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SMOOTHNESS OF TOPOLOGICAL EQUIVALENCE ON THE

HALF LINE FOR NONAUTONOMOUS SYSTEMS

ÁLVARO CASTAÑEDA, PABLO MONZÓN, AND GONZALO ROBLEDO

Abstract. We study the differentiability properties of the topological equiva-
lence between a uniformly asymptotically stable linear nonautonomous system
and a perturbed system with suitable nonlinearities. For this purpose, we con-
struct a uniformly continuous homeomorphism inspired in the Palmer’s one
restricted to the positive half line, providing sufficient conditions ensuring its
Cr–smoothness. Additionally, we study the preservation of the uniform sta-
bility properties by this homeomorphism.

1. Introduction

This work is devoted to study the relation between the solutions of the systems

(1) ẋ = A(t)x

and

(2) ẏ = A(t)y + f(t, y),

where A : R+ → M(n,R) and f : R+ × R
n → R

n have the properties:

(P1) A(t) is continuous and sup
t∈R+

||A(t)|| = M > 0.

(P2) The system (1) is uniformly asymptotically stable, namely, there exist con-
stants K ≥ 1 and α > 0 such that its transition matrix Φ(t, s) verifies

(3) ||Φ(t, s)|| ≤ Ke−α(t−s) for any t ≥ s ≥ 0.

(P3) For any t ≥ 0 and any couple (y, ȳ) ∈ R
n × R

n it follows

(4) | f(t, y)− f(t, ȳ) |≤ γ | y − ȳ | and | f(t, y) |≤ µ,

where || · || and | · | denote a matrix norm and vector norm respectively.
In the autonomous case, P. Hartman [6] and D.M. Grobman [5] found a local

homeomorphism between the solutions of a nonlinear system and the solutions of
its linearization around an hyperbolic equilibrium point. C. Pugh in [14] enhanced
the previous result by constructing an explicit and global homeomorphism for the
particular case of perturbed linear systems, also requiring hyperbolicity of the equi-
librium point.

In the nonautonomous case, K.J. Palmer in [11] extended the Pugh’s result
using the exponential dichotomy as a natural version of the hyperbolicity property.
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2 CASTAÑEDA, MONZÓN, AND ROBLEDO

In addition, Palmer introduced the concept of topological equivalence, which was
generalized by J.L Shi et. al in [17] as strongly topological equivalence.

Now, in order to present the aforementioned concepts, we will consider an interval
J ⊂ R.

Definition 1. [3, 10] The linear system (1) has an exponential dichotomy property
on J ⊂ R if there exists a projection P 2 = P and constants K̄ ≥ 1, ᾱ > 0, such
that its fundamental matrix Φ(t) verifies:

(5)

{
||Φ(t)PΦ−1(s)|| ≤ K̄e−ᾱ(t−s) for any t ≥ s t, s ∈ J,

||Φ(t)(I − P )Φ−1(s)|| ≤ K̄e−ᾱ(s−t) for any s ≥ t, t, s ∈ J.

Definition 2. The systems (1) and (2) are J−topologically equivalent if there exists
a function H : J × R

n → R
n with the properties

(i) If x(t) is a solution of (1), then H [t, x(t)] is a solution of (2),
(ii) H(t, u)− u is bounded in J × R

n,
(iii) For each fixed t ∈ J , u 7→ H(t, u) is an homeomorphism of Rn,

In addition, the function G(t, u) = H−1(t, u) has properties (ii)–(iii) and maps
solutions of (2) into solutions of (1).

Definition 3. The systems (1) and (2) are J−strongly topologically equivalent if
they are J−topologically equivalents and H is a uniform homeomorphism. Namely,
for any ε > 0, there exists δ(ε) > 0 such that |u−ũ| < δ implies |H(t, u)−H(t, ũ)| <
ε and |G(t, u)−G(t, ũ)| < ε for any t ∈ J .

Definition 4. The systems (1) and (2) are Cr J−topologically equivalent if are
J−topologically equivalent and u 7→ H(t, u) is a Cr–diffeomorphism, with r ≥ 1.

Notice that Definition 1 implies uniform asymptotic stability when P = I and
J = R

+ as in the property (P2). We point out that definitions 2 and 3 are slight
modifications of the ones introduced by Palmer and Shi, since they considered the
particular cases J = R in [11, 17] and J = R

+ in [12].
In the Section 2 we state our first result, which provides sufficient conditions

ensuring the R+−strongly topological equivalence between systems (1) and (2). We
follow the lines of Palmer [11] which constructs the maps H and G by combining
the Green’s function associated to the exponential dichotomy with a perturbation
f satisfying (P3), obtaining a R–topological equivalence, this was improved by Shi
[17] which obtains a R–strong topological equivalence. Palmer and Shi’s results
are extended in [8, 16] by considering non–exponential dichotomies an properties
more general than (P3). Nevertheless to the best of our knowledge, this Green’s
function approach has always assumed that (1) has an exponential dichotomy in R

rather than in R
+. In this context, our construction has technical differences with

the previous works and has interesting consequences from a differentiability point
of view.

