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Abstract Unambiguously estimating the plasma parameters of the ionosphere at altitudes between 130
and 300 km presents a problem for the incoherent scatter radar (ISR). At these ranges, ISR is unable to
distinguish between different mixtures of molecular ions (NO+ and O2

+) and atomic oxygen ions (O+).
Common solutions to this problem are either to employ empirical or theoretical models of the ionosphere or
to add a priori known plasma parameter information obtained from the plasma line of the ISR spectrum.
Studies have demonstrated that plasma parameters can be unambiguously estimated in almost noiseless
scenarios, not commonly feasible during routine monitoring. In this study, we define a theoretical
framework to quantify the ambiguity problem and determine the maximum signal fluctuation levels of the
ISR signal to unambiguously estimate plasma parameters. We conduct Monte Carlo simulations for different
plasma parameters to evaluate the estimation performance of the most commonly used nonlinear least
squares optimization algorithm. Results are shown as probability curves of valid convergence and correct
estimation. We use simulations to quantify the estimation error when using ionospheric models as initial
conditions of the optimization algorithm. We also determine the contribution to the estimation process of
different combinations of parameters known from the plasma line, the particular contribution of each
plasma parameter, and the effect of increasing the level of uncertainty of the parameters known a priori.
Results suggest that knowing a priori both electron density and electron temperature parameters allows an
unambiguous estimation even at high fluctuation levels.

1. Introduction

Incoherent scatter radar (ISR) is a ground‐based sounding technique used to estimate the most relevant
plasma parameters at different altitudes of the ionosphere (Evans, 1969). Secondary ionospheric parameters
can also be inferred from directly estimated parameters (i.e., electric fields, conductivities, neutral winds,
and temperatures; Beynon & Williams, 1978). This makes ISR one of the most powerful remote sounding
methods to study the ionospheric profile from altitudes typically between 80 and ~1,000 km.

Ionospheric parameter estimations are obtained from the analysis of the ISR backscattered signal autocorre-
lation function (ACF) or its Fourier transform, the incoherent scatter spectra (ISS). The most common
method of ISR analysis is the “range gate” (or “height‐by‐height”) technique, in which a nonlinear least
squares (NLLS) optimization algorithm is used independently at each altitude range to fit the measured sig-
nal with a theoretical ISR model (Lehtinen & Huuskonen, 1996). Alternatively, the “full profile” technique
computes the entire altitude profile by treating the incoherent scatter method as an inversion problem (Holt
et al., 1992; Hysell et al., 2008; Lehtinen et al., 1996; Nikoukar et al., 2008). This latter method provides a
more accurate parameter estimation solution. Nevertheless, this method is more sensitive to noise and inter-
ferences and highly dependent on the initial guess of plasma variables to converge to the correct solution
(Hysell et al., 2009). Furthermore, solutions may not be unique or even become unstable, requiring the appli-
cation of regularization techniques (Aster et al., 2013). These techniques apply theoretical models and
assumptions about the behavior of the plasma variables in the ionosphere that may be inappropriate in
certain cases.

Estimating plasma parameters is not always directly solvable, and several problems arise from the analysis of
the signal backscatter (Nikoukar et al., 2008). Of particular relevance is the “temperature‐ion composition
ambiguity” (TICA) effect, which is generated by the mixture of different ions in the ionosphere (Oliver,
1979). This ambiguity is related to the dependency of the theoretical ISR spectrum on the thermal speed
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of different ion species, which is, in turn, proportional to the square root of the ratio of ion temperature (Ti)
and mass (mi; Oliver, 1979; Vallinkoski, 1988). Different combinations of molecular and atomic ion compo-

sitions and temperatures generate similar values of
ffiffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
, hindering the correct discrimination of signals

(Aponte et al., 2007). This effect is currently a relevant issue under discussion that affects the determination
of long‐term trends of ionospheric and thermospheric variables (Perrone & Mikhailov, 2017; Perrone &
Mikhailov, 2018; Zhang et al., 2018).

The TICA problem has been widely studied in the literature using different methods. Early methods were
based on theoretical models of the behavior of ionospheric plasma parameters that assumed equal ion
and neutral temperature profiles or considered a smooth altitude variation of plasma parameters (Evans
& Oliver, 1972; Waldteufel, 1971). Models first used at high latitudes assumed constant electron tempera-
tures to cope with the ion temperature and composition changes generated by Joule heating (Kelly &
Wickwar, 1981). Oliver (1979) developed a widely used parametric model of ion composition and tempera-
ture based on rocket and satellite measurements. More recently, models of ion composition have been
created to apply the full profile inversion method unambiguously (Cabrit & Kofman, 1996; Litvine et al.,
1998). Different models have also been developed to estimate parameters of plasma disturbances generated
by strong electric fields in the auroral region (Blelly et al., 2010; Zettergren et al., 2011).

An alternative to using theoretical models is to provide complementary information extracted from the
plasma line (Akbari et al., 2017). Both the plasma line and the ion acoustic frequency bands of the
ISR provide complementary and simultaneous information of ionospheric plasma parameters (Aponte
et al., 2007; Waldteufel, 1971; Wand, 1970). As most of the signal backscatter power is contained in
the ion acoustic frequency band, plasma parameters have typically been extracted from the analysis of
this band. Alternatively, the plasma line is a narrow frequency peak in the megahertz range, mainly
dependent on electron density, electron temperature, and magnetic aspect angle (Yngvesson &
Perkins, 1968).

Several methods that combine information measured from plasma line and the ion acoustic spectral bands
have been successfully implemented. For a radar transmission frequency similar to that used at Arecibo
Radio Observatory (i.e., 430 MHz), it is possible to extract a highly accurate estimate of electron density from
the plasma line resonance frequency, even when electron temperatures are not accurately known (Aponte
et al., 2007). Using the electron density measurement, it is possible to obtain the electron‐to‐ion temperature
ratio (Te/Ti) analyzing the total power received (Pr) at the antenna (Aponte et al., 2007; Wand, 1970). Using
the asymmetry of the upshifted and downshifted resonance frequencies of the plasma line, it is also possible
to estimate the electron temperature (Nicolls et al., 2006). Alternatively, when the radar transmission fre-
quency is sufficiently elevated (e.g., 933 MHz of the European Incoherent Scatter, EISCAT, UHF radar sys-
tem), the plasma line resonance frequency depends also on the electron temperature. In this case, it is
possible to estimate unambiguously the ion composition by fitting together the ion acoustic band and the
resonance frequency (Bjørnå & Kirkwood, 1988).

Another method was proposed by Oliver (1979) for unambiguous estimation of ISR parameters. From the
analysis of signals with very small fluctuations, two possible solutions of ion composition can be obtained.
The correct ion composition parameter can be determined by selecting the solutions that provide the
smoother ion composition profile at different altitudes. Initial tests of this method obtained only partial suc-
cess mainly because it required the use of almost noiseless signals (Oliver, 1979). There are a variety of
sources that add noise‐like variability to the ISR signal (Lehtinen & Huuskonen, 1996): the intrinsic stochas-
tic nature of plasma particles that contribute randomly to the radar backscatter, the internal thermal noise of
the radar receiver, and the sky noise. Statistical variability of ISR signals can be reduced by averaging many
radar signals. This can be accomplished using multiple radar frequencies simultaneously (Sulzer, 1986a) or
by postintegrating backscattered signals during long time periods (Lathuillere et al., 1983). However, the
integration of signals coming from different radar pulses requires the assumption of stationary plasma con-
ditions during the integration period (Farley, 1969). For long integration periods, this assumption can
smooth and hide the dynamic phenomenon occurring in the ionospheric plasma. Lathuillere et al. (1983)
and Lathuillere and Pibaret (1992) successfully demonstrated the efficacy of Oliver's (1979) method with
experimental data. These studies reduced the fluctuation of signals by postintegrating multiple radar pulses
with integration times of 5 min.
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Recently, Wu et al. (2015) used a new optimization algorithm to unambiguously estimate plasma parameters
of ISR signals with very small fluctuations. In their work, signals with high signal‐to‐noise ratio (SNR)
values, in the range of 15 to 25, were obtained at the Arecibo Radio Observatory using simultaneous fre-
quency transmission (Sulzer, 1986a) and coded long pulse (Sulzer, 1986b) techniques. Wu et al. (2015) used
the particle swarm optimization (PSO) algorithm (Kennedy & Eberhart, 1995) to analyze ISS data with the
addition of a priori information from the plasma line. The PSO algorithm obtained much better estimations
than the standard NLLS algorithm commonly used in ISRs. Results from Lathuillere et al. (1983) and Wu
et al. (2015) demonstrate the feasibility of unambiguously estimating plasma parameters of signals with very
small fluctuations. Nevertheless, no previous study has assessed the required signal fluctuation level to
unambiguously estimate the ion composition and temperature parameters in the TICA problem.

