
Engineering Applications of Artificial Intelligence 85 (2019) 243–253

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Accelerating decentralized reinforcement learning of complex individual
behaviors
David L. Leottau ∗, Kenzo Lobos-Tsunekawa, Francisco Jaramillo, Javier Ruiz-del-Solar
Department of Electrical Engineering, Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago, Chile

A R T I C L E I N F O

Keywords:
Decentralized reinforcement learning
Multi-agent systems
Distributed control
Autonomous robots
Knowledge transfer
Distributed artificial intelligence

A B S T R A C T

Many Reinforcement Learning (RL) real-world applications have multi-dimensional action spaces which suffer
from the combinatorial explosion of complexity. Then, it may turn infeasible to implement Centralized RL (CRL)
systems due to the exponential increasing of dimensionality in both the state space and the action space, and
the large number of training trials. In order to address this, this paper proposes to deal with these issues by
using Decentralized Reinforcement Learning (DRL) to alleviate the effects of the curse of dimensionality on the
action space, and by transferring knowledge to reduce the training episodes so that asymptotic converge can be
achieved. Three DRL schemes are compared: DRL with independent learners and no prior-coordination (DRL-
Ind); DRL accelerated-coordinated by using the Control Sharing (DRL+CoSh) Knowledge Transfer approach;
and a proposed DRL scheme using the CoSh-based variant Nearby Action Sharing to include a measure of the
uncertainty into the CoSh procedure (DRL+NeASh). These three schemes are analyzed through an extensive
experimental study and validated through two complex real-world problems, namely the inwalk-kicking and
the ball-dribbling behaviors, both performed with humanoid biped robots. Obtained results show (empirically):
(i) the effectiveness of DRL systems which even without prior-coordination are able to achieve asymptotic
convergence throughout indirect coordination; (ii) that by using the proposed knowledge transfer methods, it
is possible to reduce the training episodes and to coordinate the DRL process; and (iii) obtained learning times
are between 36% and 62% faster than the DRL-Ind schemes in the case studies.

1. Introduction

Reinforcement Learning (RL) is increasingly being used to learn
complex behaviors in robotics. Two of the main challenges to be solved
for modeling RL systems acting in the real-world are: (i) the high di-
mensionality of the state and action spaces, and (ii) the large number of
training trials required to learn most of complex behaviors. Many real-
world applications have multi-dimensional action spaces (e.g., multiple
actuators or effectors). In those cases, RL suffers from the combinatorial
explosion of complexity which occurs when a single or centralized
RL (CRL) scheme is used. It may turn infeasible to implement CRL
systems in terms of computational resources or learning time due to
the exponential increasing of dimensionality in both the state space
and the action space as in Martín and de Lope Asiaín (2007) and
Leottau et al. (2018). Instead, the use of Decentralized Reinforcement
Learning (DRL) helps to alleviate this problem as it has been empirically
evidenced by Buşoniu et al. (2006) and Leottau et al. (2017, 2018).
In DRL, a problem is decomposed into several sub-problems, whose
resources are managed separately while working toward a common
goal, i.e. learning and performing a behavior. In the case of multi-
dimensional action spaces, a sub-problem corresponds to control one

∗ Corresponding author.
E-mail address: dleottau@ing.uchile.cl (D.L. Leottau).

particular variable. For instance, in mobile robotics, a common high-
level motion command is the requested velocity vector (e.g., [𝑣𝑥, 𝑣𝑦, 𝑣𝜃]
for an omni-directional robot). Then, if each speed component of this
vector is handled individually, a distributed control scheme can be
applied.

Most of the stochastic DRL systems implemented with independent
learners also present two main drawbacks: non-stationary and non-
Markovian issues. Laurent et al. (2011) indicate that these drawbacks
could be mitigated by: (i) decaying the exploration rate, and (ii) using
coordinated exploration techniques for shrinking the action space.
Both mechanisms can be accomplished by using Knowledge Transfer
(KT) approaches, as Knox and Stone (2010) and Bianchi et al. (2014)
reported. KT has evidenced to be able to accelerate the training of
Multi-Agent RL (MARL) problems (Vrancx et al., 2011; Boutsioukis
et al., 2012; Taylor et al., 2013; Bianchi et al., 2014; Hu et al., 2015),
alleviating the second aforementioned challenge: the large number of
training trials. KT allows exploring in a subset of the action space lim-
ited by a source of knowledge (SoK), which has been previously learned
or designed. A SoK for a DRL system should contain at least one branch
per decentralized learning agent. If those branches are pre-coordinated,
the SoK relieves at the same time the coordination problem, which

https://doi.org/10.1016/j.engappai.2019.06.019
Received 31 December 2017; Received in revised form 14 August 2018; Accepted 26 June 2019
Available online 1 July 2019
0952-1976/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2019.06.019
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2019.06.019&domain=pdf
mailto:dleottau@ing.uchile.cl
https://doi.org/10.1016/j.engappai.2019.06.019

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

must be solved in order to extend and take advantage of some potential
benefits of Multi-Agent Systems (MAS) to DRL systems.

In this work, we tackle the high dimensionality of the state and
action spaces, and the large number of training trials by using two
mechanisms: (i) DRL to alleviate the effects of the curse of dimension-
ality on the action space, and (ii) KT to reduce the training episodes
so that asymptotic convergence can be achieved. The SARSA(𝜆) with
radial basis functions (RBFs) is used as basis algorithm to imple-
ment a DRL system with no prior-coordination among agents. This is
accelerated-coordinated by using a KT approach called Control Sharing
(CoSh) introduced by Knox and Stone (2012), which is extended from
the single-agent case to the DRL case. In addition, we introduce a CoSh-
based variant called Nearby Action Sharing (NeASh), which is able to
include a measure of uncertainty in the action sharing process.

Since most of the MARL reported studies do not address or validate
their proposed approaches with multi-state, stochastic, and real-world
problems (Buşoniu et al., 2008), our preliminary goal is to show
(empirically) that the benefits of MAS are also applicable to complex
problems by using a DRL scheme. For such purpose, two challenging
real-world problems for soccer robotics are modeled and implemented:
the inwalk-kicking and the ball-dribbling behaviors, both performed by
using an omni-directional biped robot. In the inwalk-kicking behavior,
the robot must learn to push the ball toward a desired target only by
using the inertia of its own gait (Lobos-Tsunekawa et al., 2017). In the
ball-dribbling problem, the robot must learn to maneuver the ball in
a very controlled way while moving towards a desired target (Leottau
et al., 2015). In the case of biped robots, the complexity of these tasks
is very high, as in each case the controller must take into account the
physical interaction among the ball, the robot’s feet, the ground, and
the robot’s gait inertia. Thus, the action is highly dynamic, non-linear,
and influenced by several sources of uncertainty.

Three DRL schemes are analyzed and compared for both test prob-
lems, the DRL with independent agents and no prior-coordination
(DRL-Ind), the DRL accelerated with CoSh (DRL+CoSh), and the DRL
accelerated with NeASh (DRL+NeASh). As it will be shown, DRL+CoSh
and DRL+NeASh are able to transfer knowledge and accelerate the
DRL-Ind. These three schemes are analyzed through an extensive empir-
ical study carried out in a 3D realistic simulator and demonstrated with
physical robots. It is worth mentioning that, to the best of our knowl-
edge, we are the first applying an effective strategy for transferring
knowledge and coordinating-accelerating DRL systems.

This paper is structured as follows. Relevant background and related
work are presented in Section 2. Section 3 describes the proposed DRL
and KT schemes. The case studies, their description, experiments and
results are presented in Section 4. Finally, conclusions are drawn in
Section 5.

2. Background

RL is a family of machine learning techniques in which an agent
learns a task by directly interacting with the environment. In the single-
agent RL case, the environment of the agent is described by a Markov
Decision Process (MDP), this is, a 4-tuple ⟨𝑆,𝐴, 𝑇 , 𝑅⟩ where: 𝑆 is the
finite set of environment states, 𝐴 is the finite set of agent actions,
𝑇 ∶ 𝑆 × 𝐴 × 𝑆 → [0, 1] is the state transition probability function,
and 𝑅 ∶ 𝑆 × 𝐴 × 𝑆 → R is the reward function.

The generalization of the MDP to the MARL case is the stochastic
game, defined by the tuple ⟨𝑆,𝐴1,… , 𝐴𝑀 , 𝑇 , 𝑅1 …𝑅𝑀 ⟩, where: 𝑀 is
the number of agents; 𝑆 is the discrete set of environment states;
𝐴𝑚, 𝑚 = 1,… ,𝑀 , are the discrete sets of actions available to the agents,
yielding the joint action set  = 𝐴1 ×⋯ × 𝐴𝑀 ; 𝑇 ∶ 𝑆 × × 𝑆 → [0, 1]
is the state transition probability function, such that, ∀𝑠 ∈ 𝑆,∀𝑎 ∈
,

∑

𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′) = 1; and 𝑅𝑚 ∶ 𝑆 ×  × 𝑆 → R, 𝑚 = 1,… ,𝑀 , are
the reward functions of the agents (Buşoniu et al., 2008; Laurent et al.,
2011).

