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Abstract
Calbuco volcano is a Late Pleistocene composite stratovolcano and member of the Southern Volcanic Zone of the Chilean Andes
(41°19′S, 72°36′W). It lies ~ 20 km west of the Liquiñe–Ofqui Fault Zone, but is not located directly upon any major regional
structures. During April 2015, a sub-Plinian eruption occurred, with a bulk erupted volume of ~ 0.3–0.6 km3 (~ 0.1–0.2 km3

DRE). The eruptionwas a rapid-onset event that produced highly crystalline products (from 40 to 60 vol.%) including the mineral
phases: plagioclase, clinopyroxene, orthopyroxene, amphibole, olivine, apatite, ilmenite, titanomagnetite and chalcopyrite. An
upper-crustal reservoir is inferred using available geophysical data combined with amphibole geobarometry. Consideration of
textural features, including high crystallinity, complex mineral zonation, crystal clots and interstitial glass between crystals from
clots, suggests the presence of a mush zone within this reservoir. From the nine collected samples, whole-rock chemistry and an
array of geothermometers (amphibole, amphibole-plagioclase, two-pyroxenes and Fe–Ti oxides) gave similar results for all
samples possessing ~ 40 vol.% of crystals, with the exception of the sample Cal-160 (~ 60 vol.% crystallinity), which is slightly
more evolved and yields lower temperatures for all geothermometers. By comparing temperatures calculated in sample Cal-160
using pairs of ilmenite-titanomagnetite core compositions with those calculated using rim compositions, we observe a late-stage
temperature increase of between 70 and 200 °C. We suggest that this local-scale heating event was at least partly responsible for
triggering the eruption. Our data suggest that the bulk of the erupted magma was derived from a relatively uniform (970–
1000 °C), crystal-rich magma mass. Sample Cal-160 was derived from a cooler environment (910–970 °C), where it was
subjected to pre-eruptive heating to temperatures considerably higher than those observed in associated, erupted magmas (up
to 1070 °C). This requires the involvement of a hot, presumably mafic magma injection at the base of a shallow, crystal-rich
reservoir, though the mafic magma was not itself erupted. The localised nature of interaction and rapidity of eruption onset have
implications for potential future hazards at Calbuco volcano.
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Introduction

Within the continental crust, magma reservoirs are considered
to be represented by both magma chambers, these being de-
fined as continuous, melt-rich, lenticular regions where the
magma is fluid and eruptible and within which magma crys-
tallinity is < 45 vol.%, and crystal mushes, i.e. a body with a
rigid crystal framework and crystallinity > 45% (Marsh 1989,
1996; Hildreth 2004; Bachmann and Bergantz 2008).
Crystallinities > 45 vol.% are associated with rheological
properties which impede convection processes (e.g.
Bachmann and Bergantz 2004, 2008; Huber et al. 2010a;
Burgisser and Bergantz 2011; Parmigiani et al. 2014). These
reservoirs exist as shallow magma reservoirs (≤ 10 km depth)
and may evolve over long cooling periods to become plutons
(e.g. Koyaguchi and Kaneko 1999; Claiborne et al. 2010;
Cooper and Kent 2014; Molina et al. 2015; Szymanowski
et al. 2017; Cooper et al. 2017).

Sample mineralogy and whole-rock chemistry are usually
studied together in order to understand magma reservoirs.
Mineral compositions, however, yield diverse information re-
garding crystallisation conditions, crystal re-equilibration and
timescales, which depend upon the diffusion kinetics of their
constituent elements. For example, major elements of Fe–Ti
oxides show much higher interdiffusivity (Aragon et al. 1984;
Aggarwal and Dieckmann 2002a, b) than those of silicate
phases (e.g. plagioclase, Grove et al. 1984; clinopyroxene,
Müller et al. 2013; orthopyroxene, Ganguly and Tazzoli
1994, Dohmen et al. 2016; and olivine, Dohmen and
Chakraborty 2007a, b). Therefore, Fe–Ti oxides equilibrate
much faster than silicate phases, typically recording magma
eruption temperatures. By contrast, the silicates can provide
information on earlier stages of the magmatic history with
little re-equilibration. This study reports whole-rock chemis-
try, mineral chemistry, textural features and calculations of
pre-eruptive intensive conditions (geothermometry,
geobarometry and oxybarometry) derived from fall deposits
of the sub-Plinian eruption of Calbuco volcano (Southern
Chile), which occurred on 22–23 April 2015. In doing so,
we recognise and quantify a local-scale heating event prior
to the eruption, which we interpret to represent an input of
new, hot magma beneath an inferred shallow magma reservoir
including a mush zone with limited mixing or interaction be-
tween the overlying reservoir and the new magma input.

Geological setting

Calbuco volcano

Calbuco volcano (41°19′S, 72°36′W) is a Late Pleistocene–
Holocene composite stratovolcano (López-Escobar et al.
1992) of the Central Southern Volcanic Zone of the Andes.

Its summit is 2003 m above sea level and the basal area of the
volcano is 150 km2 (Sellés and Moreno 2011). Calbuco has
been catalogued as the third most dangerous Chilean volcanic
system (Lara et al. 2011; SERNAGEOMIN 2017). It is locat-
ed ~ 20 km west of the Liquiñe–Ofqui Fault Zone (LOFZ;
Fig. 1), a major dextral, transpressive strike-slip structure of
the Southern Volcanic Zone (Cembrano et al. 1996, 2000).
According to Sellés and Moreno (2011), however, Calbuco
volcano is not itself located directly upon any major regional
structure. The basement of the area is composed of late
Palaeozoic metamorphic rocks from the Sotomó–
Ch a i q u e n e s ( T h i e l e e t a l . 1 9 8 5 ) a n d L e n g a
(SERNAGEOMIN – BRGM 1995) metamorphic complexes
and later plutonic rocks, which are members of the Miocene
plutonic belt of the Northern Patagonian Batholith (López-
Escobar et al. 1992; Adriasola et al. 2006). The Calbuco vol-
canic edifice immediately overlies Early Pleistocene volcanic
sequences (the Hueñuhueñu and Reloncaví strata; López-
Escobar et al. 1995b).

The construction of the Calbuco edifice is ~ 300 ka old
(Sellés and Moreno 2011) and is characterised by alternations
between lava flows (basaltic to basaltic andesitic with rare
dacite), andesitic to dacitic domes and layers of pyroclastic
tephras, block and ash flows, and deposits from hot and cold
lahars (López-Escobar et al. 1992, 1995a, b; Petit-Breuilh
1999; Moreno et al. 2006; Stern et al. 2007; Castruccio et al.
2010; Sellés and Moreno 2011; Watt et al. 2011; Daga et al.
2014). The dominantly andesitic composition of its products
(with high Sr isotope ratios and low Nd isotope ratios; López-
Escobar et al. 1995b), combined with the presence of crustal
xenoliths and magmatic amphibole phenocrysts, make this
volcano notably more evolved by comparison to other nearby
volcanic complexes such as Osorno volcano (Parada 1990;
López-Escobar et al. 1992, 1995a, b; Hickey-Vargas et al.
1995). The long-term evolution of the products of Calbuco
volcano has been divided into four units (Lahsen et al. 1985;
López-Escobar et al. 1992, 1995b; Sellés and Moreno 2011);
details of the three prehistoric units (Calbuco 1, 2 and 3) are
shown in Table 1 and details of the historical unit (Calbuco 4)
are shown in Table 2.

The April 2015 Calbuco eruption

During 22–23 April 2015, two sub-Plinian eruptive events
occurred at Calbuco volcano. The first eruptive pulse started
on 22 April at 17:50 local time (20:50 UTC) and the second
started on 23 April at 01:00 local time (04:00 UTC)
(SERNAGEOMIN 2015a, b, c, d). These pulses produced
eruptive columns with heights exceeding 15 km
(SERNAGEOMIN 2015e; Romero et al. 2016; Van Eaton
et al. 2016). Van Eaton et al. (2016) reported pyroclastic den-
sity currents (PDCs) at the end of the first eruptive pulse, with
the largest PDCs occurring at the onset of the second eruptive
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pulse. During the entire eruption sequence, primary and sec-
ondary lahars were generated on the S, N and NE flanks and
no lava flows were emitted (Castruccio et al. 2016).

