Silvana Moris, Patricia Barahona and Antonio Galdámez*

Crystal structure of $(Cu_{0.51}In_{0.49})_{tet}[Cr_{1.74}In_{0.26}]_{oct}$ Se₄ selenospinel, $Cu_{0.51}In_{0.75}Cr_{1.74}Se_4$

https://doi.org/10.1515/ncrs-2018-0426 Received October 14, 2018; accepted December 17, 2018; available online January 24, 2019

Abstract

Cu_{0.51}In_{0.75}Cr_{1.74}Se₄, cubic, $Fd\bar{3}m$ (no. 227), a = 10.6506(13) Å, V = 1208.2 Å³, Z = 8, $R_{gt}(F) = 0.0371$, $wR_{ref}(F^2) = 0.0912$, T = 293(2) K.

CCDC no.: 1861215

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

Cu_{0.51}In_{0.75}Cr_{1.74}Se₄ was prepared by directly combining highpurity elemental powders (99.99%, Aldrich) in stoichiometric amounts. All manipulations were carried out under argon atmosphere. The reaction mixtures were sealed in evacuated quartz ampoules and placed in a programmable furnace. The ampoules were then slowly heated at a rate of 2.5 °C/min, from room temperature until 500 °C for 2 hours, followed by

Santiago Chile, e-mail: agaldamez@uchile.cl

Silvana Moris: Universidad Catolíca del Maule, Vicerectoria de Investigacion y Postgrado, Talca, Chile Table 1: Data collection and handling.

Crystal:	Black prism
Size:	$0.05 \times 0.04 \times 0.04~\text{mm}$
Wavelength:	Mo Kα radiation (0.71073 Å)
μ:	31.6 mm $^{-1}$
Diffractometer, scan mode:	D8 VENTURE Bruker AXS,
θ_{max} , completeness:	30.0°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	1089, 109, 0.040
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 109
N(param) _{refined} :	10
Programs:	Bruker [1], SHELX [2], Olex2 [3],
	DIAMOND [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent
sotropic displacement parameters (Ų).

Atom	X	у	Z	U _{iso} */U _{eq}	
Cu1 ^a	1/8	1/8	1/8	0.0031(11)	
ln1 ^b	1/8	1/8	1/8	0.0031(11)	
Cr2 ^c	1/2	1/4	1/4	0.0082(13)	
In2 ^d	1/2	1/4	1/4	0.0082(13)	
Se1	0.26060(10)	x	x	0.0085(7)	

^aOccupancy: 0.51(5), ^bOccupancy: 0.49(5), ^cOccupancy: 0.87(2), ^dOccupancy: 0.13(2).

a heating-rate of 1 °C/min up to the maximum temperature of 850 °C, and held for 7 days.

Experimental details

Three models were considered for the permutations of the metal atom positions in (A)_{tet}[B]_{Oct}Se₄ spinel-type: (1) indium and copper cations sharing the tetrahedral position (A)_{tet}-site; (2) indium and chromium cations sharing octahedral [B]_{Oct}-sites; and (3) indium sharing both tetrahedral (A)_{tet}- and octahedral [B]_{Oct}-sites. For the tetrahedral cation site, the sum of site occupation factors (SOF) was constrained to equal 1 (fully occupied) for 8a = (1-x) Cu + xIn. The sum of SOF in the octahedral cation site was constrained to equal 2 (fully occupied) for 16d = (2-y) Cr + yIn. Moreover, cations sharing the same site were constrained to have identical thermal displacements. A careful examination of the structural details, such as the thermal equivalent isotropic displacements U_{eq} , occupation sites, R_{gt} and wR_{ref} indices provided a strong indication

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Antonio Galdámez, Universidad de Chile, Facultad de Ciencias, Departamento de Química, Casilla 653,

Patricia Barahona: Universidad Catolíca del Maule, Facultad de Ciencias Basícas, Talca, Chile

ට Open Access. © 2019 Silvana Moris et al., published by De Gruyter. (ිලා හ License.

of crystal structure final refinement. The best convergence refinements was obtained in model (3).

