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Resumen

Block Tree es una estructura de datos propuesta recientemente para representar una secuencia
T de largo n en espacio acotado por el número de frases z del parseo de Lempel-Ziv de T . Usa
espacio O(z log(n/z)) y toma tiempo logarítmico para responder acceso y otras operaciones.

Nuestras contribuciones en el desarrollo de Block Trees son teóricas y prácticas. De-
mostramos nuevas propiedades, presentamos la primera implementación fiel a la descripción
teórica, y ofrecemos mejoras y estudiamos un amplio conjunto de variantes de la estructura.

Los Árboles de Sufijos son una estructura de datos fundamental en procesamiento de
texto, con muchas aplicaciones en bioinfomática, permitiendo soluciones eficientes a proble-
mas complejos como búsqueda de patrones (aproximada), encontrar subcadenas repetidas,
calcular estadísticas de búsqueda, calcular ocurrencias maximales, entre otros. Sin embargo,
su uso de espacio, aunque lineal, es un problema importante en las aplicaciones.

Una línea de investigación que ataca este problema consiste en construir representaciones
compactas de árboles de sufijos, llamadas Árboles de Sufijos Comprimidos (CSTs), las cuales
simulan la funcionalidad de un árbol de sufijos usando espacio acotado por la información
contenida en la secuencia. Implementaciones actuales usan 10 bits por símbolo tardando
unos pocos microsegundos en las operaciones; o usan 5 bits por símbolo pero las operaciones
tardan milisegundos. Una rama reciente de esta área son los Árboles de Sufijos Comprimidos
conscientes de la repetitividad, los cuales se centran en la construcción de árboles de sufijos
para inputs repetitivos, así como un documento versionado o una colección de cadenas de
ADN de un grupo de humanos. CSTs de esta área adaptan índices basados en compresión
run-length, Lempel-Ziv y de Gramáticas. El CST más exitoso en la práctica es el Árbol de
Sufijos Comprimido con Gramáticas (GCST), el cual usa cerca de 2 bits por símbolo y tarda
hasta cientos de microsegundos.

En este trabajo usamos nuestros Block Trees para diseñar un nuevo CST consciente de
la repetitividad. Aunque más espacioso que el GCST (usando 3–4 bits por símbolo), es más
rápido por órdenes de magnitud. Para lograrlo usamos Block Trees en varios componentes
del CST. Primero, para comprimir la representación de paréntesis de la topología del árbol;
estos Block Trees deben ser extendidos para implementar la navegación en el árbol sobre
los paréntesis. Segundo, usamos Block Trees en varios arreglos codificados diferencialmente
que componen el CST: el arreglo de sufijos, su inverso y el arreglo longest-common-prefix.
Terminamos ofreciendo un conjunto de combinaciones recomendadas para futuros usuarios.

Todo nuestro código se encuentra público en https://github.com/elarielcl/BT-CST.
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Abstract

The Block Tree is a recently proposed data structure representing a sequence T of length
n in space bounded by the number of phrases z of the Lempel-Ziv parsing of T . It uses
O(z log(n/z)) space and supports access to symbols and other operations in logarithmic
time.

We contribute both to the theoretical and practical development of Block Trees, proving
new properties, presenting the first implementation faithful to its theoretical description,
making further improvements to the structure, and studying a wide set of variants.

Suffix trees are a fundamental data structure in stringology with a myriad of applica-
tions in areas like bioinformatics, enabling efficient solutions to complex problems such as
(approximate) pattern matching, finding repeated substrings, computing matching statistics,
computing maximal matches, and many others. However, their space usage, though linear,
is an important problem in applications.

A line of research addressing this problem consists on building compact representations
of suffix trees, named Compressed Suffix Trees (CSTs), which simulate all the suffix tree
functionality within space bounded by the information content of the sequence. Current
implementations use 10 bits per symbol and support the operations in a few microseconds;
or use 5 bits per symbol but their operation times raise to milliseconds. A recent branch of
this area is repetition-aware CSTs, which focuses on building suffix trees for repetitive inputs,
such as a versioned document or a collection of DNA sequences of a group of humans. CSTs
in this area adapt Lempel-Ziv, Grammar and run-length based indexes. The most successful
CST in practice is the grammar-compressed suffix tree (GCST), which uses about 2 bits per
symbol and supports the operations in tens to hundreds of microseconds.

We apply our Block Trees to design a new repetition-aware CST that, though larger than
the GCST (i.e., using 3–4 bits per symbol), is faster by orders of magnitude. We obtain
this result by using Block Trees on various components of the CST. First, we build them on
the parentheses representation of the tree topology; these Block Trees must be augmented
to support tree navigation operations on the parentheses. Second, we use Block Trees on
various differentially-encoded arrays that compose a CST: the suffix array, its inverse, and
the longest-common-prefix array. We end up with a set of recommended combinations for
practitioners.

All our code is publicly available at https://github.com/elarielcl/BT-CST.
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Introduction

Suffix trees [70, 47, 69] are one of the most appreciated data structures in Stringology [3]
and in application areas like Bioinformatics [30], enabling efficient solutions to complex prob-
lems such as (approximate) pattern matching, pattern discovery, finding repeated substrings,
computing matching statistics, computing maximal matches, and many others. In other col-
lections, like natural language and software repositories, suffix trees are useful for plagiarism
detection [48], authorship attribution [71], document retrieval [31], and others.

While their linear space complexity is regarded as acceptable in classical terms, their
actual space usage brings serious problems in application areas. From an Information Theory
standpoint, on a text of length n over alphabet [1, σ], classical suffix tree representations use
Θ(n log n) bits, whereas the information contained in the text is, in the worst case, just
n log σ bits. From a practical point of view, even carefully engineered implementations [40]
require at least 10 bytes per symbol, which may force applications to run the suffix tree on
the (orders of magnitude slower) secondary memory.

Consider for example Bioinformatics, where various complex analyses require the use
of sophisticated data structures, suffix trees being among the most important ones. DNA
sequences range over σ = 4 different nucleobases represented with log 4 = 2 bits each,
whereas the suffix tree uses at least 10 bytes = 80 bits per base, that is, 4000% of the
text size. A human genome fits in approximately 715 MB, whereas its suffix tree requires
about 30 GB. The space problem becomes daunting when we consider the DNA analy-
sis of large groups of individuals; consider for example the 100,000-human-genomes project
(www.genomicsengland.co.uk).

One solution to the problem is to build suffix trees on secondary memory [15, 20]. Most
suffix tree algorithms, however, require traversing them across arbitrary access paths, which
makes secondary memory solutions many orders of magnitude slower than in main memory.
Another approach replaces the suffix trees with suffix arrays [46], which decreases space usage
to 4 bytes (32 bits) per character but loses some functionality like the suffix links, which are
essential to solve various complex problems. This functionality can be recovered [2] by raising
the space to about 6 bytes (48 bits) per character.

A promising line of research is the construction of compact representations of suffix trees,
named Compressed Suffix Trees (CSTs), which simulate all the suffix tree functionality within
space bounded not only by O(n log σ) bits, but by the information content (or text entropy)
of the sequence. An important theoretical achievement was a CST using O(n) bits on top
of the text entropy that supports all the operations within an O(polylog n) time penalty
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factor [67]. A recent implementation [58] uses, on DNA, about 10 bits per base and supports
the operations in a few microseconds. While even smaller CSTs have been proposed, reaching
as little as 5 bits per base [64], their operation times raise to milliseconds, thus becoming
nearly as slow as a secondary-memory deployment.

Still, further space reductions are desirable when facing large genome repositories. Fortu-
nately, many of the largest text collections are highly repetitive; for example DNA sequences
of two humans differ by less than 0.5% [68]. This repetitiveness is not well captured by sta-
tistical compression methods [38], on which most of the CSTs are based. Lempel-Ziv [43] and
grammar [37] based compression techniques, among others, do better in this scenario [49],
but only recently we have seen CSTs building on them, both in theory [25, 8] and in practice
[1, 53]. The most successful CSTs in practice on repetitive collections are the grammar-
compressed suffix trees (GCSTs), which on DNA use about 2 bits per base and support the
operations in tens to hundreds of microseconds.

GCSTs use grammar compression on the parentheses sequence that represents the suffix
tree topology [63], which inherits the repetitiveness of the text collection. While Lempel-Ziv
compression is stronger, it does not support easy access to the sequence. In this thesis we
explore an alternative to grammar compression called Block Trees [10, 61], which offer similar
approximation ratios to Lempel-Ziv compression, but promise faster access.

Our main contribution is the BT-CT, a Block-Tree-based representation of tree topologies,
which enriches Block Trees to support the required navigation operations. Although we are
unable to prove useful upper bounds on the operation times, the BT-CT performs very well
in practice: while using 0.3–1.5 bits per node in our repetitive suffix trees, it implements
the navigation operations in a few microseconds, becoming very close to the performance
of plain 2.8-bit-per-node representations that are blind to repetitiveness [55]. We use the
BT-CT to represent suffix tree topologies, but it might also be useful in other scenarios, such
as representing the topology of repetitive XML collections [4].

Besides tree topologies, we contribute to the development of Block Trees for general se-
quences with contributions ranging from theoretical (new properties and versions of the
structure) to practical (presenting the first Block Tree implementation faithful to its the-
oretical description and running an exhaustive set of experiments on each of the proposed
features).

As said, our new suffix tree, BT-CST, uses the BT-CT to represent the suffix tree topology.
Although larger than the GCST, it still requires about 3 bits per base in highly repetitive
DNA collections. In exchange, it is faster than the GCST, often by an order of magnitude.

Finally, we use Grammar and Block Tree-based representations to improve the perfor-
mance and compressibility of the RLCSA [45], a key component used on repetition-aware
Compressed Suffix Trees. We replace the sampling of the RLCSA, which has been difficult
to compress [45], for each of our representations. We obtain up to 2 orders of magnitude
improvement on operations related to the RLCSA, and better compressibility on our most
repetitive tested inputs.
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Outline and Main Contributions

Chapter 1: We explain the basic concepts and structures needed to understand the prob-
lem we are going to deal with.

Chapter 2: We describe Compressed Data Structures relevant to the work done in this
thesis. We start by describing entropy-based structures and then the state-of-the-art
solutions aware of the repetitiveness of its input. We also describe the datasets we will
use to tests our implementations.

Chapter 3: We present our contributions to improve the current development of Block
Trees. Our contributions range from theoretical to practical. We also made an ex-
haustive set of experiments to test each of these proposed improvements. This chapter
presents the first Block Tree implementation faithful to its theoretical description.

Chapter 4: We adapt Block Trees and Grammar-based indexes to create array represen-
tations that capture the repetitiveness of their differential encodings. We test these
new array representations in the case of suffix array, its inverse, and the LCP array.

Chapter 5: We present our new BT-CT, a Block-Tree-based representation of tree topolo-
gies. We compare its performance against other repetition-aware topology representa-
tions, and obtain that for a relatively small space penalty the BT-CT is able to reduce
the time performance by an order of magnitude.

Chapter 6: We merge the work done in Chapters 5 and 6 to create the BT-CST, a new
repetition-aware CST whose times are closer to those reached by general-purpose CSTs.

Conclusion and Future Work: We draw our conclusions and further lines of research
that could be explored based on the results obtained in this work.

Publications

Part of this work (preliminary versions of Chapters 6 and 7) was submitted to the String Pro-
cessing and Information Retrieval (SPIRE) 2019 conference under the title “Faster Repetition-
Aware Compressed Suffix Trees based on Block Trees”, Manuel Cáceres & Gonzalo Navarro.
A preliminary version can be found in arXiv at https://arxiv.org/abs/1902.03274.
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Chapter 1

Basic Concepts

In this chapter we introduce the fundamental tools to understand the previous work and
contributions in the context of this thesis. We will be working with a text T of size n
over an alphabet Σ of size σ, i.e., T ∈ Σn, where |Σ| = σ. T will be 1-based indexed,
T = T [1, n] = T [1]...T [n]; then the i -th character of T is T [i] and the i, j-substring (with
1 ≤ i ≤ j ≤ n) of T is denoted T [i, j] = T [i]...T [j]. A substring is called a suffix if j = n and
a prefix when i = 1. For the relevant case when σ = 2, we will change the notation to B[1, n]
and call it a bitmap, moreover, in this case we will assume Σ = {0, 1}. Our logarithms will be
in base 2, [1, n] is the set {1, .., n} and our computations are described under the word RAM
model with word length w = Θ(log n), that is, access, mathematical, and logical operations
on Θ(log n)-bit integers are carried out in constant time.

1.1 Empirical Entropy

In Coding and Information Theory [17] codes are assigned to characters to represent them
and Statistical Compressors use these codes to represent their original inputs. In this context,
the empirical entropy H of T is defined, in general, as the minimum number of bits needed
to unambiguously identify a random character from T .

There are different kinds of entropies; depending on the context we will use:

Worst-case entropy, Hwc(T ) = log σ. We obtain it if we restrict the codes to be of the
same length.

Zero-order entropy,
H0(T ) =

∑
c∈Σ

nc
n

log
n

nc

which is the minimum average number of bits needed to represent the symbols of T (nc is
the number of cs in T ) if we use the same code to represent the same symbol.
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kth-order entropy,

Hk(T ) =
∑
C∈Σk

|TC |
n
· H0(T )

which is the minimum average number of bits needed to represent the symbols of T , but
letting each code depend on the k-length preceding contexts to assign the codes (TC is the
string formed by collecting the symbol that follows each occurrence of the context C in T ).
It can be shown that 0 ≤ Hk(T ) ≤ Hk−1(T ) ≤ ... ≤ H0(T ) ≤ Hwc(T ).

A famous result [17] states that any Statistical Compressor using k-length contexts must
use at least nHk(T ) bits to represent T . A well-known compressor of this type is the Huffman
compression algorithm [32], whose encoding can represent the text optimally in less than
n(H0(T ) + 1) bits. To get this space Huffman’s algorithm computes the frequencies of each
symbol and uses them to build the corresponding Huffman tree, a trie representing the codes
for the symbols on its root-to-leaf paths.

The research area of Compact Data Structures is born from the intersection of Information
Theory and Data Structures. Its objective consists in building compressed representations
of data structures using space near their theoretic information content (i.e., entropy), yet
answering queries without a major time penalty.

1.2 Arrays

One of the simplest data structures are Arrays, which allow access to a sequence A of n
integer numbers using at most w bits. If l is the maximum number of bits used by an integer
in the sequence, it is easy [51] to achieve constant-time access using n · l bits (instead of the
classical n · w bits), that is, if we see A as a sequence it will require nHwc(A) bits. We call
this an uncompressed array.

There exist various encoders [51] for Compressed Arrays; we mention two that are impor-
tant for the development of this work:

Differential encoding, corresponds to the general technique of storing the differences
A[i]−A[i− 1] and a sampling of the original array to efficiently recover the absolute values.
This option is advisable when working on increasing sequences or on specific problems that
take advantage of the differences.

Direct access codes (DACs) [11], corresponds to a regrouping of a chunk division of
the elements. Let b1, .., br the chunk sizes, such that

∑r−1
i=1 bi < lmax ≤

∑r
i=1 bi, where lmax

is the maximum bit-length of an element in A. The element A[j] of bit-length lj ≤ lmax is
divided into chunks of size b1, .., bc, where

∑c−1
i=1 bi < lj ≤

∑c
i=1 bi, in the following way: the

first chunk corresponds to the lj −
∑c

i=2 bi most significant bits prepended with lj −
∑c

i=1 bi
zeros; the second chunk is the next b2 most significant bits, the third chunk is the next b3

most significant bits, until the c-th chunk, which contains the bc least significant bits. These
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chunks are reorganized so that the most significant chunks are grouped together, then second
most significant chunks, and so on. To decode a number, the k-th group uses a bitvector (see
Section 1.3.1) marking the member elements of that group (i.e., with bit-length >

∑k−1
i=1 bi)

that do not belong to the next group (i.e., with bit-length ≤
∑k

i=1 bi). Brisaboa et al. [11]
showed that optimal chunk sizes can be computed efficiently by dynamic programming. They
also experimentally show to be superior over other encoders. When we refer to DACs, we
mean this space-optimized version.

1.3 Rank/Select/Access (RSA)

A little more complex set of queries are rank, select, and access, where:

– access(i) = T [i], the symbol at position i.
– rankc(i) = |{k | k ≤ i ∧ T [k] = c}|, the number of cs up to position i in T .
– selectc(j) = min ({k | rankc(k) = j} ∪ {∞}), the index of the j-th c in T .

We call an RSA-structure a structure answering these three queries. Though simple, these
queries suffice to implement efficient algorithms for a variety of problems such as inverted
indices [5, 6, 7], self-indices [21, 22], and document listing [50], among others.