Several authors have estimated the bulk erupted vol-
ume during the eruption: 0.27 km3 (0.11–0.13 km3 dense
rock equivalent, DRE; Romero et al. 2016), 0.56 ±
0.28 km3 (0.18 ± 0.09 km3 DRE; Van Eaton et al. 2016),
0.38 ± 0.1 km3 (0.15 km3 DRE; Castruccio et al. 2016)
and 0.37–0.6 km3 (Delgado et al. 2017). The eruption
had a volcanic explosivity index (VEI) of 4, based on
the estimated bulk volumes (Romero et al. 2016; Van
Eaton et al. 2016). Most of the products were erupted
during the first pulse (Romero et al. 2016).

In terms of precursory activity, Valderrama et al. (2015)
reported 147 seismic events occurring from 1 January to 21
April 2015, of which 142 were volcano-tectonic (VT, related
to fracturing of the wall rock) and 5 were long-period (LP,
related to collapse of gas bubbles in rising magma or fluid
movement events). From February 2015, there was an in-
crease in low-magnitude VT seismic activity and later, during
22 April, a seismic swarm of 140 VT events was recognised
starting just 3 h before the eruption onset (SERNAGEOMIN
2015f). The first LP events were registered at 16:34 local time
(19:34 UTC, ~ 1.5 h before the eruption) and during the sec-
ond pulse there was an increase in the number of VT seismic
even ts (SERNAGEOMIN 2015g) . Al though no
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Fig. 1 (a) Location of Calbuco volcano with respect to Chile and (b)
regional map of Calbuco volcano on shaded relief/Digital Elevation
Model. Calbuco is located between Llanquihue and Chapo lakes, ~
20 km west from the Liquiñe–Ofqui Fault Zone (LOFZ, dashed white

line). The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model (GDEM) image
was obtained via EarthExplorer, USGS (http://earthexplorer.usgs.gov)
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deformation was recognised up to 1.5 days before the
eruption, deflation was documented during the eruption
(Delgado et al. 2017), which agrees with the contempo-
rary tiltmeter information (Valderrama et al. 2015).
According to Delgado et al. (2017) the deformation
source models are consistent with a deflation between 8
and 11 km depth. The consequences of the eruption were
not only local, where chemical-climate interaction model-
ling suggests that the 2015 Calbuco eruption led to an
increase in the areal extent of the Southern ozone hole
by 4.5 × 106 km2 (Ivy et al. 2017). Although on 30
April there was another eruptive pulse, this was a steam-

driven eruption with little participation of fresh magma.
The plume reached < 5 km above the vent with dispersion

Table 2 Main features of the historical products of Calbuco volcano

Year of
the
eruption

Description Mineralogy

1893 A violent eruption started on

February 1893 and finished

during the last months of 1895

(Petit-Breuilh 1999). During

October 1893 was the

paroxysmal stage, when the

eruptive column reached ~ 9 km

height (VEI 3 estimated; Fischer

1893; Petit-Breuilh 1999)

–

1911 During 1911 and 1912, gas and

asheswere erupted (Petit-Breuilh

1999)

–

1917 During April 1971, an eruption

occurred with a lava flow,

dome-cone and some lahars were

associated. The lava flow had

andesitic composition

(59.3 wt.% SiO2) and gabbroic

and troctolitic clots were found

(Sellés and Moreno 2011)

Plagioclase, orthopyroxene,

amphibole, opaque

1929 During January 1929, 2.5-km-long

(from the crater to NE direction)

and 0.5-km-long (from the crater

to SE direction) andesitic lavas

(55.5 wt.% SiO2). Some crystal

mush xenolith of amphibole

gabbros have been recognised

(Sellés and Moreno 2011).

Lahars were generated during

the eruption flowing towards

northwest (Petit-Breuilh 1999)

Plagioclase, pyroxenes,

olivinea, amphiboles

1961 During February 1961,

4.6-km-long (NE direction) and

1.7-km-long (SE direction)

andesitic lavas were erupted. As

a consequence, some lahars and

hot lahars were generated (Klohn

1963; Moreno et al. 2006;

Castruccio et al. 2010).

According to the morphological

features of glassy particles, this

eruption is associated to

magma/water interactions (Daga

et al. 2014). Also granulitic,

gabbroic and noritic clots have

been recognised (Hickey-Vargas

et al. 1995; Moreno and Sellés

2011)

Plagioclase, clinopyroxene,

orthopyroxene, olivinea,

amphibole, quartz

*All the olivines were surrounded by a pyroxene crown

– No information available

Table 1 Main features of the different prehistorical units of Calbuco
volcano

Unit Description Mineralogyb

Calbuco 1
(340–110
ka)

Unit composed mainly of
andesite-basalt and scarce
basalt lavas
(50–56.6 wt.% SiO2) in-
terbedded with
volcanoclastic deposits.
The deposits lie in discon-
formity over plutonic and
metamorphic basement as
well as volcanic and
volcaniclastic deposits
(Estratos de Hueñuhueñu,
1.4 Ma; Lahsen 1985).
Sellés and Moreno (2011)
have recognised gabbro
and pyroxenite xenoliths

Plagioclase,
clinopyroxene,
orthopyroxene,
olivinea, amphibole

Calbuco 2
(110–14.5
ka)

Unit composed mainly of
andesitic lavas
(56–61 wt.% SiO2)
interbedded with
pyroclastic flows, fall
deposits and laharic
breccias. Occasionally can
be found andesitic dome
lavas, pyroclastic deposits
and volcanic avalanches
(Sellés and Moreno 2011)

Plagioclase,
clinopyroxene,
orthopyroxene,
olivinea

Calbuco 3
(~ 14 ka to
1893 AD)

Unit composed of lavas
(mainly of andesitic
composition), pyroclastic
rocks and laharic breccias.
Most of the samples have
andesite-basaltic and an-
desitic composition
(55–60 wt.% SiO2).
Scarce dacites (64.5 wt.%
SiO2) also have been
recognised (Sellés and
Moreno 2011)

Plagioclase,
clinopyroxene,
orthopyroxene,
olivinea

a All the olivines were surrounded by a pyroxene crown
bAccording to Sellés and Moreno (2011)
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towards the SE (SERNAGEOMIN 2015g; Van Eaton
et al. 2016). The registered deformation during this erup-
tive event was negligible (Delgado et al. 2017).

Analytical procedures

Geochemistry

Nine samples (four lapilli-sized pyroclasts from fall deposits
and five bombs from pyroclastic density current deposits) were
collected from the products of the 2015 Calbuco eruption de-
posits from seven locations (Fig. 2). Whole-rock compositions
of three lapilli and four bomb samples were analysed via XRF
(for major elements) at Acme Analytical Labs (Vancouver,
Canada) using OREAS-184 and SY-4 standards for all the ma-
jor elements, and CCU-1D andOREAS-700 standards for FeO.
Accuracy for major elements in all standards is better than 3%
(relative) except for TiO2 in SY-4 which is 4.5% (relative) and
P2O5 in OREAS-184 and SY-4 which are 14% and 17% (rela-
tive), respectively. Trace element compositions were analysed

via ICP-MS at the Open University (Milton Keynes, UK) using
the BHVO-2, JB-2 and AGV-1 standards. The reproducibility
of analyses was better than 8% (relative; 2σ) and accuracy in
the trace elements in JB-2 (n = 5), BHVO-2 (n = 2) and AGV-1
(n = 2) is better than 10%, except in Ni (21% in AGV-1) and Pb
(13% in BHVO-2).

