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The Gauss map and secants of the Kummer variety

Robert Auffarth, Giulio Codogni and Riccardo Salvati Manni

Abstract

Fay’s trisecant formula shows that the Kummer variety of the Jacobian of a smooth projective
curve has a four-dimensional family of trisecant lines. We study when these lines intersect the
theta divisor of the Jacobian and prove that the Gauss map of the theta divisor is constant on
these points of intersection, when defined. We investigate the relation between the Gauss map
and multisecant planes of the Kummer variety as well.

1. Introduction

Let (A,Θ) be a complex indecomposable principally polarized abelian variety of dimension g.
The line bundle 2Θ is canonically defined and gives a finite morphism

Km: A → P
2g−1

whose image is the Kummer variety K(A) of A.
When A is the Jacobian J(C) of a curve C, the Kummer variety has a four-dimensional

family of trisecants, and this is indeed a characterization of Jacobians (see Sections 3 and 4
and references therein).

In this paper, we fix a symmetric theta divisor representing the polarization, which by abuse
of notation we still denote by Θ, and we look for lines that intersect Km(Θ) in at least three
points; we will call these lines theta trisecants or trisecants of the theta divisor. Let us remark
that any two symmetric theta divisors are related by a translation of order two, and these
translations are the only ones induced by projective automorphisms of P

2g−1, so the study of
trisecants of a symmetric theta divisor is independent of the choice of the divisor. We do not
study trisecants of non-symmetric theta divisors.

The main novelty of this work is to relate these trisecants to the Gauss map. This is used to
show that these trisecants exist and to completely classify them.

Recall that the Gauss map is a dominant rational morphism

G : Θ ��� PT0A
∗ ∼= P

g−1

whose domain is the smooth locus Θsm. A basic reference is [6, Section 4.4]; some recent
research papers on the Gauss map and their generalizations are [7, 8, 18, 21].

In the case of the Jacobian of a smooth projective genus g curve C, the Gauss map has
an explicit geometric interpretation. Indeed, PT0A

∗ is canonically isomorphic to the canonical
linear system PH0(C,K), the divisor Θ can be seen as the locus of effective divisors Wg−1 in
Picg−1(C), and if D ∈ Wg−1 is a smooth point, G(D) is just the linear span of ϕ(D) in P

g−1,
where ϕ : C → P

g−1 is the canonical map. Note that each smooth point of Θ thus defines a
canonical divisor ϕ−1(G(D)).
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Our main result is the following.

Theorem 1.1 (= Theorems 3.4 and 4.1). Let A be the Jacobian of a smooth projective
curve, and let x, y ∈ Θsm. If the images of x and y in the Kummer variety lie on a trisecant
line, then G(x) = G(y), G(x) lies in a two-dimensional subvariety B∗

3 of the branch locus of G
defined in Section 3, and x and y are among the points of highest multiplicity on the fiber of
G.

Conversely, for a generic K0 ∈ B∗
3 , there exists a trisecant of the theta divisor whose points

of intersection with Θsm lie in the fiber of G over K0, and the points of highest multiplicity of
G over K0 all lie on trisecants.

The relation between trisecants and the Gauss map was in some sense hidden in the literature
about the Torelli theorem. Indeed, on the one hand, the classical proof of the Torelli theorem
given by Andreotti in [1] relies on the study of the branch locus of the Gauss map; on the other
hand, it is possible to prove the Torelli theorem as a consequence of the analysis of trisecants
of a Jacobian (cf. [14] and [2, p, 267]).

In Section 5, we generalize part of our results to multisecants of the theta divisor. Recall
that multisecants do not characterize Jacobians, so we do not know if this generalization can
be pushed any further.

In Section 6, we investigate the linear span in P
2g−1 of fibers of the Gauss map, and we point

out a relation with the Γ00 conjecture.
It is now well known (see [4, 12]) that if (A,Θ) is a general Prym variety, then its Kummer

variety possesses a family of quadrisecant planes. We do not know what relation these planes
have with respect to the Gauss map, and this is certainly an interesting direction for research.
By using Proposition 2.1 below, we can only prove that if we have four points of the theta
divisor of a Prym that lie on a quadrisecant plane on the Kummer variety, then the linear span
of the images of these points via the Gauss map is at most one dimensional.

