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Abstract

We present a robot vision approach to deformable object classification, ' /ith ¢".. ~t application to autonomous service
robots. Our approach is based on the assumption that continuous pe. ~ton jrovides robots with greater visual
competence for deformable objects interpretation and classification. G. - app..ach classifies the category of clothing
items by continuously perceiving the dynamic interactions of the garment . material and shape as it is being picked
up. For this, we extract continuously visual features of a RGB-L *ideo sequence and fusing features by means
of the Locality Constrained Group Sparse Representation (LGSn, algorithm. To evaluate the performance of our
approach, we created a fully annotated database featuring 150 @2+~~~ "deos in random configurations. Experiments
demonstrate that by continuously observing an object deform, v. = approach achieves a classification score of 66.7%,

outperforming state-of-the-art approaches by a ~ 27.3% ir ~=ase.

Keywords: Deformable Object Classification, Continuous Pc - eption, Robot Vision

1. Introduction

Autonomous recognition and handling of de®_._~able
objects is an essential and challenging ta k for a -
tonomous service robots. In this paper, we su. = tha’ a
continuous perception approach enables . rotot to .ec-
ognize deformable objects from a randc  cc .figv ation
as the robot picks them up from a .at su.“ac.. De-
formable objects comprise clothing. . =ns and produce,
to name a few; and, we focus on ciothing " this paper
since it can take practically an ir un » range of possible
configurations, ranging from a :lati- ely smooth state to
a crumpled state.

Perceiving actions and catec of objects in the en-
vironment should become - <.and-.d requirement for
robots to be deployed * domc. ‘.c environments and
service scenarios sucl as hotc’s and hospitals to miti-
gate failures and accic 'ats. W 2, humans, have excep-
tional capabilities .. maniputate and interact with de-
formable objects The re: ion is that our vision system
senses the enviroi, went ¢ atinuously, accumulates pre-
dictions and ¢ ~~tes relations over time about the state of

Email addresses: 1 .z .martinez@amtc.cl (Luz Martinez),
gerardo.aragoncamarasa@glasgow.ac.uk (Gerardo
Aragon-Camarasa)

Preprint submitted to Elsevier

objects, people and the environment, including highly-
deformable objects. Hence, the key is to observe the
state of the object continuously but current approaches
for deformable object visual perception focuses on rec-
ognizing or classifying the state of an object from one
frame, then plan the most optimal action, and, finally,
execute the action. State-of-the-art approaches have in-
deed solved complex tasks such as pick-and-place tasks
[1], clothing perception and manipulation [2][3][4] and
dynamic clothing state estimation [5], but none have in-
vestigated if continuous perception increases classifica-
tion and recognition rates of deformable objects.

Hence, we describe an approach for deformable ob-
ject classification based on continuously perceiving the
object’s state from the moment it is picked up from a
working table. The target robotic tasks are pick-and-
place, garment sorting and folding and unfolding sce-
narios, to name a few. The underlying idea is to ex-
tract visual features from 2.5D images in consecutive
frames to learn a temporal-consistent representation of
the clothing’s dynamic attributes. For this, a deformable
object is placed in a random-configuration on a flat sur-
face where the robot grasps it and starts observing the
object’s physical deformation. To pick up the objects,
we employ a basic, yet powerful heuristic grounded on
the highest observable point using depth information.
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Figure 1: First and final RGB images of the video sequences from our
continuous perception database from the top and side views.

Once the robot grasps the object, the robot goes to a pre-
defined position above the table while capturi- g 11« nes
from a top and side views, i.e., egocentric ¢ «d exoce -
tric views. The initial and final images of 1 typ. ~1i a-
age sequence can be observed in Figure ".

The key contributions of this paper ai."

1. We present and demonstrate » ~ontinuous visual
perception approach for defo. mabic ~bject classi-
fication while a robot picks - . observes how a de-
formable object changes ¢ er ti ae.

2. We have conducted an exten. e ablation study to
investigate how visue fea-ures approaches con-
tribute and perform o ft.e c'ussification of de-
formable objects urder co. “ir aous perception.

3. We describe a da abase ¢ " different clothing items
as they are bein, pickec up by a robot, which
we use to v "datc .ur continuous perception
approach al ngside vith state-of-the-art clothing
databases[6).

The visual 'e... -~ framework approach we adopted
is inspired by, ‘v builds on [7] and [3]. In this pa-
per, we expand th - framework by integrating continu-
ous visual knowledge as being extracted from a video
sequence; demonstrating, for the first time, a functional

continuous visual perception ar proach to deformable
objects understanding. Simil- .1y, our database is the
first fully annotated collection of viu.d sequences in
the literature and can be ase. for further compari-
son and benchmarking foi ~n* nuous and single-frame
classification and recog. ‘tion ,”l. Our database can
be downloaded from b++p:,, x.doi.org/10.5525/
gla.researchdats . 66!

This paper is orge. *7¢€ 1 as follows: Section 2 presents
background rese~=~4 in 1. "ot vision for classifying and
recognizing def rmablc Hbjects. Section 3 describes the
continuous per. *ption ‘ pproach to deformable object
understandi- _ ana ... evaluation. Results are reported
in Sectior 4. 7.n'ly, discussion and conclusions are
given in Sec.on 5.