The mineral chemistry analyses of amphibole, plagioclase,
pyroxene, Fe–Ti oxide and olivine were measured using an
electron microprobe (JEOL JXA8230) at Leeds Electron
Microscopy and Spectroscopy Centre at the University of
Leeds (Leeds, UK). Counting time is distributed equally be-
tween on-peak and background measurements, using the fol-
lowing conditions:

Amphiboles Major and minor element concentrations (Si, Ti,
Al, Fe,Mn,Mg, Ca, Na, K, Cr, Cl and F) weremeasured in the
cores of amphibole grains. The analytical conditions consisted
of an accelerating potential of 20 keVand focused beam for all
the elements. An electron beam current of 15 nAwas used for
Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K and Cr, whereas a current of
100 nAwas used for F and Cl. Counting times were 30 s for

5 km

Lapilli samples

Bomb samples

2015 eruption

pyroclastic flows
2015 eruption

lahar

2015 eruption

lahars

Cal-149 (Ta,Tb)

Cal-157

Cal-160

Cal-158
Cal-155

Ca-159

Cal-156

N
Fig. 2 Location of samples
(lapilli and bombs) from the 2015
Calbuco eruption on shaded
relief/Digital Elevation Model.
Location of pyroclastic density
currents (white) and lahars (blue)
are based on Castruccio et al.
(2016). The ASTER–GDEM
Image obtained via
EarthExplorer, USGS (http://
earthexplorer.usgs.gov)
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Ti, Al, Cr, Fe, Mn, Mg, Ca and Na; 40 s for Si, 100 s for F and
80 s for Cl. Values of Fe3+ were obtained following the for-
mulation of Leake et al. (1997).

Plagioclases Compositional profiles (spacing ∼ 4–8 μm) of
major (Si, Al, Ca, Na and K) and minor (Ti, Fe, Mg, Sr and
Ba) element concentrations were obtained in plagioclase phe-
nocrysts. The analytical conditions consisted of an accelerat-
ing potential of 20 keVand electron beam current of 10 nA for
major elements and 40 nA for minor elements with a
defocused beam (2 to 5 μm) in order to reduce volatile alkali
loss. Counting times for major elements were 32 s, 240 s for
Ti, Fe and Ba, and 480 s for Mg and Sr.

Clinopyroxenes and orthopyroxenes Concentrations of ma-
jor (Si, Mg, Fe and Ca), minor and trace (Ti, Al, Mn,
Cr, Ni) elements were obtained in pyroxene phenocryst
cores and rims. The analytical conditions consisted of
an accelerating potential of 20 keV and electron beam
current of 30 nA with a focused beam. Counting times
for major elements were 60 s and 80 s for minor and
trace elements. Values of Fe3+ were obtained following
the formulation of Putirka (2008).

Fe–Ti oxides Compositional profiles (spacing ∼ 2–3 μm) of
major (Ti, Fe and O) and minor and trace (Al, Mg, Ca, Mn,
V, Cr, Zn, Ni, Co and Si) elements were measured in
titanomagnetite and ilmenite. The analytical conditions
consisted of an accelerating potential of 15 keV and electron
beam current of 30 nAwith a focused beam. Counting times
for all the elements were 60 s except for O, in which counting
times were 260 s. Values of Fe3+ were obtained following the
formulations of Droop (1987) for ilmenite grains and Stormer
(1983) for titanomagnetites.

Olivines Concentrations of major (Si, Mg and Fe), minor and
trace (Al, Ni, Mn, Ca) elements were obtained in the core of
olivine phenocryst. Analyses were taken away from grain
boundaries in order to avoid secondary fluorescence issues
during the acquisition of Ca concentrations (cf. Dalton and
Lane 1996). The analytical conditions consisted of an accel-
erating potential of 20 keVand electron beam current of 30 nA
for Si, Fe, Mg andMn and 100 nA for Al, Ni and Ca, all with a
focused beam. Counting times for all the elements but Ca were
40 s and 400 s for Ca.

Geothermobarometry

Amphiboles The methods of Ridolfi et al. (2010) and Ridolfi
and Renzulli (2012) are used to calculate intensive conditions
(T, P and fO2) ) independently in 109 amphibole cores from
both Cal-149Ta (light-brown lapilli) and Cal-160 (white
bomb) samples.

Amphibole-plagioclases The Holland and Blundy (1994) ther-
mometry is applied using core compositions of 16
plagioclase-amphibole pairs, where equilibrium is assumed
because the plagioclase crystals are found as inclusions in
amphibole phenocrysts.

C l i nopy r o x ene - o r t hopy r ox ene s Two-py roxene
thermobarometry (Putirka 2008) is used with 35 ortho- and
clinopyroxene pairs that passed the test for equilibrium accord-
ing to the Putirka (2008) chemical filter across the nine samples.

Fe–Ti oxides TheGhiorso and Evans (2008) thermoxybarometer
is applied to compositions of crystal cores and close (~ 2 μm to
the interface) to ilmenite-titanomagnetite grain boundaries.

Olivine The Ca-in-olivine thermometer of Shejwalkar and
Coogan (2013) is applied to core composition data from 16
olivine phenocrysts in crystal clots, where equilibrium with
the surrounding crystal phases (plagioclase, clinopyroxene
and orthopyroxene) is assumed due to textural relation and
chemical filters (cf. Grove et al. 1997). Nine calculated temper-
atures were discarded, due to the low forsterite content (Fo61–68)
of the crystals considering Fo70 as the lower limit of the cali-
bration of the thermometer (Shejwalkar and Coogan 2013).

The error propagation of geothermo- and geobarometers is
carried out considering both internal uncertainties (associated
with the experimental method) and external uncertainties (as-
sociated with precision and accuracy electron microprobe
analyses). In later parts of this work, MELTS modelling uses
the intensive physical variables derived from the
thermobarometry (see ‘Intensive variable conditions’ section).

Descriptions and compositions of the samples

According to Castruccio et al. (2016) the fall deposits of the
22–23April eruptions are made up of four sub-units: the lower
layer (unit 0) corresponds to the first event and is composed
mainly of light-brown, highly vesicular basaltic andesite sco-
ria and up to 10 vol.% of lithics. Layers 1, 2 and 3 correspond
to the second (largest) event and there is a transition in the
dominant clast type present in the deposits, from light-brown
scoria in layer 1 to dark-brown, dense juveniles with the same
composition within layer 3. Samples Cal-149Ta, Cal-155 and
Cal-156 correspond to layer 1, the sample Cal-149Tb corre-
sponds to layer 3, samples Cal-157, Cal-158 and Cal-159
correspond to scoriaceous bombs from PDCs, and sample
Cal-160 corresponds to a distinctive, white bomb with darker
zones extracted from a PDC deposit.

All samples are porphyric, with ~ 35 to 65 vol.% of
phenocrysts. Dominant mineral phases present in all the
s amp l e s a r e p l a g i o c l a s e , o r t h o py r ox en e a nd
clinopyroxene. Minor phases include amphibole (only in
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Cal-149Ta and Cal-160), olivine (in all samples except
Cal-160), titanomagnetite, ilmenite, apatite and chalcopy-
rite. All the mineral phases are present as clots of crystals
and isolated crystals. The samples exhibit crystallinities of
~ 40 vol.% except for Cal-160, which shows a higher crystallin-
ity of ~60 vol.% (Table 3). The samples show a large range of
vesicularities: from 15 to 60 vol.% and the highest values corre-
spond to light-brown lapilli (samples Cal-149Ta, Cal-155, Cal-
156) from 42 to 60 vol.% (see details in Table 3). The crystal-
linity percentages and quantification of the main petrographic of
the collected products of the April 2015 Calbuco eruption were
obtained by image processing techniques via ‘Background
Extraction’ of pseudo-coloured images through the freeware
JMicrovision.

All the samples correspond to calc-alkaline basaltic-an-
desites (55.6–56.9 SiO2 wt.%; Fig. 3a). The Mg# (Mg# =
molar Mg/(Mg + Fe2+)) values are from 0.56 to 0.59. The
maximum SiO2 content (56.9 wt.%) and the minimum
Mg# (0.56) correspond to the Sample Cal-160 (Table 4;
Fig. 3). All samples show similar rare earth elements
(REE) patterns, with a narrow range of LaN/YbN (2–
2.4); only the sample Cal-155 shows a slight positive Eu
anomaly (see Online Resource 1). The spider diagram of
the studied samples shows similar trends in all samples
and display positive Rb, Pb and Sr anomalies and nega-
tive Nb, P and Ti anomalies, which are typical of magmas
from arc settings (Fig. 3c).