2. Preliminaries about multisecants of the theta divisor

A multisecant linear space is a k-dimensional linear subspace of PH0(A, 2Θ)∗, which intersects
the Kummer variety in at least k + 2 points. We say that this is a multisecant of the theta
divisor if these k + 2 points are on the image of the theta divisor. In this section, we investigate
the behavior of the Gauss map on these intersection points.

Proposition 2.1. Let A be an abelian variety, and let Θ be a symmetric divisor that
induces a principal polarization on A. Let x1 ∈ A and x2, . . . , xr ∈ Θ be points such that the
points

Km(x1), . . . ,Km(xr)

are contained in an (r − 2)-dimensional linear subspace of PH0(A, 2Θ)∗, but any subset of order
r − 1 is in general position. Then x1 lies in Θ, and G(x1), . . . ,G(xr), if defined, are contained
in an (�r/2� − 1) linear subspace of P

g−1. Moreover, if r − 1 points lie on the singular locus of
Θ, the rth one also does.

Proof. Using theta functions with characteristics, the fact that the points Km(xi) are not
in general position can be translated into the following linear relations:

Θ[ε](τ, x1) =
r∑

k=2

αkΘ[ε](τ, xk)
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for all ε ∈ (Z/2Z)g. Let sx(z) be the section of 2Θ defined as θ(z − x)θ(z + x), where θ is a
non-zero section of H0(A,Θ). Since Θ is symmetric, we have that θ is even. By applying the
addition formula for theta functions, we obtain that there exist β2, . . . , βr ∈ C such that

sx1 =
r∑

k=2

βksxk
.

This already shows that x1 is in Θ and proves the statement about singularities.
Denote by ∇xθ, the gradient of the theta function evaluated at z = x. Since in coordinates

G(xi) = ∇xi
θ, to prove the proposition we have to show that the ∇x1θ span a (�r/2� − 1)-

dimensional linear space.
Now for x ∈ Θ, we have ∂2sx

∂zi∂zj
(0) = 2 ∂θ

∂zi
(x) ∂θ

∂zj
(x), hence

∂θ

∂zi
(x1)

∂θ

∂zi
(x1) =

r∑
k=2

βk
∂θ

∂zi
(xk)

∂θ

∂zi
(xk).

Therefore,

(∇x1θ)(∇x1θ)
t =

r∑
k=2

βk(∇xk
θ)(∇xk

θ)t,

and we can assume that βk �= 0 for all k, since any subset of order r − 1 of Km(x1), . . . ,Km(xr)
is in general position.

We conclude thanks to the following lemma.

Lemma 2.2 [17, Lemma 1 ]. Let V be a vector space over a field K, take r vectors v1, . . . , vr
such that

r∑
i=1

aivi ⊗ vi = 0

for some non-zero a1, . . . , ar ∈ K. Then, the vectors v1, . . . , vr span a space of dimension at
most �r/2�. �

Let us spell out our result for trisecants, so r = 3 and k = 1.

Corollary 2.3. Let us assume that points the x1, x2, x3 ∈ K(A) lie on a trisecant.

(1) If two of them, say x1, x2, are in Θ, then also x3 is in Θ.
(2) If the three points are in the theta divisor and two of them, say x1, x2, are singular, then

also x3 is singular.
(3) If the three points are in the theta divisor, then G(xi) is constant for all xi ∈ Θsm.

3. Branch locus of the Gauss map and construction of trisecants

Let A = J(C) be the Jacobian of a smooth projective curve. We fix a symmetric theta divisor
Θ, and let κ be the associated theta characteristic, which we will also use as a divisor on the
curve. Denote by P

g−1, the canonical system |K| = H0(C,K), which is canonically isomorphic
to P(T0J(C))∗.

Let ϕ : C → P
g−1 be the canonical map. We introduce a stratification B� of the branch locus

of the Gauss map G. For 1 � 
 � g − 1, let

B� :=

{
H ∈ (Pg−1)∗ : H ∩ ϕ(C) is of the form

2�−2∑
i=1

Pi + 2
g−�∑
i=1

Qi for Pi, Qj ∈ ϕ(C)

}
.
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Notice that

B1 ⊆ B2 ⊆ · · · ⊆ Bg−1

and B1 is the set of effective theta characteristics.