1.3.1 Bitvectors

A bitvector is an RSA-structure over a bitmap. We call a plain bitvector an uncompressed
array of B using o(n) extra bits to support rank and select. Jacobson [33] showed how to
implement rank in constant time and Clark [14] did the same for select. Both can be achieved
by blocking techniques, that is, divide the input into convenient sized superblocks, blocks and
mini-blocks, and storing summary information for them. Besides the plain bitvector, it is
important to mention three compressed bitvectors we will use in this thesis:

RRR bitvector. An nH0(B) + o(n)-bit representation is achieved by Raman et al. [62],
where the nH0(B) term comes from dividing B into blocks and representing them with a
class and an offset, and the o(n) extra bits are added to answer rank and select in constant
time.

Sparse bitvector. Okanohara and Sadakane [59] proposed a bitvector that is space-
efficient when the number m of 1s is very small (m� n). It uses nH0(B)+O(m) bits, solves
rank in O

(
log n

m

)
time and select1 in constant time. In broad terms, it consists in storing the

select1 values in a particular way, separating the highest and lowest bits and representing
them in different nH0(B)-bit and O(m)-bit bitvectors, respectively.
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OZ bitvector. Delpratt et al. [18] showed how to transform a bitvector with long runs
of 0s and 1s into two sparse bitvectors, O and Z, representing the runs of ones and zeros,
respectively. select queries on B are easily translated into select queries on O or Z and rank
and access are solved by binary searching the precomputed select answers.

1.3.2 Wavelet Trees

In the case of general sequences, one of the most practical RSA-structures is the wavelet
tree [28]. It uses n log σ + o(n log σ) + O(σ log n) bits and solves rank, select and access in
O(log σ) time. The wavelet tree is a binary tree where each node represents a subsequence
of T over a subalphabet A of the original Σ. The represented subsequence consists of the
characters of T belonging to A. At the root the alphabet is partitioned into two roughly
equal subalphabets, the first containing the ∼ σ/2 lowest symbols in the alphabet and the
second containing the rest. This process is repeated on every node until the alphabet reaches
size 1 at leaves1. To represent the partition at each node (except at leaves), a constant-time
bitvector is used to mark the characters that belong to each subalphabet.

Access and rank are solved by a root-to-leaf traversal of the tree, using rank queries on the
bitvectors to relocate the query to the subalphabets. On the other hand, select is solved with
a leaf-to-root traversal, using select queries on the bitvectors to re-accommodate the index to
the current subalphabet.

Mäkinen and Navarro [44] showed how to give a Huffman shape to the wavelet tree, i.e.,
the shape of the Huffman tree of T . This wavelet tree is called Huffman-shaped wavelet tree
and achieves n(H0(T ) + 1)(1 + o(1)) + O(σ log n) bits of space. Claude et al. [16] presented
the wavelet matrix and the Huffman-shaped wavelet matrix, which are adaptations of the
previous trees where the bitvectors in a level are permuted and concatenated. This gets rid
of the wavelet tree pointers, thus the wavelet matrix is suitable when the alphabet is big
because it removes the O(σ log n) bits of wavelet trees.

1.4 Succinct Tree Representations

A balanced parentheses (BP) representation (there are others such as LOUDS or DFUDS,
see [63] for a comprehensive survey) of the topology of an ordinal tree T of t nodes is a
bitvector P [1, 2t] built as follows: we traverse T in preorder, writing an open parenthesis (a
bit 1) when we first arrive at a node, and a closing one (a bit 0) when we leave its subtree. For
example, a leaf looks like “10”. Interpreting nodes as the position of their opening parenthesis
in P , the following primitives can be defined on P :

– excess(i) = rank1(i)−rank0(i), the number of open parentheses minus close parentheses
up to position i.

1Note that this partition strategy yields a height of ∼ log σ.

7



Table 1.1: List of typical tree operations; v and u are the identifiers (positions of open
parenthesis) of their corresponding nodes.

Operation Description Reduction to primitives
root() The root of the tree 1

is-leaf(v) True if v is a leaf node True iff access(v + 1) = 0

first-child(v) The first child of v v + 1

last-child(v) The last child of v bwd-search(fwd-search(v,−1)− 1, 0)

tree-depth(v) The number of edges
from root() to v excess(v)

next-sibling(v) The next sibling of v fwd-search(v,−1) + 1

previous-sibling(v) The previous sibling of v bwd-search(v − 1, 0)

parent(v) The parent of v bwd-search(v,−2) + 1

subtree(v) The size of the subtree
rooted at v (next-sibling(v)−v)/2

is-ancestor(v,u) True if v is an ancestor of u True iff v ≤ u ≤ fwd-search(v,−1)

level-ancestor(v,d) The ancestor of v at
tree-depth tree-depth(v)-d bwd-search(v,−d− 1) + 1

lca(v,u > v) The lowest common
ancestor between v and u

parent(rmq(v, u) + 1), where rmq(v, u) is
fwd-search(v − 1,min-excess(v, u))

leaves-num(v) The number of leaves
in the subtree rooted at v leaf-rank(fwd-search(v,−1))− leaf-rank(v)

children-num(v) The number of children
of v min-count(v, fwd-search(v,−1)− 2)

child(v, l) The l-th child of v min-select(v, fwd-search(v,−1)− 2, l) + 1

child-rank(v 6= root()) The position of v among
its siblings min-count(parent(v), v)

– leaf-rank(i) = rank10(i) = | {1 ≤ j ≤ i− 1 | P [j] = 1 ∧ P [j + 1] = 0} |, the number of
leaves up to position i.

– leaf-select(j) = select10(j) = min({i | leaf-rank(i + 1) = j} ∪ {∞}), the position of the
open parenthesis of the j-th leaf.

– fwd-search(i, d) = min({j > i | excess(j) = excess(i) + d)}∪ {∞}), the least we have to
move forward from i for the excess to grow by d units.

– bwd-search(i, d) = max({j < i | excess(j) = excess(i) + d)} ∪ {−∞}), the least we have
to move backward from i for the excess to grow by d units.

– min-excess(i, j) = min({excess(k) − excess(i − 1) | i ≤ k ≤ j} ∪ {∞}), the minimum
relative (as if P started at i) excess between i and j.

– min-count(i, j) = |{i ≤ k ≤ j | excess(k) − excess(i − 1) = min-excess(i, j)}|, the
number of times min-excess is reached between i and j.

– min-select(i, j, l): Position of the l-th leftmost minimum excess between i and j, and
∞ if l 6∈ [1,min-count(i, j)].

These primitives suffice to implement a large number of tree navigation operations (see
Table 1.1), and can all be supported in constant time using o(t) bits on top of P [55]. The key
structure to achieve this efficiently is the range-min-Max(rmM)-tree, which helps to speed
up the primitive operations on P .
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1.5 Range min-Max Tree

The range-min-Max(rmM)-tree [55] is a complete binary tree whose nodes are augmented
with excess information. Every leaf of the rmM-tree represents a consecutive block of P of
size b, P [i, i+ b−1], and stores three fields: e = excess(i+ b−1)− excess(i−1), the excess of
the block, m = min-excess(i, i+ b− 1), the minimum excess reached by a prefix of the block,
and c = min-count(i, i+b−1), the number of prefixes reaching this minimum. Internal nodes
represent blocks of P that are the concatenation of the representation of its two children and
store the same three fields. The idea of these fields is that they summarize information on
blocks of the input, which will be used to speed up the operations.

fwd-search(i, d) is solved for d ≤ 0 (d > 0 requires an additional field in the nodes). The
procedure initializes a counter of excess e to 0; if e reaches d the algorithm ends and returns
the current position. The search is divided into 4 steps. In the first step, the leaf of the rmM-
tree where i + 1 falls is identified; this leaf is then scanned from i + 1 onwards, increasing e
by 1 every time a 1 is seen and decreasing e by 1 every time a 0 is seen. If e reaches d then
the corresponding position is returned, otherwise we proceed to the next step. In the second
step, we move through the leaf-to-root path, querying the m fields of the neighbor nodes
from this path; more precisely, we identify the right neighbor u of the current node and check
whether e+ u.m ≤ d, in which case we move to u and follow to the next step, otherwise we
move to parent(v) and increase e by u.e if v is a left child. If the traversal reaches root() we
return ∞. In the third step, we start with a node u such that the block represented by u
covers the answer to the search; this step consists on a u-to-leaf path where we move down
to the leaf containing the answer to the search. More precisely, in a node u whose left child
is v and whose right child is w, we check whether e+ v.m ≤ d, in which case we move to v,
otherwise we move to w and increase e by v.e. Finally, the fourth step consists on scanning
the block represented by the leaf, until e reaches d, and returning the corresponding answer.

bwd-search(i, d) is also solved for d ≤ 0. The procedure follows the same structure as the
one described for fwd-search. The fundamental difference is that the scan is done right-to-left,
so the description of the procedure flips, that is, in the first and fourth steps the scans are
done right-to-left, in the second step we look for the field of the left neighbor, and in the
third step we look for the field of the right child. Moreover, what matters for bwd-search is
the maximum excess reached in the suffixes of blocks, which is exactly e −m, because the
maximum suffix excess is reached exactly to the right of where the minimum prefix excess is
reached.

min-excess(i, j) is similar to the searches, however, instead of reaching a particular value d
with e, we store the minimum value reached by e in a variable m. In the first step we identify
the leaf of the rmM-tree where i falls, then we scan the corresponding block from i to the
minimum between the end of the block and j, and update e as before. If at some position
e reaches a value less than m, we store in m that value. If j falls in a different leaf, we
continue to the next step, otherwise we return m. In the second step, similarly to fwd-search,
we follow the leaf-to-root path, checking whether the right neighbors u of nodes in the path
contain j in the block they represent, if that is the case, we finish this step, otherwise we
move to the parent of the current node and if the current node is a left child, we update m by
min(m, e + u.m) and increase e by u.e. In the third step we start from a node u containing
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Figure 1.1: T is a tree, P the BP representation of its topology, and on top is built a simplistic
version of the corresponding rmM-tree. The BP is divided into blocks of length 4. In red it
is represented the fwd-search operation from the opening parenthesis of the second child of
the root to its closing parenthesis. The four steps are represented, from left to top to down
to right.

j in the block it represents, and descend to the corresponding leaf containing j. In a node
u, whose left child is v and whose right child is w, if the block represented by v contains j
we move to v, otherwise we move to w, update m by min(m, e+ v.m), and increase e by u.e.
Finally, in the fourth step we scan the leaf from the start until j, updating e as before, and
if at some position e reaches a value less than m, we store that value in m, returning it at
the end.

min-count(i, j) is similar to min-excess but we also query the c field of nodes, and carry an
extra variable count containing the number of times m is reached, which will be the answer
at the end. In the first and fourth steps, if the scans reach some e equal to m we increase
count by one, and if we update m to a new value, we set count to 1. In the second and
third steps, when we are updating m, if m = e + v.m we increase count by u.c, otherwise if
m > e+ v.m, we set count to v.c.
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min-select(i, j, t) first calls min-excess(i, j) and stores the answer in a variable m, then
a process similar to fwd-search is done looking for the position k ≥ i of the t-th place
where excess(k) − excess(i − 1) = m (fwd-search(i − 1,m) would be the special case of
min-select(i, j, 1)). In this case the steps stop when a variable count initialized at 0 reaches
t. In particular, in the first and fourth steps, if at some point e reaches m, count increases
by 1, and if count reaches t the corresponding position is returned. In the second step, we
only stop the leaf-to-root traversal if e + v.m = m and count + v.c ≥ t, otherwise we also
increase count by v.c if the current node is a left child and e + v.m = m. In the third step,
we only go to the left child v if e+ v.m = m and count+ v.c ≥ t, otherwise we also increase
count by v.c if e+ v.m = m.

1.6 Suffix Array and Suffix Tree

The suffix array [46] A[1, n] of T is a permutation of [1, n] such that A[i] is the starting
position of the i -th suffix in increasing lexicographical order. One well-known functionality
of this index is to locate the occurrences of a pattern S[1,m] in T in O(m log n) character
comparisons, which is possible with two binary searches on A.

The function lcp(X, Y ) is the length of the longest common prefix (lcp) of strings X and
Y . The longest-common-prefix (LCP) array [46], LCP [1, n], is defined as LCP [1] = 0 and
LCP [i] = lcp(T [A[i−1], n], T [A[i], n]) for all i > 1, that is, it stores the lengths of the longest
common prefixes between lexicographically consecutive suffixes of T [1, n]. If we enhance the
suffix array with the LCP array, locate is possible in time O(m + log n) [46] and if we add
even more information, we can achieve O(m) time [2].

The suffix tree [70, 47, 69] of T is a trie of its suffixes in which unary paths are collapsed
into a single edge. The tree then has less than 2n nodes, thus a classical/pointer-based imple-
mentation utilizes Θ(n log n) bits. The suffix tree supports a set of operations (see Table 1.2)
that suffices to solve a large number of problems in Stringology [3] and Bioinformatics [30];
for example, (approximate) pattern matching, pattern discovery, finding repeated substrings,
computing matching statistics, computing maximal matches, and many others. Note that
leaves descending from a suffix tree node span a range of suffixes in A and the string-depth
of the lowest common ancestor between two consecutive suffix tree leaves is exactly its cor-
responding LCP entry.

1.7 Dictionary Compressors

There exists a well-studied [39, 24] weakness of the entropy model to capture repetitions
(substrings of T that appears various times). In fact, if for example we concatenate T with
itself it holds that Hk(TT ) ≥ Hk(T ), i.e., entropy is not sensitive to very long repetitions. In
face of this weakness to capture the compressibility of repetitive sequences, there has been
much interest in compression algorithms with the ability to capture this repetitiveness. The
general idea of these algorithms consists in replacing substrings of T with references to a
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Table 1.2: List of typical operations implemented by suffix trees; str(v) represents the con-
catenation of the strings in the root-to-v path. The first group are tree topology operations,
while the second is specific of suffix trees.

Operation Description
root() The root of the suffix tree
is-leaf(v) True if v is a leaf node
first-child(v) The first child of v in lexicographical order
tree-depth(v) The number of edges from root() to v
next-sibling(v) The next sibling of v in lexicographical order
previous-sibling(v) The previous sibling of v in lexicographical order
parent(v) The parent of v
is-ancestor(v,u) True if v is an ancestor of u
level-ancestor(v,d) The ancestor of v at tree depth d
lca(v,u) The lowest common ancestor between v and u
letter(v, i) str(v)[i ]
string-depth(v) |str(v)|
suffix-link(v) The node u s.t. str(u) = str(v)[2,string-depth(v)]
string-ancestor(v,d) The highest ancestor u of v s.t. string-depth(u) ≥ d
child(v,c) The child u of v s.t. str(u)[string-depth(v)+1] = c

dictionary of strings; this is why they are called dictionary compressors. In this thesis we
focus in two of them:

Straight Line Programs (SLPs). An SLP [37] is a context-free grammar, in Chomsky
normal form [13] (only production rules of the form A→ BC and A→ a are allowed, where
A,B,C represent non-terminals and a represents a terminal) that derives only the string T .
Even though finding the size g∗ of the smallest SLP deriving T is NP-complete [12], there
exist efficient heuristics [56, 42] that produce small grammars. One of those that has gained
popularity in the field of Compressed Data Structures is Re-Pair [42]. This is a linear time
and space algorithm that builds an SLP by repeating the following: “find the most frequent
pair ab of characters in T , create the rule X → ab and replace all ab occurrences in T by
X”. This procedure is repeated until no pair appears more than once, and finally the initial
rule S → C is added, where C = C[1, c] is a string representing the final result of T after
replacing the most frequent pairs.

Lempel-Ziv compression (LZ). The family of Lempel-Ziv algorithms [43] divides T
into repeated substrings called factors, and builds short factorizations of the text with them.
LZ77 [72] and LZ78 [73] were the first two algorithms in the family, being the former a
stronger version of the latter. In LZ77 the text is processed left-to-right and pointers of
maximal substrings to previous occurrences are output. These maximal substrings are the
factors of LZ77 and the number of them is known as z.

Both g∗ and z are alternative measures of compressibility that better handle repetitive
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Figure 1.2: The suffix tree for the input text T = abracababracabarbra$. The leaves of the
tree are marked with the suffix they represent. We also show the corresponding suffix array
A, its inverse A−1 and the LCP array. In blue it is represented the relation between the
leaves of the suffix tree and the corresponding suffix array. In red it is represented the relation
between the string-depth of the lowest common ancestor of two consecutive leaves, and its
corresponding LCP entry.

sequences than entropy-based models. It is known [12, 34, 65] that z ≤ g∗ = O(z log n/z).
Finally, it is worth mentioning that all the dictionary compressors aim to solve the same
combinatorial problem, which is to find a small set of positions capturing all the substrings
of T ; such a set is called a string attractor [36].