Mineral chemistry and petrography

Plagioclase Plagioclase phenocrysts are 0.1–2.0 mm in size
and can be found as isolated crystals and as members of
cumulocrysts and glomerocrysts (together with pyroxene,
olivine, titanomagnetite, apatite, amphibole and scarce
sulphides). Most of the plagioclase phenocrysts display
zonation patterns with distinct cores and rims, with the

exception of some crystals found as inclusions in amphi-
bole and pyroxene crystals.

Two compositional types were identified in plagioclase phe-
nocrysts: zone 1 corresponds to compositions of An80–92
(Figs. 4 and 5), which is restricted to phenocryst cores. Zone
2 corresponds to compositions of An46–79 (Fig. 4), mainly lo-
cated on phenocryst rims, where oscillatory zonation is ubiqui-
tous (Fig. 6). According to the presence/absence of these zones,
plagioclase crystals have been classified into two groups:

Group I: Crystal core shapes are euhedral to subhedral, re-
sorption features and patchy zonation are not
recognised. Core compositions correspond to zone
1 compositions. The rims have variable thickness
(from 20 to 280 μm) and their compositions cor-
respond to zone 2 compositions.

Group II: These plagioclase crystals show oscillatory zon-
ing within zone 2 compositional range.
Resorption and sieve texture as well as patchy
zoning are very common.

Plagioclase grains found as inclusions in amphibole have
compositions in the range An50–89.

Amphibole Amphibole phenocrysts are found only in Cal-
149Ta (fall deposit, layer 1) and Cal-160 (white bomb from
PDC). All Cal-149Ta amphiboles of Cal-149Ta are
pargasites (after Leake et al. 1997; Mg# = 0.64–0.74; Si
apfu = 6.3–6.5; Fig. 7) and can be found as isolated crystals
and glomerocrysts (together with plagioclase, pyroxene,
titanomagnetite, olivine, ilmenite and apatite). All amphi-
bole phenocrysts are euhedral and usually contain plagio-
clase inclusions. In sample Cal-160, 70% of the amphiboles
are edenite (NaCa2Mg5(AlSi7)O22(OH)2) (after Leake et al.
1997; Mg# = 0.65–0.77; Si apfu = 6.5–6.6; Fig. 8), and 30%
are pargasites (NaCa2(Mg,Fe)4Al(Al2Si6)O22(OH)2) (after

Table 3 Main features of the
samples analysed from Calbuco’s
April 2015 eruption

Section name (Cal-) 149Ta 149Tb 155 156 157a 157b 158 159 160

Description LL DL LL LL DB DB DB DB WB

Vesicles (total %) 59.8 15.4 42.3 51.4 32.9 49.7 41.1 37.2 25.4

Groundmass (total %) 22.3 52.9 38 31.5 37 28.9 35.8 39.6 27.1

Plagioclases (total %) 12 23.1 14.7 12.9 18.1 14.2 16.1 15.7 35.2

Pyroxenes (total %) 3.8 7.1 3.7 3.9 11.1 5.8 5.4 6.3 9.7

Amphiboles (total %) 1.2 – – – – – – >0.1 >0.1

Olivine (total %) – 0.1 0.1 > 0.1 0.1 > 0.1 0.1 > 0.1 –

Oxides (total%) 0.9 1.4 1.2 0.3 0.9 1.4 1.5 1.2 2.5

Crystallinity (%)a 44.5 37.5 34.1 35.2 44.9 42.5 39.2 36.9 63.7

LL light-brown lapilli, DL dark lapilli, DB dark bomb, WB white bomb
a Percentage not considering vesicles
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Leake et al. 1997; Mg# = 0.71–0.77; Si apfu = 6.2–6.5). In con-
trast to Cal-149Ta, amphiboles in Cal-160 are anhedral and are
found as members of glomerocrysts (together with plagioclase,
pyroxene, titanomagnetite, olivine, ilmenite and apatite).

Fe–Ti oxides Ilmenite grains are scarce and have composition
of Xilm (i.e. the cation atomic proportion of Ti) = 0.77–0.85
(i.e. Xhmt, the cationic proportion of Fe2+ = 0.15–0.23). They
occur as both inclusions and in contact with titanomagnetites.
Titanomagnetites can be classified into two groups: high-Ti,
with a relatively high ulvöspinel component (Xusp = 0.42–
0.46; Xmgt = 0.54–0.58) and low-Ti (Xusp = 0.10–0.17;
Xmgt = 0.83–0.9). They appear as isolated crystals or in clots
of crystals together with amphibole, plagioclase, pyroxene,
olivine, ilmenite and apatite.

Pyroxenes Pyroxenes are found both as isolated grains and
as members of clots of crystals together with amphibole,
plagioclase, pyroxene, olivine, ilmenite, titanomagnetite,
apatite and chalcopyrite (see Online Resource 2). All the
pyroxene crystals exhibit slight reverse and oscillatory
zoning. Clinopyroxene crystals exhibit reverse zoning,
from En43–47Fe9–15Wo40–44 (Fig. 8) composition in the
cores to En44–46Fe10–12Wo43–45 composition in the rims
(Figs. 8 and 9); oscillatory zoning with compositions of
En43–46Fe10–13Wo42–45 (Figs. 8 and 9) have also been ob-
served. Orthopyroxenes exhibit reverse zoning from En67–
69Fe29–31Wo2–3 composition in the cores to En69–71Fe26–
28Wo2–3 composition in the rims (Fig. 9); oscillatory zon-
ing with compositions of En69–72Fe24–27Wo2–4 (Figs. 8 and
9) have also been recognised.
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Calbuco 2015 volcanic products. Boundary dashed line between alkaline
and subalkaline rocks is taken from Irvine and Baragar (1971). (b)
Variation diagram of SiO2 (wt.%) versus Mg# (details in Table 4), where
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gram. Details of major and trace element concentrations are available in
Table 4
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Olivine Olivine grains are found surrounded by pyroxene and
titanomagneti te crystals (see example images on
Online Resource 2). Their composition of Fo60–75 (Fig. 8) is
fairly homogeneous for each crystal, thus no zonation patterns
are recognised. Olivine crystals were found in all the samples
except Cal-160 (Table 3).

Intensive variable conditions

Two-pyroxene thermobarometry

Mineral pairs measured in all samples except Cal-160 give
temperatures of 958–1013 ± 56 °C (Fig. 10; Table 5), with