Here we present a theoretical framework to quantify the ambiguity problem and determine the signal fluc-
tuation threshold for which the TICA problem is unambiguously solved. We apply the Monte Carlo techni-
que to the plasma parameter estimation of an NLLS optimization algorithm at different signal fluctuation
levels. The results are presented as probability curves, which provide the probability of valid convergence
and the probability of correct determination of the global minimum as a function of signal noise level. The
impact of using a model to set the initial parameters of the optimization algorithm search is also analyzed
by increasing the distance between the initial guess and the correct solution. To evaluate the effect of adding
a priori information on the ambiguity threshold, different combinations of plasma parameters were ana-
lyzed. Plasma parameters known a priori are assumed to be obtained from the analysis of the plasma line
frequency band and the total power received at the antenna. To determine which would be the most relevant
a priori parameter to solve the ambiguity, the information provided by each plasma parameter was evalu-
ated. Finally, to provide a realistic application, the effect of adding parameters with different levels of uncer-
tainty was studied. The results of this study could be used to unambiguously analyze data obtained from
previous experiments, properly configure future radar campaigns, and determine the design requirements
for future ISR observatories.

This article is organized in five sections. Section 2 describes our simulation methods. Section 3 explains the
statistical analysis performed. Section 4 includes the results and discussion, and section 5 indicates our con-
clusions with suggestions for operational improvements of the ISR estimation process.

2. Simulation Methods
2.1. Implementation of the ISR Model

To perform the estimation process, an ISR spectrum model was implemented based on the formulation of
Kudeki and Milla (2011). The magnetic field aspect angle effect (Milla & Kudeki, 2011) was not included
in the model, which limits the validity to magnetic aspect angles greater than 5° (Longley et al., 2018).
Ion‐neutral collisions were not included in the model because they are only relevant at the lower E region
of the ionosphere (Bjørnå, 1989). Plasma parameters were electron density (Ne), electron temperature (Te),
ion temperature (Ti), ion drift radial velocity (Vi), and ion composition (p).

To improve computational speed and accuracy of simulations, the Gordeyeve integral (Kudeki & Milla,
2011) was computed using the imaginary error function implemented in the Faddeyeva Dawson function
of Johnson (2012). A radar frequency of 450 MHz was considered in the simulation because many observa-
tories use similar frequencies (i.e., Arecibo, Millstone Hill, AMISR, and ESR).

To avoid additional ACF conversion times at each fitting comparison, estimation analysis was done by
directly comparing the difference between simulated and theoretical spectrums at each range (Wu et al.,
2015). Theoretical ion acoustic spectra were obtained at frequencies between ±10 kHz.

2.2. Ion Composition Parameter

In this work two different ion species were considered (M+ andO+). Early rocket and satellite measurements
demonstrated the predominance of NO+ and Oþ

2 molecular ions at low altitudes (Evans & Oliver, 1972;

Hoffman et al., 1969). Because of the similarity of NO+ andOþ
2 ion masses, they produce an almost identical

Ti/mi ratio value, making them indistinguishable to the ISR radar (Oliver, 1979). Consequently, the exact
mixture ratio of those molecular ions is unknown. These molecular ions are assumed to behave as a single
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molecular specie (M+) with mass 30.5 amu for a mixture of 25% Oþ
2 and

75% NO+ (Cabrit & Kofman, 1996; Lathuillere et al., 1983). At altitudes
varying from ~130 to ~300 km, these molecular plasma constituents
migrate to a plasma dominated by lighter atomic oxygen ions (O+;
Kelley & Heelis, 1989).

Due to the TICA problem, different combinations of molecular and
atomic oxygen ion species obtain almost the same ion acoustic spectrum
(Oliver, 1979). Two different possible estimations of plasma parameters
are obtained ambiguously (Lathuillere et al., 1983; Oliver, 1979). In
Figure 1 the TICA effect is shown for two different spectrums obtained
with two different combinations of parameters. Under certain conditions,
this mixture of ion species might be determined unambiguously (Aponte
et al., 2007; Lathuillere et al., 1983; Oliver, 1979; Wu et al., 2015). The
determination of the conditions required for an unambiguous estimation
is themain focus of this study. The ion composition parameter p is defined
as the molecular ion fraction, computed as the relative abundance of
molecular ions with respect to the total ion concentration (Aponte et al.,
2007; Lathuillere et al., 1983; Wu et al., 2015):

p ¼ 1−
n Oþð Þ
Ne

; (1)

where n(O+) is the atomic oxygen density. Note that charge neutrality has

been assumed (i.e.,Ne ¼ Ni ¼ n Oþð Þ þ n NOþð Þ þ n Oþ
2

� �
). Note also that

the ion composition range is 0 ≤ p ≤ 1.

2.3. Noise Addition Scheme

To consider realistic radar conditions, simulated ISR spectrum signals (m) were assumed to be describable as
a function (f(x)) that depends on the plasma parameter vector (x) and an additional noise contribution (ε;
Vallinkoski, 1988):

m ¼ f xð Þ þ ε; (2)

where f(x) function represents the theoretical backscatter signal spectra indicated in section 2.1. Both the
theoretical signal and the noise contribution are vectors of data points with values distributed at the different
frequencies of the spectra.

The ISR signal is a stochastic process due to the random nature of all plasma particles that contribute
with backscatter (Lehtinen & Huuskonen, 1996). This stochastic characteristic provides noise‐like fluctua-
tions to the received signal. To obtain an accurate statistical estimate of ISSs (or ACFs), the signals from
many radar pulses must be integrated, assuming stationary plasma characteristics during integration time
(Farley, 1969). Additional noise contributions come from background electromagnetic radiations (i.e., sky
noise) and from the internal receiver system noise (i.e., thermal noise; Lehtinen & Huuskonen, 1996). For
strong radar SNR, the stochastic nature of the plasma dominates the signal fluctuation (Huuskonen &
Lehtinen, 1996). Therefore, signals obtained with a strong backscatter from the ionosphere, due to high
electron densities or to the use of high‐power transmissions, have a signal‐dependent noise (Nikoukar
et al., 2008). Alternatively, for weak SNR conditions, the thermal and sky noises are responsible for the
error (Sulzer, 1986a). In this work, weak SNR conditions were assumed, obtaining a noise independent
from the signal.

The integration of many pulses of the signal provides Gaussian characteristics according to the central limit
theorem (Vallinkoski, 1988). Therefore, the noise (ε) was assumed to be an additive Gaussian white noise
(AWGN; Lehtinen &Huuskonen, 1996). Consequently, a Gaussian random noise with zero mean was added
directly to the ISS spectral signal. The standard deviation (σ) of this random noise was calculated relative to
the maximum absolute value of the spectrum amplitude (σ = δ(%)/100 · max (| f(x)| )), as in Aponte et al.

Figure 1. Two different incoherent scatter radar spectrums obtained
ambiguously with two alternative sets of plasma parameters. Spectrums
Case a1 (black line) and Case a2 (dotted gray line) were obtained with dif-
ferent plasma parameters displaced from the center frequency of the radar
by ion drift velocity (Vi) of approximately 200 m/s. Alternatively,
spectrums Case b1 (gray line) and Case b2 (dotted black line) were obtained
without Vi but having higher values of Te/Ti.
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(2007). In our work, the signal fluctuation (δ) is assumed to be given by the root‐mean‐square error of the
ACF estimator obtained by Farley (1969):

δ ¼ 1þ SNR−1ð Þffiffiffiffi
N

p ; (3)

where SNR is the signal‐to‐noise ratio of the radar backscattered signal (Lu et al., 2016) at the corresponding
altitude range and N is the integration length (i.e., the number of radar signals averaged).

A reduction of the signal fluctuation can be obtained by increasing the integration length or the received
signal strength, as indicated in equation (3). Nevertheless, signals must have SNR ≪ 1 to ensure that noise
contributions are independent from the signal (Huuskonen & Lehtinen, 1996). Achievable signal fluctuation
values under this weak SNR condition are shown in supporting information Figure S1 for different integra-
tion lengths and periods.