2.1. Decentralized reinforcement learning

Under the presence of multi-dimensional action spaces, RL solutions
can be called CRL systems if each action subspace is discretized, com-
bined, and computed as a single set of actions. In CRL, the number
of possible actions grows exponentially with the dimensionality of
the action space. Thus, a combinatorial explosion of both state and
action spaces occurs, making hard exploring sufficiently the whole
action–state space which causes a slow convergence and an exponential
increasing of the execution time and memory consumption as Leottau
et al. (2018) and Lobos-Tsunekawa et al. (2017) evidenced. These
drawbacks can be overcome by addressing them from a decentralized
perspective.

A DRL system uses a single-entity which has several branches (e.g., a
single robot with multiple actuators). In DRL, a problem is split into
several sub-problems, and their individual information and resources
are then managed in parallel as a collection of multiple separate learn-
ing agents, which are part of a single-entity. Under multi-dimensional
action spaces, each separate agent acts in a different action space di-
mension, this allowing the design of independent state models, reward
functions, and learning agents for each action dimension (Leottau et al.,
2018).

DRL helps to alleviate the high dimensionality of the state and
action spaces, and the large number of training trials. The DRL’s multi-
agent nature grants several potential advantages if the problem is
approached with decentralized learners and the coordination issue is
solved (Leottau et al., 2018):

– Since all the separate agents in a DRL system can operate in par-
allel, acting on their individual action spaces, then the learning
speed is higher with respect to a centralized agent which searches
an exponentially larger action space 𝐴 = 𝐴1 ×⋯ × 𝐴𝑀 .

– If not all the state information is relevant for a particular agent,
its state space can be reduced.

– Different algorithms, modelings or configurations could be used
independently by each separate agent.

– Memory and computing/processing time requirements are re-
duced (Lobos-Tsunekawa et al., 2017 shows that even for rela-
tively low-dimensional problems, the computational advantages
of CRL are significant, as it produces a practical speedup of x69
and a memory consumption reduction of x85)

– Parallel or distributed computing implementations are allowed.

2.1.1. Challenges in DRL
DRL systems also have several challenges which must be solved

efficiently in order to take advantage of the MAS benefits already men-
tioned. Agents have to coordinate their individual behaviors toward a
coherent-desired joint behavior. This is not a trivial issue since those
single behaviors are correlated, and each individual decision modifies
the joint environment.

According to Claus and Boutilier (1998), two fundamental classes of
agents in MAS can be defined: (i) joint-action learners, and (ii) indepen-
dent learners (ILs). Joint-action learners are able to observe the other
agents’ actions and rewards; these learners are easily generalized from
standard single-agent RL algorithms as the process stays Markovian. On
the other hand, ILs do not observe the rewards and actions of the other
learners, and they interact with the environment as if no other agents
exist (Laurent et al., 2011).

Most multi-agent (MA) stochastic problems violate the Markov
property and are non-stationary. A process is said non-stationary if its
transition probabilities change with the time. A non-stationary process
can be Markovian if the evolution of its transition and reward functions
depends only on the time step, and not on the history of actions
and states (Laurent et al., 2011). For ILs, which is the focus of the
present paper, it is expected that the individual policies change as
the learning progresses. A past action of an IL agent has influenced

244

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

the past evolution of its learning process and the future evolution
of its environment; thus, the learned behavior of other agents may
also have changed. Therefore, the environment is non-stationary and
non-Markovian, causing convergence issues.

ILs equipped with single-agent algorithms are more likely to con-
verge in the case of low-coupled distributed systems, because the
effects of the non-stationarity of agents are less observable. However,
achieving convergence for these low coupled systems requires to decay
the exploration rate of new actions as the learning process goes along
in order to avoid too much concurrent exploration. Another strategy
for mitigating ILs convergence issues is to use coordinated exploration
techniques; by excluding one or more actions from each independent
action space in a coordinated way, the action selection mechanism ex-
plores in a shrinking and joint action space. Notice that both mentioned
strategies reduce the exploration of new actions, the agents evolve
slower, and the non-Markovian effects are reduced as Laurent et al.
(2011) mention.

2.2. Knowledge transfer and DRL

KT is used to accelerate the rate at which one or more target tasks
are learned from one or more sources of knowledge. Two reasonable
goals of KT are: (i) to effectively reuse past knowledge in a novel task,
and (ii) to reduce the overall time required to learn a complex task. In
the context of DRL-Ind, we will consider a third goal: to address the
coordination problem.

KT has been widely studied and applied to accelerate single-agent
RL (Taylor and Stone, 2009). To a lesser extent, KT has been used for
MARL systems as well, and not only to accelerate but also to outperform
and address large-scale problems as Vrancx et al. (2011) and Bianchi
et al. (2014). In order to deal with non-stationary and non-Markovian
issues in most of the stochastic IL problems, it is suggested to decay
the exploration rate and use coordinated exploration techniques for
excluding some actions (Laurent et al., 2011). Both considerations can
be accomplished by using KT. In fact, decayed exploration and transfer
rates are commonly considered parameters in some KT approaches
like (Knox and Stone, 2010; Bianchi et al., 2014). KT also allows
shrinking the action space based on a prior-coordinated source task,
this simultaneously helping the coordination problem as Vrancx et al.
(2011) report for the MARL case.

Different cases of KT applied to DRL tasks can be identified: same
tasks (source and target) and same problem-spaces; same tasks and
different problem-spaces; different tasks and same problem-spaces; and
different tasks and different problem-spaces. The problem-spaces refer
to the source and target state variables and actions. In addition, DRL
systems consider the case of homogeneous and heterogeneous agents,
in which homogeneous agents have identical problem-spaces and goals.

For this work, we consider the following cases:

– Heterogeneous agents, in order to allow designing an individual
goal for each independent learner.

– Different source and target tasks, in order to allow the use of
layered learning (Leottau et al., 2017) and easy mission ap-
proaches (Takahashi and Asada, 2005).

– The same source and target problem-space, in order to avoid
source-task-selection or task-mapping (Taylor and Stone, 2009),
which may slow-down and complicate the procedure.

2.3. Related work

Since this article considers two main methods, namely independent
DRL and KT applied to MARL, this section presents some related work
about these two approaches.

2.3.1. Distributed and decentralized RL
Leottau et al. (2018) introduce a MA methodology for DRL of in-

dividual behaviors in problems where multi-dimensional action spaces
are involved. This modeling-design methodology consists of five stages:
(i) determining if the problem is decentralizable; (ii) identifying com-
mon and individual goals; (iii) defining the reward functions; (iv)
determining if the problem is fully decentralizable; and (iii) completing
RL single modelings. This work also reports an experimental study
which evidences the benefits of DRL implementations over their CRL
counterparts. Some of those results can be seen in Fig. 1, which com-
pares CRL vs. DRL learning evolution plots of three different problems:
the well-known 3-Dimensional mountain car, the ball-pushing behavior
performed with a differential drive robot, and the ball-dribbling tested
with a simplified biped robot.

As previous work to this paper, the DRL of the soccer Ball-Dribbling
behavior is accelerated by using knowledge transfer in Leottau and
Ruiz-Del-Solar (2015), where each component of the omni-directional
biped walk (𝑣𝑥, 𝑣𝑦, 𝑣𝜃) is learned in parallel with single-agents working
on a MA task. This learning approach for the omni-directional velocity
vector is also reported by Lobos-Tsunekawa et al. (2017), where the
inwalk-kicking problem is proposed and tested in biped robots, using
finite support basis functions for that purpose. Similarly, a MARL
application for the multi-wheel control of a mobile robot is presented
by Dziomin et al. (2013). There, the robot’s platform is separated
into driving module agents that are trained independently, in order to
provide energy consumption optimization. It is worth mentioning that
to the best of our knowledge, only few works have reported applications
in which the commanded velocity vector of a robot is controlled by a
DRL system, such as we are proposing in this article.

Some other works have been reported, which in contrast to our
humanoid biped robot applications, apply DRL to multi-link robots
and arms. Buşoniu et al. (2006) compare centralized and decentralized
RL approaches for the case of controlling a 2-link manipulator, in
which both learning strategies were tested and compared in terms of
performance, convergence time and computational resources. Martín
and de Lope Asiaín (2007) present a distributed RL architecture for
generating a real-time trajectory of both a 3-link-planar robot and
the SCARA robot; experimental results showed that it is not necessary
for decentralized agents to perceive the whole state space in order to
learn a good global policy. Troost et al. (2008) use a MA approach
in which each output is controlled by an independent 𝑄(𝜆)-learning
agent. Both simulated robotic systems tested showed an almost iden-
tical performance and learning time between the single-agent and MA
approaches, while the latter requires less memory and computation
time. Some of these experiments and results were extended and pre-
sented by Schuitema (2012). A multi-agent influenced RL approach is
presented by Kabysh et al. (2012), which uses agent’s influences to
estimate learning error among all the agents. This method has been
validated with a multi-joint robotic arm.

