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ABSTRACT
Motivated by the advantages of observing at near-IR wavelengths, we investigate Type
II supernovae (SNe II) as distance indicators at those wavelengths through the Photo-
spheric Magnitude Method (PMM). For the analysis, we use BVIJH photometry and op-
tical spectroscopy of 24 SNe II during the photospheric phase. To correct photometry for
extinction and redshift effects, we compute total-to-selective broad-band extinction ratios
and K-corrections up to z = 0.032. To estimate host galaxy colour excesses, we use the
colour–colour curve method with the V–I versus B–V as colour combination. We calibrate
the PMM using four SNe II in galaxies having Tip of the Red Giant Branch distances.
Among our 24 SNe II, nine are at cz > 2000 km s−1, which we use to construct Hubble dia-
grams (HDs). To further explore the PMM distance precision, we include into HDs the four
SNe used for calibration and other two in galaxies with Cepheid and SN Ia distances. With a
set of 15 SNe II we obtain an HD rms of 0.13 mag for the J-band, which compares to the rms
of 0.15–0.26 mag for optical bands. This reflects the benefits of measuring PMM distances
with near-IR instead of optical photometry. With the evidence we have, we can set the PMM
distance precision with J-band below 10 per cent with a confidence level of 99 per cent.

Key words: supernovae: general – galaxies: distances and redshifts – distance scale.

1 IN T RO D U C T I O N

Type II supernovae (SNe II) are the explosive end of massive stars
(MZAMS > 8 M�) that retain an important amount of hydrogen in
their envelopes at the moment of the explosion. These events, con-
sequence of the gravitational collapse of their iron cores, are charac-
terized by a luminosity comparable to the total luminosity of their
host galaxies, which make them interesting objects for distance
measurements.

The pioneering work of Kirshner & Kwan (1974) marks the be-
ginning of the use of SNe II as distance indicators. In their work

� E-mail: olrodrig@gmail.com

they applied the Expanding Photosphere Method (EPM, a vari-
ant of the Baade–Wesselink method) to two SNe II, using optical
photometry and spectroscopy during the photospheric phase (the
phase between the maximum light and the transition to the radioac-
tive tail) to estimate angular and physical sizes, respectively. For the
first implementation of the EPM, Kirshner & Kwan (1974) assumed
SNe II emit like blackbodies. Years after, Wagoner (1981) demon-
strated that the flux of SNe II is diluted as a consequence of their
scattering-dominated atmospheres, making necessary SN II atmo-
sphere models to quantify that effect and thus to correct derived
distances. Since then, the EPM has been applied using different
theoretical atmosphere models (e.g. Eastman, Schmidt & Kirshner
1996; Dessart & Hillier 2005) to an ample number of SNe II (e.g.
Schmidt, Kirshner & Eastman 1992; Schmidt et al. 1994; Hamuy
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2001; Dessart et al. 2008; Jones et al. 2009; Bose & Kumar 2014;
Gall et al. 2016, 2018), where the typical EPM distance precision
is found to be about 15 per cent.

Empirically, Hamuy & Pinto (2002) found a correlation between
the bolometric luminosity at 50 d since explosion and the expansion
velocity of the photosphere at the same epoch. This is due to the fact
that a more energetic explosion corresponds to a more luminous SN
with higher envelope expansion velocities. The latter correlation is
the basis of the Standardized Candle Method (SCM), which allows
to estimate distances using photometry and expansion velocities
inter- or extrapolated at 50 d since explosion. The SCM has been
applied to several SN II sets (e.g. Nugent et al. 2006; Poznanski
et al. 2009; Olivares E. et al. 2010; D’Andrea et al. 2010; de Jaeger
et al. 2015, 2017b; Gall et al. 2018), yielding a distance precision
of about 12–14 per cent.

Despite the apparent differences between the EPM and the SCM,
Kasen & Woosley (2009) showed that the SCM is a recasting of
the EPM at 50 d since explosion. Additionally, by means of SN II
models, they proposed a generalization of the SCM, which can be
applied in any epoch during the photospheric phase. The same idea
was investigated empirically by Rodrı́guez et al. (2014, hereafter
R14), who called it the Photospheric Magnitude Method (PMM)
to the SCM generalization. Measuring distances with all expan-
sion velocities available during the photospheric phase decreases
observational errors and reduces uncertainties introduced by the
interpolation/extrapolation at a certain fiducial epoch. The PMM
distance precision is around 6–11 per cent (R14).

For the EPM, SCM, and PMM, optical spectroscopy is necessary
in order to estimate expansion velocities. Since the spectroscopy is
more time consuming than photometry, expansion velocities are not
always available. For this reason, de Jaeger et al. (2015) proposed
a method based solely on photometry to standardize SNe II, known
as the Photometric Colour Method (PCM). de Jaeger et al. (2017b)
applied the PCM to an SN II sample with redshift up to 0.5, finding
that the PCM distance precision is around 17 per cent.

Most of the distance measurements with the latter methods have
been performed with optical photometry. However, observing at
near-IR wavelengths has two clear benefits that, in principle, can
improve their use as distance indicators:

(1) Near-IR light is less affected by dust. Methods to measure
colour excess due to SNe II host galaxies (e.g. Schmidt et al.
1992; Krisciunas et al. 2009; Olivares E. et al. 2010; Poznanski,
Prochaska & Bloom 2012; R14; Pejcha & Prieto 2015) are still
not well established. Therefore, it is propitious to observe at near-
IR wavelengths in order to reduce the effect of miscalculation of
the colour excess. Moreover, the estimation of a representative ex-
tinction curve along the SN II line of sight is still controversial.
Assuming the family of extinction curves of Cardelli, Clayton &
Mathis (1989), some studies are in favour of a Galactic RV = 3.1
(e.g. Pejcha & Prieto 2015), while other authors found results in
favour of lower values (Poznanski et al. 2009; Olivares E. et al.
2010; de Jaeger et al. 2015). Since the choice of a certain extinc-
tion curve has more impact at optical than at near-IR wavelengths
(e.g. Schlafly et al. 2016), it is preferable to perform photometric
observations at those wavelengths in order to diminish systematics
induced by the assumption of an incorrect extinction curve.

(2) Contamination by metal lines is less severe at near-IR wave-
lengths. Among the few metal lines identified in the near-IR, we
remind: in the J-band range there is a feature at λ = 1.2μm possi-
bly due to an Si I multiplet (Valenti et al. 2015), Mg I λ1.53μm is
detected in the H-band range (Maguire et al. 2010b; Valenti et al.
2015; Yuan et al. 2016), while in the K-band range the Brackett γ is

possibly blended with Na I (Dall’Ora et al. 2014). The low number
and weakness of metal lines reduce the risk of systematic effects
produced by differences in progenitor metallicity (e.g. Dessart et al.
2014; Anderson et al. 2016).

Schmidt et al. (1992) had already pointed out the benefits of
measuring distances to SNe II using near-IR photometry. However,
at present, there have been very few systematic studies (e.g. Schmidt
et al. 1992, Hamuy et al. 2001 for the EPM; Maguire et al. 2010a,
de Jaeger et al. 2015 for the SCM). In particular, Maguire et al.
(2010a) suggested that it may be possible to reduce the scatter in
the Hubble Diagram (HD) to 0.1–0.15 mag (distance precision of 5–
7 per cent) using near-IR instead of optical photometry. However,
this result is based on the analysis of a set of 12 SNe II, 11 of
them at z < 0.01, so being highly affected by peculiar velocities.
To test this promising result, de Jaeger et al. (2015) applied the
SCM to a set of 24 SNe II at 0.01 < z < 0.04, obtaining an HD
rms of 0.28 mag (distance precision of 13 per cent) for the J-band
and therefore questioning the improvements of the SCM distance
precision using near-IR photometry.

The goal of this study is to investigate the PMM distance precision
using near-IR photometry.

We organize our work as follows. In Section 2 we describe the
photometric and spectroscopic data. In Section 3 we present the
PMM developed in R14. In Section 4 we develop an algorithm
to achieve non-parametric light-curve fitting. In Sections 5 and 6
we compute Galactic total-to-selective broad-band extinction ratios
and K-corrections for BVIJHK bands, respectively. In Section 7 we
compute host galaxy total-to-selective broad-band extinction ratios
and host galaxy colour excesses through the analysis of colour–
colour curves. In Section 8 we estimate expansion velocities and
explosion epochs. In Section 9 we apply the PMM to our SN II sam-
ple, constructing HDs for BVIJH bands. Discussion about the PMM
distance precision and systematics are in Section 10. In Section 11
we present our conclusions.

2 O BSERVATI ONA L MATERI AL

We base our work on data obtained over the course of the Carnegie
Type II Supernova Survey (CATS; PI: Hamuy, 2002–2003), a pro-
gram whose main objective was to study nearby (z < 0.05) SNe
II. Optical photometry and spectroscopy, along with some near-IR
photometry, were obtained with the 1-m Swope, 2.5-m du Pont, and
6.5-m Magellan Baade and Clay telescopes at Las Campanas Ob-
servatory. A few additional optical images were obtained with the
0.9-m and 1.5-m telescopes at Cerro Tololo Inter-American Obser-
vatory. During the CATS survey, 34 SNe II were observed. Optical
photometry and spectroscopy of these SNe II, along with the de-
scription of the data reduction, is presented in Galbany et al. (2016)
and Gutiérrez et al. (2017), respectively. Next, we briefly summa-
rize the general techniques used to obtain the near-IR photometric
data, which will be released in a forthcoming publication.

2.1 Near-IR photometric data

The near-IR photometric observations were obtained with the JHK
bands mounted in the Swope Telescope IR camera and the Wide
Field IR Camera on the du Pont Telescope. Images where processed
with a collection of IRAF1 tasks. These include dark subtraction,

1IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy

MNRAS 483, 5459–5479 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/483/4/5459/5251835 by U
niversidad de C

hile user on 05 August 2022



SNe II as distance indicators at near-IR 5461

flat-field correction, sky subtraction, image registration, and stack-
ing. Instrumental magnitudes were obtained using the point spread
function (PSF) technique, implemented in the SNOOPY2 package.
The near-IR magnitudes of the reference stars were calibrated using
standard star fields obtained soon before or after the target field with
an airmass similar to the target field.

2.2 Sample of supernovae

Among the 34 SNe II observed over the course of the CATS survey,
we select a subset of 10 SNe II which comply with the following
requirements: (1) having at least two photometric measurements in
the BVIJH bands at 35–75 d since explosion (see Section 9), and
(2) having at least one measurement of the expansion velocity at
an epoch covered by the photometry mentioned in point 1. To this
sample, we add 14 SNe II from the literature. Table 1 lists our
final sample of 24 SNe II, which includes the SN name (Column
1), the name of the host galaxy, and its type (Columns 2 and 3),
the heliocentric SN redshift and its source (Columns 4 and 5),
host galaxy distance measured with Cepheids, the Tip of the Red
Giant Branch (TRGB), or SN Ia (Column 6), Galactic colour excess
(Column 7), and references for the data (Column 8). We also use
optical and near-IR spectra of SNe II with the purpose of computing
total-to-selective broad-band extinction ratios (Sections 5 and 7)
and K-corrections (Section 6), and to estimate explosion epochs
(Section 8.2).