Remark 3.1. The locus Bg−1 is the branch locus of the Gauss map. The dual variety of
this locus is the canonical curve, and this is indeed Andreotti’s proof of the Torelli theorem
(cf. [1]). The dual of the loci B� should be related, at least for large values of 
, to multisecant
varieties of the canonical curve and special linear series. We do not have a nice description of
these loci.

We start off computing the dimension of the loci B�.

Lemma 3.2. For every 1 � 
 � g − 1, the space B� is of dimension at least 
− 1. Moreover,
the union B∗

� of irreducible components of dimension exactly 
− 1 such that the generic
geometric points represent divisors where the points Pi are all distinct is non-empty.

Proof. Let Ck be the symmetric product of k copies of the curve C. The linear system
|K| = (Pg−1)∗ can be embedded in C2g−2, and the space B� is its intersection with the image
of the map

Cg−� × C2�−2 → C2g−2

(D,E) �→ 2D + E

This intersection, if non-empty, is at least 
− 1dimensional, and B�−1 is of codimenison at
most one in B�.

The locus B1 is the locus of effective theta characteristics, and it is known to be non-empty
and zero dimensional. The loci B� contain B1, hence they are non-empty. Locally around B1,
the dimension of B� must be exactly 
− 1, otherwise B1 would have dimension strictly greater
than zero, hence B∗

� is non-empty. �

The locus Bg−1, being the branch locus of the Gauss map, is of codimension one in (Pg−1)∗,
so it is equal to B∗

g−1. The generic tangent hyperplane to the canonical curve is tangent to a
single point (cf. [24, Corollary 2.4]), hence Bg−2 is of dimension g − 3 and it is equal to B∗

g−2.
The locus B1, being the locus of theta characteristics, is zero dimensional and equal to B∗

1 . We
do not know about the other B�.

We are now going to use the locus B∗
3 to construct trisecants of the theta divisor. Recall that,

thanks to Fay’s trisecant formula, we can construct trisecants out of four points on the curve
and a consistent way to divide by two on the Jacobian; more explicitly, we have the following
theorem (cf. [9] or [20, Section IIIb]).

Theorem 3.3 (Fay’s trisecant formula). Let p, q, r and s be points on C, and a, b
and c points in A = J(C) such that a ∈ 2−1OC(p− q − r + s), b ∈ 2−1OC(p− q + r − s) and
c ∈ 2−1OC(p + q − r − s), with a + b = OC(p− q) and a + c = OC(p− r). Then the images of
a, b and c on the Kummer variety lie on a trisecant.

We are now ready to construct trisecants of the theta divisor.
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Theorem 3.4 (Existence of trisecants of the theta divisor). Let K0 = p + q + r + s + 2D
be a point of B3 as in Lemma 3.2. Let κ be the theta characteristic associated to the theta
divisor Θ, and let

a = OC(p + s + D − κ) , b = OC(p + r + D − κ) , c = OC(p + q + D − κ).

Then a, b, c ∈ Θ, their images in the Kummer variety lie on a trisecant, and the Gauss map
evaluated at any of these points (if defined) equals K0. Furthermore, if K0 is generic in B∗

3 ,
then these three points are distinct.

Proof. To show that a lies on the theta divisor, we have to prove that a + κ is effective, and
this follows from the definition; similarly, also b and c lie on the theta divisor.

As explained in Theorem 3.3, to prove that they are collinear, we have to show that 2a is
linearly equivalent to p− q − r + s, 2b to p− q + r − s, 2c to p + q − r − s, a + b to p− q and
a + c to p− r. This is fine because 2D − 2κ is linearly equivalent to −(p + q + r + s).

As shown in Lemma 3.2, for a generic geometric point K0 of B∗
3 the points p, q, r and s are

distinct, hence also a, b and c are distinct. �

If the point K0 is chosen generically in B∗
2 , we obtain a degenerate trisecant, so a line which

is tangent to the theta divisor and it furthermore intersects it at another distinct point. We do
not know if the theta divisor has a tangent of order three.

For genus three non-hyperelliptic curves, the theta divisor is smooth and the Gauss map is
finite of degree 6. Generically over the locus B∗

3 we have the points a, b, c and −a,−b,−c.
Let us discuss the example of genus four curves, we refer to [2, p. 232] for the basic facts.