2.3.2. KT applied to MARL
To the best of our knowledge, the present paper is the first work

reporting a DRL implementation accelerated-coordinated by using KT.
Thus, this section briefly overviews relevant and similar works but in
the context of KT applied to MARL. Hu et al. (2015) present the idea
of equilibrium transfer based MARL, which outperforms and accelerates
considerably its non-transfer counterpart, and scales significantly better
than algorithms without equilibrium transfer when the state/action
space grow and the number of agents increases. Compared to the
KT methods used in our work, this method only has been validated
on discrete domains, and several non-trivial considerations must be
taken into account for implementing effectively the transfer approach.
However this method seems an interesting alternative for future DRL
implementations. Bianchi et al. (2014) present the heuristically acceler-
ated MARL (HAMRL) algorithms, as a general framework for including
heuristic functions to influence the action choice of the agents. This

245

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

Fig. 1. CRL vs. DRL learning evolution comparison: 3D-Mountain-car (left-top), ball-pushing (right-top), and ball-dribbling (bottom).

family of algorithms must be modified and adapted depending on the
source and target MARL algorithm to be used; however, it is also an
interesting approach for future implementations, since CoSh can be
seen as a simplified version of HAMRL. Vrancx et al. (2011) apply
transfer learning to the Coordinating Q-learning framework, which uses
a statistical test to sample the immediate rewards received by the agent.
This approach shows interesting results and it is worth considering it
for future and more sophisticated DRL implementations. By contrast
to the KT methods used in our work, this algorithm uses previously
identified problem states as samples to train a rule based classifier,
which makes somehow complex a fast implementation. Taylor et al.
(2013) propose a parallel transfer learning for MAS which, unlike
to the approach here-proposed, is able to learn simultaneously the
source and target tasks, and share their current experience based on
a set of rules and considerations somehow focused on the particular
case studied, a smart grid. Boutsioukis et al. (2012) apply transfer
learning in MARL domains, showing that the transfer method reduces
the learning time and increases the asymptotic performance. Similar to
the KT-DRL approaches used in our work, this method biases the initial
action value function, but it is only validated in a discrete, deterministic
and 2-agents competitive domain.

3. Proposed DRL schemes

3.1. Independent DRL

The DRL-Ind scheme aims to apply single-agent RL methods to the
MARL task, and does not consider any kind of cooperation or coordi-
nation among agents; there is neither adaptation to the other agents
nor estimated models of their policies, nor special action-selection
mechanisms (e.g., communication among agents, prior knowledge).
The computational complexity of this DRL scheme is the same as that
for a single-agent RL (e.g., a Q-Learner).

Although the non-stationarity of the MARL problem invalidates
most of the single-agent RL theoretical guarantees, this approach has
been implemented in several multi-robot systems. An empirical study
about DRL-Ind effectiveness can be found in Leottau et al. (2018).

Algorithm 1 depicts an episodic multi-agent SARSA algorithm (Sut-
ton and Barto, 1998) for continuous states with RBF approximation (Pa-
pierok et al., 2008), built following the DRL-Ind scheme. There, a
learning system with an 𝑀-dimensional action space is modeled with
𝑀 single SARSA learners acting in parallel. Every IL has individual
Q-functions, action spaces, action selection mechanisms, and state vec-
tors. Taking advantage of parallel computation of MAS, it is possible to
update every Q-table by using 𝑀 independent threads (Lines 1.20 to 1).
A decayed and synchronized exploration rate is proposed, in order to

avoid too much concurrent exploration and reduce the non-Markovian
effects as was suggested in Section 2.1.1. In this way, each agent should
find the best response to the behavior of the others. Thus, an 𝜖-greedy
action selection mechanism is implemented, which is exponentially
decayed by using the 𝑑𝑒𝑐 factor as seen in Line 1.31; 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 is the
current episode index and 𝑚𝑎𝑥𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠 is the total number of trained
episodes per run.

Synchronizing the exploration–exploitation mechanism among all
the agents is a variant that Algorithm 1 offers. It is possible just by
declaring a unique random number for all the agents as in Line 1.16,
instead of an individual random scalar per agent as in Line 1.18. Also
note that the RL parameters could be defined separately per agent
(e.g., 𝛼𝑚, 𝛾𝑚, 𝜖𝑚), which is one of the DRL properties pointed out in
Section 2.1. In Algorithm 1, those parameters are unified just for the
sake of simplicity.

3.2. Proposed KT-based DRL

This work proposes to use KT to help DRL-Ind in coordinating the
exploration during the early episodes. Under this approach, a subset
of actions taken from a prior-coordinated SoK is used for guiding the
agents to avoid unknown actions, while they evolve leniently and the
non-Markovian effects are reduced. The SoK acts as an initial value
function, and thereby endows the agent with an initial policy (Konidaris
et al., 2012). If both decayed exploration rate and decayed probability
of KT are used, the subset of actions from the SoK is progressively in-
creased or modified over time, while concurrent exploration is reduced.
In this way, each agent finds easily the best response to the behavior
of the others.

Several requirements are taking into account in order to choose the
KT strategy used in this work. In general, we consider methods that are
able to:

1. Transfer toward any RL algorithm that uses an action value
function, such as the works reported by Taylor and Stone (2007),
Knox and Stone (2010), Mataric (1994), Boutsioukis et al. (2012)
and Bianchi et al. (2014).

2. Transfer from different SoK types such as standard controllers
(e.g. linear or fuzzy controllers), hand-craft behaviors, and RL
policies such as the works reported in Fernández et al. (2010),
Knox and Stone (2010) and Bianchi et al. (2014).

3. Scale-up when the state/action space grow and the number of
agents increases, but without extra memory consumption, such
as Vrancx et al. (2011), Knox and Stone (2010) and Bianchi et al.
(2014)

4. Avoid to build empirical or on-line models of the other agents
strategies such as Knox and Stone (2010) and Bianchi et al.
(2014).

246

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

Algorithm 1 DRL Independent: MA-SARSA with RBF approximation
and 𝜖-greedy exploration

Parameters:
1: 𝑀 ⊳ Number of decentralized learning agents
2: 𝜖 ← 𝜖0 ⊳ Initial exploration probability ∈ (0, 1], typically 𝜖0 = 1
3: 𝑑𝑒𝑐 ⊳ Decay exploration rate: 𝑑𝑒𝑐 = 0 no decay; more decay if 𝑑𝑒𝑐 is

higher
4: 𝛼 ⊳ Learning rate ∈ (0, 1]
5: 𝛾 ⊳ Discount factor ∈ (0, 1]
6: 𝛷𝑚 ⊳ Size of the feature vector 𝜙𝑚 of 𝑎𝑔𝑒𝑛𝑡𝑚, where 𝑚 = [1,⋯ ,𝑀]
Inputs:

7: 𝑆1,⋯ , 𝑆𝑀 ⊳ State space of each agent
8: 𝐴1,⋯ , 𝐴𝑀 ⊳ Action space of each agent
9: Initialize 𝜃𝑚 arbitrarily for each agent 𝑚 = 1,⋯ ,𝑀

10: procedure for each episode:
11: for all agent 𝑚 ∈𝑀 do
12: 𝑎𝑚, 𝑠𝑚 ← Initialize state and action
13: end for
14: repeat for each step of episode:
15: if Synchronized exploration then
16: 𝑢𝑟𝑛𝑑 ← a uniform random variable ∈ [0, 1]
17: else
18: [𝑢𝑟𝑛𝑑1,⋯ , 𝑢𝑟𝑛𝑑𝑀] ← a uniform random vector ∈ [0, 1]
19: end if
20: for all agent 𝑚 ∈𝑀 do
21: Take action 𝑎 = 𝑎𝑚 from current state 𝑠 = 𝑠𝑚

22: Observe reward 𝑟𝑚, and next state 𝑠′ = 𝑠′𝑚

23: if 𝑢𝑟𝑛𝑑𝑚 > 𝜖 then
24: for all action 𝑖 ∈ 𝐴𝑚(𝑠′) do
25: 𝑄𝑖 ←

∑𝛷𝑚

𝑗=1 𝜃
𝑚
𝑖 (𝑗) ⋅ 𝜙

𝑚
𝑠′ (𝑗)

26: end for
27: 𝑎′ ← argmax𝑖𝑄𝑖
28: else
29: 𝑎′ ← a random action ∈ 𝐴𝑚(𝑠′)
30: end if
31: 𝜖 = 𝜖0 ⋅ exp(𝑑𝑒𝑐 ⋅ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒∕𝑚𝑎𝑥𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠)
32: 𝑄𝑎𝑠 =

∑𝛷𝑚

𝑗=1 𝜃
𝑚
𝑎 (𝑗) ⋅ 𝜙

𝑚
𝑠 (𝑗)

33: 𝑄𝑎𝑠′ =
∑𝛷𝑚

𝑗=1 𝜃
𝑚
𝑎′ (𝑗) ⋅ 𝜙

𝑚
𝑠′ (𝑗)

34: 𝛿 ← 𝑟𝑚 + 𝛾 ⋅𝑄𝑎𝑠′ −𝑄𝑎𝑠
35: 𝜃𝑚𝑎 ← 𝜃𝑚𝑎 + 𝛼 ⋅ 𝛿 ⋅ 𝜙𝑚𝑠
36: 𝑠𝑚 ← 𝑠′, 𝑎𝑚 ← 𝑎′

37: end for
38: until Terminal condition
39: end procedure

5. Avoid to consider other agents’ actions nor action choice negoti-
ation mechanisms such as Knox and Stone (2010) and Hu et al.
(2015).

Note that the CoSh approach (Knox and Stone, 2010) accomplishes
all the listed considerations. In addition, CoSh also supports the KT case
already indicated in Section 2.2: heterogeneous agents, different source
and target tasks, and the same source and target problem-space.