Table 4 Whole-rock analyses of
samples from the 2015 Calbuco
eruption

Detection limit Cal-
149A

Cal-
149B

Cal-
155

Cal-
157

Cal-
158

Cal-
159

Cal-
160

Lapilli Lapilli Lapilli Bomb Bomb Bomb Bomb

SiO2 0.01 (%) 56.2 56.2 55.6 55.7 55.8 55.7 56.9
Al2O3 0.01 (%) 18.8 18.7 18.9 18.8 18.9 18.7 18.6
TiO2 0.01 (%) 0.93 0.92 0.87 0.92 0.93 0.94 0.82
FeO 0.2 (%) 4.99 4.99 5.69 5.27 5.55 5.27 5.41
Fe2O3 0.01 (%) 2.87 2.77 2.22 2.60 2.41 2.71 2.17
MnO 0.01 (%) 0.16 0.16 0.17 0.17 0.17 0.15 0.16
MgO 0.01 (%) 3.93 3.9 4.27 4.14 4.2 4.25 3.81
CaO 0.01 (%) 8.04 7.96 8.21 8.16 8.14 8.12 7.63
Na2O 0.01 (%) 3.77 3.78 3.45 3.65 3.65 3.65 3.67
K2O 0.01 (%) 0.62 0.64 0.53 0.61 0.61 0.61 0.67
P2O5 0.01 (%) 0.17 0.16 0.15 0.16 0.16 0.16 0.16
LOI −0.3 −0.3 −0.2 −0.3 −0.3 −0.3 −0.1
Total 100.48 100.18 100.06 100.18 100.52 100.26 99.99
Li 0.03 (ppm) 15.12 15.65 14.85 14.83 14.17 14.69 16.87
Sc 0.05 (ppm) 21.75 22.82 21.43 23.23 22.76 24.04 19.91
V 0.07 (ppm) 181.7 183.7 185.3 189.3 188.6 197.1 170.1
Co 0.01 (ppm) 40.90 38.86 43.27 38.36 38.29 34.86 34.81
Ni 0.32 (ppm) 10.01 10.81 11.73 12.92 15.72 12.88 11.00
Cu 0.66 (ppm) 44.19 45.37 24.05 50.56 47.50 45.99 36.92
Cr 0.01 (ppm) 12.90 14.92 15.08 18.19 17.41 16.98 15.84
Zn 2.207 (ppm) 79.84 75.96 79.41 76.31 78.27 81.24 81.82
Tl 0.04 (ppm) 0.115 0.111 0.117 0.094 0.091 0.088 0.135
Rb 0.01 (ppm) 16.48 16.37 14.27 15.92 15.17 15.83 18.35
Ba 0.5 (ppm) 152.1 151.6 131.4 146.0 139.7 145.3 164.0
Th 0.001 (ppm) 1.10 1.03 0.88 1.02 0.97 1.01 1.20
U 0.001 (ppm) 0.310 0.310 0.259 0.304 0.287 0.296 0.350
Nb 0.003 (ppm) 152.09 151.65 131.44 145.98 139.66 145.29 164.03
La 0.001 (ppm) 1.098 1.028 0.882 1.020 0.971 1.010 1.201
Ce 0.002 (ppm) 0.31 0.31 0.26 0.30 0.29 0.30 0.35
Pb 0.14 (ppm) 4.99 4.67 6.57 4.02 4.25 4.39 4.96
Pr 0.005 (ppm) 2.391 2.411 1.950 2.301 2.194 2.287 2.450
Sr 0.02 (ppm) 347 355 375 350 335 352 353
Nd 0.001 (ppm) 11.79 11.82 9.44 11.35 10.80 11.27 11.81
Zr 0.06 (ppm) 88.50 87.26 68.32 83.80 79.55 83.97 89.78
Sm 0.001 (ppm) 3.271 3.259 2.478 3.143 3.012 3.155 3.111
Eu 0.001 (ppm) 1.030 1.083 0.957 1.019 0.993 1.003 1.026
Gd 0.001 (ppm) 3.520 3.453 2.626 3.355 3.225 3.369 3.278
Tb 0.001 (ppm) 0.583 0.584 0.436 0.562 0.546 0.571 0.546
Dy 0.001 (ppm) 3.576 3.577 2.648 3.439 3.308 3.452 3.338
Ho 0.001 (ppm) 0.784 0.776 0.581 0.752 0.723 0.756 0.726
Er 0.01 (ppm) 2.221 2.204 1.651 2.121 2.047 2.131 2.062
Y 0.01 (ppm) 22.48 23.16 17.13 22.06 20.90 22.18 21.27
Yb 0.01 (ppm) 2.187 2.300 1.719 2.171 2.056 2.114 2.047
Lu 0.002 (ppm) 0.333 0.335 0.254 0.322 0.311 0.326 0.316
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an average of 984 °C (σ = 12 °C), and pressures of 1.5–4.7 ±
3.2 kbar (Table 5), with an average of 3.3 kbar (σ = 0.8 kbar).
The pairs measured in the sample Cal-160 give temperatures
of 944–981 ± 56 °C (Fig. 10; Table 6), with an average of
968 °C (σ = 13 °C), and pressures of 3.9–6.8 ± 3.2 kbar
(Table 6), with an average pressure of 5.7 kbar (σ = 1.3 kbar).

Amphibole thermobarometry and oxybarometry

Sample Cal-149Ta (light-brown lapilli): The thermometer of
Ridolfi et al. (2010) gives temperatures of 894–922 ± 24 °C
(Fig. 10; Table 5), with an average temperature of 906 °C (σ =
7 °C), a range and average which is slightly lower than those
obtained by two-pyroxene thermometry. The pressure condi-
tions obtained using the Ridolfi et al. (2010) barometer are 2–
2.6 ± 0.3 kbar (Fig. 11; Table 5), with an average pressure of
2.3 kbar (σ = 0.1). The relative oxygen fugacity values given
by the Ridolfi et al. (2010) oxygen barometer are between 0.2

Figure. 4 Plagioclase compositions of the studied samples. Zone 1
represents core compositions of group I, whereas zone 2 represents rim
compositions of group I and the whole-crystal composition of group II
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Figure 5 (a) Backscatter electron (BSE) image of a plagioclase crystal
representative of group I. Brighter greyscale colours are correlated to
higher density. (b) The arrow represents the profile measured by electron
microprobe (EPMA) and its direction. (c) Anorthite profile composition
(An = 100 × Ca/(Ca + Na +K); elements in moles) by EPMA of the mea-
sured profile (circles) coupledwith the n (BSE) profile based on greyscale
values calibrated with the composition measured by electron microprobe

(solid line). (d) Relation and coefficient of determination (r2) between
BSE profile and the measured anorthite content (An). Group I plagio-
clases have compositions corresponding to zone 1 (An80–92) in the core
and zone 2 (An46–79) in the rims. ‘An’ represents the composition of
plagioclases because in all crystals the K content is fairly constant (see
Fig. 4)

24 Page 10 of 21 Bull Volcanol (2019) 81: 24



and 0.5 (± 0.4)ΔNNO units (Table 5), with an average of 0.3
ΔNNO (σ = 0.1). The Ridolfi and Renzulli (2012)

thermometer yields temperatures of 882–910 ± 16 °C
(Fig. 10; Table 5), with an average temperature of 897 °C
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Figure 6 (a) Backscatter electron (BSE) image of a plagioclase crystal
representative of group II. Brighter greyscale colours are correlated to
higher density. (b) The arrow represents the profile measured by electron
microprobe (EPMA) and its direction. Anorthite profile composition
(An = 100 × Ca/(Ca + Na +K); elements in moles) by EPMA of the mea-
sured profile (circles) coupled with the backscatter electron (BSE) profile

based on greyscale values calibrated with the composition measured by
electron microprobe (solid line). (d) Relation and coefficient of determi-
nation (r2) between BSE profile and the measured anorthite content (An).
Group II plagioclases have compositions corresponding to zone 2 (An46–
79). ‘An’ is representing the composition of plagioclases because in all
crystals the K content is fairly constant (see Fig. 4)

5.5 6.5 7.576

0.5

1

0

Edenite

Ferro-edenite

Pargasite

(Fe
3+ 

≤ 

IV

Al) 

Magnesiohastingsite

(Fe
3+ 

≥ 

IV

Al) 

Ferropargasite

(Fe
3+ 

≤ 

IV

Al) 

Hastingsite

(Fe
3+ 

≥ 

IV

Al) 

Cal-149Ta

Cal-160

Si in formula

M
g

/(
M

g
+
F

e 
 )

2
+

Figure 7 Amphibole
compositions and classification
(after Leake et al. 1997) of
samples Cal-149Ta (grey circles)
and Cal-160 (dark circles). All
amphiboles of the sample Cal-
149Ta correspond to pargasites,
whereas amphiboles of sample
Cal-160 correspond to 70%
edenites and 30% pargasites

Bull Volcanol (2019) 81: 24 Page 11 of 21 24



(σ = 7 °C). For the same amphiboles, pressures of 1.9–2.3 ±
0.4 kbar (Fig. 11; Table 5), with an average of 2.1 kbar (σ =
0.1 kbar), are obtained. The relative oxygen fugacities given
by the Ridolfi and Renzulli (2012) oxygen barometer are be-
tween − 0.9 and − 0.2ΔNNO (Table 5), with an average of −
0.6 ΔNNO (σ = 0.1).