1.8 Karp-Rabin Algorithm

Rabin and Karp proposed an algorithm [35] for the string matching problem, finding the
occurrences of S[1,m] in T . To do so they first compute the fingerprint of S, fS, then run an
sliding window of size m over T computing the fingerprints of each substring of size m of T ,
and wherever this fingerprint is equals to fS they compare the substring with S and report
the occurrence if this is the case. For the algorithm to work efficiently, a rolling hashing
function is used to compute the fingerprints, that is, a hash function that allows constant
time computation on the substrings of a sliding window.
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Chapter 2

Related Work

In this chapter we present various results and structures in the context of the work done in
this thesis. In general, they represent scientific contributions that aim to solve the same kind
of problems we do or contributions we use to build on top of them.

2.1 RSA-Structures using Grammar Compression

The first attempt to use grammar compression to build up an RSA-structure was due to
Navarro et al. [54]. They build the first RSA-structure for bitmaps, i.e., the first Grammar-
based bitvector. For this, they grammar-compress B with Re-Pair and store fields attached
to the non-terminals of the resulting grammar. For every non-terminal variable X they store
l(X) and z(X), the length and the number of 0s in the string derived by X, respectively, and
a uniform sampling on B storing p: the index in the initial rule C containing the sampled
bit, o: the offset from the beginning of C[p] to the sampled bit, and rnk: the number of
0s in the expansion of the initial rule before C[p], that is, the rank0 of the expansion of
C[1]...C[p − 1]. Using this augmented structure, they answer RSA queries by traversing
the rules of the grammar in S-to-terminal paths1. Further, they use this representation to
compress the bitvectors of the nodes in the wavelet tree and get the first Grammar compressed
RSA-structure. However, they noticed that this approach is better suitable for tiny values of
alphabet size σ because the repetitiveness of the bitmaps is quickly lost with the depth of the
wavelet tree, so they finally proposed a version where the bitvector representation (grammar
or statistically compressed) is chosen dynamically at construction time.

Inspired in the Grammar-based bitvector Ordóñez et al. [60] created GCC, a Grammar
compressed RSA-structure for general sequences. They generalize the structure of Navarro
et al. [54] by adding rank information for each of the σ symbols, so instead of z(X) they store
for every non-terminal X and every symbol a, ra(X), the number of as in the string derived
by X, and instead of rnk in the sampling of B they store rnka for every symbol a. They
tested two versions of GCC, the first doing a uniform sampling on B as described (GCCN)

1Which are root-to-leaf paths in the derivation tree.
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and the second storing the sampling in the symbols of the initial rule (GCCC), resulting the
latter more compact and slower than the former. As the space grows proportionally to σ,
they recommend GCC for small alphabets only.

In broad terms, the operations are implemented as follows. For ranka(i) they first identify
the rule C[p] = X where the query falls and add the corresponding rnka to the result. Then
they expand the rules X → Y Z until reaching the terminal T [i]; when expanding they check
l(B) to decide whether the expansion continues to B or C, and in the case the expansion
continues through C they add ra(B) to the result. Answering selecta(i) is similar, but in the
initial rule a binary search over the rnka values is run to find out the rule containing the
answer. The expansion path is decided by looking at ra(B) as well.

Also, they generalize the use of GCC not only to wavelet trees but to wavelet matrices
and multi-way wavelet trees, a variant of the wavelet tree where the alphabet is partitioned
into r > 2 parts in each node. In this case they represent the partitions with a sequence over
an alphabet of size r with RSA support (where GCC fits).

2.2 Compressed Suffix Arrays

A milestone in the area of Compact Data Structures was the emergence of Compressed
Suffix Arrays (CSAs) [52], which using space proportional to that of the compressed sequence
managed to answer access queries to the original suffix array and its inverse (i.e., return any
A[i] and A−1[j]), to the indexed sequence (i.e., return any T [i, j]), and access to a novel array,
Ψ[i] = A−1[(A[i] mod n) + 1], which lets us move from a text suffix T [j, n] to the next one,
T [j+1, n], yet indexing the suffixes by their lexicographic rank, A−1[j]. Moreover, CSAs have
been adapted to efficiently answer the queries count(P) (returning the number of occurrences
of P as a substring in T ), and locate(P) (returning the positions of these occurrences).

The most effective of these indexes can be classified into two groups. The first group [29,
66] takes advantage of properties of the Ψ function to compress it and samples A and A−1,
recovering the original values using its interplay with Ψ; for A a text-position regular sampling
is stored, so if we want to recover a particular value from A, we apply Ψ iteratively until we
get to a sampled position, and finally subtract the steps we advanced using Ψ. For A−1 a
regular sampling is stored, and when we want to recover a particular value, we move to the
nearest sample to the left, and apply Ψ iteratively as much as the distance to the sampled
position. The indexes of the second group [21] are called FM-indexes. One of the most
successful implementations [22] of these indexes base their functionality on answering access
and rank queries on the Burrows Wheeler Transform (BWT) of the text TBWT , a permutation
of the characters of T such that TBWT [i] = T [A[i]−1] (and $ if A[i] = 1), that is, the previous
character of the suffixes in lexicographical order. The index is built using TBWT , samplings
in A and A−1, and the function LF (i) = Ψ−1[i] (which is not stored but computed using
rank and access on TBWT ). Both class of indexes achieve space bounded by its k-th order
entropy, for k < logσ n, and take O(polylog n) time to access A and A−1.

In the scenario of repetitive sequences, repetitions in T generate long runs of equal letters
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in TBWT , and also long runs of consecutive increasing values in Ψ. Considering these runs
to further compress the indexes gives birth to repetition-aware CSAs: RLFMI [44], which
run-length compresses (keeping the run-heads only) TBWT into T ′BWT and stores additional
structures to translate the queries on TBWT . It achieves O(nHk(T ) log σ) bits of space and
retains the search complexities of the FM-index. The RLCSA [45] run-length compresses the
runs of 1s in the differential encoding (Section 1.2 on page 5) of Ψ. To retrieve the original
values, it stores a sampling on Ψ, using space proportional to the number of runs: r, and it
also stores a sampling on A and A−1 using its interplay with Ψ to recover a particular value
as explained before. More precisely, the index uses O(r(2 log(n/r) + log σ)(1 + o(1))) bits
and can access A in O(s log n) time using extra O((n/s) log n) bits for the sampling of A.

Finally, a relevant repetition-aware suffix array representation is the Locally Compressed
Suffix Array (LCSA) [27]. They use Re-Pair to grammar-compress the differential encoding
(recall Section 1.2 on page 5) of the suffix array (along with a sampling) and add a bitvector
L[1, n] indicating the positions in T where each symbol of the initial rule S → C[1]...C[c]
starts. They justify this encoding on the fact that runs in Ψ show up as repetitions in
the differential suffix array and a grammar compressor will capture this repetitiveness. The
process to recover a suffix array value is as follows: first identify the nearest sample to its
left, then map the query and the nearest sample to the rules containing them, say they are
C[j] and C[i] (i ≤ j) respectively, and then expand C[i]...C[j] adding the differentials from
the sampling to the query. They also note that it is not necessary to fully expand C[j] to
complete this task.

2.3 Compressed Suffix Trees

2.3.1 The First Compressed Suffix Tree

Sadakane [67] designed the first Compressed Suffix Tree (CST), on top of a CSA, using
|CSA|+O(n) bits and solving all the suffix tree operations in time O(polylog n). He makes
up a CST from three components: a CSA, for which he uses his own proposal [66] (a Ψ-
based CSA); a BP representation of the suffix tree topology, using at most 4n + o(n) bits;
and a compressed representation of LCP , PLCP [i] = LCP [A−1[i]] (i.e., the LCP array in
text order) encoded in a bitvector H[1, 2n], which marks the positions PLCP [i] + 2i, thus
PLCP [i] = select1(i)− 2i. A recent implementation [58] of this index requires about 10 bits
per character and takes a few microseconds per operation.

The topology operations are solved by the BP representation on the topology as explained
in Section 1.4 on page 7. The rest of the operations is solved with the help of the CSA and
the compressed LCP representation, as follows:

– letter(v,i) is solved by computing lr ← leaf-rank(v), then s← Ψi−1[lr+1], and returning
the first symbol of the s-th lexicographical suffix. This method is preferred to directly
accessing T [A[lr + 1] + i − 1] because in the CSA it is faster to use Ψ and query the
first letter of the s-th suffix than using access in both A and T .
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– To solve string-depth(v), we first ask whether v is a leaf or not (with is-leaf(v)). In the
case v is a leaf we compute lr ← leaf-rank(v) and return n−A[lr+1]+1. Otherwise we
return LCP [leaf-rank(next-sibling(v+ 1)) + 1]. To understand the last statement recall
that suffix trees do not have nodes with exactly one child, so next-sibling(v + 1) takes
us to the second child of v; accessing LCP of its leaf-rank+ 1 is asking for the length of
the longest common prefix between the rightmost leaf of the first child and the leftmost
leaf of the second child, which is exactly the length of the string represented by v.

– The suffix-link(v) operation is solved by first computing l ← leaf-rank(v) + 1, r ←
leaf-rank(fwd-search(v,−1)) (the indexes of the leftmost and rightmost leaves of v),
and then returning lca(leaf-select(Ψ[l]), leaf-select(Ψ[r])). Note that l and r are the
lexicographical position of the suffixes represented by the leaves, so Ψ[l] and Ψ[r] are
the suffixes next to them, and its lca corresponds to the node we are looking for [67].

– string-ancestor(v,d) is done by a binary search on the ancestors of v, using string-depth
to check the current node and level-ancestor to move through the ancestors.

– To solve child(v,c) we first compute s←string-depth(v), then we linearly (using next-
sibling) scan the children of v looking for the child ch with letter(ch,s+ 1) = c.

2.3.2 Fully-Compressed Suffix Tree (FCST)

Russo et al. [64] managed to use just o(n) bits on top of the CSA, by storing only a sample
of the suffix tree nodes. An implementation of this index [64] uses as little as 5 bits per
character, but the operations take milliseconds, as slow as running in secondary storage. The
sampling of the nodes is based on traversals of the suffix tree by following suffix links, this
sampling combined with the operation lca implemented as a primitive operation manages to
transform operation on real nodes into operation on sampled ones. The FM-index is used as
the CSA. The LCP array is not stored (instead, a sampling of the string-depths replaces its
functionality).

2.3.3 Faster Entropy-Bounded CST

Another approach [23] also obtains o(n) on top of a CSA by getting rid of the tree topology
and expressing the tree operations on the corresponding suffix array intervals. The opera-
tions now use primitives on the LCP array: find the previous/next smaller value (psv/nsv)
and find minima in ranges (rmq). Topology operations are solved by a combination of
the interval representation of the nodes plus the use of the LCP primitives, for example,
lca(v = [vl, vr], u = [ul, ur]) = (if none of them is an ancestor of the other and vr < ul),
first compute k ← rmq(vr + 1, ul) and return [psv(k), nsv(k) − 1]. They also noted that
bitvector H contains 2r runs, and used this fact to run-length compress H. Abeliuk et al. [1]
designed a practical version of this idea, obtaining about 8 bits per character and getting a
time performance of hundreds of microseconds per operation, an interesting tradeoff between
the other two CSTs.
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Figure 2.1: On top, the suffix tree for the input text T = abracababracababra$. P is the
BP representations of its topology. Prefix ∆ indicates a differential encoding. We show this
encoding for the suffix array A, its inverse A−1, and the LCP array. We also show the
bitvector H, the Ψ function and the BWT . We show repetitions in red and runs in blue for
the structures.

2.4 Repetition-Aware Compressed Suffix Trees

2.4.1 The First Repetition-Aware CST

Abeliuk et. al [1] also presented the first CST for repetitive collections. They built on the
approach of Section 2.3.3 [23], so they do not represent the tree topology. They use the
RLCSA [45] with size proportional to r, which is very low on repetitive texts. They use
grammar compression on the differential LCP array, DLCP [i] = LCP [i]− LCP [i− 1]. The
nodes of the parsing tree (obtained with Re-Pair [42]) are enriched with further data to
support the operations psv/nsv and rmq. To speed up simple LCP accesses, the bitvector H
is also stored, whose size is also proportional to r. Their index uses 1–2 bits per character
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on repetitive collections. It is rather slow, however, operating within (many) milliseconds.

2.4.2 Grammar-Compressed Suffix Tree (GCST)

Navarro and Ordóñez [53] include again the tree topology. Since text repetitiveness induces
isomorphic subtrees in the suffix tree, they grammar-compressed the BP representation.
The nonterminals are enriched to support the tree navigation operations enumerated in Sec-
tion 1.4 on page 7. In general terms this augmentation of the non-terminal variables is an
additional augmentation of the GCC RSA-structure, including fields similar to the rmM-tree,
that is, fields indicating the minimum excess reached and information to solve leaf-rank and
leaf-select. They use the RLCSA and, since they do not need psv/nsv/rmq operations on
LCP, they just use the bitvector H, which has a few runs and thus is very small. Their
index uses slightly more space, closer to 2 bits per character, but it is up to three orders of
magnitude faster than that of Abeliuk et al. [1]: their structure operates in tens to hundreds
of microseconds per operation, getting closer to the times of general-purpose CSTs.

2.4.3 Other Approaches

It is worth mentioning the recent work by Farruggia et al. [19], who builds on Relative
Lempel-Ziv [41] to compress the suffix trees of the individual sequences (instead of that of
the whole collection). They showed to be time- and space-competitive against the CSTs
mentioned, but their structure offers a different functionality (useful for other problems).
Some recent theoretical work includes Gagie et al.’s [25] O(r log(n/r) log n)-bits CST using
Run-Length Context-Free Grammars [57] on the LCP, and the Suffix Array, supporting most
operations in O(log n) time. Although these grammars have theoretical guarantees of space,
heuristics such as RePair work better in practice. Belazzougui and Cunial’s [8] CST based
on the CDAWG [9] (a minimized automaton that recognizes all the substrings of T ). It also
supports most operations in time O(log n). However, experiments [25] using CDAWG show
that it uses significantly more space than other repetition-aware techniques.

2.5 Repetitive Datasets

In our experiments we use repetitive datasets obtained from the Repetitive Corpus of the
Pizza&Chili platform2. We artificially create repetitive dna sequences: dna0.001, dna0.01,
dna0.1, dna1.0, where dnap is built taking a 1MB prefix of the dna sequence in the corpus
and coping it 100 times, where each copied base is mutated with probability p/100. The 1MB
prefix of dna used as base for the construction was obtained from the Gutenberg Project3 and
contains 5 different elements as its alphabet. These sequences are compressible by p7zip4, a

2http://pizzachili.dcc.uchile.cl/repcorpus
3http://www.gutenberg.org/
4http://p7zip.sourceforge.net/
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Table 2.1: Summary table of the repetitive datasets. Length n is measured in millions (and
rounded). Compression by p7zip is shown in bits per symbol (bps).

Dataset n σ Type p7zip (bps)

dna0.001 106 5 Synthetic DNA 0.041

dna0.01 106 5 Synthetic DNA 0.044

dna0.1 106 5 Synthetic DNA 0.061

dna1.0 106 5 Synthetic DNA 0.188

influenza 155 15 Real DNA 0.135

escherichia 112 15 Real DNA 0.621

einstein 93 117 Human readable (documents) 0.009

kernel 259 160 Human readable (code) 0.205

practical Lempel-Ziv compressor, to 0.52%, 0.54%, 0.76% and 2.35%, respectively.

We also use two real dna sequences, influenza, a collection composed of 78,041 sequences
of Haemophilus Influenzae (15 different symbols, 148MB, compressible by p7zip to 1.69%);
and escherichia, a collection of dna sequences of different Escherichia Coli individuals (15
different symbols, 107MB, compressible by p7zip to 7.76%). Both sequences come from the
NCBI5.

Besides, we use two non-dna sequences, einstein, containing all the versions (up to
January 12, 2010) of the German Wikipedia Article of Albert Einstein (117 different symbols,
89MB, compressible by p7zip to 0.11%); and kernel, a set of 36 versions of the Linux Kernel
(160 different symbols, 247MB, compressible by p7zip to 2.56%).

Finally, we use the BP representation (see Section 1.4 on page 7) of the topology of the
underlying suffix trees (Section 1.6 on page 11) for the sequences presented before. We name
such BPs by appending the suffix .par to the corresponding input sequence name.

2.6 Succinct Data Structure Library

To build our implementations we use intensively the succinct data structure library (sdsl) [26],
which contains practical implementations of a myriad of Compact Data Structures, from
arrays to suffix trees. Specifically, we use the following implementations:

– int_vector, Section 1.2 on page 5, an array using the logarithm of the maximum
represented value of bits per element.