In the Section 3 we show that if (2) has an equilibrium, it is unique and the
R

+–strongly topological equivalence preserves the uniform asymptotic stability be-
tween the equilibria of both systems. We also compare this preservation result
with a Lyapunov’s converse result, which show that both systems admit the same
Lyapunov function under smallness assumptions.

The Section 4 states our main Theorem, which provides additional conditions
on the smoothness of f which ensures that (1) and (2) are Cr

R
+− topologically
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equivalent. The restriction to R
+ allows us to work in a simpler way than [1].

It is important to note that, contrarily to the autonomous context, in the nonau-
tonomous framework there are few results about the global differentiability of maps
H and G and we refer the reader to [4] for local results.

2. Strongly topological equivalence on the half line

The following Theorem provides a sufficient condition ensuring the R+−strongly
topological equivalence between the systems (1) and (2).

Theorem 1. Assume that (P1)–(P3) are satisfied and

(6)
Kγ

α
< 1,

then systems (1) and (2) are R
+−strongly topologically equivalent.

Proof. In order to make a more readable proof, we will decompose it in several
steps. Namely, the step 1 defines two auxiliary systems whose solutions are used in
the step 2 to construct the maps H and G. To prove that these maps establish a
topological equivalence, the properties (i)–(ii) are verified in the step 3, while the
uniform continuity is proved in the steps 4 and 5.

Step 1: Preliminaries. Let t 7→ x(t, τ, ξ) and t 7→ y(t, τ, η) be solutions of (1)
and (2) passing through ξ and η at t = τ . Now, we will consider the initial value
problems

(7)

{
w′ = A(t)w − f(t, y(t, τ, η))

w(0) = 0,

and

(8)

{
z′ = A(t)z + f(t, x(t, τ, ξ) + z)

z(0) = 0.

By using the variation of parameters formula we have that

(9) w∗(t; (τ, η)) = −

∫ t

0

Φ(t, s)f(s, y(s, τ, η)) ds

is the unique solution of (7). Let BC(R+,Rn) be the Banach space of bounded
continuous functions with the supremum norm. Now, for any couple (τ, ξ) ∈ R

+ ×
R

n, we define the operator Γ(τ,ξ) : BC(R+,Rn) → BC(R+,Rn) as follows

(10) φ 7→ Γ(τ,ξ)φ :=

∫ t

0

Φ(t, s)f(s, x(s, τ, ξ) + φ) ds.

Since γK/α < 1 it is easy to see by (P2)–(P3) that the operator Γ(τ,ξ) is a
contraction and by the Banach fixed point theorem it follows that

z∗(t; (τ, ξ)) =

∫ t

0

Φ(t, s)f(s, x(s, τ, ξ) + z∗(s; (τ, ξ))) ds

is the unique solution of (8).
On the other hand, by uniqueness of solutions it can be proved that

(11) z∗(t; (τ, ξ)) = z∗(t; (r, x(r, τ, ξ))) for any r ≥ 0,

and

(12) w∗(t; (τ, ν)) = w∗(t; (r, y(r, τ, ν))) for any r ≥ 0.
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Step 2: Construction of the maps H and G. For any t ≥ 0 we define the maps
H(t, ·) : Rn → R

n and G(t, ·) : Rn → R
n as follows:

H(t, ξ) := ξ +

∫ t

0

Φ(t, s)f(s, x(s, t, ξ) + z∗(s; (t, ξ)) ds

= ξ + z∗(t; (t, ξ)),

and

(13)
G(t, η) := η −

∫ t

0

Φ(t, s)f(s, y(s, t, η)) ds

= η + w∗(t; (t, η)).

By using (11), we can verify that

H [t, x(t, τ, ξ)] = x(t, τ, ξ) +

∫ t

0

Φ(t, s)f(s, x(s, t, x(t, τ, ξ) + z∗(s; (t, x(t, τ, ξ)))) ds

= x(t, τ, ξ) +

∫ t

0

Φ(t, s)f(s, x(s, τ, ξ) + z∗(s; (τ, ξ))) ds

= x(t, τ, ξ) + z∗(t; (τ, ξ)).

Step 3: H and G satisfy properties (i)–(ii) of Definition 2. By (1) and (8) combined
with the above equality, we have that

∂

∂t
H [t, x(t, τ, ξ)] =

∂

∂t
x(t, τ, ξ) +

∂

∂t
z∗(t; (τ, ξ))

= A(t)x(t, τ, ξ) +A(t)z∗(t; (τ, ξ)) + f(t,H [t, x(t, τ, ξ)])

= A(t)H [t, x(t, τ, ξ)] + f(t,H [t, x(t, τ, ξ)]),

then t 7→ H [t, x(t, τ, ξ)] is solution of (2) passing through H(τ, ξ) at t = τ . As
consequence of uniqueness of solution we obtain

(14) H [t, x(t, τ, ξ)] = y(t, τ,H(τ, ξ)),

similarly, it can be proved that t 7→ G[t, y(t, τ, η)] is solution of (1) passing through
G(τ, η) at t = τ and

(15) G[t, y(t, τ, η)] = x(t, τ, G(τ, η)) = Φ(t, τ)G(τ, η),

and the property (i) follows. Secondly, by using (3) and (4) it follows that

|H(t, ξ)− ξ| ≤ Kµ

∫ t

0

e−α(t−s) ds ≤
Kµ

α

for any t ≥ 0. A similar inequality can be obtained for |G(t, η)−η| and the property
(ii) is verified.
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Step 4: H is bijective for any t ≥ 0. We will first show that H(t, G(t, η)) = η for
any t ≥ 0. Indeed,

