δu, vb) ∈ {w ∈ L2(0, T ;H1(R,R)) : ∂tw ∈ L2(0, T ;H−1(R,R))}2. Since
vb(•, T ) = δu(•, 0) = 0, we have:

0 =

∫ T

0
〈∂t (δu) | vb〉H−1(R,R),H1(R,R) (•, t) dt+

∫ T

0
〈∂tvb | δu〉H−1(R,R),H1(R,R) (•, t) dt

Proceeding as below (19), one may obtain from the previous relation:

2

∫ T

0

∫
R
ub δudxdt =

∫ T

0

∫
R

(δu)2

2

∂vb

∂x
dx dt+

∫ T

0

∫
R
δb
∂vb

∂x
dxdt.

Recalling that δb = h and introducing the map (3), we deduce from the last relation:

RF (h) := F (b+h)−F (b)−
∫
R
h(x)

(∫ T

0

∂vb

∂x
(x, t) dt

)
dx =

∫ T

0

∫
R

(δu)2
(

1 +
1

2

∂vb

∂x

)
dxdt.

Consequently, using the fact that vb ∈ C0(0, T ;H2(R,R)), we establish

|RF (h)| 6 T‖δu‖2
C0(0,T ;L2(R,R))

(
1 +

1

2
‖∂xvb‖C0(0,T ;H1(R,R))

)
,

and inserting the estimate (22) into the last one above, we get indeed RF (h) = o(‖h‖2
L2(R,R)).

Since h ∈ L2(R,R) 7→
∫
R h(x)[

∫
[0,T ] ∂xvb(x, t) dt] dx ∈ R is a continuous linear form, the

uniqueness of the differential ensures that the functional Fb : h ∈ L2(R,R) 7→ F (b+h) ∈ R is
Fréchet differentiable at the origin i.e. F is Fréchet differentiable at any bottom b ∈ L2(R,R)
and the shape gradient is well defined by (13), concluding the proof of Proposition 4.5. ut
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Appendix B Other Useful Properties

B.1 Hölder Continuity of the Functional

In § 4.3, given any fixed K > 0, we have proved the (sequential) continuity of the non-linear
map N : b ∈ L2(]−K,K[,R) 7→ ub ∈ C0(0, T ;L2(R,R)) for the L2-weak topology. Here, we
first establish N : L2(R,R) 7→ C0(0, T ;H1(R,R)) is continuous for the L2-strong topology.
Then, by restricting N and F to any ball of L2(R,R), we obtain their Hölder continuity.

Proposition B.1 Let T > 0 and b ∈ L2(R,R). Consider any sequence (bn)n∈N of square-
integrable maps strongly converging to b in L2(R,R). Then, the sequence (ubn )n∈N of their
associated solutions given in Proposition 4.1 strongly converges to ub in C0(0, T ;H1(R,R)),
where ub is the unique solution of Proposition 4.1 associated with b.

Proof Let T > 0 and b ∈ L2(R,R). From Proposition 4.1, we can consider the unique solution
ub ∈ C0(0, T ;H2(R,R)) satisfying (4). First, we treat the smooth case. Let (bn)n∈N be a
sequence of maps in H∞(R,R) that is strongly converging to b for the L2-norm. In particular,
this sequence is uniformly bounded in L2(R,R). Applying Proposition A.1, there exists a
sequence (ubn )n∈N of associated smooth maps satisfying (4) and the a priori estimates, from
which we deduce that (ubn )n∈N is uniformly bounded in C0(0, T ;H2(R,R)) by a constant
denoted C > 0. Then, applying Proposition 4.1 with b and b = bn for any n ∈ N, we obtain
that (ubn )n∈N strongly converges to ub in C0(0, T ;L2(R,R)). We now prove that in fact
the convergence occurs in C0(0, T ;H1(R,R)). Let (m,n) ∈ N× N. We set δu := ubn − ubm
and δb := bn − bm then establish that (ubk )k∈N is a uniform Cauchy sequence by relating
∂x(δu) to δb and δu. Since both (bn, ubn ) and (bm, ubm ) satisfy (4), we get that (δu, δb)
is a smooth solution to (19) (where we have replaced ub by ubm ). We use the conservative
structure of (4) and (19) by writing ∂t(ubm ) = −∂xI and ∂t(δu) = −∂xJ , where we set

I := ∂xxubm + 1
2

(ubm )2 + bm and J := ∂xx(δu) + 1
2

(δu)2 + δb+ ubm δu. We have:

d

dt

∫
R

[
(δu)3

6
+ ubm

(δu)2

2
−

1

2

(
∂ (δu)

∂x

)2

+ δb δu

]
= 2

∫
R
∂t (δu) J︸ ︷︷ ︸

=−
∫
∂x(J2) = 0

+
1

2

∫
R
∂t(bm) (δu)2︸ ︷︷ ︸

=−
∫
I δu ∂x(δu)

= −
∫
R
δu

∂ (δu)

∂x

(
∂2ubm
∂x2

+
u2bm

2
+ bm

)
dx.