Recent ISR simulators (Swoboda et al., 2017) implement the effect of the random backscatter contribution of
electrons and the range smearing (i.e., the range lag ambiguity function; Lehtinen & Huuskonen, 1996). To
reduce simulation complexity and computing time requirements, these effects were not considered in the
present work. Consequently, in our study weak SNR and no range ambiguity are assumed. These same char-
acteristics have been assumed in recent studies of the TICA problem (Aponte et al., 2007; Wu et al., 2015)
and are commonly obtained in multipulse or alternating code experiments (Vallinkoski, 1988). Therefore,
simulated spectra were assumed to be the Fourier transform of the final ACF estimate calculated by the
radar processing chain, obtained by subtracting range smearing effects (i.e., using summation rules; Holt
et al., 1992) and noise correlation estimates, following the standard range gate analysis criterion explained
in Swoboda et al. (2017).

2.4. Plasma Parameters Estimation Method
2.4.1. Maximum Likelihood Estimator
The standard ISR plasma estimation process assumes signals with AWGN stochastic noise characteristics
and a measurement variance‐covariance matrix Cm (Swoboda et al., 2017; Vallinkoski, 1988). With suffi-
ciently small SNR, the matrix Cm is assumed diagonal and only populated by measurement variances (σ2i ;
Erickson, 1998; Vallinkoski, 1988). In this case, the maximum likelihood estimator statistical criterion
(Kay, 1993) used to determine the plasma parameters is equivalent to the standard least squares estimator
given by (Erickson, 1998; Lathuillere et al., 1983):

bx ¼ argmin
x

m−f xð Þð ÞTC−1
m m−f xð Þð Þ

n o
¼ argmin x ∑M

i¼1
mi−f i xð Þð Þ2

σ2i

( )
; (4)

where mi, σ2i , and fi(x) are the M vector components of the measured signal, measured signal variance, and
theoretical model function, respectively.
2.4.2. Reduced Chi‐Square Cost Function
The minimization argument of the right‐hand side of equation (4) is known as the chi‐square cost function
(χ2), and the minimization process is identified as an unconstrained weighted least squares fitting (Erickson,
1998). Unbiased estimates of signals with AWGN characteristics and known measurement variances obtain
a cost function value approximately equal to the number of degrees of freedom (DoF) of the estimation pro-
blem (Bevington & Robinson, 2003; Taylor, 1997). In this study, the reduced chi‐square cost function criteria
was used to normalize the resulting values (χ2r ¼ χ2=DoF). The χ2r criteria allow the goodness of the fit to be
statistically determined to discriminate the convergence of the estimated solution (Bevington & Robinson,
2003). The DoF was assumed equal to the input signal vector length minus the number of parameters of
the estimation problem (P; i.e., DoF =M − P). This assumption is commonly used in standard error analysis
studies (Bevington & Robinson, 2003; Taylor, 1997), although it is known that this is an approximation only
valid for linear models with linearly independent basis functions (Andrae et al., 2010).

Figure 2 shows an example of theχ2r cost function for different projections of Te, Ti, and p parameters, assum-

ing that Ne and Vi are known a priori parameters. These images were generated selecting the minimum χ2r
value of the nonrepresented parameter, allowing a 2‐D representation of a 3‐D structure. These simulations
were done for different fluctuation levels to represent the impact of the noise addition. Figure 2 shows that in
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Figure 2. Graphic representation of the χ2r cost function minimum value (in logarithmic scale) for different combinations of plasma parameters at different noise
levels (top δ = 0.01%, middle δ = 1%, and bottom δ = 10%). Data have been obtained from the simulation of plasma parameters of spectrum Case a1 of Figure 1
(Te=520 °K, Ti=480 °K, and p = 0.2), assuming Ne known a priori and consequently not represented.
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almost noiseless scenarios (δ = 0.01%) one of the two minimums of the χ2r cost function has a much smaller
value (i.e., the global minimum). This allows the determination of the “correct” set of parameters by
selecting the solution with the lowest χ2r value. Furthermore, this figure also shows that it is more difficult

to discriminate the “correct” solution by selecting the lowest χ2r value in noisy scenarios (δ = 1% and 10%).

The existence of twominimums in Figure 2 verifies the presence of the TICA problem. These twominimums
are located at almost opposite ion composition values symmetric with respect to p= 0.5, as initially indicated
by Lathuillere et al. (1983) and more recently verified byWu et al. (2015). As the “incorrect” ion composition
solution (pincorrect) is an almost symmetric solution of the “correct” solution (pcorrect), those solutions
should be associated as pincorrect ≈ 1 − pcorrect. Consequently, the “incorrect” solution would be related to
the abundance of atomic oxygen ions (pincorrect ≈ n(O+)/Ne; see equation (1)). Furthermore, these two
minimums are obtained because the ISR spectrum depends on the ratio Ti/mi. Therefore, as molecular
ion mass (mMþ) is almost double that of atomic ions (mOþ), almost identical results would be obtained with
molecular ion temperatures, which are also double those of atomic temperatures (TMþ≈2TOþ), as indicated
by Oliver (1979).
2.4.3. NLLS Optimization Algorithm Used
Theminimization of theχ2r cost function is computed using an NLLS optimization algorithm: the Levenberg‐
Marquardt (L‐M) algorithm (Levenberg, 1944; Marquardt, 1963). The L‐Mhas been selected because it is the
most commonly used NLLS optimization algorithm of ISR analyses, both for range gate (Erickson, 1998;
Swoboda et al., 2017) and for full profile (Hysell et al., 2008; Nikoukar et al., 2008) methods. The L‐M algo-
rithm is a standard line‐search technique for NLLS unconstrained problems that combines different meth-
ods depending on the distance to the optimum solution (Gavin, 2019). The search step is iteratively updated
using a gradient descent method when the solution is far from the optimum or using a Gauss‐Newton
method near the minimum cost function.

The L‐M optimization algorithm suffers from the local minimum determination problem. The determina-
tion of the solution is subject to the initial search parameters of the algorithm, the parameter search range,
and the algorithm configuration (Gavin, 2019). When several minimums of the cost function exist, NLLS
search algorithms select the first minimum found during the search and consequently may not find the
“correct” solution (i.e., global minimizer; Wu et al., 2015). To reduce the effects of this drawback, other opti-
mization algorithms have been studied in the ISR literature such as the Trust‐Region algorithm (Milla et al.,
2013) or the PSO algorithm (Wu et al., 2015), which have not been implemented in our work but will be ana-
lyzed in future studies.

In our study, plasma parameters were estimated using an optimization algorithm for range gate ISS analysis,
as in Aponte et al. (2007) and Wu et al. (2015). The implementation of the L‐M algorithm to minimize the χ2r
cost function was based on the library created by Gavin (2019). Resolution problems arise in the calculus of
the Jacobian matrix due to differences of orders of magnitude of plasma parameters. To avoid this resolution
problem, electron density parameter values were converted to a logarithmic scale (log10(Ne)) in the estima-
tion process, as in Cabrit & Kofman (1996). Alternatively, the search range of the parameters (xsearch min≤bx
≤xsearch max ) was configured to be equal to the input parameter ranges of the Monte Carlo simulation
(explained in section 2.5). To ensure that the two possible ambiguous solutions of temperature were obtained
into the search range, electron and ion temperatures search ranges were configured broader than the input
parameter ranges, with values ranging from 200 to 6000 °K. The configured tolerances and search stop con-
ditions of the L‐M algorithm (Gavin, 2019) were determined by simulations shown in supporting informa-
tion Text S1 and Figure S2.

2.5. Monte Carlo Simulations of Plasma Parameters

To quantify the effect of the ambiguous estimation of plasma parameters from ISR signals in realistic condi-
tions, Monte Carlo simulations of the estimation of plasma parameters were performed. These simulations
were done either for 1,000 or 2,000 different true input parameters (xtrue) uniformly selected between the fol-
lowing parameter ranges: electron density, 109 ≤ Ne ≤ 1012 m−3, electron temperature, 300 ≤ Te ≤ 5000°K,
ion temperature, 300 ≤ Ti ≤ 3000°K, electron‐to‐ion temperature ratio, 0.1 ≤ Te/Ti ≤ 5, ion drift velocity,
−250≤ Vi≤ 250 m/s, and ion composition, 0≤ p≤ 1. The ranges ofNe, Te, and Ti parameters selected resem-
ble the maximum and minimum values of measurements obtained by SROSS‐C2 satellite and models above
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the ionospheric F2 layer peak at low‐latitude regions with different solar conditions (Sharma et al., 2016).
The ranges of Te/Ti and Vi used were larger than the typical measurements obtained at standard midlatitude
ionospheric conditions shown in (Scherliess et al., 2001; Wand, 1970).