H [t, G[t, y(t, τ, η)]] = G[t, y(t, τ, η)]

+

∫ t

0

Φ(t, s)f(s, x(s, t, G[t, y(t, τ, η)]) + z∗(s; (t, G[t, y(t, τ, η)]))) ds

= y(t, τ, η)−

∫ t

0

Φ(t, s)f(s, y(s, τ, η)) ds

+

∫ t

0

Φ(t, s)f(s, x(s, t, G[t, y(t, τ, η)]) + z∗(s; (t, G[t, y(t, τ, η)]))) ds.

Let ω(t) = |H [t, G[t, y(t, τ, η)]]− y(t, τ, η)|. Hence by using (P2) and (P3) we have
that

ω(t) =

∣∣∣∣
∫ t

0

Φ(t, s){f(s, x(s, t, G[t, y(t, τ, η)]) + z∗(s; (t, G[t, y(t, τ, η)]))) − f(s, y(s, τ, η))} ds

∣∣∣∣

≤ Kγ

∫ t

0

e−α(t−s)|{x(s, t, G[t, y(t, τ, η)]) + z∗(s; (t, G[t, y(t, τ, η)])) − y(s, τ, η)}| ds.

Notice that,

x(s, t, G[t, y(t, τ, η)]) + z∗(s; (t, G[t, y(t, τ, η)])) = H [s, x(s, t, G[t, y(t, τ, η)])]

and recalling that

x(s, t, G[t, y(t, τ, η)]) = x(s, τ,G(τ, η)) = G[s, y(s, τ, η)],

we can see

H [s, x(s, t, G[t, y(t, τ, η)])] = H [s,G[s, y(s, τ, η)]].

Therefore, we obtain

ω(t) ≤ Kγ

∫ t

0

e−α(t−s)ω(s) ds ≤
Kγ

α
sup
s∈R+

{ω(s)} for all t ≥ 0.

The supremum is well defined by property (i) and the fact that all the solutions
of systems (1) and (2) are bounded on R

+. Now, we take the supremum on the
left side above and due to Kγ/α < 1 it follows that ω(t) = 0 for any t ≥ 0. In
particular, when we take t = τ we obtain H(τ,G(τ, η)) = η.

Next, we will prove that G(t,H(t, ξ)) = ξ. In fact, due to (14) we have that

G[t,H [t, x(t, τ, ξ)]] = H [t, x(t, τ, ξ)]

−

∫ t

0

Φ(t, s)f(s, y(s, t,H [t, y(x, τ, ξ)])) ds

= x(t, τ, ξ)+

∫ t

0

Φ(t, s){f(s,H [s, x(s, τ, ξ)])− f(s, y(s, τ,H(τ, ξ)))} ds

= x(t, τ, ξ).
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and taking t = τ leads to G(τ,H(τ, ξ)) = ξ. In consequence, for any t ≥ 0, H is a
bijection and G is its inverse.
Step 5: H and G are uniformly continuous for any fixed t. Firstly, we prove that
G is uniformly continuous.

As stated in [17, p.823], it can be proved that α ≤ M . Now, we construct the
auxiliary functions θ, θ0 : [0,+∞) → [0,+∞) defined by

θ(t) = 1+Kγ

(
e(M+γ−α)t − 1

M + γ − α

)
and θ0(t) =





Kγ if α = M,

Kγ
(

e(M−α)t−1
M−α

)
if α < M.

Now, given ε > 0, let us define the constants

(16) L(ε) =
1

α
ln

(
4µK

αε

)
, θ∗0 = max

t∈[0,L(ε)]
θ0(t) and θ∗ = max

t∈[0,L(ε)]
θ(t).

We will prove the uniform continuity of G by considering two cases:
Case i) t ∈ [0, L(ε)]. By (P2) and (P3) we can deduce that

(17) |G(t, η) −G(t, η̄)| ≤ |η − η̄|+ γKe−αt

∫ t

0

eαs|y(s, t, η)− y(s, t, η̄)| ds.

Now, by (P1),(P3) and Gronwall’s Lemma we obtain that

(18)

|y(s, t, η)− y(s, t, η̄)| = |η − η̄|+

∫ t

s

|A(τ)||y(τ, t, η) − y(τ, t, η̄)| dτ

+

∫ t

s

|f(τ, y(τ, t, η))− f(τ, y(τ, t, η̄))| d

≤ |η − η̄|+ (M + γ)

∫ t

s

|y(τ, t, η)− y(τ, t, η̄)| dτ

≤ |η − η̄|e(M+γ)(t−s),

and we emphasize that this inequality is valid for any t ≥ 0.
Upon inserting (18) in (17), we obtain that

|G(t, η)−G(t, η̄)| ≤

(
1 +Kγe(M+γ−α)t

∫ t

0

e−(M+γ−α)s

)
|η − η̄|

=

(
1 +Kγ

{
e(M+γ−α)t − 1

M + γ − α

})
|η − η̄|

≤ θ(t)|η − η̄| ≤ θ∗|η − η̄|.
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Case ii) t > L(ε). By (P1)–(P3), we have that

(19)

|G(t, η)−G(t, η̄)| ≤ |η − η̄|+ 2µK

∫ t−L

0

e−α(t−s) ds

+Kγ

∫ t

t−L

e−α(t−s)|y(s, t, η)− y(s, t, η̄)| ds

= |η − η̄|+
2µK

α
e−αL

+Kγ

∫ L

0

e−αu|y(t− u, t, η)− y(t− u, t, η̄)| du.