2. R.'ated W' rk

Cui. vt approaches for deformable object recogni-
.. wuu olassification can be divided into two cate-
gor. ~ those that recognize a deformable object when
‘e an atable [9] [10] [7], and those that recognize de-
fr rmable objects when they are hanging from a robot’s
¢ ‘oper [11] [12]. In this paper, we merge both cate-
_ories by using the sequence that starts in the first cate-
gory and ends in the second.

When deformable objects are on a table, approaches
consists of classifying them from only one image
(single-shot perception [7]) or changing their configu-
ration to increase the prediction reliability relying on
the randomness of the deformable object after interac-
tion (interactive perception [3]). That is, Li et al. [7]
showed that it is possible to classify deformable ob-
jects in unconstrained and random configurations from
single image frames. They proposed to extract visual
features to represent material physical attributes of gar-
ments from depth images. In their later work [3], the
authors extended their system to interactively perceive
clothing items by capturing image frames after the robot
interacted with a garment to change its physical config-
uration. The latter approach demonstrated substantial
improvement over single-frame approaches, which im-
proved the classification confidence by increasing the
number of observations after interaction. In this pa-
per, we build on both approaches by allowing the robot
to observe and understand how an object deforms as
being picked up from a table. By employing a Loca-
lity Constrained Group Sparse Representation (LGSR)
technique, our continuous perception approach encodes
and creates temporal concepts of the object’s physical
dynamics for its classification. When the object hangs
from a robot’s gripper, it is common to take advantage



of the classification for pose recognition and detect the
optimal grasping points, which the robot can then plan
subsequent actions such as unfolding for garments on-
the-fly. These systems are devised as a two-stage pro-
cess [13] [14]; where classification informs and reduces
the search space for 3D pose estimation for grasp plan-
ning.

Early research in deformable object recognition com-
prised extracting visual features using silhouette fea-
tures [15] [16] [17]. Then, with the arrival of low-cost
RGB-D cameras, approaches exploiting depth informa-
tion were used. Most of these approaches match patches
based on 3D local features such as Geodesic-Depth His-
tograms (GDH) [9], Fast Point Feature Histograms (F-
PFH) [10] [18], Heat Kernel Signatures (HKS) [19] and
Fast Integral Normal 3D (FINDDD) [20]. Other ap-
proaches integrate a full 3D model from depth images
to extract 3D volumetric features [21]. The common
ground in previous research is that the most distinctive
visual features are wrinkles, which indeed provide rele-
vant information of the type of material as demonstrated
in [9] [7] [3] with direct robotic applications to dual-
arm flattening [22] [23], and ironing [24]. Moreover
the “wrinkledness” measure has been widely used in
state-of-the-art algorithms. This measure uses entropy
to analyze how much of the surrounding area of a pu ~t
has normals aligned in the same orientation, i.e. a flat
surface or a combination of few flat surfaces [°“' Ad-
vanced analysis of wrinkles has also been ¢ .rried o. t,
aiming to identify their shape and topology us. "o asi e
based classification procedure, which reg' wres detec g
the length, width, and height of each v rink'e [27]. In
this work, we adopt different visual f aturc. to "avesti-
gate how they contribute to the perfc  ance of classify-
ing deformable objects using conti.iuous . ~rception.

Recently, approaches based on Jeep Neural Net-
works (DNNs) [26] [27] [28] . ~v¢ been used for de-
formable object recognitio’ and c. <sification. Al-
though most of the system‘ use eal images for training,
others use simulated models ' inc ease the amount of
training data [13] [26] "2 /| [28]. .dowever, deformable
objects in a random c nfigurar on are highly challeng-
ing to simulate, and inve tiat’ ,g continuous perception
approaches for c'sthing classification is intractable at
the moment. Mo. 2over, th . DNNs can achieve compet-
itive classification , ~vf~-.nance through an end-to-end
training but ... ¢ =an interpretable analysis. In this
paper, we leve. ¢ ¢ Locallity-constrained Linear Cod-
ing (LLC) [29, 7, and Gaussian Process Latent Vari-
able Model (GPLVM) [30] for the model selection of
the high-dimensional feature representation.

3. The Continuous Perception spproach

We claim that continuous percep..on equips au-
tonomous systems with nedec visual capabilities to
classify and recognize the tvr ¢ of deformable object
based on their physical . *ribuw. and distinctive visual
characteristics. Theref~+e, we mvestigated and selected
the optimal combinz 1on -7 ~isual feature techniques to
support continuous . ~he .ic perception. We also investi-
gated how distin~**-e vis. °1 features of the objects con-
tribute to the vi ual cla. ‘ification task at hand.

3.1. Exper .nentr! lechniques and Methods

The expe...nents . setup consists of capturing multi-
ple depth . nages from two different camera positions,
namely, egoce tric and exocentric views, while a robot
arm gra. ~s a < arment from a flat surface. Depth images
from . ~th cameras are then passed to the continuous
=~~~ ... framework shown in Figure 2. This frame-
wo. ' inspired by [7], consists of 3 modules: (1) visual
faature extraction and coding of local features, (3) in-
te zration of the features, and (4) temporal, continuous,
¢ assification.

