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AN IMPROVED FEATURE EXTRACTOR FOR THE LIDAR ODOMETRY AND
MAPPING ALGORITHM

Feature extraction is a critical task in feature-based Simultaneous Localization and Map-
ping (SLAM), which is one of the most important problems in the robotics community. An
algorithm that solves SLAM using LiDAR based features is the LiDAR Odometry and Map-
ping (LOAM) algorithm. This algorithm is currently regarded as the best performing SLAM
algorithm according to the KITTI Vision Dataset Benchmark.

The LOAM algorithm solves the SLAM problem through a feature matching approach
and its feature extraction algorithm detects features classifying points of a point cloud as flat
or sharp. This classification results from an equation that defines the level of smoothness for
each point. However, this equation does not consider the range noise of the sensor. Therefore,
if the LiDAR’s range noise is high, LOAM’s feature extractor could confuse flat and sharp
points, causing the feature matching task to fail.

This thesis proposes the replacement of the original LOAM’s feature extraction algorithm
with the Curvature Scale Space (CSS) algorithm. The choice of this algorithm was made
after studying various feature extractors in the literature. The CSS algorithm can potentially
improve the feature extraction task in noisy environments because of its various levels of
Gaussian smoothing. The replacement of the original LOAM’s feature extractor with the
CSS algorithm was achieved by adapting the CSS algorithm to the Velodyne VLP-16 3D
LiDAR.

The LOAM’s feature extractor and CSS feature extractor were tested and compared with
simulated and real data including the KITTI Vision Benchmark Dataset using the Optimal
Sub-Pattern Assignment (OSPA) and Absolute Trajectory Error (ATE) metrics. For all
these datasets the CSS feature extraction performance was better than that of the LOAM
algorithm in terms of the OSPA and ATE metric values.
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La extracción de características es una tarea crítica en la localización y mapeo simultáneo
o Simultaneous Localization and Mapping (SLAM) basado en características, que es uno de
los problemas más importantes de la comunidad robótica. Un algoritmo que resuelve SLAM
utilizando características basadas en LiDAR es el algoritmo LiDAR Odometry and Mapping
(LOAM). Este algoritmo se considera actualmente como el mejor algoritmo SLAM según el
Benchmark KITTI.

El algoritmo LOAM resuelve el problema de SLAM a través de un enfoque de empare-
jamiento de características y su algoritmo de extracción de características detecta las carac-
terísticas clasifican los puntos de una nube de puntos como planos o agudos. Esta clasificación
resulta de una ecuación que define el nivel de suavidad para cada punto. Sin embargo, esta
ecuación no considera el ruido de rango del sensor. Por lo tanto, si el ruido de rango del
LiDAR es alto, el extractor de características de LOAM podría confundir los puntos planos
y agudos, lo que provocaría que la tarea de emparejamiento de características falle.

Esta tesis propone el reemplazo del algoritmo de extracción de características del LOAM
original por el algoritmo Curvature Scale Space (CSS). La elección de este algoritmo se
realizó después de estudiar varios extractores de características en la literatura. El algoritmo
CSS puede mejorar potencialmente la tarea de extracción de características en entornos
ruidosos debido a sus diversos niveles de suavizado Gaussiano. La sustitución del extractor
de características original de LOAM por el algoritmo CSS se logró mediante la adaptación
del algoritmo CSS al Velodyne VLP-16 3D LiDAR.

El extractor de características de LOAM y el extractor de características de CSS se pro-
baron y compararon con datos reales y simulados, incluido el dataset KITTI utilizando las
métricas Optimal Sub-Pattern Assignment (OSPA) y Absolute Trajectory Error (ATE). Para
todos estos datasets, el rendimiento de extracción de características de CSS fue mejor que el
del algoritmo LOAM en términos de métricas OSPA y ATE.
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Chapter 1

Introduction

Feature extraction is an important task in many areas such as machine learning, pattern
recognition, image processing and robotics. It is necessary in some solutions for Simultaneous
Localization and Mapping (SLAM), which is one of the most important problems in the
robotics community [4] [3] [39]. In feature-based SLAM solutions, feature extraction involves
extracting reliable features, also known as landmarks. These features can be extracted with
a variety of sensors. A frequently used sensor for this task is LiDAR (Light Detection and
Ranging), the data from which can be processed to attain a set of points called point clouds.
We can divide point cloud feature extractors into two groups: General point cloud feature
extractors and feature extractors commonly used in SLAM.

General point cloud feature extractors are algorithms that process any kind of point cloud
and are not only used in SLAM. Among them, there are algorithms such as the Harris corner
detector, the Scale Invariant Feature Transform (SIFT) keypoint detector and the Intrinsic
Shape Signatures (ISS) detector. The Harris corner detector [12] is an algorithm which has
its basis in the image processing community, however, it has also been adapted to work with
point clouds. In the point cloud version, the algorithm processes surface normals rather than
image derivatives. The SIFT key-point detector [20] also has its origin in the image processing
community. The main difference between the Harris and SIFT detectors is that instead of
processing surface normals, the SIFT algorithm processes the intensity values of the LiDAR.
This is done by convolving the intensity values of the LiDAR with a Gaussian kernel and then
obtaining the "difference of Gaussians", which can be represented as the difference of various
point clouds convolved with scaled Gaussian kernels. Also, the ISS algorithm [40] is based on
the Eigen value decomposition of a covariance matrix of a certain spherical neighborhood of
a point cloud. According to F. Silvio [8], among these algorithms, the one that has the best
performance in terms of repeatability of detected features is the ISS algorithm. Its use in
SLAM, however, is computationally expensive, making it difficult to process the data from
the sensors in real SLAM scenarios.

Alternatively, there are various feature extractors which have been derived specifically
for feature-based SLAM and they are commonly used in this task with a variety of these
algorithms existing in the literature. Previously, the use of 2D LiDARs produced many
feature extraction algorithms, examples that include [1] [38] [5], which are algorithms which
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extract edges, lines and corners. Currently, 2D LiDARs are being replaced by 3D versions.
3D LiDAR sensors can be divided into two categories: those which return a dense point cloud
and those which return a sparse point cloud. We call sparse point clouds those that have some
points with a considerable space in some part of them. An example of these point clouds are
those returned by Velodyne LiDARs, which are mainly formed of N 2D LiDARs. These 2D
LiDARs are located with a certain angle of inclination between them, which make the point
cloud sparse in the vertical direction. Algorithms that are specially designed for this type
of point cloud are those which extract 3D lines [34], corners based on the Kanade-Tomasi
algorithm [18] and vertical corners [14].

In addition to the feature extractors mentioned previously, there are other algorithms
commonly used in SLAM that extract lines such as RANSAC [9], the Hough Transform [13]
and the Split and Merge algorithm [27]. V. Nguyen et al. [25] made a comparison of these
algorithms and concluded that the Split and Merge algorithm has the best performance in
the number of lines extracted. In the feature extractor of P. Núñez et al. [26], an algorithm
to extract edges, lines, corners and circular arcs is proposed based on adaptive curvature
estimation. Its performance was compared with the Hough Transform, Split and Merge
and Curvature Scale Space (CSS) [22] algorithms. It was concluded that their proposed
algorithm had the overall best performance (recognition rate, accuracy of feature locations
and processing time of the algorithm), however, the Curvature Scale Space had a better
recognition rate even though it is more computationally complex.

Although there are several feature extractors, there is not a specific feature extractor that
is widely used to solve the feature-based SLAM problem. Most of the time, each solution
for feature-based SLAM proposes its own feature extractor. This is the case of the LiDAR
Odometry and Mapping (LOAM) algorithm, which is the highest ranked algorithm in terms
of SLAM performance in the KITTI Visual Odometry Benchmark. The LOAM algorithm
solves the SLAM problem through a feature matching approach and its feature extraction
algorithm detects features classifying points as being either smooth or non-smooth in a same
scan1 according to a threshold.

One issue that the LOAM’s feature extractor has is that it does not consider the range
noise of the sensor. This issue could make the feature extractor confuse smooth or non-
smooth points if the noise level is high. Another issue is related to the processing time of the
feature matching approach. Since this approach uses the Levenberg-Mardquat optimization
algorithm to match the extracted features, the processing time for the whole LOAM algorithm
also depends on the number of features extracted. Hence, a large quantity of features could
make the LOAM algorithm not process some 3D scans, because it needs to finish the scan
matching task before a new 3D scan arrives. Both of these issues occur in figure 1.1, which
shows times 244 s, 245 s, 246 s, 247 s, 248 s and 258 s of the sequence 05 of the KITTI
Dataset. In this figure, the current points of the scans of the LiDAR are represented in colors
from green to purple. Yellow boxes represent non-smooth features and the estimated map
is represented in gray color. From figures 1.1a to 1.1e, the robot maintains its position and
some non-smooth points are miss-detected (represented with green ellipses). In Figure 1.1f,
the robot moved straight forward resulting in the estimated map represented as the the gray

1In the case of the Velodyne VLP-16, which is the LiDAR used in this work, a scan is a subset of points
returned at a single elevation angle by one of the 16 lasers.
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point cloud. It should be noted that this estimated map does not correspond well with the
actual 3D scan shown in colors.

(a) Time 244 s. (b) Time 245 s.

(c) Time 246 s. (d) Time 247 s.

(e) Time 248 s. (f) Time 258 s.

Figure 1.1: Part of the sequence number 05 of the KITTI Dataset.

The results in Figure 1.1 were achieved by using the original LOAM code2 published in
the ROS Indigo website. It is important to note that this code version is not the same as that
which produced the results in the KITTI vision benchmark. This code version was developed
for raw data and it was used because it is the most reliable version available since the original
author removed his code from his repository3. Given that the code used was developed for
raw data, the previous example was configured to work as raw data. In the KITTI vision
benchmark website, the LOAM algorithm produces a low error rate in all sequences, including
the sequence 05 presented in the previous example. However, the code used to produce those
results may have some changes compared to the version used in this example, additionally

2http://docs.ros.org/indigo/api/loam_velodyne/html/files.html
3https://github.com/jizhang-cmu/loam_velodyne
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that code does not consider the sampling frequency in which the LiDAR returns the data.

To solve the confusion of smooth and non-smooth features and the errors in the estimated
map, seen in Figure 1.1, we propose to replace the original LOAM feature extraction algo-
rithm with the Curvature Scale Space (CSS) algorithm. The choice of this algorithm was
made after studying various feature extractors in the literature such as the SIFT, Harris,
ISS, RANSAC, Hough transform, Adaptive Curvature Estimation and CSS algorithms. Ad-
ditionally, the replacement was carried out based on the evidence provided in the articles by
V. Nguyen et al. [25] and P. Nuñez et al. [26], in which the CSS algorithm demonstrated
itself to perform well. Therefore, the CSS algorithm can potentially improve the feature
extraction task in environments where the range noise is high because of its various levels of
Gaussian smoothing. Additionally, this replacement can speed up the feature matching task
because of the few, but precise features extracted by this algorithm. The replacement of the
original LOAM feature extractor with the CSS algorithm was achieved by adapting the CSS
algorithm to the Velodyne VLP-16 3D LiDAR.

The LOAM feature extractor and CSS feature extractor were tested and compared with
both simulated and real data including the KITTI vision benchmark dataset using the Op-
timal Sub-Pattern Assignment (OSPA) [33] and Absolute Trajectory Error (ATE)4 metrics.
Large differences occurred when testing both of the algorithms when additional range noise
was added to the simulated data. The mean OSPA error of the CSS feature extractor reached
a value equal to 3.94 meters, while the mean OSPA error of the LOAM’s feature extractor
was 4.58 meters5. In the case of the ATE metric, the mean error of the CSS feature extractor
reached a value equal to 0.06 meters, while the mean error of the LOAM feature extractor
was 0.12 meters. Another significant difference occurred with the KITTI dataset. In this ex-
periment, the LOAM algorithm produced high ATE errors in many sequences. This problem
occurred because the number of LOAM features was very high, which made the task of fea-
ture matching computationally complex. This complexity made that some point clouds were
not being processed because of the sampling frequency in which the LiDAR was returning the
point clouds. This issue did not occur with the CSS feature extractor, because the number of
features was lower and the feature matching task could be completed before the arrival of a
new point cloud. These results allow us to conclude that the CSS feature extractor is robust
and suitably resistant to range noise and can speed up the feature matching task. Therefore,
it is a suitable feature extractor for the LOAM algorithm.

1.1 Hypothesis

The use of the Curvature Scale Space algorithm as an alternative to the feature extractor in
the LOAM algorithm will allow the extraction of more repeatable and robust features. This
will reduce both localization and feature map errors, which will be quantifiable via the use
of the OSPA and ATE metrics .

4http://www.rawseeds.org/
5The OSPA metric cut off (c) and power (p) parameters were 5 and 2, respectively
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1.2 Objectives

1.2.1 General Objective

The main objective of this thesis is to implement a feature extractor for SLAM that can
improve the results obtained by the LiDAR Odometry and Mapping algorithm, which is a
primary state of the art SLAM algorithm.

1.2.2 Specific Objectives

The specific objectives of this thesis are to:

1. Study the most important feature extraction algorithms in the literature and choose
the one expected to yield the best results with Velodyne 3D LiDARs.

2. Adapt and implement the chosen feature extraction algorithm for Velodyne 3D LiDAR
data.

3. Replace the feature extractor in the original implementation of the LOAM algorithm
with the chosen feature extraction algorithm.

4. Test the implementation with simulated, real data and the KITTI dataset.

1.3 Contributions

The contributions of this thesis are:

1. An adaptation and implementation of the Curvature Scale Space algorithm for Veloyne
3D LiDAR data.

2. An improvement of the original LOAM algorithm in terms of trajectory estimation
using the KITTI Dataset.

1.4 Document Structure

The remainder of this thesis is organized as follows. In Chapter 2, the basic concepts of
feature extraction and the most important algorithms in this area are presented. Also, a
discussion of which feature extractor could be the most suitable in the LOAM algorithm is
given. In Chapter 3, the adaptation and implementation of the Curvature Scale Space (CSS)
algorithm is explained in detail. In Chapter 4, the results of the implementation are shown
for simulated data, real data taken from the surroundings of the University of Chile and the
KITTI Dataset. Finally, in Chapter 5, the results are discussed, and possible future work is
suggested.

5



Chapter 2

Literature Review

This chapter presents the state of the art related to this thesis. This part is important for
achieving the general objective of this thesis, which is to replace the LiDAR Odometry and
Mapping (LOAM)’s feature extractor in order to improve its results. We analyzed the main
feature extractors for point clouds in the literature. This analysis is useful to evaluate if an
existing feature extractor could fit in the LOAM algorithm or if it is necessary to implement a
new feature extraction algorithm. Hence, the objective of this chapter is to introduce readers
to the theory of the main feature extraction algorithms used in point clouds and to justify
the final choice of feature extractor.

This chapter is structured as follows. Section 2.1 defines the feature extraction task.
Section 2.2 describes general feature extraction algorithms used for point clouds. Section
2.3 describes the main feature extraction algorithms used in SLAM. Section 2.4 describes
the algorithm used in this thesis to segment point clouds. Finally section 2.5 describes the
LOAM algorithm emphasizing its feature extractor.

2.1 Feature Extraction

Feature extraction is a general term used in many fields such as machine learning, pattern
recognition, computer vision and robotics. In robotics, features are dependent on the envi-
ronment where a robot is able to maneuver. For example, when using a LiDAR in indoor
environments, features could correspond to doors, walls and corners, while in outdoor envi-
ronments features could correspond to tree trunks or lamp posts.