As in case i), the inequality (18) implies that

Kγ

∫ L

0

e−αu|y(t− u, t, η)− y(t− u, t, η̄)| du ≤ Kγ

∫ L

0

e(M+γ−α)u|η − η̄| du

= Kγ

{
e(M+γ−α)L − 1

M + γ − α

}
|η − η̄|.

Upon inserting the above inequality in (19) and using (16), we have that

|G(t, η) −G(t, η̄)| ≤

(
1 +Kγ

{
e(M+γ−α)L − 1

M + γ − α

})
|η − η̄|+

2µK

α
e−αL

≤ θ∗|η − η̄|+
ε

2
.

Summarizing, given ε > 0, there exists L(ε) > 0 and θ∗ > 0 such that:

|G(t, η)−G(t, η̄)| ≤





θ∗|η − η̄| if t ∈ [0, L]

θ∗|η − η̄|+
ε

2
if t > L,

then it follows that

∀ε > 0 ∃δ(ε) =
ε

2θ∗
such that |η − η̄| < δ ⇒ |G(t, η) −G(t, η̄)| < ε

and the uniform continuity of G follows.
Finally, we will prove that H is uniformly continuous for any t ≥ 0. As the

identity is uniformly continuous, we will only prove that ξ 7→ z∗(t; (t, ξ)) is uniformly
continuous.

Note that the fixed point z∗(t; (t, ξ)) can be seen as the uniform limit on R
+ of

a sequence z∗j (t; (t, ξ)) defined recursively as follows:




z∗j+1(t; (t, ξ)) =

∫ t

0

Φ(t, s)f(s, x(s, t, ξ) + z∗j (s; (t, ξ))) ds for any j ≥ 1,

z∗0(t; (t, ξ)) = 0

The uniform continuity of each map ξ 7→ z∗j (t; (t, ξ)) will be proved inductively

by following the lines of [8, 17]. First, it is clear that ξ 7→ z∗0(t; (t, ξ)) verify this
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property. Secondly, we will assume that the inductive hipothesis

∀ε > 0 ∃δj(ε) > 0 s.t. |ξ − ξ̄| < δj ⇒ |z∗j (t; (t, ξ))− z∗j (t; (t, ξ̄))| < ε for any t ≥ 0.

For the step j + 1 and given ε > 0, we will only consider α < M since the case
α = M can be carried out easily. We will use the constants L(ε) and θ∗0 defined in
(16) and introduce the notation

∆j(t, ξ, ξ̄) = z∗j (t; (t, ξ)) − z∗j (t; (t, ξ̄)).

As before, we will distinguish the cases t ∈ [0, L(ε)] and t > L(ε). First, for
t ∈ [0, L(ε)] we use (P1) combined with the estimation

(20) |x(s, t, ξ) − x(s, t, ξ̄)| ≤ |ξ − ξ̄|eM|t−s|,

and we can verify that

|∆j+1(t, ξ, ξ̄)| ≤ Kγe−αt

∫ t

0

eαs{|x(s, t, ξ)− x(s, t, ξ̄)|+ |∆j(s, ξ, ξ̄)|} ds

≤ Kγe−αt

∫ t

0

eαs{|ξ − ξ̄|eM(t−s) + ||∆j(·, ξ, ξ̄)||∞} ds

≤ Kγ

{
e(M−α)t − 1

M − α

}
|ξ − ξ̄|+

Kγ

α
||∆j(·, ξ, ξ̄)||∞

≤ θ∗0 |ξ − ξ̄|+
Kγ

α
||∆j(·, ξ, ξ̄)||∞,

where ||∆j(·, ξ, ξ̄)||∞ = sup
t≥0

|∆(t, ξ, ξ̄)|.

On the other hand, when t > L(ε), we use (P2) combined with the boundedness
of f in [0, t− L] and Lipschitzness in [t− L, t) to deduce that

|∆j+1(t, ξ, ξ̄)| ≤ 2Kµ

∫ t−L

0

e−α(t−s) ds

+Kγ

∫ t

t−L

e−α(t−s){|x(s, t, ξ)− x(s, t, ξ̄)|+ |∆j(s, ξ, ξ̄)|} ds.