3.2.1. Control sharing (CoSh)
Introduced by Knox and Stone (2010), CoSh acts only during action-

selection, without affecting the updates of the Action-Value functions.
This method effectively either lets the RL agent to choose its action
or takes 𝑎𝑠𝑟𝑐 , the action shared from the SoK. If an action is shared,
the RL agent observes and updates it as if it were making the choice.
The action 𝑎 is chosen by SoK or source-policy (𝜋𝑠𝑟𝑐 (𝑠) = 𝑎𝑠𝑟𝑐) with
probability 𝛽 as

𝑃 (𝑎 = 𝑎𝑠𝑟𝑐) = 𝑚𝑖𝑛(𝛽, 1), (1)

otherwise action 𝑎 is chosen using a base RL agent’s action-selection
mechanism. 𝛽 is decayed periodically by a predefined factor.

CoSh was originally proposed for the single-agent RL case, but it
can be easily extended to the DRL case if a SoK is available to each

Fig. 2. Normal random function proposed to NeASh approach.

separate agent and if decayed and synchronized exploration rates are
implemented as in Algorithm 1, as well as with the transfer probabil-
ities are described as below. Note that CoSh is able to accomplish all
the requirements previously mentioned precisely because its extreme
simplicity. This is an advantage in order to quick implementations
because only the decayed probability 𝛽 must be set. However, in the
next subsection, we are proposing the Nearby Action Sharing variant
for continuous action spaces, which also fulfills those requirements
and additionally is able to include a measure of uncertainty to the
transferred action for noisy SoKs.

3.2.2. Nearby action sharing (NeASh)
Same as CoSh, NeASh also acts only during action-selection, trans-

ferring knowledge from continuous action spaces, when no information
different to the suggested action in an observed state is available from
the SoK. NeASh has applicability in cases where the sources of knowl-
edge are standard controllers, hand-coded behaviors, rule inference
systems, among other similar sources. NeASh is based on CoSh, but it
takes advantage of continuous action spaces to compensate the lack
of information or uncertainty about the quality of the source actions.
It assumes that a measure of the quality of a state–action pair is
related to its distance to the action 𝑎𝑠𝑟𝑐 suggested by the SoK (e.g., a
source policy 𝜋𝑠𝑟𝑐 (𝑠)). In this way, a normal distribution along the
universe of discourse centered in 𝑎𝑠𝑟𝑐 is considered (see Fig. 2), and
the resulting nearby action to share is 𝑎′𝑠𝑟𝑐 = 𝜉(𝜇, 𝜎), in which 𝜉(𝜇, 𝜎)
is a normally distributed random generator with mean 𝜇 = 𝑎𝑠𝑟𝑐 and
standard deviation 𝜎 = 𝜚(1 − 𝛽). Algorithm 2 depicts the procedure for
a DRL system accelerated-coordinated by using NeASh, which has 𝑀
single-agents.

As in the CoSh case, the action is chosen by source-policy with proba-
bility 𝛽. Typically, the initial value of 𝛽 is 1. 𝛽 is decayed periodically as
well as the standard deviation of 𝜉, which means that, at the beginning
of the learning process, NeASh works similarly to CoSh in Eq. (1).
However, while the learning process goes along, the probability of
choosing an action 𝑎′𝑠𝑟𝑐 increasingly goes away from the action 𝑎𝑠𝑟𝑐 as
𝜚(1−𝛽). Actually, NeASh turns into CoSh for the particular case of 𝜚 = 0.

If no KT is selected during a step, as in the case of line 2.22, then
NeASh offers the option of using its own action-selection mechanism or
just using a regular approach (e.g., 𝜖-greedy) as depicted in line 2.28.
The NeASh action-selection mechanism works similar to Softmax (Sut-
ton and Barto, 1998), but taking advantage of the continuous action
spaces, and uses a normal distribution instead of a Boltzmann one. In
a very similar way to obtaining 𝑎′𝑠𝑟𝑐 , the chosen action from the target
policy 𝑎′𝑡𝑔𝑡 is obtained by using the best action from the current target
policy (e.g., max𝑄𝑚(𝑠𝑚)), but with 𝜎 = 𝜚 ⋅ 𝛽, and taking a nearby target
action as in line 2.26.

A synchronized transfer/exploration version of NeASh can be imple-
mented by using a unique random number as in Lines 2.8–2.9, instead
of 𝑀 different random numbers for synchronizing transfer/exploration
such as in Lines 2.11–2.13. Note that if normal distributions are used,
it is necessary to bound 𝑎′𝑠𝑟𝑐 and 𝑎′𝑡𝑔𝑡 into the action space with module
or clip functions. This issue can be solved by using other finite support
kernels such as triangular, cosine or Epanechnikov (Lobos-Tsunekawa
et al., 2017).

247

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

Algorithm 2 DRL+NeASh: KT and action selection mechanism
Parameters:

1: 𝑀 ⊳ Number of decentralized learning agents
2: 𝜚𝑚 ⊳ Scale factor for the continuous action space of 𝑎𝑔𝑒𝑛𝑡𝑚, where

𝑚 = [1,⋯ ,𝑀], 𝜚 ≥ 0
3: 𝛽 ⊳ Probability of choosing the action from 𝜋𝑠𝑟𝑐 . 𝛽 is periodically

decayed ∈ [0, 1]
Inputs:

4: 𝑆1,⋯ , 𝑆𝑀 ⊳ State space of each agent
5: 𝐴1,⋯ , 𝐴𝑀 ⊳ Action space of each agent
6: repeat for each step:
7: if Synchronized exploration and transfer then
8: 𝑢𝑟𝑛𝑑 ← a uniform random variable ∈ [0, 1]
9: 𝜉𝑇 , 𝜉𝐸 ← normal random variables (𝜇 = 0, 𝜎 = 1) for transferring and

exploration procedures respectively
10: else
11: [𝑛𝑟𝑛𝑑1,⋯ , 𝑢𝑟𝑛𝑑𝑀] ← a uniform random vector ∈ [0, 1]
12: [𝜉1𝑇 ,⋯ , 𝜉𝑀𝑇] ← a normal random vector (𝜇 = 0, 𝜎 = 1)
13: [𝜉1𝐸 ,⋯ , 𝜉𝑀𝐸] ← a normal random vector (𝜇 = 0, 𝜎 = 1)
14: end if
15: for all agent 𝑚 ∈𝑀 do
16: 𝑠𝑚 ← Get state of 𝑎𝑔𝑒𝑛𝑡𝑚
17: if 𝑢𝑟𝑛𝑑𝑚 < 𝛽 then
18: 𝑎𝑚𝑠𝑟𝑐 ← 𝜋𝑠𝑟𝑐 (𝑠𝑚) Get the action from the source-policy for 𝑎𝑔𝑒𝑛𝑡𝑚
19: 𝜇 += 𝑎𝑚𝑠𝑟𝑐
20: 𝜎 ∗= 𝜚𝑚(1 − 𝛽)
21: 𝑎𝑚 ← 𝑎′𝑚

𝑠𝑟𝑐 = 𝜉𝑚𝑇 (𝜇, 𝜎)
22: else if NeASh action-selection mechanism is used then
23: 𝑎𝑚𝑡𝑔𝑡 ← Get the best action from the current target policy of RL

𝑎𝑔𝑒𝑛𝑡𝑚
24: 𝜇 += 𝑎𝑚𝑡𝑔𝑡
25: 𝜎 ∗= 𝜚𝑚 ⋅ 𝛽
26: 𝑎𝑚 ← 𝑎′𝑚

𝑡𝑔𝑡 = 𝜉𝑚𝐸 (𝜇, 𝜎)
27: else
28: 𝑎𝑚 ← Set action from the current RL action selection mechanism

of 𝑎𝑔𝑒𝑛𝑡𝑚
29: end if
30: end for
31: until Terminal condition

4. Experimental validation

In order to validate MAS benefits and properties of the DRL pro-
posed approaches, two complex and real-world problems from soccer
robotics have been selected: the inwalk-kicking and the ball-dribbling.
Both behaviors are performed with humanoid biped robots, which
results very challenging because their modeling must take into account
the physical interaction between the ball, the ground, the robot’s
feet, and the robot’s gait inertia. Thus, the action is highly dynamic,
non-linear, and influenced by several sources of uncertainty. More-
over, these two behaviors are actually used by the UChile Robotics
Team (Yáñez et al., 2016) in the RoboCup (Veloso and Stone, 2012)
Standard Platform League (SPL) soccer competition, in which the team
has been regular semifinalist in the recent world competitions.

The inwalk-kicking and ball-dribbling are part of the inwalk-ball-
pushing based behaviors proposed by Leottau and Ruiz-Del-Solar (2015).
Similar to Leottau et al. (2015), the description of both problems use
the following variables: [𝑣𝑥, 𝑣𝑦, 𝑣𝜃], the velocity vector; 𝛾, the robot-
ball angle; 𝜌, the robot-ball distance; 𝜓 , the ball-target distance; and 𝜙,
the robot-ball-target complementary angle. These variables are shown
in Fig. 3, where the desired target ⊕ is the opponent’s goal, and a
robot’s egocentric reference system is indicated with the 𝑥 axis pointing
forwards. Fig. 3 also shows the RoboCup SPL soccer environment where
the NAO humanoid robot is used (Gouaillier et al., 2009).

A description of each problem as well as the implementation and
modeling details are presented in the next sub-sections. The exper-
imental results are then discussed, for which we use the following

Fig. 3. Geometric state variables and control actions for the ball-pushing based
behaviors, performed by the NAO robot using a magenta jersey in a real RoboCup
game. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Experiment’s acronyms and their optimized parameters.