In this work, the ion drift velocity parameter was assumed to be known a priori. As Vi only generates a
Doppler shift, it does not affect the determination of other parameters, and it can be estimated independently
(Wu et al., 2015). Results of Monte Carlo simulations shown in section 4.3 verify the ion drift parameter
estimation independence.

To study the effect of increasing the noise level of ISR signals in the estimation of the TICA problem, Monte
Carlo simulations at different signal fluctuation levels were done. First, different ISS signals were created
using the uniformly selected true input plasma parameters and the theoretical ISR spectrum model
explained in section 2.1. The noise contribution scheme indicated in section 2.3 was applied to these ISS
signals, adding a Gaussian random vector with zero mean and a standard deviation defined by a selected
signal fluctuation level. The same set of uniformly selected true input plasma parameters was used in all
simulations, allowing a direct comparison of results for different noise fluctuation levels. Finally, the plasma
parameters were estimated using the L‐M optimization algorithm, minimizing the χ2r cost function, as indi-
cated in section 2.4. To provide sufficient statistical representation, 500 repetitions of the estimation process
for each set of input parameters were done with a different random noise added.

2.6. Uniformly Selected Initial Parameters

The solution of the L‐M optimization algorithm depends on the configured initial parameters of the search
(Lathuillere et al., 1983). Very different results are obtained assuming different initial parameters, as shown
in previous studies (Wu et al., 2015). In practical ISR observatories, the most common method is to set the
initial parameters as those calculated by an ionospheric model, such as the International Reference
Ionosphere (Bilitza et al., 2017) or theMass Spectrometer Incoherent Scatter Radar (Picone et al., 2002) mod-
els. However, because of the TICA problem, this method would generate incorrect estimates when theore-
tical model considerations were significantly different from actual values.

To ensure solutions independent of the initial parameters selected, different initial parameters were
used at each repetition of the estimation process of the Monte Carlo simulation. These initial para-
meters were uniformly selected from the full search range of parameters indicated in section 2.4.3
(i.e., [xsearch min, xsearch max]). Identical uniformly selected initial parameters were used in all simula-
tions to allow a direct comparison of results of the different simulations done.

Furthermore, to determine the effects derived from the use of an inaccurate initial guess, Monte Carlo simu-
lations were done with different configurations of initial parameters and at different signal fluctuation levels.
Results of these simulations are shown in section 4.1. These simulations were done for 1,000 different true
input values of Ne, Te, Ti, and p parameters. This parameter configuration corresponds to the typical estima-
tion process for ISR radars, when no a priori information is provided.

The initial parameters (xinitial) of simulations of section 4.1 were selected randomly using a uniform distri-
bution centered on the true input plasma parameters. The selection range was configured relative to the full
search range of parameters as follows:

xinitial ¼ xtrue þ β %ð Þ
100

· xsearch max−xsearch minð Þ· rand nð Þ−0:5ð Þ; (5)

where β is the initial parameters range percentage (β(%) ∈ [0,100]) and rand(n) is a random function genera-
tor with a uniform distribution between 0 and 1.

Consequently, the initial search parameters were located randomly in the parameter space defined as
follows:

xinitial∈ xtrue−Δ=2; xtrue þ Δ=2½ �; (6)

where Δ = β/100 · (xsearch max − xsearch min) is the size of the initial search range. This parameter (Δ) resem-
bles the uncertainty of the solution of the ionospheric model used as an initial guess of the optimization
algorithm search.

10.1029/2018JA026217Journal of Geophysical Research: Space Physics

MARTÍNEZ‐LEDESMA AND DÍAZ QUEZADA 2904



2.7. Addition of Plasma Line Information

In our simulations, we quantified the effect of providing information from the plasma line. To account for realistic
cases, different combinations of plasma parameters were assumed known a priori in the estimation process. The
combinations of parameters studied were the following: (a) no a priori information, (b) Ne parameter known a
priori, (c) Te/Ti and Ne parameters known a priori, and (d) Te and Ne parameters known a priori. Similar fittings
were made byWu et al. (2015) for different combinations of i‐unknown parameters (i= 1, 2, and 3). The a priori
knowledge ofNe and Te/Ti parameters was assumed to be extracted from the plasma line frequency and from the
total power received from the antenna, respectively, following previous studies (Aponte et al., 2007; Waldteufel,
1971; Wu et al., 2015). Alternatively, the a priori information of Tewas assumed to be extracted from the plasma
line resonance frequency (Bjørnå & Kirkwood, 1988) or from its asymmetry (Nicolls et al., 2006).

All a priori known plasma parameters were initially considered without uncertainty, assuming a perfect
determination of plasma parameters, as in Wu et al. (2015). Although this assumption is unrealistic, the
estimation using deterministic a priori information provides the best‐case estimate that can be obtained
(as shown in Figure 9). The analysis of information with uncertainty in the a priori known parameters
was studied separately and results are shown in section 4.4.

3. Statistical Analysis of Ambiguous Results
3.1. Determination of Convergence

Results from Monte Carlo simulations were analyzed statistically to determine the impact of the ambiguity
in different noise scenarios. In some cases, the optimization algorithm did not converge to a valid solution.
To identify which solutions converged to a minimum of χ2r , the goodness of the fit was calculated based on
the statistical distribution of the cost function (Bevington & Robinson, 2003; Taylor, 1997).

Estimated parameters (bx) with χ2r smaller than a maximum cost function value (χ2r≤χ
2
r;max) were considered

to have a valid convergence fit. Due to the random nature of the estimated signals, the χ2r cost function fol-

lows a chi‐square (f χ2 ) statistical distribution (Andrae et al., 2010; Bevington & Robinson, 2003). The χ2r;max

value has been selected to have a probability ofP x>χ2r;max; xef χ2� �
¼ 0:00317%, which corresponds to the prob-

ability of the 4σ criterion of a normally distributed function (i.e., P x>μþ 4σ; xeN μ; σ2ð Þ� � ¼ 0:00317%). The

selected probability is small enough to ensure that a fit with χ2r>χ
2
r;max is obtained by an invalid convergence.

In our study, maximum and minimum values of χ2r;max are 2.073 and 2.0317, for a spectrum vector length of 50

(M) and 5 and 2 plasma parameters (P), respectively.

The f χ2 statistical distributions and the associated estimation errors of parameters are shown in supporting

information Text S2 and Figures S3–S5 for different signal fluctuation values.

3.2. Determination of Correctness

Due to the ambiguity problem, in some cases a local minimum of the cost function was selected instead of
the global minimum. A solution is selected as “correct” and “incorrect” depending on the distance between
the estimated (bx) and the true input parameters (xtrue). Near parameters were assumed “correct” and distant
values “incorrect”. Note that the “correct” statement is not an indication of exact estimation without uncer-
tainty (or deterministic) but of global minimum selection. As the estimation process is a stochastic process
due to the randomness of the added noise, the estimated plasma parameters also have stochastic distribu-
tions. Therefore, the distance discrimination criterion depends on the characteristics of the probability dis-
tributions of the estimated results. The process to obtain the statistical parameters of both “correct” and
“incorrect” distributions of parameters from the simulation results is equivalent to the selection of different
data groups in a clustering analysis (Jain et al., 1999).

3.3. Expectation Maximization Algorithm

In this work the expectation maximization (EM) algorithm was used (Dempster et al., 1977) for clustering “cor-
rect” and “incorrect” estimated solutions. The EM algorithm is a general method commonly used for partitional
clustering (Jain et al., 1999). Our implementation is based on the EM algorithm library written by Tsui and
Boedigheimer (2006). The convergence of the EM algorithm solution is guaranteed because it increases the
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likelihood function at every iteration (Dempster et al., 1977; Moon, 1996).
Nevertheless, the EM algorithm suffers from the local maximum selection
problem in cases of likelihood functionswithmultiplemaxima (Moon, 1996).