{n Figure 2, local visual features characterize unique
information about the dynamics of deformable materi-
als, while global features capture the overall shape of
the object as it is manipulated. To maintain the focus
on the ability of the robot to perceive and classify de-
formable objects continuously, we assume that objects
are easily segmented from the working table. That is,
we segmented items based on a simple height thresh-
old algorithm with respect to the table, and this has
been recorded in our experimental dataset [8]. For ad-
vanced segmentation algorithms, we refer the reader to
[317 [32] [33].

In the first module of the continuous perception ex-
perimental setup, we selected local and global features
that are the de-facto visual features to deformable object
classification and, consequently, have shown good per-
formance in state-of-the-art approaches for single frame
classification [19, 25, 7, 3]. Local visual features are en-
coded and then concatenated to global features to create
a condensed visual description for a given frame. We
called this the Composite Feature Vector (CFV), Sec-
tion 3.4.1. CFV thus captures both the dynamic interac-
tions plus the global shape of the object, which is then
put into a temporal representation of the depth video
sequence using the Locality-Constrained Group Sparse
representation (LGRS) algorithm [34]. For complete-
ness, we describe briefly the techniques and methods
we adopted and implemented in the following sections
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to support continuous perception for deformable object
understanding.

3.2. Visual Features

Local features contribute to describing wrinkles in-
formation, a characteristic that possesses only de-
formable objects and it is a distinctive feature to de-
scribe fabric materials as pointed out by [35]. Global
features contribute to shape information and are em-
ployed to describe shapes while observing how de-
formable objects change over time. In this work, we
found that wrinkles are indeed key to capture the dy-
namic interaction of the object’s particles and to cre-
ate relationships between particle’s locations frame-by-
frame, see Section 4.2 — similar observations have al-
ready been made in [7] for single-frame recognition and
classification. We carry out a comprehensive study on
the contributions of each local and global features in
Section 4.3, demonstrating its contribution to the con-
tinuous visual classification task. Our approach extracts
local and global features are on depth images.

We have thus used the B-Spline Patch (BSP), His-
togram of Topology Spatial Distances (TSD), Shape In-
dex (SI) and Histogram of Local Binary Patterns (LBP.
as the visual features for local and global feature rep-
resentations. We refer the reader to [7, 3] for » ~==
details about these techniques. Similarly, we brien,
describe below the Fast Integral Normal 3D descrip-
tor (FINDDD), Shape Context (SC) and G cy v vel
Co-occurrence Matrix (GLCM) feature extr: “tion tec -
niques for completeness in our experimentl sew. >

FINDDD [20] represents the distribut on . orienta-
tions of the 3D normals in a region arc ™ a prnt of
interest in a structured point cloud. T «© comy ‘ition of
the FINDDD descriptor is based or cu. *nuting the nor-
mal vector for every point in the cloud, us.ag integral
images to accelerate the process. Th n, the point cloud
is divided into sub-regions, aun.' for each sub-region, a
descriptor is computed by cr astrucu. ~ normal orienta-
tion histograms. Instead - f us'ag bins defined as an-
gles in spherical coordinates, " (ND DD features are dis-
tributed regularly acros” w.e entirc semi-sphere in Carte-
sian coordinates. The atter avo s concentration around
the north pole (maxin. m el sation), and the uneven
area assigned to ¢ .cn bir caused by the angular repre-
sentation. In this »aper, w use the Point Cloud Library
[36] implementatic ~ to - stimate the normals of every
point of a strt ...~ noint-cloud as the basis to compute
FINDDD desci »f irs.

SC! [37] desc ibes the relationship between one

'We use the author’s Shape Context implementation which can

point with respect to the other r vints in the depth im-
age. This descriptor determin’ s ."= relationship using
a logarithmic-polar distance and class.es these values
into a histogram of 12 x 7 bir, . The Shape Context
descriptor gives a discrimi. ~tiv . global characterization
of the shape into a loca. desci,, “or since the distances
are calculated with resnect w ~ther points in the depth
image. SC, thereforr, des - "hes structures in terms of a
translation invarian. Yes ciptor.

The GLCM [3%" fechu. e determines the pixel rela-
tionship with ¢ ner pix s in terms of distance and an-
gle. GLCM cal: "lates t! & co-occurrence matrix by cal-
culating hov ften .. pixel with a gray-level (grayscale
intensity) alue ucc s in any of the eight defined direc-
tions (0 4., 40, a-d 135 degrees). The GLCM algo-
rithm is us. ? to extract texture information in images of
natural scenes ind performs well in object recognition
tass |- Ir this paper, we applied GLCM on depth
image. and we used Matlab’s functions® in our experi-

ervese 2w SVD (singular value decomposition) is cal-
cui. ~d from the co-occurrence matrix generating three

~~trices (U, S and V). U and V represent the left and
v ;ht singular vectors of the depth image matrix, and S
1. 2 diagonal matrix with singular values. Then L1 nor-
nalization is applied in the diagonal matrix, using this
value as the descriptor value.

3.2.1. Distinctive Features

In our experimental design, we also evaluated the in-
tegration of distinctive features, such as the collar of a
shirt, the button of jeans, to name a few. Our imple-
mentation is based in the Viewpoint Feature Histogram
(VFH) descriptors [40] in a selected region performing
matching with the k-nearest neighborhood as demon-
strated in [41] for grasp point detection in clothing. The
VFH descriptor represents four different angular distri-
butions of surface normals in a compound histogram.
We use PCL’s implementation for calculating surface
normals, and each of these four histograms has 45 bins,
and the viewpoint-dependent component has 128 bins,
totaling 308 bins. To determine distinctive features, we
marked the region where distinctive features appeared
in our database and train a naive K-Nearest Neighbour
with VFH descriptors. We then search these features
over the input image for classification and detection.