Acronym Algorithm’s parameters

Inwalk-kicking

2D simulator

DRL-Ind 𝜖0 = 1, 𝑑𝑒𝑐 = 30, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99
DRL+NeASh-SrcHQ 𝜚 = 25, 𝛽 = 1, 𝑑𝑒𝑐 = 29, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99
DRL+NeASh-SrcLQ 𝜚 = 16, 𝛽 = 1, 𝑑𝑒𝑐 = 12, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99
DRL+CoSh-SrcHQ 𝜖0 = 1, 𝛽 = 1, 𝑑𝑒𝑐 = 19, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99
DRL+CoSh-SrcLQ 𝜖0 = 1, 𝛽 = 1, 𝑑𝑒𝑐 = 13, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99

3D realistic simulator

DRL-Ind 𝜖0 = 1, 𝑑𝑒𝑐 = 30, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99
DRL+NeASh 𝜚 = 10, 𝛽 = 1, 𝑑𝑒𝑐 = 15, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99
DRL+CoSh 𝜖0 = 1, 𝛽 = 1, 𝑑𝑒𝑐 = 15, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99

Ball-dribbling

3D realistic simulator

DRL-Ind 𝜖0 = 1, 𝑑𝑒𝑐 = 20, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99
DRL+NeASh 𝜚 = 5, 𝛽 = 0.5, 𝑑𝑒𝑐 = 10, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99
DRL+CoSh 𝜖0 = 1, 𝛽 = 1, 𝑑𝑒𝑐 = 30, 𝛼 = 0.2, 𝜆 = 0.9, 𝛾 = 0.99
RL-FLC Final performance taken from Leottau et al. (2016)

terminology: DRL-Ind is an independent learners scheme implemented
without any kind of MA coordination; DRL+CoSh and DRL+NeASh
are DRL schemes accelerated using CoSh and NeASh transfer knowl-
edge approaches, respectively; RL-FLC is an implementation reported
by Leottau et al. (2015, 2016), which combines a Fuzzy Logic Con-
troller (FLC) and an RL single agent. For the kicking problem, some
extra experiment are carried out by using different sources of knowl-
edge for CoSh and NeASh transfer methods, namely SrcHQ and SrcLQ,
a high and a low quality sources, respectively. This is explained in Sec-
tion 4.1.2. All the acronyms of the implemented methods and problems
are listed in Table 1.

4.1. Inwalk kicking

In the inwalk-kicking behavior, a robot attempts to shoot and score
a goal by performing an inwalk-ball-pushing (Lobos-Tsunekawa et al.,
2017). A general version of this behavior was originally introduced
and implemented by Röfer et al. (2011), in which the gait phases are
modified to create kick motions. Our proposed implementation consists
of inwalk kicks using only the inertia of the gait, without any specially
designed kick motion. The robot just push the ball as hard as possible
while it is walking toward the ball, as Lobos-Tsunekawa et al. (2017)
propose.

4.1.1. Decentralized modeling
Since the velocity vector of the biped-robot walking-engine is [𝑣𝑥,

𝑣𝑦, 𝑣𝜃], it is possible to decentralize this 3-Dimensional action space by
using three separate agents, namely 𝐴𝑔𝑒𝑛𝑡𝑥, 𝐴𝑔𝑒𝑛𝑡𝑦, and 𝐴𝑔𝑒𝑛𝑡𝜃 . Our

248

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

Table 2
Description of state and action spaces for the DRL modeling of the inwalk-kicking
problem.

Joint state space: 𝑆 = [𝜌, 𝛾, 𝜙, 𝜓]𝑇

State variable Min. Max. N. Cores

𝜌 0 mm 800 mm 15
𝛾 −70◦ 70◦ 11
𝜙 −90◦ 90◦ 13

Action space: 𝐴 = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃]

Agent Min. Max. N. Actions

𝑣𝑥 0 mm/s 120 mm/s 16
𝑣𝑦 −70 mm/s 70 mm/s 15
𝑣𝜃 −30 ◦∕s 30 ◦∕s 17

expected common goal is to walk fast toward the ball, and pushing it
aligned and hard enough for scoring a goal. That means: to maximize 𝑣𝑥
and minimize 𝜌, 𝛾, 𝜙, 𝑣𝑦, 𝑣𝜃 before pushing the ball; and to minimize 𝜙, 𝜓
once the ball is shoot. So, the proposed control signals are [𝑣𝑥, 𝑣𝑦, 𝑣𝜃],
and the proposed common reward is:

𝑟 =

{

𝐾 ⋅ exp
(

−𝜓𝑒𝑟𝑟𝑜𝑟∕𝜓0
)

⋅ exp
(

−𝛼𝑒𝑟𝑟𝑜𝑟∕𝛼0
)

, if 𝑏𝑎𝑙𝑙 is 𝑝𝑢𝑠ℎ𝑒𝑑,
−
(

𝜌∕𝜌𝑚𝑎𝑥 + |𝜙| ∕𝜙𝑚𝑎𝑥 + |𝛾| ∕𝛾𝑚𝑎𝑥
)

, otherwise,
(2)

where [𝜌𝑚𝑎𝑥, 𝛾𝑚𝑎𝑥, 𝜙𝑚𝑎𝑥] = [2000 mm, 90◦, 90◦], 𝜓𝑒𝑟𝑟𝑜𝑟 is the distance that
the ball still needs to travel to reach the target in its current trajectory,
𝛼𝑒𝑟𝑟𝑜𝑟 is the angle deviation of the ball’s trajectory from a straight line to
the target, and the parameters 𝐾,𝜓0 and 𝛼0 allow the design of rewards
with more focus on kick strength or precision. The complete proposed
modeling for learning the 3-Dimensional velocity vector from the joint
observed state is detailed in Table 2.

4.1.2. Experimental setup
The inwalk-kicking RL procedure is carried out episodically. After a

reset, the ball is set on a fixed position, 1.5 m in front of the opposite
goal as shown in Fig. 4 (left). The robot is set on a random position,
1m around the ball and always facing it. This random initialization is
designed so the learning agent can successfully learn many operation
points, and thus achieve a general kick behavior. The episode’s termi-
nation criterion is given by the following conditions: episode timeout
of 200 s, the robot or the ball leaves the field, or the ball is pushed by
the robot.

A SARSA(𝜆) RL algorithm with RBF approximation is implemented
for these experiments. DRL-Ind and DRL+CoSh use 𝜖-greedy decayed
as

𝜖 = 𝜖0 ⋅ exp(𝑑𝑒𝑐𝑒𝑝𝑖𝑠𝑜𝑑𝑒∕𝑚𝑎𝑥𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠) (3)

where 𝑑𝑒𝑐 is a decayed factor, episode is the current episode index, and
𝑚𝑎𝑥𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠 = 2000 trained episodes per run. DRL+CoSh also decay
𝛽 in the same way. DRL+NeASh uses the same decay function, but
applied for annealing 𝛽 and managing the knowledge transfer and the
NeASh action-selection mechanism depicted in Algorithm 2.

The percentage of scored goals across the trained episodes is con-
sidered as the performance index

𝑆𝑐𝑜𝑟𝑒𝑑𝐺𝑜𝑎𝑙𝑅𝑎𝑡𝑒(%) = 𝑠𝑐𝑜𝑟𝑒𝑑𝐺𝑜𝑎𝑙𝑠∕𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑊 𝑖𝑛𝑑𝑜𝑤 (4)

where 𝑠𝑐𝑜𝑟𝑒𝑑𝐺𝑜𝑎𝑙𝑠 are the number of scored goals during
𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑊 𝑖𝑛𝑑𝑜𝑤 = 200 episodes, a window of 10% of the 2000 total
trained episodes.

Two kinds of experiments are carried out: (i) an extensive ex-
perimental procedure carried out on a 2D simulator in which basic
kinematics models are computed faster, allowing parameter optimiza-
tions and running several trials for more statistical significance; and (ii)
experiments carried out in the SimRobot 3D simulator released by Röfer
et al. (2011), which is very realistic but computationally expensive for
the Intel(R)Core(TM)i7-4774CPU@3.40 GHz available on our lab (a

run of 2000 episodes may take up to 12 h). The experimental procedure
for both experiments is described below:

2D Simulator Experiments:

– Five different schemes are tested: DRL-Ind, DRL+CoSh-SrcHQ,
DRL+CoSh-SrcLQ, DRL+NeASh-SrcHQ, and DRL+
NeASh-SrcLQ. Since NeASh and CoSh approaches require a source
for transferring knowledge, a linear controller of the form:

⎡

⎢

⎢

⎣

𝑣𝑥
𝑣𝑦
𝑣𝜃

⎤

⎥

⎥

⎦

= 𝐾𝑋 =
⎡

⎢

⎢

⎣

𝑘𝑥𝜌 ⋯ 𝑘𝑥𝜙
⋮ ⋱ ⋮
⋅ ⋯ 𝑘𝜃𝜙

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜌
𝛾
𝜙

⎤

⎥

⎥

⎦

(5)

with two configurations: SrcHQ, a high quality source in which
matrix K in Eq. (5) was tuned for the best performance achievable
by these linear controllers (around 20% on average); SrcLQ, a low
quality source in which K was tuned only for achieving the ball
without kicking it. These two different sources of knowledge are
tested in order to analyze their impact in the final performance
and learning time.