We take a generic curve, so that the theta divisor of the Jacobian has just two singular points,
and they are not of order two. For dimensional reasons, the generic trisecant provided by
Theorem 3.4 intersects the theta divisor in three distinct smooth points. On the other hand,
we can take a canonical divisor K0 = p + q + r + s + 2Q such that the points are all distinct
and p + q + Q is a g1

3; to see that such a divisor exists, start off from a generic g1
3, say p + q + Q,

in the canonical model these three points lie on a line, take now a plane Π containing this line
and tangent to the canonical curve at Q, then such a plane cuts out the requested canonical
divisor. For this divisor, the associated trisecant intersects the theta divisor at two smooth
points and one singular point.

We do not know if there exists a trisecant intersecting the theta divisor at three distinct
singular points.

4. Ramification of the Gauss map and trisecants

This section is devoted to the proof of the following theorem.

Theorem 4.1. Let a, b and c be three points on the theta divisor whose images in P
2g−1

lie on a trisecant. Moreover, assume that a and b are smooth points of the theta divisor. Then

G(a) = G(b) = K0 = p + q + r + s + 2(P1 + · · · + Pg−3)

In particular, this is a point of B3. Moreover, the points a and b have the highest multiplicity
in the fiber of G over K0; if the points Pi are distinct, this multiplicity is 2g−3.

Corollary 4.2. If a = b, that is the secant is a tangent then G(a) = 2D + p + 2q + s.
Similarly if the three points coincide, then G(a) = 2D + p + 3q.
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Recall that the equality G(a) = G(b) has been proved in Corollary 2.3. To prove our result,
we also need to know that all trisecants are obtained out of Fay’s formula (see Theorem 3.3);
this is the trisecant conjecture, which we now recall (cf. [3, 14, 19, 22, 23]).

Theorem 4.3 (Trisecant conjecture). Let a, b and c be three points on the Kummer variety
K(A), which lie on a trisecant. Then the abelian variety A is a Jacobian of a curve C, and
there exist four points p, q, r and s on C, such that a ∈ 2−1OC(p− q − r + s), b ∈ 2−1OC(p−
q + r − s) and c ∈ 2−1OC(p + q − r − s), with a + b = OC(p− q) and a + c = OC(p− r).

Let us fix some notations. Given two divisors A and B on the curve, we write A ≡ B
if they are linearly equivalent, A = B if they are equal as divisors, and we will write
l(A) := dimH0(C,OC(A)). To start with, let us prove the following preliminary lemmas:

Lemma 4.4. For any effective D with l(D) = 1 and for every P ∈ C

l(D) > l(D − P ) ⇐⇒ P /∈ Supp(D).

Proof. |D| = |D − P | if and only if effective divisors coincide, if and only if
P ∈ Supp(D). �

Lemma 4.5. Let K0 be a canonical divisor. Suppose we can write

K0 = A1 + B1 = A2 + B2,

where Ai and Bi are effective, of degree g − 1, and are not special (a divisor D is not special
if l(K0 −D) = 0). Let p1 and p2 be two points on the curve such that

p1 − p2 ≡ A1 −A2

then p1 is in the support of A1 and B2, and p2 is in the support of A2 and B1.

Proof. Obviously, we have also p2 − p1 ≡ B1 −B2. We first show that p1 is in the support
of A1 if and only if p2 is in the support of A2. Since

A1 − p1 = K0 −B1 − p1 ≡ K0 −B2 − p2 = A2 − p2

applying Lemma 4.4, we have the conclusion.
We now show that p1 is in the support of A1. Arguing by contradiction, thanks to Riemann

Roch, we have that l(B1 + p1) = l(B2 + p2) = 1. This shows that B1 + p1 = B2 + p2, hence we
can write

B1 = P1 + · · · + Pg−2 + p2 and B2 = P1 + · · · + Pg−2 + p1.

Thus p1 and p2 are in the support of K0, hence p1 ∈ B1 and e p2 ∈ B2 This gives B1 = B2

that is a contradiction.The other statement is obtained by symmetry. �

We can now prove the central part of our claim.

Proposition 4.6. Let a, b ∈ Θsm and c ∈ Θ as in Theorem 4.3, then

G(a) = p + q + r + s + 2(P1 + · · · + Pg−3),

where Pi are points on the curve.