A total of 500 repetitions of the estimation process was done for each input
parameter of the Monte Carlo simulation. Therefore, it was assumed that
both “correct” and “incorrect” solutions had Gaussian probability distri-
butions, according to the central limit theorem. Consequently, the statis-
tical distribution to be determined by the EM algorithm was a bimodal
Gaussian mixture model (GMM) given by the following:

f GMM xjα; μ0; σ20; μ1; σ21
� � ¼ α·N xjμ0; σ20

� �þ 1−αð Þ·N xjμ1; σ21
� �

; (7)

where α is the weight of the mixture distribution (α ϵ [0, 1]) and N

x jμi; σ2i
� �

is the probability density function (PDF) of the Gaussian or
Normal distribution where μi and σ2

i are the mean and variance of the dis-
tribution, respectively. Therefore, N xjμ0; σ20

� �
and N xjμ1; σ21

� �
are the

PDFs of “correct” (bxcorrect) and “incorrect” (bxincorrect) results, respectively.
In this work, the EM algorithm was used to analyze the statistical distri-
bution of the ion composition estimation error (ℇp ¼ ptrue−bp , where
ptrue is the true input ion composition and bp is the estimated value).
This parameter was selected as a discriminator of correctness because
of the known existence of two different solutions of ion composition
(Lathuillere et al., 1983; Oliver, 1979; Wu et al., 2015). These two ion
composition solutions correspond to the “correct” and “incorrect”
Gaussian distributions of the mixture model of equation (7). As the
results obtained with a small ion composition error were considered cor-

rect solutions (bpcorrect≈ptrue ), the “correct” distribution mean is approximately equal to 0 (μ0 ≈ 0).
Therefore, to improve the accuracy of the determination of the correctness in noisy scenarios, in this work
the mean of the “correct” distribution has been fixed to 0 in the EM algorithm. Alternatively, the “incor-
rect” distribution has a mean value always different from 0 (μ1 ≉ 0). Due to the symmetry of the solutions
with respect to 0.5 (Lathuillere et al., 1983; Wu et al., 2015), the “incorrect” distribution mean value
should be approximately equal to μ1 ≈ 2ptrue − 1. Estimated parameters were clustered as “correct” or
“incorrect” based on the distance of each ion composition estimation error to the GMM PDFs. The clus-
tering results of each Monte Carlo simulation can be seen in supporting information Figures S12, S17,
S22, S27, S32, S37, S42, S47, S52, and S57.

Figure 3 shows the histogram of ion composition estimation errors (ℇp) and the corresponding GMM PDFs
calculated by the EM algorithm, obtained from the Monte Carlo estimation of plasma parameters indicated
as Case a1 in Figure 1. Specific configurations and implementation details of the EM algorithm are indicated
in supporting information Text S3.

3.4. Probabilities of Convergence and Correctness

Different types of probabilities were calculated to study the estimation ambiguity at different signal fluctua-
tion values. These probabilities provide information about the maximum signal fluctuation thresholds (δth)
that can be assumed to obtain unambiguous estimates.

The probability of valid convergence of the fit (Pfit valid), defined as the probability of finding a minimum of
the χ2r cost function by the L‐M optimization algorithm, was calculated as follows:

Pfit valid ¼ N fit valid=N total; (8)

whereNfit valid is the number of valid convergence results from the simulation (χ2r bxð Þ≤χ2r;max) andNtotal is the
total number of parameters simulated. Note that Ntotal = NMC · Nrep, where NMC is the number of different
input parameters of the Monte Carlo simulation (i.e.,NMC=1,000 or 2,000 depending on the simulation) and
Nrep is the number of repetitions of each input parameter of the simulation (i.e., Nrep= 500).

Figure 3. (gray line) Histogram of error of ion composition estimations (ε pð Þ
¼ ptrue−bp) obtained from a Monte Carlo simulation with signal
fluctuation δ= 1%. Input plasma parameters of this simulation were those of
spectrum Case a1 of Figure 1, assuming electron density and ion drift
parameters known a priori. The red and blue curves show respectively the
“correct” and “incorrect” distributions of the Gaussian mixture model
calculated using the expectationmaximization algorithm. PDF= probability
density function.
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Alternatively, the probability of “correct” estimation (Pcorrect), which represents the probability to success-
fully select the global minimum of the χ2r cost function having already converged to a valid solution, was cal-
culated as follows:

Pcorrect ¼ Ncorrect=N fit valid; (9)

whereNcorrect is the number of “correct” results of a simulation (i.e.,bx≈xtrue) calculated by the EM clustering
algorithm.

The probability of valid convergence and “correct” estimation (Pfit valid & correct), defined as the total number
of parameters calculated without an ambiguous solution, was calculated as the product of previous
probabilities:

Pfit valid&correct ¼ Pfit valid·Pcorrect ¼ Ncorrect=N total: (10)

Note that Pfit valid & correct represents the probability of solving a set of parameters and estimating it without
ambiguity and consequently indicates the total probability of unambiguous estimation.

4. Results and Discussion
4.1. Effect of the Initial Parameters Uncertainty
4.1.1. Accurate Initial Guess
Figure 4 shows the results of Monte Carlo simulations with initial parameter range percentages of β = 1%,
5%, 10%, 20%, 30%, 40%, 50%, and 100%, demonstrating the effects of increasing the uncertainty on the
initial parameters.

The most remarkable result was obtained in the case of an almost perfect guess of the initial parameters
(β = 1%). Even if the initial parameters were extremely accurate, unambiguous estimates (i.e.,
Pcorrect ≈ 100%) were obtained only with signal fluctuations smaller than δ < 0.1%. This result implies
the existence of a threshold on the noise level that can be tolerated to completely solve the TICA pro-
blem, even when using a precise ionospheric model as initial guess. To obtain a Pcorrect ≥ 95.45% (i.e.,
a 2σ probabilistic criterion), the signal fluctuation threshold was δth(β = 1%) = 0.54%. Alternatively,
Pcorrect decayed to less than 50% for signal fluctuations δ > 5%, indicating that at highly noisy scenarios
it was more probable to select the “incorrect” solution. On the other hand, the Pfit valid was almost 100%
in all noise scenarios, indicating that the L‐M optimization algorithm was always able to converge to a
minimum of the cost function.
4.1.2. Increasing the Uncertainty of Initial Parameters
The increase of the uncertainty of the initial parameters (β) produces a reduction of both probabilities
Pfit valid and Pcorrect (Figure 4). Nevertheless, the reduction of Pfit valid was localized in the low fluctuation
regime (δ ≤ 0.5%), while the reduction of Pcorrect was obtained at high fluctuations (0.1 % ≤ δ ≤ 10%).
These different ranges indicate that two different estimation issues occurred at different ranges of
signal fluctuation.

The inverse proportionality of Pfit valid to β occurs because increasing the uncertainty of the initial para-
meters is equivalent to increasing the distance between the initial and the true input parameters,
making it more difficult to find the global minimum. This effect is shown in supporting information
Figure S6, where the number of computing iterations is proportional to the uncertainty of the initial
parameters (β).

Nevertheless, the decrease of Pfit valid was found only at the low fluctuation regime. A decrease of signal
fluctuation is equivalent to a reduction of the estimated signal variance (σ2) in equation (4), resulting in
higherχ2r cost function values. It is assumed that the increase of χ2r generated nonconvergent “incorrect” esti-
mates (χ2r;incorrect>χ

2
r;max) at the low fluctuation regime. This effect is shown in the example of Figure 2 (top),

where the χ2r cost value of the local minimumwas larger than χ2r;max for small signal fluctuations (δ= 0.01%).

This effect reduces the number of convergent solutions and increases the number of “correct” estimates
when the signal fluctuation level decreases, as shown in Figure 4.
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At highly noisy scenarios (δ > 5%), Pcorrect probabilities were smaller than 50% and had almost identical
values with different uncertainties. This result indicates that “incorrect” solutions were more selected at
high fluctuation levels, independently of the level of uncertainty of initial parameters. Alternatively, at very
small signal fluctuations (δ≤ 0.05%) an unambiguous estimation (Pcorrect≈ 100%) is obtained independently
of the level of initial guess uncertainty. This latter result indicates that all solutions were correctly estimated
even when initial parameters were far from true input parameters. Therefore, this result verifies the assump-
tion that, independently of the initial guess accuracy, there is a threshold of signal fluctuation to completely
solve the TICA problem (δth(∀β) ≈ 0.05% to obtain a Pcorrect ≥ 95.45%).

In summary, the use of ionospheric models to determine initial plasma parameters leads to obtaining
erroneous plasma parameters unless signals are almost noiseless. Even with a very good model prediction
(i.e., β = 1%), there is always ambiguity in the estimation of noisy signals. In these noisy scenarios, “incor-
rect” solutions are more likely to be selected.
4.1.3. Proposed Estimation Technique
To obtain results independent of the configuration of initial parameters, the use of a Monte Carlo selection
scheme is suggested. This technique consists of executing the optimization algorithm several times with

Figure 4. Probability of convergence (Pfit valid) and probability of “correct” estimation (Pcorrect) at different signal fluc-
tuation percentages (δ[%]) obtained by simulations of the estimation of four plasma parameters (Ne, Te, Ti, and p para-
meters) without parameters given a priori, for different ranges of initial search parameter selected uniformly around the
true input value (β [%]).
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different initial parameters uniformly selected from the global search space of parameters. The estimated
solution would correspond to the set of parameters most frequently obtained. The following sections show
the probability results that are obtained using this estimation technique.