By (P1) combined with u = t− s, (16) and (20), we have that

|∆j+1(t, ξ, ξ̄)| ≤
2Kµ

α
e−αL +

Kγ

α
||∆j(·, ξ, ξ̄)||∞

+Kγ

∫ L

0

e−αu|x(t− u, t, ξ)− x(t− u, t, ξ̄)| du

≤
2Kµ

α
e−αL +

Kγ

α
||∆j(·, ξ, ξ̄)||∞ +Kγ|ξ − ξ̄|

∫ L

0

e(M−α)u du

≤
ε

2
+

Kγ

α
||∆j(·, ξ, ξ̄)||∞ +Kγ

{
e(M−α)L − 1

M − α

}
|ξ − ξ̄|

≤
ε

2
+

Kγ

α
||∆j(·, ξ, ξ̄)||∞ + θ∗0 |ξ − ξ̄|.
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Summarizing, for any t ≥ 0 it follows that

|∆j+1(t, ξ, ξ̄)| ≤





θ∗0 |ξ − ξ̄|+
Kγ

α
||∆j(·, ξ, ξ̄)||∞ if t ∈ [0, L]

ε

2
+

Kγ

α
||∆j(·, ξ, ξ̄)||∞ + θ∗0 |ξ − ξ̄| if t > L.

Now, for any ε > 0 there exists L(ε) > 0, θ∗0 > 0 and

δj+1(ε) = min

{
δj(ε),

ε

2θ∗0

(
1−

Kγ

α

)}

such that for any t ≥ 0, we have

∀ε > 0 ∃δj+1(ε) > 0 s.t. |ξ − ξ̄| < δj+1 ⇒ |z∗j+1(t; (t, ξ)) − z∗j+1(t; (t, ξ̄))| < ε.

and the uniform continuity of ξ 7→ z∗j (t; (t, ξ)) follows for any j ∈ N.
In order to finish our proof, we choose N ∈ N such that for any j > N it follows

that

||z∗(·; (·, ξ)) − z∗j (·; (·, ξ))||∞ < ε for any ξ ∈ R
n,

and therefore, if |ξ − ξ̄| < δj with j > N , it is true that

|z∗(t; (t, ξ))− z∗(t; (t, ξ̄))| ≤ |z∗(t; (t, ξ))− z∗j (t; (t, ξ))|+∆j(t, ξ, ξ̄)

+|z∗(t; (t, ξ̄))− z∗j (t; (t, ξ̄))| < 3ε,

and the uniform continuity of ξ 7→ z∗(t; (t, ξ)) and ξ 7→ H(t, ξ) follows for any fixed
t ≥ 0. �

Remark 1. As we stated in the introduction, the construction of the homeomor-
phisms H and G and its uniform continuity is inspired in the Palmer [11] and Shi
et.al. works respectively [17]. Nevertheless our restricction to R

+ induces some
technical difficulties, for example:

i) We have not the uniqueness of bounded solutions of (7) and (8), this fact
prompted us to consider the specific couple of initial conditions that allows the
mapping between solutions of (1) and (2).

ii) The proof of the uniform continuity is based in two facts: the continuity of
any solution of (1)–(2) with respect to the initial conditions in a compact interval
[0, L] and the smallness of the homeomorphisms on [L,+∞[ when L is big enough.
This last condition is easily verified when we have an exponential dichotomy on R

but more technical work is needed when we consider the restriction to R
+.

Corollary 1. The systems (1)–(2) are R
+−topologically equivalent under the a-

ssumptions of Theorem 1.

Proof. The proof is the same of the Theorem. However, in the Step 5, it can be
proved that

|G(t, η)−G(t, η̄)| ≤ C(t)|η − η̄|

where

C(t) =





1 +Kγ 1−e(−α+M+γ)t

α−M−γ
if α 6= M + γ

1 +Kγt if α = M + γ,

and the R
+–topologically equivalence follows. �
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3. Consequences of the Topological Equivalence and Stability issues

It is known that ȳ is an equilibrium of (2) if

(21) A(t)ȳ + f(t, ȳ) = 0 for any t ≥ 0.

On the other hand, it is important to emphasize that the R
+–strong topological

equivalence between (1) and (2) does not necessarily imply the existence of an
equilibrium for (2). Indeed, we adapt the example introduced by L. Jiang in [8,
p.487]

y′ = −y +
1

5

(π
2
− arctan(|t|+ |y|)

)
.

It is easy to see that (P1)–(P3) are satisfied with K = M = α = 1, γ = 1/5 and
µ = π/5. We can see that for any t0 ≥ 0 there exists y(t0) such that f(t0, y(t0)) = 0,
however the above equation has no equilibria in the sense of (21).

The next results show some properties of the equilibria of the system (2) when
them exist.

Lemma 1. Assume that (P1)–(P3) and condition (6) are fulfilled. If (2) has an
equilibrium then it is unique.

Proof. Firstly, notice that u ∈ R
n is an equilibrium of (2) if and only if

(22) u = Φ(t, 0)u+

∫ t

0

Φ(t, s)f(s, u) ds for any t ≥ 0.

In fact, if u ∈ R
n is an equilibrium of (2), it follows that y(t, 0, u) = u for any

t ≥ 0. Then, by variation of parameters formula, it follows that

u = y(t, 0, u) = Φ(t, 0)u+

∫ t

0

Φ(t, s)f(s, u) ds.

Now, if u ∈ R
n satisfies (22), we derivate with respect to t obtaining (21).

In order to proof the uniqueness of the equilibrium, we will assume that u and
v with u 6= v are equilibria of (2). Then by (22) and defining w = u− v we have

w = Φ(t, 0)w +

∫ t

0

Φ(t, s)[f(s, u)− f(s, v)] ds.