According to S. Thrun [39], we can denote a feature extractor as a function f(zt) in which
zt are range measurements obtained in time t. Commonly, feature extraction algorithms
return only certain points from the whole measurement. In this thesis, a 3D LiDAR is used
and the whole measurement obtained can be grouped in a special data type called a point
cloud. A point cloud can be represented as a set of points with 3 Euclidean components
(x, y, z).
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From the whole point cloud, a feature extractor returns a sub-set of points called fea-
tures. This sub-set, F , contains vectors with 3 Euclidean components (x, y, z), each one
corresponding to a feature. The position of the ith feature at time t, f(i,t) can be represented
as

F = f(zt) = {f(1,t), f(2,t), ..., f(n,t)} = {
( x(1,t)
y(1,t)
z(1,t)

)
,
( x(2,t)
y(2,t)
z(2,t)

)
, ...}. (2.1)

2.2 General Feature Extraction in Point Clouds

This section presents a summary of the main general feature extraction algorithms for point
clouds. The algorithms presented in this section are based on the Point Cloud Library (PCL)
[32], the importance of which has been considered in the study by S. Filipe [8]. In this study
some of the algorithms of the keypoints module of PCL were tested. [8] concludes that
algorithms that perform well based upon their repeatability are the Scale Invariant Feature
Transform (SIFT) algorithm [20] and the Intrinsic Shape Signatures (ISS) algorithm [40].
However, the Harris Corner Detector [12] is also considered in this summary since it is a
widely used corner detector in the literature.

It is important to mention that all the algorithms presented in this section have in common
the use of a KD-tree and the algorithm radius search. A KD-tree is a data structure, based
on binary search trees, that is used to store K-dimensional points, in this case 3-dimensional
points. This data structure is useful to reduce the computational complexity when searching
for a point. On the other hand, the radius search is an algorithm that returns neighbor points
based on a query point. Therefore, the radius search defines a sphere with a certain radius
for each point in the point cloud and returns a set of neighbors.

The Harris corner detector and the SIFT algorithm have their bases in image processing.
The explanation, therefore, starts with the image processing version and then moves toward
its adaptation to point clouds. Hence, section 2.2.1 describes the main concepts of the Harris
Corner Detector, then the SIFT algorithm is described in section 2.2.2. Then, in section
2.2.3 the ISS algorithm is described. Finally, in section 2.2.4 the reasons why general feature
extractors are not suitable for the LOAM algorithm are explained in detail.

2.2.1 Harris Corner Detector

The Harris Corner Detector [12] is a feature extractor proposed by C. Harris, and M. Stephens
to detect corners originally in gray scale images. In their work, they mathematically formalize
the Moravec’s Corner Detector [23], and through a mathematical analysis, they improve the
most important flaws of this detector.
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2.2.1.1 Harris Corner Basics

Harris based his detector on the formalization of the Moravec’s corner dectector, which
indicates when a pixel is a corner and is defined by

e(u, v) =
∑
x

∑
y

w(x, y)[i(x+ u, y + v)− i(x, y)]2. (2.2)

Equation 2.2 quantifies the difference in intensity, e(u, v), between an image patch i(x, y) and
a shifted image patch i(x+ u, y+ v) convolved with a window function w(x, y). The original
Moravec corner detector uses a rectangular window that is one within a specified rectangular
region, and zero elsewhere. What C. Harris and M. Stephens propose in their work is to
replace the original window, which is binary and rectangular, with a Gaussian window to
make the image smoother. The Gaussian window is defined by

w(x, y) = exp(−(x2 + y2)/2σ). (2.3)

The next step is to take into account small shifts u, v that Moravec’s detector does not
consider. To do this, the function i(x+ u, y + v) of equation 2.2 is expanded using a Taylor
series which results in

e(u, v) ≈
∑
x

∑
y

[i(x, y) +
∂i

∂x
+
∂i

∂y
− i(x, y)]2. (2.4)

After mathematical rearrangement, equation 2.4 can be written in a matrix form as

e(u, v) ≈
[
u v

]
M
[
u
v

]
, (2.5)

where the matrix M is defined in

M =

[ ∑
∂i
∂x

2 ∑
∂i
∂x

∂i
∂y∑

∂i
∂x

∂i
∂y

∑
∂i
∂y

2

]
. (2.6)

The main diagonal elements of this matrix represent the sum of the derivatives of the image
patch squared, which are the vertical and horizontal edges of the image patch. The other
two elements are the sum of the product of previous derivatives. The analysis of matrix M
is carried out via Eigen value decomposition, however, since the eigenvalue decomposition
would be computationally expensive, Harris proposed a formula to avoid this operation. This
formula is shown in
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r = det(M)− a(trace(M))2 (2.7)

and is used as an analogy to analyze the eigenvalues of M (equation 2.6). When r is large,
both eigen values are large, as a consequence a corner is assumed detected. When r is small a
flat region is assumed and when r is negative an edge is assumed. The value a is an empirical
constant that defines the sharpness of the corners detected.

2.2.1.2 Harris Corners in 3D Point Clouds

There are different versions of the Harris Corner Detector for point clouds, such as [36] and
[30], however, in this work only the PCL version [32] is evaluated. The PCL version of the
Harris corner detector adapts the idea of the original paper, which uses derivatives, but in
this case it uses the surface normals of each point in the point cloud. These are vectors that
are orthogonal to local surfaces estimated in the point cloud.

To estimate a surface normal, si = (xi yi zi)
T , it is necessary to form a covariance matrix,

N, in a certain neighborhood via equation

N =
1

m

m∑
j=1

(pj − p̄)× (pj − p̄)T ,N× vk = λk × vk, k ∈ {0, 1, 2}, (2.8)

where m is the number of neighbors of each point pj = (xj yj zj)
T in a certain neighborhood

and p̄ is the centroid of the set of points in the same neighborhood. The surface normal
computation consists of evaluating the eigenvectors vk and eigenvalues λk of the covariance
matrix N. The eigenvector associated with the smallest eigenvalue is considered as a surface
normal si of pj.

Once the surface normal of each point is computed, the matrix M of the original Harris
algorithm (equation 2.6) is computed for each point with its neighbors. In this case the
matrix M is modified to use the Euclidean components of the surface normals as

M =

 ∑
x2
i

∑
xiyi

∑
xizi∑

xiyi
∑
y2
i

∑
yizi∑

xizi
∑
yizi

∑
z2
i

 . (2.9)

It is important to note that matrices N and M of equations 2.8 and 2.9, respectively
are calculated using the radius search algorithm. Finally, equation 2.7, which defined the
response of a corner based on matrix M in the image version, remains the same for the 3D
point cloud.

The computational complexity of the Harris Corner algorithm is closely related to the
complexity of a KD-Tree and its operations. Therefore, the following items describe the
steps of the 3D Harris corner detector and their complexity:
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• Create KD-Tree: n log n.
• Radius search: mn log n.
• Compute Surface Normals: mn log n+mn.
• Compute Response Point Cloud: mn log n+mn.
• Compute Non Maximum Suppression: mn log n+mn,

where n represents the number of points in the point cloud and m the number of neighbors
in radius search. Finally the total complexity is given by 4mn log n + n log n + 3mn ∈
O(mn log n).

In the analysis of this complexity the value m is important because it can be very small if
the radius is small or it can be as large as n (m ≈ n) if the radius is large. The surface normal
computation is a procedure that is computationally expensive and is highly dependent on
the value m. This characteristic makes the Harris algorithm not suitable for LOAM as will
be seen later in section 2.2.4

2.2.2 Scale Invariant Features Transform (SIFT)

The Scale Invariant Features Transform (SIFT) [20] is a feature extractor proposed by David
G. Lowe originally used with gray scale images. His work consists of many steps varying
from extracting scale invariant keypoints to extracting complete descriptors. In this thesis
we describe the basis of this algorithm and then we focus on its implementation in the Point
Cloud Library. The SIFT algorithm can be divided into the following steps:

1. Scale-space extrema detection.
2. Keypoint localization.
3. Orientation assignment.
4. Keypoint descriptor determination.

In this thesis we only consider the steps related to keypoint (feature) computation, which
are the first two items in the above list, because what we need is a just a sub-set of points
of the point cloud. The orientation assignment is only useful to compute the whole keypoint
descriptor consisting of a 128 dimensional vector per point which is important only when
matching two images or point clouds.

2.2.2.1 SIFT Basics

The first step in the SIFT algorithm is to generate a scale space. This task is the most
important in the detection of keypoints. As Lowe states: "the first stage of keypoint detection
is to identify locations and scales that can be repeatably assigned under differing views of the
same object". He also states in his work that: "Detecting locations that are invariant to scale
change in the image can be accomplished by searching for stable features across all possible
scales, using a continuous function of scale known as scale space".

10



Hence, keypoint detection is carried out by convolving the input image with a Gaussian
kernel function. This operation can be expressed as

l(x, y, σ) = g(x, y, σ) ∗ i(x, y), (2.10)

where the ∗ represents convolution, i(x, y) is the function that defines the image irradiance
and g(x, y, σ) is a Gaussian function defined as

g(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

. (2.11)

Equations 2.10 and 2.11 are necessary to compute the Difference of Gaussian (DoG)
images. This is done by subtracting images previously convolved with a Gaussian function
scaled by different factors b. This operation can be defined mathematically as

d(x, y, σ) = (g(x, y, bσ)− g(x, y, σ)) ∗ i(x, y) = l(x, y, bσ)− l(x, y, σ). (2.12)

Equations 2.10 to 2.12 are used to generate different octaves. An octave is a sequence of
images smoothed by differently scaled Gaussian kernels. At each octave, convolved images
are sub-sampled. After generating the different octaves, the Difference of Gaussians (DoG)
is computed per each pair of Gaussian images. This operation can be seen in Figure 2.1,
which is from the original paper [20].

After DoG images are computed, the next step is to find the local extrema. To do this,
in each DoG image (except the first and the last one), each pixel is evaluated with its 8
neighbors in the same scale and 9 neighbors in the scales above and below. The pixel is
chosen as a candidate keypoint (feature), if it is larger or smaller than all its neighbors.

Once all keypoint candidates have been found, the final step is to carry out a refinement
of these keypoints. Usually the maximum or minimum points do not lie exactly on a pixel
value. Therefore, to access the sub-pixel values, the original author used a Taylor expansion
of the image around the approximate keypoint up to the quadratic terms of the scale space
function d, which results in

d(u) = d+
∂dT

∂u
+

1

2
uT
∂2d

∂u2
u. (2.13)

where u = (x, y, σ)T and ∂d
∂u

= [ ∂d
∂x

∂d
∂y

∂d
∂σ

]. Then, the location of the extremum, û, is found
by taking the derivative of equation 2.13 and equating it to zero, which gives

û = −∂
2d−1

∂u2

∂d

∂u
. (2.14)

11



Figure 2.1: Computation of Difference of Gaussian images in the scale space.

Given that û = (x̂, ŷ, σ̂) returns the shift for a keypoint, it would also return a sub-pixel
value. To solve this issue, the author proposes that if the shift û is larger than 0.5 in any
dimension, then that value lies on the next sample point. Finally, to reject unstable extrema,
equation 2.14 is substituted into equation 2.13, resulting in

d(û) = d+
1

2

∂dT

∂u
û, (2.15)

where shift û is evaluated and discarded as a keypoint, if it is less than 0.03. This value is
proposed in the paper according to the experiments carried out by the author and is carried
out to remove keypoints with low contrast.

2.2.2.2 SIFT in 3D Point Clouds

The SIFT keypoint detector applied to the field of 3D point clouds is a specific version
developed for the Point Cloud Library and it presents many variations when compared with
the image version.

As described earlier, an image can be defined as a 2D function i(x, y), however, for a 3D
point cloud, the PCL’s particular implementation uses the spatial coordinates (x, y, z) of each
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point and its corresponding intensity p(x, y, z). This function represents the intensity of each
point with Euclidean components x, y, z. This intensity, p(x, y, z), depends on the sensor; for
example it can be the quantified value of how much light power returns to the receiver of a
LiDAR or simply the weighted sum of the R,G,B values taken by a RGBD camera.

A difference between the functions i(x, y) and p(x, y, z) is that while in the first case x, y
are positive integers and adjacent numbers, in the second case x, y, z are continuous numbers
and not necessarily adjacent and can be very sparse. The sparsity of these values is also
dependent on the sensor. For example, in this work we used a Velodyne VLP-16 LiDAR
which is sparse the in vertical direction, as will be explained in section 3.1.

The first step in the original SIFT algorithm performs the convolution of the image with a
Gaussian kernel, which was described in equation 2.10. This equation presents some changes
in the point cloud version as shown in following equation

l(x, y, z, d, σ) = g(d, σ) ∗ p(x, y, z). (2.16)

In equation 2.16, the function p(x, y, z) is convolved with a Gaussian kernel of only 2 dimen-
sions defined by g(d, σ). In this equation, d represents the distances returned by a KD-tree
radius search of each (x, y, z). With the distances available, the Gaussian function is defined
as

g(d, σ) =
1

2πσ2
e−d

2/2σ2

. (2.17)

Finally, as also occurs in the original SIFT algorithm, the difference of Gaussians is calculated
as

d(x, y, z, d, σ) = (g(d, cσ)− g(d, σ)) ∗ p(x, y, z) = l(x, y, z, d, cσ)− l(x, y, z, d, σ). (2.18)

As occurs with the image version of the SIFT algorithm, the function d(x, y, z, d, σ) has
to be repeated in different octaves where point clouds are down-sampled. At each octave,
the Gaussian kernels are computed with a different standard deviation σ and then they are
convolved with their corresponding function p(x, y, z). Finally, the difference of Gaussians are
calculated by subtracting the convolved functions computed previously. The unique difference
of this part of the SIFT algorithm, when compared with the image version, is that the
keypoint removal, which depends on contrast, is performed directly without approximating
the function with a Taylor expansion.

An important characteristic to consider when extracting keypoints with the SIFT algo-
rithm using point clouds is that the algorithm needs an input rich in different intensity values.
Therefore, a flat-intensity point cloud would not return any keypoints. Furthermore, there
are various parameters to consider in order to extract good keypoints with SIFT, which are
as follows:
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• Number of octaves (o).
• Number of scales per octave (s),
• KD Tree radius search neighbors (m).
• Number of points of the point cloud (n).

These parameters are also important when computing the computational complexity of
the SIFT algorithm. The top level of the iterations in the SIFT algorithm is the number of
octaves, o. Per octave, there are sub-sets of point clouds with n elements. Each point cloud is
convolved with a certain quantity of Gaussian kernels, s, of different scales. Gaussian kernels
are formed by distances defined by a KD Tree radius search that returns m point neighbors.
All these items have a total complexity of O(o · s ·m · n log n).

A common characteristic between the SIFT algorithm and the Harris corner detector is
that the SIFT algorithm also depends on the KD Tree radius search to find m neighbors.
As explained earlier, this characteristic, apart of the continuous calculation of Gaussian
functions, make the SIFT algorithm computationally expensive and not suitable for real-
time LOAM implementation.

2.2.3 Intrinsic Shape Signatures (ISS)

The Intrinsic Shape Signatures (ISS) algorithm [40] is a recent feature extractor developed
by Y. Zhong for object recognition in 3D point clouds that has obtained repeatable results
compared to other algorithms [8]. This algorithm is based in the eigenvalue decomposition
of a covariance matrix of a certain spherical neighborhood of a point pi. Since we are only
interested in keypoints, only the eigenvalue decomposition is considered, because the rest of
the steps, as with the SIFT algorithm, return a complete descriptor which is only useful when
matching two point clouds.

The ISS algorithm is based on finding an intrinsic reference frame. This task is solved
by constructing a covariance matrix within a spherical neighborhood of the point pi under
consideration, as shown in Algorithm 1.

Algorithm 1 Compute intrinsic reference frame
1: procedure ISS(P , rdensity, rframe)
2: for all points in pi ∈ P in a neighborhood defined by rframe do
3: wi = 1

||pj :|pj−pi|<rdensity ||

4: COV (pi) =

∑
|pj−pi|<rframe

wj(pj−pi)(pj−pi)T∑
|pj−pi|<rframe

wj

5: ei = {λ1
i , λ

2
i , λ

3
i } . λi is an eigenvalue

6: end for
7: return E = {e1, e2, ..., en}
8: end procedure

In this algorithm, pi is a point with Euclidean components x, y, z in a 3D point cloud P ,
rdensity is used for the radius search and rframe a supporting radius used in the computation
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of the covariance matrix COV (pi). rdensity and rframe are used to obtain neighbors pj for each
pi. Therefore, the first step in this algorithm is to compute different weights wi to compensate
the uneven sampling of 3D points. After that, the covariance matrix, COV (pi) for each pi
according to the rframe is computed. Finally ki is formed by the eigenvalues λ1

i , λ
2
i , λ

3
i of the

previous covariance matrix.