4.2. Impact of Adding A Priori Information From Plasma Line
4.2.1. Ambiguous Ion Composition Estimate
Monte Carlo simulations were done to analyze the addition of plasma line information without uncertainty.
Figure 5 shows the estimated ion composition parameters obtained from simulations of 2,000 different true
input plasma parameters with the following combinations of parameters: (a) four unknown parameters (Ne,
Ti, Te, and p); (b) three unknown parameters (Ti, Te, and p) given a priori Ne; (c) two unknown parameters
(Ti and p) given a prioriNe and Te/Ti; and (d) two unknown parameters (Ti and p) given a prioriNe and Te. In
this figure, different colors represent ion composition values estimated at different signal fluctuations.

In the study case d of Figure 5, the addition of a priori knowledge of Ne and Te information obtained “cor-
rect” solutions (i.e., bpcorrect≈ptrue) at all noise scenarios. This result implies that this combination of a priori
known parameters solved the ambiguity problem, as proposed by Bjørnå and Kirkwood (1988) and Nicolls
et al. (2006).

Figure 5. Scatter plot of estimated and input values of ion composition, obtained from the analysis of different combinations of parameters known a priori from the
plasma line: (a) without a priori information, (b) given Ne, (c) given Ne and Te/Ti, and (d) given Ne and Te. Each color represents results obtained by simulations
with a particular signal fluctuation percentage (δ[%]).
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In the other study cases (a, b, and c), unambiguous estimates were only possible at almost noiseless scenarios
(δ = 0.01%, red colored). At middle signal fluctuations (0.05 % ≤ δ ≤ 1%, colors cyan to orange) “incorrect”
ion composition values were obtained (i.e.,bpincorrect≈1−ptrue). In high fluctuation cases (δ≥ 5%, blue colored)
estimated results were spread throughout the entire ion composition parameter range. This latter result indi-
cates that in noisy scenarios estimates had a high uncertainty and were also ambiguous.

The “incorrect” ion composition values were dependent on the a priori information provided. Simulations
without a priori information obtained values of “incorrect” ion compositions with a parabolic curve depen-
dent on the true input parameter (ptrue). Alternatively, results with the a priori knowledge of Ne or Ne and
Te/Ti parameters were described by bpincorrect ¼ 1−ptrue. These latter results agree with previous studies that
obtained “correct” and “incorrect” solutions approximately equidistant to p = 0.5 (Lathuillere et al., 1983;
Wu et al., 2015). Nevertheless, the variability of the ion composition value increased in the vicinity of the
intersection between “correct” and “incorrect” results (p ≈ 0.5), indicating a higher estimation uncertainty
at these points. This increase of uncertainty near the intersection point was previously indicated in Aponte
et al. (2007).
4.2.2. Uncertainty of the Ion Composition Estimate
Figure 6 shows the standard deviation of both “correct” and “incorrect” distributions of the GMM PDFs cal-
culated by the EM algorithm (σcorrect and σincorrect, respectively) at different noise levels. These values resem-
ble the average uncertainty of the “correct” and “incorrect” estimated ion compositions. At the low and
middle noise regimes (with signal fluctuations smaller than δ < 5%), both standard deviations increased lin-
early with the signal fluctuation percentage. Estimated linear regressions of standard deviation (σest)

Figure 6. Average values of standard deviation (in logarithmical scale) of “correct” (blue) and “incorrect” (red) statistical distributions obtained by simulations of
the estimation of different combinations of known a priori plasma parameters from the plasma line at different signal fluctuation percentages (δ[%]). Vertical
dotted line represents the estimated fluctuation value (δcross) at which the standard deviation reaches its maximum value (σsat). Black line represents the estimated
linear regression (σest) before arriving to saturation, and the horizontal dotted line represents the saturation value (σsat).
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calculated for study cases a, b, c, and d were δ/10, δ/30, δ/50, and δ/150, respectively (Figure 6). These results
indicate that the uncertainty was dependent on the type of a priori information provided.

For all study cases, both “correct” and “incorrect” standard deviations have a maximum value of approxi-
mately σsat = 0.18. This saturation value is the maximum standard deviation value that was obtained by
the EM algorithm in the ion composition error range (−1 ≤ ℇp ≤ 1). These saturation values were reached
at signal fluctuation levels approximately equal to δcross, where δcross is the signal fluctuation level at
which Pcorrect = 50% in Figure 7. Consequently, δcross represents the maximum signal fluctuation thresh-
old required to obtain a higher number of “correct” and “incorrect” estimates. Supporting
information Figures S11, S16, S21, and S26 show the histograms of estimated ion composition of study
cases a, b, c, and d. These figures verify that at noise levels higher than δcross the number of “incorrect”
solutions is larger than the number of “correct” solutions.
4.2.3. Probability Results of Plasma Line Information Addition
The probability of convergence of the optimization algorithm, the probability of having a “correct” estima-
tion, and their joint probability, are shown in Figure 7 for different combinations of known a priori

Figure 7. Probability of convergence (Pfit valid) and probability of “correct” estimation (Pcorrect; in percentage) at differ-
ent signal fluctuation percentages (δ[%]) obtained by simulations of the estimation of different combinations of known a
priori plasma parameters from the plasma line: without a priori information (blue circles), given Ne (orange squares),
given Ne and Te/Ti (yellow crosses), and given Ne and Te (purple rhombus).
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parameters (study cases a, b, c, and d). Each of the different study cases shown in this figure gradually
improved Pcorrect, displacing the signal fluctuation threshold to higher values. This indicates that the a priori
knowledge of different parameters provides different amounts of information to solve the TICA problem.
The signal fluctuation thresholds for obtaining a Pcorrect ≥ 95.45% were found at δth(no info) = 0.045%,
δth(Ne) = 0.137%, δth(Ne and Te/Ti) = 0.568%, and δth(Ne and Te) = 7.93%, for study cases a, b, c, and d,
respectively. This latter threshold value indicates that the addition of Ne and Te information solved the
TICA problem even for highly noisy signals, as previously indicated.

A previous study of the TICA problem (Aponte et al., 2007) simulated the estimation process at a signal
fluctuation of δ = 0.5% knowing a priori Ne and Te/Ti parameters from the plasma line. The results of
Aponte et al. (2007) were obtained without ambiguity, agreeing with the results found in our work.
Nevertheless, the study of Aponte et al. (2007) did not consider the convergence of the estimated results,
and invalid solutions could be obtained depending on the configurations of the fitting. To account for non-
convergent estimates, the probability of unambiguous estimation of this study should be determined by the
value of Pfit valid & correct.

The addition of a priori information improved the convergence of the optimization algorithm Pfit valid. The
addition of Ne and Te information (study case d) obtained a probability of valid convergence Pfit valid > 99%
for all studied noise fluctuations. In this case, the optimization algorithmwas always able to find aminimum
of the cost function independently of the noise level. Other study cases (a, b, and c) obtained a reduction of
Pfit valid for signal fluctuations smaller than δ < 0.5%. These reductions were assumed to be related to the
effect of decreasing the estimated variance (σ2) in the calculus of the cost functionχ2r, previously indicated in
section 4.1.2. In small signal fluctuation cases, “incorrect” estimates were not convergent (χ2r;incorrect>χ

2
r;max)

and only “correct” solutions were obtained, as shown in the histograms of χ2r and the error of the ion com-
position estimate shown in supporting information Figures S13, S14, S18, S19, S23, S24, S28, and S29.

The number of computing iterations required was gradually reduced by the addition of a priori information
at the different study cases. Supporting information Figure S6 shows the average number of iterations
required for convergence and “correct” estimation. Computing times of simulations with a priori knowledge
of Ne and Te parameters (study case d) were approximately a quarter of those obtained without a priori
information (study case a). Furthermore, the use of a large initial parameter uncertainty (i.e., β = 100% in
Figure 4) is equivalent to having initial parameters uniformly selected from the entire search range (case
a in Figure 7, blue color line).

4.2.4. Relationships Between Estimation Errors of Parameters
Histograms of estimation error of plasma parameters are shown in supporting information Figures S15, S20,
S25, and S30 for the different study cases previously indicated. In the study cases a, b, and c, histograms show
a nonlinear dependence between the estimation errors of Ne, Te, and Ti parameters and the estimation error
of the ion composition. These dependences indicate that Ne, Te, and Ti parameters are directly related to the
ion composition ambiguity. Alternatively, results of study case d (knowing a priori Ne and Te) showed no
relationships between the estimation error of Ti and ℇp, indicating that there was no ambiguity in this case.