Taking norm and considering (P2)–(P3), we obtain

|w| ≤ Ke−αt|w|+Kγe−αt

∫ t

0

eαs|w| ds.

for every t ≥ 0. As |w| > 0 we can deduce that

1 ≤ Ke−αt +
Kγ

α
(1− e−αt) , t ≥ 0.

Then, for arbitrarily large values of t, it follows that 1 ≤ Kγ/α obtaining a
contradiction with (6). �

Remark 2. A simple consequence of Lemma 1 and (22) is that any equilibrium of
(2) must be in a closed ball centered at the origin with radius Kµ/α.

Remark 3. If ȳ is an equilibrium of (2) we also can prove that

ȳ = Φ(t, t0)ȳ +

∫ t

t0

Φ(t, s)f(s, ȳ) ds for any t ≥ t0 ≥ 0.
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An interesting question is to determine that if the uniform asymptotical stability
of the origin is preserved by the homeomorphism H(t, ·) when the equilibrium ȳ of
(2) exists.

The following result relates the equilibria of (1) and (2) with the homeomor-
phisms H(t, ·) and G(t, ·).

Lemma 2. Assume that (P1)–(P3) and (6) are fulfilled.

(i) If ȳ = 0 is equilibrium of (2), namely f(t, 0) = 0 for any t ≥ 0, then

H(t, 0) = G(t, 0) = 0 for any t ≥ 0.

(ii) If the system (2) has a equilibrium ȳ 6= 0, then

lim
t→+∞

H(t, 0) = ȳ and lim
t→+∞

G(t, ȳ) = 0.

Proof. If f(t, 0) = 0 for any t ≥ 0 then the system (7) becomes (1) and w∗(t; (τ, 0)) =
0 for any t ≥ 0 and by the definition of G(t, ·), we have that G(t, 0) = 0 and (i)
follows.

Now, let us assume that ȳ 6= 0 is the unique equilibrium of (2). Then, the initial
value problem (7) becomes

{
w′ = A(t)w − f(t, ȳ)

w(0) = 0,

whose solution is given by

w∗(t; (τ, ȳ)) = −

∫ t

0

Φ(t, s)f(s, ȳ) ds

=

∫ t

0

Φ(t, s)A(s)ȳ ds

= −

∫ t

0

∂

∂s
Φ(t, s)ȳ ds

= (Φ(t, 0)− I)ȳ,

and by using definition of G(t, ·) we obtain G(t, ȳ) = Φ(t, 0)ȳ and it follows by (P2)
that lim

t→+∞
G(t, ȳ) = 0.

Similarly, if ξ = 0, the initial value problem (8) becomes
{

z′ = A(t)z + f(t, z)
z(0) = 0,

which is not parameter dependent and its solution is

z∗(t) =

∫ t

0

Φ(t, s)f(s, z∗(s)) ds.

By the definition, we know that H(t, 0) = z∗(t), and as ȳ is a fixed point, we
have that

H(t, 0)− ȳ = −Φ(t, 0)ȳ +

∫ t

0

Φ(t, s){f(s,H(s, 0))− f(s, ȳ)} ds,
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which implies that

|H(t, 0)− ȳ| ≤ Ke−αt|ȳ|+

∫ t

0

Ke−α(t−s)γ|H(s, 0)− ȳ| ds.

By Gronwall’s inequality we can deduce that

|H(t, 0)− ȳ| ≤ K|ȳ|e−αt + e(Kγ−α)t.

Finally, by using (6) we obtain lim
t→+∞

H(t, 0) = ȳ and the result follows. �

Lemma 3. Assume that (P1)–(P3) and (6) are satisfied. If f(t, 0) = 0 for any
t ≥ 0, then the origin is a globally uniformly asymptotically stable solution of (2).

Proof. We have to proof that

(23)





∀ε > 0 ∧ ∀c > 0 ∃T : T (ε, c) > 0 such that

|H [t, x(t, t0, ξ)]| < ε ∀t > t0 + T ∧ ∀ |H(t0, ξ)| < c.

Firstly, given c > 0 such that |H(t0, ξ)| < c, we can deduce that

|ξ| < c+

∫ t

0

|Φ(t0, s)f(s, x(s, t0, ξ) + z∗(s; (t, ξ))| ds

< c0(c) := c+
Kµ

α
.

We consider c0(c) defined above and by Theorem 4.11 from [9] we know that
(P2) is equivalent to

(24)





∀δ > 0 ∃T0 : T0(δ, c0) > 0 such that

|x(t, t0, ξ)| < δ ∀t > t0 + T0 ∧ |ξ| < c0.

Secondly, by strongly topological equivalence combined with the fact H(t, 0) = 0
for any t ≥ 0, we know that

(25) ∀ε > 0 ∃δ̂(ε) > 0 s.t. |x(t, t0, ξ)| < δ̂ ⇒ |H [t, x(t, t0, ξ)]| < ε.

Now, given ε > 0 we define

T (ε, c) := T0(δ̂(ε), c0(c)),

where δ̂(ε) is from (25) while T0 is from (24). By using (24) and (25) it follows that

∀ε > 0 ∃T (ε, c) > 0 s.t. t > t0 + T ⇒ |H [t, x(t, t0, ξ)]| < ε,

and (23) is verified. �

Theorem 2. Assume that (P1)–(P3) and (6) are satisfied. If (2) has a unique
equilibrium ȳ 6= 0, then it is globally uniformly asymptotically stable.