– The decay factor (𝑑𝑒𝑐) and the action space scale factor (𝜚)
parameters were optimized for each of these five implementations
by using the custom hill-climbing algorithm presented by Leottau
et al. (2018). This is an important step in order to guarantee that
every scheme tested uses the best parameter settings. In this way,
our comparisons and evaluations are carried out based on the best
performance potentially achievable by each method, according
to our optimization results. All the parameters are detailed in
Table 1.

– The best set of parameters of each implemented scheme is eval-
uated 25 times and learning evolution plots are averaged. Final
performances are measured as well as the number of episodes
required to achieve a given performance, which is called time to
threshold.

3D Realistic Simulator Experiments:

– In order to validate the 2D simulator experiments, three imple-
mentations are tested: DRL-Ind, DRL+CoSh-SrcHQ, and DRL+
NeASh-SrcHQ. The averaged performance of SrcHQ for this case
is around 15%.

– The decay factor (𝑑𝑒𝑐) and the action space scale factor (𝜚)
parameters were also optimized for each of the three said im-
plementations. Due to computing time limitations common in
complex 3D simulators, a grid search of the whole parameter
space was used in order to find the best sets of parameters.

– The best set of parameters of each implemented scheme is evalu-
ated 10 times and learning evolution plots are averaged.

4.1.3. Results and analysis
Fig. 5 shows learning plots for 2D simulator experiments. Table 3

presents their final performances and learning times for achieving a
time to threshold of 40%. DRL+NeASh schemes show the best final
performance and learning times (around 14% better and 43% faster
than DRL-Ind) followed by DRL+CoSh schemes (around 10% better and
36% faster than DRL-Ind). DRL-Ind shows the lowest performance and
slower learning times, which is expected taking into account the lack
of prior-coordination, unlike NeASh and CoSh approaches which use
linear controllers as SoK.

Two different qualities of the SoK were tested for comparing NeASh
and CoSh performances. Both transfer methods outperform the DRL-Ind
even when a low quality source is used. However, note from Fig. 5 that
the DRL+CoSh-SrcLQ learning plot shows lower performance during
most of the learning procedure, evidencing that the quality of the SoK
affects CoSh more than NeASh. From Table 3, DRL+NeASh-SrcHQ is
about 21% faster than DRL+CoSh-SrcLQ, and 23% faster than DRL-Ind.

249

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

Fig. 4. The learning setup environment of the inwalk-kicking problem (left), and the ball-dribbling problem (right).

Fig. 5. Inwalk-kicking learning evolution plots with two different sources of knowl-
edge. Results are averaged across 25 learning runs and error bars show the standard
errors.

Table 3
Inwalk-kicking performances (in which 100% is the optimal policy).

Approach Final performance (%) Time to Th. (40%)
[Scored Goal Rate]

2D Simulator

DRL+NeASh-SrcHQ 54.55 775
DRL+CoSh-SrcHQ 50.28 915
DRL+NeASh-SrcLQ 49.63 1165
DRL+CoSh-SrcLQ 45.22 1592
DRL-Ind 40.16 1631

3D Simulator

DRL+NeASh 58.53 531
DRL+CoSh 57.02 688
DRL-Ind 48.16 1064

This can be explained taking into account the nearby action effect, be-
cause while CoSh always shares the same action for a determined state,
NeASh explores the neighborhood according 𝜚 and 1 − 𝛽 for sharing
a nearby action, which eventually can have a better performance, but
surely gives more experience and information to the target DRL agents.
As a disadvantage, NeASh requires tuning the extra parameter 𝜚.

It is interesting analyzing the effect of those parameters on the
knowledge transfer. From Table 1, note that CoSh uses a smaller decay
factor to deal with the lower quality in the source (𝑑𝑒𝑐 ∶ 19 → 13),
which implies a slower learning. NeASh reacts similarly: it reduces 𝑑𝑒𝑐
from 29 to 12, but increases the nearby action deviation by reducing
the scale factor 𝜚 from 25 to 16. This means, if the source is good, that
NeASh trusts more in the SoK, but if the source is weak, that NeASh
should explore more around the suggested action from the source.

Fig. 6 presents learning evolution plots for the 3D simulator ex-
periments, in which the high quality sources were used. These plots
validate results from previous experiments: DRL-NeASh is again the
best and fastest scheme (around 10% better and 27% faster than DRL-
Ind) followed by DRL+CoSh schemes (around 9% better and 19% faster

Fig. 6. Inwalk-kicking learning evolution plots for the 3D realistic simulator. Results
are averaged across 10 learning runs and error bars show the standard errors.

Table 4
Computational resources comparison between CRL and DRL for the inwalk-kicking
problem.

CRL DRL

Execution time [ms] 304.72 4.42
Memory usage [MB] 70 0.82

than DRL-Ind). From Table 1, note that 𝜚 and 𝑑𝑒𝑐 differ from 2D
experiments due to the more challenging and realistic environment.
For instance, DRL-NeASh now uses 𝜚 = 10, which is a reduced value
compared to the 2D experiment, in order to increase the exploration
zone from the source actions.

Finally, it is also interesting to compare numerically the compu-
tational benefits proper of the use of DRL instead of CRL. Table 4
presents both the computational speedup and the memory consumption
reduction obtained for the case of inwalk-kicking. It is important to
note that vanilla CRL produces impractical execution times even for
relatively low-dimensional problems such as inwalk-kicking, whereas
DRL is able to provide a considerable speedup, allowing its use in real-
time applications. A similar phenomena is presented in the memory
consumption. While the memory usage of the CRL approach for this
problem is still feasible to nowadays computers, it still impossible to
deploy such solutions to embedded systems. In this case, DRL also
proves to address this issue, producing models which are able to be
embedded in such platforms, due to a much reduced memory usage. A
more detailed CRL vs. DRL comparison and analysis for this problem
has been addressed by Lobos-Tsunekawa et al. (2017).

4.2. Ball-dribbling

Ball-dribbling is a complex behavior during which a robot player
attempts to maneuver the ball in a very controlled way, while moving

250

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

toward a desired target. Used variables are the same for the inwalk-
kicking problem, described at the beginning of this section and shown
in Fig. 3.

4.2.1. Decentralized modeling
As in the inwalk-kicking problem, the NAO robot is used. So, the

same three separate agents 𝐴𝑔𝑒𝑛𝑡𝑥, 𝐴𝑔𝑒𝑛𝑡𝑦, and 𝐴𝑔𝑒𝑛𝑡𝜃 are proposed.
Our expected common goal is to walk fast toward the desired target
while keeping possession of the ball. That means: to maintain 𝜌 < 𝜌𝑡ℎ;
to minimize 𝛾, 𝜙, 𝑣𝑦, 𝑣𝜃 ; and to maximize 𝑣𝑥. In this way, this ball-
dribbling behavior can be separated into three tasks or individual goals,
which have to be executed in parallel: ball-turning, which keeps the
robot tracking the ball-angle (𝛾 = 0); alignment, which keeps the robot
aligned to the ball-target line (𝜙 = 0); and ball-pushing, whose objective
is for the robot to walk as fast as possible and hit the ball in order
to change its speed, without losing possession of it. So, the proposed
control signals are [𝑣𝑥, 𝑣𝑦, 𝑣𝜃], respectively, involved with ball-pushing,
alignment, and ball-turning. Thus, individual rewards are proposed for
each learning agent:

𝑟𝑥 =

{

1, if
(

𝜌 < 𝜌𝑡ℎ
)

∧
(

𝛾 < 𝛾𝑡ℎ
)

∧
(

𝜙 < 𝜙𝑡ℎ
)

∧
(

𝑣𝑥 < 𝑣𝑥.𝑚𝑎𝑥′
)

,
−1, otherwise,

𝑟𝑦 =

{

1, if
(

𝛾 < 𝛾𝑡ℎ∕3
)

∧
(

𝜙 < 𝜙𝑡ℎ∕3
)

,
−1, otherwise,

𝑟𝜃 =

{

1, if
(

𝛾 < 𝛾𝑡ℎ∕3
)

∧
(

𝜙 < 𝜙𝑡ℎ∕3
)

,
−1, otherwise,

(6)

where: [𝜌𝑡ℎ, 𝛾𝑡ℎ, 𝜙𝑡ℎ] are desired thresholds at which the ball is con-
sidered to be controlled, otherwise a fault-state occurs; and 𝑣𝑥.𝑚𝑎𝑥′
reinforces walking forward at maximum speed. Fault-state thresholds
are set as: [𝜌𝑡ℎ, 𝛾𝑡ℎ, 𝜙𝑡ℎ] = [250 mm, 25◦, 25◦], and 𝑣𝑥.𝑚𝑎𝑥′ = 0.9⋅𝑣𝑥.𝑚𝑎𝑥. The
complete proposed modeling for learning the 3-Dimensional velocity
vector from the joint observed state is detailed in Table 2.

4.2.2. Experimental setup
A SARSA(𝜆) RL algorithm with RBF approximation is also imple-

mented for these experiments. Parameters and decayed functions are
set and configured in the same way as for the kicking problem. All the
parameter are detailed in Table 1 for each scheme implemented.

The ball-dribbling RL procedure is carried out episodically and 1000
episodes are trained in the SimRobot 3D simulator. After a reset, the
robot is set near to its own goal (Fig. 4, right), in a random position
over the red arc around the ball, and the desired target is defined by
⊕. The terminal state is reached if the robot loses the ball, if the robot
leaves the field, or if the robot reaches the target (which is the expected
terminal state). The training field is 9 × 6 m.