3 PH OTO S P H E R I C MAG N I T U D E M E T H O D

The absolute magnitude of an SN II during the photospheric phase
depends strongly on the temperature and the size of the photosphere
(e.g. Kasen & Woosley 2009; R14; Pejcha & Prieto 2015). The latter
can be estimated from the velocity of the material instantaneously
at the photosphere (hereafter, photospheric velocity, vph) and the
time since the SN explosion epoch t0, under the assumption of ho-
mologous expansion (e.g. Kirshner & Kwan 1974). R14 found that
the time since explosion works better than the V–I colour (used as a
proxy for temperature) to standardize the brightness of SNe II (see
Fig. 9 in R14), showing that for a given band x the absolute mag-
nitude in any moment ti during the photospheric phase, Mx,�ti ,vph,i

,
can be parametrized as

Mx,�ti ,vph,i
= ax,�ti − 5 log

(
vph,i

5000 km s−1

)
. (1)

Here, �ti ≡ (ti − t0)/(1 + z) is the elapsed time since the explosion
in the SN rest frame at redshift z, and ax,�ti is a function that can be
calibrated empirically. Previously, Kasen & Woosley (2009) found
similar results for the SN II brightness standardization, but using
SN II models.

With the knowledge of t0 and a measurement of vph in any stage
of the photospheric phase, we can compute the absolute magnitude
at ti (equation 1) and, therefore, compute the SN distance modulus
given by

μx,i = mcorr
x,i − ax,�ti + 5 log

(
vph,i

5000 km s−1

)
, (2)

(AURA) under cooperative agreement with the National Science Founda-
tion.
2SNOOPY is a package for SN photometry using PSF fitting and/or template
subtraction developed by E. Cappellaro. A package description can be found
at http://sngroup.oapd.inaf.it/snoopy.html

mcorr
x,i = mx,i − AG

x,i − Kx,i − Ah
x,i . (3)

Here, mx, i is the apparent magnitude, AG
x,i and Ah

x,i are the Galac-
tic and host galaxy broad-band extinction, respectively, and Kx, i

is the K-correction. If more than one measurement of vph is avail-
able, then we compute the distance modulus through a likelihood
maximization (see Section 9.1).

4 LI GHT-CURVE FI TS

In equation (2) we need all quantities at the same epoch. Being more
time consuming, spectroscopy is, in general, less abundant than pho-
tometry, so performing photometric interpolations is a reasonable
choice. Previous efforts to fit SN II light curves use both para-
metric and non-parametric methods. Parametric methods assume
parametric functions that capture the behaviour of the light curve
from early to late stages, where parameters are obtained through
least-square minimization (e.g. Olivares E. et al. 2010) or through
Bayesian methodologies (e.g. Sanders et al. 2015). Non-parametric
methods are based on non-parametric regressions (NPR) like local
regressions (e.g. Olivares 2008) and Gaussian processes (e.g. de
Jaeger et al. 2017a). Since the light curves of the SNe in our sample
are, in general, well sampled, we prefer to use NPR methods for the
light-curve fitting, thus avoiding the use of heuristic models.

In this work we make use of LOESS, an NPR method that per-
forms polynomial fits over local intervals along the domain (Cleve-
land, Grosse & Shyu 1992). To perform a LOESS fit, we have to
specify: (1) the class of the local polynomial, which can be lin-
ear or quadratic, (2) the smoothing parameter, which defines the
neighbourhood size around each element of the independent vari-
able, where data can be well approximated by the aforementioned
local polynomial, and (3) the distribution of random errors, which
can be normal or symmetric (for more details, see Cleveland et al.
1992). We assume the null hypothesis that residuals are normally
distributed, which can be checked with a normality test. An optimal
value for the smoothing parameter can be obtained from data using
the ‘an’ information criterion (AIC, Akaike 1974, see Appendix A).
Therefore, to perform a LOESS fit, we only have to decide the lo-
cal polynomial. We choose a quadratic polynomial in order to give
more freedom to the LOESS fitting procedure. When the LOESS
routine cannot perform a fit (e.g. for light curves with less than six
points), we perform a low-order (linear or quadratic) polynomial
fit.

To test whether photometry errors can account for the observed
dispersion around the light-curve fit, f fit

x,t (in flux units), we compute
its log-likelihood given by

lnL = −0.5
∑

i

(
ln(σ 2

fx,i
+ σ 2

x,int) + (fx,i − f fit
x,ti

)2

σ 2
fx,i

+ σ 2
x,int

)
, (4)

where fx, i and σfx,i
are the apparent magnitude and its error in flux

units, respectively, and σ x, int is the intrinsic error. If an intrinsic
error is necessary to maximize the log-likelihood, then we add it
in quadrature to the photometry errors and perform again the light-
curve fitting. We repeat this process until an intrinsic error is not
necessary.

To test the normality of the residuals, we use the Rescaled Mo-
ment (RM; Imon 2003) test (see Appendix A). Among all light-
curve fits, 80 per cent have residuals with RM p-values ≥ 0.05, for
which the hypothesis that residual are normally distributed cannot
be rejected within a confidence level (CL) of 95 per cent. For the
remaining 20 per cent, light-curve fits are still unbiased and con-
sistent, but the confidence interval (CI) of the parameters may be
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Table 1. SN II sample.

SN Host galaxy Host type† czhelio Source‡ μ�
host EG(B–V)� References∗

(km s−1) (mag) (mag)

1999em NGC 1637 SAB(rs)c 800 ± 50 L02 30.21 ± 0.15�, � 0.035 ± 0.006 a, b, c, d, e
2002gd NGC 7537 SAbc? 2536 ± 59 here – 0.058 ± 0.009 a, f, g, h
2002gw NGC 922 SB(s)cd 3143 ± 31 here – 0.016 ± 0.003 a, f
2002hj NPM1G + 04.0097 – 7079 ± 20 here – 0.101 ± 0.016 a, f
2003B NGC 1097 SB(s)b 1141 ± 52 here – 0.023 ± 0.004 a, f
2003E MCG –4–12–4 Sc? 4484 ± 21 here – 0.041 ± 0.007 a, f
2003T UGC 4864 SA(r)ab 8368 ± 6 NED – 0.027 ± 0.004 a, f
2003bl NGC 5374 SB(r)bc? 4295 ± 41 here – 0.023 ± 0.004 a, f
2003bn LEDA 831618 – 3897 ± 25 here – 0.056 ± 0.009 a, f
2003ci UGC 6212 Sb 9052 ± 21 here – 0.051 ± 0.008 a, f
2003cn IC 849 SAB(rs)cd 5430 ± 162 NED – 0.018 ± 0.003 a, f
2003hn NGC 1448 SAcd? 1305 ± 35 S05 31.25 ± 0.07⊗ 0.012 ± 0.002 a, d, f, i
2004et NGC 6946 SAB(rs)cd 40 ± 2 NED 29.39 ± 0.14⊗ 0.293 ± 0.047 h, j, k, l, m, n
2005ay NGC 3938 SA(s)c 850 ± 26 here – 0.018 ± 0.003 h, o
2005cs M51a SA(s)bc 463 ± 3 NED 29.66 ± 0.06⊗ 0.032 ± 0.005 h, p, q, r
2008in M61 SAB(rs)bc 1566 ± 2 NED – 0.019 ± 0.003 f, o, s
2009N NGC 4487 SAB(rs)cd 905 ± 21 here – 0.018 ± 0.003 t
2009ib NGC 1559 SB(s)cd 1304 ± 162 NED 31.72 ± 0.20
 0.026 ± 0.004 u, v
2009md NGC 3389 SA(s)c 1308 ± 162 NED – 0.023 ± 0.004 w
2012A NGC 3239 IB(s)m 753 ± 162 NED – 0.027 ± 0.004 x
2012aw M95 SB(r)b 778 ± 4 NED 29.89 ± 0.07⊗ 0.024 ± 0.004 y, z, aa
2012ec NGC 1084 SA(s)c 1407 ± 162 NED – 0.023 ± 0.004 bb
2013ej M74 SA(s)c 657 ± 1 NED 29.95 ± 0.06⊗ 0.060 ± 0.010 r, cc, dd, ee
2014G NGC 3448 I0 1160 ± 84 here – 0.010 ± 0.002 ff

Notes: †From NASA/IPAC Extragalactic Database (NED).
‡Source of the heliocentric SN redshift. L02: Leonard et al. (2002); S05: Sollerman et al. (2005); here: this work.
�Host galaxy distance moduli measured with Cepheids (�), TRGB (⊗) with the Jang & Lee (2017b) calibration, or with SN Ia (
).
�Galactic colour excesses from Schlafly & Finkbeiner (2011), with an error of 16 per cent (Schlegel, Finkbeiner & Davis 1998).
�Saha et al. (2006) distance was shifted by −0.19 ± 0.13 mag to be consistent with the Riess et al. (2016) calibration (Section 9.1).
∗(a) Galbany et al. (2016); (b) Hamuy et al. (2001); (c) L02 (d) Krisciunas et al. (2009); (e) Saha et al. (2006); (f) Gutiérrez et al. (2017); (g) Spiro et al. (2014);
(h) Faran et al. (2014a); (i) Hatt et al. (2018); (j) Sahu et al. (2006); (k) Maguire et al. (2010b); (l) Tikhonov (2014); (m) Murphy et al. (2018); (n) Anand,
Rizzi & Tully (2018); (o) Hicken et al. (2017); (p) Pastorello et al. (2006); (q) Pastorello et al. (2009); (r) McQuinn et al. (2017); (s) Roy et al. (2011); (t)
Takáts et al. (2014); (u) Takáts et al. (2015); (v) Brown et al. (2010); (w) Fraser et al. (2011); (x) Tomasella et al. (2013); (y) Bose et al. (2013); (z) Dall’Ora
et al. (2014); (aa) Rizzi et al. (2007); (bb) Barbarino et al. (2015); (cc) Yuan et al. (2016); (dd) Dhungana et al. (2016); (ee) Bose et al. (2015); and (ff) Terreran
et al. (2016).

untrustworthy (Doane & Seward 2016). Anyway, in this work, to
prevent any shortcoming related to the non-normality of the resid-
uals, we perform simulations to compute CIs.

To compute the CI around a light-curve fit, we perform 104 simu-
lations varying randomly the photometry according to its error. For
each realization we perform a LOESS (or a low-order polynomial)
fit, thus obtaining 104 simulated light curves per band. These sim-
ulations will allow us to compute its probability density function
(pdf) at different epochs.

Fig. 1 shows results of the aforementioned fitting procedure ap-
plied to the SN II light curves used in this work, where solid lines
are the LOESS (or low-order polynomial) fits, while shaded re-
gions indicate values between the 10th and the 90th percentile, i.e.
the 80 per cent CI.

5 G ALAC TIC BROAD-BAND EXTINCTION

In equation (3), the Galactic broad-band extinction in a photometric
band x is given by

AG
x,i ≡ −2.5 log

(∫
dλoSx,λoFλr,iλr10−0.4(Ah

λr
+AG

λo
)∫

dλSx,λoFλr,iλr10−0.4Ah
λr

)
(5)

(Olivares 2008). Here, λo is the wavelength in the observer’s frame,
λr = λo/(1 + z) is the wavelength in the SN rest frame at redshift
z, Sx,λo is the x-band transmission function, Fλr,i is the spectral
energy distribution (SED) of the SN at epoch ti. AG

λo
and Ah

λr
are the

Galactic and host galaxy monochromatic extinctions, respectively,
given by

AG
λo

= RG
λo

· EG(B−V ), (6)

Ah
λr

= Rh
λr

· Eh(B−V ), (7)

where Rλ ≡ Aλ/E(B–V) is the extinction curve for our Galaxy (RG
λ )

and hosts (Rh
λ), and EG(B–V) and Eh(B–V) are the Galactic and host

galaxy colour excess, respectively.
Since the SED of SNe II evolve with time, we expect that the

broad-band extinction AG
x,i also evolve with time.3 As the SED of

SNe II has a blackbody nature, hereafter we use the intrinsic B–V
colour (a proxy for temperature) to represent its evolution.