Proceeding as below (19) (but here the functions are regular), we obtain for any t ∈ [0, T ]:

‖∂x (ubn − ubm ) (•, t) ‖2
L2(R,R) 6

5C

3
‖ (ubn − ubm ) (•, t)‖2

L2(R,R) + 4C‖bn − bm‖L2(R,R)

+ 2TC

(
C +

C2

2
+ sup
k∈N
‖bk‖L2(R,R)

)
‖ (ubn − ubm ) (•, t)‖L2(R,R).

(23)
We deduce from (23) that t ∈ [0, T ] 7→ ∂x(ubn )(•, t) ∈ L2(R,R) is a uniform Cauchy
sequence. It is thus strongly converging to a certain map in C0(0, T ;L2(R,R)), which has
to be ∂xub by considering the convergence in the sense of distributions. Finally, we treat
the non-regular case by approximations. Let ε > 0 and (bn)n∈N be any sequence of maps
in L2(R,R) that is strongly converging to b. By density, for any n ∈ N, there exists a
sequence (bkn)k∈N of smooth maps with compact support that is strongly converging to
bn in L2(R,R). From the foregoing, we deduce that there exists kn ∈ N such that we have

‖u
b
kn
n
−ubn‖C0(0,T ;H1(R,R)) < ε. Moreover, one can check that (bknn )n∈N strongly converges

to b in L2(R,R). Again, from the foregoing, there exists N ∈ N such that for any integer
n > N , we have ‖u

b
kn
n
− ub‖C0(0,T ;H1(R,R)) < ε. We deduce for any n > N :

‖ubn−ub‖C0(0,T ;H1(R,R)) 6 ‖ubn−ubkn
n
‖C0(0,T ;H1(R,R))+‖u

b
kn
n
−ub‖C0(0,T ;H1(R,R)) < 2ε.

To conclude the proof of Proposition B.1, (ubn ) converges to ub in C0(0, T ;H1(R,R)). ut
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Corollary B.1 Let M > 0, T > 0 and set BM := {b ∈ L2(R,R) : ‖b‖L2(R,R) 6 M}. Then,

there exists C(T,M) > 0 depending only on T and M such that for any (b, b) ∈ BM ×BM :max
(
‖ub − ub‖C0(0,T ;L2(R,R)), |F (b)− F (b)|

)
6 C(T,M)

√
‖b− b‖L2(R,R)

‖ub − ub‖C0(0,T ;H1(R,R)) 6 C(T,M) 4
√
‖b− b‖L2(R,R).

In particular, the energy functional F : B → R given in (3) is 1
2

-Hölder continuous.

Proof Let M > 0, T > 0, and set BM := {b ∈ L2(R,R) : ‖b‖L2(R,R) 6 M}. First, we

combine the a priori estimate of Proposition 4.2 with the fact that (b, b) ∈ BM × BM .
We deduce that the constant C > 0 appearing in the quantitative estimate of Proposition
4.1 can be bounded by one that only depends on T and M . Hence, the non-linear map
N : b ∈ BM 7→ ub ∈ C0(0, T ;L2(R,R)) is 1

2
-Hölder continuous. Then, the continuity of the

embedding C0(0, T ;L2(R,R)) ⊂ L2(0, T ;L2(R,R)) applied to b and bn′ = b also yields to
the same result for the map F : BM 7→ R. Finally, there exists two sequences (bn)n∈N and
(bn)n∈N of smooth maps with compact support respectively converging to b and b strongly in
L2(R,R). Proposition B.1 ensures that the associated smooth maps (ubn )n∈N and (ubn )n∈N
respectively converges to ub and ub in C0(0, T ;H1(R,R)). We can now proceed as in the
proof of Proposition B.1 so (23) holds with bn and bm = bn. By letting n → +∞ in this
inequality, we deduce from the foregoing that N : b ∈ BM 7→ ub ∈ C0(0, T ;H1(R,R)) is
1
4

-Hölder continuous, concluding the proof of Corollary B.1. ut

B.2 Stability Analysis of the Numerical Scheme

Proposition B.2 The discretization (15) takes the form L∆x,∆tu = 0 and approximates
equation (6) written as ∂tu+Lu = 0. If we assume ∆t = O(∆x), then (15) is consistent and
first-order accurate: ∀u ∈ C4(R×[0,+∞[ ,R), ∂tu+Lu = 0⇒ ∂tu+Lu = L∆x,∆tu+O(∆x).