The evolution of the learning process is evaluated by measuring and
averaging 10 runs. In this way, the following performance indices are
considered to measure dribbling-speed and ball-control respectively:

– % of maximum forward speed (%𝑆𝐹𝑚𝑎𝑥): given 𝑆𝐹𝑎𝑣𝑔 , the average
dribbling forward speed of the robot, and 𝑆𝐹𝑚𝑎𝑥, the maximum
forward speed %𝑆𝐹𝑚𝑎𝑥 = 𝑆𝐹𝑎𝑣𝑔∕𝑆𝐹𝑚𝑎𝑥. %𝑆𝐹𝑚𝑎𝑥 = 100% is the best
performance.

– % of time in fault-state (%𝑇𝐹𝑆): is the accumulated time in fault-
state 𝑡𝐹𝑆 during the whole episode time 𝑡𝐷𝑃 . The fault-state is
defined as the state when the robot loses possession of the ball,
i.e., 𝜌 > 𝜌𝑡ℎ ∨ |𝛾| > 𝛾𝑡ℎ ∨ |𝜙| > 𝜙𝑡ℎ, then %𝑇𝐹𝑆 = 𝑡𝐹𝑆∕𝑡𝐷𝑃 .
%𝑇𝐹𝑆 = 0 is the best performance.

– Global Fitness (F): computed as 𝐹 = 1∕2[(100%𝑆𝐹𝑚𝑎𝑥) + %𝑇𝐹𝑆],
where 𝐹 = 0 is the optimal but non-reachable policy.

Fig. 7. Ball-dribbling learning evolution plots for the 3D realistic simulator. Results
are averaged across 10 learning runs and error bars show the standard errors.

Table 5
Ball-dribbling performances (in which lower %s are better).

Approach Final performance (%) Time to Th. (30.0%)
[Scored Goal Rate]

DRL+NeASh 22.04 225
DRL-CoSh 22.40 267
DRL-Ind 29.19 845
RL-FLC 34.40 51

4.2.3. Results and analysis
Fig. 7 shows the learning evolution plots and Table 5 shows the

averaged final performances and learning times for achieving a perfor-
mance of 30%. DRL+NeASh scheme shows the best final performance
and learning times, around 7% better and 62% faster than DRL-Ind,
followed by DRL+CoSh scheme which is around 6% better and 58%
faster than DRL-Ind. DRL-Ind shows the lowest performance, slower
learning times, and larger error bars with respect to the TK approaches.
Same as in the inwalk-kicking problem, it is expected due to the lack of
prior-coordination in the DRL-Ind scheme, contrary to the DRL+CoSh
and DRL+NeASh schemes, which for this experiments used a SoK with
a prior performance of around 45%.

Since a previous implementation for the ball-dribbling problem has
been already reported in the literature as RL-FLC (Leottau et al., 2015),
we have included its performance indices in Table 5. The effectiveness
and benefits of this hybrid RL and fuzzy approach have been pointed
out by Leottau et al. (2015). However, a significant human effort and
knowledge of the controller designer are required for implementing all
the proposed stages. In that sense, our independent DRL approach is
able to learn the whole ball-dribbling behavior autonomously, achiev-
ing best performances with respect to the RL-FLC with less human
effort and less previous knowledge. An advantage that still remains
from the RL-FLC method is the considerably lower RL training time,
regarding the DRL scheme (51 episodes vs. 845 episodes approximately
for achieving a performance of 30%). In that sense, the transfer knowl-
edge strategies for DRL agents proposed in this work are able to reduce
that learning time down up to 225 episodes, opening the door to make
achievable future implementations for learning similar behaviors with
physical robots.

5. Conclusions

This paper presented a Decentralized Reinforcement Learning (DRL)
architecture to alleviate the effects of the curse of dimensionality and
the large number of training trials required to learn tasks in which
multi-dimensional action spaces are involved. Three DRL schemes are

251

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

considered and tested: DRL-Ind, implemented with independent learn-
ers and no prior-coordination; DRL+CoSh, accelerated-coordinated by
using the Control Sharing (CoSh) knowledge transfer approach, which
is extended from the single-agent case to the DRL proposed architec-
ture; and DRL+NeASh, a knowledge transfer approach proposed for
including a measure of uncertainty to the CoSh procedure.

The proposed methods have been validated by implementing two
real-world problems, the inwalk-kicking and the ball-dribbling be-
haviors, both performed with humanoid biped robots, where each
component of the requested velocity vector [𝑣𝑥, 𝑣𝑦, 𝑣𝜃] is learned in
parallel with independent agents working in a multi-agent task. Results
have shown empirically that benefits of MAS are also applicable to
complex problems like robotic platforms, by using a DRL architecture.
Results have also shown that even without prior-coordination, both
asymptotic convergence and indirect coordination are achieved among
DRL-Ind agents. They have shown that it is possible to reduce the train-
ing episodes and coordinate the DRL by using knowledge transfer from
simple linear controllers, obtaining better performances and learning
times with respect to the DRL-Ind scheme.

DRL+NeASh schemes showed either better performances and learn-
ing times for the inwalk-kicking problem. By contrast, DRL+NeASh and
DRL+CoSh approaches showed similar performances for the dribbling
problem. This is an interesting point to be discussed taking into account
the quality of the sources of knowledge used by each problem: the
inwalk-kicking behavior used a source of knowledge with a perfor-
mance of around 15% (being 100% the optimal), while the ball-dribbling
used a source of knowledge of around 45% (being 0% the optimal).
The DRL+NeASh scheme showed the best averaged performance for
both problems: 58.53% for the inwalk-kicking, and 22.04% for the ball-
dribbling. Note that the source performance for the dribbling case was
closer to the optimal policy. Thus, we can empirically conclude that
benefits of NeASh approach are more noticeable when the source of
knowledge has poor performances or more uncertainty; otherwise, the
CoSh approach could be more convenient due to its simplicity and easy
parameter tuning, and also because of CoSh is able to deal with both,
discrete and continuous action spaces.

Video demonstrating the inwalk-kick and ball-dribbling learned
policies performed with a real NAO robot can be found online at Lobos-
Tsunekawa (2017). The policies are transferred directly to the physical
robot, thus, the final performance is dependent on how realistic the
simulation platform is.

CoSh and NeASh were able to fulfill all the requirements indicated
in Section 3.2: transferring on any RL algorithm that uses an action
value function; transferring from different SoK types; including prior-
coordination without more complexity than a single-agent RL method;
and allowing heterogeneous agents with different source and target
tasks but same source and target problem-space. Those considerations
were accomplished precisely because of the NeASh and CoSh simplicity.
However, since this work is one of the first approaches that address
coordination or acceleration of DRL systems, our intention was to
introduce basic and simple concepts and methods as a starting point,
and as motivation for future researches on this field, in which more
sophisticated methods can be used.

Acknowledgments

This research was partially funded by FONDECYT Project, Chile
1161500. David Leonardo Leottau was funded under grant CONICYT-
PCHA/Doctorado Nacional, Chile/2013-63130183. Francisco Jaramillo
was funded under grant CONICYT-PCHA/Doctorado Nacional, Chile/
2014-21140201.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.engappai.2019.06.019.

References

Bianchi, R.A.C., Martins, M.F., Ribeiro, C.H.C., Costa, A.H.R., 2014. Heuristically-
accelerated multiagent reinforcement learning. IEEE Trans. Cybern. 44, 252–265.

Boutsioukis, G., Partalas, I., Vlahavas, I., 2012. Transfer learning in multi-agent
reinforcement learning domains. In: Sanner, S., Hutter, M. (Eds.), Recent Advances
in Reinforcement Learning. Springer Berlin Heidelberg, pp. 249–260.

Buşoniu, L., Babuška, R., De Schutter, B., 2008. A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybern. C 38, 156–172.

Buşoniu, L., De Schutter, B., Babuška, R., 2006. Decentralized reinforcement learning
control of a robotic manipulator. In: Ninth International Conference on Control,
Automation, Robotics and Vision, ICARCV. Singapore, pp. 1–6.

Claus, C., Boutilier, C., 1998. The dynamics of reinforcement learning in cooperative
multiagent systems. In: Proceedings of the Fifteenth National/Tenth Conference
on Artificial Intelligence/Innovative Applications of Artificial Intelligence. In: AAAI
’98/IAAI ’98, Madison, Wisconsin, USA, pp. 746–752.

Dziomin, U., Kabysh, A., Golovko, V., Stetter, R., 2013. A multi-agent reinforcement
learning approach for the efficient control of mobile robot. In: 2013 IEEE 7th
International Conference on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS). Berlin, Germany, pp. 867–873.

Fernández, F., García, J., Veloso, M., 2010. Probabilistic policy reuse for inter-task
transfer learning. Robot. Auton. Syst. 58, 866–871.

Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P.,
Marnier, B., Serre, J., Maisonnier, B., 2009. Mechatronic design of NAO humanoid.
In: 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan,
pp. 769–774.

Hu, Y., Gao, Y., An, B., 2015. Accelerating multiagent reinforcement learning by
equilibrium transfer. IEEE Trans. Cybern. 45, 1289–1302.

Kabysh, A., Golovko, V., Lipnickas, A., 2012. Influence learning for multi-agent system
based on reinforcement learning. Int. J. Comput. 11, 39–44.