In a previous work, Olivares (2008) computed the dependence of
AG

V on B–V. In this work, in order to convert Galactic colour excesses

3We remark the difference between a monochromatic extinction Aλ, which
is constant for a fixed wavelength λ, and a broad-band extinction Ax, i, which
depends on the SED and the x-band transmission function.
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SNe II as distance indicators at near-IR 5463

Figure 1. Light curves of SNe II used in this work. The estimated explosion epoch of each SN is used as reference time. Orange ticks mark the epochs of the
spectroscopy. Solid lines and shaded regions correspond to the light-curve fits and its 80 per cent CIs, respectively.

directly into Galactic broad-band extinctions suitable for SNe II, we
compute the Galactic total-to-selective broad-band extinction ratios
RG

x,i , such that

AG
x,i ≡ RG

x,i · EG(B−V ). (8)

With the purpose of obtaining representative RG
x,i values for a lo-

cal SN II sample through equations (8) and (5), we use: (1) a library
of dereddened and deredshifted SN II spectra (see Appendix B),
(2) colour excesses and redshifts from the following representative
ranges: EG(B–V) = 0.0–0.36 mag, Eh(B–V) = 0.0–0.83 mag, which
were taken from the SN sample reported in R14, and z = 0.0–0.032,
and (3) an extinction curve to redden the spectra for both our Galaxy
and hosts. For the latter, since a representative extinction curve along
the line of sight of SNe II is still controversial, we adopt the Fitz-
patrick (1999) extinction curve with RV = 3.1. For each spectrum,
we perform 104 simulations picking randomly values of EG(B–V),
Eh(B–V), and z from the aforementioned ranges, adopting the me-

dian as the RG
x,i representative value and the 80 per cent CI as its

error.
The left-hand side of Fig. 2 shows the RG

x,i values as a function
of B–V for BVI bands. There is a clear dependence of RG

B,i and
RG

V ,i on B–V. The y-axis scale at the left-hand side of Fig. 2 is the
same in the three panels, so we can see that the redder the band the
less the dependence on B–V, with RG

I ,i being nearly constant. This
behaviour is due to the blackbody nature of the SN II SED, where
for the longer wavelengths there is a less dependence of the SED
slope on temperature.

To express the dependence of RG
x,i on B–V we perform polyno-

mial fits. The latter, unlike NPR methods like LOESS, allow to
perform corrections in an easy and less time-consuming way (see
Appendix C).

To determine the optimal degree for the polynomial fit, we con-
sider two criteria: the AIC and the Bayesian information criterion
(BIC, Schwarz 1978). For more details, see Appendix A. Based
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Figure 2. Galactic total-to-selective broad-band extinction ratios for BVI (left-hand panel) and JHK (right-hand panel) for SNe II as a function of the intrinsic
B–V colour, along with residuals. Solid black lines correspond to the polynomial fits, red short-dashed lines correspond to LOESS regressions to the residuals,
while blue long-dashed lines correspond to residuals between the m15mlt3 model (Dessart et al. 2013) and polynomial fits from observations. Grey regions
indicate values within one rms, while black dash-dotted lines are the inner fences.

on evidence ratios (Table F1), for the B-, V-, and I-band, the AIC
favours degrees ≥ 3, ≥ 1, and ≥ 1, respectively, while the BIC
favours degrees between 2 and 6, 1 and 3, and 1 and 4, respectively.
Results for both criteria are consistent. By the principle of parsi-
mony (a.k.a. Occam’s razor), we adopt the lowest degrees, i.e. 2,
1, and 1 for the B-, V-, and I-band, respectively. For JHK bands
(right-hand side of Fig. 2) we adopt constant values. Although the
small number of near-IR spectra means that the results are not fully
statistically robust, we are confident about the negligible depen-
dence of RG

x,i on B–V for JHK bands based on the small rms values
we obtained (�0.001).

Once the optimal polynomial degrees for RG
x versus B–V are de-

termined, we perform 104 bootstrap resampling of the data in order
to compute the polynomial fit parameters and their errors, adopting
the median as the representative value. Results are summarized in
Table F2.

The bottom of each panel in Fig. 2 shows the residuals of the
polynomial fit. To identify possible outliers we use the Tukey (1977)
rule, where values below Q1 − 1.5(Q3 − Q1) or above Q3 + 1.5(Q3
− Q1) (known as inner fences, where Q1 and Q3 are the first and
third quartile, respectively) are considered outliers. The few points
detected as outliers are consistent with being within inner fences
considering their errors, so we do not discard them from the analysis.
To analyse possible trends not captured by the polynomial fit, we
perform a LOESS regression (red short-dashed line) to the residuals.
Variations in the LOESS fits are mostly within one rms, meaning that
the evolution of RG

x on B–V can be well represented by a polynomial
fit of degree determined with the AIC/BIC. For all bands we obtain
RM p-values >0.05, which means that we cannot reject the null
hypothesis that residual are normally distributed (95 per cent CL).
Based on this, we can treat the RG

x rms error as a normal one.

For comparison, we compute RG
x for BVIJHK bands using syn-

thetic spectra of the m15mlt3 model of Dessart et al. (2013). Resid-
uals between the m15mlt3 model and polynomial fits from observa-
tions (blue long-dashed lines in Fig. 2) are mostly contained within
one rms.

6 K- C O R R E C T I O N

The K-correction in a photometric band x is given by

Kx,i ≡ −2.5 log(1 + z) + Ks
x,i , (9)

K s
x,i = 2.5 log

(∫
dλoSx,λoFλo,iλ10−0.4Ah

λo∫
dλrSx,λoFλr,iλr10−0.4Ah

λr

)
(10)

(Olivares 2008), being K s
x,i the selective term. We proceed in the

same way than in Section 5, but now the evolving SED is modified
by SN host galaxy colour excess and redshift.

As in Section 5 we aim for an analytical expression for K s
x , for

which we perform polynomial surface fits as a function of B–V
and z. Since Kx = 0 for z = 0, any z-independent term on the K s

x

polynomial fit is zero. Dividing by z, the polynomial surface to
adjust will be of the form

K s
x/z =

OB−V∑
j1=0

Oz,j1∑
j2=0

aj1,j2z
j2 (B−V )j1 , (11)

being OB−V and Oz,j1 the orders in B–V and z, respectively, and
aj1,j2 the fit parameters.

To determine the orders OB−V and Oz,i , we generate 105 spectral
samples, where for each sample we assign to each spectrum a ran-
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dom redshift up to 0.032. For each realization, we obtain optimal
order values using the AIC/BIC and the principle of parsimony.
In all cases we obtain that K s

x/z depends only on B–V, i.e. it is
z-independent for z ≤ 0.032.

Fig. 3 shows the K s
x/z values as a function of B–V for BVI

(left-hand side) and JHK (right-hand side). We perform the same
analysis than in Section 5. For BVI bands we adopt straight lines,
while for JHK bands we fit constant values (see Table F1). Results
are summarized in Table F2. Variations of the LOESS fits to the
residuals are within one rms, meaning that the dependence of K s

x/z

on B–V can be well represented by the polynomial fit of degree
determined with the AIC/BIC. For all bands we obtain RM p-values
>0.05, which means that we cannot reject the null hypothesis that
residual are normally distributed (95 per cent CL). Based on the
latter, we can treat the K s

x/z rms error as a normal one.

7 H O S T G A L A X Y B ROA D - BA N D E X T I N C T I O N

In equation (3), the host galaxy broad-band extinction in a photo-
metric band x is given by

Ah
x,i ≡ −2.5 log

(∫
dλSx,λoFλo,t λo10−0.4Ah

λo∫
dλoSx,λoFλo,t λo

)
(12)

(Olivares 2008). We proceed in the same way than in Sections 5
and 6, but now the evolving SED is modified only by the SN host
galaxy colour excess.

Similar to Section 5, we define the host galaxy total-to-selective
broad-band extinction ratios Rh

x,i , such that

Ah
x,i ≡ Rh

x,i · Eh(B−V ). (13)

The optimum Rh
x versus B–V polynomials and their parameters

are summarized in Table F2.
R14 showed that for SNe II the B–V versus V–I colour–colour

curve (C3) can be used to estimate Eh(B–V) through the method
proposed by Natali et al. (1994), which was originally developed to
estimate interstellar colour excess for open clusters.

The C3 method states that, under the assumptions that (1) the C3
can be well-represented by a straight line, and (2) all SNe II have
the same C3 (which means the same slope and intercept), the host
galaxy colour excess can be estimated with the formula

Eh,i(B−V ) = 1

Rh
cx ,i

nS,i − nS,zp

γS,i − M{mS} (14)

(e.g. Munari & Carraro 1996; R14). Here, S ≡ {cx, cy} indicates
the colours used as x- and y-axis in the colour–colour diagram,
corrected for Galactic colour excess and K-correction. M{mS} is
the median of a set of SN II C3 slopes {mS}, nS, i = cy, i − M{mS}×
cx, i and nS, zp are the y-intercept of the C3 linear fit using a fixed
slope M{mS} and that of the SN II less affected by colour excess,
respectively. Rh

c,i = Rh
x1,i − Rh

x2,i for a colour c = x1 − x2, and
γS,i = Rh

cy ,i/R
h
cx ,i is the slope of the reddening vector. The subindex

i in equation (14) denotes the dependence of Rh
x,i on the intrinsic

B–V, so equation (14) must be evaluated separately at each point
of the C3. In principle, one colour–colour observation is enough
to estimate the colour excess; however, more observations allow to
check internal consistency and reduce observational errors.

The C3 method relies strongly on the aforementioned two as-
sumptions. In a previous work, R14 assumed the linearity of C3s
based on the blackbody nature of the SED of SNe II during the
photospheric phase, while assumption 2 was adopted based on

the dependence of the emergent flux mainly on temperature dis-
played by SN II atmosphere models (e.g. Eastman et al. 1996;
Jones et al. 2009). In this work we show that C3s can indeed be
expressed as straight lines for several colour combinations (see
Appendix C). Therefore, the major source of systematics comes
from assumption 2. There are indeed some effects, like the line
blanketing, that modify the SED continuum shape. In addition,
differences in photometric systems (S-correction; Stritzinger et al.
2002) are expected to produce further changes on C3 parameters.
Therefore, it is propitious to search for a colour combination where
the effect of a colour excess on a C3 is greater than the effect of
systematics.

An analysis of the effect of systematics on the C3 y-intercept is
beyond the scope of this work because it requires an ample set of
unreddened SNe II. However, the effect of systematics on C3 slopes
and its consequent effects on the Eh(B–V) estimation through the
C3 method can be quantified in a simple way.

The presence of dust along the line of sight produces a vertical
displacement of the C3 (for a graphical representation, see R14)
where, following equation (14), the magnitude of the displacement
and its rms error are∣∣nS,i − nS,zp

∣∣ = Eh(B−V ) · Rh
cx ,i · ∣∣γS,i − M{mS}

∣∣ , (15)

rms(
∣∣nS,i − nS,zp

∣∣) ≈ Eh(B−V ) · Rh
cx ,i · rms{mS}, (16)

respectively. In equation (16), we do not include the error induced
by errors in γ S, i, which is lower that 17 per cent of the uncertainty
induced by the error in M{mS}. In order to find the colour combina-
tion that maximizes the dust effect (equation 15) and minimizes its
error (equation 16), we define the quantity (a signal-to-noise ratio)

ξS,i ≡
∣∣nS,i − nS,zp

∣∣
rms(

∣∣nS,i − nS,zp

∣∣) ≈
∣∣γS,i − M{mS}

∣∣
rms{mS} . (17)

Therefore, the most appropriate colour set S to compute Eh(B–V)
with the C3 method is one that maximizes ξ S, i.