After executing the algorithm 1, we have a set of eigenvalues E = {e1, e2, ..., en} with the
same number of elements as P . To obtain the final keypoints it is necessary to find neighbors
based on a radius for each point pi. It is then necessary to evaluate if the largest eigenvalue λi
of the corresponding point pi is larger than the eigenvalues of its neighbors. If this condition
is true, pi is considered a keypoint.

The computational complexity of this algorithm is similar to the 3D Harris corner detector
and is related to the KD-Tree complexities and how it partitions the whole point cloud
according to a certain radius. However, as seen in the Algorithm 1 in this case two radius
are used. Therefore, the algorithm complexities proceed as follows:

• Create KD-Tree: n log n.
• Radius search 1 (rdensity): mn log n.
• Radius search 2 (rframe): ln log n.
• Find edge points: lmn+ lmn log n,

where n represents the number of points in the point cloud, m the number of neighbors in
radius search 1 and l the number of neighbors in radius search 2. Finally the total complexity
is given by lmn log n+ ln log n+mn log n+ n log n+ lmn ∈ O(lmn log n).

As in the case of the complexity of the Harris corner detector and the SIFT algorithm,
the value m is important because it determines the time the algorithm will take to process
each radial neighborhood depending on the size of the radius.

2.2.4 Why a general feature extractor is not suitable for LOAM?

Analyzing the possible performance of any feature extractor in the LOAM algorithm is related
to the number of features returned by the feature extractor and its computational complexity.
In the case of the number of features, the original LOAM feature extractor returns more than
1, 000 features in less than 0.1 seconds (as will be seen later in the results section). In the case
of the computational complexities of general feature extractors, it is important to note that
the LOAM algorithm needs to estimate the LiDAR position and the map with the current
point cloud before a new point cloud is input to the algorithm. According to the original
LOAM paper [42], the feature extraction task is part of a block called "LiDAR Odometry".
This block updates the LiDAR position 10 times per second. Since feature extraction is part
of this block, any candidate to replace the feature extraction task should be fast enough to
not affect the LiDAR odometry block.

General feature extractors for point clouds such as the Harris, SIFT and ISS algorithms
can extract reliable features, however, they are not appropriate for the LOAM algorithm
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because of their computational complexities. The complexities of these algorithms are shown
in table 2.1.

Table 2.1: The computational complexities of well known point cloud feature extractors.

Algorithm Complexity
Harris O(m · n log n)
SIFT O(o · s ·m · n log n)
ISS O(l ·m · n log n)

To see the equivalent values of these complexities in units of time, an experiment was
carried out in which the Harris, SIFT and ISS algorithms were evaluated with a point cloud
composed of n = 21572 points. This point cloud was recorded in an indoor environment and
obtained with a Velodyne VLP-16 LiDAR. The experiment consisted of varying the radius
related to the m neighbors on each algorithm and then the time each algorithm took to
perform the task was evaluated and how many features it returned. For the SIFT algorithm
the parameters considered were o = 10 and s = 8 and the ISS algorithm’s second radius,
rframe (that related to the l neighbors), was set to 0.3 meters. This experiment was carried
out with the PCL library and a computer Intel Core i7-7500U CPU @ 2.70GHz × 4.

Figure 2.2 shows the time (in seconds) each algorithm takes to process the point clouds
and how many features are extracted by each algorithm. The time is represented on the
vertical axis from 0 to 5 seconds and the number of features extracted by each algorithm
for each radius is located next to the colored points. In this figure, it can be seen that the
feature extractors take approximately from 0.25 to 4.3 seconds to extract features from the
point cloud. Additionally, except for the SIFT algorithm, the algorithms return less than
150 features, which is a value far from the 1, 000 features extracted by the original LOAM
feature extractor, mentioned before. Hence, including any of these algorithm in the LOAM
algorithm would negatively affect the LiDAR odometry block.
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Figure 2.2: Processing time required by various feature extractors as a function of feature
radius.
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2.3 Feature Extraction algorithms commonly used in SLAM

There are various feature extraction algorithms that have been widely used in SLAM by the
robotics community. Most of these algorithms use 2D LiDAR data to extract shapes such
as lines and circles. Although not all were developed by the robotics community, they have
been shown to have a good performance in robotics [25].

The most used algorithms for feature extraction with 2D LiDARs are those that extract
lines and that consequently can extract corners. It is therefore important to know which
of them have the best performance. The first three algorithms described in this section are
part of a comparison performed by V. Nguyen et al. [25]. In that research it was concluded
that the Split-and-Merge algorithm is the one that returned the best results in the number
of features extracted and in terms of estimated feature position accuracy. The last two
algorithms described in this section where evaluated and compared in the work done by P.
Nuñez et al. [26]. P. Nuñez et al. proposed a new algorithm to extract features which
was compared with various algorithms (Hough Transform and Split and Merge). Hence, the
algorithms used in these articles are described below.

2.3.1 RANSAC

The Random Sample Consensus (RANSAC) algorithm [9] is an algorithm used to fit models
in the presence of outliers. In the robotics community, this algorithm is commonly used to
extract features such as lines [31] and circles [15], however, it can also be used to extract 3D
features such as planes [10].

The RANSAC algorithm needs the general equation of the model (line, circle, plane, etc)
and the minimum number of points needed to form that model. It iterates by fitting several
parameters of the equation to finally take the one with the least error with respect to the
outliers. An example of how this algorithm extracts lines as features in an indoor environment
is shown in Figure 2.3a where from a data set of 2D points obtained with a 2D LiDAR, three
different lines are fitted (Figure 2.3b).

The complexity of this algorithm is O(s · n · nTrials), where s is the number of extracted
model segments (lines), n the number of 2D points in the set and nTrials the number of
trials.

2.3.2 Hough Transform

The Hough Transform (HT) is an algorithm invented and patented by Paul Hough [13] in
1962. Like RANSAC, this algorithm needs a mathematical model, however, fitting is carried
out by previously creating a Hough space in which the parameters of the model accumulate
votes. The parameters with more votes are the ones that are selected to fit the model.
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(a) Set of 2D points (b) Fitted lines that formed a wall

Figure 2.3: RANSAC in an indoor environment [31].

The HT algorithm is widely used in the computer vision community to find lines and
circles. In the robotics community, this algorithm is not as popular as RANSAC in feature
extraction, however, there are some articles which have adapted it successfully with LiDAR
data [16] [28].

The input to this algorithm is n points with Euclidean components x, y that are candidates
to form a line L. When finding lines with the HT it is always the best option to work with the
polar form to avoid undefined values in the slope of the line when using the slope-intercept
form. The polar form of the line is described in equation 2.19 and depicted in Figure 2.4.

ρ = x cos(θ) + y sin(θ) (2.19)

θ

ρ

x

y

L

Figure 2.4: Polar representation of line L.

Once the polar equation of a line is set, this algorithm depends on the accumulation of
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votes to find the correct line or at least the one with more votes. This accumulation is also
dependent on how we discretize the parameters of this algorithm. The parameters that are
discretized are θ and ρ. Algorithm 2 describes the steps necessary to implement the Hough
transform.

Algorithm 2 Hough Transform
1: procedure HoughAlgorithm(x, y)
2: Hρ,θ = {0}
3: for each point (x, y) do
4: for θ ← 0 to 180 do
5: ρ = x cos(θ) + y sin(θ)
6: Hρ,θ = Hρ,θ + 1
7: end for
8: end for
9: return values ρ, θ where Hρ,θ are local maxima
10: end procedure

The HT algorithm needs as inputs the points x, y (in the case of working with images, an
edge detector is required first). To begin, the Hough space (Hρ,θ), which can also be seen as
a matrix H with indices ρ and θ, has to be initialized with zeros. Then, each point is used
to calculate several ρ, which uses the discretized list of line angles, θ. After that, the matrix
H at the indices (ρ, θ) must be incremented in one. Finally, the Hough transform returns θ
and ρ values that form a local maximum in H.

The computational complexity of this algorithm is a weakness that make it difficult to fit
models with more parameters. In the case of lines the complexity is O(s · n · nc+ s · nr · nc),
where s is the number of segments (lines), n is the number of points and nc and nr the
number of columns and rows of the Hough accumulator matrix H.

Although the previous description of the algorithm is general, it can also be applied to
find lines in robotics, as V. Nguyen et al. [25] did in their experiments. In that article, the
authors conclude that the HT is not the best option when extracting lines because of its
computational complexity. Additionally, in the experiments carried out by P. Nuñez et al.
[26], the HT extracted accurate lines but it involved a high computational complexity. A
deeper analysis of why this feature extractor is not used in the LOAM algorithm is carried
out in section 2.3.6.

2.3.3 Split-and-Merge

The Split-and-Merge algorithm was proposed by T. Pavlidis and S. Horowitz [27] to detect
lines based on continuous partitions of segments. It originated in the computer vision com-
munity and its divide and conquer version has a complexity of O(n log n), where n is to
total number of points in the 2D point cloud. The algorithmic description can be seen in
Algorithm 3 and a graphical representation can be seen in Figure 2.5.
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Algorithm 3 Split-and-Merge algorithm
1: Find the line L formed by the two furthest points.
2: Find the furthest point to the L.
3: If the distance is greater than a threshold, then split and repeat the step 1 and 2 with

the left and right sub-sets of points.
4: If the distance is lower than a threshold, then merge both segments.

Figure 2.5: Split-and-Merge graphical representation [7].

The use of the split and merge algorithm is recommend in the study by V. Nguyen et
al. [25] because it shows a high accuracy in the position of the features and its divide and
conquer implementation make this feature extractor a fast algorithm. However, since this
algorithm only extracts lines, its use is limited. The inclusion of the split and merge feature
extractor in the LOAM algorithm is analyzed in section 2.3.6.

2.3.4 Adaptive Curvature Estimation

The adaptive curvature estimation algorithm was proposed by P. Nuñez et al. [26]. This
algorithm estimates the curvature of a 2D point cloud obtained with a 2D LiDAR. The curva-
ture obtained from this algorithm is then used to extract 4 types of features: line segments,
centers of tree-like objects, corners and edges. Line segments and the centers of tree-like
objects are determined using a non-linear regression method and the Levenverg-Marquardt
algorithm, respectively. Corners are found with the intersection of the line segments previ-
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ously extracted and edges are found using an adaptive breakpoint detector [6].

To estimate the curvature of a segment it is necessary to calculate: li, l and dE, defined
in the following equations:

li = ||pi+1 − pi|| (2.20)

l(i, j) =

j∑
i=1

li (2.21)

dE(i, j) = ||pj − pi||, (2.22)

where li is the Euclidean distance between two consecutive points, l is the accumulated
Euclidean distance from the ith point to the jth point and dE is the Euclidean distance
from the ith point to the jth point. These distances are computed for the current point, pi,
in clockwise direction using the variable Kf [i] and in counter-clockwise direction using the
variable Kb[i] . An example of the computation of these distances on clockwise direction is
shown in Figure 2.6a. For point sets with a high curvature, the difference of the sum of li
and dE are larger than those that be obtained with straight lines. Figure 2.6b shows how
the mentioned difference is below one for Kf [i] = 3 and Kf [i] = 4. This value is used to set
the threshold Uk, which indicates that up to that point a line is determined. When Kf [i] is
greater than four the difference increases, which indicates that a potential high curvature of
the data points have been found.

(a) Computation of l and dE (b) Difference of distances l and dE

Figure 2.6: Adaptive Curvature Estimation graphical representation [26].
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The previous threshold, Uk, is dependent on functions l and dE. To define when a subset
of points is a line, the following condition must be true:

l(i, i+Kf [i])− dE(i, i+Kf [i]) ≤ Uκ. (2.23)

In the condition 2.23, Uk determines when data within a 2D point cloud forms a straight
line. If Uk is very large, point clouds with a high range noise can be detected as straight
lines. However, one must be careful with this constant because it can result in the confusion
of straight lines with curves. The original article recommends determining Uk by scanning
a flat surface like a wall and then calculating the distances l and dE to find the correct Uk
using the equation 2.23.

In the original article [26], this algorithm is compared with feature extractors such as the
Hough transform and the split and merge algorithm. It was concluded that their proposed
algorithm had the overall best performance (recognition rate, accuracy of features location
and processing time of the algorithm). However, the Curvature Scale Space algorithm had
a better recognition rate even though it is more computationally complex. In this thesis, its
use along with the LOAM algorithm was first considered, however, it was discarded because
of the lack of robustness in the presence of range noise. This analysis is described later in
section 2.3.6.

2.3.5 Curvature Scale Space

The Curvature Scale Space (CSS) algorithm was created by Mokhtarian F. and Mackworth
A. [22] to determine different levels of curvature with a high precision. The algorithm was
originally applied to images, but was then used for mobile robot feature extraction along
with EKF-SLAM by Madhavan R. and Durrant-Whyte H. F. [21].

The original algorithm begins with the parametrization of curves within 2D point clouds
in terms of functions x(t) and y(t), which result in a set of points described in the following
equation:

C = {x(t), y(t)}. (2.24)

In this equation, t is a linear function of the path length ranging over the closed interval
[0, 1]. After defining the set of points, the variable that measures the curvature of C is κ.
The variable κ can be defined as the instantaneous rate of change of the slope angle ψ of the
tangent at point P with respect to arc length s. This expression is equal to the inverse of
the radius of curvature ρ as follows:

κ =
dψ

ds
=

1

ρ
. (2.25)
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κ can also be computed in terms of the derivatives of function y which are shown in the
following equations:

y′ =
dy

dx
and y′′ =

d2y

dx2
(2.26)

κ =
y′′

(1 + (y′)2)3/2
. (2.27)

To use equation 2.27, it is important to recall that in equation 2.24 the curve C was
parametrized in terms of t, which results in small variations of the derivatives of x and
y, as shown in the equations:

ẋ =
dx

dt
ẍ =

d2x

dt2
ẏ =

dy

dt
ÿ =

d2y

dt2
. (2.28)

Then

y′ =
ẏ

ẋ
and y′′ =

ẋÿ − ẏẍ
ẋ3

. (2.29)

And finally, replacing 2.29 in 2.27 results in

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
. (2.30)

Now, curvature κ can be computed in terms of functions x(t) and y(t). Nevertheless, to find
reliable features a scale space of Gaussian smoothing needs to be formed. The scale space
requires these functions to be convolved with a Gaussian kernel g(t, σ) at various levels of σ.
So, the Gaussian kernel is defined as

g(t, σ) =
1

σ
√

2π
e−t

2/2σ2

. (2.31)

Additionally, the convolution of x(t) and g(t, σ) is given by

X(t, σ) = x(t) ∗ g(t, σ) =

∫ ∞
−∞

x(u)
1

σ
√

2π
e−(t−u)2/2σ2

du (2.32)

and Y (t, σ) is defined in a similar manner.

In equation 2.30, one needs ẋ, ẍ, ẏ, ÿ; however, now we need those functions to be
smoothed by the Gaussian kernel. Therefore, the new functions needed are Ẋ(t, σ), Ẍ(t, σ),
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Ẏ (t, σ), Ÿ (t, σ). These functions can be computed from x(t) and y(t) as shown in equations
2.33 to 2.36

Ẋ(t, σ) =
∂X(t, σ)

∂t
=
∂[x(t) ∗ g(t, σ)]

∂t
= x(t) ∗ ∂g(t, σ)

∂t
(2.33)

Ẍ(t, σ) =
∂2X(t, σ)

∂t2
= x(t) ∗ ∂

2g(t, σ)

∂t2
(2.34)

Ẏ (t, σ) =
∂Y (t, σ)

∂t
= y(t) ∗ ∂g(t, σ)

∂t
(2.35)

Ÿ (t, σ) =
∂2Y (t, σ)

∂t2
= y(t) ∗ ∂

2g(t, σ)

∂t2
. (2.36)

Finally, equation 2.30, which defines κ, results in

κ(t, σ) =
Ẋ(t, σ)Ÿ (t, σ)− Ẏ (t, σ)Ẍ(t, σ)

(Ẋ(t, σ)2 + Ẏ (t, σ)2)3/2
. (2.37)

With equation 2.37, we are able to compute the curvature of each point at t for a certain
smoothed curve with a scale σ. To detect the points with the highest curvature, we only
need to detect those points that, in spite of smoothing, maintain a high curvature value.
To extract features from a complete point cloud with the CSS algorithm we depend on the
number of smoothing scales, s, the number of clusters, c (generated with the segmentation
algorithm), and the number of points per cluster, nc. So, the computational complexity of
this algorithm can be expressed as O(s · c · nc).