– dac_vector_dp, the DAC compressed array from Section 1.2 on page 5.
– bit_vector, Section 1.3.1 on page 6, an uncompressed bitvector with O(1) rank/select

support.
5https://www.ncbi.nlm.nih.gov/
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– rrr_vector, the RRR bitvector from Section 1.3.1 on page 6.
– sd_vector, the Sparse bitvector from Section 1.3.1 on page 6.
– cst_sada, Section 2.3.1, the CST of Sadakane [67].
– cst_sct3, Section 2.3.3, an improvement of the ideas of Fischer et al. [23].
– cst_fully, Section 2.3.2, the CST of Russo et al. [64].
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Chapter 3

Block Tree Improvements

In this chapter we present the improvements made to the main data structure of this thesis.
Our contributions are both theoretical and experimental. They fix errors present in the
literature and further enrich the structure itself. We divide the chapter into three main
sections. In the first section we give a general description of the structure, in the second
section we revisit the previous implementation of the structure, and in the third section we
present our contributions.

3.1 Block Trees

The Block Tree [10] is a full r-ary tree (all nodes have r children except leaves) representing
a sequence T . Every node v represents a substring v.blk of T : the root represents the
entire sequence and its children represent r consecutive blocks of its parent1, where the
first (n mod r) blocks are of size

⌈
n
r

⌉
and the rest of size

⌊
n
r

⌋
. A node v, representing

v.blk = T [i, i+ b− 1] can be of three types:

LeafBlock: If b ≤ mll, where mll is a parameter, then v is a leaf of the Block Tree, and it
stores the string v.blk explicitly.

BackBlock: Otherwise, if T [i − b, i + b − 1] and T [i, i + 2b − 1] are not their leftmost
occurrences in T , then the block is replaced by its leftmost occurrence in T : node v
stores a pointer v.ptr = u to the node u such that the first occurrence of v.blk starts
inside u.blk = T [j, j + b − 1], more precisely it occurs in T [j + o, j + o + b − 1]. This
offset inside u.blk is stored at v.off = o. Node v is not considered at deeper levels.
BackBlocks are also considered as leaves.

InternalBlock: Otherwise, the block is split into r blocks of size
⌈
b
r

⌉
and

⌊
b
r

⌋
with the same

division rule applied to the root, handled in the next level by the children of v. The
node v then stores a pointer to its children.

1Sometimes we will refer indistinctly to the node and the substring represented by that node.
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Proposition 1 At each level l (where the root is at level 0) the blocks are of lengths either⌈
n
rl

⌉
or
⌊
n
rl

⌋
.

Proof. By induction in l; the base case corresponds to the division rule in the root node.
Suppose the result holds until level l. Analyze the smallest block length generated by the

division rule at level l+ 1, which is s =

⌊
b n

rl
c

r

⌋
. If we write n = crl + k, where k ∈ [0, rl− 1],

then s =
⌊
c
r

⌋
=
⌊

n
rl+1

⌋
, which can be obtained writing c as its decomposition modulo r.

Analogously we can show that the largest block length is equal to l =
⌈

n
rl+1

⌉
. Thus, all the

blocks lengths at level l + 1 are of size either
⌈

n
rl+1

⌉
or
⌊

n
rl+1

⌋
.

Choosing mll = O(logσ n) and getting rid of the first O(logr z) levels of the Block Tree
we obtain the following result.

Proposition 2 [10] The Block Tree can reach height hbt = O
(

logr
n log σ
z logn

)
, where z is the

number of phrases of the LZ77 parsing of T .

Proposition 3 Block Trees are well defined, that is, BackBlocks point to a well-defined
block or pair of blocks in the same level, containing its leftmost occurrence. Even more, this
block or pair of blocks are InternalBlocks.

Proof. Suppose that the leftmost occurrence of a BackBlock is T [j, j + b − 1]. Then there
must exist one or two blocks whose concatenation contains T [j, j+b−1]: a block intersecting
a prefix of T [j, j + b − 1] and a block intersecting a suffix of T [j, j + b − 1] (these could be
the same). Since they contain the leftmost occurrence of T [j, j + b− 1], both blocks must be
InternalBlocks, because they do not satisfy the condition to be BackBlocks.

Proposition 4 The Block Tree can be implemented using O (zrhbt log n) bits of space.

Proof. As each node stores a constant number of pointers and numbers, it uses O(log n)
bits. It suffices to show that each level contains O(zr) nodes. For this, consider the blocks
in a level and note that at most 3z blocks intersect or have a neighbor intersecting an
LZ77 phrase. The rest are BackBlocks by definition, because they and their neighbors are
completely contained in an LZ77 phrase. Then at most 3z block are InternalBlocks, thus we
have at most 3zr = O(zr) blocks in the next level.

To speed up the construction of the Block Tree, a top-down levelwise approach is applied.
We first compute the Karp-Rabin signature of the blocks in the level and use them as keys
in a Hash-Table. After that, we pass a rolling-hash (Karp-Rabin) on the input sequence,
querying the Hash-Table and identifying in this way the first occurrences for every block in
the level. Note that they do not specify how to enforce the conditions to create BackBlocks.

The Block Tree can answer access(i) in O(hbt) time recursively in a node v of size b as
follows:
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– If v is a LeafBlock, the block is explicitly stored in v.blk and the i -th character is
returned.

– If v is a BackBlock, the query is translated to block v.ptr or its next block, according
to i and v.off. If i ≤ b − v.off then the query is transformed into access(i + v.off) in
v.ptr, otherwise the query is transformed into access(i− b+ v.off) in the block next to
v.ptr.

– If v is an InternalBlock, the query is translated to some of its children, according to i.
The query is transformed into access((i− 1) mod r + 1) in the

(⌊
i−1
r

⌋
+ 1
)
-th child.

Since we do a constant amount of work per visited node, and considering Proposition 3,
access takes time O(hbt). Note that we assume that all blocks in a level are of equal size b;
this was assumed on its original description [10], and will be assumed for the next description
of rank and select. We will remove this assumption and give a complete description of the
operations in Section 3.3.1.

3.1.1 Rank and Select

We can also give the Block Tree support for rank and select by adding the following fields:

– For every node v representing the block v.blk = T [i, i+ b− 1] except the root:
– v.p-rankc (prefix rank), which is the number of cs in the prefix of parent(v).blk =
T [j, k] preceding v.blk, that is rankc(i− 1)− rankc(j − 1) in T .

– For every BackBlock node v that represents v.blk = P [i, i+ b− 1] and points to its first
occurrence O = P [j+ o, j+ o+ b− 1] inside u.blk = P [j, j+ b− 1] with offset v.off = o:
– fb-rankc (first block rank), the number of cs in the prefix of O contained in u.blk

(O∩u.blk, the first block spanned by O), that is, rankc(j+ b−1)− rankc(j+o−1)
in T .

– pfb-rankc (prefix first block rank), the number of cs in the prefix of u.blk that
precedes O (u.blk−O), that is, rankc(j + o− 1)− rankc(j − 1) in T .

As we add at most three fields per c ∈ Σ, the space complexity of the Block Tree increases
by a σ factor. Using them we can answer rankc(i) recursively in O(hbt +mll) time in a node
v as follows:

– If v is a LeafBlock, we count the number of cs in v.blk[1, i] and return it in time O(mll).
– If v is a BackBlock the query is translated into v.ptr or the next block according to i
and v.off. If i ≤ b − v.off then the we answer rankc(i + v.off)(in v.ptr) −v.pfb-rankc,
otherwise we return rankc(i− b+ v.off) (in the block next to v.ptr) + v.fb-rankc.

– If v is an InternalBlock the query is translated into some of their children according to
i. Suppose w is the

(⌊
i−1
r

⌋
+ 1
)
-th child of v, then we answer rankc((i− 1) mod r+ 1)

(in w) + w.p-rankc.

Select can be answered in O(hbt) time by adding a constant-time predecessor data structure
on top of the p-rankc fields, which increases the space [10]. Here we give an O(rhbt + mll)
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Figure 3.1: Block Tree for a bit-sequence representing a BP of a tree topology. Nodes have
been put on top of the substrings they represent, and the child pointers were eliminated
for clarity. For BackBlock v, some of its fields were represented, as for node u. Note that
node w was not converted to a BackBlock although w.blk is not a leftmost occurrence, which
happens because its sibling contains a leftmost occurrence. On the other hand, the children
of w are BackBlocks, since concatenated with their neighbors they do not contain leftmost
occurrences.

time solution without including any further field. selectc(j) is solved recursively in a node v
as follows:

– If v is a LeafBlock, we look for the j-th symbol c in v.blk and return its index or ∞ if
no index is found in O(mll) time.

– If v is a BackBlock, the query is translated into v.ptr or its next block according to j
and v.fb-rankc. If j ≤ v.fb-rankc then the we answer selectc(j+v.pfb-rankc) (in v.ptr) −
v.off, otherwise we return selectc(j − v.fb-rankc) (in the block next to v.ptr) +b− v.off.

– If v is an InternalBlock, the query is translated into some of its children according to j
and the p-rankc fields of the children. We look for k-th child w such that w.p-rankc <
j ≤ next-sibling(w).p-rankc or last-child(v) is none is found. We then return selectc(j−
w.p-rankc) (in w) +(k − 1)b/r.

Note that in the previous description b/r is an integer number thanks to padding.

3.2 Previous Implementation of Block Trees

The first implementation of Block Trees appears in the thesis of Alberto Ordoñez [61]. This
implementation does not use pointers, as naive tree implementations do, and instead it uses
Compressed Data Structures to represent the tree. In practical terms, this reduces the space
dramatically, even if the order is the same. Also, the implementation does not follow the
theoretical proposal completely, but presents good results anyway.
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3.2.1 Definition

There are several differences between the Block Tree described in the thesis of Ordóñez and
the definition given before:

1. The condition for a node to be a BackBlock is weaker. In this case it suffices that a
block has a previous occurrence to be a BackBlock.

2. At each level of the Block Tree, the representations of blocks are concatenated forming
a new input sequence, thus making consecutive blocks that were not so in previous
levels.

The second difference shows us that space could be reduced by considering not only text-
consecutive neighbors in a level, but neighbors in the Block Tree. Also, although the first
difference seems negligible, it has important consequences. Now BackBlocks can have pointers
to their first occurrences, even though they could be a first occurrence when concatenated
with one of their neighbors.

– Applying this condition is expected to yield more BackBlocks than applying the original
condition, which could reduce space.

– The condition could eliminate first text-occurrences needed for blocks in lower levels
(for example a first-text occurrence of a lower block overlaps the block and its neighbor,
but the block is set as a BackBlock, because it is not its first occurrence in its level).
Then our proof of Proposition 4 is no longer valid, since it requires that BackBlocks
point to first-text occurrences2.

– This weaker condition breaks the property from Proposition 3 that BackBlocks do not
point back to BackBlocks and it does not ensure a cost proportional to hbt for access
nor the respective costs for rank and select. Moreover, if the first occurrence of a block
overlaps the block itself, an operation on a block could cost as much as the length of
that block.

3.2.2 Construction

The construction uses the same idea of top-down levelwise Karp-Rabin scan to find the first
occurrences of blocks, however, a totally different criterion is used to form BackBlocks.

In a level, after arranging the blocks in the HashTable using its Karp-Rabin signature, a
Karp-Rabin scan on the sequence is done. Suppose that in the scan we find an occurrence
of a block v.blk that overlaps the blocks x.blk and y.blk (or just x.blk).

– If v = x or v = y, we set v as an InternalBlock and delete v.blk from the HashTable.

– Otherwise, we set v as a BackBlock with v.ptr = x, set both x and y as InternalBlocks,

2We could bound the number of blocks by 3zlr, where zl is the number of LZ77 phrases of the sequence
considered in level l, but we do not know a relation between z and zl.
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and delete v.blk from the HashTable.3

The first point avoids self-references and pointers to later blocks, because ultimately, v.blk
is removed from the table when we reach v in the scan. The second point ensures that
BackBlocks point to InternalBlocks, because every time we form a link the pointed blocks
are set to be InternalBlocks.

Note that when a block is set to be a BackBlock, x or y could have been BackBlocks,
but they are turned into InternalBlocks. This design decision of which blocks are Internal-
Blocks and which BackBlocks is different from what was described in the definitions given
in Sections 3.1 and 3.2.1. Another difference between this implementation and the previous
definitions is that it is assumed that all blocks in a level are of the same length. For this to
work, they applied a padding technique which adds at most one extra block per level. The
technique computes the number of leaves as dn/mlle, and the number of nodes at each upper
level dividing by r and taking the ceil on the number of nodes in the previous level.

This construction builds a pointer-based structure that afterwards is transformed into a
more compact representation explained below.

3.2.3 Compact Representation

To represent a Block Tree, for each level l is used:

– A bitvector bv_typel, marking which nodes are InternalBlocks, and a constant-time
rank implementation over it. This lets us index the nodes by their position in the level,
which is possible because the number of children of nodes is always r. Rank is used to
descend to the next level by a child. For example, if we are in the node whose level-
index is p and we want to move to its i -th child, this is: r · rank1(p−1)(in bv_typel)+i.
Select would be required to go to the parent in the previous level, but the implemented
operations only require going downwards by a child.

– To represent the offset and pointers of BackBlocks, a pair of arrays is used, offl and
ptrl. While offl stores v.off for every BackBlock v in the level, ptrl stores the index of
v.ptr among the BackBlocks of the current level.

– For the rank/select information, three arrays are used: p-rankl, pfb-rankl and fb-rankl,
storing for every node v in the level v.p-rank, v.pfb-rank and v.fb-rank, respectively.
These arrays were stored using DACs (Section 1.2 on page 5).

– The LeafBlocks are stored as the concatenation of their blocks in an array called
leaves-string.

Note that BackBlocks own two indices: their position among blocks in the level and their
position among BackBlocks in the level. The second one is obtained from the first with rank
in bv_typel, and is used to access arrays storing exclusive information of BackBlocks.

3There is a detail: it could be that two or more blocks have identical contents; in this case we delete v.blk
only after processing all these nodes.
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3.3 Improvements

3.3.1 No Padding Block Tree

To build a Block Tree faithful to its original definition we do not use padding to ensure that
all blocks in a level l are the same size, but instead work with blocks of two possible sizes,⌈
n
rl

⌉
and

⌊
n
rl

⌋
(Proposition 1). These are called large and small blocks, respectively.

For this to work, we add the field v.len to the nodes, which is their length. The compact
representations of these fields are hbt bitvectors. For each level l we store the bitvector
bv_lengthl, marking the large blocks in the level, and we give them constant-time rank
support. Note that these bitvectors suffice to simulate the v.len field because the length of
the current block in an operation can be maintained as we move through the nodes.

We decided to keep all LeafBlocks in the same last level hbt. For a level to be the last it
must be true that the length of large blocks is ≤ mll. As Ordoñez [61], we concatenate all
the contents of LeafBlocks.

The RSA-operations are slightly modified; we take into account the v.len field to find
the next block in the recursive query and to relocate the query adequately. The recursive
operations over a node v are now as follows:

access(i)

– If v is a LeafBlock, the block is explicitly stored in v.blk and the i -th character
is returned. In this case we use rank on bv_lengthhbt to relocate the query on
leaves-string.

– If v is a BackBlock the query is translated into v.ptr or its next block according
to i, v.off and v.ptr.len. If i ≤ v.ptr.len − v.off then the query is transformed
into access(i + v.off) in v.ptr, otherwise the query is transformed into access(i −
v.ptr.len+ v.off) in the block next to v.ptr.

– If v is an InternalBlock the query is translated into some of its children according
to i and v.len, which can be computed in constant time.

rankc(i)

– If v is a LeafBlock, we count the number of cs in v.blk[1, i] and return it. In this
case we use rank on the bv_lengthhbt to relocate the query on leaves-string.

– If v is a BackBlock the query is translated into v.ptr or its next block according to
i, v.off and v.ptr.len. If i ≤ v.ptr.len− v.off then the we answer rankc(i+ v.off)(in
v.ptr) −v.pfb-rankc, otherwise we return rankc(i − v.ptr.len + v.off) (in the block
next to v.ptr) + v.fb-rankc.

– If v is an InternalBlock the query is translated into some of its children according
to i and v.len, which can be computed in constant time, and the field p-rankc of
this child is added to the result.
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selectc(j)

– If v is a LeafBlock, we look for the j-th symbol c in v.blk and return its index or
∞ if no index is found. In this case we use rank on bv_lengthhbt to relocate the
result from leaves-string.

– If v is a BackBlock the query is translated into v.ptr or its next block according to
j and v.fb-rankc. If j ≤ v.fb-rankc then the we answer selectc(j + v.pfb-rankc)(in
v.ptr) −v.off, otherwise we return selectc(j−v.fb-rankc) (in the block next to v.ptr)
+v.ptr.len− v.off.