For the training phase, we computed the local max-
imums of an entropy filter over the input depth image

be found here: https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/code/sc_demo/

’https://wuw.mathworks.com/help/images/ref/
graycomatrix.html



to extract potential contours on the deformable object.
We used active contour models [42] to select a contour
and describe the part to be detected. The active con-
tours method consists of curves defined within an im-
age domain that can move under the influence of inter-
nal forces coming from within the curve itself and, also
external forces computed from the image data. The in-
ternal and external forces are defined so that the snake
conforms to an object boundary or other desired fea-
tures within an image. Hence, we annotate a distinctive
feature as the active curve that describes a specific part
of the deformable objects in order to compute VFH de-
scriptors on the selected contour in the depth image. For
the classification phase, we follow the same methodol-
ogy, but we find the ten closest VFH descriptors with
respect to the input VFH descriptors. In the case where
two or more classes have the same voting, the distances
of the neighbours belonging to those classes are added,
and we select the shortest distance. We must note that
we did not include distinctive features in the continuous
perception experiments as described in Sections 4.2 and
4.3.

3.3. Visual Feature Coding Techniques

We use the Locality-constrained Linear Coding
(LLC) [29, 7] because it has shown to perform more -
fectively in object and clothing recognition benchmarks.
In this paper, we apply this coding technique fo ~~<h of
the local features (BSP, FINDDD, SC, and G'.CM) a: it
can be seen in Figure 2.

We also adopted the Gaussian Proces Latent . uri-
able Model (GPLVM) [30] to compr ss i .forr ation
provided by some local features. Thz is, < PLY M is a
non-linear dimensionality reduction ~hnique tnat gen-
eralizes principal component anal,sis, a. ¥ it provides
a nonlinear mapping to reproduc . .. ‘usformed samples
from a latent variable space to n o} servation space by
imposing a Gaussian process pi.. - over the mapping
function. This coding techr que ‘s useu in the local fea-
tures: SC and GLCM, aft. - th- LL( coding technique.
The latter can be seen in Figurc ?

3.4. Classification

3.4.1. Feature int gration

In this paper, <eature i tegration combines multiple
observations of a 5. "me~ _e for recognition and classi-
fication. Fir. . [. ~~ch depth image in the video se-
quence, we gen ¢ a Composite Feature Vector (CFV,
see Figure 3) by « 'ncatenating each visual feature ex-
tracted from the depth image. Then, all feature vectors
in the sequence are integrated to create a representation

matrix of n X f, where 7 is the n” mber of views in a se-
quence and f, the size of the ¢ .n., ~site features vector
v (see Figure 2).

3.4.2. Locality constraine. ~re .p sparse representation
The Locality Constra.. ~d Gi. "0 Sparse Representa-
tion (LGSR) [34] is a ~TassiuL. ~tion method commonly
used for human gaif ceco ;_ *tion, where it is needed to
classify each inpu. =0 .ence with the information of
multiple frames. This .. ~thod imposes the weighted
mixed-norm pe 1alty o the reconstruction coefficients
in order to enfo. e both roup sparsity and local smooth
sparsity cor .. aints. thus, LGSR utilizes the intrin-
sic group afor .au n effectively from multiple images
within eacu seque ice, treating each test/training se-
quence as .. ~roup of features that combines specific fea-
tures in an ima ;e for classification. In this paper, LGSR
prevides < v .ch the ability to combine and fuse visual
inforn.. “ion about the deformable object as it changes
L Vo= [VEVA VM and Ve = [0, v5]
*are V¢ is the cth sequence in the training set and
Vo= [LBSPs LFINDDDs ZGLCM, Zsc, SI, LBP, TSD] is the
¢. mposite features of the ith view in the cth sequence;
. and M are the total numbers of views and sequences
in the training set, respectively. We also define the test
sequence Y = [y1,y2,...., ¥u], Where
vi = [Lgsp,Lrinppp,Zsc,Zgrem, SI, LBP,TSD] is the
composite features of the ith view in the input sequence.
Let us now represent the reconstruction coefficient as
S = [(SHT, (ST, ....(S™)T], where S°¢ is the recon-
struction coeflicient for the input sequence with respect
to the cth sequence. LGSR thus allows us to enforce
group sparsity and local smooth sparsity constraints by
minimizing the weighted /; , mixed-norm-regularized
reconstruction error as follows:

S*  =argmingG(S)

M
= argming LY = VS |2 + AZ D © SIIF

c=1

where R(S) = %HY -VS ||fr represents the reconstruc-
tion error of the input sequence Y with respect to all
the training set V. The second term is the weighted /; »
mixed-norm-based regularizer of the reconstruction co-
efficient §, and A > 0 is the regularization parameter to
balance these two terms. D¢ € R"*" is the distance ma-
trix between the views of the cth gallery sequence and
the views in the input sequence, and, ®, the element-
wise product between D¢ and S°.