Proof. Let us consider z = y − ȳ, then z is solution of the system

(26) z′ = A(t)z + g(t, z) with g(t, z) = f(t, z + ȳ)− f(t, ȳ).

Notice that g satisfies (P2) with constants γ and 2µ. Then by Theorem 1,
the systems (1) and (26) are R

+–strongly topologically equivalent. Finally, as
g(t, 0) = 0 for any t ≥ 0, the result follows from Lemma 3. �



SMOOTHNESS OF THE TOPOLOGICAL EQUIVALENCE 13

From now on, we assume that f(t, 0) = 0 for any t ≥ 0 and we will contrast the
results of Theorems 1 and 2 with a Lyapunov stability result for the system (2).
As (1) is uniformly asymptotically stable, the next Lemma recalls the existence of
a quadratic Lyapunov function having certain bounds (see, e.g., [9, Ch.4]).

Lemma 4 (Lyapunov’s converse result). Let us consider the linear system (1)
satisfying (P1)–(P2). Given a bounded, continuous, positive definite n×n matrix
function Q(t), with constants q− and q+ such that

0 < q−I ≤ Q(t) ≤ q+I.

Then, there exists a bounded, continuous, positive definite n × n matrix function
P (t) such that

(27) 0 < p−I ≤ P (t) ≤ p+I and − Ṗ (t) = AT (t)P (t) + P (t)A(t) +Q(t),

with constants p− = q−/2M and p+ = K2q+/2α.

Proof. We define

P (t) =

∫ +∞

t

XT (τ, t)Q(τ)X(τ, t)dτ

Then

xT
0 P (t)x0 =

∫ +∞

t

xT
0 XT (τ, t)Q(τ)X(τ, t)x0 dτ

≤

∫ +∞

t

q+‖X(τ, t)‖2|x0|
2

≤

∫ +∞

t

q+K2e−2α(τ−t)|x0|
2 =

K2q+

2α
|x0|

2.

Similarly,

xT
0 P (t)x0 ≥

∫ +∞

t

q−|x(τ, t, x0)|
2 ≥

∫ +∞

t

q−e−2M(τ−t)|x0|
2 =

q−

2M
|x0|

2.

By defining p− = q−/2M and p+ = K2q+/2α, the left part of (27) is verified.
Finally, in order to obtain the right part of (27), we see that

Ṗ (t) =

∫ +∞

t

∂

∂t
XT (τ, t)Q(τ)

∂

∂t
X(τ, t)dτ +

∫ +∞

t

XT (τ, t)Q(τ)X(τ, t)dτ −Q(t),

and using ∂X
∂t

(τ, t) = −A(t)X(τ, t), the result follows. �

A classical result of Lyapunov stability theory shows that a quadratic Lyapunov
function for a linear system may be also work for a Lipschitz nonlinear perturbation
satisfying some smallness properties as follows.

Lemma 5. Suppose that f(t, 0) = 0 for any t ≥ 0. The quadratic Lyapunov
function of the linear system (1) can be extended to the nonlinear system (2) if

γ <
α

K2
.

Proof. Let us consider a positive definite, bounded matrix function Q(t) such that

0 < q−I ≤ Q(t) ≤ q+I.
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Let P (t) be the continuous, bounded, positive definite matrix solution of equation

−Ṗ (t) = AT (t)P (t) + P (t)A(t) +Q(t).

We consider the quadratic function V (t, x) = xTP (t)x as a Lyapunov candidate
function for the nonlinear system. The derivative along the trajectories gives

V̇ (t, x) = ẋTP (t)x + xT Ṗ (t)x + xTP (t)ẋ

= xT
[
A(t)TP (t) + P (t)A(t) + Ṗ (t)

]
x+ 2xTP (t)f(t, x)

= −xTQ(t)x+ 2xTP (t)f(t, x)

≤ −q−|x|2 + 2|x|‖P (t)‖|f(t, x)|

≤ −q−|x|2 + 2γ p+|x|2 ≤ − (q− − 2γp+) |x|2.

Then, if

γ ≤
q−

2p+
=

q−

q+
α

K2
≤

α

K2

we have a global Lyapunov function for the nonlinear system. �

Remark 4. Lemma 5 is a result about the preservation of the uniform asymp-
totic stability which can be compared with Theorem 1 and Lemma 3. Indeed we
know that the condition γ < α

K
ensures the R

+-strong topological equivalence be-
tween both systems and also that the global asymptotical stability is preserved by the
homeomorphisms. We emphasize that our condition (6) is less strict that the one
obtained by the Lyapunov function in Lemma 5.

4. Smoothness of the Homeomorphisms H and G

Throughout this section we will assume that x 7→ f(t, x) is at least C1 for any
fixed t. Hence, it is well known (see e.g. [2, Chap. 2]) that ∂y(t, τ, η)/∂η satisfies
the matrix differential equation

(28)





d

dt

∂y

∂η
(t, τ, η) = {A(t) +Df(t, y(t, τ, η))}

∂y

∂η
(t, τ, η),

∂y

∂η
(τ, τ, η) = I.