The CSS algorithm was included in this literature review because it obtained good results
in the comparison done by P. Nuñez [26]. Although, in that study, the CSS algorithm
was slower than the adaptive curvature estimation algorithm when comparing their time
complexities. The CSS algorithm is still an important algorithm that can be robust to range
noise. This characteristic was important in the decision to discard the adaptive curvature
estimation algorithm and choose the CSS algorithm to replace LOAM’s feature extractor.

The previous description of the curvature scale space algorithm is general. Since this
algorithm is the one selected to be implemented in this thesis it will be extended in the next
chapter from its theory to specific implementation details corresponding to the LiDAR used
in this work.
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2.3.6 Why not apply other feature extractors in LOAM?

The analysis carried out for feature extractors commonly used in SLAM was based mainly in
two research articles: A comparison of line extraction algorithms using 2D laser rangefinder
for indoor mobile robotics [25] and Natural landmark extraction for mobile robot navigation
based on an adaptive curvature estimation [26]. The former article [25], evaluates line extrac-
tion algorithms in 2D point clouds. The algorithms studied in this research were: Split and
Merge, Line Regression, the Incremental algorithm, RANSAC, Hough Transform and the
Expectation Maximization (EM) algorithm. This article concludes that the best algorithm
for line extraction is the Split and Merge algorithm based on its computational complexity,
number of lines extracted, and position accuracy of the features extracted.

Article [26] proposed a new feature extraction algorithm based on adaptive curvature
estimation, with comparisons to other algorithms. One of the algorithms included in this
comparison is the Split and Merge algorithm, which was the best one according to V. Nguyen
et al. The complete comparison includes the following algorithms: Split and Merge (SM),
Split and Merge (SMF), Iterative End-Point-Fit (IEPF), Curvature Scale Space (CSS), Hough
Transform (HT) and their proposal. A summary of the execution times of each algorithm
can be seen in Table 2.2.

Table 2.2: P. Nuñez et al. [26] Feature extraction algorithms comparison.

Algorithm SM SMF IEPF HT CSS P. Nuñez et al. [26]
Execution Time (ms) 6.7 14.2 3.8 31.2 37.7 9.4

True Positives 0.76 0.79 0.77 0.71 0.92 0.91
False Positives 0.19 0.19 0.21 0.23 0.02 0.02

The Split and Merge (SM) algorithm extracts lines and had the best performance in V.
Nguyen et al.’s comparison. This algorithm also has a variant called Split and Merge Fuzzy
(SMF [6]), which uses fuzzy clustering before applying the SM algorithm. In P. Nuñez et
al.’s comparison, these algorithms are used to extract lines and polygonal approximations of
curves. 1 The results for Split and Merge and Split and Merge Fuzzy are good in terms of
their speed but they lack detection accuracy. The lack of detection accuracy is a product of
the polygonal approximation of curves.

The Iterative End-Point-Fit (IEPF) algorithm is a variant of the Split and Merge algorithm
and consequently only extracts lines. This algorithm has a similar performance in terms of
detection accuracy compared with the SM algorithm, however, the time it take to process
the data is less. As occurs with the SM algorithm, the IEPF algorithm’s correctness is low
because of the polygonal approximation of curves.

The Hough Transform (HT) algorithm, in P. Nuñez et al.’s work, was only used to segment
the laser scan. Its circle fitting version was not implemented because of its computational
complexity. Although the HT algorithm was only used to segment the laser scan, it takes a
significant amount of time to run.

1The polygonal approximation of curves consists on forming a curve with a sequence of estimated lines.
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The remaining algorithms are the Curvature Scale Space (CSS) algorithm and P. Nuñez
et al. proposal. In this case, both algorithms extract more than lines. Also, both algorithms
base their behavior on a curvature variable κ, which indicates the points with curvature
extrema. These methods differ in execution time and true positive rates (see table 2.2).

The execution time of P. Nuñez et al. proposal is less than CSS because the P. Nuñez et
al. proposal uses the entire point cloud in its raw format and computes its curvature. In the
case of the CSS algorithm, the point cloud data is smoothed several times with a Gaussian
kernel until a scale space is created and then the curvature is computed.

The higher true positive rate of the CSS algorithm compared with P. Nuñez et al.’s
proposal is due to creation of a suitable scale space. The different levels of smoothing that
create the scale space in the CSS algorithm, make this algorithm more robust to noise. In the
P. Nuñez et al. proposal, the range noise, which affects the curvature function κ, is controlled
by the parameter Uk. Uk is dependent on functions l and dE, as described in equation 2.23
(functions l and dE are described in more detail in section 2.3.4). Uk indicates when a point
of a set of points is the start of a curve. If Uk is large, the curvature of the point is high,
which indicates the start of a curve; otherwise the curvature is low, which indicates the point
is part of a straight line. However, this condition fails when the point cloud presents a high
level of range noise. A representation of how this condition fails is shown in Figure 2.7.

Figure 2.7 shows distances l1, l2 and dE evaluated in different points of a point cloud
segment obtained with a VLP-16 LiDAR. This point cloud segment represents two walls that
form one corner. Let us evaluate the green point on each sub-figure. In the case of Figure
2.7a l1 = 14.427 mm, l2 = 19.118 mm and dE = 15.218 mm, so l(1, 2) = 33.545 mm and
l(1, 2) − dE = 18.327 mm. In the case of Figure 2.7b l1 = 5.150 mm, l2 = 8.635 mm and
dE = 7.644 mm, so l(1, 2) = 13.785 and l(1, 2) − dE = 6.141 mm. Finally, in the case
of Figure 2.7c l1 = 5.160 mm, l2 = 16.192 mm and dE = 21.290 mm, so l(1, 2) = 21.352
mm and l(1, 2) − dE = 0.062 mm. If we had to choose a Uk that satisfies the condition
presented in Equation 2.23, we would fail, because we would have to choose a Uk between the
18.327 mm of Figure 2.7a or 0.062 mm of Figure 2.7c (both represent a wall). If we chose
the first option, the corner presented in Figure 2.7b would be detected as part of a line (low
curvature). On the other hand, if we chose the second option, the algorithm would detect
two high curvatures (one in Figure 2.7b and one in Figure 2.7b). Therefore, the P. Nuñez et
al. proposal would have problems with these level of range noise.

Although the adaptive curvature estimation algorithm performance was good with P.
Nuñez et al.’s dataset, it would have problems with the data returned by the VLP-16. There-
fore, the curvature scale space algorithm appears as an option to work in the LOAM algorithm
since Gaussian filtering makes it robust to noise and can extract several features.
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(a) Case 1: Three points that are
part of a wall. l(1, 2)−dE = 18.327
mm.

(b) Case 2: Three points that repre-
sent a corner. l(1, 2) − dE = 6.141
mm.

(c) Case 3: Three point that are
part of a wall. l(1, 2) − dE = 0.062
mm.

Figure 2.7: Example of a real point cloud segment obtained with a VLP-16 LiDAR.

2.4 Adaptive Breakpoint Detector

In the feature extraction literature focused on SLAM, there are some feature extractors that
require a previous step called segmentation. Segmentation is the task of clustering certain
points of the cloud based on their distance. This task is important because it can reduce the
computational complexity of the whole feature extractor.

Segmentation algorithms can also be called breakpoint detectors because they detect where
a set of points presents a break. There are many approaches one can take to detect the
breakpoints in a point cloud, from those that use algorithms such as the Kalman filter [7] [1]
to those that are based on the Euclidean distance to separate the points [37]. In this thesis,
we used an algorithm proposed by G. Borges and M. Aldon [6] called the Adaptive Breakpoint
Detector because it improves the approaches based on the Euclidean distance and according
to [6] its performance is similar when compared to Kalman filter breakpoint detectors.

The Adaptive Breakpoint Detector detects a breakpoint based on the comparison of the
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current point pi and the previous point pi−1. Then, two distances are computed: the Eu-
clidean distance between pi and pi−1, and a threshold calledDmax. This threshold is a distance
formed by a virtual line that crosses the previous point pi−1. This line has an inclination λ
with respect to the line ri−1 and represents an extreme case where an environmental line can
be reliably detected.

In Figure 2.8, the origin of the x and y axes represents the LiDAR’s location, the red lines
are consecutive laser beams where each range is represented by ri. The blue points are points
pi detected by the LiDAR, the light blue dotted line is the virtual line with inclination λ
with respect to ri−1 and the green circle is the threshold circle with radius Dmax. If a point
pi is outside the circle, pi and pi−1 are marked as breakpoints. It is necessary to focus on
the triangle formed by the line ri−1 and the distances rhi and Dmax. Distance rhi represents
the hypothetical range that goes from the origin of the LiDAR to its intersection with the
virtual planar obstacle line.

Dmax

x

y

pi

pi-1

pi-2

β

α

ΔΦ

ri

ri-1

ri
h

λ

Threshold Circle

Virtual planar obstacle

Figure 2.8: Adaptive breakpoint detector (adapted from [6]).

Based on angles ∆φ, α and β of the triangle shown in Figure 2.8, we can define the
following equations:

α = 180◦ − λ (2.38)
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∆φ+ α + β = 180◦. (2.39)

Replacing 2.39 in 2.38, we obtain

β = λ−∆φ. (2.40)

Then, the hypothetical range rhi for the ith range is related to ri−1 by the following equation:

ri−1 · sin(α) = rhi · sin(λ−∆φ). (2.41)

Based on the previous equations, we can now define an equation for Dmax as follows

Dmax = ri−1
sin(∆φ)

sin(λ−∆φ)
. (2.42)

Dmax can be used as a threshold to detect breakpoints. However, this value does not consider
the noise associated with ri−1. To tackle this issue, the author proposes to add 3 times the
standard deviation of the sensor range noise to Dmax. However, in this thesis we computed
the range accuracy of Dmax (∆Dmax) associated to the whole equation 2.42 by taking the
derivative of Dmax with respect to ri−1 and multiplying it by the range accuracy of the
LiDAR ∆r as follows

∆Dmax =
dDmax

dri−1

·∆r (2.43)

According the Velodyne VLP-16 LiDAR datasheet, ∆r = 0.03 m and ∆φ = 0.4. Addi-
tionally, in this case we used λ = 10°; so equation 2.43 results in

∆Dmax =
sin(∆φ)

sin(λ−∆φ)
·∆r = 0.0013 m. (2.44)

Finally, the range accuracy of Dmax associated to Dmax is added to the equation 2.42, which
results in

Dmax = ri−1
sin(∆φ)

sin(λ−∆φ)
+ ∆Dmax . (2.45)

With Dmax defined, the adaptive breakpoint detector algorithm can be implemented as will
be shown in Algorithm 5 in the next chapter. This algorithm was implemented as a previous
task of the CSS algorithm and it is useful to reduce the time complexity of the feature
extractor.
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2.5 LiDAR Odometry and Mapping (LOAM)

One of the objectives of this thesis is to replace, in the implementation, the original LiDAR
Odometry And Mapping (LOAM) feature extractor with the CSS algorithm. To achieve this
objective however, it is important to understand how the replacement of the original feature
extractor could affect the whole LOAM algorithm. To do this, a summary of the components
of the LOAM algorithm will now be presented.

The LOAM algorithm, proposed by J. Zhang [41], is one of the main algorithms used in
the state of the art in SLAM. In the KITTI Vision benchmark [11], it is ranked first place
since 2016, in terms of the estimated trajectory error. This algorithm performs localiza-
tion and mapping through a feature matching approach using LiDAR data. The original
LOAM experiment used a Hokuyo UTM-30LX LiDAR and the description of the geometric
algorithms are based on this sensor [42]. In the case of this thesis, all these algorithms are
described based on the Velodyne VLP-16 LiDAR, which generates a sparse point cloud.

The LOAM algorithm consists of many software blocks as shown in the diagram of Figure
2.9. This diagram starts from the left side with the LiDAR block returning a set of points P̂ .
The point cloud registration block is responsible for ordering the previous points according
the elevational scan in which they belong. Additionally, this block labels these points with
a positive integer value k that indicates the number of the sweep. A sweep occurs when all
the lasers of the Velodyne VLP-16 LiDAR complete a rotation from 0° to 360°. Hence, when
the software begins to process each point cloud, returned by the LiDAR, that point cloud
is a assigned with a sweep k ∈ Z+ = {1, 2, ...}. Therefore, the output of the point cloud
registration block is a point cloud Pk. Pk contains several points; each point identified with
a sub-index i corresponding to the sweep k and is denoted as p(i,k) ∈ Pk. After that, Pk
feeds the LiDAR odometry block, which performs the feature extraction task and estimates
the position of the LiDAR. This block returns a point cloud with the rotational effect of the
LiDAR compensated according to the time of scanning of each point (undistorted Pk). Also,
this block uses the estimated position of the LiDAR to return a transform update between
the LiDAR coordinates and the world coordinates. Finally, the undistorted point cloud Pk is
used by the LiDAR mapping algorithm to estimate the map (map output) and also to return
a second transform update. Both transform updates returned by the LiDAR odometry block
and the LiDAR mapping block are used by the transform integration block to compute a
final transform between the LiDAR coordinates and the global world coordinates.

Figure 2.9: Block diagram of the LOAM software system [42].

In this thesis, we only focus on the LiDAR odometry block which is responsible for the
task of feature extraction and the estimation of the robot’s trajectory.
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2.5.1 LiDAR Odometry Estimation

The LOAM software system divides the LiDAR odometry block into 4 tasks: feature extrac-
tion, feature point correspondence, motion estimation and the LiDAR odometry algorithm.
These are each explained below.

2.5.1.1 LOAM’s Feature Extraction algorithm

The LiDAR odometry block is responsible for computing the trajectory of the robot. This
block performs its task by finding the translation and rotation between two complete scans of
the VLP-16. To find the transform for these translations and rotations, the LOAM algorithm
does not use all of the point cloud data, but it finds a special sub-set called features.

The VLP-16 and Velodyne LiDARs in general are composed of N individual lasers and this
configuration is considered in the implementation. To take advantage of the configuration of
this sensor, the feature extraction algorithm processes each laser as an individual elevational
scan and extracts non-smooth and smooth points. From here on non-smooth points will be
called sharp features and smooth points will be called flat features. A set of sharp features
is denoted by Ek = {e(1,k), e(2,k), ..., e(n,k)}, where the first sub-index indicates the number
of feature and the second one the number of sweep. Additionally, a set of flat features is
denoted by Hk = {h(1,k), h(2,k), ..., h(n,k)}, where the sub-indices show the same information
as in the case of sharp features. Both Ek and Hk are part of Pk (Ek,Hk ⊂ Pk).

To decide when a point p(i,k) in Pk is included in Ek or Hk, the original paper defines a
threshold value c as

c =
1

|R| · ||p(i,k)||
||
∑

j∈R,j 6=i

(p(i,k) − p(j,k))||. (2.46)

The threshold c in equation 2.46 defines the smoothness of each elevational scan of the LiDAR
and accordingly the points are categorized as sharp or flat features. Additionally, R is the
set of consecutive points in one scan, p(i,k) and p(j,k) ∈ R and R ⊂ Pk. Therefore, the LOAM
feature extractor returns flat (smooth) and sharp (non-smooth) points per each elevational
scan of a Velodyne LiDAR.