To calculate D¢, we compute the distance d. between
the input sequence and the cth gallery sequence us-

ey
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to characterize dynamic interactions of deformable objects in a sequence.

ing the single-level Earth mover’s distance-based tem-
poral matching method [43], and d,,; with the mini
mum distance of dclﬁ’i |- For the ith composite features
from the cth sequence in the training set, we define
ij = expl(d. — dpmin)/ T le;j, where e;; is the Eucliae. »
distance between V¢ and y;, and o is the bandwidth pa-
rameter (o = 1/40,1/8,1/4,

1/2) — we found that the convergence time decreas s
with a lower value.

We use the active set-based sub-gradi- at d~scen. al-
gorithm to solve equation (1), as in [4 ‘1. " he - alues
of S¢ are updated at iteration ¢ + 1 by equa..~n 2). As
follows:

0G(S)

S:‘#—l :Sf_ﬂt oS¢ S=9

(@)

where dG(S)/dS € is the upc «ing dirc. tion and g; is the
step size determined by a .tanc ard ' ae search method.
By taking the sub-gradient o, (S ¢, with respect to S,
the updating direction *» defin~d as:

0G(S) OR(S) ~ dlID oS 3)
asc o, "t ase
where,

OR(S) ..

= VO (v§-Y 4
e = VO (VS =) )
AD°OSllr _ [ Apzsr  ifS#0 )

oS¢ A otherwise

tuu particular optimization algorithm is summarized
.+ Algorithm 16. We initialize S as a matrix with all its
elements as zero such that all the sequences are added
into the active set in order to update the corresponding
reconstruction coefficients. After obtaining the optimal
reconstruction coefficient S *, we use the Minimum Re-
construction Error (minRE) criterion to classify the in-
put sequence. We compute the reconstruction error for
each class as follows:

1
RA((S)) = SlIY - VSl (6)

where the reconstruction coefficient (S€)* is from S*
that corresponds to the cth gallery sequence. Then, we
classify the input sequence to ¢* = argmin R ((S°)").

4. Experiments

Our working hypothesis is that continuous percep-
tion provides robots with greater visual competences for
deformable objects. To demonstrate this, we devised
a continuous perception approach that used the infor-
mation obtained from observing the dynamic interac-
tions of different fabrics of garments while a robot picks
them up. Therefore, our experimental design consists
of performing clothes classification with two different
databases.

With these databases, we can evaluate and compare
the performance of sate-of-the-art techniques for de-
formable objects classification. We also perform an ab-



Algorithm 1: Optimization Algorithm of LGSR

Input : Y: input sequence, V: training set
1 Initialize t = 1,5, =0 € R™™, A = {}
2 Compute D between the cth sequence in the
training set and the input sequence,

Yee{l,..., M}
3 while 7 < Ty, do
4 Compute
L. = |l0R(S)/3S “|IFls=s,Yc € {c|S{ = O}
5 Find ¢* = argmax.L.. If L. > Amin(D°) then
A=c*UA
6 for each c in A do
7 Update S¢, | by using eq. (2) with line
search.
8 if §¢,, =0 then
9 ‘ remove ¢ from A
10 end
1 end
12 if ||S;+1 — S/llF < e(e = 0.001) then
13 | exit WHILE
14 end
15 t=t+1
16 end
Output: S

lation study to examine the effectiveness and contribu-
tions of different visual features (Sections 3.2* ...* co-
ding (Section 3.3) and classification (Sectior 3.4) tec -
niques used in our approach.

4.1. Materials: Clothing Databases

For clothing classification, we hav collec. < a large
database of RGB-D video sequenc’ s - ¢ clothing items
using two Asus Xtion Pro Live sensors mo. 1ted on the
wrists of a dual-arm industrial r .oov Then, an existing
database was used for making ¢ ~<le shot classifications
with different resolutions, tc comp. ~ the performance
between using a high-resc .atic . stereo device and an
Asus Xtion Pro Live device € _ctio'. 4.5).

First, for continuous - _. ceptio.. zxperiments, we have
collected a database « f RGB-.) video sequences [8]°.
This database features ~ colle .tion of ‘rosbags’* con-
taining color and .cpth images, point clouds, camera
information, and 1l the ro. ot Kinematic transformations
during the video . auen- . Specifically, the database
consists of 17 ~'~thing items of 5 categories: t-shirts,

3 Available at
researchdata.669
“http://wiki.ros.org/rosbag

http://dx.doi.org/10.5525/gla.

shirts, sweaters, jeans, and tow’ s. Each item of clo-
thing is captured from 10 diff rc. * random configura-
tions, totalling 150 garment videos 1. random config-
urations and as being man’ yula >d by the robot. Each
sensing device saved RGL. D - ideo streams at 30 Hz.
This dataset allows con. ariso.. to be made from dif-
ferent visual views, e.o at tu. *able, hanging or contin-
uous movement fror . the =" = of the robotic action and
top-down view.

Second, for sir-'e sho. ~xperiments, we use the free-
configuration ¢’ sthing « “tabase [6]. This database com-
prises 50 clothi. ¢ items Jf 5 categories: t-shirts, shirts,
sweaters, j¢ .3, au. owels of clothing are captured
in 21 diff :rent (a. Jom configurations using a high-
resolution s.creo - oot head system [7] (16 MegaPix-
els, 492§ . 3204+ 1mage resolution) and an Asus Xtion
Pro Tive (VG |, 640 x 480 image resolution). In to-
tal. the J~tab- se has 1,050 garment images in random
config. ~ations for each sensing device; providing for

-2« wiounng item an RGB image, depth image, and
seg.. ~nted mask.