Proof. The assumption a, b ∈ Θsm means that

a = D1 − κ, b = D2 − κ
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with Di effective and l(Di) = 1, and κ the theta characteristic associated to Θ.
Because of Corollary 2.3, the points a, b have the same image via Gauss map; this means

that the divisors Di determine a unique canonical divisor K0 with

K0 = Di + Ei,

Di, Ei effective and l(Di) = l(Ei) = 1.
Look now at the difference a− b = s− r ≡ D1 −D2 ≡ E2 − E1. Remember we are using the

same notation as Theorem 4.3. Lemma 4.5 shows that r is in the support of E1 and D2, and
s is in the support of E2 and D1. Applying the Lemma 4.5 also to a + b = p− q ≡ D1 − E2 ≡
D2 − E1, we can show that r, q are in the support of E1, s, q are in the support of E2, p, s is
in the support of D1 and p, r is in the support of D2.

Now look again at the difference a− b = s− r ≡ D1 −D2, and write it as D1 − s ≡ D2 − r.
Since s in the support of D1 and r is the support of D2, Lemma 4.4 implies that the equality
is an equality of divisors, so we can write

D1 = P1 + · · · + Pg−3 + p + s, D2 = P1 + · · · + Pg−3 + p + r.

Keep on playing this trick we get that

E1 = Q1 + · · · + Qg−3 + q + r, E2 = Q1 + · · · + Qg−3 + q + s.

Using a + b = p− q ≡ D1 − E2, we get that D1 − p = E2 − q, hence

Pi = Qi, i = 1, . . . (g − 3).

In particular

K0 = 2(P1 + · · · + Pg−3) + p + r + q + s

as required. �

The last part of Theorem 4.1 follows from the next proposition.

Proposition 4.7. Let K0 = n1P1 + · · · + nkPk be a canonical divisor, and let D = l1P1 +
· · · + lkPk be a degree g − 1 divisor such that l(D)=1 and K0 > D; then the multiplicity of
D − κ in the fiber G−1(K0) is

m =
(
n1

l1

)
· · ·

(
nk

lk

)

Proof. The divisor D − κ represents a smooth point of the theta divisor with G(D) = K0.
On a Jacobian, all fibers of the Gauss map are finite; the domain of the Gauss map is the

smooth locus of Θ, which, being by construction smooth, is Cohen–Macauly; we conclude that
the Gauss map is flat (see, for instance, [16, Exercise III.10.9]).

Let Δ be the spectrum of a DVR (or, if one prefers to work in the analytic category, a small
disc), and take an embedding ι : Δ ↪→ P

g−1 such that the closed point 0 maps to K0, and the
generic point η maps to a reduced divisor Q1 + · · · + Q2g−2. We label the divisors Qi so that
the divisor

∑n1
i=1 Qi specializes to n1P1, the divisor

∑n2
i=n1+1 Qi specializes to n2P2, and so on.

Let X be the irreducible component of G−1(ι(Δ)) containing D − κ. The base change G : X →
Δ of the Gauss map is again flat, because flatness is preserved by base change. The fiber over
0 is supported on D − κ, whereas the fiber over η consists of reduced points. To compute the
requested multiplicity, it is, by flatness, enough to compute the number of points in the fiber
over η. Every element in this fiber specializes to D − κ, hence to determine one of them we
have to choose l1 points in {Q1, . . . , Qn1}, l2 points in {Qn1+1, . . . , Qn1+n2}, and so on. �
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5. Ramification of the Gauss map and multisecants

In this section, we show that the stratification of branch locus of the Gauss map introduced in
Section 3 can be used to construct multisecants. To this end, we need a generalization of Fay’s
trisecant formula due to Gunning (see [15] and [11, Section 7]).

Theorem 5.1 (Gunning multisecant formula). Let C be a smooth projective curve, let
p1, . . . , p�, q1, . . . , q�−2 ∈ C be different points, and take line bundles

aj ∈ 1
2
OC

(
2pj +

�−2∑
i=1

qi −
�∑

i=1

pi

)

for j = 1, . . . , 
, such that aj + ak = OC(pj + pk +
∑�−2

i=1 qi −
∑�

i=1 pi) for all j, k. Then the
images of a1, . . . , a� in the Kummer variety lie on an (l − 2)-plane.

In particular, this gives a (2
− 2)-dimensional family of linear subvarieties of dimension

− 2 that intersect the Kummer variety in at least 
 points. Note that the condition on aj + ak
assures us that we are dividing by 2 in a uniform way; in other words, this is equivalent to
dividing by two on the universal cover of the Jacobian.