Parameter estimation error percentages (ℇX %ð Þ ¼ 100· X true−bX� �
=X true ) obtained from our Monte Carlo

simulations were compared to the theoretical errors calculated with the analytic formulation of
Waldteufel (1971). Supporting information Figure S14 shows the theoretical estimation errors obtained by
the direct application of equation 10 of Zettergren et al. (2011). Both errors were found similar, indicating
that the approximation of Waldteufel (1971) provides accurate error predictions. Nevertheless, electron
temperature and electron density errors were much more disperse than those predicted by the analytical
formulation.

The values shown in supporting information Figure S14 agree with the ion temperature increase calculated
by Zhang et al. (2018) in the case of positive ion composition errors (ℇp > 0). Nevertheless, negative ion com-
position estimation errors obtained larger ion temperature errors. Estimated errors of Te and Ti parameters
were approximately −100% and 50% for ion composition error values of ℇp = − 1 and ℇp = 1, respectively.

This indicates that the maximum erroneously estimated values of temperature were approximately bT incorrect

ℇp ¼ −1
� � ¼ 2Tcorrect and bT incorrect ℇp ¼ 1

� � ¼ Tcorrect=2.

10.1029/2018JA026217Journal of Geophysical Research: Space Physics

MARTÍNEZ‐LEDESMA AND DÍAZ QUEZADA 2912



4.3. Determination of the Most Relevant A Priori Parameter
4.3.1. Simulations of Single Parameter Addition
To determine which a priori parameter would be the most relevant to solve the ambiguity problem, the
amount of information provided by each plasma parameter must be identified. Previous studies
(Vallinkoski, 1988; Vallinkoski & Lehtinen, 1990) analyzed the effects of providing a priori plasma para-
meters assuming no collisions, a fixed value of ion composition, and signal fluctuations of δ = 1%. Results
from these studies indicated that the addition of a priori parameters are useful only when parameters have
highly correlated errors with ion composition (p). As a negative correlation coefficient was found between Ti
and p parameters, the addition of Ti information completely solved the ambiguity. In previous studies
(Vallinkoski, 1988; Vallinkoski & Lehtinen, 1990), the unambiguous estimation was found to be dependent
on the signal fluctuation level.

In our study, Monte Carlo simulations of 2,000 true input plasma parameters were done assuming the a
priori knowledge of each plasma parameter at different signal fluctuation levels. The different study cases
analyzed were (i) five unknown parameters (Ne, Ti, Te, Vi, and p) without a priori information; (ii) four
unknown parameters (Ne, Ti, Te, and p) given a priori Vi; (iii) four unknown parameters (Ti, Te, Vi, and p)
given a priori Ne; (iv) four unknown parameters (Ne, Ti, Vi, and p) given a priori Te/Ti; (v) four unknown
parameters (Ne, Ti, Vi, and p) given a priori Te; and (vi) four unknown parameters (Ne, Te, Vi, and p) given
a priori Ti.

The study case ii (assuming Vi is known a priori) has already been analyzed in section 4.2 as study case a.
Furthermore, study case iii (assuming Ne is known a priori) is similar to the study case b from section 4.2,
but without assuming the Vi parameter is known. It is relevant to review study case iii separately because
solutions may depend on the number of parameters.
4.3.2. Probability Results of Single Parameter Addition
Figure 8 shows the probabilities obtained with the simulations of the study cases previously indicated. The
most relevant outcome is that study cases i and ii (without a priori information and knowing a priori Vi para-
meter, respectively) obtained similar probabilities. This result implies that the knowledge of the Vi para-
meter does not affect the ion composition estimate, and consequently, it does not contribute to solve the
TICA problem. Nevertheless, at very high signal fluctuations (δ > 10%), small differences of Pcorrect (<3%)
were found. These probability differences were assumed to be related to the estimate variability generated
by the addition of different random noise at each simulation. Furthermore, study case iii (knowing a priori
Ne) and study case b of section 4.2 (knowing a priori Ne and Vi, shown in Figure 7) had also similar probabil-
ities. This latter result verifies that parameter Vi does not provide information to solve the ambiguity.

Results of simulations of study case iii (with the a priori knowledge ofNe) had an almost constant increase of
Pcorrect, but simulations of study case iv (with the a priori knowledge of Te/Ti) had no increase of Pcorrect at
some signal fluctuation levels. This effect implies that the knowledge of Ne provided more information than
the knowledge of Te/Ti. Even so, both simulations had similar signal fluctuation thresholds to obtain
Pcorrect ≥ 95.45% (δth Neð Þ ¼ 0:14% and δth Te=Tið Þ ¼ 0:11% for study cases iii and iv, respectively).

Furthermore, Pfit valid of study case iv was the smallest. It is assumed that this decrease in convergence
was related to the difficulty of obtaining values of Te and Ti that satisfy the Te/Ti ratio imposed by the a priori
knowledge during the estimation process. Alternatively, Pcorrect values of study case c (knowing a priori Ne

and Te/Ti, shown in Figure 7) weremuch higher than the values obtained from study case iii or iv (knowing a
prioriNe or Te/Ti parameters, respectively). This latter result implies that the information provided byNe and
Te/Ti parameters was different and complementary.

The study cases v and vi (knowing a priori Te and Ti, respectively) highly improved the values of Pcorrect.
Signal fluctuation thresholds for those cases were δth Teð Þ ¼ 1:54% and δth Tið Þ ¼ 3:06%. As these signal fluc-

tuations are commonly obtained at real ISR measurements (Vallinkoski & Lehtinen, 1990), common ISR
radars could avoid the TICA problem by the direct addition of plasma temperature information. Both study
cases obtained similar values of Pcorrect but presented different shapes at highly noisy scenarios. The prob-
ability curve of study case vi had a more pronounced decay as a function of signal fluctuation.
Convergences obtained were Pfit valid Teð Þ>96% and Pfit valid Tið Þ>98%. Consequently, the a priori knowledge

of Ti provided the most relevant information for solving the TICA problem, as indicated by Vallinkoski
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(1988) and Vallinkoski and Lehtinen (1990). Nevertheless, the a priori knowledge of Te obtained similar
probabilities to the results of knowing a priori Ti.

Supporting information Figures S9 and S10 show the estimated ion composition values and the standard
deviation values obtained for these study cases, respectively. Histograms of plasma parameter estimation
error and their relationships with the ion composition estimation error are shown in supporting
information Figures S35, S40, S45, S50, S55, and S60. These graphics show correlations between Te and Ti
estimation errors and the ion composition error, verifying the high impact of parameter information with
highly correlated errors (Vallinkoski & Lehtinen, 1990).

4.4. Uncertainty of the A Priori Information From the Plasma Line
4.4.1. Uncertainty of Plasma Line Parameters
To provide a more realistic radar framework, different levels of uncertainty in the plasma parameters known
a priori from the plasma line have been analyzed. The study of Vallinkoski and Lehtinen (1990) analyzed the
effect of the level of uncertainty of the a priori given parameters. Results from this study demonstrated the

Figure 8. Probability of convergence (Pfit valid) and probability of “correct” estimation (Pcorrect; in percentage) at differ-
ent signal fluctuation percentages (δ[%]) obtained from the analysis of plasma parameters without a priori information
(blue circles), given Vi (orange crosses dotted line), given Ne (yellow hexagons), given Te/Ti (purple rhombs), given Te
(green stars), and given Ti (cyan squares).
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dependence of the estimation error on the a priori accuracy. Uncertainty levels analyzed in our study were
ϵ= ±0.05%, ±0.1%, ±0.5%, ±1%, ±5%, ±10%, ±25%, ±50%, and ±100%. Previous studies obtained
experimental plasma line parameter uncertainties for Ne between 1% and 3% at different altitudes (Djuth
et al., 1994; Nicolls et al., 2006), for Te/Ti of approximately 0.5% (Aponte et al., 2007), and for Te of 5% to
6% using the frequency asymmetry method (Nicolls et al., 2006).

Monte Carlo simulations of 1,000 different true input parameters were done to analyze the impact of adding
plasma line information with uncertainty. The different combinations of parameters studied were: (1) three
unknown parameters (Ti, Te, and p) given a priori Ne; (2) two unknown parameters (Ti and p) given a priori
Ne and Te/Ti; and (3) two unknown parameters (Ti and p) given a prioriNe and Te. In these cases, the ion drift
velocity has been assumed to be known and independent of other parameter estimates, as shown in
section 4.3.