Fig. 4 shows the ξ S, t values for all possible independent colour
combinations with the BVIJH bands, using the M{mS} and rms{mS}
values computed with our SN II sample (see Appendix C), and us-
ing B–V = 0.0 and 1.4, which are typical colours at the start and
end of the photospheric phase, respectively. We do not include the
K-band in this analysis because of the scarcity of SNe II with pho-
tometry in that band. The best colours combinations, independent
of the intrinsic B–V, are those involving B–V, with V–I versus B–V
the best. For this combination we obtain M{mS} = 0.45 ± 0.07.
We remark that colour combinations that do not include the B-band
have ξ S, t � 1.0, which indicates that the noise induced by intrinsic
differences of C3 slopes is greater than the effect of host galaxy
dust, and therefore those combinations are not suitable for Eh(B–V)
measurement through the C3 method. We point out that colour com-
binations under the diagonal correspond to those above the diagonal
but with the axes exchange. In principle they give the same infor-
mation. However, by construction, they maximize displacement in
x-axis instead of y-axis.

To compute the pdf of nS, zp for S = {B–V, V–I}, we use the data
of SN 2003bn and SN 2013ej, which are affected by a negligible
host galaxy colour excess (R14), maximizing the likelihood of a
straight line with slope 0.45 ± 0.07. With this process, we obtain a
pdf with median of 0.107 mag and rms = 0.053 mag. Since the RM
p-value for the latter distribution is >0.05, we treat it as a normal
distribution.

MNRAS 483, 5459–5479 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/483/4/5459/5251835 by U
niversidad de C

hile user on 05 August 2022



5466 Ó. Rodrı́guez et al.

Figure 3. Selective term of the K-correction over redshift for BVI (left-hand side) and JHK (right-hand side) for SNe II as a function of the intrinsic B–V
colour, along with residuals. Solid black lines correspond to the polynomial fits. Red short-dashed lines correspond to LOESS regressions to the residuals,
while blue long-dashed lines correspond to residuals between the m15mlt3 model (Dessart et al. 2013) and polynomial fits from observations. Grey regions
indicate values within one rms, while black dash-dotted lines are the inner fences.

Figure 4. Values of ξS, i for different combinations of cx and cy, using
B–V = 0.0 (top values) and 1.4 (bottom values). Empty spaces indicate
superfluous colour combinations.

To estimate Eh(B–V), we use equation (14) and each point in the
V–I versus B–V colour–colour plot. The pdf of Eh(B–V) is obtained
in a similar way than the pdf of nS, zp, but maximizing the likelihood
of a constant-only model. We include in the final pdf of Eh(B–V)

Figure 5. Comparison between Eh(B–V) obtained with the spectrum-fitting
method (y-axis) and those obtained with the V–I versus B–V C3 method (x-
axis). Dashed line represents the one-to-one correlation, with a median offset
of −0.01 mag.

the error induced by errors on nS, zp and M{mS}. Median values and
errors of Eh(B–V) are listed in Column 2 of Table F3. For our SN set
we obtain Eh(B–V) rms errors between 0.082 and 0.128 mag, with
a median of 0.097 mag.

Fig. 5 shows the comparison between host galaxy colour excesses
computed with S = {B–V, V–I} with those obtained by Olivares E.
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et al. (2010), Eh(B–V)spec (Column 5 of Table F3), which are based
on the fit between observed spectra and SN II models. We measure
a median offset of −0.01 mag, meaning that our estimations of
Eh(B–V) are slightly lower than those estimated by Olivares E. et al.
(2010). Both methods are consistent within ±0.05 mag.

8 EXPLOSION EPOCH AND PHOTOSPHERI C
VE LOCITY

The explosion epoch and the photospheric velocity are, under the
assumption of homologous expansion, the unique parameters de-
termining the actual size of the photosphere (Kirshner & Kwan
1974).

8.1 Photospheric velocities

The most widely used method to estimate SN photospheric ve-
locities consists of measuring the blueshift of P Cygni absorption
minima in SN spectra (Kirshner & Kwan 1974; Eastman & Kirshner
1989). Weak lines, like those from Fe II species, are typically used
under the assumption that they are formed near the photosphere
(e.g. Leonard et al. 2002). A more confident method to estimate
photospheric velocities is through the cross-correlation technique
(Hamuy et al. 2001; Takáts & Vinkó 2012), where observed spectra
are compared to those from SN models that have known photo-
spheric velocities. The application of the latter method is beyond
the scope of this work; therefore, we will use velocities derived
from the Fe II λ5169 line absorption minima as a proxy for the
photospheric velocity.

To estimate Fe II λ5169 absorption minima with appropriate er-
rors, we have to consider the uncertainties induced by the noise and
spectral resolution (�λ) of each spectrum, and also by the endpoints
we choose for the line profile.

We estimate the noise on the Fe II λ5169 line profile of each spec-
trum performing a LOESS fit and then removing it to the observed
line profile. Then we generate 104 simulated line profiles, varying
randomly the noise over the LOESS fit, wavelengths within �λ, and
endpoints. For each realization we apply a LOESS fit, registering
the minimum value. The output of this process is a distribution of
absorption minima, which we convert to velocities using the rela-
tivistic Doppler equation. With this process we obtain typical vph

rms errors between 30 and 230 km s−1, with a median of 76 km s−1.
Photospheric velocities are estimated from spectroscopic data,

corrected for the SN heliocentric redshift. In some cases, SN II
spectra show narrow emission lines as a result of a superposed H II

region at the SN position. These narrow lines allow a good estima-
tion of the SN heliocentric redshift, under the assumption that the
SN is spatially close to the H II region (e.g. Anderson et al. 2014a).
When those lines are not present in the SN spectra, the heliocentric
redshift of the host galaxy is used as a proxy for the SN heliocentric
redshift. However, since most of the SNe II in our set explode in
spiral galaxies, the SN heliocentric redshift has a component due to
the galaxy rotation. Anderson et al. (2014a) computed heliocentric
redshifts of 72 SNe II using H II region narrow emission lines, and
comparing with heliocentric redshifts of the host galaxy nucleus,
they obtained a zero-centred distribution with an rms of 162 km s−1,
which is attributed to the galaxy rotation effect.

In our sample, 11 SNe II (SN 2002gd, SN 2002gw, SN 2002hj, SN
2003B, SN 2003E, SN 2003bl, SN 2003bn, SN 2003ci, SN 2005ay,
SN 2009N, and SN 2014G) show H II region narrow emission lines
in the spectra, which we use to estimate the heliocentric redshift.
Another six SNe (SN 2003T, SN 2004et, SN 2005cs, SN 2008in, SN

2012aw, and SN 2013ej) exploded within nearly face-on galaxies,
in which case we adopt the redshift of the host galaxy nucleus.
For SN 1999em we adopt the value from Leonard et al. (2002),
and for SN 2003hn we use the average of the Na I D velocities
measured by Sollerman et al. (2005). The remaining five SNe (SN
2003cn, SN 2009ib, SN 2009md, SN 2012A, and SN 2012ec) did
not occur within nearly face-on galaxies, and do not show H II region
narrow emission lines in the spectra. For those cases we adopt the
redshift of the host galaxy nucleus, with an error of 162 km s−1 (that
we assume normal) to take into account the host galaxy rotational
velocity. Adopted SN heliocentric redshifts are listed in Table 1.

8.2 Explosion epoch

The SN explosion epoch can be estimated by means of photometric
information; it can be constrained between the last non-detection
tln and the first detection tfd (e.g. Nugent et al. 2006; Poznanski
et al. 2009; D’Andrea et al. 2010; R14; Valenti et al. 2016), or esti-
mated through a polynomial fit to the rise-time photometry when it
is available (e.g. Gall et al. 2015; González-Gaitán et al. 2015). The
spectroscopy of an SN can also provide information about its explo-
sion epoch by means of the comparison with other spectra of SNe
with explosion epoch estimated through photometric information
(e.g. Anderson et al. 2014b; Gutiérrez et al. 2017).

Columns 4 and 5 of Table F3 lists the tln and tfd values of the
SNe in our set, respectively. The explosion epochs for our set are
typically constrained within 14 d using photometric information,
which is twice the range suggested by R14 (namely, 7 d) to reduce
errors induced by t0 errors over PMM distances. We need, therefore,
to include spectroscopic information in order to better constrain the
explosion epochs.

As was done by Anderson et al. (2014b) and Gutiérrez et al.
(2017), to estimate t0 we use optical spectroscopy along with the
Supernova Identificator code (SNID; Blondin & Tonry 2007), which
finds by cross-correlation the spectra from its SN library that are
more similar to the input spectrum. For a good estimation of t0 with
SNID, we need a library with spectra of an ample amount of SNe
II that sample the high spectral diversity displayed by SNe II (e.g.
Gutiérrez et al. 2017) and with t0 constrained by photometric infor-
mation. In this work, we compile optical spectroscopy of 59 SNe II
with t0 constrained within 10 d (for more details, see Appendix D).

To estimate the explosion epoch of a given SN (SNinput) with
N spectra ({spec}) through SNID and using our SN II templates
library, we perform the following procedure:

(1) We run SNID using as input the N spectra of SNinput earlier
than 40 d since the first detection. The SNID output for each spec-
trum is a list with the best-matching templates, their phase since
explosion, and their rlap parameter (which indicates the strength of
the correlation).

(2) We convert phases since explosion to explosion epochs (since
we know the phase of each SNinput spectrum). The associated errors
are derived from the rlap values through a procedure described in
Appendix D.

(3) From each of the N lists, we select the first 10 best-matching
templates with rlap > 5.0, compiling them in a unique list. From
this list, we extract a sublist for each of the M best-matching SNe
(SNbm). With each of the M sublist, we compute the SNin explosion
epoch as the average, taking the standard deviation as the associated
error, and including the respective explosion epoch error of the
SNbm through a Monte Carlo error propagation. If a spectrum gives
a median t0 greater than 40 d, then we remove it from the analysis.
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(4) After that, we compute the likelihood L(t0|{spec}) with the M
results, including an error of 4.1 d which is the rms obtained from
the comparison between explosion epochs constrained with photo-
metric information and those derived with SNID (see Appendix D).

(5) Finally, we obtain the posterior pdf of t0, p(t0|{spec}), com-
bining L(t0|{spec}) with the uniform prior on t0, p(t0), provided by
photometric information, i.e.

p(t0|{spec}) ∝ L(t0|{spec})p(t0). (18)

Table F3 lists the medians and rms values of the explosion epochs
obtained with SNID and without any prior on t0 (Column 7), and
the median of p(t0|{spec}) of each SN along with the 80 per cent
CI (Column 8).

9 A PPLYING THE PMM

Once all observables required for the PMM are available, the next
step is to prepare the data before applying the method. As was
mentioned in Section 4, we interpolate photometry to the epochs of
the photospheric velocities. Since we want to study the PMM dis-
tance precision at different photometric bands, i.e. changing only
the photometry, we use epochs where spectroscopy is covered si-
multaneously by optical and near-IR photometry. In the case of SN
2002hj, it does not have spectroscopy covered by J-band photom-
etry, so we interpolate photospheric velocities (using LOESS) and
BVIH photometry to the epochs of J-band photometry.

9.1 Calibration

For the PMM calibration, we express ax, �t as

ax,�t = ZPx + a∗
x,�t , (19)

where ZPx is the zero-point of the PMM in the x-band, and a∗
x,�t is

a function that represents the dependence of ax, �t on �t (without
the constant term).

To estimate the evolution of a∗
x,�t with �t, we use the a∗

x,�ti
values

of the SNe in our set with two or more vph measurements during the
photospheric phase. For each SN, the a∗

x,�ti
values are given by

a∗
x,�ti

= mcorr
x,i + 5 log

(
vph,i

5000 km s−1

)
+ δSN, (20)

where δSN is an additive term to normalize the a∗
x,�ti

values of each
SN to the same scale. Based on the definition given in R14, the
dependence of a∗

x,�t on �t has the form

a∗
x,�t = fx,�t − 5 log

(
�t

100 d

)
. (21)

We express the dependence of fx, �t on �t through polynomials.
We use the AIC/BIC to determine the optimum polynomial order
for fx, �t and the values of δSN, while to estimate the time range of
applicability of the PMM, we group the fx,�ti values in bins of width
10 d and then we compute the rms of the points in each bin. We found
that rms values are lower in a range 35–75 d since the explosion.
Among all optimum orders for BVIJH bands (see Table F1), we
select the order that the different bands have in common, i.e. order
one. With this, we prevent that differences in the rms(fx, �t) value for
different bands are due to differences in the order of the polynomial
fit. To estimate error in the parameters, we perform 104 bootstrap
resampling. Table 2 lists fx, �t fits parameters for BVIJH bands.