2.5.1.2 Feature Point Correspondence

In feature point correspondence, we have to perform a matching between feature points found
at time tk+1 with their closest neighbors found at time tk. tk denotes the time stamp when a
sweep k is completed. To complete this task we need to use P̄k, Ẽk+1 and H̃k+1. P̄k represents
Pk but it has assigned the time stamp tk+1, Ẽk+1 and H̃k+1 are the same features as Ek+1 and
Hk+1 but they has assigned the time the sweep was initially scanned.
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Feature point correspondence for sharp features is depicted in Figure 2.10. In this figure,
the correspondence of the sharp feature ẽ(i,k+1) ∈ Ẽk+1 is determined by finding two neighbors,
p̄(j,k), p̄(l,k) ∈ P̄k, in two consecutive scans (scan 2 and scan 3) and found at time of the
previous sweep, tk.

e(i,k+1)

p(j,k)

p(l,k)

tk+1 tk

scan 1

scan 2

scan 3

scan 1

scan 2

scan 3

~

_

_

Figure 2.10: Sharp feature correspondence.

Likewise, the feature point correspondence for flat features is depicted in Figure 2.11. In
this figure, the correspondence of the flat feature h̃(i,k+1) ∈ H̃k+1 is determined by finding
three neighbors, p̄(j,k), p̄(l,k), p̄(m,k) ∈ P̄k, in two consecutive scans (scan 2 and scan 3) and
found at time of the previous sweep, tk.

h(i,k+1)

tk+1

p(j,k) p(l,k)

p(m,k)

tk

scan 1
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scan 3
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scan 3

~
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Figure 2.11: Flat feature correspondence.

32



2.5.1.3 Motion Estimation

To estimate the motion of the robot it is necessary to have features at time tk+1 and their
corresponding points at time tk. This task can be completed by calculating the distances
from feature points to their corresponding points and minimizing them. In the case of sharp
features, a point to line distance has to be computed, while in the case of flat features, a
point to plane distance is needed.

The LOAM algorithm’s authors model the robot motion with constant linear and angular
velocities during a sensor sweep k. Then, the robot motion can be defined as the robot pose
transform between the times tk+1 and tk denoted as Tk+1. Tk+1 contains the rigid motion
of the robot with respect to axes x, y, z, so Tk+1 = [tx, ty, tz, θx, θy, θz]. tx, ty, tz are the
translations in the x, y, z directions and θx, θy, θz their rotation angles about the x, y and z
axes.

The robot motion is solved with the Levenberg-Marquardt algorithm using the equation:

f(Tk+1) = d. (2.47)

where, f is a function that returns a matrix and each row of it corresponds to a feature
point, and d contains the corresponding distances. Then, to use the Levenberg-Marquadt
algorithm, the Jacobian matrix of f with respect to Tk+1 has to be computed. This matrix
is denoted as J = ∂f/∂Tk+1. Finally equation 2.47 can be solved by minimizing d

Tk+1 ← Tk+1 − (JTJ + λdiag(JTJ))−1JTd, (2.48)

where λ is a factor determined by the Levenberg-Marquadt algorithm.

2.5.1.4 LiDAR Odometry Algorithm

The final LiDAR odometry algorithm is based on the equations shown in the previous sub-
section. This algorithm needs as inputs the point cloud from the last sweep P̄k and the point
cloud Pk+1. This procedure is described in algorithm 4.

As shown in algorithm 4, the odometry estimation depends on the Levenberg-Marquardt
optimization method and this last algorithm has as inputs the features computed in the
previous task. Hence, it implies that the more accurate the features are, the less error the
odometry estimation will have. This last statement is the basis of implementing a new feature
extractor for the LOAM algorithm.
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Algorithm 4 LiDAR Odometry
1: procedure LOAMOdometry(P̄k,Pk+1)
2: if at the beginning of the scanning a sweep then
3: Tk+1 ← 0
4: end if
5: Detect sharp points and flat points in Pk+1 and assign the points to Ek and Hk

6: do
7: for each sharp point in Ek do
8: Find the correspondence of the point, then compute point to line distance and

assign those values the matrix of function 2.47
9: end for
10: for each flat point in Hk do
11: Find the correspondence of the point, then compute point to plane distance

and assign those values the matrix of function 2.47
12: end for
13: Update Tk+1 for a nonlinear iteration based on 2.48
14: while the non linear optimization does not converges
15: if at the end of the scanning of a sweep then
16: Assign each point p(i,k+1) ∈ Pk+1 with the time stamp tk+2 and form P̄k+1

17: return Tk+1 and P̄k+1

18: else
19: return Tk+1

20: end if
21: end procedure

2.5.2 Why the LOAM’s Feature Extractor can be improved?

Until now, various general feature extractors were discarded because of their computational
complexity which is a result of the Radius Search algorithm on which they are based. Our
analysis continued with the feature extractors commonly used for SLAM based on two articles
[25] [26]. Based on these articles, we concluded that the Curvature Scale Space algorithm
gives the best results, which makes it the most suitable for the type of data obtained with
the Velodyne VLP-16 LiDAR.

The remaining feature extractor to analyze, according to the literature review, is the
feature extractor of the LiDAR Odometry And Mapping (LOAM) algorithm itself. This
feature extractor has a version specially designed and tested with the VLP-16 LiDAR data
used in this thesis. Hence, the core of this section is to show with some examples why this
feature extractor can be improved.

As described in section 2.5.1.1, the LOAM feature extractor finds sharp and flat points in
the point cloud. To achieve that task, the smoothness of each point is analyzed with equation
2.46. This equation is effective to extract an important quantity of features according to the
smoothness. However, the main problem of this feature extractor occurs when it processes
point clouds with various levels of range noise, as that shown in Figure 2.7.
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Equation 2.46 evaluates the smoothness of each point by summing the difference of each
point with the rest of points in the same elevational scan. In other words, the smaller c is,
the higher smoothness it has. Although this equation gives good results when the noise is
uniform, it can confuse sharp and flat features when the range noise varies in some segments
of the point cloud. To show this issue some examples will be evaluated.

Before beginning with the examples, it is important to recall that, in the original imple-
mentation of LOAM’s feature extractor with the VLP-16 LiDAR, each elevational scan is
processed separately. This characteristic makes the smoothness, c, to be affected the most
by the Euclidean components x and y. Therefore, in the following examples only 2D point
clouds are used. Each point cloud is represented by Pi. For each point in it, c is calculated
with equation 2.46.

Example 1: Let P1 be a 2D point cloud with 5 elements that defines a horizontal line with
no range noise, whose values can be seen in table 2.3.

Table 2.3: Elements of point cloud P1.

index 1 2 3 4 5
x 1 2 3 4 5
y 0 0 0 0 0

Point cloud P1 and its smoothness c for each point can also be graphically represented as
shown in Figure 2.12.
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(a) Representation of P1.
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Figure 2.12: Point Cloud P1 and its smoothness c.

The computation of equation 2.46 for the point cloud P1 can be seen graphically repre-
sented in Figure 2.12b. In this figure, if we want to determine which point is a sharp feature,
first we would have to define a threshold. Since these points represent a line, a possible
threshold would be 2, because it is the maximum value of c reached in Figure 2.12b (this
threshold will be used from here on), therefore all c values above 2 would represent a sharp
feature. Hence, P1 would not return any sharp feature.
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Example 2: Let P2 be a 2D point cloud with 9 elements that define a line with some spikes
that represent range noise and whose values can be seen in table 2.4.

Table 2.4: Elements of point cloud P2.

index 1 2 3 4 5 6 7 8 9
x 1 1.5 2 2.5 3 3.5 4 4.5 5
y 0 0.2 0 0.2 0 0.2 0 0.2 0

Point cloud P2 and its smoothness c for each point can also be graphically represented as
shown in Figure 2.13.
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(a) Representation of P2.
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Figure 2.13: Point Cloud P2 and its smoothness c.

The computation of equation 2.46 for the point cloud P2 can be seen graphically repre-
sented in Figure 2.13b. In this figure, as also occurred for the point cloud P1, if we consider
the threshold in the previous example, no sharp feature would be found in P2. In spite of
the noise presented in P2, Figure 2.12b and Figure 2.13b look very similar.

Example 3: Let P3 be a 2D point cloud with 11 elements that define a corner with no
range noise and whose values can be seen in table 2.5.

Table 2.5: Elements of point cloud P3.

index 1 2 3 4 5 6 7 8 9 10 11
x 0.00 0.00 0.00 0.00 0.00 0.00 1.00 2.00 3.00 4.00 5.00
y 5.00 4.00 3.00 2.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Point cloud P3 and its smoothness c for each point can also be graphically represented as
shown in Figure 2.14.

The computation of equation 2.46 for the point cloud P3 can be seen graphically repre-
sented in Figure 2.14b. Point cloud P3 is completely different from P1 and P2, consequently,
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Figure 2.14: Point Cloud P3 and its smoothness c.

c presents a high value exactly in the point (0, 0). This point, with index 6, is the corner of
P3, so equation 2.46 correctly recognizes the corner.

Example 4: Let P4 be a 2D point cloud with 13 elements that define a corner with range
noise represented with some spikes and whose values can be seen in table 2.6.

Table 2.6: Elements of point cloud P4.

index 1 2 3 4 5 6 7 8 9 10 11 12 13
x 0.00 0.20 0.00 0.20 0.00 0.20 0.05 0.50 1.00 1.50 2.00 2.50 3.00
y 3.00 2.50 2.00 1.50 1.00 0.50 0.05 0.20 0.00 0.20 0.00 0.20 0.00

Point cloud P4 and the smoothness c for each point can also be graphically represented as
shown in Figure 2.15.

The computation of equation 2.46 for the point cloud P4 can be seen graphically repre-
sented in Figure 2.15b. In this Figure, as also occurred for the point cloud P3, the least
smooth point is located in the middle of the point cloud. In spite of the noise presented in
P4, Figures 2.14b and 2.15b look very similar. In this case, equation 2.46 does not have any
problem with range noise.

Example 5: Let P5 be a 2D point cloud with 14 elements and whose values can be seen
in table 2.7. P5 contains 2 corners in the 4th and 9th point. Additionally, the range noise in
form of spikes is only present from point 1 to 5 and from point 10 to 14. Point cloud P5 and
its smoothness c for each point can also be graphically represented as shown in Figure 2.16.

The computation of equation 2.46 for point cloud P5 can be seen graphically represented
in Figure 2.16b. As mentioned before the points that represent corners are located in the
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Figure 2.15: Point Cloud P4 and its smoothness c.

Table 2.7: Elements of point cloud P5.

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x 2.00 1.50 1.00 0.50 0.00 0.00 0.00 0.00 0.00 0.05 -0.50 -1.00 -1.50 -2.00
y 5.00 4.80 5.00 4.80 5.00 4.00 3.00 2.00 1.00 0.05 0.20 0.00 0.20 0.00

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Representation of P5.

0 2 4 6 8 10 12 14

point number

0

5

10

15

20

25

30

35

c

(b) c values for each point in P5.

Figure 2.16: Point Cloud P5 and its smoothness c.

5th and 10th index of the point cloud. These points are also the ones where the curve is less
smooth, however, in Figure 2.16b this lack of smoothness is only detected in the 10th point.

Point cloud P5 is an example of a real segment of a VLP-16 LiDAR scan that will be seen
later in Figure 3.6. If a mobile robot scanned this point cloud, only one feature would be
detected instead of two.

As mentioned before, the core of this thesis is to replace the LOAM feature extractor
with another feature extraction algorithm. The algorithm chosen after all previous analysis
was the Curvature Scale Space (CSS) algorithm. Therefore, in the following chapter, the
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CSS algorithm and its adaptation to sparse 3D LiDAR data is explained. Additionally, the
magnitude of how this replacement affects the whole LOAM algorithm will be seen through
experiments, the results of which will be shown in chapter 4.

2.6 Summary

In this chapter, the most important feature extraction algorithms for point clouds were de-
scribed. This was achieved by dividing the features extractors into two categories: General
feature extractors and features extractors commonly used in SLAM. General feature ex-
tractors were discarded because of their computational complexity. In the case of feature
extractors commonly used in SLAM, the CSS feature extractor was considered as the most
suitable option for the LOAM algorithm because of its robustness to the sensor range noise
and the evidence provided in the articles by V. Nguyen et al. [25] and P. Nuñez et al. [26], in
which the CSS algorithm demonstrated itself to perform well. This decision was taken after
analyzing the LOAM feature extractor with point cloud data similar to that returned by the
Velodyne VLP-16 LiDAR.
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Chapter 3

Methodology and Implementation

In this chapter, the Curvature Scale Space (CSS) algorithm is presented as a more suitable
feature extractor for the LiDAR Odometry and Mapping (LOAM) algorithm. Section 3.1
introduces the term sparsity through the description of the hardware configuration of the
Velodyne VLP-16 LiDAR and then it gives an overview of the equipment used in the exper-
iments. This section also describes the methodology used to compare the original LOAM
algorithm and the LOAM algorithm with the proposed CSS feature extractor. Section 3.2
describes the implementation details of the CSS algorithm using 3D sparse point clouds.
Finally, section 3.3 summarizes the most important points of this chapter.

3.1 Curvature Scale Space with Sparse Point Cloud Data:
The New Feature Extractor of the LOAM Algorithm

An element that the CSS feature extractor and the LOAM’s feature extractor has in common
is that both can be adapted to work with sparse point cloud data. Sparsity in point cloud
data is not a well defined term. There are no exact parameters that can define when a point
cloud is dense or when it is sparse. Serafin et al. [34] use this term to refer to the point cloud
data produced by Velodyne LiDARs. Velodyne LiDARs are known for their sensors such as
the VLP-16, HDL-32E and HDL-64E, which are commonly used in robotics. These sensors
have a special hardware setup that makes it possible to return points in 3 dimensions. They
are formed by N individual lasers placed with a certain inclination angle and with a field of
view of 360 degrees.

In this thesis, the Velodyne VLP-16 LiDAR was used for the experiments. This sensor is
formed by 16 lasers and the sequence of measurements returned by one individual laser in a
360° rotation is also known as a ring or scan, so the VLP-16 LiDAR produces 16 scans per
each full 3D scan. All these lasers keep rotating to sense their surrounding with a horizontal
angular resolution equal to 0.1 to 0.4 degrees. Therefore, the angular resolution in azimuth
yields very close points which can be considered, in this case, dense. In the case of the vertical
angular resolution, the VLP-16 LiDAR varies from -15 to 15 degrees with a separation of 2
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degrees. Hence, we consider this dimension to comprise sparse 3D point cloud data. This is
because there is a significant inclination between scans that produces a notable separation
in the vertical axis and that depends on the range measured by each beam. In Figure 3.1,
a diagram of the VLP-16 hardware configuration is shown, where the horizontal resolution
is represented by γ and the vertical resolution by θ, ri_max represents the maximum range,
which in this case is 100 m.

θ

θ=2°
γ=0.1°~0.4° ri_max=100 m

r0

r15

...

...

+15°

-15°
γ r0

Figure 3.1: VLP-16 hardware configuration.

Before implementing the CSS algorithm with the sparse point cloud data it is important to
know where the feature extractors are located in the whole LOAM software system and how
this could affect the structure of the experiments. Hence, the insertion of the CSS algorithm
as the new feature extractor within the LOAM algorithm is now explained.

Figure 3.2 illustrates the methodology used in the experiments. On the left, this figure
shows the hardware used to record the simulated and real data, consisting of a mobile robot
Husky A-200, a computer Intel Core i7-7500U CPU @ 2.70GHz × 4, a Velodyne VLP-16
LiDAR and a Topcon Hyper V GPS. At the center of Figure 3.2, the data obtained with
this hardware is compared with two versions of the LOAM algorithm, one which includes the
LOAM’s feature extractor and the other one that replaces it with the CSS feature extractor.
On the right of Figure 3.2, the estimated feature positions and trajectories produced by
both algorithms are compared with ground truth features and ground truth trajectories,
respectively. For the comparison of features the Optimal Sub-Pattern Assignment (OSPA)
metric was used. It is important to note that in this case this comparison was only done
for the simulated data. Finally, the comparison of trajectories was carried out using the
Absolute Trajectory Error (ATE) metric.
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Figure 3.2: Diagram of the methodology used to compare the original LOAM algorithm and
the LOAM algorithm with the CSS feature extractor.