We are now going to use the loci B� defined in Section 3 to construct (
− 2)-dimensional
multisecants of the theta divisor.

Theorem 5.2 (Existence of multisecants of the theta divisor). Let

K0 =
2�−2∑
i=1

Pi + 2
g−�∑
j=1

Qj

be a generic point of B∗
� , so that the points Pi are distinct, and let

Σ = {p1, . . . , p�} ∪ {q1, . . . , q�−2}
be a partition of {P1, . . . , P2�−2}. Define

DΣ
j := pj +

�−2∑
i=1

qi +
g−�∑
j=1

Qj and aΣ
j := DΣ

j − κ

for j = 1, . . . , 
. Then aΣ
j ∈ Θ for all j and the images of aΣ

1 , . . . , a
Σ
� in the Kummer variety lie

on an (
− 2)-plane.
Moreover, the Gauss map is constant on S :=

⋃
Σ{aΣ

1 , . . . , a
Σ
� } ∩ Θsm, and S consists of

precisely the elements of the fiber of the Gauss map of highest multiplicity.

Proof. It is clear that aΣ
j ∈ Θ for all j by construction, and by Theorem 5.1 the images of

the aΣ
j lie on an (
− 2)-dimensional linear variety.

Now take aΣ
j ∈ S. Then DΣ

j spans a unique hyperplane in P
g−1. Note moreover that DΣ

j � K0

and so span(K0) is this hyperplane, which is independent of aΣ
j .

Note that in
⋃

Σ{aΣ
1 , . . . , a

Σ
� } there are precisely

(
2�−2
�−1

)
elements. Moreover, thanks to

Proposition 4.7, the highest multiplicity over K0 is 2g−� and there are at most
(
2�−2
�−1

)
points

that give this multiplicity. The highest multiplicity of a point on the fiber over an element of
B� is 2g−�, and the points that have this multiplicity are of the form

g−�∑
i=1

Qi +
�−1∑
i=1

Pji

for certain ji � 2
− 2, and these are exactly the multisecant points we are looking at. �
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The multisecants constructed in Theorem 5.2 should be quite special; the reason is twofold.
First, in view of Proposition 2.1, we do not expect that the Gauss map to be constant on
the intersection of a high dimensional multisecant of the theta divisor and the smooth part of
the theta divisor. Secondly, we do not know if the Gunning multisecant formula 5.1 describes
all multisecants of a Jacobian. For this particular multisecants, we are to prove the following
generalization of Theorem 4.1.

Proposition 5.3. Let a1, . . . , a� be the points from Theorem 5.1, assume that they all lie
on the smooth locus of Θ and on the same fiber of the Gauss map. Then G(ai) ∈ B�.

Proof. The proof is similar to the proof of Proposition 4.6. Since each ai lies on the smooth
locus of Θ, then

ai = Di − κ

for some effective divisor Di with l(Di) = 1. This implies that there is an effective canonical
divisor K0 such that

K0 = Di + Ei

for all i (note that this is equality of divisors, not linear equivalence). In particular, we see
that

ai − aj ≡ pi − pj ≡ Di −Dj ≡ Ej − Ei

for all i, j. By Lemma 4.5, we have that pi is in the support of Di and Ej for all i �= j. Now
since Di − pi is effective, l(Di − pi) = 1, and

Di − pi ≡ Dj − pj ,

we have that Di + pj = Dj + pi for all i, j (note again, this is equality of divisors). Therefore,
there exist points P1, . . . , Pg−2 ∈ C such that

Di = P1 + · · · + Pg−2 + pi

Dj = P1 + · · · + Pg−2 + pj

for all i, j. Note as well by the previous discussion that Ej contains each pi for i �= j, and so

Ej = p1 + · · · + pj−1 + pj+1 + · · · + p� + Fj

for some effective divisor Fj . Now we see that

ai + aj ≡ Di + Dj −K0 = Di − Ej .

On the other hand,

ai + aj =
�−2∑
k=1

qk −
�∑

k=1
k �=i,j

pk,

and so

Di ≡
�−2∑
k=1

qk + Ej −
�∑

k=1
k �=i,j

pk.