Sample Cal-160 (white bomb): Temperatures obtained by
the thermometer of Ridolfi et al. (2010) are 862–886 ± 23 °C
(Fig. 10; Table 6), similar to Cal-149Ta amphibole tempera-
tures, with an average of 874 °C (σ = 7 °C). The Ridolfi et al.
(2010) barometer gave pressures between 1.6 and 2 ± 0.3 kbar
(Fig. 11; Table 6) and an average pressure of 1.8 kbar (σ =
0.2 kbar). The relative oxygen fugacity values are between 0.2
and 0.5 ± 0.4 ΔNNO (Ridolfi et al. 2010; Table 6), with an
average of 0.3 ΔNNO (σ = 0.1). The Ridolfi and Renzulli
(2012) thermometer gives temperatures of 823–859 ± 23 °C
(Fig. 10; Table 6) with an average of 842 °C (σ = 11 °C). The
same amphiboles gave pressures of 1.4–1.8 ± 0.4 kbar
(Fig. 11; Table 6), with an average pressure of 1.6 kbar (σ =
0.1 kbar). According to the oxygen barometer of Ridolfi and
Renzulli (2012), oxygen fugacity is between 0.4 and 0.8
ΔNNO (Table 6), with an average of 0.7 ΔNNO (σ = 0.1).

Plagioclase-amphibole thermometry

Twelve pairs of amphibole-plagioclase in sample Cal-149Ta
give equilibrium temperatures of 945–1018 ± 42 °C (Fig. 10;
Table 5), with an average temperature of 977 °C (σ = 26 °C).
Sample Cal-160 gives lower equilibrium temperatures of
902–934 ± 42 °C (Fig. 10; Table 6) with an average tempera-
ture of 914 °C (σ = 18 °C). All these temperatures are higher
than those obtained by the methods of Ridolfi et al. (2010) and
Ridolfi and Renzulli (2012) based on single amphibole
compositions.

Ilmenite–titanomagnetite thermometry and oxygen
barometry

Ilmenite–titanomagnetite pairs are found only in samples
Cal-149Tb (very scarcely), Cal-155 (very scarcely) and
Cal-160 (common), and give temperature and oxygen
fugacity values which all fell within the calibrated tem-
perature and oxygen fugacity ranges of 800 to 1300 °C,
and − 3 to + 3 log units ΔNNO, respectively. The core
compositions gave large ranges of both temperature
(841–966 ± 22 °C; Fig. 10) and oxygen fugacity (0.2–
0.75 ± 0.9 ΔNNO; Table 7); the rims give significantly
different intensive conditions only in the sample Cal-
160, with calculated temperatures ranging from 900 to
1073 °C (Fig. 10) and oxygen fugacities from 0.2 to
0.75 ± 0.1 ΔNNO (Table 7). Details of intensive condi-
tions related to each ilmenite–titanomagnetite pair and
associated errors are given below and included in
Table 7.

Samples Cal-149Tb and Cal-155: Temperatures are calcu-
lated from four core compositions of ilmenites and associated
titanomagnetites considering diverse measurements (details in
Online Resource 3). Individual pairs of grains show fairly
constant compositions and, consequently, similar tempera-
tures and oxygen fugacities, but different temperatures are
obtained in different samples (see Table 7). For the sample
Cal-149Tb, the temperatures are 961–1008 ± 22 °C (average
982 °C, σ = 23 °C) and oxygen fugacities are 0.36–0.45
ΔNNO (average 0.41 ΔNNO, σ = 0.04); for sample Cal-
155, temperatures are 902–922 ± 22 °C (average 907 °C,
σ = 10 °C) and oxygen fugacities are 0.17–0.23 ΔNNO (av-
erage 0.2 ΔNNO, σ = 0.13).

Sample Cal-160: In every crystal pair, compositions
close to the boundary between these two mineral phases
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Figure 8 Olivine (found in all
samples except Cal-160) and
pyroxene (clino- and
orthopyroxene, found in all
samples, including Cal-160)
compositions of the analysed
samples
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give considerably higher temperatures and slightly lower
oxygen fugacity than core compositions (see Table 7).
Cal-160 core temperatures are 841–894 ± 17 °C (average
870 °C, σ = 18 °C) with oxygen fugacities of 0.5–0.94 ±
0.09 ΔNNO (average 0.64 ΔNNO, σ = 0.18), whereas
rim temperatures are 947–1073 ± 23 °C (average
1018 °C, σ = 45 °C) and oxygen fugacities are 0.21–
0.75 ± 0.09 ΔNNO (average 0.48 ΔNNO, σ = 0.16).

Ca-in-olivine thermometry

Seven olivine cores give temperatures of 987–1019 ± 22 °C
(Fig. 10; Table 5), with an average temperature of 997 °C
(σ = 13 °C). These Ca-in-olivine temperatures are therefore
consistent with those obtained using the two-pyroxenes,
Fe–Ti oxides and plagioclase-amphibole thermometers for
the same samples.
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Figure 9 (a, b) Backscatter electron (BSE) images of clots of crystals
where representative pyroxenes with oscillatory and reverse zonation
patterns are found. Brighter greyscale colours are correlated to higher
density. Arrows represent the measured profiles by electron microprobe
(EPMA) and their directions. The orthopyroxene profile in (a) is shown in
(c) and the clinopyroxene profile in (a) is shown in (d). The
orthopyroxene profile in (b) is shown in (e). (c, d, e) Mg# (Mg# =Mg/
(Mg + Fe2+); elements in moles) of the measured profile (circles) coupled

with the backscatter electron (BSE) profile based on greyscale values
calibrated with the composition measured by EPMA (solid line). The
relation and coefficient of determination (r2) between BSE profile and
the Mg# measured content. Greyscale values represent Mg# because the
content of Ca within pyroxene crystals is fairly constant. Mg# represents
the composition of pyroxenes because in all crystals the Ca content is
fairly constant (see Fig. 8)
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MELTS modelling

The initial melt composition used in MELTS (Ghiorso and
Sack 1995) modelling corresponds to the anhydrous ground-
mass composition of sample Cal-159 (Table 4) because it
shows the highest Mg# (0.59), and possesses representative
mineral assemblages and textural features observed in all
April 2015 Calbuco products. The initial composition is cal-
culated via an extraction of the modal composition of repre-
sentative mineral phases from the whole-rock composition of
the sample (Table 3). Details of the MELTS modelling results
are available as Online Resource 4.

Zone 2 compositions of plagioclase phenocrysts (later rims
and crystals) and the entire range of observed clinopyroxene
and orthopyroxene compositions are reproduced by MELTS
at conditions of 2–4% dissolved water, 2–6 kbar of pressure,
temperatures from 900 to 1060 °C and crystallinity of 16–
35 wt.%. Conversely, the zone 1 composition of older plagio-
clase phenocryst cores and the remaining phases (notably am-
phibole, olivine and Fe–Ti oxides) are not reproduced.

Crystallisation modelling of the products gives a range of
solid phases between 16 and 35 wt.%. This range does not
consider other mineral phases that could not be reproduced by
MELTS (amphibole, olivine, ilmenite, titanomagnetite and
zone 1 of plagioclase phenocrysts), which increases the crys-
tallinity considerably (see details in Online Resource 4).