Knox, W.B., Stone, P., 2010. Combining manual feedback with subsequent MDP
reward signals for reinforcement learning. In: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems: Volume 1, AAMAS
2010. International Foundation for Autonomous Agents and Multiagent Systems,
Toronto, Canada, pp. 5–12.

Knox, W.B., Stone, P., 2012. Reinforcement learning from simultaneous human and
MDP reward. In: Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, AAMAS 2012. International Foundation
for Autonomous Agents and Multiagent Systems, pp. 475–482.

Konidaris, G., Scheidwasser, I., Barto, A.G., 2012. Transfer in reinforcement learning
via shared features. J. Mach. Learn. Res. 13, 1333–1371.

Laurent, G.J., Matignon, L., Le Fort-Piat, N., 2011. The world of independent learners
is not Markovian. Int. J. Knowl.-Based Intell. Eng. Syst. 15, 55–64.

Leottau, D.L., Celemin, C., Ruiz-del Solar, J., 2015. Ball dribbling for humanoid biped
robots: A reinforcement learning and fuzzy control approach. In: Bianchi, R.A.C.,
Akin, H.L., Ramamoorthy, S., Sugiura, K. (Eds.), RoboCup 2014: Robot World Cup
XVIII. In: Lecture Notes in Computer Science, vol. 8992, Springer Verlag, Berlin,
pp. 549–561.

Leottau, D.L., Ruiz-Del-Solar, J., 2015. An accelerated approach to decentralized
reinforcement learning of the ball-dribbling behavior. In: AAAI Workshops. Austin,
Texas USA, pp. 23–29.

Leottau, D.L., Ruiz-del Solar, J., Babuška, R., 2018. Decentralized reinforcement
learning of robot behaviors. Artificial Intelligence 256, 130–159.

Leottau, D.L., Ruiz-del Solar, J., MacAlpine, P., Stone, P., 2016. A study of layered
learning strategies applied to individual behaviors in robot soccer. In: Almeida, L.,
Ji, J., Steinbauer, G., Luke, S. (Eds.), RoboCup-2015: Robot Soccer World Cup XIX.
In: Lecture Notes in Artificial Intelligence, Springer Verlag, Berlin, pp. 290–302.

Leottau, D.L., Vatsyayan, A., Ruiz-del Solar, J., Babuška, R., 2017. Decentralized
reinforcement learning applied to mobile robots. In: Behnke, S., Sheh, R., Sariel, S.,
Lee, D. (Eds.), RoboCup 2016: Robot World Cup XX. In: Lecture Notes in Artificial
Intelligence, vol. 9776, Springer Verlag, Berlin.

Lobos-Tsunekawa, K., 2017. Inwalk-kicking and ball-dribbling videos. https://drive.
google.com/drive/folders/1t68DUVdXKbf-C65EmBHEdsVGrqGbo7W2?usp=sharing
(accessed 7.2.18).

Lobos-Tsunekawa, K., Leottau, D.L., Ruiz-del Solar, J., 2017. Toward real-time de-
centralized reinforcement learning using finite support basis functions. CoRR
abs/1706.06695.

Martín, J.A., de Lope Asiaín, J., 2007. A distributed reinforcement learning control
architecture for multi-link robots - experimental validation. In: Proceedings of
the Fourth International Conference on Informatics in Control, Automation and
Robotics, ICINCO 2007. Angers, Francia, pp. 192–197.

Mataric, M.J., 1994. Reward functions for accelerated learning. In: Proceedings of the
Eleventh International Conference on Machine Learning. Morgan Kaufmann, Boca
Raton, Florida, USA, pp. 181–189.

Papierok, S., Noglik, A., Pauli, J., 2008. Application of reinforcement learning in
a real environment using an RBF network. In: 1st International Workshop on
Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS
2008). Patras, Greece, pp. 17–22.

252

https://doi.org/10.1016/j.engappai.2019.06.019
https://doi.org/10.1016/j.engappai.2019.06.019
https://doi.org/10.1016/j.engappai.2019.06.019
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb1
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb1
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb1
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb2
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb2
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb2
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb2
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb2
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb3
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb3
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb3
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb4
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb4
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb4
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb4
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb4
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb5
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb5
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb5
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb5
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb5
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb5
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb5
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb6
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb6
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb6
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb6
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb6
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb6
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb6
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb7
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb7
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb7
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb8
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb8
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb8
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb8
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb8
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb8
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb8
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb9
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb9
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb9
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb10
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb10
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb10
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb11
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb11
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb11
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb11
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb11
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb11
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb11
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb11
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb11
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb12
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb12
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb12
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb12
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb12
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb12
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb12
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb13
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb13
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb13
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb14
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb14
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb14
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb15
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb15
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb15
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb15
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb15
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb15
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb15
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb15
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb15
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb16
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb16
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb16
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb16
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb16
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb17
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb17
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb17
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb18
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb18
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb18
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb18
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb18
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb18
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb18
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb19
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb19
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb19
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb19
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb19
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb19
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb19
https://drive.google.com/drive/folders/1t68DUVdXKbf-C65EmBHEdsVGrqGbo7W2?usp=sharing
https://drive.google.com/drive/folders/1t68DUVdXKbf-C65EmBHEdsVGrqGbo7W2?usp=sharing
https://drive.google.com/drive/folders/1t68DUVdXKbf-C65EmBHEdsVGrqGbo7W2?usp=sharing
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb22
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb22
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb22
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb22
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb22
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb22
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb22
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb23
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb23
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb23
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb23
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb23
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb24
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb24
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb24
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb24
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb24
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb24
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb24

D.L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo et al. Engineering Applications of Artificial Intelligence 85 (2019) 243–253

Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf, C.,
de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T.,
Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F., 2011. B-Human Team
Report and Code Release 2011. Department of Computer Science, University of
Bremen, Bremen, Germany.

Schuitema, E., 2012. Reinforcement Learning on Autonomous Humanoid Robots (Ph.D.
Thesis). Delft University of Technology, p. 195.

Sutton, R., Barto, A., 1998. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

Takahashi, Y., Asada, M., 2005. Multi-layered learning system for real robot behavior
acquisition. In: Kordic, V., Lazinica, A., Merdan, M. (Eds.), Cutting Edge Robotics.
Intech, Germany, pp. 357–375.

Taylor, A., Dusparic, I., Cahill, V., 2013. Transfer learning in multi-agent systems
through parallel transfer. In: 30th International Conference on Machine Learning.
Atlanta, USA.

Taylor, M., Stone, P., 2007. Cross-domain transfer for reinforcement learning. In:
Proceedings of the 24th International Conference on Machine Learning - ICML
2007. ACM Press, New York, New York, USA, pp. 879–886.

Taylor, M., Stone, P., 2009. Transfer learning for reinforcement learning domains: A
survey. J. Mach. Learn. Res. 10, 1633–1685.

Troost, S., Schuitema, E., Jonker, P., 2008. Using cooperative multi-agent Q-learning
to achieve action space decomposition within single robots. In: 1st International
Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot
Systems (ERLARS 2008). Patras, Greece, pp. 23–32.

Veloso, M., Stone, P., 2012. Video: RoboCup robot soccer history 1997-2011. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Vilamoura-Algarve, Portugal, pp. 5452–5453.

Vrancx, P., De Hauwere, Y., Nowé, A., 2011. Transfer learning for multi-agent coordi-
nation. In: The 3th International Conference on Agents and Artificial Intelligence.
Rome, Italy, pp. 263–272.

Yáñez, J.M., Cano, P., Mattamala, M., Leottau, D.L., Celemín, C., Saavedra, P.,
Villegas, C., Lobos, K., Azócar, G., Cruz, N., Pérez, R., Miranda, P., Verdugo, C., Her-
rera, F., Cossio, L., Ruiz-del-Solar, J., 2016. UChile robotics team team description
for RoboCup 2016. In: RoboCup 2016: Robot Soccer World Cup XX Preproceedings,
July 2016. Leipzig, Germany.

253

http://refhub.elsevier.com/S0952-1976(19)30158-7/sb25
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb25
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb25
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb25
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb25
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb25
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb25
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb25
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb25
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb26
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb26
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb26
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb27
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb27
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb27
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb28
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb28
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb28
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb28
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb28
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb29
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb29
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb29
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb29
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb29
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb30
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb30
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb30
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb30
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb30
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb31
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb31
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb31
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb32
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb32
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb32
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb32
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb32
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb32
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb32
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb33
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb33
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb33
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb33
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb33
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb34
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb34
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb34
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb34
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb34
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb35
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb35
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb35
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb35
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb35
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb35
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb35
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb35
http://refhub.elsevier.com/S0952-1976(19)30158-7/sb35

	Accelerating decentralized reinforcement learning of complex individual behaviors
	Introduction
	Background
	Decentralized reinforcement learning
	Challenges in DRL

	Knowledge transfer and DRL
	Related work
	Distributed and decentralized RL
	KT applied to MARL

	Proposed DRL schemes
	Independent DRL
	Proposed KT-based DRL
	Control sharing (CoSh)
	Nearby action sharing (NeASh)

	Experimental validation
	Inwalk kicking
	Decentralized modeling
	Experimental setup
	Results and analysis

	Ball-dribbling
	Decentralized modeling
	Experimental setup
	Results and analysis

	Conclusions
	Acknowledgments
	Declaration of competing interest
	References