Now since l(Di) = 1 and the right-hand side is an effective divisor, we have equality of divisors,
and so

Di =
�−2∑
k=1

qk + pi + Fj .
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In other words, we see that Fj is a divisor that is independent of j, so we will call it F . We
conclude by writing

K0 = Di + Ei = p1 + · · · + pi−1 + pi+1 + · · · + p� + F +
�−2∑
k=1

qk + F + pi

=
�∑

i=1

pi +
�−2∑
i=1

qi + 2F ∈ B�.
�

6. Remarks about the linear system Γ00 and the Gauss map

In this section, we shall consider a partial converse of the situation described in Proposition 2.1:
we analyze the linear span of points in the fiber of the Gauss map inside Γ(A, 2Θ).

Let (A,Θ) be a principally polarized abelian variety. The space Γ00 is a distinguished
subspace of Γ(A, 2Θ); it consists of sections whose vanishing order at the origin is at least
4. If (A,Θ) is indecomponsable, the dimension of Γ00 is equal to 2g − g(g + 1)/2 − 1 (cf. [10]).
A basis for these spaces is described in [13]. We want to relate the fiber of the Gauss map with
this space. It is a well-known fact that if x ∈ Sing(Θ), then sx(z) ∈ Γ00.

Lemma 6.1. Let x1, . . . , xr ∈ Θsm be points such that Km(x1), . . . ,Km(xr) are different
and G(x1) = · · · = G(xr), then there exist constants λ2, . . . , λr such that

sx1(z) − λjsxj
(z) ∈ Γ00.

Proof. By hypothesis, for every j there exists a complex number γj such that

∂θ

∂zi
(x1) = γj

∂θ

∂zi
(xj)

for every i. Hence setting λj = γ2
j we produce sections of Γ00 �

We have the following corollary of the previous lemma.

Corollary 6.2. Let x1, . . . , xr ∈ Θsm be points such that Km(x1), . . . ,Km(xr) are
different, but G(x1) = · · · = G(xr); then, the projective space generated by these points in
P

2g−1 has dimension at most 2g − g(g + 1)/2 − 1

Thus for any point p ∈ P
g−1 in the image of the Gauss map, it makes sense to consider the

space Vp spanned by the sections described above and ask if it is the full Γ00.
In the Jacobian case, we can do something more. To start with, we have the following lemma.

Lemma 6.3. Let x1, x2, x3 ∈ Θ, not all singular points, thus they determine a trisecant if
and only if

dim(Γ00 ∩ Span{sx1(z), sx2(z), sx3(z)}) = 1

In general, let K0 =
∑2g−2

i=1 Pi be an effective canonical divisor; thus any effective divisor D
of degree g − 1 whose support is contained in K0 produces a point xD ∈ Θ, and we have

sxD
(z) ∈ Γ00 ⇐⇒ l(D) � 2.

For the l Ds such that l(D) = 1, we fix one D1 and then we have that

tD(z) = sxD1
(z) − λDsxD

(z) ∈ Γ00.
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We conclude that in the Jacobian case we can enlarge Vp as follows: for any point
p = G(K0) ∈ P

g−1 we set

Wp = Span{. . . txD
(z) . . . , sxE

(z) . . . }
with D,E effective of degree g − 1, whose supports are contained in K0 and l(D) = 1, l(E) � 2
Of course, Vp ⊂ Wp

Question 6.4. With the above notations, for which p ∈ P
g−1 do we have either Γ00 = Vp

or Γ00 = Wp?

We observe that in some special cases both inclusions fail. The simplest case is already in
genus 3: we can consider a smooth plane quartic with a point P0 such that K0 = 4P0, then
G−1(K0) is a single point with multiplicity six.

We conclude with a last remark. We shall write Θx for Θ + x. For fixed p ∈ P
g−1, let us

consider in |2Θ| the space Zp generated by the divisors

Θx ∪ Θ−x

with x in Θsing or in G−1(p). Since x is in Θ, then 0 is in Θx ∪ Θ−x, so in the base locus of
this linear system. If it is an isolated point of the base locus, then (A,Θ) is not a Jacobian.
Hence, we can paraphrase [5, Conjecture 1] as follows

Conjecture 6.5. If (A,Θ) is not a Jacobian, for some p ∈ P
g−1 the base locus of the linear

system Zp is zero-dimensional in a neighborhood of the origin.
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