The uncertainty error has been simulated as a random variation of the a priori known parameters. This
variability was simulated as a uniform selection in the range of parameters defined by [xtrue(1−| ϵ| /100),
xtrue(1+| ϵ| /100)], where ϵ is the a priori parameter uncertainty percentage and xtrue is the a priori known
true input parameter. Each of the 500 estimation repetitions of the true input parameters was done with a

Figure 9. Probabilities obtained from the analysis of plasma parameters with a priori information having different levels of uncertainty. Columns correspond to
simulations with different combinations of known a priori plasma parameters from the plasma line: given Ne (left), given Ne and Te/Ti (middle), and given Ne
and Te (right). Black dotted lines represent simulation results with plasma parameters known a priori without uncertainty.
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different random noise with initial parameters selected uniformly from the entire search space of parameters
and with a priori known parameters uniformly selected from an uncertainty range defined by ϵ.
4.4.2. Probability Results of Plasma Line Additions With Uncertainty
Figure 9 shows the probabilities obtained from simulations with different levels of uncertainty in the addi-
tion of plasma line information. The probabilities of simulations without uncertainty (Figure 7) are shown in
black dots for visual comparison. As expected, when the uncertainty level was reduced, the probabilities
obtained were similar to the probabilities calculated without uncertainty in the a priori known parameters.

A relevant result of these simulations is that Pfit valid values were similar to the results obtained without
uncertainty at fluctuation percentage values larger than the uncertainty level (δ ≥ ∣ϵ∣), but at lower noise
levels the value of Pfit valid rapidly decayed to zero when reducing the signal fluctuation value. It is assumed
that simulations with δ≪ ∣ϵ∣ did not converge (Pfit valid = 0) because the a priori given parameters were not a
valid solution of the estimation problem. This result agrees with the results of (Vallinkoski & Lehtinen, 1990)
that demonstrate the existence of maximum andminimum signal fluctuation levels to obtain valid solutions
when providing a priori known parameters with uncertainty. Therefore, to avoid wrongly estimated results
when providing a priori information, verifying the convergence of the solutions by using the method indi-
cated in section 3.1 is strongly suggested. Furthermore, verifying that the uncertainty of the known a priori
measurements is higher than or equal to the fluctuation level of the ISR signal to estimate (δ ≥ ∣ϵ∣) is
also suggested.

Results of simulations with uncertainty levels ∣ϵ∣ ≤ 1% obtained values of Pcorrect similar to simulations
without uncertainty. This suggests that knowing a priori information with uncertainty levels ≤1% would
solve the ambiguity problem similarly as if these a priori known parameters were deterministically known.
Results with larger uncertainty levels (∣ϵ∣ > 1%) obtained a decrease of Pcorrect dependent on the uncertainty
level. Alternatively, for noise levels δ≤ 0.05%, solutions were “correct” (Pcorrect≈ 100%) independently of the
uncertainty and type of information provided. This latter result implies the existence of a global minimum
threshold (δth = 0.05%) to solve the TICA problem, independently of the type of a priori information
provided from the plasma line.
4.4.3. Use of In Situ Sensors
Simulations with known a priori information of Ne and Te parameters (shown in Figures 7 and 9) obtained
the best unambiguous estimation performance. This result suggests that measurements from in situ sensors
onboard satellites and rockets, such as Langmuir probes or retarding potential analyzers, could also be used
as a priori known parameters to solve the TICA problem. The sensor type and its characteristics should be
considered to determine its uncertainty and calculate the corresponding unambiguous estimation probabil-
ity (Figure 9). Alternatively, the measurements from in situ sensors could also be used to compare with the
parameters estimated by the radar.

Although satellite measurements at altitudes below 300 km are scarce, present trends in nanosatellite design
(i.e., Cubesat standard) are increasing the number of platforms that could be used in a future scenario for a
sustained monitoring at these altitudes. These measurements could be obtained at a particular time and
orbital altitude, providing information of the ion composition at a single range gate of the radar.
Nevertheless, determining how these measurements could be used to unambiguously estimate the entire
ion composition profile should be studied in a future work.

5. Conclusions

We have studied the TICA problem conducting Monte Carlo simulations for different plasma parameters of
the ISR estimation process at different signal fluctuation values. These simulations were done using themost
commonly used NLLS optimization algorithm: the L‐M algorithm. The convergence of the estimated solu-
tion was determined using the statistical distribution of the χ2r cost function. Results were clustered using
the EM algorithm to determine the “correctness” of the result depending on the distance of the ion composi-
tion estimation error to the “correct” and “incorrect” statistical probability distribution functions. The prob-
ability of convergence of the optimization algorithm (Pfit valid) was computed as the ratio between the
number of convergent solutions and the total number of simulations. The probability of “correct” estimation
(Pcorrect) was computed as the ratio between the number of “correct” solutions and the number of conver-
gent solutions. The estimation was conducted at different signal fluctuation levels to determine the
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maximum noise threshold required to avoid the TICA problem. The δth thresholds were selected to have a
probability of “correct” estimation of 2σ (Pcorrect = 95.45%).

Ionospheric models are commonly used in the ISR estimation process to determine the initial parameters of
the fitting. To study the effects of an inaccurate initial guess of parameters, simulations with different values
of uncertainty were performed on the initial parameters (β). Results indicate that for very small signal fluc-
tuations (δ≤ δth = 0.05%) almost all parameters were estimated “correctly” independently of the uncertainty
of the initial guess. For noisier cases, the value of Pcorrect was highly dependent on the distance between the
initial guess and the true input parameters. Results show that even with an accurate initial guess (β = 1%),
estimations are ambiguous (Pcorrect < 95.45 %) for signal fluctuation levels higher than δth(β = 1%) = 0.54%.
These results might suggest changes in the typical estimation process of ISRs.

Probabilities of valid convergence and of “correct” estimation were computed for different combinations of
plasmaparameters known apriori from the plasma line. Results indicate that the combination of a priori informa-
tion of Ne and Te solved the ambiguity problem even in highly noisy scenarios (δth(Ne and Te) = 7.93%). To further
determine the information provided by each plasma parameter, simulations knowing a priori a single parameter
were done. Results indicate that plasma temperatures (Te and Ti) provide the most information. This agrees with
previous studies (Vallinkoski, 1988; Vallinkoski & Lehtinen, 1990) that indicate that highly correlated error
parameters have the greatest impact on solving the ion composition ambiguity.

The effect of increasing the uncertainty of the a priori known parameters (ϵ) was also studied. Solutions were
not convergent for signal fluctuation levels much smaller than the uncertainty value (δ≪ ∣ϵ∣). The value of
Pcorrect was found to be dependent on the uncertainty level. For uncertainties ∣ϵ∣ ≤ 1%, Pcorrect values were
similar to the results of simulations without uncertainty. Furthermore, results suggest that a global mini-
mum threshold (δth = 0.05%) solves the TICA problem independently of the amount of uncertainty and type
of information provided from the plasma line. Finally, given the importance of a priori estimates ofNe and Te
parameters for unambiguously solve the estimation problem, it is suggested that in situ sensors onboard
satellites or rockets could be used to obtain these a priori estimates at particular ranges.

Different methods have been described to solve the TICA problem in the ISR literature (Aponte et al., 2007;
Bjørnå & Kirkwood, 1988; Cabrit & Kofman, 1996; Evans & Oliver, 1972; Lathuillere et al., 1983; Litvine
et al., 1998; Nicolls et al., 2006; Oliver, 1979; Waldteufel, 1971; Wu et al., 2015) but exists a deficiency of
published documentation about current practices at ISR facilities. A review and standardization of current
ISR estimation methods would provide a significant benefit to the ISR community.

The results obtained in this study suggest several operational improvements of the ISR estimation process:

1. To verify the solution convergence, it is suggested to use the reduced chi‐square cost function to normalize
the estimation results (shown in section 2.4.2), determine a maximum cost function value (shown in
section 3.1 and supporting information Figure S3), and then determine the convergence of the estimated
solutions by selecting χ2r ≤ χ2r;max.

2. To obtain results independent of the initial guess accuracy, it is suggested to execute several fittings with
different initial parameters uniformly selected from the range of parameters and select the most fre-
quently obtained solution (shown in section 2.6).

3. To increase the probability of unambiguous estimation when adding a priori information, it is suggested to
determine the value of Pcorrect in Figure 9 depending on the fluctuation level of the radar signal and the
uncertainty of the a priori known parameters (shown in section 4.4). When the convergence of the
solution is not verified, the probability of unambiguous estimation should be approximated by
Pfit valid & correct. Furthermore, it is recommended to select δ ≥ ∣ϵ∣to increase the probability of conver-
gence of the estimation.
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