The following result shows the Cr differentiability of the map G constructed
previously

Theorem 3. Assume that (P1)–(P3) and (6) are satisfied. If y 7→ f(t, y) is Cr

with r ≥ 1 for any fixed t ≥ 0, then (1) and (2) are Cr
R

+− topologically equivalent.

The proof of this result will be a consequence of the following Lemma and Re-
marks.

Lemma 6. Under the assumptions of Theorem 1, if f is C1 then η 7→ G(t, η) is a
C1 diffeomorphism for any fixed t ≥ 0. Moreover, its Jacobian matrix is

(29)
∂G

∂η
(t, η) = Φ(t, 0)

∂y(0, t, η)

∂η
.
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Proof. It is well known that (see e.g., Theorem 4.1 from [7, Ch.V]) if y 7→ f(t, y)
is Cr with r ≥ 1, then the map η 7→ y(t, τ, η) is also Cr for any fixed couple
(t, τ). Then, as y 7→ f(t, y) is C1, it follows that y 7→ Df(t, y) and η 7→ ∂y/∂η
are continuous. This allows to calculate the first partial derivatives of the map
η 7→ G(t, η) for any t ≥ 0 as follows

(30)
∂G

∂ηi
(t, η) = ei −

∫ t

0

Φ(t, s)Df(s, y(s, t, η))
∂y

∂ηi
(s, t, η) ds (i = 1, . . . , n),

which implies that the partial derivatives exists and are continuous for any fixed
t ≥ 0, then η 7→ G(t, η) is C1.

By using the identity Φ(t, s)A(s) = − ∂
∂s
Φ(t, s) combined with (28) we can deduce

that for any t ≥ 0, the Jacobian matrix is given by

(31)

∂G

∂η
(t, η) = I −

∫ t

0

Φ(t, s)Df(s, y(s, t, η))
∂y

∂η
(s, t, η) ds

= I −

∫ t

0

d

ds

{
Φ(t, s)

∂y

∂η
(s, t, η)

}
ds

= Φ(t, 0)
∂y(0, t, η)

∂η
,

and Theorems 7.2 and 7.3 from [2, Ch.1] imply that Det∂G(t,η)
∂η

> 0 for any t ≥ 0.

Summarizing, we have that η 7→ G(t, η) is C1 and its Jacobian matrix has a non
vanishing determinant. In addition, let us recall that

G(t, η) = η + w∗(t; (t, η)),

where w∗(t; (t, η)) is given by (9), we can deduce that |G(t, η)| → +∞ as |η| → +∞,
due to |w∗(t; (t, η))| ≤ Kµ/α for any (t, η).

Therefore, by Hadamard’s Theorem (see e.g [13, 15]), we conclude that η 7→
G(t, η) is a global diffeomorphism for any fixed t ≥ 0. �

Remark 5. It is interesting to point out that the computation of the partial deriva-
tives is remarkably simple when considering R

+ × R
n as domain of G. In the case

when the domain is R× R
n, we refer to [1] for details.

Remark 6. In particular, if y 7→ f(t, y) is C2, we can verify that the second
derivatives ∂2y(s, τ, η)/∂ηj∂ηi satisfy the system of differential equations

(32)





d

dt

∂2y

∂ηj∂ηi
= {A(t) +Df(t, y)}

∂2y

∂ηj∂ηi
+D2f(t, y)

∂y

∂ηj

∂y

∂ηi

∂2y

∂ηj∂ηi
= 0,
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with y = y(t, τ, η), for any i, j = 1, . . . , n. By using (30) and (32) we have

∂2G

∂ηj∂ηi
(t, η) = −

∫ t

0

Φ(t, s)D2f(s, y(s, t, η))
∂y

∂ηj
(s, t, η)

∂y

∂ηi
(s, t, η) ds

−

∫ t

0

Φ(t, s)Df(s, y(s, t, η))
∂2y(s, t, η)

∂ηj∂ηi
ds

= −

∫ t

0

d

ds

{
Φ(t, s)

∂2y(s, t, η)

∂ηj∂ηi

}
ds

= Φ(t, 0)
∂2y(0, t, η)

∂ηj∂ηi
.

Notice that we can obtain the same expression for the second partial derivatives
by using directly (31) instead of Remark 6. In addition, as η → y(0, t, η) is Cr when
f(t, ·) is Cr, we use the identity (31) to deduce that the m–th partial derivatives of
η 7→ G(t, η) for any fixed t ≥ 0 are given by

∂|m|G(t, η)

∂ηm1
1 · · · ∂ηmn

n
= Φ(t, 0)

∂|m|y(0, t, η)

∂ηm1
1 · · · ∂ηmn

n
, where |m| = m1 + . . .+mn ≤ r,

and the Theorem follows.

5. Conclusions

In this work, we have obtained a sufficient condition for the R+− strong topolog-
ical equivalence between systems (1) and (2). We have also confronted this result
with the existence of a quadratic Lyapunov function for the linear system and its
extension to the nonlinear one. Finally, we proved some results about differentia-
bility of the homeomorphism constructed between systems (1) and (2), remarking
the simpleness of the proof.
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