4 :. Continuous Perception Experiments

We evaluated our approach on the RGB-D video se-
mences from our continuous clothing database with
two state-of-the-art approaches, namely interactive per-
ception [3] and single-shot perception [7]. Since these
two methods only evaluate images, three representative
images were selected: the first image (when the object is
on the table), the last image (when the object is hanging
from a gripper) and the image with the best result. For
the third case, all approaches evaluated each image of
the sequence and the result with the best performance
was selected. Table 1 shows the comparison between
our approach, and interactive perception and single-shot
perception.

Accuracy results for the classification can be seen
in Table 1 and Figure 4. Overall, the continuous per-
ception approach observes a mean classification accu-
racy of 66.7%, with specific-class accuracy of 58.0%,
41.6%, 83.8%, 67.0% and 83.8% for the t-shirt, shirt,
sweater, jeans and towel classes, respectively. From the
results, we noticed that the sweater and towel classes
represent the best classification scores due to the inter-
class dissimilarities in shape and surface typologies.
Although the sweater class gets the best classification
scores, this class has higher false positives, resulting in
a lower score for the shirt class. This reduction in per-
formance is because deformations in a sweater and shirt
classes are similar since both classes have similar fab-
ric materials, i.e. cotton based fabric. For the interac-
tive perception approach using the continuous database,



Table 1: Performance comparison between our proposed method with
two methods of the state-of-the-art. First, the interactive perception
method[3], with the features LBP, SI and TSD (L-S-T) using Gaus-
sian Processes (GP). Second, the single-shot perception[7], with the
features LBP, SI, TSD and BSP (L-S-T-B) using support vector ma-
chine (SVM).

Algorithm accuracy
L-S-T with GP (first image) 35.6%
L-S-T with GP (last image) 37.47%
L-S-T with GP (best image) 35.00%
L-S-T-B with SVM (first image) 38.93%
L-S-T-B with SVM (last image) 37.67%
L-S-T-B with SVM (best image) 39.40%
Our Method 66.7%
-l
t-shirt IR 0.00 17.00 0.00 25.00 |
70
shirt | 16.83 41.58 24.75 16.83 0.00 | 60

50
sweater NGB 0.00 83.84 0.00 8.08 | 40

3u
jeans |- 17.00 0.00 8.00 67.00 8.00 |
20
towel | 8.08 0.00 0.00 8.08 ﬁ “ 10
-
& & & & >
A AN > &2 K
<& 2 & & 9

Figure 4: Confusion matrix of our method us’ ._ ~ur continuous cloth-
ing database.

the best average accuracy score ~ 2 .47%, with 41.7%,
17.3%, 31.7%, 32.0%, 51.” % for .»= classes t-shirt,
shirt, sweater, jeans, and t ,wel .esprctively. Similarly,
the best average accuracy w. * the single-shot percep-
tion approach is 39.4¢., with 4¢.0%, 16.3%, 25.0%,
55.0% and 52.7% for ‘he class ‘s t-shirt, shirt, sweater,
jeans, and towel, respec. ‘velv

By considering he av~rage accuracy and individual
accuracy of eact class, v 2 can confirm that our con-
tinuous perception ~»n+ ach outperforms the interac-
tive perceptic « «,, "~»ch by 31.9%, and 29.23% for the
single-shot per. > don. We can thus conclude that our
approach improve * the capabilities of a robotic visual
classification of deformable objects. This comprises
settings where the deformable object space is no longer

described based on the 3D struct .e of its visible surface
but by observing how the objer. > '=forms over time.

4.3. Ablation study.

To investigate how differ. ¢ visual features ap-
proaches contribute and peri. “m in our continuous per-
ception approach, w . car “~d out ablation experiments
as listed in Tables  ar 4 3. The experiments in Ta-
ble 2 are about ev~atu._ the effectiveness of local and
global features cor the ~ontinuous perception clothing
classification t. "k over lifferent configurations. That
is, we deact-tea . crent features and divided these
experimer s as “uu Yws: proposed method (ID 1.1), lo-
cal features .0s 1°.-1.5), global features (IDs 1.6-1.8),
only glou." feawres (ID 1.9) and only local features
(ID 1.10). In 'D 1.2 - 1.8, we deactivated the contri-
bution « “ one visual feature, while leaving the rest un-
chang. 1 Similarly, Table 3 shows the experiments that
Y . .2 impact of the coding algorithms LLC and
Gr I VM for the classification task. These coding algo-
~ithmgs are applied only on local features. The experi-
v 2nts are distributed in the following way: the proposed
1. othod (ID 2.1), only coding using LLC (IDs 2.2-2.5)
~nd only coding using GPLVM (IDs 2.6-2.7).

Figure 5 depicts the results of the experiments des-
cribed in Table 2. As observed in Figure 5, local features
(ID 1.2 - 1.5) capture more distinctively the dynamic in-
teractions of clothing particles. This is because classi-
fication scores are close to or below 50% classification
score, lower than when one global feature is not consid-
ered. The latter is further supported by the classification
scores obtained in Figure 6. Notably, the contributions
of BSP and SC local features have a considerable im-
pact in the classification scores, since when either of
them are not considered, classification scores are below
30% but, when fused without FINDDD, the classifica-
tion score is close to 60% (see ID 2.3 in Figure 6).