– If v is an InternalBlock the query is translated into some of its children according
to j and the p-rankc of its children. We look for k-th child w such that w.p-rankc <
j ≤ next-sibling(w).p-rankc or last-child(v) is none is found. We then return
selectc(j − w.p-rankc) (in w) +(k − 1)

⌊
v.len
r

⌋
+ min(k − 1, v.len mod r).

3.3.2 Compressed Compact Representation

We note that the compact representation proposed by Ordoñez [61] uses plain bitvectors and
uncompressed arrays except for the rank/select fields, which are represented with DACs [11].
We will study the use of compressed representations of arrays and bitvectors. We call Block
Tree the implementation using uncompressed arrays and plain bitvectors on all its compo-
nents, and Compressed Block Tree to the implementation using DACs to represent the arrays
and RRR-bitvectors [62].

3.3.3 Construction Algorithm

Another contribution consists on fixing the construction algorithm given in the Block Tree
publication [10]. They claim that it suffices to run only one Karp-Rabin rolling hashing with
window size equal to the block size, however they do not specify how the condition to be
a BackBlock is checked. We propose a construction algorithm that runs two rolling hashes,
one with window size equal to the block size and another with window size equal to twice
the block size.

Our algorithm is also top-down levelwise. For each level, the following stages are carried
out:

1. Fill block HashTable: Block-wise Karp-Rabin scan to put the nodes on a HashTable
called blocks ; the signature of the nodes is the Karp-Rabin signature of their blocks.

2. Find first occurrences: Sliding window Karp-Rabin scan, using window size equal
to the block size. If we find a node v in blocks with block content equal to the current
window, we set a pointer from v to the node or pair of nodes whose blocks overlap the
occurrence, and remove v from the HashTable.

3. Fill pair-block HashTable: Pair-of-blocks-wise Karp-Rabin scan to put the consec-
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utive pairs of nodes on a HashTable called pairs ; the signature of the pair of blocks is
the Karp-Rabin signature of their concatenation.

4. Check BackBlock condition: Sliding window Karp-Rabin scan, using window size
equal to twice the block size. If we find a pair of consecutive nodes vi, vi+1 in pairs with
the same concatenation of blocks as the current window, we put a label left on vi and
a label right on vi+1, as long as the window is different from vivi+1. We then remove
the pair of blocks from the HashTable.

5. Final iteration: We iterate over the blocks. If a node has both left and right labels
then this block corresponds to a BackBlock and we have already a pointer to its leftmost
occurrence, otherwise it corresponds to an InternalBlock and is expanded to the next
level.

An important note about this construction algorithm is that when we say that window scans
have size equal to the block size and twice the block size, it is a simplification, since blocks in
a level can be one of two lengths: b or b+ 1 (as stated in Proposition 1). Thus, our window
scans refer to two windows scans with window size b and b + 1 and to three window scans
with window size 2b, 2b+ 1, or 2b+ 2.

3.3.4 Elimination of First Levels

We decided not to (compute and) use z to remove the first O(logr z) levels as mentioned in
Proposition 2, but instead, after constructing the Block Tree, we remove all the top levels
that do not have BackBlocks, being the first level of the tree the first having some BackBlock.

A problem that arises when removing first levels, not addressed in the Block Tree publi-
cation, is how to identify the first queried block in an operation. For this to work we store
σ arrays global_prefix_rankc, which contain for every node in the first level the number of
cs appearing in the blocks preceding it in the level.

For selectc we just do a binary search on global_prefix_rankc to identify the first queried
block. Access(i) and rankc(i) are easy in padding versions: just divide i− 1 by the length of
the blocks in the first level and add 1, and in the case of rankc incorporate the corresponding
global_prefix_rankc to the result. However, when working without padding the previous
approach could bring errors, because blocks are not all of the same length in a level. To
solve the problem, we apply a guess & verify approach: if the lengths in a level are b + 1
and b, first, we guess

⌊
i−1
b+1

⌋
+ 1 (which is a lower bound for the entry block), then we use

rank on bv_length1 to verify this guess. If this is not the block, we identify the error (in text
positions) and divide it by (b+ 1), guessing the answer again.

3.3.5 Pruning

We note that in the definition of Block Tree the condition to be a BackBlock is conservative,
that is, it forces InternalBlocks that could have been BackBlocks without any problem. For
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example, we could have set a block as an InternalBlock, which is not its first occurrence in
T but it contains a first occurrence overlapping some of its neighbors, yet there is no node
pointing to some descendant of this node. Node w from Figure 3.1 shows a good example of
this.

From this observation we define an unnecessary expansion as a block that is not its first
occurrence in T , holding one of those:

– It is a LeafBlock or a BackBlock. We call these blocks leaves.

– It is an InternalBlock, no node points to it, and its children are unnecessary expansions.

We would like to eliminate such expansions, i.e., change these InternalBlocks to Back-
Blocks. For this, we note that, to avoid dependency issues we need to eliminate these ex-
pansions in a postorder right-to-left traversal of the Block Tree. Moreover, when analyzing
a block, it is enough to check if its children are all leaves, because if they were unneces-
sary expansions they would have been already processed in the traversal and turned into
BackBlocks.

This removal of unnecessary expansions is called pruning. To implement pruning, we add
a counter of the number of blocks pointing to each node, which increases every time a link is
created and decreases every time a link is removed. This counter indicates whether a node
is pointed by some other node, what happens when its value is greater than 0.

An interesting property of pruning is that if we apply it to a completely expanded Block
Tree, where all nodes are InternalBlocks and LeafBlocks, we get the same tree as if we had
applied it to the original definition of Block Tree.

Proposition 5 Let Tbt be a Block Tree as in the definition given in Section 3.1, and Texp
a completely expanded Block Tree as explained before. Both trees with the same input
sequence T , arity r, and max length of leaves mll. Then, applying pruning on Tbt gives the
same result than applying pruning on Texp.

Proof. Assume we run the algorithms in parallel, that is, one node per step (we consider a
parallel step valid even if one of the nodes exists in Texp but not in Tbt). We will show by
induction that at any step the previous nodes left by pruning are the same in both partial
results of the algorithms, which implies that the final results of both executions are the same.

In principle both algorithms have not visited any node, so the property holds by vacuity.
Suppose that we are in a step processing a node v and all the previous nodes left are the same
in both trees. If v 6∈ Tbt, it means that the concatenation of v.blk with each of its neighbors
is not a leftmost occurrence, nor is any substring of these concatenations. Then v.blk is not
a leftmost occurrence, and there are no blocks pointing to v. Therefore, v is removed by the
pruning, preserving our inductive hypothesis. If v ∈ Tbt, the action that pruning will take
depends only on whether v.blk is a leftmost occurrence, which is equals in both trees, and
on the children and nodes pointing to v, which are the same by inductive hypothesis, since
they were processed before in the right-to-left postorder traversal of the pruning. Then our
hypothesis is preserved.
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This property could save us construction time, since the construction reduces to finding
first occurrences and then apply pruning, but it requires much more space.

3.3.6 New Sets of Rank/Select Fields

We note that the fields used to store the rank/select information are redundant, for example,
if a v.ptr node is not a last child we have that v.pfb-rankc = (next-sibling(v.ptr).p-rankc
−v.ptr.p-rankc) − v.fb-rankc. From this observation we propose four sets of fields that are
alternatives to the original proposal. Although they do not improve the space complexity,
they could be important in practical implementations:

Rank set: v.fb-rankc and v.rankc, which stores the numbers of cs in the representation of
the block (v.pfb-rankc can be inferred from these). This set reduces space because we
get rid of v.pfb-rankc, and numbers in v.rankc are smaller (the maximum of them) than
numbers in v.p-rankc. However, rank requires O(r) time to descend to a child, requiring
O(rhbt) time in total.

Cumulative set: v.fb-rankc and v.cum-rankc, which is the number of cs from its first sib-
ling to the block v.blk itself (inclusive). Note that when v.ptr is not a first child,
v.pfb-rankc = (v.ptr.cum-rankc −previous-sibling(v.ptr).cum-rankc) − v.fb-rankc, and
v.pfb-rankc = v.ptr.cum-rankc −v.fb-rankc when v.ptr is a first child. This set of fields
keeps constant time for descending to a child and gets rid of v.pfb-rankc, but the num-
bers it stores are larger.

Dynamic set: v.fb-rankc and v.dyn-rankc, which stores v.p-rankc if v is not a first child
and u.rankc, where u is the previous node in the level, when v is a first child. The
first node in the level stores the rankc of the last node. This redistribution of fields is
possible because we are indexing the Block Tree nodes by its level index on its compact
representation. This set of fields keeps constant time for descending to a child, gets rid
of the v.pfb-rankc field, and has number similar to those in the original set of fields.

NoBack set: Only v.rankc. v.fb-rankc is computed recursively when needed by an oper-
ation. Note that in this case we do not ensure time proportional to hbt, but space is
reduced.

We call Prefix set to the original set of fields.

3.3.7 New Heuristics

We develop new heuristics in the construction of Block Trees. Similar to the heuristics
proposed by Ordoñez [61], our heuristics differ from the definition in the algorithms used to
decide whether a node is a BackBlock or not.

Below we name and detail each of these heuristics, including the Block Tree definition and
the heuristics presented by Ordoñez. All versions include the improvement of eliminating the
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first levels explained in Section 3.3.4.

bt corresponds to the original definition given in Section 3.1, built with the construction
algorithm from Section 3.3.3 and applying afterwards the pruning algorithm explained in
Section 3.3.5.

no-clean-bt is the same as bt, but without applying the pruning algorithm, that is, the
Block Tree described on its original publication [10].

pruning-c-bt is the same as bt, but we relax the definition of unnecessary expansion. We
allow a pointed block to be a BackBlock but only if there is no chain of BackBlocks of length
≥ c pointing to the block, where c is a parameter. Note that this increases the complexity
of the operations by a factor of c, because in the worst case we have to take a chain of c
BackBlocks to descend to the next level.

heuristic-concatenate-bt corresponds to the Block Tree described in the thesis of Or-
doñez but not implemented in that work; this was explained in Section 3.2.1. It finds leftmost
occurrences in a level and points back to them without considering stronger conditions.

heuristic-bt is the same as heuristic-concatenate-bt but not concatenating the blocks in
each level.

liberal-heuristic-bt is the same as heuristic-bt except that we expand the blocks that
point to themselves. Note that in this heuristic BackBlocks can still point to other Back-
Blocks.

conservative-heuristic-bt is the Block Tree produced by the construction algorithm
described in the thesis of Ordoñez and explained in Section 3.2.2.

other-conservative-heuristic-bt is like conservative-heuristic-bt, but when setting a
block as a BackBlock we further check if any of the pointed blocks is a BackBlock, in which
case we do not put the link. Note that in this case the heuristic decides not to set a possible
BackBlock in exchange for not transforming pointed blocks into InternalBlocks.

greedy-conservative-heuristic-bt is like conservative-heuristic-bt, but when setting a
block as a BackBlock we further check if it is “greedily” convenient to do it in terms of space
(minimizing the number of blocks transformed into InternalBlocks).
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back-front-bt and other-back-front-bt modify the scan for finding first occurrences.
We now allow occurrences to appear to the right of the block itself. The rest is analogous to
conservative-heuristic-bt and other-conservative-heuristic-bt, respectively, to avoid loops in a
level.

Besides, we put a suffix -no-pad to the name when referring to some version combined with
using the techniques explained in Section 3.3.1 to remove padding. Also, we put a -compressed
suffix when referring to some version combined with using compressed components to build
its compact representation as explained in Section 3.3.2.

3.4 Experimental Results

3.4.1 Setup and Datasets

Our experiments ran on an isolated Intel(R) Xeon(R) CPU E5620 @ 2.40GHz with 96GB of
RAM and 10MB of L3 cache. The operating system is GNU/Linux, Debian 2, with kernel
4.9.0-6-amd64. The implementations use a single thread and all of them are coded in C++
and use the sdsl library (see Section 2.6 on page 20) for their internal components. The
compiler is gcc version 6.3.0, with -O9 optimization flag set.

We use the datasets dna{0.001, 1.0}, escherichia, influenza, einstein and kernel described
in Section 2.5 on page 19; we also use the suffix tree topologies dna0.001.par and dna0.01.par
to test the behavior of Block Trees on repetitive topologies, which we will use in next chapters.

3.4.2 Experiments and Structures

We designed exhaustive experiments for each of the three operations, access, rank and select.
In case of access we access every position in the input sequence (in a random order to avoid
locality issues). For rank, we query on every position the letter located in that position, in a
random order too. Finally, for select we select each of the characters in random order from
1 to the number of the characters in the string.

We ran access experiments for all the Block Tree versions of Section 3.3.7 on its padding
versions, and on bt-no-pad and bt-compressed to check the effect of the corresponding applied
techniques. We also ran rank and select using its different sets of fields on bt, and rank and
select on bt-no-pad and bt-compressed but only using the Rank set of fields.

For every structure we vary the arity r ∈ {2, 4, 8} and the max length of a string repre-
sented by a LeafBlock mll ∈ {4, 8, 16, 32, 64, 128}, and take the Pareto-optimal points from
the space×time map.
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3.4.3 Comparisons and Analysis

We show graphs of Block Trees comparing the effects of different aspects. The graphs are in
2D, where the x-coordinate represents the space in bps (bits per symbol) and the y-coordinate
is the time per operation in microseconds; the input and operation analyzed are indicated in
the title of every graph.

Figures 3.2, 3.3 and 3.4 show the effect of implementing a Block Tree version faithful
to the theoretical proposal (see Section 3.3.1), and another using the padding technique to
keep all the blocks in a level of the same length. Padding is Pareto-optimal in access and
rank, while in select they present a similar behavior. This difference is explained in time by
the additional verifications and algorithms used to solve the operations, and in space by the
additional bitvector bv_length used to mark the length of blocks in a level. This behavior
appears in all the implemented versions, so from this point the versions we show implement
the padding technique.

In Figures 3.5, 3.6 and 3.7, we compare the effect of using compressed structures for the
internal components of Block Trees (see Section 3.3.2). The graphs show how the use of
compressed components reduces the time performance typically by an order of magnitude,
while offering a small gain in space (no more than 35%). We also observe that this gain in
space is accentuated when the input sequence is not very repetitive and when compressing
the rank/select fields. Given the small space improvement versus the big time penalty we
decided to use plain components.

In Figure 3.8, we compare the effect of using the pruning improvement (see Section 3.3.5)
to further reduce the space of Block Tree. The graphs show that pruning obtains a noticeable
space improvement without a major time penalty. This improvement is bigger when the input
is not very repetitive even more highlights when dealing with suffix tree topologies. Hence,
we add the pruning technique to the canonical Block Tree.

Figure 3.9 shows the effect of allowing chains of BackBlocks of length up to c (see Sec-
tion 3.3.7). In this case c = 1 corresponds to bt ; we also consider c ∈ {2, 4, 8, 16} for
pruning-c-bt. We note that for all our inputs set c = 16 is equivalent to allow chains of arbi-
trary length, that is, pruning-16-bt = pruning-∞-bt. The evolution with c quickly converges
to pruning-∞-bt, typically using c = 2 gets very close to its smallest version.

In Figure 3.10, we compare the performance of Block Trees proposed by Ordoñez [61],
heuristic-bt and conservative-heuristic-bt (see Section 3.3.7) against our bt. Note that bt and
conservative-heuristic-bt present a very similar behavior, while heuristic-bt uses less space
at a small cost in time performance. This last point is relevant because it shows that the
worst-case scenarios for heuristic-bt (BackBlocks pointing to BackBlock or even themselves)
are very unlikely to occur.