3.2 Implementation of the Curvature Scale Space algo-
rithm with 3D Sparse Point Cloud Data

In this section we focus on the details of the adaptation and implementation of the CSS
algorithm to function with 3D sparse point cloud data from the Velodyne VLP-16 LiDAR. It
is important to mention that, in this implementation, the CSS algorithm only extracts sharp
features which correspond to the set Ek. Flat features (Hk) are extracted using the same
equation 2.46 that the LOAM’s feature extractor uses. Therefore, to process point cloud
data from the VLP-16 LiDAR, the task was divided into 4 steps as follows:

1. Divide the 3D point cloud into its 16 scans.
2. Segment the point cloud of each scan using the breakpoint detection algorithm.
3. Pre-compute Gaussian kernels.
4. Implement an algorithm to find the curvature extrema.

As mentioned before, the Velodyne VLP-16 LiDAR is a composition of 16 individual lasers.
This configuration was exploited for the use of the CSS algorithm. The idea is that, given a
whole point cloud, we divide it into 16 separate point clouds. To complete this task, we can
follow two approaches. The first is to compute the elevation angle of each point to determine
which point belongs to a scan. The second approach is to consider how the hardware of
the VLP-16 LiDAR organizes its data and accordingly separate the points by scans. In this
thesis, we followed the second approach to take advantage of all the data sent by the LiDAR.

Each scan of the VLP-16 LiDAR belongs to a ’channel’. Each channel consists on a single
905 nm laser emitter and detector pair. The VLP-16 LiDAR includes within its data the
channel from which each point was detected. However, libraries such as the Point Cloud
Library (PCL) treat point clouds from different sensors as general point clouds, so there is
no data type which includes any notion of a channel as a field in this library. Therefore, in
this thesis we considered a new data type that includes the channel each point belongs to.
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Each point in the point cloud data type of PCL has generally four fields: x, y, z and
intensity. The first three components refer to the Euclidean position of the point and the
fourth one is the reflected signal strength of that point. However, if we want to know from
which laser a point is detected, it is necessary to extract its channel by accessing the two
following bytes of the LiDAR raw data and organizing it according to Table 3.1. Using this
table, we can create a new data type composed of five fields: x, y, z, intensity and channel.
Performing this task avoid computing extra steps that can affect the processing time of the
feature extractor.

Table 3.1: Laser IDs and their angles.

Laser ID Vertical Angle
0 -15°
1 1°
2 -13°
3 -3°
4 -11°
5 5°
6 -9°
7 7°
8 -7°
9 9°
10 -5°
11 11°
12 -3°
13 13°
14 -1°
15 15°

Each point belonging to a laser ID maintains its 3 Euclidean components, however, the
original CSS algorithm is designed to process 2D data. Therefore, to enable this algorithm
to process VLP-16 3D LiDAR points, we only consider the Euclidean components x and y
of each laser in the computation of the curvature. This approach was chosen because of
two reasons. Firstly, related work in the literature [19] [14] [41], which also used Velodyne
LiDARs, adopted this approach; and secondly, because most objects present in common
environments have high curvature values in the x and y Euclidean components.

The first reason to use each scan separately is based on previous work that also used Velo-
dyne LiDARs. One of these articles is the original implementation of the LOAM algorithm
for the VLP-16 LiDAR [41]. In this article, the author used three types of Velodyne LiDARs:
VLP-16, HDL-32E and HDL-64E; and on his implementation he divides the Velodyne’s point
clouds into scans. Another article that considers this approach is by Y. Li and E. Olson, who
used this type of LiDAR data to extract vertical corners for different values of z (vertical
axis) using the Kanade-Tomasi corner detector [19]. Finally, J. Im used a Velodyne HDL-32E
to extract vertical corners based on the Iterative-End-Point-Fit (IEPF) algorithm and using
only the eight upper scans of the LiDAR [14].

43



The second reason to divide whole point cloud into scans is that the majority of point cloud
segments present high curvature values that depend mostly in the variation of the Euclidean
components x and y. Although point cloud segments of a single scan present non-zero values
in the Euclidean component z, the variation in this component commonly does not represent
high curvature values and it is not as significant as in the other two components. Additionally,
high curvature values existing in the Euclidean components x and y are mainly present in
common objects like corners of walls, lamp posts or tree trunks. Other high curvatures values
like those that can be extracted if we consider the y and z or x and z components are mainly
formed by the intersection of the walls and the floor and the intersection of the walls and
the roof, and they are not detected continuously. Finally, considering the computation of
curvatures in the three Euclidean components x, y and z would represent an increase in the
computational complexity of the CSS algorithm, which could be an issue according to the
analysis done in section 2.2.4.

Hence, to divide the whole point cloud from the Velodyne VLP-16 into scans, we organize
the point cloud in 16 scans following the previous hardware considerations shown in table
3.1. Figure 3.3 shows a complete point cloud obtained with a Velodyne VLP-16 in an indoor
environment. In this representation each scan is labeled with a different color. A closer view
of how the whole point cloud was organized in different scans is shown in Figure 3.4.

Figure 3.3: Complete point cloud taken with a Velodyne VLP-16 in an indoor environment
(each scan is shown with a different color).
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Figure 3.4: Closer view of part of the point cloud of figure 3.3.

The following task is to divide point clouds from each scan into segments. The objective
of dividing each scan into segments is to facilitate the detection of curvature extrema with
the CSS algorithm and to decrease its computational complexity. The algorithm used in this
thesis is shown in algorithm 5, and the derivation of Dmax is shown in section 2.4.

The adaptive breakpoint detector needs two inputs: A point cloud of a single scan P =
{p1, p2, ..., pn}, where pi represents the ith point of P with Euclidean components x and y and
the range accuracy associated to Dmax, ∆Dmax , which was calculated in equation 2.44. This
last input is required to determine Dmax because, according to the original paper [6], taking
into account the range accuracy make the breakpoint detector more robust to obstacles close
to the sensor. Therefore, ∆Dmax was set to 0.0013 m as calculated in the previous chapter.

Also, this algorithm uses a flag bi for each pi that indicates when pi is the beginning or the
end of a segment Sj, where j indicates the number of segment. It is important to note that
Sj ⊂ P and its number of elements were delimited from 40 to 400 points to avoid segments
that did not represent any object and could not consistently appear in time. An example
of how a point cloud from one scan projected on a plane xy (Figure 3.5a) is divided into
segments of different colors (Figure 3.5b) is shown in Figure 3.5.

45



Algorithm 5 Adaptive Breakpoint Detector
1: procedure AdaptiveBreakpointDetector(P)
2: b1 ← FALSE
3: Dmax = ri−1

sin(∆φ)
sin(λ−∆φ)

+ ∆Dmax

4: for i← 2 to n do
5: if ||pi − pi−1|| > Dmax then
6: bi ← TRUE
7: bi−1 ← TRUE
8: else
9: bi ← FALSE
10: end if
11: end for
12: end procedure

1 2 3 4 5 6

1

2

3

4

5

x [m]

y [m]

(a) 2D projection of the first scan of the point
cloud of Figure 3.3.
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S1

S2

S3

S4
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S6

(b) Point cloud of Figure 3.5a divided into seg-
ments.

Figure 3.5: Segmentation of one scan using the Adaptive Breakpoint Detector.

Figure 3.5b contains 6 point cloud segments labeled from S1 to S6. A characteristic that is
common in this point cloud is the range noise present in each of these segments, even though,
some of them represent flat surfaces. An example of a segment with range noise can be seen
in figure 3.6 which is a zoomed view of the point cloud segment S1 projected on a plane xy.

At this point, we have several segments per scan. With the data in this form, we can use
the CSS algorithm. To use this algorithm, first we have to parametrize the curve segment as
proposed by [21] to obtain different ti values that vary from 0 to 1 as shown in equations 3.1
and 3.2.
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Figure 3.6: 2D projection of the point cloud segment S1.

d1 = 0 and di =
√

(xi − xi−1)2 + (yi − yi−1)2, (3.1)

Dp =
n∑
i=1

di t1 = 0 ti =
1

Dp

i∑
j=1

dj. (3.2)

In previous equations, the sub-index i varies from 1 to n, where n is the number of points
of the curve segment Sj. After the parametrization, the point cloud segment is expressed in
its Euclidean components x and y as a function of t using the equation

C = {x(t), y(t)}. (3.3)
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It is then necessary to convolve x(t) and y(t) with the Gaussian derivatives using

Ẋ(t, σ) =
∂X(t, σ)

∂t
=
∂[x(t) ∗ g(t, σ)]

∂t
= x(t) ∗ ∂g(t, σ)

∂t
(3.4)

Ẍ(t, σ) =
∂2X(t, σ)

∂t2
= x(t) ∗ ∂

2g(t, σ)

∂t2
(3.5)

Ẏ (t, σ) =
∂Y (t, σ)

∂t
= y(t) ∗ ∂g(t, σ)

∂t
(3.6)

Ÿ (t, σ) =
∂2Y (t, σ)

∂t2
= y(t) ∗ ∂

2g(t, σ)

∂t2
. (3.7)

In equations 3.4, 3.5, 3.6 and 3.7, the operator ∗ represents convolution and the function
g(t, σ) is a Gaussian function that depends on t and its standard deviation σ. Finally, the
results of previous convolutions are used to compute the curvature κ of each segment in the
16 scans using the equation

κ(t, σ) =
Ẋ(t, σ)Ÿ (t, σ)− Ẏ (t, σ)Ẍ(t, σ)

(Ẋ(t, σ) + Ẏ (t, σ))3/2
. (3.8)

To apply the Gaussian filters, the original Curvature Scale Space article [22] does not
specify the necessary number of scales. However, the paper recommends to apply equations
3.4, 3.5, 3.6 and 3.7 to the segments until no curvature extrema are found. More specifically,
this paper gives an example with a Gaussian filter with 6 scales from σ = 4 to σ = 128.
Their article also cites T. Poggio and A. Yuille [29], who state that the number of Gaussian
filters applied to a curve segment, depends on the inflection points found at higher levels of
smoothing.

In this thesis, we followed the recommendations of the original Curvature Scale Space
article to apply the Gaussian filters. Therefore, to apply the Gaussian filters to the curve
segments, we defined 8 discretized Gaussian kernels with different numbers of elements. Let
G be a set that contains the elements of discretized g(t, σ), so the number of elements in G
is defined by

|G| = |Sj|r. (3.9)

In equation 3.9, r ∈ (0, 1) and is used to have kernels that change according the quantity
of points in the segments. This was carried out because the number of points on each curve
segment varied and having fixed widths of Gaussian kernels for all curve segments did not
result in correctly smoothed curves. Specifically, we used kernels from r = 0.05 to r = 0.8.
The different levels of Gaussian smoothing applied to the point cloud segment S1 are shown
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in Figure 3.7. This results in 8 different curvature functions κ that can be seen in Figure 3.8,
where curvature extrema are marked with red circles.

(a) Smoothed curve
segment S1 (r = 0.05).

(b) Smoothed curve
segment S1 (r = 0.1).

(c) Smoothed curve
segment S1 (r = 0.15).

(d) Smoothed curve
segment S1 (r = 0.2).

(e) Smoothed curve
segment S1 (r = 0.3).

(f) Smoothed curve
segment S1 (r = 0.4).

(g) Smoothed curve
segment S1 (r = 0.5).

(h) Smoothed curve
segment S1 (r = 0.8).

Figure 3.7: 2D projection of the point cloud segment S1 (Figure 3.6) at various levels of
Gaussian smoothing.

49



(a) κ for smoothed segment S1 with r = 0.05. (b) κ for smoothed segment S1 with r = 0.10.

(c) κ for smoothed segment S1 with r = 0.15. (d) κ for smoothed segment S1 with r = 0.20.

(e) κ for smoothed segment S1 with r = 0.30. (f) κ for smoothed segment S1 with r = 0.40.

(g) κ for smoothed segment S1 with r = 0.50. (h) κ for smoothed segment S1 with r = 0.80.

Figure 3.8: Curvature functions κ at various levels of the smoothing for segment S1.

The task of finding the curvature extrema in functions κ should be time efficient. There-
fore, an algorithm that does not increase the computational complexity of the scale space is
required. In this thesis, we used a simple approach proposed by R. Madhavan and H.Durrant-
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Whyte [21] given by

|κi−1| < |κi| > |κi+1| and |κi−2| < |κi| > |κi+2|. (3.10)

These conditions evaluate the current curvature value κi and compares it with its two
neighbors in the left and right side. Finally, we have the curvature scale space that determines
which points and at which σ the curvature extrema were found. This space can be represented
as a binary image as shown in figure 3.9, where the shaded part represents at which (t, σ) the
curvature extrema were found according to the red circles marked in Figure 3.8. The most
repeated curvature extrema in Figure 3.9 can be found at approximately t = 0.2 and t = 0.7.
In this case these points represent the corners of the point cloud in figure 3.6.

Figure 3.9: Curvature scale space created with the functions κ shown in Figure 3.8.

To extract the points found previously at t = 0.2 and t = 0.7, we need to iterate the
whole scale space. To do this, we have to consider an important note made by Asada and
Brady [2], which is also mentioned in [21]. This note states that curvature changes found at
different scales, σ, are reliably localized at σmin. However, if they are found at σmin and do
not persist across many scales, they are less likely to determine the shape of the curve.

Additionally, R. Madhavan and H.Durrant-Whyte [21] complements the previous idea
saying that the identification of the final features occurs at the coarsest scale, σ = σmax,
and they are realiably localized at the finest scale, σ = σmin. Moreover, they say that when
tracking an extremum, if a choice needs to be made between two extrema at the next finer
scale, the extremum with the higher curvature value must be chosen.

Previous ideas from the papers mentioned before indicate mathematically how to find
the curvature extrema, however, what they propose are not given in an algorithmic form.
Therefore, we took those ideas to develop an algorithm to track the curvature extrema in the
scale space, shown in algorithm 6. This algorithm takes as inputs a point cloud segment S
and the curvature extrema data (t, κ) found in the different scales, Fi. Then, it iterates at
all scales from σmax to σmin to count how many times features found at the highest scale are
repeated at the lowest scale. Since the index, t, of the points found at different scales can
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vary, their similarity is found using a threshold which is the maximum between |ti − ti−1|
and |ti − ti+1|. Additionally, the counter and indices are represented as sequences D and I,
respectively. Finally, the counter D is evaluated to store only the points with index Ii which
have been found in Fi in as many scales as a second threshold allows. The second threshold
indicates in how many scales a curvature extremum must be found to be considered a feature.
Finally, features are stored and returned in the point cloud E .

Algorithm 6 Find curvature extrema in scale space
1: procedure FindFeatures(S = {s0, s1, ..., sn} and Fi, i ∈ [σmin, σmax])
2: E = {}
3: G = Fσmax = {g1, g2, ..., g|Fσmax |}
4: D = {01, 02, ..., 0|G|}
5: I = {}
6: for all scales starting from i = σmax to σmin do
7: for j = 1 to |G| do
8: if gj ∈ Fi−1 according to a threshold 1 then
9: a← index of Fi−1 in S
10: Da ← Da + 1
11: Stack a to I
12: end if
13: end for
14: end for
15: for i = 0 to |G| do
16: if Di > threshold 2 then
17: b← Ii
18: Stack sb to E
19: end if
20: end for
21: return E
22: end procedure

3.3 Summary

In this chapter, two important parts of this thesis were described. Firstly, the methodology
used to insert the CSS feature extractor in the LOAM algorithm was presented. In this part,
the metrics used to compare the original LOAM algorithm and the LOAM algorithm with the
CSS feature extractor were shown in Figure 3.2. Secondly, the details of the implementation
of the CSS feature extractor to process 3D VLP-16 LiDAR data were described. This last
part was achieved by using the adaptive breakpoint detector and processing each scan of the
VLP-16 LiDAR separately. The results of the execution of these algorithms will be described
in the following chapter.
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Chapter 4

Results

This chapter presents the results of the comparison of the LOAM’s feature extractor and the
CSS feature extractor in isolation from the complete LOAM algorithm and the results of the
comparison of the integration of both feature extractors with the LOAM algorithm. From
here on, the LOAM algorithm using its original feature extractor will be called the Original
LOAM algorithm and the LOAM algorithm using the CSS feature extractor will be called
the CSS LOAM algorithm. Test scenarios were carried out with simulated data, real data
and the KITTI Visual Odometry Benchmark Dataset [11]. For the comparisons, we used the
Optimal Sub-Pattern Assignment (OSPA) and the Absolute Trajectory Error (ATE) metrics
to measure the feature estimation errors and trajectory errors, respectively.