We also discovered that the GPLVM coding tech-
nique (ID 2.6 and 2.7) does not contribute conside-
rably to the continuous classification task with respect
to LLC, so it is considered an optional technique to de-
crease the computational load. We, therefore, deduce
that LLC captures the most distinctive features. Global
features observe minimal contributions, e.g., classifica-
tion scores for ID 1.9 and 1.10. Even though the com-
bination of local and global features represents the best
classification score, global features only contribute to
approximately 3% of the total score. That is, local vi-
sual features characterize unique information about the
dynamics of the fabrics while global feature captures the
overall shape of clothing as it is being picked up.



Table 2: Experiments for ablation studies of the features of the proposed solution. Where ‘yes’ indicates that the feat = is activated and ‘no’ when
it is disabled.

[ID [ BSP [ FINDDD | SC [ GLCM | SI | LBP [ TST |

1.1 yes yes yes yes yes | yes ych_|
1.2 no yes yes yes yes | yes 58 |
1.3 | yes no yes yes yes | yes _*'es_|
1.4 | yes yes no yes yes | yes
1.5 | yes yes yes no yes | yes yes
1.6 | yes yes yes yes no | o | yo |
1.7 | yes yes yes yes yes | no es
1.8 | yes yes yes yes yes | _=s no
1.9 no no no no y s | ves | yes
1.10 | yes yes yes yes _L N no

Table 3: Experiments for ablation studies of the coding algorithms of the proposed app. ~ch. V aere ‘yes’ indicates that the feature is activated and
‘no’ when it is disabled.

ID LLC GPLVM
BSP | FINDDD | s~ | GLum | sc | GLcm
2.1 yes yes yes—|_ yes yes yes
2.2 no yes veo | yes yes yes
2.3 yes no yc_‘ yes yes yes
24 yes yes ' no yes yes yes
2.5 yes yes yes no yes yes
2.6 yes yes yes yes no yes
2.7 yes ,os yes yes yes no
2.8 yes es yes yes no no

Ablation Ex arim nts

Ablation Experiments

Score
w
s

&

S

26 257} 2.8

Figure 6: Ablation study results of the experiments shown in the Table

Figure 5: Ablation stu 'v results of the experiments shown in the Table 3.
2.
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4.4. Continuous Perception Strategy

To evaluate how many images should be consid-
ered for each sensor, we determine the number of im-
ages needed to be passed to our approach to achieving
the classification scores described in previous sections.
These results can be observed in Table 4. Sensor 1 cor-
responds to the RGBD camera on the arm that manip-
ulates the garment and captures the first images of the
garment on the table, i.e., an egocentric view. Sensor 2
is the RGBD camera that captures images from a dis-
tance while the other arm picks up the garment from the
table, i.e. exocentric view.

Table 4: Sensor RGBD 2 and Sensor RGBD 1

Sen. 2 \ Sen. 1 1 2 3 4
5 55.0% | 55.0% | 55.0% | 50.0%
15 66.7% | 66.7% | 63.3% | 53.3%
25 583% | 61.7% | 61.7% | 51.7%

Table 4 shows that it is better to use 1 or 2 images ¢
sensor 1 that has a view from above of the garment on
the table. Also, we found that our approach achier . -
better performance while using the last fifteen image.
of the sensor 2 — this corresponds to when the garment
is almost hanging from the robot’s gripper, ar 1 1t 15 ot
crumpled.

4.5. Single-Shot Experiments

In order to compare the perforr ance o. "ae fea-
tures and the coding techniques u‘ 2a "~ our proposed
approach with the state-of-the-art approac..cs, we va-
lidated our approach using the (ree -onfiguration clo-
thing database. This database is o .t evaluating single-
shot classification and does r ot featu. ~ video sequences
to explore our continuous .ppr- ach fully. For this, we
replace the LGSR classifica.. 1 me .nod (Section 3.4.2)
with an SVM classifier " u. using w.e same local features
(BSP, FINDDD, SC, wnd GLt M) and global features
(SI, LBP, and TSD). Li. ~rder .0 increase the accuracy
of our approach, w~e alsn evaluated the integration of
distinctive featur s, specit cally the collar and waist in-
formation in the si.”*t ar . jeans classes respectively as
in Martinez ¢ .. "*'1 The collar and waist information
is based in VF1 " d .scriptors (Section 3.2.1).

For these expei. ments, we only used the images with
high resolution (4928x3264), and we obtain an aver-
age classification score of 84.8% (see Table 5) using
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our approach without LGSR. A, shown in the confu-
sion matrix in Figure 7(a), thr c. <sification score for
each class is: 91%, 67.1%, 83.8%, Y. 9% and 91.1%
for the t-shirt, shirt, sweater jea: s and towel classes, re-
spectively. These values c. ~ br compared with the best
result of the state-of-th. art |/, ‘n this database, with
an average classificati~n sco. of 83.2% (see Table 5)
and with individual ,cor = ~f: 89.2%, 70.0%, 80.8%,
87.0% and 88.8% (v © F.gure 6(f) in [7]) for the t-shirt,
shirt, sweater, jea~~ ana . vel classes, respectively. We
must note that t 1e impi. vement is only marginal but al-
low us to confi1 1 that o r approach is comparable with
current state _i-the ... approaches to clothing classifi-
cation whi e pe .o1. 1ing single-shot recognition.