Figure 3.11 shows the effect of concatenating the blocks in each level (heuristic-concatenate-
bt) and of forbidding self-pointers in BackBlocks (liberal-heuristic-bt) on heuristic-bt. Note
that the studied improvements are imperceptible, which means that there is no significant
gain on concatenating blocks and confirms the unlikeliness of worst-case scenarios.
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Figure 3.2: Performance of access in Block Trees with and without padding. The y-axis is
time in microseconds in log-scale.
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Figure 3.3: Performance of rank in Block Trees with and without padding. The y-axis is time
in microseconds in log-scale.
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Figure 3.4: Performance of select in Block Trees with and without padding. The y-axis is
time in microseconds in log-scale.
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Figure 3.5: Performance of access in Block Trees using plain and compressed components.
The y-axis is time in microseconds in log-scale.
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Figure 3.6: Performance of rank in Block Trees using plain and compressed components. The
y-axis is time in microseconds in log-scale.
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Figure 3.7: Performance of select in Block Trees using plain and compressed components.
The y-axis is time in microseconds in log-scale.
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Figure 3.8: Performance of access in Block Trees using the pruning algorithm and not using
it. The y-axis is time in microseconds in log-scale.
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Figure 3.9: Performance of access in pruning-c-bt for c ∈ {1, 2, 4, 8, 16}. The y-axis is time
in microseconds in log-scale.
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Figure 3.10: Performance of access in Block Trees proposed in the thesis of Ordoñez and our
Block Tree. The y-axis is time in microseconds in log-scale.
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Figure 3.11: Performance of access in Block Tree variants of the heuristic-bt. The y-axis is
time in microseconds in log-scale.
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Figure 3.12: Performance of access in Block Trees using different criteria to form back point-
ers. The y-axis is time in microseconds in log-scale.
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Figure 3.13: Performance of access in Block Trees allowing front pointers and our Block Tree.
The y-axis is time in microseconds in log-scale.
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Figure 3.14: Performance of rank in Block Trees using different sets of fields to implement
the operation. The y-axis is time in microseconds in log-scale.
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Figure 3.15: Performance of select in Block Trees using different sets of fields to implement
the operation. The y-axis is time in microseconds in log-scale.
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In Figure 3.12, we compare conservative-heuristic-bt, other-conservative-heuristic-bt and
greedy-conservative-heuristic-bt (see Section 3.3.7) to show the effect of changing the crite-
ria for forming back pointers from conservative-heuristic-bt. Note that differences between
conservative-heuristic-bt and greedy-conservative-heuristic-bt are imperceptible. On the other
hand, other-conservative-heuristic-bt incurs in a space penalty.

In Figure 3.13, we study the option of allowing pointers to next blocks through back-front-
bt and other-back-front-bt (see Section 3.3.7). These graphs show that differences between
other-back-front-bt and bt are imperceptible. On the other hand, back-front-bt incurs in a
space penalty. The behavior on kernel is different from the rest; we are not aware of any
reason for this.

In Figures 3.14 and 3.15, we study the different options for storing the rank/select infor-
mation described in Section 3.3.6. From these graphs we note that, for both rank and select,
the theoretical time penalty incurred by the Rank set of fields is not significant, since most
of the time this set is Pareto Optimal to the others, except NoBack set. For this reason, we
set the Rank set as the default set of fields for Block Trees. The NoBack set achieves a small
reduction in space at the cost of an order of magnitude time penalty.

In conclusion, we discovered the following: using the padding technique shows to be
Pareto-optimal against not using it; changing plain components to statistical compressed ones
is not worth it, as it incurs in an order of magnitude time penalty in exchange for little space
improvement; although theoretically inferior, the Rank set of fields, due to its simplicity, is the
better approach to implement rank and select; in practice, predicted worst case scenarios are
unlikely to happen, as its corresponding variants does not present a significant time penalty,
which let us build Block Tree instances using even less space; there is no considerable space
improvement on concatenating the levels of the Block Tree on our variants, nor using front
pointers. Finally, there is a diverse number of variants with similar time/space behavior to
the canonical Block Tree bt, we offer all of them in the code publicly available at https:
//github.com/elarielcl/BlockTrees. For researchers and practitioners we recommend to
use two options: bt for theoretical guarantees, and heuristic-bt for better compression. It is
important to mention that the space difference between these two only happens when the
input is not very repetitive, if the input is very repetitive we advice to use bt.
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Chapter 4

Compression of Repetitive Differential
Arrays

In this chapter we present adaptations of previous data structures to represent differential
encodings (Section 1.2 on page 5) of arrays. These are repetition-aware data structures,
that is, data structures bounded by the size of some dictionary compressor; therefore, our
solutions are useful when the differential encoding of the array is repetitive. Our target input
will be the suffix array A, the inverse suffix array A−1, and the longest-common-prefix array
LCP of repetitive sequences, which inherit the repetitiveness of its input on their differential
encodings [23].

Our first adaptation is an improvement of a previous attempt to use grammar compres-
sion to encode A differentially, the LCSA. We note that this is a general representation of
differential encodings (not specific to A), and we add fields to speed up its access queries.
Our second and third solutions are adaptations of RSA-structures, GCC and Block Tree,
where we show the similarity between answering a rank query and answering access to the
original array in a differential encoding of it.

4.1 LCSA Adaptation

Recall from Section 2.2 on page 15 that LCSA [27] is a grammar-compressed representation
of the suffix array A, where Re-Pair [42] is used to compress the differential encoding of the
array and a sampling of the array, with sampling rate r, A′[1, dn/re], is added on top. In
general terms, to recover a particular cell A[i] they take the nearest sample to the left and
add all the symbols between the sample and i, of the compressed differential representation,
this because A[i] = A[s] +

∑i
j=s+1 A[j] − A[j − 1]. They also add a bitvector L[1, n] that

indicates the positions in T where each symbol of the initial rule S → C[1]...C[c] starts.

More formally, the process to recover a particular cell A[i] of the suffix array is as follows:

1. Identify the nearest sample to the left of i : A′[k = b(i−1)/rc+1] = A[s = (k−1)r+1].
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2. Decompress (A[s + 1]− A[s])...(A[i]− A[i− 1]) from the grammar and add it to A[s].
This process is on-the-fly, that is, we are adding differential values to the result at the
time we are decompressing them.

a. Identify the symbols C[x] and C[y] containing (A[s+ 1]−A[s]) and (A[i]−A[i−1]),
respectively. For this, rank on L is used.

b. Expand C[x]...C[y] and get the desired values from this expansion.

The authors note that, if x 6= y, it is not necessary to completely expand C[y], because they
do a left-to-right expansion of rules. That this, for the Re-Pair rules A → BC they first
expand B and then, they expand C, so we do not expand C in case (A[i] − A[i − 1]) was
previously expanded by B. We note we could apply the same optimization on C[x] if we
do a right-to-left expansion. Our first adaptation to LCSA add this optimization; we call it
LCSA.

Despite these optimizations, it could happen that the sample and i fall in the same symbol
C[x = y], and in this case none of the optimizations apply. To handle this case, we propose
our second adaptation, which consists in attaching the length of the expansions at every rule.
With these lengths we can decide beforehand when an expansion is necessary. We call this
adaptation LCSA-lengths.

Finally, our third adaptation consists in replacing the uniform sampling of A for a sampling
of A in the 1s of the bitvector L, that is, a sampling in the start position of the symbols of
the initial rule S → C[1]...C[c], A′[1, c]. Note that in this case, the lengths of the expansions
do not help, since the sampled positions are always at the beginning of the symbols of the
initial rule; we call LCSA-c-sampling to this adaptation.

Note that, although these solutions were built to represent suffix arrays, they can represent
any array A, because it is not assumed that A is a suffix array in the design of the solution.

4.2 GCC Adaptation

Recall from Section 2.1 on page 14 that GCC [60] is an RSA-structure that grammar-
compresses its input with Re-Pair [42] and augments the nonterminals B with information of
the length of their expansion l(B) and the number of as in their expansion, ra(B) for every
a ∈ Σ. They also store the same bitvector L that LCSA uses and a sampling rnka of the
number of as in the prefix of T before the sampled position. This sampling is stored uniformly
in T (GCCN) or in the starting positions of the symbols of the initial rule S → C[1]...C[c]
(GCCC).

To answer ranka(i), GCCC works as follows:

– Find the rule containing the text position i, C[p]. This is done by answering rank on
L.

– Initialize a variable as, which is a counter of the number of as, with the sampled rank
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for the rule C[p], rnka[p].

– Start to expand C[p] recursively:

– If we are expanding a rule B → b: If b = a we increment as by one. Return as.

– If we are expanding a rule A→ BC: We use l(B) and the information of previous
expansions to decide whether T [i] is in the expansion of B or in the expansion of
C. In the first case we continue expanding B recursively, and in the second case
we increment as by ra(B) and continue expanding C recursively.

Note the similarity between this procedure and the one used for LCSA-lengths: Changing
the sampling of rnkas by prefix sums of the differential encoding we get exactly a sampling
of the original array: A[i] = A[1] +

∑i
j=2A[j]−A[j − 1]. The only difference in the analogy

is that in LCSA-lengths the ra(B) fields attached to the rules do not exist. If we add the
field partial-sum to the nonterminals, which stores the sum of the symbols in the expansion
of the rule, the analogy is complete.

Our adaptation of GCC to represent arrays consists on creating the GCC representation
of the differential encoding of the array and change:

– The samplings of rnka by a sampling of the original array A.

– The fields ra(B) by a field partial-sum(B), which stores the sum of the differentials
expanded by B.

The method to access a position of the differential array is the access method for GCC and
the method to access the original array A is the same method used by GCC to answer rank,
replacing the rank information by the new field. That is, for GCCC:

– Find the rule containing the text position i, C[p]. This is done by answering rank on
L.

– Initialize a variable r, which will contain the partial sum from the sampling to i, as the
sampled value of A for the rule C[p].

– Start to expand C[p] recursively:

– If we are expanding a rule B → b: We increase r by b and return r.

– If we are expanding a rule A→ BC: We use l(B) and the information of previous
expansions to decide whether A[i] − A[i − 1] is in the expansion of B or in the
expansion of C. In the first case we continue expanding B recursively, and in
the second case we increment r by partial-sum(B) and continue expanding C
recursively.

We take both GCCN and GCCC, and create the corresponding differential encodings
named in the same way. We showed the adaptation in the case of GCCC, the adaptation
for GCCN is analogous but considering a regular sampling of values in the input sequence,
instead of the sampling in the initial rule of GCCC.
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4.3 Block Tree Adaptation

Following the ideas of our GCC adaptation from the previous section, we use Block Trees
to compress the differential encoding of the array A and change the fields of nodes used to
answer rank by fields storing the sum of the differences they represent.

More formally, we compress the differential encoding of an array A with a Block Tree and
in the nodes v of the Block Tree we replace:

– v.rankc by v.partial-sum, which is the sum of the symbols of v.blk.
– v.fb-rankc by v.fb-sum, which is the sum of the symbols in the maximal suffix of v.ptr.blk

overlapping with the first occurrence of v.blk.
– v.pfb-rankc by v.pfb-sum, which is the sum of the symbols in the maximal prefix of
v.ptr.blk not overlapping with the first occurrence of v.blk.

With these changes, an access query in the Block Tree corresponds to access on the
differential encoding of A, and the adaptation of rank using these new fields corresponds to
an access to the original array A. This adaptation to retrieve a value of A is called accessA
and is recursive in a node v for the ith element, as follows:

– If v is a LeafBlock, we add the symbols in v.blk[1, i] and return it.
– If v is a BackBlock the query is translated into v.ptr or the next block according to i

and v.off. If i ≤ b − v.off then the we answer accessA(i + v.off)(in v.ptr) −v.pfb-sum,
otherwise we return accessA(i− b+ v.off) (in the block next to v.ptr) + v.fb-sum.

– If v is an InternalBlock the query is translated into some of its children according to i.
Suppose w is the

(⌊
i−1
r

⌋
+ 1
)
-th child of v, then we answer accessA((i− 1) mod r+ 1)

(in w) plus the sum of the partial-sum fields of its left siblings.

We call this adaptation DABT (Differential Array Block Tree). We also propose a ver-
sion where instead of storing the differences at LeafBlocks we store the prefix sums of its
corresponding block; thus, we can recover this value in one access. We call this version
DABT-prefix.

4.4 Experimental Results

4.4.1 Setup and Datasets

Our experiments ran on an isolated Intel(R) Xeon(R) CPU E5-2407 @ 2.40GHz with 256GB
of RAM and 10MB of L3 cache. The operating system is GNU/Linux, Debian 2, with kernel
4.9.0-8-amd64. The implementations use a single thread and all of them are coded in C++
and use the sdsl library (see Section 2.6 on page 20) for their internal components, GCCC
and GCCN are adaptations of the implementations used in its original publication [60]. The
compiler is gcc version 6.3.0, with -O9 optimization flag set.
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We use the datasets dna{0.001, 0.01, 0.1, 1.0}, escherichia, influenza, einstein and kernel
described in Section 2.5 on page 19.

4.4.2 Experiments and Structures

We run access experiments on the suffix array A, its inverse A−1 and the LCP array explained
in Section 1.6 on page 11. Our experiments build the corresponding arrays for each of the
inputs and average 100,000 random access queries in each of them.

We compare the following structures:

LCSA, LCSA-lengths & LCSA-c-sampling. Our adaptations of LCSA [27] explained
in Section 4.1. The first two vary sampling-rate ∈ {16, 32, 64, 128, 256, 512, 1024, 2048},
for the sampling of the absolute values.

GCCC & GCCN. Our adaptations of GCC [60] explained in Section 4.2. We vary the
same parameters as the authors suggest for GCC in their original publication.

DABT & DABT-prefix. Our adaptations of Block Tree (Chapter 3). We use the variants
bt (theoretical guarantee) and heuristic-bt (low space usage). We vary the parameters
r ∈ {2, 4, 8} and mll ∈ {4, 8, 16, 32, 64, 128}.

RLCSA (with compressed-H). The RLCSA [45] explained in Section 2.2 on page 15.
Same implementation of RLCSA used by Ordoñez el al. [53]; access to A is done with
the help of a sampling on A, access to A−1 is done without sampling. We vary sa-
sampling ∈ {32, 64, 128, 256} and block-size ∈ {16, 32, 64}. This implementation also
includes the compressed version of the bitvector H from Section 2.3.3 on page 17.
Recall that this array stores the LCP array in text-order and an access to A is needed
to recover the original value. The space and time shown does not consider space used
for A nor its access time.

We only show the Pareto-optimal results of each structure.

4.4.3 Results and Analysis

We show graphs of the structures answering access for A,A−1 and LCP for each of the inputs.
The graphs are in 2D, where the x-coordinate represents the space in bps (bits per symbol)
and the y-coordinate is the time per operation in microseconds; the input and corresponding
array are indicated in the title of every graph.

Figure 4.1 shows that the LCSA structures, in general, dominate to GCC structures,
both using RePair grammar compression in their internal workings. This can be explained
because LCSA has a simpler implementation and does not store/use an extra field of partial
sums. DABT structures are the fastest, but they are the largest too, achieving as much
as 5 bps for some inputs in their smallest version. RLCSA is the structure achieving the
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Figure 4.1: Performance of access in different representations of the suffix array. The y-axis
is time in microseconds in log-scale.
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Figure 4.2: Performance of access in different representations of the inverse suffix array. The
y-axis is time in microseconds in log-scale.
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Figure 4.3: Performance of access in different representations of the LCP array. The y-axis
is time in microseconds in log-scale.
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Table 4.1: Recommended structures for practitioners depending on the accessed array and
the repetitiveness of the input sequence.

Repetitive Highly repetitive
A RLCSA LCSA-lengths
A−1 LCSA-lengths DABT
LCP H H

smallest space, except for the most repetitive inputs where the sampling component is a
barrier for further reducing space. LCSA can be up to two orders of magnitude slower than
LCSA-lengths, which shows that the length field added captures the bad case of LCSA.
For repetitive inputs, LCSA-c-sampling is small and slow, and for non-repetitive inputs it
is fast and large, what is consistent with the fact that its sampling is proportional to the
repetitiveness of the input. GCCC is slower than GCCN as in the structures they are based
on, but similar in space. DABT-prefix and DABT are similar in space and time, but the first
presents a broader trade-off.

In the case of A−1, Figure 4.2 shows that RLCSA is several orders of magnitude slower that
other structures, this because this implementation does not store a sampling for A−1. RLCSA
keeps being the smallest structure in the majority of inputs, however, the other options
present (on their smallest versions) similar space or even smaller for the most repetitive
inputs.

Figure 4.3 shows that compressed-H dominates all the other structures representing LCP ,
which makes it the best option when LCP must be used together with A in the case of
repetitive inputs.

In Table 4.1, we summarize recommended structures depending on the accessed array and
the repetitiveness of the input sequence. In the case of the suffix array A, we recommend
RLCSA for repetitive inputs, because it is better at capturing the repetitiveness of these
inputs, and in the case of highly repetitive inputs we recommend LCSA-lengths. For the
inverse suffix array A−1, we recommend LCSA-lengths for repetitive inputs, because the
smallest structure, the RLCSA, it is implemented without sampling and times obtained are
out of competition. For highly repetitive inputs, DABT turns out to be space-competitive
and is the structure of choice in this case for its superior time performance. Finally, for LCP
H is the alternative of choice for its dominance in the space×time map.
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Chapter 5

Block Tree Compressed Topology

In this chapter we show how to use Block Trees to compress the balanced parentheses (BP)
representation of the topology of an ordinal tree. This structure is aimed to handle tree
topologies that present repeated patterns on their structures, because the BP representation
inherits this repetitiveness. For example, repeated subtrees in the topology map to repeated
substrings in the BP representation. This repetitiveness has been exploited before in a BP
representation based on grammar compression called Grammar Compressed Tree (GCT) [53],
presented in Section 2.4.2 on page 19.