The left half of Fig. 6 shows the values of a∗
x,�ti

as a function of
�ti for BVIJH bands. The variation of the LOESS fits (red dashed

Table 2. Parameters for the PMM calibration.

fx, �t = cx · �t/(100 d−1) zero-point
x cx rms p(RM) ZPx rms

B 3.87+0.32
−0.26 0.09 0.05 −19.51+0.52

−0.52 0.27
V 2.78+0.31

−0.22 0.09 0.32 −20.03+0.39
−0.39 0.19

I 2.22+0.34
−0.24 0.10 0.70 −20.36+0.23

−0.23 0.15
J 2.13+0.29

−0.27 0.10 0.51 −20.64+0.12
−0.12 0.10

H 2.05+0.28
−0.28 0.09 0.92 −20.77+0.09

−0.09 0.07

Note: Parameters are valid for 35 d < �t < 75 d. Errors are the 99 per cent
CI.

lines) are within one rms (black dotted lines), which means that
polynomial fits we adopted capture almost all the dependence on
�t.

The PMM zero-points can be obtained using a sample of SNe II
at known distances where, for each SN, we have

ZPSN
x = μ∗

x − μSN
host. (22)

Here, μSN
host is the SN host galaxy distance modulus and μ∗

x is the SN
pseudo-distance modulus. The latter, for each measurement of vph

at time ti, is defined similar to equation (2) but with a∗
x,�ti

instead
of ax,�ti , i.e.

μ∗
x,i = mcorr

x,i − a∗
x,�ti

+ 5 log

(
vph,i

5000 km s−1

)
. (23)

The pdfs of μ∗
x,i are obtained through equation (23) using the pdfs

of the observables for each photospheric velocity epoch. Finally,
we combine the pdfs of μ∗

x,i in a unique μ∗
x pdf maximizing the

likelihood (equation A1) for a constant-only model.
To compute accurate ZPx values, we need SNe II in galaxies with

distances measured with the best possible precision. Among the
SNe that we compiled from the literature, there are only three (SN
1999em, SN 2003hn, and SN 2012aw) in galaxies with distances
measured through Cepheid, and five (SN 2003hn, SN 2004et, SN
2005cs, SN 2012aw, and SN 2013ej) in galaxies with distances mea-
sured with TRGB. Cepheid distances for the hosts of SN 1999em
and SN 2012aw were reported by Saha et al. (2006), while Riess
et al. (2016) reported the Cepheid distance of the host of SN 2003hn.
Comparing Cepheid distances of six galaxies in common between
the two publications (NGC 1365, NGC 3370, NGC 3982, NGC
4536, NGC 4639, and NGC 5457) we found that Cepheid distances
reported by Saha et al. (2006) are, on average, 0.19 mag greater than
those reported by Riess et al. (2016), showing an rms of 0.13 mag.
The latter could indicate a systematic difference between the two
calibrations, which can introduce an undesirable noise on the ZPx

estimation if we rescale Saha et al. (2006) distances to the Riess
et al. (2016) calibration. For this reason, we decide to use only SNe
in galaxies with TRGB distances, that can be homogenized to the
Jang & Lee (2017a) calibration, which is based on the distance to
the Large Magellanic Cloud and NGC 4258. Recalibrated TRGB
distances are listed in Column 6 of Table 1. From these five SNe
II, we discard SN 2004et since the TRGB distance of its host is at
least 0.59 mag higher compared to the distances we compute for SN
2004et and two other SNe II that exploded in the same galaxy (see
Appendix E).

The right half of Fig. 6 shows the ZPSN
x values for BVIJH. As in

the case of μ∗
x , the pdf of ZPx is obtained combining the pdfs of

ZPSN
x . Median values, 99 per cent CI, and rms values for ZPx are

summarized in Table 2.
Once the PMM zero-points are computed, we can estimate the

distance modulus for each band as μx = μ∗
x − ZPx . Median val-
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Figure 6. Left-hand panel: values of a∗
x as a function of �t for BVIJH. Black solid lines correspond to the parametric fits. Red dashed lines correspond to

LOESS regressions. Dotted lines indicate values within one rms, while blue dash-dotted lines are the inner fences. Right-hand panel: ZPx values for BVIJH
derived with four SNe II in galaxies with TRGB distances.

ues, 80 per cent CI, and rms values for μx are summarized in Ta-
ble F4, where we include the TRGB zero-point systematic error of
0.058 mag (Jang & Lee 2017a).

9.2 Hubble diagrams

To investigate the PMM distance precision, we construct HDs. We
convert heliocentric host galaxy redshifts to cosmological ones us-
ing as reference the cosmic microwave background (CMB) dipole
(Fixsen et al. 1996). Redshift errors are dominated by peculiar ve-
locities, with an rms of 382 km s−1 for local SN Ia host galaxies (z <

0.08, Wang et al. 2006), followed by the error in the determination
of the Local Group velocity (rms of 187 km s−1, Tonry et al. 2000).
CMB redshifts and their rms errors are listed in Table F4.

Taking into account the pdfs of the pseudo-distance moduli (μ∗
x)

and the pdfs of the CMB redshifts (czCMB), we compute the HD
intercept (aHD, x) maximizing the likelihood (equation A1), where
the model for the pseudo-distance modulus is given by the Hubble
law

μ∗
x = aHD,x + 5 log(czCMB). (24)

The left half of Fig. 7 shows HDs for BVIJH bands, using PMM
distances for all SNe in our set. The rms, greater than 0.5 mag for all
bands, is mostly produced by peculiar velocities of host galaxies at

low redshift. In fact, the median redshift of the host galaxies in the
HD is 1528 km s−1, where a redshift error of 382 km s−1 translates
into a magnitude error of 0.54 mag. Indeed, if we use redshifts
corrected for the infall of the Local Group towards the Virgo cluster
and the Great Attractor (czcorr) instead of CMB redshifts, we obtain
an HD rms of 0.34–0.38 mag for VIJH bands (see the right half of
Fig. 7). We note that even after infall corrections the scatter in the
HDs is still mostly due to SNe in galaxies with cz < 2000 km s−1.
Therefore, to estimate the PMM distance precision and the Hubble
constant (H0), given by

log H0 = (25 − aHD,x + ZPx)/5, (25)

we use only SNe II with cz > 2000 km s−1 and, as visible in the left
half of Fig. 8, the HD rms decreases significantly. The corresponding
values of H0 and rms are listed in Table 3.

The values of H0 range between 67.1 and 74.9 km s−1 Mpc−1.
Taking into account that the ZPx values were calibrated using TRGB
distances in the scale of Jang & Lee (2017a), our H0 values, as
expected, are consistent within the errors with those reported in
Jang & Lee (2017b), i.e. 71.17 ± 1.66 ± 1.87 km s−1 Mpc−1, which
also use the Jang & Lee (2017a) calibration.

As visible in Column 4 of Table 3, all the H0 values are compati-
ble within their errors. However, we note that H0 decreases moving
from shorter to longer wavelengths, which could suggest a system-
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5470 Ó. Rodrı́guez et al.

Figure 7. Hubble diagrams for SNe II with PMM distances and CMB redshifts (left-hand panel) and redshifts corrected for the Virgo and Great Attractor
infall (right-hand panel). Solid lines correspond to Hubble law fits. Residuals are plotted at bottom of each panel.

atic introduced by: (1) our assumption of the RV value for the SN
host galaxies, or (2) an underestimation and/or an overestimation of
the host galaxy colour excesses for the four SNe in the PMM cali-
bration set and the nine SNe at czCMB > 2000 km s−1, respectively.
To test the first possibility, we change the RV adopted for SN II host
galaxies to the lowest RV value for which the Fitzpatrick (1999)
extinction curve is defined (RV = 2.3). As is visible in Column 6 of
Table 3, there are no significant changes in the H0 values. For the
second possibility, we found that an underestimation of Eh(B–V)
for the SNe in the calibration set, or an overestimation of Eh(B–V)
for the SNe at czCMB > 2000 km s−1, of 0.05–0.07 mag can erase
the tension between the H0 values for all bands. Given the typical
statistical Eh(B–V) error of 0.097 mag (see Section 7), the probabil-
ity of obtaining an Eh(B–V) underestimation of 0.05–0.07 mag with
four objects is of 8 per cent, while to obtain an overestimation in a
same amount for nine objects is of 5 per cent. It is worth mentioning
also that the scatter in ZPx decreases going from shorter to longer
wavelengths, suggesting again a trend introduced by the combina-
tion of a large uncertainty in the colour excess estimation and the
low number statistics.

Regarding the HD scatter, we note that the rms of 0.28 mag ob-
tained with the B-band decreases to 0.15–0.18 mag for the VIJH
bands. Despite the good results, the low number of SNe II within
galaxies at czCMB > 2000 km s−1 makes the result not statistically
robust. Therefore, to check the PMM distance precision, it is nec-
essary to include more SNe II into the analysis. Thus, we include
the four SNe II used for the PMM calibration, plus other two in
galaxies having Cepheid and SN Ia distances. The latter distances
are converted to redshifts through the Hubble law (equation 24),
where for each band we use the H0 value listed in Column 4 of
Table 3 and the ZP value given in Table 2.

The right half of Fig. 7 shows the HDs computed with the selected
SNe II based on the aforementioned criterion, which correspond to
our final sample. For VI bands we obtain an HD rms of 0.15–
0.16 mag. The lowest HD rms is obtained with the J-band, whose
rms of 0.13 mag translates into a distance precision of 6 per cent.
This value, compared to the rms of 0.15–0.26 mag obtained for
optical bands, suggests that using the J-band photometry instead of
optical one to measure PMM distances can improve the precision
by at least 0.07 mag.
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SNe II as distance indicators at near-IR 5471

Figure 8. Hubble diagrams for SNe II with distances computed with the PMM, using the nine SNe II at cz > 2000 km s−1 (left-hand panel) and including the
six SNe II in galaxies with distance measured with TRGB, Cepheids, or SN Ia (right-hand panel), where the H0 values are those computed with the nine SNe
II at cz > 2000 km s−1, and used to convert distances of the six nearest SNe II to redshifts. Solid lines correspond to the Hubble law fits. Residuals are plotted
at the bottom of each panel.

For the H-band we expected a similar HD rms than for J-band
since, among BVIJH bands, the H-band is the least affected by dust
extinction. We, however, obtained an HD rms of 0.15 mag. The latter
can be partially due to the higher photometry error of the H-band
(of 0.07 mag) with respect to the error of the J-band (of 0.05 mag).

10 DISCUSSION

10.1 Statistical significance of the result

Given the small size of our SN sample, the HD rms of 0.13 mag we
measured for the J-band is not statistically robust enough to be con-
sidered as a measure of the PMM distance precision in that band.
In particular, we want to know the probability of measuring an rms
≤0.13 mag with N = 15 values drawn from a parent distribution
with standard deviation (σ ) ≥ 0.13 mag. Assuming a normal parent
distribution, the quantity (N − 1)(rms/σ )2 has a chi-square distribu-
tion with N − 1 degrees of freedom. Using this, we found that there

is a 1 per cent chance that the parent distribution has σ = 0.23 mag.
Therefore, with the evidence we have, we can set an upper limit on
the PMM distance precision with the J-band of 10 per cent with a
CL of 99 per cent.