Discussion

All the April 2015 Calbuco samples studied here (including
sample Cal-160) have characteristics typical of Calbuco’s prod-
ucts documented previously for all the volcanic units by López-
Escobar et al. (1995b), Moreno et al. (2006), Sellés andMoreno
(2011) and Daga et al. (2014). These include whole-rock chem-
istry, mineral assemblage and textural features (cf. Tables 1 and
2). Additionally, the trace-element data (Fig. 3c) show no sig-
nificant differences in either elemental concentrations or distri-
bution patterns across the whole sample suite (including Cal-
160). Of the whole-rock chemistry of the April 2015 Calbuco

Fig. 10 Diagram showing the results of several thermometers (Ca-in-
olivine, Shejwalkar and Coogan 2013; two-pyroxenes, Brey and Köhler
1990; Putirka 2008; amphibole-plagioclase, Holland and Blundy 1994;
amphibole, Ridolfi and Renzulli 2012; Fe–Ti oxides (cores), Ghiorso and
Evans 2008). Vertical bars represent values of average temperature ± one

standard deviation of all the samples except Cal-160 (grey) and Cal-160
(yellow). Sample Cal-160 gave temperatures systematically lower than
the others. Ca-in-olivine was not used in sample Cal-160 because olivine
was not found

Table 5 Calculated intensive conditions, methods and associated errors of the samples except Cal-160

Method References T (°C) Error
(±)

Average
(°C)

SD
(σ)

P
(kbar)

Error
(±)

Average
(kbar)

SD
(σ)

fO2

ΔNNO
Error
(±)

Two-pyroxenes Putirka (2008) 958–1013 56 984 12 1.5–4.7 3.2 3.3 0.8 – –

Amphibole Ridolfi et al. (2010) 894–922 24 906 7 2–2.6 0.3 2.3 0.1 0.2–0.5 0.4

Ridolfi and Renzulli
(2012)

882–910 16 897 7 1.9–2.3 0.4 2.1 0.1 −0.9-0.2 –

Plagioclase-amphibole Holland and Blundy
(1994)

945–1018 42 977 26 – – – – – –

Ca-in-olivine Shejwalkar and
Coogan (2013)

987–1019 22 997 13 – – – – – –
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eruption presented here (55.6–56.9 wt.% SiO2), the composi-
tions are very similar to those reported for this eruption by
Castruccio et al. (2016) for scoriaceous, pumiceous and dense
juvenile products (54.5–58.1 wt.% SiO2). Further, the compo-
sition of the products analysed here are chemically within the

range of older units (unit 1—50.5–60.3 wt.% SiO2, unit 2—
57.1–61 wt.% SiO2, unit 3—54.3–64.5 wt.% SiO2; López-
Escobar et al. 1995b; Sellés and Moreno 2011) and other de-
posits of unit 4 (54.8–58.6 wt.% SiO2; López-Escobar et al.
1995b). Themineral assemblage has been fairly constant during
the history of the volcano (Sellés and Moreno 2011), it being
composed of plagioclase, clinopyroxene, orthopyroxene, am-
phibole, ilmenite, titanomagnetite and olivine (see Table 1), the
latter always being surrounded by pyroxenes, plagioclase and
Fe–Ti oxides.

Mush reservoir in the upper crust

The Calbuco volcanic products of 2015 possess several fea-
tures that have been regarded as consistent with mush-zone
magma storage, in the manner proposed by, for example,
Hildreth (2004) and Bachmann and Bergantz (2006). These
features include high crystallinity (~ 40–60 vol.%) of the vol-
canic products (cf. Hildreth 2004; Bachmann and Bergantz
2006), the presence of clots of crystals where interstitial
glasses are locally well preserved and compositionally differ-
ent from the outer glasses (e.g. Saunders et al. 2010; Passmore
et al. 2012; Spera and Bohrson 2018) and the presence of
complex textural features that suggest episodes of re-
equilibration (cf. Moore et al. 2014). Although only small
compositional ranges are recognised here for Calbuco in pla-
gioclase, pyroxene and amphibole, the complex mineralogical
textures commonly observed indicate a prolonged history of
crystallisation and with changes in either temperature, pres-
sure, melt composition, oxygen fugacity or other intensive
variables through a protracted period of time (see Figs. 5, 6
and 9).

Our assumption that at the Cal-159 groundmass is a rea-
sonable proxy for the melt composition in equilibrium with
the crystal mush is supported by the MELTSmodelling which
can reproduce the compositions of the dominant crystal
phases of plagioclase (zone 2), ortho- and clino-pyroxene.
Pressure ranges obtained via amphibole barometry (consider-
ing average and standard deviation pressures) suggest the lo-
cation of the mush reservoir at shallow depth. The barometer
calibrated byRidolfi et al. (2010) gives pressures equivalent to

Table 6 Calculated intensive conditions, methods, and associated errors of the sample Cal-160

Method References T (°C) error
(±)

Average
(°C)

Std.
Dev. (σ)

P
(kbar)

error
(±)

Average
(kbar)

Std.
Dev.
(σ)

fO2

ΔNNO
error
(±)

Two-pyroxenes Putirka (2008) 944–981 56 968 13 3.9–6.8 3.2 5.7 1.3 – –

Amphibole Ridolfi et al. (2010) 862–886 23 874 7 1.6–2.0 0.3 1.8 0.2 0.2–0.5 0.4

Ridolfi and
Renzulli (2012)

823–859 23 842 11 1.4–1.8 0.4 1.6 0.1 0.4–0.8 –

Plagioclase-amphibole Holland and Blundy
(1994)

902–934 42 914 18 – – – – – –

Fig. 11 Comparison of different methods that allow the estimation of the
reservoir depth: amphibole barometry (yellow bar and including errors;
this study), seismic source (green bar; SERNAGEOMIN 2015h, 2015i)
and deformation source (red bar; Delgado et al. 2017). The full barometry
depth range is from 5.5 to 11 km (considering different pressure condition
approaches) and corresponds to upper-to-middle crust conditions
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'5.8–9.5 km depths, while the barometer calibrated by
Ridolfi and Renzulli (2012) gives pressures equivalent to
5.1–8.4 km depths (each considering a crustal density of
2.8 g/cm3; Fowler 2005). These depth ranges have some
degree of overlap with the source of co-eruptive subsi-
dence located between 8 and 11 km depth by Delgado
et al. (2017). In addition, the barometry results are consis-
tent with the source related to the seismic swarm that
occurred a few hours before the eruption, this being a
VT even t o f dep th be tween 7 .1 and 7 .4 km
(SERNAGEOMIN 2015h, i). A summary of inferred
depths for the reservoir that fed the eruption is given in
Fig. 11. The shallow reservoir suggested in this figure
would belong to upper crustal magma storage (Tašárová
2007). This is distinct from the crystallisation of crustal
xenoliths at 6–8 kbar (equivalent to depths of 21 to
28 km) reported by Hickey-Vargas et al. (1995) based
on amphibole barometry on samples of the 1961 eruption.
These results suggest middle to lower crustal storage of
the 1961 magma. In several volcanic complexes of the
Southern Andes, mush magma reservoirs have been
recognised in the upper crust (e.g. at Llaima, Bouvet
de Maisonneuve et al. 2012; and Quetrupillán, Brahm
et al. 2018). Shallow reservoirs in the Southern Volcanic
Zone of the Andes have also been inferred via changes
in rigidity of the upper crust (Morgado et al. 2017) and
the compressive intra-arc tectonic setting (Cembrano and
Lara 2009; Chaussard and Amelung 2012). Together,
these results suggest that a complex system of chambers
extending from deep to shallow levels may be common-
place at Andean volcanoes.

Shape and heterogeneity of the reservoir

Delgado et al. (2017) have suggested a prolate, pressurised
spheroid shape for the reservoir beneath Calbuco volcano
via modelling of the co-eruptive subsidence signal.
According to the time-dependent numerical modelling of
an evolving magma chamber by Gutiérrez and Parada
(2010), thermal heterogeneities are much more likely in
stock-like than sill-shaped chambers. Considering long-
term thermometry (via two-pyroxenes, amphibole-plagio-
clase, amphibole and Ca-in-olivine geothermometers; see
Tables 5 and 6), sample Cal-160 shows systematically lower
temperatures than all other samples (Fig. 10). Fe–Ti oxides
thermometry is commonly used to estimate immediately
pre-eruptive temperatures (this being ‘short-term thermom-
etry’—Ruprecht and Bachmann 2010; Brahm et al. 2018),
and here sample Cal-160 shows systematically lower tem-
peratures for core–core equilibria of in-contact ilmenite–
titanomagnetite pairs (see Table 7).