Proof We introduce the shift operators s±x [(•)(x, t)] := (•)(x ± ∆x, t) in order to define
δ1x := 1

2∆x
(s+x − s−x ), δ2x := 1

∆x2
(s+x − 2 + s−x ) and δ3x := δ1xδ

2
x. Let u ∈ C4(R× [0,+∞[,R)

be such that ∂tu+ Lu = 0. We get s±x u = u±∆x∂xu+ ∆x2

2
∂xxu± ∆x3

6
∂xxxu+ O(∆x4)

from a Taylor expansion. We deduce ∂xu = δ1xu + O(∆x2) and ∂xxu = δ2xu + O(∆x2).
These estimations are then combined to obtain ∂xxxu = δ3xu + O(∆x). Therefore, we have
an approximation of the linear terms of L:

Lu =
3c0

2h0
u ∂xu+

c0h20
6

δ3xu+
c0

2
δ1xb+O(∆x). (24)

Introducing the time operators s+t [(•)(x, t)] := (•)(x, t+∆t) and δ+t := 1
∆t

(s+t − 1), similar

arguments yields ∂tu = δ+t u+O(∆t) and ∂tu = s+t ∂tu+O(∆t) = −s+t Lu+O(∆t). We get:

∂tu+Lu = δ+t u+Lu+O(∆t) = δ+t u+ 1
2

(Lu−∂tu)+O(∆t) = δ+t u+ 1
2

(1+s+t )Lu+O(∆t).

Then, we assume ∆t = O(∆x) and from 1
2

(s+t + 1)u2 = u s+t u+ O(∆t2), we can treat the

non-linear term of Lu: (1+s+t )(u ∂xu) = δ1x[u s+t u+O(∆t2)]+O(∆x2) = δ1x(u s+t u)+O(∆x).
Hence, we deduce the expected estimation ∂tu+ Lu = L∆x,∆tu+O(∆x) with:

L∆x,∆tu := δ+t u+
3c0

4h0
δ1x

(
u s+t u

)
+
c0h20
12

(
1 + s+t

) (
δ3xu
)

+
c0

2
δ1xb.

ut
Proposition B.3 Consider the discretization (15) of equation (6) with forcing term b = 0.

Let β = 3c0
2h0
‖ζ‖C0([−L,L]×[0,T ],R), µ = c0

6
h20 and s = ∆t

∆x
. Then, Von Neumann’s stability

analysis provides an amplification factor g : [−π, π]→ C of the following form:

g(ξ) :=
1− iA (ξ)

1 + iA (ξ)
where A (ξ) := s (sin ξ)

[
β

2
+

µ

∆x2
(cos ξ − 1)

]
.
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In particular, |g| = 1, ensuring the non-dissipative feature of the method: the scheme (15)
is unconditionally stable. Moreover, the numerical dispersion Ψ = arg(g) = −arctan( 2A

1−A2 )

is compared to the analytical one whose expression is given by Ψref (ξ) := −sβξ + sµ
∆x2

ξ3.

We obtain Ψ(ξ) = Ψref (ξ) + EΨ (ξ) +O(ξ7) where:

EΨ (ξ) =
sβ

6

(
1 +

s2β2

2

)
ξ3 −

[
s5β5

80
+
s3β3

24
+

sβ

120
+
s3β2µ

4∆x2
+

sµ

4∆x2

]
ξ5.

Proof We refer to [23, (38)–(51)] for details on the proof of this result. We stress, however,
a disagreement between our expression of EΨ and the one provided in [23, (50)]. This seems
to result from a mistake made in [23, (48)], when expanding Ψ by using Taylor series. More
precisely, it is wrongly stated that arctan( −2A

1−A2 ) = −2A[1 − 1
3
A2 − 3A4] + O(A7), as the

correct expression is given by arctan( −2A
1−A2 ) = −2A[1− 1

3
A2 + 1

5
A4] +O(A7). ut

B.3 The Necessity of a L2-Constraint

Lemma B.1 Let b(x) be a forcing function with enough regularity, as given in Lemma 3.1,
and u(x, t) be the unique smooth solution of the initial value problem (4). For any θ ∈ R,
define the maps uθ : (x, t) 7→ θ2u(θx, θ3t) and bθ : x 7→ θ4b(θx). Then, uθ is precisely the
solution of (4) with forcing function bθ.

Proposition B.4 Let K > 0 and T > 0. Then, the problem (11) has no global maximizer.

Proof Assume, by contradiction, that there exists a maximizer b to (11). Then, from Lemma
3.1, we can consider its associated smooth solution ub. Introducing the bottoms (bθ)θ>1 of
Lemma B.1, one can check they are admissible for problem (11). Moreover, we deduce

from Lemma B.1 that F (bθ) =
∫ θ3T
0

∫
R u

2
b(x, t) dx dt. Using the optimality of b, we obtain

F (bθ) = F (b) for any θ > 1 so ub = 0 on [T, θ3T ]. From (6), we get ∂xb = 0 thus ub = 0
also on [0, T ]. Thus F (b) = 0, which contradicts the optimality of b. ut
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