10.2 Comparison with other methods

For a consistent comparison of our results with those from other
SN II distance measurement methods, we select results from works
that uses a sample of SNe II at z ≈ 0.01–0.03.

Table 4 lists the best distance precisions reached by other SN
II distance measurement methods along with results obtained in
this work. We note that the precision we report in this work is
significantly lower than the best dispersion obtained by other works
with SCM and PCM.

We also compare PMM and SCM applied to the same sample for
J- and H-band. For this comparison we discard SN 2002hj because
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Table 3. Hubble diagram parameters.

Alla czCMB > 2000 km s−1 Finald

czCMB czcorr RV = 3.1b RV = 2.3b

Band rms rms Hc
0 rms Hc

0 rms rms

B 0.60 0.45 74.9+10.6
−9.2 0.28 75.8+11.0

−9.6 0.30 0.26
V 0.55 0.38 71.4+8.2

−7.3 0.16 71.5+7.9
−7.1 0.16 0.16

I 0.54 0.36 69.5+6.7
−6.1 0.16 69.4+6.4

−5.8 0.16 0.15
J 0.54 0.36 68.6+5.7

−5.2 0.15 68.7+5.7
−5.2 0.15 0.13

H 0.55 0.34 67.1+5.4
−5.0 0.18 67.2+5.4

−5.0 0.18 0.15

aWe do not report the H0 values for this SN set because they are severely
affected by peculiar velocities.
bRV value adopted for SN II host galaxies.
cIn km s−1 Mpc−1. Errors are the 80 per cent CI, and include the TRGB
zero-point systematic error and the error in the determination of the Local
Group velocity.
dSet of 15 SNe II: nine SNe at czCMB > 2000 km s−1 plus six SNe in galaxies
with TRGB, Cepheids, or SN Ia distances.

Table 4. Distance precision of different methods.

Method HD rms Band #SNe Reference

PCM 0.43 Y 30 de Jaeger et al. (2015)
SCM 0.25 B 19 Olivares E. et al. (2010)
PMM 0.13 J 15 This work
PMMa 0.14 J 14 This work
PMMa 0.14 H 14 This work
SCMa,b 0.21 J 14 This work
SCMa,b 0.23 H 14 This work

aExcluding SN 2002hj from the SN sample.
bUsing the PMM parameters evaluated at 50 d.

Table 5. Error budget for the PMM J-band distances.

Error source Typical error Error on μJ

Per cent of total
error

(mag)

Eh(B–V) 0.097 mag 0.079 35.7
t0 2.6 d 0.066 24.9
ZPJ 0.050 maga 0.050 14.3
mJ 0.049 mag 0.049 13.7
vph 60 km s−1 0.040 9.2
czhel 29 km s−1 0.019 2.1
KJ 0.003 mag 0.003 0.05
EG(B–V) 0.004 mag 0.003 0.05

Total 0.132 100.0

aIt does not include the TRGB zero-point systematic error.

there is not photometry in J-band at 50 d since explosion. As visible
in Table 4, the dispersion is lower by ∼30–40 per cent in both band.

10.3 Error budget

Taking into account that the lowest HD rms is obtained with the J-
band, in Table 5 we show the statistical error budget for the distances
measured for that band. We see that 88.6 per cent of the statistical
error is induced by the errors of the first four terms: the host galaxy
colour excess, the explosion epoch, the PMM zero-point, and the
J-band photometry. Therefore, it is possible to improve the per-
formance of the PMM in the future developing a better method

to estimate Eh(B–V), selecting SNe II with explosion epoch con-
strained within a small range of time, including more SNe II in
the PMM calibration set, and increasing the quality of the J-band
photometry.

10.4 Diminishing systematics

Our results show that we are reaching a precision in distance mod-
ulus of ±0.1 mag with the PMM at near-IR wavelengths. Therefore
it is important to control systematics, and push them below 0.1 mag.
For the latter in the following, we analyse sources of systematics
affecting our results:

(1) Explosion epoch: The dependence of the PMM calibration on
explosion epoch (left half of Fig. 6) is stronger at early times, so t0

errors have a strong effect at those epochs. In order to obtain errors
lower than 0.1 mag for observations at �t � 35 d, we need SNe II
with explosion epochs constrained within 5 d.

(2) SN heliocentric redshift: When the host galaxy heliocentric
redshift is used as a proxy of the SN heliocentric redshift, a system-
atic error of

σ (Mx,�ti ,vph,i
) = 5

ln 10

162 km s−1

vph,i

(26)

is introduced into the absolute magnitude (equation 1). This effect
increases when the photospheric velocity decreases, translating into
errors � 0.1 mag for photospheric velocities �3500 km s−1. There-
fore, if optical spectra of an SN II do not show H II narrow emission
lines due to a nearby H II region or if the SN is not within a nearly
face-on galaxy, then epochs for which photospheric velocities are
greater than 3500 km s−1 are preferable.

(3) Host galaxy redshift: A galaxy is believed to be within the
Hubble flow when its redshift is greater than 0.01. At that redshift,
peculiar velocities are thought to be negligible compared with the
velocities due to the Universe expansion. However, the typical error
of 382 km s−1 translates into a distance modulus error of 0.28 mag
for z = 0.01. Including the error in the determination of the Lo-
cal Group velocity of 187 km s−1, the redshift error increases to
425 km s−1. Therefore, in order to reduce the error induced by red-
shift errors at a level lower than 0.1 mag, it is necessary to observe
SNe II within galaxies at z > 0.03.

1 1 C O N C L U S I O N S

Our main results are the following:

(1) Using nine SNe II at cz > 2000 km s−1, we obtained H0

ranging between 67.1 and 74.9 km s−1 Mpc−1, and an HD rms of
0.15–0.28 mag.

(2) Adding six SNe II with host galaxy distances measured with
TRGB, Cepheids, or SN Ia (total 15), which distances were con-
verted to redshifts through the Hubble law, we obtain an HD rms of
0.15–0.26 mag in the optical bands, which reduces to 0.13 mag in
the J-band.

In order to test further the promising results we are obtaining
in this work, it is necessary to carry out an optical and near-IR
photometric follow-up of SNe II at z > 0.03 and with explosion
epochs constrained within 5 d. For these SNe, it is necessary to take
at least one optical spectrum at any epoch between 35 and 75 d since
explosion.

It is evident from Fig. 1 that the quality of the near-IR photometry
used in this work is, in general, lower than the optical one. Therefore,
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we expect that increasing the quality of the near-IR photometry will
further improve our results.
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APPENDIX A : MODEL SELECTION

For the model selection we consider two criteria: the ‘an informa-
tion criterion’ (AIC, Akaike 1974), which is based on information
theory, and the BIC (Schwarz 1978), which is based on Bayesian
inference. From a set of R models, the AIC selects the model that
have the least information loss with respect to the unknown true
model, while the BIC selects the model with the highest likelihood
L, given by

L(model|{Xi}) = ∏N

i=1 p(Xi |model). (A1)

Here, Xi is the i-th observed data, p(Xi|model) is the probability
density function (pdf) of Xi given the model, and N is the number
of observed data points. Quantitatively, the AIC and BIC search
for a balance between overfitting and underfitting penalizing the
likelihood. For the AIC and the BIC, the best model is one that
minimizes the quantity

AIC ≡ −2 lnLmax + 2Nk/(N − k − 1) (A2)

(corrected for small sample sizes, Sugiura 1978), and

BIC ≡ −2 lnLmax + k ln N (A3)

(Schwarz 1978), respectively, where Lmax is the maximum likeli-
hood achievable by the model, and k is the number of parameters
of the model.

It is known that a model selection based only on the minimum
AIC value reached for a certain model does not provide enough
evidence to prefer that model over the other ones (e.g. Akaike 1978;
Burnham & Anderson 2002). Instead, it is necessary to include into
the analysis the strength of evidence in favour of each model. To
quantify the latter, it has been proposed to use the likelihood of the
model given the data (e.g. Akaike 1978) which, normalized by the
sum of likelihoods of all R models, defines the Akaike weights

wi = e−0.5(AICi−AICmin)∑R

r=1 e−0.5(AICr−AICmin)
(A4)

(e.g. Burnham & Anderson 2002). Here, AICmin is the minimum
AIC value reached among the R models used in the analysis. The
same idea is applicable for the BIC (Burnham & Anderson 2002),
which defines the Bayesian weights

Pi = e−0.5(BICi−BICmin)∑R

r=1 e−0.5(BICr−BICmin)
. (A5)

For the AIC and BIC, the evidence ratios defined as wi/wj and
pi/pj, respectively, allow comparison of the evidence in favour of
the ith model as the best model versus the jth model. As reference, if
evidence ratios are greater than 13.0, then there is a strong evidence
in favour of the ith model over the jth model (e.g. Liddle 2007). If
several models have substantial support as the best (e.g. evidence
ratios <13.0), then, by the principle of parsimony, we select the one
with less parameters.

In the case of least-square regressions, with random errors nor-
mally distributed and with constant variance,

− 2 lnLmax = N ln 2πσ̂ 2 + N (A6)

(e.g. Burnham & Anderson 2002, p. 17), where σ̂ 2 is the average of
squared residuals around the model. The AIC and BIC in this case
can be expressed as

AIC = ln σ̂ 2 + (N + k − 1)/(N − k − 1), (A7)

BIC = ln σ̂ 2 + k/N · ln N. (A8)

Since σ̂ 2 is computed from data, it must be considered as a model
parameter.

In the case of non-parametric regressions (NPR), like LOESS,
k is not defined. Instead, it has been proposed to use the trace of
the smoother matrix, tr(H), which is a quantity analogous to the
number of parameters in a parametric regression (Cleveland et al.
1992; Hurvich, Simonoff & Tsai 1998). Replacing k = tr(H) +
1 in equation (A7) allows us to obtain the AIC version for NPR
presented by Hurvich et al. (1998).

To check the normality of random errors, it is necessary to carry
out a normality test. As we do not measure random errors directly,
we use residuals instead. However, widely used normality tests like
the Shapiro & Wilk (1965) and the Jarque & Bera (1987) test, when
applied over residuals, have little power to reject the null hypothesis
even when the random errors are not normal (Das & Imon 2016).
Imon (2003) proposed a statistic more suitable to verify normality
for regressions, which is based on the Jarque & Bera (1987) test
and on the use of unbiased moments. The statistic of the test, called
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Rescaled Moment (RM), is defined as

RM ≡ Nc3
[
μ̂2

3/μ̂
3
2/6 + c · (μ̂4/μ̂

2
2 − 3)2/24

]
(A9)

(Rana, Midi & Imon 2009), where μ̂i is the ith sample moment, and c
≡ N/(N − k). Under the null hypothesis of a normal distribution, the
RM statistic is asymptotically distributed as a chi-square distribution
with two degrees of freedom.

APPENDIX B: SN II SPECTRA LIBRARY

In order to compute total-to-selective broad-band extinction ratios
(Section 5 and 7) and K-corrections (Section 6) for SNe II, it is
necessary to know their SED. The latter can be estimated through
theoretical models (e.g. Sanders et al. 2015; de Jaeger et al. 2015,
2017b) or, as in Olivares (2008) and in this work, through spectro-
scopic observations.

In practice, spectra are not always taken with the slit oriented
along the parallactic angle (PA), so their shape can be modified
due to differential refraction (Filippenko 1982). Even when the
slit is oriented along the PA, contamination due to the light from
the host galaxy can produce spurious SEDs. Therefore we have to
check the flux calibration of spectra before using them as proxies
for the SED. To do the latter, we compute colour indices from the
spectra and then we compare them with those obtained using the
observed photometry. If the spectrum is well flux-calibrated, then
colour differences should be small.