Recall from Section 1.4 on page 7 that a comprehensive list of topology operations can
be implemented by solving a set of basic operations or primitives on its BP representation.
We implement these primitives on a Block Tree whose input is a BP representation. To
make them more efficient we follow the same basic ideas used to build the rmM-tree [55],
which were later applied to build the GCT, that is, we augment the nodes of the compressed
representation with information that allows us to solve the primitives more efficiently.

Our representation is called BT-CT (Block Tree Compressed Topology). Although we are
unable to prove useful upper bounds on the operation times, the BT-CT performs very well
in practice, as we show in Section 5.4.

We first present the Block Tree augmentation, then the implementation of the operations
with some further optimizations on them. Finally, Section 5.4 tests tree topology operations,
which were implemented on top of the BT-CT using the methodology explained in Section 1.4
on page 7.

5.1 Block Tree Augmentation

Below we present the added fields to implement the primitives on BT-CT. We start from a
simple Block Tree representing a BP sequence P , without the fields needed to support rank
and select; note that in this case σ = 2, so we only need to store rank information for one of
the symbols, because the other can be inferred. We note that many fields can be computed
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from other fields. For this reason, we separate the description into stored fields, which are
actually stored in the compact representation of BT-CT (recall Section 3.2.3 on page 27) and
fields computed on the fly, which can be inferred from the stored fields.

5.1.1 Stored Fields

We augment the nodes of the Block Tree with the following fields:

– For every node v that represents the block v.blk = P [i, i+ b− 1]:
– rank1, the number of 1s in v.blk, that is, rank1(i+ b− 1)− rank1(i− 1) in P .
– lrank (leaf rank), the number of 10s (i.e., leaves in BP) that finish inside v.blk,

that is, leaf-rank(i+ b− 1)− leaf-rank(i− 1) in P .
– lbreaker (leaf breaker), a bit telling whether the first symbol of v.blk is a 0 and the

preceding symbol in P is a 1, that is, whether P [i− 1, i] = 10.
– mexcess, the minimum excess reached in v.blk, that is, min-excess(i, i + b − 1) in
P .

– mcount, the number of times v.mexcess is reached in v.blk, that is, min-count(i, i+
b− 1) in P .

– For every BackBlock node v that represents v.blk = P [i, i+ b− 1] and points to its first
occurrence O = P [j+ o, j+ o+ b− 1] inside u.blk = P [j, j+ b− 1] with offset v.off = o:
– fb-rank1, the number of 1s in the prefix of O contained in u.blk (O∩u.blk, the first

block spanned by O), that is, rank1(j + b− 1)− rank1(j + o− 1) in P .
– fb-lrank, the number of 10s that finish in O ∩ u.blk, that is, leaf-rank(j + b− 1)−

leaf-rank(j + o− 1) in P .
– fb-lbreaker, a bit telling whether the first symbol of O is a 0 and the preceding

symbol is a 1, that is, whether P [j + o− 1, j + o] = 10.
– fb-mexcess, the minimum excess reached in O∩u.blk, that is, min-excess(j+o, j+
b− 1).

– fb-mcount, the number of times v.fb-mexcess is reached in O ∩ u.blk, that is,
min-count(j + o, j + b− 1).

– m-fb, a bit telling whether the minimum excess of u.blk is reached in O ∩ u.blk,
that is, whether min-excess(i, i+ b− 1) = min-excess(j + o, j + b− 1).

5.1.2 Fields Computed on the Fly

In the description of the operations we will use other fields that are computed in constant
time from those we already store:

– For every node v that represents v.blk = P [i, i+ b− 1]

– rank0, the number of 0s in v.blk, that is, b− v.rank1.
– excess, the excess of 1s over 0s in v.blk, that is, v.rank1− v.rank0 = 2 · v.rank1− b.
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– For every BackBlock node v that represents v.blk = P [i, i+ b− 1] and points to its first
occurrence O = P [j+ o, j+ o+ b− 1] inside u.blk = P [j, j+ b− 1] with offset v.off = o:

– fb-rank0, the number of 0s in O ∩ v.blk, that is, (b− o)− v.fb-rank1.

– pfb-rank0|1, the number of 0s|1s in the prefix of u.blk that precedes O (u.blk−O),
that is, u.rank0|1 − v.fb-rank0|1.

– fb-excess, the excess in O ∩ u.blk, that is, v.fb-rank1 − v.fb-rank0.

– sb-excess, the excess in O− u.blk (second block spanned by O), that is, v.excess−
v.fb-excess.

– pfb-lrank, the number of 10s that finish in u.blk−O, that is, u.lrank− v.fb-lrank.

– sb-mexcess, the minimum excess in O−u.blk, that is, min-excess(j+b, j+b+o−1)
in P . We store either v.fb-mexcess or v.sb-mexcess, the one that differs from
v.mexcess. If v.fb-mexcess is stored (v.m-fb is 0), then v.sb-mexcess = v.mexcess−
v.fb-excess. If v.sb-mexcess is stored (v.m-fb is 1), then v.fb-mexcess = v.mexcess.

– sb-mcount, the number of times v.sb-mexcess is reached in O − u.blk, that is,
min-count(j+b, j+b+o−1) in P . We also store only v.fb-mcount or v.sb-mcount,
the one that counts other minimum than v.mexcess, or store v.sb-mcount if both
count the same minimum. If v.fb-mcount is stored (v.m-fb is 0), then v.sb-mcount =
v.mcount. If v.sb-mcount is stored (v.m-fb is 1), we check whether v.mexcess =
v.fb-excess+v.sb-mexcess, if that is the case v.fb-mcount = v.mcount−v.sb-mcount,
otherwise, v.fb-mcount = v.mcount.

– Mexcess-suf ,fb-Mexcess-suf and sb-Mexcess-suf. They are the analogous to the
mexcess fields but considering the maximum reached in a right-to-left scan or
suffix of the corresponding zone. Note that these fields can be computed from
the corresponding excess and mexcess fields, because the maximum in a suffix is
reached exactly next to the position where the minimum in a prefix is reached.
For example, v.fb-Mexcess-suf = v.fb-excess− v.fb-mexcess.

For the algorithms described in the next section we use both, stored fields and fields computed
on the fly, indistinctly.

5.2 Description of Primitives

We obtain the basic operations access, rank, excess and select from the Block Tree on its RSA-
structure described in Chapter 3. The rest of the operations are leaf-rank(i), leaf-select(j),
fwd-search(i, d), bwd-search(i, d), min-excess(i, j), min-count(i, j) and min-select(i, j, t).

We first explain how to solve leaf-rank and leaf-select, which are extensions of rank and
select operations. Then we describe fwd-search(i, d) and bwd-search(i, d) only for d ≤ 0,
which suffices to implement topology operations from Section 1.4 [51] on page 7. Finally we
describe the algorithms to solve min-excess(i, j), min-count(i, j) and min-select(i, j, t).
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5.2.1 leaf-rank(i) and leaf-select(j)

The implementations of these operations are analogous to those for rankc(i) and selectc(i)
respectively, in the base Block Tree. The only two differences are that in LeafBlocks we
consider the lbreaker field to check whether the block starts with a leaf, and in BackBlocks
we consider fields lbreaker and fb-lbreaker to check whether we have to add or remove one
leaf when moving to a leftward node.

Recursively, in a node v, the leaf-rank(i) operation is as follows:

– If the node is a LeafBlock we do a linear scan on v.blk counting leaves (10s in P ) and
consider the v.lbreaker into the sum.

– If the node is an InternalBlock, we transform the query into the corresponding child
and use the sum of the lrank fields of its left siblings to adjust the answer.

– In the case the node is a BackBlock we use v.off to relocate the query into one of the
pointed blocks, v.pfb-lrank and v.fb-lrank to adjust the result of the new query, and
v.lbreaker and v.fb-lbreaker to fix the error caused by shifting. This error happens when
these two bits are different and could increase/decrease the result by one.

Recursively, in a node v, the leaf-select(j) operation is as follows:

– If the node is a LeafBlock we initialize a counter in 1 or 0, depending on v.lbreaker,
then we do a linear scan on v.blk increasing the counter every time we see a 10. If
the counter reaches j we return the corresponding position; if this does not happen we
return ∞.

– If the node is an InternalBlock we use the lrank fields of its children, to look for the
corresponding k-th child containing the answer (we return ∞ if none is found), and to
relocate the query. Finally, we adjust the query by adding (k − 1)b/r to the result.

– In case the node is a BackBlock we use v.pfb-lrank, v.fb-lrank, v.lbreaker and v.fb-lbreaker
to relocate the query into one of the pointed blocks and v.off to adjust the result.

Like rankc(i) and selectc(i), our operations work O(1) time per level, and then have their
same time complexity, given in Chapter 3.

5.2.2 fwd-search(i, d) and bwd-search(i, d)

We show how to solve both operations for d ≤ 0. Thus we aim to find the smallest position
j > i where the excess of P [i+ 1..j] is d for fwd-search(i, d), and the largest j < i where the
excess of P [j + 1..i] is −d ≥ 0 for bwd-search(i, d).

We describe our solutions as recursive procedures fwd-search(i, j) and bwd-search(i, j)
with two global variables: d from the input, and e. Variables i and j are the limits of the
search for the currently processed node, and e is the cumulative excess of the part of the range
that has already been processed. The procedure is initially called at the Block Tree root with
fwd-search(i, n) or bwd-search(1, i) and with e = 0. If at some point e reaches d for fwd-search
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or −d for bwd-search, we have found the answer to the search. The general idea is to traverse
the range of the current node v left to right for fwd-search, and right to left for bwd-search,
using the fields v.mexcess, v.fb-mexcess and v.sb-mexcess for fwd-search and v.Mexcess-suf,
v.fb-Mexcess-suf and v.sb-Mexcess-suf for bwd-search to speed up the procedure.

fwd-search(i, j) in a node v is as follows:

– If the search range spans the entire block v.blk (i.e., j − i = b) and the answer is not
reached inside v (i.e., e+ v.mexcess > d), then we increase e by v.excess and return∞.

– If v is a LeafBlock we scan v.blk bitwise, increasing e for each 1 and decreasing e for
each 0. If e reaches d at some index k, we return k; otherwise we return ∞.

– If v is an InternalBlock, we identify the k-th child of v, which contains position i+1, and
the m-th, which contains position j (it could be that k = m). We then call fwd-search
recursively on the k-th to the m-th children, intersecting the query range with the
extent of each child (the search range will cover the children after the k-th and before
the m-th completely, and these calls will take constant time in case the answer is not
reached in that child). As soon as any of these calls returns a non-∞ value, we adjust
(i.e., shift) and return it. If all of them return ∞, we also return ∞.

– If v is a BackBlock we must translate the query to the original block O, which starts
at offset v.off in u.blk, where u = v.ptr. We first check whether the query covers the
prefix of v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 0 and j ≥ b − v.off). If so, we
check whether we can skip O ∩ u.blk, namely if e + v.fb-mexcess > d. If we can skip
it, we just update e to e + v.fb-excess, otherwise we call fwd-search recursively on the
intersection of u.blk and the translated query range. If the answer is not ∞, we adjust
and return it. Otherwise, we turn our attention to the node u′ next to u. Again, we
check whether the query covers the suffix of v.blk contained in u′.blk, O − u.blk (i.e.,
j = b and i ≤ b − v.off). If so, we check whether we can skip O − u.blk, namely if
e+v.sb-mexcess > d. If we can skip it, we just update e to e+v.sb-excess, otherwise we
call fwd-search recursively on the intersection of u′.blk and the translated query range.
If the answer is not ∞, we adjust and return it. Otherwise, we return ∞.

fwd-search examples: Figure 5.1 shows two examples on the execution of our algorithm
for fwd-search. On the left, fwd-search is queried on a suffix of an InternalBlock v with a
cumulative excess of e = 5. The query is translated to a suffix of the first child of v, which
returns no answer and changes the cumulative excess to e = 2. Then the query continues,
covering the second and third children of v completely, where it instantly (using the fields
mexcess and excess) returns no answer and updates the corresponding cumulative excess.
Finally, the original query returns no answer. On the right, fwd-search is queried on a
substring of a BackBlock u with a cumulative excess of e = 1. The query is translated to
a suffix of the first pointed block, where it returns no answer and changes the cumulative
excess to e = 2. Then the query continues to a prefix of the second pointed block, where the
answer is found and relocated to the original node u.

bwd-search(i, j) in a node v is as follows:

– If the search range spans the entire block v.blk (i.e., j − i + 1 = b) and the answer is
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Figure 5.1: Two examples on the execution of our algorithm for fwd-search.

not reached inside v (i.e., e+ v.Mexcess-suf < −d), then we increase e by v.excess and
return −∞.

– If v is a LeafBlock we scan v.blk bitwise (right to left), increasing e for each 1 and
decreasing e for each 0. If e reaches −d at some index k, we return k− 1; otherwise we
return −∞.

– If v is an InternalBlock, we identify the k-th child of v, which contains position i, and
the m-th, which contains position j (it could be that k = m). We then call bwd-search
recursively on the m-th to the k-th children, intersecting the query range with the
extent of each child (the search range will cover the children after the m-th and before
the k-th completely, and these calls will take constant time in case the answer is not
reached in that child). As soon as any of these calls returns a non-(−∞) value, we
adjust (i.e., shift) and return it. If all of them return −∞, we also return −∞.

– If v is a BackBlock we must translate the query to the original block O, which starts
at offset v.off in u.blk, where u = v.ptr. We first analyze the node u′ next to u and
check whether the query covers the suffix of v.blk contained in u′.blk, O − u.blk (i.e.,
j = b and i ≤ b − v.off). If so, we check whether we can skip O − u.blk, namely if
e + v.sb-Mexcess-suf < −d. If we can skip it, we just update e to e + v.sb-excess,
otherwise we call bwd-search recursively on the intersection of u′.blk and the translated
query range. If the answer is not −∞, we adjust and return it. Otherwise, we turn our
attention to the node u. Again, we check whether the query covers the prefix of v.blk
contained in u.blk, O ∩ u.blk (i.e., if i = 1 and j ≥ b − v.off). If so, we check whether
we can skip O ∩ u.blk, namely if e + v.fb-Mexcess-suf < −d. If we can skip it, we just
update e to e+ v.fb-excess, otherwise we call bwd-search recursively on the intersection
of u.blk and the translated query range. If the answer is not −∞, we adjust and return
it. Otherwise, we return −∞.

bwd-search examples: Figure 5.2 shows two examples on the execution of our algorithm
for bwd-search. On the left, bwd-search is queried on a substring of an InternalBlock v with
a cumulative excess of e = −2 (recall our goal is to get e = 2). The query is translated to
a prefix of the third child of v, which returns no answer and changes the cumulative excess
to e = 1. Then the query continues, covering the second child of v completely, where it
returns f (the Mexcess-suf field is used to realize the answer resides inside this block), which
is relocated and returned. On the right, bwd-search is queried on a prefix of a BackBlock u
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Figure 5.2: Two examples on the execution of our algorithm for bwd-search.

with a cumulative excess of e = −4. The query is translated to a prefix of the second pointed
block, where it returns no answer and changes the cumulative excess to e = −2. Then the
query continues to the suffix of the first block corresponding to the first part of u.blk, where
it instantly returns no answer and updates the cumulative excess to e = 0 (using the fields
fb-Mexcess-suf and fb-excess).

5.2.3 min-excess(i, j), min-count(i, j) and min-select(i, j, t)

These operations seek the minimum excess in P [i..j], the number of times this excess is
reached and the position of the t-th of these minima. We will also start at the root with the
global variable e set to zero. A local variable m will keep track of the minimum excess seen
in the current node, and will be initialized at m = 1 in each recursive call for min-excess and
min-count. For min-select we will assume that m contains min-excess(i, j), which is the first
step of this operation. In the case of min-count we also initialize a local variable c = 0, which
contains the number of times the minimum is reached in that node. For min-select we also
set the parameter t as a global variable that decreases every time a minimum is found. The
idea is analogous to that of fwd-search: traverse the node left to right and use the mexcess
and mcount fields to speed up the traversal.

min-excess(i, j) in a node v is as follows:

– If the query covers the entire block v.blk (i.e., j − i+ 1 = b), we increase e by v.excess
and return v.mexcess.

– If v is a LeafBlock we record the initial excess in e′ = e and scan v.blk bitwise, updating
e for each bit read as in operation fwd-search. Every time we have e − e′ < m, we
update m = e− e′. At the end of the scan we return m.