This chapter is structured as follows. Section 4.1 describes how the OSPA metric works.
Section 4.2 describes how the ATE metric works. Section 4.3 presents the results of testing
both algorithms with simulated data. Section 4.4 presents the results of testing both algo-
rithms with real data. Finally, section 4.5 presents the results of testing both algorithms
with the KITTI Visual Odometry Benchmark Dataset.

4.1 The Optimal Sub-Pattern Assignment (OSPA)

The Optimal Sub-Pattern Assignment (OSPA) [33] is a metric designed for multi-object
systems. The OSPA metric computes a distance between two finite sets and is used in
robotics and other areas [15] [24] [17]. The OSPA distance, (d̄(c)

p (X, Y )), between two finite
sets X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} is computed by

d̄(c)
p (X, Y ) =

(
1

n

(
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))1/p

, (4.1)

where d(c)(xi, yπ(i)) = min(c, d(xi, yπ(i))) denotes the distance between xi and yπ(i) cutoff at
c > 0, Πn is the set of permutations on {1, 2, ..., n} for any n ∈ N = {1, 2, ...} and 1 < p <∞
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is used to compute the p-th order average among the distances.

In this work, the OSPA metric was used for the simulated data, where the ground truth
of the features was available. In that scenario, we will present the errors produced by the
features extracted with the LOAM’s feature extractor and the the CSS feature extractor.

4.2 The Absolute Trajectory Error (ATE)

The Absolute Trajectory Error (ATE) is a metric from The Rawseeds Project1. The ATE
metric evaluates the error produced at each instant of time of the Algorithm Under Test
(AUT) and the Ground-Truth (GT). According to the official documentation of this metric,
the ATE algorithm consist on the steps described in Algorithm 7.

Algorithm 7 Compute Absolute Trajectory Error
1: procedure ATE(T , XGT , X)
2: for every time instant tj ∈ T when a sample of XGT is available do
3: Evaluate the pose of the robot at tj by using the AUT.
4: compute the translation error dj = ||trans(xj)− trans(xGTj )||
5: compute d̄j (mean of translation errors {dj})
6: compute σdj (standard deviation of translation errors {dj})
7: compute adj ,3σ, bdj ,3σ (extremes of the 3σ interval of the translation error dj)
8: ATE = [d̄j σdj adj ,3σ bdj ,3σ]T

9: end for
10: return ATE
11: end procedure

In this algorithm variable j is used to iterate the inputs. These inputs can be taken as
three sets: T = {t1, t2, ..., tn}, XGT = {xGT1 , xGT2 , ..., xGTn } and X = {x1, x2, ..., xn}, which
represent the time stamps, the ground truth positions and the positions generated by the
AUT, respectively.

4.3 Simulated Data

The purpose of the use of the simulated data is to control the range noise added the to
measurements of the simulated LiDAR. For this scenario, we used the Robot Operating
System (ROS) along with the simulation software Gazebo to simulate 3 components: the
Husky A-200 robot platform, the Velodyne VLP-16 LiDAR and the GPS.

To simulate the Husky A-200 robot platform, all the packages2 corresponding to this robot
platform were installed. The VLP-16 LiDAR was simulated using a package dedicated to the

1http://www.rawseeds.org/rs/methods/view//9
2 http://wiki.ros.org/Robots/Husky
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Velodyne LiDAR from Data Speed Inc.3. Finally, the GPS was simulated using the plugin
p3d_base_controller of Gazebo.

With all the components of the robot configured, we divided the simulation in two more
scenarios:

1. A scenario with the LiDAR stationary.
2. A scenario with the robot in motion.

4.3.1 Scenario with the LiDAR stationary

The objective of testing the simulated VLP-16 LiDAR in this scenario is to evaluate how
accurate the LOAM’s feature extractor and the CSS feature extractor localize the keypoints
and if these features can be consistently detected in time. Both feature extractors were tested
in isolation from the complete LOAM algorithm.

The predefined environment was composed of the robot platform mounted with the LiDAR
at the origin and three walls that formed two corners marked with light blue lines as shown
in Figure 4.1. These two corners represent sharp features, which can be taken as the location
where the smoothness is the lowest (LOAM’s feature extractor) or where the curvature is
the highest (CSS feature extractor). Since the robot and the LiDAR are static, the ground
truth locations of the features are easy to obtain. Let e(i,k) be the ground truth location
of the ith sharp feature at sweep k, so this scenario contains two sharp features (corners):
e(1,k) = (3 3 z)T and e(2,k) = (3 10 z)T .

Figure 4.1: Scenario with the LiDAR stationary.

3https://bitbucket.org/DataspeedInc/velodyne_simulator
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It is important to remember that the VLP-16 LiDAR is composed of 16 lasers and the set
of measurements of each laser corresponding to 360 degrees is called a scan. So, first we have
to determine how many scans of the simulated LiDAR can sense the sharp features. For the
feature 1 (e(1,k)) the corner was detected in 10 out of 16 scans and for the feature 2 (e(2,k)) it
was detected in 8 out of 16 scans.

Additionally, we have to take into account that according to the Velodyne VLP-16 datasheet,
the sampling frequency of the LiDAR is 10 Hz, approximately, which means that all lasers
complete 360 degree rotations 10 times per second. As mentioned in Chapter 2, in the case of
the VLP-16 LiDAR, Pk is the set of points obtained from the 16 lasers in a full 360 rotation,
where k indicates the number of sweeps. Therefore, in one second the LiDAR returns 10 Pk
(k = {1, 2, ..., 10}) which is equal to 300, 000 points, approximately.

Let ê(1,k) and ê(2,k) be the estimated positions of the sharp features e(1,k) and e(2,k), re-
spectively; and Êi,[1−50] the set of estimated features ê(i,k) during 50 sweeps (five seconds) for
i = 1, 2 (ê(i,k) ∈ Êi,[1−50]). It is important to note that a perfect feature extractor should
localize 10 ê(1,k) per sweep k (number of scans where e(1,k) is approximately localized) and 8
ê(2,k) per sweep k (number of scans where e(2,k) is approximately localized). In other words,
the total number of features estimated in 50 sweeps should be 500 for ê(1,k) and 400 for ê(2,k).

Regarding LOAM’s feature extractor and the CSS feature extractor, first we have to know
the correct parameters to use in both algorithms. To do this, it is useful to plot a Receiver
Operating Characteristic (ROC) curve. Therefore, Figure 4.2 shows the ROC curves related
to LOAM’s feature extractor and the CSS feature extractor. This graph was plotted for three
different Gaussian noise sources with range noise standard deviations σr : 0.01 m, 0.02 m,
0.03 m; each one represented with a different color. It is important to note that the ideal
number of true positives is 18, which is the total number of ground truth features mentioned
earlier. In the case of LOAM’s feature extractor, the curvature threshold was varied from
0.01 to 0.5. In the case of the CSS feature extractor, the number of scales related to the
width of the Gaussian kernels was varied from 2 to 16. An important finding related to these
ROC curves is that the range noise negatively impacts LOAM’s feature extractor more than
the CSS feature extractor. Therefore, for the rest of experiments, the curvature threshold
used in LOAM’s feature extractor was 0.1 and the number of scales used in the CSS feature
extractor was 8.

Hence, the experiment consisted of setting the LiDAR stationary to sense the predefined
environment for five seconds (50 sweeps) to find out how close the estimated features are from
the ground truth and how many of them are correctly detected in this time period. This
experiment was repeated for 5 different Gaussian noise sources with range noise standard
deviations σr : 0.01 m, 0.015 m, 0.02 m, 0.25 m, 0.03 m. For each noise source, three
variables were evaluated as follows:

1. the standard deviation of Ê(i,[1−50]) in x and y (σÊ(i,[1−50])
x and σÊ(i,[1−50])

y ) for i = 1, 2,
2. the number of detected features per sweep for each feature (true positives),
3. the total number of false positives.

56



0 20 40 60 80 100 120 140 160 180 200
6

8

10

12

14

16

18

Figure 4.2: True positives vs false positives (ROC curve) for three σr evaluated with the
LOAM’s feature extractor and the CSS feature extractor.

Variable 1 is useful to see how close all the estimated features in Ê(i,[1−50]) are, because the

ideal value for σÊ(i,[1−50])
x and σÊ(i,[1−50])

y should be zero. Variable 2 indicates if features found by
the algorithms can be consistently detected in all sweeps, this value is calculated by dividing
the total number of elements in Ê(1,[1−50]) and Ê(2,[1−50]) by 50 (sweeps). The number of
features per sweep also indicates when a feature was not detected during all sweeps. Finally,
the total number of false positives shows how many estimated features were found apart from
e(1,k) and e(2,k) in each sweep, which do not correspond to the ground truth features.

Figures 4.3 and 4.4 show the standard deviation of the estimated features (variable 1)
detected with the LOAM’s feature extractor and the CSS feature extractor. In these figures,
it is important to note that when σr is high, σ

Ê(i,[1−50])
x and σÊ(i,[1−50])

y are high, too. Additionally,
this figure indicates that estimated features extracted with the CSS feature extractor in 50
sweeps vary in their position less than features estimated with the LOAM’s feature extractor.

Figure 4.5 shows the number of estimated features per sweep (variable 2) extracted with
the LOAM’s feature extractor and the CSS feature extractor in 50 sweeps. This graph is
useful to see how many missed detections were found for each feature because, as stated
earlier, the correct number of features per sweep is 10 for feature 1 and 8 for feature 2.
Therefore, this figure indicates that the CSS algorithm was the feature extractor closer to
the correct values.
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Figure 4.3: Standard deviation in x of estimated features in 50 sweeps.
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Figure 4.4: Standard deviation in y of estimated features in 50 sweeps.

Finally, Figure 4.6 shows the number of false positive features (variable 3) per sweep
extracted with the LOAM’s feature extractor and the CSS feature extractor in 50 sweeps. In
other words, this figure indicates the number of estimated features detected incorrectly. This
figure shows that the LOAM’s feature extractor detected incorrectly more sharp features
than the CSS algorithm.
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Figure 4.5: Estimated features per sweep extracted with the LOAM’s feature extractor and
the CSS feature extractor in 50 sweeps.
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Figure 4.6: False positives features per sweep extracted with the LOAM’s feature extractor
and the CSS feature extractor in 50 sweeps.
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4.3.2 Scenario with robot in motion

The objective of testing the LiDAR mounted on the mobile robot in this scenario was to
observe the error between the features detected by the LOAM’s feature extractor and the
CSS feature extractor with the ground truth features while the robot is in motion. Also, this
scenario is useful to observe how the features extracted by the algorithms affect the trajectory
estimated by the complete LOAM algorithm.

This scenario is composed of the robot platform mounted with the LiDAR located in
(0 − 10 0)T , which represents a position with Euclidean components x, y, z. Additionally,
it was used a set of walls forming 12 corners and boxes of cubic shape forming 28 corners.
The layout of this scenario can be seen in figure 4.7 in which the ground truth features are
marked with light blue stars.

This experiment consisted on moving the robot around the scenario following the trajec-
tory marked with blue dashed lines. Then, we compared the features extracted with the
LOAM’s feature extractor and the CSS feature extractor with the features ground truth us-
ing the OSPA metric. Finally, the trajectories generated by the original LOAM algorithm
and the CSS LOAM algorithm were compared with the ground truth trajectory using the
ATE metric.

Figure 4.7: Scenario with the robot in motion.

The first metric used was the OSPA metric, which requires two sets. The first set corre-
sponds to the ground truth features and the second set was alternated between the features
extracted by the LOAM’s feature extractor and the features extracted the CSS feature ex-
tractor. This was carried out for three different values of range noise standard deviation σr:
0.01 m, 0.02 m and 0.03 m. The parameters c and p, required by OSPA, used in this case
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were 5 and 2, respectively.

Figure 4.8 shows the comparison of the OSPA distances between the ground truth features
with the features extracted by the LOAM’s feature extractor and the CSS feature extractor
using σr = 0.01 m. In this figure, the distances obtained with the CSS feature extractor were
always lower than those of the LOAM’s feature extractor. Both distances are separated by
an average value of 0.66 meters and reach a maximum difference of 1.36 meters.
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Figure 4.8: Feature estimation error using the OSPA metric (σr = 0.01 m).

Likewise, figure 4.9 shows the comparison of OSPA distances between the ground truth
features with the features extracted by the LOAM’s feature extractor and the CSS feature
extractor using σr = 0.02 m. In this figure, the separation of the distances are not as large
as in the previous figure, however, they are separated by an average distance of 0.56 meters
and reach a maximum difference of 1.62 meters.
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Figure 4.9: Feature estimation error using the OSPA metric (σr = 0.02 m).
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Finally, Figure 4.10 shows the comparison of the OSPA distances between the ground
truth features with the features extracted by the LOAM’s feature extractor and the CSS
feature extractor using σr = 0.03 m. In this figure, both distances throughout time are very
similar to the previous figure, but in this case they are separated by an average distance of
0.64 meters and reach a maximum difference of 1.65 meters.
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Figure 4.10: Feature estimation error using the OSPA metric (σr = 0.03 m).

The second metric used in this scenario was the ATE metric. As occurred in the previous
experiment, this scenario was also evaluated under 3 different range noise standard deviation
(σr) values: 0.01 m, 0.02 m and 0.03 m. For each, 2 graphs were plotted:

1. The trajectories estimated with the original LOAM algorithm and the CSS LOAM
algorithm compared to the trajectory obtained with GPS.

2. The errors in x and y obtained comparing the original LOAM algorithm and the CSS
LOAM algorithm with the GPS throughout time.

The following two figures show the items described above for σr = 0.01 m. The trajectories
generated by the original LOAM algorithm and the CSS LOAM algorithm compared with
the trajectory obtained with GPS are shown in Figures 4.11a and 4.11b. Both trajectories
look very similar. This lack of difference in both algorithms occurs because of the low level
of noise added to the sensor data.
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(a) Estimated trajectory using the Original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure 4.11: Estimated trajectories compared to ground-truth using simulated data (σr =
0.01 m).

Figures 4.12a and 4.12b shows the errors in x and y of the original LOAM algorithm and
the CSS LOAM algorithm throughout time. In these graphs, errors are very similar, except
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that the x error value at time 50 s of the LOAM features’s graph (4.12a) almost reaches the
value −0.3 m.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure 4.12: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
using simulated data (σr = 0.01 m).

In the following two figures the data was evaluated for σr = 0.02 m. Therefore, the trajec-
tories generated by the original LOAM algorithm and the CSS LOAM algorithm compared
with the trajectory obtained with GPS are shown in Figures 4.13a and 4.13b. In these figures,
the estimated trajectory with the original LOAM algorithm presents high error values in the
area near to the point x = 0, y = 15, approximately. This trajectory error is also represented
in the error in y at time 100 s shown in Figure 4.14a.

64



-20 -15 -10 -5 0 5 10 15
x [m]

-10

-5

0

5

10

15

y 
[m

]

Original LOAM
GPS

(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure 4.13: Estimated trajectories compared to ground-truth using simulated data (σr =
0.02 m).

Figure 4.14a and 4.14b shows the errors in x and y of the original LOAM algorithm and
the CSS LOAM algorithm throughout time. Compared to their pairs using a range noise with
σr = 0.01 m, these figures present a more noticeable difference. In the case of the original
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LOAM algorithm, some values almost reach -1 and 1, while in the case of the CSS LOAM
algorithm, the values vary from −0.3 m to 0.2 m.
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(a) Errors in x, y produced by the original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure 4.14: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
using simulated data (σr = 0.02 m).