Photometric colour indices at the epoch of the spectra can be
computed through the light-curve fitting procedure presented in
Section 4, while to compute a x1 − x2 colour from a spectrum we
use

x1−x2 = −2.5 log

(∫
dλSx1,λFλλ∫
dλSx2,λFλλ

)
+ ZPx1−x2 . (B1)

Here, λ is the wavelength in the observer’s frame, Fλ is the observed
SED of the source, Sx1,λ and Sx2,λ are the transmission functions
of the photometric band x1 and x2, respectively, and ZPx1−x2 is the
zero-point of the colour scale, which can be computed using a star
with good spectrophotometric observations.

We use the Vega SED published by Bohlin & Gilliland (2004)4

and the magnitudes published by Fukugita et al. (1996): BVega =
0.03, VVega = 0.03, and IVega = 0.024 mag, and by Cohen et al.
(1999): JVega = −0.001, HVega = 0.000, and KVega = −0.001 mag.
We adopt the transmission functions given in Hamuy et al. (2001).
For B–V, V–I, J–H, and H–K we obtained ZPB–V = 0.425, ZPV –I =
0.320, ZPJ–H = 0.131, and ZPH–K = −0.077 mag, respectively.

Among the SN II spectra available from different sources, we
select those: (1) observed in the photospheric phase, and (2) cov-
ered by B- and V-band photometry. To check the flux-calibration
in the blue and red part of the optical spectra, we compute
�x1−x2 ≡ (x1−x2)phot−(x1−x2)spec using the B–V and V–I colours,
respectively, while for the near-IR spectra we use the J–H and H–K
colours, respectively. We also compute the intrinsic B–V colour to
represent the shape of the SED. For optical spectra we compute
this quantity from dereddened and deredshifted spectra, while for
near-IR we compute the intrinsic B–V colour from the photometry
(see Section C).

Fig. B1 shows the values of �B–V and �V–I (top), and �J–H

and �H–K (bottom), along with the intrinsic B–V values for the
collected spectra. For the SN II spectra library, we select spectra
with |�x1−x2 | < 0.1 mag. Finally, we correct spectra for redshift

4ftp://ftp.stsci.edu/cdbs/current calspec/alpha lyr stis 008.fits

Figure B1. Differences between photometric and spectroscopic colours,
along with the intrinsic B–V colour. Dashed lines indicate differences within
±0.1 mag.

and for Galactic and host galaxy extinction, assuming a Fitzpatrick
(1999) extinction curve with RV = 3.1 for both our Galaxy and
hosts.

Table F5 summarizes the details of the spectra in the library: SN
name (Column 1), Galactic colour excess (Column 2), heliocentric
redshift (Columns 3), host galaxy colour excess (Column 4), and
references for the data (Column 5).

APPENDI X C : C 3 LI NEARI TY

Assuming that a C3 can be well represented by a polynomial fit, the
linearity of a C3 can be demonstrated if there is a high fraction of
SNe II showing C3s with straight line as optimal polynomial. Due to
the scarcity of K-band photometry, we use only BVIJH photometry
for this analysis.

With BVIJH photometry set it is possible to define a total of 10
colour indices and, therefore, 90 colour–colour plots (i.e. discarding
one-to-one correlations). Among them, only 36 combinations give
us non-superfluous information, which we analyse for host galaxy
colour excess estimation.

Before computing intrinsic C3 slopes, photometry must be cor-
rected for Galactic and host galaxy extinction, and for K-correction.
Since we need the prior knowledge of the intrinsic B–V, we need
to know in advance the value of host galaxy colour excess. For the
latter, we apply zero-order correction as prior values. The intrinsic
B–V can be computed easily from the relation between the observed
and the intrinsic B–V colour, i.e.

(B−V )obs = B−V + (RG
B −RG

V ) · EG(B−V )

+ (K s
B/z−K s

V /z) · z + (Rh
B −Rh

V ) · Eh(B−V ), (C1)

where (B–V)obs is the observed B–V. In Sections 5, 6, and 7 we
found that RG

V , K s
B/z, K s

V /z are linear on B–V, while RG
B , Rh

B , and
Rh

V are quadratic on B–V. Therefore, solving a quadratic equation,
we can obtain B–V in terms of (B–V)obs, EG(B–V), z, Eh(B–V), and
the fit parameters of RG

B , RG
V , K s

B/z, K s
V /z, Rh

B , and Rh
V .

For each SN and for each colour combination, we adjust a poly-
nomial fit. The optimum degree is determined using the AIC/BIC
and the principle of parsimony.
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Figure C1. Fraction of linear C3s (colourbar) for different colour com-
binations, along with the median (M) and the rms (R) of the C3 slopes
measured from N SNe in our set. Empty spaces correspond to superfluous
colour combinations.

Figure C2. Top: V–I versus B–V C3 slopes distribution for the SNe in our
set. Red ticks mark the specific slope values, and black dashed line marks
the median of the slopes. Bottom: V–I versus B–V diagram showing the 24
SNe II dereddened using host galaxy colour excesses from the C3 method,
along with residuals. In both panels, blue dash-dotted lines are the inner
fences.

Fig. C1 shows the fraction of SNe that are well represented by
a straight line. In 20 of the 36 colour combinations, the number of
SNe displaying a linear C3 is over 70 per cent.

Assuming the C3 linearity for different combinations, we com-
pute slopes of all SNe in our set. For each colour combination we
compute the median and rms of the C3 slopes. Fig. C2 shows this
process for the V–I versus B–V C3s.

A P P E N D I X D : SN I D EX P L O S I O N E P O C H S

To estimates phases of SNe II with SNID, we follow similar pro-
cedures done by Blondin & Tonry (2007), Silverman et al. (2012),
and Gutiérrez et al. (2017).

Among the spectra available from different sources, we select
spectra: (1) of SNe II with explosion epoch constrained within 10 d
through photometric information, where for these SNe we assume
the mid-point between the last non-detection and the first detection
as the explosion epoch (t0, ln), (2) spanning a rest-frame wavelength
range from 4100 to 7000 Å with an S/N � 10 Å−1, and (3) within
40 d since the explosion epoch. We do not include spectra at >40 d
since explosion because in literature it is less abundant than spectra
at earlier epochs (see e.g. Fig. 5 in Gutiérrez et al. 2017) which could
bias the age determination towards earlier epochs, and also because
at late time the spectral evolution is slower than at early phases,
which makes more difficult to accurately determine ages with SNID
(Blondin & Tonry 2007). If for a given epoch an SN has several
spectra within 1 d, then we keep that with higher S/N. With the
aforementioned constraints, we generate an SNID template library
with 242 spectra of 56 SNe II, where each spectrum is corrected
by heliocentric redshift. Details of this SN II templates library are
summarized in Table F6.

Fig. D1 shows the phase distribution of the templates. The library
has, on average, 6 spectra per day, while almost all the variation is
within ±2 rms around the mean.

To create the template library, we run the logwave rou-
tine (which is part of the SNID program) with the options
w0=3000 w1=8400 nw = 1024. This generates SNID spec-
tral templates with a bin in the logarithmic wavelength space of
ln(8400/3000)/1024≈0.001, equivalent to 300 km s−1.

Once the template library is created, the next step is to test how
good are the phases since explosion computed with SNID and our

Figure D1. Phase distribution of the templates in our SNID SN II library.
The dashed line indicates the average of spectra per bin, while dark grey and
light grey regions contain values within ±1 and ±2 rms around the mean,
respectively.
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Figure D2. 2D histogram of differences between phases since explosion
estimated from last non-detection (t − t0, ln) and from SNID (t − t0)SNID

versus the rlap parameter (top), and the rms of phase differences versus rlap
(bottom).

new library. To do this, we run SNID with each library spectrum as
input, using the avoid option to avoid templates of the same SN.
We record all phases and rlap values (which indicate the correlation
strength) of the templates found to be similar to the input spectrum
and with a redshift within ±0.01. The top panel of Fig. D2 shows
the 2D histogram of differences between phases since explosion
estimated from last non-detection and from SNID, versus rlap. To
correlate rlap with an rms error in phase, we compute the rms of
phase differences in bins of width 2 rlap, which is shown at bottom
of Fig. D2. To convert rlap to an rms error, we fit a 1/rlap polynomial
of order 2 (determined by the AIC/BIC), given by

rms = (3.0 + 72.0/rlap − 75.0/rlap2) d. (D1)

In general, only one spectrum (e.g. the earliest) is used to estimate
explosion epochs with SNID (e.g. Anderson et al. 2014b; Gutiérrez
et al. 2017). We expect, however, that including all available spectra
of an SN in the analysis will result in a best estimation of the
explosion epoch. To explore this possibility, we select all SNe in
our library with five or more spectra and perform the following
procedure:

(1) For each SN we randomly choose one spectrum, computing
the explosion epoch (t0, SNID) and t0, SNID − t0, ln.

(2) We compute the median (i.e. the offset) and the rms of the
t0, SNID − t0, ln distribution.

(3) We repeat steps 1 and 2 102 times, recording the median of
the offsets and the rms values.

(4) We repeat steps 1–3, but now randomly choosing two and
then three spectra per SN as input.

Table D1 shows the result of the aforementioned process, i.e. the
offset and the rms as a function of the number of input spectra.
Using only one spectrum we obtain a typical rms of 5.0 d, which
is similar than the rms of 5.2 d reported by Gutiérrez et al. (2017).

Table D1. Result of SNID simulations.

# of input spectra Md(t0, SNID − t0,ln) rms(t0, SNID − t0,ln)
(d) (d)

1 −0.6+1.0
−0.6 5.0+0.9

−0.6
2 −0.7+0.9

−0.7 4.1+0.9
−0.4

3 −0.6+0.6
−0.9 4.1+0.2

−0.4

Table D2. Observed quantities of SN 1980K and SN 2002hh.

SN �t J vph Eh(B–V) Referencesb

(d) (mag) (km s−1) (mag)

1980K 54.4+7.7
−7.2 11.29+0.06

−0.05 4013+165
−143 0.0 1, 2, 3, 4, 5

2002hh 44.5+2.0
−2.0 12.30+0.04

−0.04 4714+53
−56 2.74 ± 0.11a 6, 7, 8, 9

aThe colour excess was computed adopting the Cardelli et al. (1989) extinc-
tion curve and RV = 1.9 (Pozzo et al. 2006). For that extinction curve, we
obtained Rh

J = 0.402.
b(1) IAUC 3532; (2) Thompson (1982); (3) Dwek et al. (1983); (4) Schmidt
et al. (1992); (5) WISeREP; (6) IAUC 8005; (7) IAUC 8024; (8) Pozzo et al.
(2006); and (9) Faran et al. (2014a).

We see that using more than one spectrum the rms is reduced down
to 4.1 d. The median of the offsets is around −0.6 d, independent
of the number of input spectra in the analysis. This offset means
that explosion epochs computed with SNID are 0.6 d earlier than
those estimated with the non-detection. Hereafter, for the explosion
epochs derived with SNID we assume an intrinsic error of 5.0 d
when only one spectrum is used, or 4.1 d whether more spectra are
available.

A P P E N D I X E: TH E D I S TA N C E TO N G C 6 9 4 6

The distance to NGC 6946, host of SN 2004et, was measured with
the TRGB method by Tikhonov (2014, hereafter T14), Murphy
et al. (2018, hereafter M18), and Anand et al. (2018, hereafter
A18), and correspond to μ = 29.39 ± 0.14 mag in the Jang &
Lee (2017a) calibration. The PMM J-band distance for SN 2004et
obtained in this work (μJ = 28.83 ± 0.12 mag) is in conflict with the
TRGB estimation. To investigate the reason for this discrepancy, we
compute distances to other two SNe II that exploded in NGC 6946:
SN 1980K and SN 2002hh. These SNe have near-IR photometry,
but we did not include them into the analysis because they do not
have photometry in the five bands we use (i.e. BVIJH).