Comment

The (Cu, In)_{tet}-Se distances in $(Cu_{0.51}In_{0.49})_{tet}[Cr_{1.74}In_{0.26}]_{oct}Se_4$ were consistent with the bond lengths of Cu_{0.5}In_{0.5}Cr_{2.0}Se₄ (2.475 Å) [5] and Cu_{0.46}In_{0.54}Cr_{2.08}Se₄ (2.433–2.507 Å) [6]. The [Cr, In]_{oct}-Se (2.5548 Å) bond distances are comparable with [Cr,M]_{oct}-Se bond lengths for CuCr_{1.5}Zr_{0.5}Se₄ (2.538 Å) and $CuCr_{1.5}Sn_{0.5}Se_4$ (2.5671 Å) [6]. The [Cr,In]_{oct}-Se bond length in the CdCr_{1.8}In_{0.19}Se₄ compound is 2.55413 Å [7]. Baur and Wildner et al. evaluated the degree of distortions of the tetrahedra and octahedra using distortion indices [8, 9]. These indices have been used in our research group for describing the polyhedra in $CuCr_{2-x}Sn_xSe_4$ [6], $CuCr_{2-x}Ti_xSe_4$ [10] and $CuCr_{2-x}Zr_xSe_4$ [6]. In $(Cu_{1-x}In_x)_{tet}[Cr_{2-y}In_y]_{Oct}Se_4$, the (Cu,In)_{tet}Se₄ tetrahedra was ideal, with an angle of 109.47°. The [Cr,In]_{oct}Se₆ octahedron edge length distortion (EDL) indice is 4.5%. This value of octahedral distortion is approximately twice that of the compounds previously reported: $CuCr_{2-x}Ti_xSe_4$, $CuCr_{2-x}Sn_xSe_4$ and $CuCr_{2-x}Zr_xSe_4$. These materials obtained by ceramic synthesis present interesting magnetic properties such as other spinels substituted in A-site [11].

Acknowledgements: The authors thank FONDECYT Grant No. 1161020 and the Chilean-French International Associated Laboratory for Multifunctional Molecules and Materials (LIAM3-CNRS N°1027).

References

- 1. Bruker. Analytical X-ray Instruments Inc., Madison, WI, USA (2000).
- Sheldrick, G. M.: SHELXL97. Program for the refinement of crystal structures. University of Göttingen, Stuttgart (1997).
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42 (2009) 339–341.
- Brandenburg, K.: DIAMOND. Visual crystal structure information system. Ver. 3.0., Crystal Impact, Bonn, Germany (2004).
- Yokoyama, H.; Chiba, S.: Preparation and magnetic properties of a new selenide spinel Cu_{1/2}In_{1/2}Cr₂Se₄. J. Phys. Soc. Jpn. 27 (1969) 505.
- Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.: Crystal structure, Raman scattering and magnetic properties of CuCr_{2-x}Zr_xSe₄ and CuCr_{2-x}Sn_xSe₄ selenospinels. J. Magn. Magn. Mater. **456** (2018) 160–166.
- Skrzypek, D.; Malicka, E.; Waskowska, A.; Widuch, S.; Cichon, A.; Mydlarz, T.: Structural and magnetic properties of Cd_xIn_yCr_zSe₄. J. Cryst. Growth **297** (2006) 419–425.
- Baur, W. H.: The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr. B30 (1974) 1195–1215.
- 9. Wildner, M.: On the geometry of Co(II)06 in inorganic compounds. Z. Kristallogr. **202** (1992) 51–70.
- Barahona, P.; Galdámez, A.; López-Vergara, F.; Manríquez, V.; Peña, O.: Crystal structure and magnetic properties of titaniumbased CuTi_{2-x}M_xS₄ and CuCr_{2-x}Ti_xSe₄ chalcospinels. J. Solid State Chem. **212** (2014) 114–120.
- Pinch, H. L.; Woods, M. J.; Lopatin, E.: Some new mixed A-site chromium chalcogenide spinels. Mater. Res. Bull. 5 (1970) 425–429.