For th. ~xpe:’ .cnts where we included the collar and
waist features, our approach observed an improved av-
erage . 'assific tion score of 87.7% (see Table 5), Fi-
gure 7(b) aud that class-specific classification scores
are: 8R < °799% 87.4%, 93.1% and 90.5% for t-shirt,
si.t. sweater, jeans and towel, respectively. By inte-
orating .nore distinctive visual features descriptions, we
c7 1 vuserve an increase in performance in the classifi-
. tion scores (approx. 3%). We can hypothesise that
visual features such as buttons, collars, waists, and so
forth, on garments would lead to less inter-class simi-
larities and, consequently, increase class-specific classi-
fication scores.

Table 5 shows a comparison between image reso-
lutions. This allowed us to evaluate if our approach ob-
serves a decrease in performance while using different
sensing capabilities. These experiments are motivated
by the fact that the above classification scores impro-
ve while using high-resolution images. Hence, we can
observe in Table 5 an increase of 1.1% and 9.4% in low
resolution and an increase of 1.6% and 4.5% while us-
ing high-resolution images. The latter demonstrates that
our approach outperforms results from the state-of-the-
art [7] in this database. The increase in performance
while using the distinctive features is because the collar
of the shirt and waist of the jeans improve the accuracy
in these classes and decrease the false positives with re-
spect to other classes.

We must note that these distinctive features resulted
in an increase in performance for single-shot recogni-
tion/classification tasks. The reason for this is that while
perceiving continuously clothing items as our robot pi-
cks them up, distinctive clothing features disappear and
appear randomly between frames; thus making LGSR
to lose accuracy since it usually stayed in a local mini-
mum.
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Figure 7: Confusion matrix of the proposed method in the high-resolution Clothi. ~ Data. *

proposed method with distinctive features.

Table 5: Performance comparison between our approach with and
without distinctive features against two methods of the state-of-the-
art. First, the interactive perception method [3], with the feature

LBP, SI and TSD (L-S-T) using Gaussian process (GP). Second, the
single-shot perception [7], with the features LBP, SI, TSD and BSP
(L-S-T-B) using support vector machine (SVM).

Algorithm Low High
resolution | re- uiuu. "
L-S-T with GP[3] 58.5% 70.8% |
L-S-T-B with SVM[7] 64.2% 85.2%
Our Method 65.3% “4.8%
Our Method + Dist. Feat. 73.6% 817 %

5. Conclusions

In this paper, we have p- zsenteu ~ continuous per-
ception approach to classif™ ing - othing categories from
video sequences. For this, ~7e b .ve used image se-
quences from multip nGB-bL sensors from highly
wrinkled garment ccfiguratt ns. By adopting the
LGSR method, a stana. -4 ale .rithm in human gait ac-
tion recognition, ~e have demonstrated that continu-
ous perception c: 1 potent; Uly allow a robot to dynami-
cally survey the ac.'~n ar 4 provide us with information
to successful . .7 ~~ifv clothing categories as the robot
carries out a ga v .nt sorting task. The latter represents
a step forward in raditional sense-plan-act approaches
that lead to improvements in automating laundry tasks.

For the continuous perception approach, we com-
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-, results of the proposed method and b) results of the

niled « fully-annotated database of RGB-D video se-
q' ences of clothing items. Video sequences start with
. ‘e clothing item laying on a flat surface and finalize
wren the garment is hanging from the gripper of the
robot. All videos collected comprise the video streams
of two Asus Xtion Pro sensors positioned on the wrists
of a dual-arm robot. Likewise, we have also collected
the kinematic transformations of the robot while manip-
ulating the garments. This database also can be used for
evaluating and validating approaches to clothing recog-
nition in the state of the art while garments are on a
flat surface, hanging from a gripper and being picked
up by a robot (i.e., continuous perception). To the best
of our knowledge, this is the first database of this kind
that will allow us to explore deep learning approaches to
deformable object recognition and classification to over-
come current engineered approaches.

Our continuous perception approach has been eva-
luated using two clothing databases. In all the expe-
riments, we can state that our approach performs well
for highly deformed garments. That is, our approach has
achieved an average accuracy of 66.7% among 5 cate-
gories on our continuous perception database. The latter
represents an increase of 39.4% of classification score
with respect to current approaches to clothing classi-
fication and recognition. We also compared the clas-
sification performance of our approach with the free-
configuration clothing database. Similarly, our pro-
posed approach advances the state of the art with res-
pect to previous garment databases [6]. Results de-
monstrated that the rigorous fusion of local and global



visual features with appropriate coding techniques (in-
formed by the ablation study in Section 4.3) observed
increases in classification scores from 64.2% [7] to
73.6% while using low resolution images, and from
83.2% [7] to 87.7% while using high resolution images.

For future work, we propose to incorporate a com-
plex segmentation algorithm to increase the ability of
the robot to analyze garments starting from a pile. Also,
considering the improvement of integrating distinctive
features, it would be possible to improve the classifica-
tion performance for a robot sorting task, and garment
classification.
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