Using data given in Table D2 , we obtain μJ = 28.73 ± 0.18
and 28.77 ± 0.11 mag for SN 1980K and SN 2002hh, respectively,
which are consistent with the distance computed with SN 2004et.
There is then a tension of at least ∼4 rms between the PMM and the
TRGB distance. This discrepancy could be due to: (1) all three SNe
II are intrinsically brighter at least 0.56 mag than the SNe II we use
for the calibration, or (2) there are issues with the TRGB distances
reported by T14, M18, and A18. We noted that the latter two inde-
pendent studies used almost the same data but obtained significantly
different values of the TRGB F814W magnitude (F814WTRGB):
26.00 ± 0.04 mag in M18 and 25.84 ± 0.11 mag in A18. T14 used
another set of image data, which is closer to the centre of the galaxy
than those used in M18 and A18, and obtained a lower F814WTRGB

value (25.79 ± 0.05 mag). At this moment, the origin of this large
discrepancy is unclear. Taking this into account, we safely remove
SN 2004et from the calibration and the final sample.
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APPENDIX F: TABLES

Table F1. Akaike and Bayesian weights, and evidence ratios for RG
x , Ks

x/z,
Rh

x , and fx, �t. The full table is available online.

RG
B RG

V RG
I

ia wi Pi
w6
wi

P2
Pi

wi Pi
w2
wi

P2
Pi

wi Pi
w4
wi

P1
Pi

0 0.00 0.00 – – 0.00 0.00 – – 0.00 0.00 – –
1 0.00 0.00 – – 0.05 0.34 7.4 1.8 0.14 0.76 2.3 1.0
2 0.02 0.50 19.5 1.0 0.37 0.60 1.0 1.0 0.05 0.09 6.4 8.4
3 0.03 0.21 13.0 2.4 0.16 0.06 2.3 10.0 0.02 0.01 16.0 76.0
4 0.10 0.16 3.9 3.1 0.06 0.00 6.2 – 0.32 0.09 1.0 8.4
5 0.23 0.09 1.7 5.6 0.04 0.00 9.2 – 0.30 0.04 1.1 19.0
6 0.39 0.04 1.0 12.5 0.12 0.00 3.1 – 0.12 0.01 2.7 76.0
7 0.14 0.00 2.8 – 0.06 0.00 6.2 – 0.03 0.00 10.7 –
8 0.09 0.00 4.3 – 0.15 0.00 2.5 – 0.02 0.00 16.0 –

RG
J RG

H RG
K

ia wi Pi
w0
wi

P3
Pi

wi Pi
w0
wi

P3
Pi

wi Pi
w1
wi

P6
Pi

0 0.80 0.18 1.0 2.8 0.81 0.20 1.0 2.3 0.06 0.00 13.2 –
1 0.13 0.05 6.2 10.0 0.13 0.06 6.2 7.7 0.79 0.09 1.0 2.9
2 0.01 0.01 80.0 50.0 0.01 0.02 81.0 23.0 0.12 0.06 6.6 4.3
3 0.06 0.50 13.3 1.0 0.05 0.46 16.2 1.0 0.03 0.16 26.3 1.6
4 0.00 0.17 – 2.9 0.00 0.14 – 3.3 0.00 0.08 – 3.2
5 0.00 0.06 – 8.3 0.00 0.08 – 5.8 0.00 0.20 – 1.3
6 0.00 0.02 – 25.0 0.00 0.02 – 23.0 0.00 0.26 – 1.0
7 0.00 0.01 – 50.0 0.00 0.02 – 23.0 0.00 0.15 – 1.7

aPolynomial order.

Table F2. Fits parameters for RG
x , Ks

x/z, and Rh
x .

x c0, x c1, x c2, x rms p(RM)

RG
x = c0,x + c1,x (B−V ) + c2,x (B−V )2†

B 4.074+0.003
−0.003 −0.107+0.014

−0.012 −0.046+0.010
−0.011 0.009 0.42

V 3.089+0.002
−0.002 −0.048+0.003

−0.002 – 0.006 0.32

I 1.722+0.002
−0.002 −0.004+0.002

−0.002 – 0.003 0.86

J 0.8135+0.0008
−0.0008 – – 0.0012 0.67

H 0.5184+0.0003
−0.0003 – – 0.0004 0.43

K 0.3484+0.0001
−0.0001 – – 0.0001 0.46

Ks
x/z = c0,x + c1,x (B−V )†,�

B 0.51+0.06
−0.06 6.23+0.09

−0.09 – 0.41 0.23

V −0.51+0.05
−0.05 2.87+0.07

−0.07 – 0.35 0.13

I −0.40+0.11
−0.11 1.14+0.17

−0.17 – 0.46 0.53

J −0.77+0.09
−0.09 – – 0.21 0.63

H −0.82+0.05
−0.05 – – 0.14 0.58

K −1.40+0.05
−0.05 – – 0.15 0.61

Rh
x = c0,x + c1,x (B−V ) + c2,x (B−V )2†

B 4.085+0.002
−0.003 −0.097+0.011

−0.010 −0.049+0.008
−0.009 0.008 0.97

V 3.092+0.002
−0.002 −0.034+0.007

−0.007 −0.009+0.006
−0.005 0.006 0.26

I 1.724+0.002
−0.002 −0.005+0.002

−0.002 – 0.003 0.95

J 0.8140+0.0008
−0.0009 – – 0.0012 0.60

H 0.5187+0.0002
−0.0003 – – 0.0004 0.36

K 0.3485+0.0001
−0.0001 – – 0.0001 0.58

Note: Fits are valid for −0.2 < B–V < 1.5 and −0.05 < B–V < 1.35 for BVI and JHK,

respectively (†), and z < 0.032 (�). Errors are the 99 per cent CI.
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Table F3. SN II parameters. The full table is available online.

Eh(B–V) Discovery taln tafd ta0,SNID ta0,final Referencesd

SN {B–V, V–I} O10 (JD) (d) (d) (d) (d)

1999em 0.035+0.105
−0.105(0.082) 0.106(0.052) 2451480.94 −8.99 −1.43 −6.37(4.16) −5.57+2.96

−2.63 IAUC 7294, E03

2002gd 0.154+0.111
−0.106(0.084) – 2452553.37 −4.09b −2.84b 0.73(4.48) −3.42+0.46

−0.53 IAUC 7986, IAUC 7990

2002gw 0.202+0.106
−0.108(0.084) 0.132(0.061) 2452560.77 −31.218 −1.637 −4.29(4.28) −5.74+3.22

−4.73 IAUC 7995, IAUC 7996

Notes: Column 1: SN names. Column 2: host galaxy colour excesses estimated with the V–I versus B–V C3, where errors correspond to the 80 per cent CI, and the rms in parenthesis. Column

3: host galaxy colour excesses from Olivares E. et al. (2010) recalibrated by R14, with rms in parenthesis. Column 4: discovery epochs. Columns 5 and 6: last non-detection and first detection

epochs, respectively. Columns 7 and 8: explosion epochs estimated with SNID and our SN II template library, without any prior (rms error in parenthesis) and with photometric priors, respectively.

Column 9: references for discovery, last non-detection, and first detection epochs.
aEpochs with respect to the discovery epoch.
bValue obtained through polynomial fits to pre-maximum VRI photometry.
cOptical spectra not published.
dE03: Elmhamdi et al. (2003); P09: Pastorello et al. (2009); R11: Roy et al. (2011); F11: Fraser et al. (2011); CF: C. Feliciano report on the Bright Supernova website (http://www.rochesterastro

nomy.org/snimages/).

Table F4. CMB redshifts and PMM distance moduli. The full table is available online.

Galaxy czCMB SN μB μV μI μJ μH

(km s−1)

NGC 6946 −141(382) 2004et 28.40+0.60
−0.60(0.47) 28.57+0.45

−0.45(0.35) 28.67+0.27
−0.27(0.21) 28.83+0.15

−0.15(0.12) 28.75+0.11
−0.11(0.09)

M74 359(383) 2013ej 30.21+0.56
−0.56(0.44) 30.08+0.42

−0.42(0.33) 30.02+0.25
−0.25(0.20) 29.94+0.14

−0.14(0.11) 29.94+0.11
−0.11(0.09)

M51a 636(382) 2005cs 29.62+0.51
−0.51(0.40) 29.57+0.39

−0.39(0.30) 29.54+0.24
−0.24(0.19) 29.61+0.14

−0.14(0.11) 29.61+0.11
−0.11(0.09)

Note: We adopt RV = 3.1 for our Galaxy and hosts. Errors are the 80 per cent CI and rms (in parenthesis), and include the TRGB zero-point systematic error.

Table F5. SNII spectra library. The full table is available online.

SN EG(B–V)a czhelio Eh(B–V)b Referencesd SN EG(B–V)a czhelio Eh(B–V)b Referencesd

(mag) (km s−1) (mag) (mag) (km s−1) (mag)

1990E 0.022 1362 0.616 1 2003Z 0.033 1289 0.065 5, 7
1992ba 0.050 1135 0.049 2 2003bl 0.023 4295 0.103 2
1996W 0.036 1617 0.252 3 2003bn 0.056 3897 0.019 2

aValues from Schlafly & Finkbeiner (2011).
bValues computed in this work.
cSN with useful near-IR spectra.
d(1) Schmidt et al. (1993); (2) Gutiérrez et al. (2017); (3) Inserra et al. (2013); (4) Pastorello et al. (2004); (5) Faran et al. (2014a); (6) Faran et al. (2014b); (7)
Spiro et al. (2014); (8) Pastorello et al. (2006); (9) Pastorello et al. (2009); (10) Takáts et al. (2014); (11) Takáts et al. (2015); (12) Dall’Ora et al. (2014); (13)
Barbarino et al. (2015); (14) Valenti et al. (2014); (15) Dhungana et al. (2016); (16) Yuan et al. (2016); and (17) Terreran et al. (2016).

Table F6. SNID templates. The full table is available online.

SN td tln − td tfd − td t − t0, ln Referencesc

(d) (d) (d) (d)

1986L 2446711.1 −5.6 0.0 6,7,[27:33] IAUC 4260, 1
1988A 2447179.299 −3.099 −1.968 13 IAUC 4533, IAUC 4540, 1
1990E 2447937.62 −5.12 0.0 9,19 IAUC 4965, 2

Notes: Column 1: SN names. Column 2: discovery epochs. Column 3 and 4: last non-detection and first detection epochs, respectively, with respect to the
discovery epoch. Column 5: spectra phase values with respect to the explosion epoch, which we assume as the mid-point between the last non-detection and
the first detection. Adjacent ages are listed in brackets. Column 6: references for data.
aExplosion time constraint obtained through polynomial fit to pre-maximum VRI photometry.
bC. Feliciano report on the Bright Supernova website (http://www.rochesterastronomy.org/snimages/)
c(1) Gutiérrez et al. (2017); (2) Schmidt et al. (1993); (3) Pastorello et al. (2004); (4) Elmhamdi et al. (2003); (5) Faran et al. (2014a); (6) Shivvers et al. (2017);
(7) Faran et al. (2014b); (8) Hicken et al. (2017); (9) Harutyunyan et al. (2008); (10) Spiro et al. (2014); (11) Sahu et al. (2006); (12) Gal-Yam et al. (2008);
(13) Pastorello et al. (2009); (14) Pastorello et al. (2006); (15) Quimby et al. (2007); (16) Sako et al. (2018); (17) Inserra et al. (2013); (18) Gal-Yam et al.
(2011); (19) Dall’Ora et al. (2014); (20) Tomasella et al. (2018); (21) Zhang et al. (2014); (22) Valenti et al. (2015); (23) Valenti et al. (2014); (24) Childress
et al. (2016); (25) Dhungana et al. (2016); (26) Yuan et al. (2016); (27) Yaron et al. (2017); (28) Terreran et al. (2016); and (29) Valenti et al. (2016).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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