According to Gutiérrez and Parada (2010), in modelling of
stock-like reservoirs, the highest temperatures related to crys-
tallinities of between 30 and 40 vol.% are found in the middle
of the reservoir. This is a feature of all samples except Cal-
160. Instead, lower temperatures related to crystallinities of ~
60 vol.% are found at the bottom of the reservoir, as is con-
sistent with features of sample Cal-160. In addition, sample
Cal-160 is slightly more evolved than all other samples (lower
Mg# and higher SiO2 wt.%; see Fig. 3). This, according to the
Gutiérrez and Parada (2010) modelling, is also consistent with
the location of Cal-160 in the lower zone or at the borders of
the magma chamber.

Table 7 Fe–Ti oxide core (pre-heating) and rim (during heating) intensive conditions rank ordered by core temperature

Sample Pair Place T (°C) SD Error fO2

(ΔNNO)
SD Error Place T (°C) Error fO2

(ΔNNO)
Error

160 Fig1_p2 Core 841 6 12 0.94 0.05 0.04 Rim 1041 14 0.55 0.04

160 Fig1_p1 Core 841 7 12 0.91 0.03 0.04 Rim 1067 17 0.5 0.05

160 Fig1_p3 Core 846 4 12 0.9 0.02 0.04 Rim 1005 15 0.56 0.05

160 Figh_p1 Core 865 8 15 0.5 0.06 0.09 Rim 1068 15 0.64 0.03

160 Figf_p1 Core 868 11 16 0.49 0.03 0.09 Rim 1073 23 0.21 0.09

160 Figf_p2 Core 870 1 17 0.45 0.01 0.09 Rim 947 19 0.27 0.09

160 Figb_p1 Core 879 8 17 0.44 0.1 0.09 Rim 952 18 0.32 0.09

160 Figex_p1 Core 879 13 15 0.55 0.06 0.07 Rim 1015 18 0.43 0.06

160 Fig13_p2 Core 879 7 15 0.61 0.03 0.08 Rim 1013 15 0.61 0.05

160 Fig17_p4 Core 883 8 16 0.55 0.03 0.07 Rim 963 17 0.47 0.08

160 Fig17_p2 Core 892 6 15 0.59 0.03 0.07 Rim 1048 14 0.75 0.03

160 Fig17_p1 Core 894 14 15 0.66 0.08 0.07 Rim 1029 19 0.4 0.07

155 Fig3_p1 Core 903 17 20 0.21 0.11 0.12 Rim 922 21 0.23 0.12

155 Fig24_p1 Core 902 18 21 0.17 0.1 0.13 Rim 900 22 0.2 0.13

149Tb Fig14_p2 Core 961 6 22 0.36 0.02 0.1 Rim 1008 22 0.45 0.09

149Tb Fig14_p1 Core 966 6 22 0.39 0.03 0.1 Rim 996 21 0.45 0.09
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Local-scale heating

In-contact ilmenite–titanomagnetite pairs exchange elements
(e.g. Fe2+ + Ti4+↔ 2Fe3+; Ghiorso and Sack 1991) across the
interface, which can be used as thermometer and oxygen ba-
rometer (Ghiorso and Evans 2008; Sauerzapf et al. 2008). As a
consequence, such boundaries respond rapidly to changes in
the intensive physical properties of temperature and/or oxygen
fugacity within the reservoir (Lasaga 1983). Therefore, we can
postulate that crystal core compositions may represent older,
relatively long-term temperatures, whereas rim compositions
give information of changes of temperature over a short time-
scale immediately before eruption.

Rim compositions (close to the interface of the crystal
pairs) yield considerably higher temperatures than core com-
positions only in the sample Cal-160 (70 to 220 °C higher
relative to crystal cores; Table 7). The remaining samples
show similar Fe–Ti oxides temperatures for cores and rims,
with no late heating stage. Additionally, the compositional
zonations in orthopyroxene, clinopyroxene and plagioclase
phenocrysts (see Figs. 5, 6 and 9) are within the crystal clots
as well as in contact with the groundmass, suggesting these
zonings were inherited from the crystal mush development
stage. This development period would not be associated with
zoning due to an ionic exchange as response to the same
heating as Fe–Ti oxides recorded because the silicate phases
have much lower ionic diffusivities and record older stages of
the evolution of the system.

Sample Cal-160 is unique across the sampled deposits
as being the only material that records evidence of
heating. Its composition and crystallinity make it repre-
sentative of the bottom of the mush reservoir. The heating
that this sample records seems both localised and intense,
consistent with an input of hotter magma. Underlying re-
charge of hot magma has been suggested as a trigger for
many eruptions of Southern Andean shallow reservoirs
(e.g. Quizapu, Ruprecht and Bachmann 2010; Villarrica,
Lohmar et al. 2012, Morgado et al. 2015). Some eruptions
have also involved the presence of a mush zone (e.g.
L l a ima , Bouve t de Mai sonneuve e t a l . 2012 ;
Quetrupillán, Brahm et al. 2018). The nature and extent
of magma mixing in such situations has been further pro-
posed to influence eruptive style: Ruprecht and Bachmann
(2010) suggested that increasing degrees of magma
mixing (between felsic magma and a more mafic re-
charge) decreases the fragmentation efficiency and mag-
ma viscosity, and thus favours effusive eruptions.
Restricted compositional interaction between the new
magma influx and an overlying crystal mush could occur
because of the mush acting (at least initially) as a rheo-
logical barrier (Huber et al. 2009; Kent et al. 2010) or
because of the occurrence of a volatile layer between the
hot magma and the crystal mush (Bachmann and Bergantz
2006; Huber et al. 2010b; Parmigiani et al. 2014;
Schleicher and Bergantz 2017; Spera and Bohrson
2018). In this situation, only small magma volumes could

a) b) c)
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Fig. 12 Schematic representation of the shape, and evolution in time, of
the magma reservoir beneath Calbuco volcano; (a) represents the
reservoir, including a mush zone at the bottom, before the input of new

magma; (b) represents the arrival of the new, hotter magma generating a
local-scale heating; (c) represents the moment of eruption triggering
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be reheated, favouring explosive eruptions (cf. Couch
et al. 2001; Ruprecht and Bachmann 2010). Data present-
ed here suggest that this was the case for the April 2015
Calbuco eruption. Our results are consistent with those
from Castruccio et al. (2016) who, based on stratigraphy
and whole-rock geochemistry, suggested that the April
2015 Calbuco eruption was triggered by either volatile
exsolution or a moderate-sized magmatic intrusion of a
new magma into the base of the reservoir with almost
no mixing effects.

Conclusions

The 2015 Calbuco eruption is an example of a shallow,
crystal-rich magma reservoir feeding a moderate-sized
eruption (~ 0.3–0.6 km3 erupted products, non-DRE).
Based on textural and compositional criteria of nine rep-
resentative samples, we conclude the existence of a mush
reservoir, which amphibole barometry indicates to lie
within the upper to middle crust (at 5.5–9.5 km depth),
consistent with previous works (SERNAGEOMIN 2015h,
i; Delgado et al. 2017).

A prolate spheroid shape of the reservoir has been in-
ferred from previous studies and, based on detailed
thermobarometry, crystallinity and the compositions of
nine representative samples, we infer that all samples of
this study (except Cal-160) are derived from the middle of
a mush reservoir. Sample Cal-160 represents a portion of
the rheologically rigid basal envelope. In addition, based
on Fe–Ti oxide (ilmenite and titanomagnetite) thermome-
try and textural features of the crystal-clot-rich Cal-160
sample, we identify a localised heating event of 70–
220 °C, reaching potentially as high as 1070 °C. This
mobilised magma represented by Cal-160, an event which
we infer to be linked to eruption triggering (Fig. 12) and
that would have affected only the magma reservoir at its
highly crystalline (mush) base. The absence of a heating
record in the remaining samples suggests that all other
magma remained thermally and chemically unaffected
by the trigger pulse during eruption. This emphasises the
need for rapid warning systems to communicate hazards
rapidly to the local population.
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