The last range noise standard deviation tested was σr = 0.03 m. In this case, the graphs
are similar to the previously evaluated case. The trajectories generated by the original LOAM
algorithm and the CSS LOAM algorithm compared with the trajectory obtained with GPS
are shown in Figures 4.15a and 4.15b. In these figures, errors are present in both trajectories,
specially in the area near to the point x = −15, y = 0, approximately. However, the estimated
trajectory produced by the original LOAM algorithm presents a higher error at this point as
shown in the error in x at time 160 s of Figure 4.16a.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure 4.15: Estimated trajectories compared to ground-truth using simulated data (σr =
0.03 m).
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Figures 4.16a and 4.16b show the errors in x and y of the original LOAM algorithm and the
CSS LOAM algorithm throughout time. These graphs present noticeable errors as occurred
previously. The errors when using the original LOAM algorithm vary from −0.8 m to 0.6 m,
while in case of the CSS LOAM algorithm, they vary from −0.3 m to 0.3 m.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure 4.16: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
using simulated data (σ = 0.03 m).
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To summarize all the figures shown in this sub-section, figure 4.17 shows the error per-
centages, obtained with the ATE metric when using the original LOAM algorithm and the
CSS LOAM algorithm per each level of noise (σr) of the scenario with the robot in motion.
For the three range noise standard deviation values evaluated in this scenario, the use of the
CSS LOAM algorithm generated error percentage values less than when using the original
LOAM algorithm. From this information we can conclude that the range noise of the sensor
can significantly affect the trajectory estimated by the original LOAM algorithm.

0.01 0.02 0.03
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Original LOAM
CSS LOAM

Figure 4.17: Error percentages per each range noise standard deviation value.

4.4 Real Data

The purpose of the use of real data is to try to reproduce the results obtained with the
simulated data. As mentioned in the previous chapter, the robotic platform for collecting
the experimental real dataset was a Clearpath Husky A-200 robot equipped with a Velodyne
VLP-16 LiDAR and a GPS Topcon Hyper V.

The environment used to conduct the experiments was the surroundings of the Universidad
de Chile - Campus Beauchef, located in Santiago de Chile’s downtown area. This scenario is
mainly composed of buildings and trees which can feed the LOAM and CSS feature extraction
algorithms with a variety of shapes.
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Figure 4.18 shows a satellite image of the environment with the ground truth marked with
a dashed blue line. Sensors started to record the data from the bottom-left side of this image
(marked with a green square) and ended after passing trough the circular area in the bottom
for second time (marked with a red circle).

Start

End

Figure 4.18: Satellite image of Universidad de Chile - campus Beauchef.

To finish these experiments, the complete trajectory of the original LOAM algorithm (red
line) and the CSS LOAM algorithm (red line) are compared with the trajectory generated
by the GPS (blue dashed line) as shown in figures 4.19a and 4.19b. In these figures, the
estimated trajectories of the circular area located at the bottom is shown separately as a
zoomed view. This is to show that the trajectory of the CSS LOAM algorithm is aligned
better with the blue line than the trajectory of the original LOAM algorithm.
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(a) Estimated trajectory using the original LOAM algorithm.

(b) Estimated trajectory using the CSS LOAM algorithm.

Figure 4.19: Estimated trajectories compared to ground-truth using real data.
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Figures 4.20a and 4.20b show the errors, calculated with the ATE metric in the x and
y coordinates, of the trajectory estimated by the original LOAM algorithm and the CSS
LOAM algorithm. These errors correspond to the estimated trajectories shown in figure
4.19. Unlike their pairs in the simulated data, these graphs are not continuous, because the
dataset from the GPS was larger than the data from the algorithms under test. Hence, each
robot pose generated with the original LOAM algorithm and the CSS LOAM algorithm had
to be matched to its correspondent pose obtained from the GPS according to the time stamp.
These graphs look very similar except for the last few seconds in the y error corresponding to
the CSS LOAM algorithm, which is smaller than its value in the original LOAM algorithm.
These last seconds correspond to the trajectory zoomed in Figure 4.19.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure 4.20: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
using real data.
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A general estimate of previous translation errors obtained with the ATE metric can be
determined from the mean of these errors d̄j. Therefore, the mean of the translation errors
corresponding to the original LOAM algorithm was 8.16 meters, while in the case of the CSS
LOAM algorithm was 7.25 meters. This means that in average the CSS LOAM algorithm
obtained a lower error rate than the original LOAM algorithm with a difference of 0.91
meters.

4.5 KITTI Dataset

Since the LOAM algorithm is the highest ranked algorithm in the KITTI Visual Odometry
Benchmark Dataset, we decided to use the same dataset to test the original LOAM algorithm
and the CSS LOAM algorithm. As mentioned in the beginning of this work, it is important
to the note that the version of LOAM used in these experiments was the one written by the
original author, J. Zhang, in 2013 and which is available in the ROS Indigo website.

To run the experiments, we used the odometry dataset composed of a set of .bin files
per sequence (from sequence 00 to sequence 10). Additionally, this dataset has the ground
truth available for the sequences mentioned before. All these files were converted to point
cloud data using the PCL library along with ROS. Finally, the sampling frequency of the
real Velodyne HDL-64E LiDAR, which is 10 Hz, was also simulated. It is important to note
that the KITTI Visual Odometry Benchmark does not require the simulation of the sampling
frequency of the LiDAR. However, we decided to do it to see if the LOAM algorithm is fast
enough to process all the data in the real LiDAR’s sampling frequency and if it is capable of
running correctly in the computer used in these experiments.

The experiments consisted of running the original LOAM algorithm and the CSS LOAM
algorithm individually. Then, we compare the trajectory generated by each one with the
ground truth using the ATE metric. The use of this metric permitted us to obtain the whole
trajectory produced by each algorithm compared to the ground truth and also the errors
produced by each algorithm in the Euclidean components x and y throughout time.

Finally, we decided to show the number of features extracted by each algorithm throughout
time. It is important to remember that in this work the features replaced in the LOAM’s
feature extractor were only the sharp features. In the original implementation, these features
were divided in two: sharp and less sharp. Hence, this classification was also used to plot
the number of features vs time graph.

The following figures to be shown are the most representative sequences of the experiments
with carried out with the KITTI dataset. The complete experiment with all the sequences
can be found in Appendix A. Therefore, figures are shown in 3 parts. First, the trajectory
generated with the original LOAM algorithm and the CSS LOAM algorithm compared with
the ground truth is shown in figures 4.21, 4.24, 4.27 and 4.30, where the ground truth
is represented with a blue dashed line and the trajectory estimated by the algorithms is
represented with a red line. Second, the errors in Euclidean components x and y produced
by each algorithm throughout time are shown in figures 4.22, 4.25, 4.28 and 4.31. Finally,
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the number of features extracted by each algorithm in time are shown in Figures 4.23, 4.26,
4.29 and 4.32. In these last figures, the graphs corresponding to the number of LOAM sharp,
LOAM less sharp, CSS sharp and CSS less sharp features are represented with colors blue,
orange, green and red respectively.

The sequences where the CSS LOAM algorithm obtained an evidently smaller error than
original LOAM algorithm were the sequences 00, 05 and 06 which can be seen in figures 4.21,
4.24, 4.27, respectively. These sequences have in common that the number of CSS sharp and
CSS less sharp features are almost always close to 1, 000 features as can be seen in figures 4.23,
4.26, 4.29. On the other hand, the sequence where the original LOAM algorithm obtained
an evidently smaller error than the CSS LOAM algorithm was the sequence 09, which can
be seen in figure 4.30. Unlike the sequences where the CSS LOAM algorithm performed
well, the number of features extracted for this sequence through time was far from 1, 000
features. When analyzing this sequence, we noted that some parts of this sequence lacked
structures like walls, corners, lamp posts or trees. This made the CSS feature extractor
had problems finding features, which resulted in few features extracted. It is important to
remember that to perform the feature matching task, the number of features extracted plays
a fundamental role. For the rest of sequences the trajectories generated by both algorithms
were very similar.

A question that remains after running the experiments with the KITTI Visual Odometry
Benchmark Dataset is why the original LOAM algorithm obtained a high error rate for most
of the sequences if it is the highest ranked algorithm in this benchmark. The answer to this
question can be related to the sampling frequency of the LiDAR used in these experiments. As
said before, for these experiments the HDL-64E LiDAR was configured to return 10 Pk (k =
{1, 2, ..., 10}) per second. This meant that the LOAM algorithms had 0.1 seconds to perform
the feature matching process before processing a new point cloud. Although the original
LOAM’s feature extractor is less computationally expensive than the CSS feature extractor,
the LOAM’s feature extractor returns more features than the CSS feature extractor. This
characteristic makes the feature matching task more computationally expensive.

Finally, to see if the previous issue was affecting the original LOAM algorithm, we analyzed
if the software of this algorithm was processing all the point clouds. What we observed was
that the software was dropping some point clouds, which means that some point clouds were
not being processed. Therefore, the quantity of point clouds dropped on each sequence is
depicted in figure 4.33. This issue could be solved if we decrease the sampling frequency of
the LiDAR or if we use computer with more resources, however, in this work the CSS LOAM
algorithm resulted as an option to tackle this issue.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure 4.21: Estimated trajectories compared to ground-truth in the sequence 00.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure 4.22: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 00.

76



0
10

0
20

0
30

0
40

0
tim

e 
[s

]

0

10
00

20
00

30
00

40
00

50
00

60
00

number of features

LO
AM

 S
ha

rp
LO

AM
 L

es
s S

ha
rp

CS
S 

Sh
ar

p
CS

S 
Le

ss
 S

ha
rp

F
ig
ur
e
4.
23

:
N
um

be
r
of

fe
at
ur
es

in
th
e
se
qu

en
ce

00
.

77



-200 -100 0 100 200
x [m]

-50

0

50

100

150

200

250

300
y 

[m
]

Original LOAM
GPS

(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure 4.24: Estimated trajectories compared to ground-truth in the sequence 05.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure 4.25: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 05.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure 4.27: Estimated trajectories compared to ground-truth in the sequence 06.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure 4.28: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 06.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure 4.30: Estimated trajectories compared to ground-truth in the sequence 09.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure 4.31: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 09.
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Figure 4.33: Quantity of dropped point clouds, Pk, per sequence.
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Chapter 5

Conclusions

This thesis addressed the problem of the misdetection of some features and the failure to
account for the sensor range noise in the LiDAR Odometry and Mapping (LOAM) algo-
rithm. To solve this, we proposed to replace the original LOAM’s feature extractor with the
Curvature Scale Space (CSS) algorithm.

The choice of the CSS algorithm was achieved after the study of the most important
feature extraction algorithms in the literature. This study included algorithms such the
Harris, SIFT, ISS, RANSAC, Hough Transform, Split and Merge and Adaptive Curvature
Estimation algorithms including also the CSS algorithm. Among these algorithms, some of
them were discarded because of their computational complexity and others because of the
poor results presented in previous literature. Finally, the CSS algorithm was chosen because
of its robustness to range noise.

The CSS algorithm was implemented and adapted for the Velodyne 3D LiDAR data. This
task was completed by extracting features for each individual elevational scan of the LiDAR.
The adapted CSS feature extractor was inserted with success in the LOAM algorithm in
replacement of its original feature extractor. The CSS features replaced only the LOAM
features that corresponded to the non-smooth or sharp features.

The original LOAM and CSS LOAM algorithms were compared in different scenarios using
simulated and real data including the KITTI Dataset. Simulated data was important to test
the algorithms with different levels of sensor range noise. For all the evaluated levels of noise,
the CSS LOAM algorithm obtained a low error rate according to the Optimal Sub-Pattern
Assignment (OSPA) and the Absolute Trajectory Error (ATE) metrics. In the case of the
OSPA metric, the mean OSPA error of the CSS LOAM algorithm reached a value equal to
3.94 meters, while the mean OSPA error of the original LOAM algorithm was 4.58 meters.
In the case of the ATE metric, the mean error of the CSS LOAM algorithm reached a value
equal to 0.06 meters, while the mean error of the original LOAM algorithm was 0.12 meters.
In the real data, obtained from the surroundings of the Universidad de Chile, the CSS LOAM
algorithm slightly improved the trajectory generated by the original LOAM algorithm. The
ATE mean translation difference between the original LOAM and the CSS LOAM algorithms
reached a value of 0.91 meters, superior to the CSS LOAM algorithm. This difference mainly
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occurred in a specific part of trajectory highlighted in the results section.

A significant finding occurred in the KITTI dataset. In this experiment, the original
LOAM algorithm produced high ATE errors in many sequences. This problem occurred
because the original frequency, in which the LiDAR returned the point clouds, was taken
into account. It is important to note that in the KITTI Benchmark ranking, this factor is
not considered. Therefore, the number of LOAM features was very high, which made the
task of feature matching computationally complex. This complexity resulted in some point
clouds not being processed because of the frequency in which the LiDAR was returning the
point clouds. This issue did not occur with the CSS LOAM algorithm, because the number
of features was lower and the feature matching task could be completed before the arrival of
a new point cloud. Additionally, the results obtained by the CSS LOAM algorithm in this
dataset depended on the number of features detected. This allows us to conclude that the
CSS feature extractor only works well in structured environments where there are variety of
objects such as walls, corners, lamp post or trees.

Finally, the adaptation of the CSS feature extractor to process point clouds obtained
with any type of 3D LiDAR and its inclusion to other SLAM algorithms is considered as
a future work possibility. Additionally, the inclusion of the CSS feature extractor into the
LeGO-LOAM algorithm [35] could be considered. The LeGO-LOAM algorithm is a modified
version of the LOAM algorithm which is optimized for a horizontally placed LiDAR on a
ground vehicle. The main difference between the LOAM algorithm and the LeGO-LOAM
algorithm is that the LeGO-LOAM algorithm assumes that there is always a ground plane
in the current 3D scan. Although the LeGO-LOAM algorithm does not improve the results
of the LOAM algorithm in the KITTI Visual Odometry Benchmark Dataset, it speeds up
the processing time of the LOAM algorithm.
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Appendix A

KITTI Dataset Experiments

In this appendix all the sequences from the KITTI dataset that were tested for this thesis
are shown, the most representative sequences are shown in chapter 4.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.1: Estimated trajectories compared to ground-truth in the sequence 00.

95



0 50 100 150 200 250 300 350 400 450 500
-50

0

50

er
ro

r i
n 

x 
[m

]

0 50 100 150 200 250 300 350 400 450 500
time [s]

-50

0

50

er
ro

r i
n 

y 
[m

]

(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.2: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm in
the sequence 00.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.4: Estimated trajectories compared to ground-truth in the sequence 01.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.5: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm in
the sequence 01.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.7: Estimated trajectories compared to ground-truth in the sequence 02.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.8: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm in
the sequence 02.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.10: Estimated trajectories compared to ground-truth in the sequence 03.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.11: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 03.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.13: Estimated trajectories compared to ground-truth in the sequence 04.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.14: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 04.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.16: Estimated trajectories compared to ground-truth in the sequence 05.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.17: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 05.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.19: Estimated trajectories compared to ground-truth in the sequence 06.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.20: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 06.
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(a) Estimated trajectory using the original LOAM algorithm.

-200 -150 -100 -50 0
x [m]

-80

-60

-40

-20

0

20

40

60

80

100

120

y 
[m

]

CSS LOAM
GPS

(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.22: Estimated trajectories compared to ground-truth in the sequence 07.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.23: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 07.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.25: Estimated trajectories compared to ground-truth in the sequence 08.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.26: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 08.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.28: Estimated trajectories compared to ground-truth in the sequence 09.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.29: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 09.
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(a) Estimated trajectory using the original LOAM algorithm.
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(b) Estimated trajectory using the CSS LOAM algorithm.

Figure A.31: Estimated trajectories compared to ground-truth in the sequence 10.
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(a) Errors in x, y produced by the Original LOAM algorithm.
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(b) Errors in x, y produced by the CSS LOAM algorithm.

Figure A.32: Errors in x, y of the original LOAM algorithm and the CSS LOAM algorithm
in the sequence 10.
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