– If v is an InternalBlock, we identify the k-th child of v, which contains position i, and
the m-th, which contains position j (it could be that k = m). We then call min-excess
recursively on the k-th to the m-th children, intersecting the query range with the
extent of each child (the search range will cover the children after the k-th and before
them-th completely, so these will take constant time). We return the minimum between
all their answers (composed with their corresponding prefix excesses).

– If v is a BackBlock we translate the query to the original block O, which starts at offset
v.off in u.blk, where u = v.ptr. We first check whether the query covers the prefix of
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Figure 5.3: Two examples on the execution of our algorithm for min-excess.

v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 1 and j ≥ b − v.off). If so, we simply
set m = v.fb-mexcess and update e to e + v.fb-excess. Otherwise, we call min-excess
recursively on the intersection of u.blk and the translated query range, and record its
answer inm. We now consider the block u′ next to u and again check whether the query
covers the suffix of v.blk contained in u′.blk, O−u.blk (i.e., if j = b and i ≤ b−v.off). If
so, we just set m = min(m, v.fb-excess+ v.sb-mexcess) and update e to e+ v.sb-excess.
Otherwise, we call min-excess on the intersection of u′.blk and the translated query
range, record its answer in m′, and set m = min(m, v.fb-excess + m′). Finally, we
return m.

min-excess examples: Figure 5.3 shows two examples on the execution of our algorithm
for min-excess. On the left, min-excess is queried on a prefix of an InternalBlock v with a
cumulative excess of e = −2. The query is translated to the first child of v, which covers
completely, returning −2 instantly and changing the cumulative excess to e = 1 (using the
fields mexcess and excess). Then the query continues to a prefix of the second child of v,
where it returns −6 and changes the cumulative excess to e = −2. Finally, the minimum
from the second child is chosen and readjusted to −3. On the right, min-excess is queried on a
suffix of a BackBlock u with a cumulative excess of e = 1. The query is translated to a suffix
of the first pointed block, where it returns −3 and changes the cumulative excess to e = 2.
Then the query continues to the prefix of the second block corresponding to the second part
of u.blk, where it instantly returns −2 and updates the cumulative excess to e = 4 (using the
fields sb-mexcess and sb-excess). Finally, the minimum from the first pointed block is chosen
and returned.

min-count(i, j) will return both the minimum in v.blk[i..j] and the number of times this
minimum is reached. Recursively in a node v, min-count(i, j) works as follows:

– If the query covers the entire block v.blk (i.e., j − i+ 1 = b), we increase e by v.excess
and return v.mexcess and v.mcount.

– If v is a LeafBlock we record the initial excess in e′ = e and scan v.blk bitwise, updating
e for each bit read as in operation fwd-search. Every time we have e − e′ = m, we
increase c by 1, otherwise if e − e′ < m update m = e − e′ and set c to 1. At the end
of the scan we return m and c.

– If v is an InternalBlock, we identify the k-th child of v, which contains position i, and
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the m-th, which contains position j (it could be that k = m). We then call min-count
recursively on the k-th to the m-th children, intersecting the query range with the
extent of each child (the search range will cover the children after the k-th and before
them-th completely, so these will take constant time). We return the minimum between
all their answers (composed with their corresponding prefix excesses) and the sum of
the returned counts from the children where this minimum was reached.

– If v is a BackBlock we translate the query to the original block O, which starts at offset
v.off in u.blk, where u = v.ptr. We first check whether the query covers the prefix of
v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 1 and j ≥ b− v.off). If so, we simply set
m = v.fb-mexcess, c = v.fb-mcount and update e to e+ v.fb-excess. Otherwise, we call
min-count recursively on the intersection of u.blk and the translated query range, and
record its answer in m and c. We now consider the block u′ next to u and again check
whether the query covers the suffix of v.blk contained in u′.blk, O − u.blk (i.e., if j = b
and i ≤ b − v.off). If so, we just set m = min(m, v.fb-excess + v.sb-mexcess) and put
on c the corresponding value, that is, v.sb-mcount if the minimum reached there was
less than m, keep c intact if the minimum was greater, and increase c by v.sb-mcount
if the minimum was the same as m, and update e to e + v.sb-excess. Otherwise, we
call min-count on the intersection of u′.blk and the translated query range, record its
answer in m′ and c′, and set m = min(m, v.fb-excess + m′) and c correspondingly as
before. Finally, we return m and c.

min-select(i, j) (recall t is a global variable to the procedure) in a node v is as follows:

– If the search range spans the entire block v.blk (i.e., j − i + 1 = b) and the answer is
not reached inside v (i.e., e+ v.mexcess > m or e+ v.mexcess = m but v.mcount < t),
then we increase e by v.excess, decrease t by v.mcount if the minimum is reached, and
return ∞.

– If v is a LeafBlock we scan v.blk bitwise, updating e for each bit read as in operation
fwd-search. If e reaches m at some index k, then we decrease t by 1; if t = 0 we return
k. If t does not reach 0 in this scan, we return ∞.

– If v is an InternalBlock, we identify the k-th child of v, which contains position i, and
the m-th, which contains position j (it could be that k = m). We then call min-select
recursively on the k-th to the m-th children, intersecting the query range with the
extent of each child (the search range will cover the children after the k-th and before
the m-th completely, and these calls will take constant time in case the answer is not
reached in that child). As soon as any of these calls returns a non-∞ value, we adjust
(i.e., shift) and return it. If all of them return ∞, we also return ∞.

– If v is a BackBlock we must translate the query to the original block O, which starts at
offset v.off in u.blk, where u = v.ptr. We first check whether the query covers the prefix
of v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 1 and j ≥ b − v.off). If so, we check
whether we can skip O∩u.blk, namely if e+v.fb-mexcess > m or if e+v.fb-mexcess = m
but v.fb-mcount < t. If we can skip it, we just update e to e+v.fb-excess and decrease t
by v.fb-mcount if the minimum is reached there, otherwise we call min-select recursively
on the intersection of u.blk and the translated query range. If the answer is not ∞, we
adjust and return it. Otherwise, we turn our attention to the node u′ next to u. Again,
we check whether the query covers the suffix of v.blk contained in u′.blk, O−u.blk (i.e.,
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j = b and i ≤ b − v.off). If so, we check whether we can skip O − u.blk, namely if
e + v.sb-mexcess > m or e + v.sb-mexcess = m but v.sb-mcount < t. If we can skip it,
we just update e to e + v.sb-excess and decrease t by v.sb-mcount if the minimum is
reached there, otherwise we call min-select recursively on the intersection of u′.blk and
the translated query range. If the answer is not∞, we adjust and return it. Otherwise,
we return ∞.

Note that, although we look for various opportunities of using the precomputed data to
skip parts of the query range, the operations fwd-search, bwd-search, min-excess, min-count
and min-select are not guaranteed to work proportionally to the height of the Block Tree.
The instances we built that break this time complexity, however, are unlikely to occur. Our
experiments will show that the algorithms perform well in practice.

5.3 Further Optimizations on Primitives

In this section we present versions and optimizations made for the structure presented in the
previous section.

5.3.1 r-ary rmM-tree on First Level

Recall from Section 3.3.4 on page 30 that we get rid of the first levels not containing Back-
Blocks. Then the first level of the tree is a sequence of blocks instead of just the root as
assumed in the description of the operations from the previous section.

In the case of leaf-rank and leaf-select we use the same techniques used to solve this
problem for rank and select in Chapter 3, that is, we have a sampling on top of the blocks in
the first level indicating the number of leaves in the prefix of blocks previous to each block.
We use this sampling to accommodate the result in case of rank and to find the entry block
in case of select (with a binary search on the samples).

For the rest of the operations, fwd-search, bwd-search,min-excess,min-count, andmin-select,
the entry block is easy to find. However, it could happen that we have to traverse other blocks
neighboring this entry block. In the case of the search operations this could happen because
the answer is not inside the entry block; in the case of the min operations it could happen
because the limits i and j fall in different blocks.

Note that for all these operations we can identify a sequence of blocks in the first level
bx...by in which the operation must be applied to be solved. Then a naive approach to solve
the problem caused by for the elimination of the first levels is:

– Run the operation on bx.
– Scan linearly the blocks between bx and by. This scan takes constant time for each
visited block, because the information required is stored as a field of the block.

– In case x 6= y, run the operation on by.
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To make the linear scan faster we add an r-ary rmM-tree [55] on top of the first level,
where r is the arity of the Block Tree. Recall from Section 1.5 on page 9 that the rmM-tree
is an augmented binary heap built on top of a partition of a BP representation to efficiently
handle the primitive operations.

In our case the partition of the BP corresponds to the blocks in the first level, and instead
of building a binary heap we build an r-ary heap preserving, in this way, the arity of the
Block Tree.

With this structure the linear scan from the naive approach is replaced with a traversal
of the rmM-tree, which makes it exponentially faster (cost proportional to the height of the
rmM-tree versus cost proportional to the leaves). This approach turned out to be orders of
magnitude faster in preliminary experiments and does not use a significant amount of space
compared to the whole structure.

5.3.2 BT-CT Versions

We explore getting rid of some of the fields without having a significant time penalty. For
this we create two versions of the BT-CT.

BT-CT-nobackmin, which corresponds to BT-CT but without the fields fb-mexcess,
fb-mcount, sb-mexcess and sb-mcount in BackBlocks. For this version the optimization at-
tempts in BackBlocks are removed.

BT-CT-noback, which is a more extreme version of BT-CT-nobackmin where the rank/select
fields for BackBlock are removed, that is we use the NoBack set of fields from Section 3.3.6
on page 32 for both ones and leaves.

5.4 Experimental Results

5.4.1 Setup and Datasets

Our experiments ran on an isolated Intel(R) Xeon(R) CPU E5-2407 @ 2.40GHz with 256GB
of RAM and 10MB of L3 cache. The operating system is GNU/Linux, Debian 2, with kernel
4.9.0-8-amd64. The implementations use a single thread and all of them are coded in C++
and use the sdsl library (see Section 2.6 on page 20) for their internal components, GCT
corresponds to the implementation used on its original publication [53]. The compiler is gcc
version 6.3.0, with -O9 optimization flag set.

We use the datasets dna{0.001, 0.01, 0.1, 1.0}.par, escherichia.par, influenza.par, ein-
stein.par and kernel.par described in Section 2.5 on page 19.
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5.4.2 Experiments and Structures

We compare the following structures:

SADA. The BP implementation explained in Section 1.5 on page 9. We use the implemen-
tation of the sdsl, cst_sada, on its default configuration. We only consider the part of
the implementation dedicated to answer tree topology operations.

GCT. The Grammar-Compressed Topology used as part of the Grammar-Compressed Suffix
Tree [53] explained in Section 2.4.2 on page 19. We use the same implementation used
on its original publication, but only considering the topology space. We vary parameters
rule-sampling and C-sampling as the authors suggest.

BT-CT, BT-CT-nobackmin & BT-CT-noback. Our Block Tree based topologies ex-
plained in this chapter. We use the variants bt (theoretical guarantee) and heuristic-bt
(low space usage). We vary the parameters r ∈ {2, 4, 8} andmll ∈ {16, 32, 64, 128, 256, 512}.

We only show the Pareto-optimal results of each structure.

We implemented all topology operations from Table 1.1 on page 8 for our structures (BT-
CT, BT-CT-nobackmin and BT-CT-noback) but GCT and SADA only have implemented a
subset of them, so we run the queries first-child, tree-depth, next-sibling, parent, level-ancestor
and lca. Data points are the average of 100,000 random queries, similar to the scheme used in
previous work on Compressed Suffix Trees [1, 53] to choose the nodes on which the operations
are called. For first-child, tree-depth, next-sibling and parent we collect the nodes in leaf-to-
root paths starting from random leaves. For level-ancestor we choose random leaves v whose
tree-depth(v) = td ≥ 10, and choose a random d ∈ [1, td− 1]. For lca we choose random leaf
pairs.

5.4.3 Results and Analysis

We show graphs of the structures answering each of the operations, for each of the inputs.
The graphs are in 2D, where the x-coordinate represents the space in bps (bits per symbol)
and the y-coordinate is the time per operation in microseconds; the input BP and operation
are indicated in the title of every graph.

The previous figures show that the BT-CT structures are, in general, one order of mag-
nitude faster than the GCT, and similar to SADA. SADA uses ∼ 1.4 bps independently
of the repetitiveness of its inputs, which shows the insensitivity of statistical techniques on
capturing this kind of compressibility. GCT is the smallest structure, followed by the BT-CT
structures, both with low space usage for very repetitive inputs. For example, for einstein
GCT uses ∼ 0.03-0.35 bps and the BT-CT structures ∼ 0.11-0.25 bps. BT-CT-nobackmin
presents a small reduction in space but does not produce a significant impact on its time
performance. BT-CT-noback further reduces the spaces but it produces up to one order of
magnitude time penalty in some cases.
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Figure 5.4: Performance of first-child in different BP representations. The y-axis is time in
microseconds in log-scale.
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Figure 5.5: Performance of tree-depth in different BP representations. The y-axis is time in
microseconds in log-scale.
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Figure 5.6: Performance of next-sibling in different BP representations. The y-axis is time
in microseconds in log-scale.
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Figure 5.7: Performance of parent in different BP representations. The y-axis is time in
microseconds in log-scale.
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Figure 5.8: Performance of level-ancestor in different BP representations. The y-axis is time
in microseconds in log-scale.
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Figure 5.9: Performance of lca in different BP representations. The y-axis is time in mi-
croseconds in log-scale.
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Figures 5.4 and 5.5 show the operations first-child and tree-depth, which uses the basic
access and rank primitives. As SADA solves these primitives using techniques of plain bitvec-
tors (see Section 1.3.1 on page 6), it is an order of magnitude faster than BT-CT and two
orders over GCT.

Figures 5.6, 5.7 and 5.8 show the operations next-sibling, parent and level-ancestor, which
are solved by using the searches: fwd-search and bwd-search. For these operations the BT-CT
structures reach times very similar to SADA, both being one order of magnitude superior
to GCT. That is, the BT-CT works in times of the rmM-tree but uses space aware of the
repetitiveness of its inputs, even when we could not show a good theoretical bound for the
searches.

Figure 5.9 shows the operation lca, which uses the primitives min-excess, bwd-search and
fwd-search. In this case, the BT-CT structures reach space very similar to SADA again,
but this time the GCT does not present a very different performance (less than one order of
magnitude) on its fastest versions.

Our BT-CT presents a new topology representation, time competitive to the fastest known
compressed representation, but using space that decreases with repetitiveness. As a conse-
quence, we advise to use BT-CT when dealing with very repetitive inputs, but if memory
resources are very limited we recommend GCT instead, losing up to 2 orders of magnitude
in time performance.
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Chapter 6

Our Repetition-Aware Compressed Suffix
Trees

In this chapter we present our new Repetition-Aware Compressed Suffix Trees, which follow
the three-component scheme from Sadakane’s proposal [67] seen in Section 2.3.1 on page 16.

For the BP topology representation, we use the BT-CT described in Chapter 5, in fact
we note that some of the fields and primitives used in the augmentation are not required to
implement the necessary operations for suffix trees. Our results with BT-CT let us improve
the operation child, which is a bottleneck among the operations of CSTs.

For the LCP, we use the run-length compressed version of the bitvector H [23], and the
RLCSA [45] as our CSA. We explain how to use the differential array representations of the
suffix array A and its inverse A−1 shown in Chapter 4 to speed up and replace some of the
components of the RLCSA.

6.1 BT-CT Adaptation

We note that the mcount fields are only required to solve the primitives min-count and
min-select, which are only used to implement the topology operations child-num, child-rank
and child (see Table 1.1 on page 8). These three topology operations do not show up in the
suffix tree operations given in Table 1.2 on page 12. Note that the child operation offered in
topology operations recovers a child by its ordinal position, while the child operation required
by suffix trees consists on taking a child by a letter, which is currently implemented with a
linear scan on the children of the node, using the CSA to query the letters pointing to each
of these nodes. Hence, we get rid of the fields mcount, fb-mcount and sb-mcount from nodes
in the BT-CT.
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6.1.1 Operation child

The fast operations enabled by our BT-CT structure give space for an improved algorithm to
solve operation child(v, a). Previous CSTs first compute d = string-depth(v) and then linearly
traverse the children of v from u = first-child(v) with operation next-sibling, checking for
each child u whether letter(u, d+ 1) = a, and stopping as soon as we find or exceed a. Since
computing letter is significantly more expensive than our next-sibling, we consider the variant
of first identifying all the children u of v, and then binary searching them for a, using letter.
We then perform O(σ) operations next-sibling, but only O(log σ) operations letter.

6.2 RLCSA Speed Up

As said, we choose the RLCSA [45] as our CSA. Our first proposal of Repetition-Aware
Compressed Suffix Tree uses the RLCSA with no changes.

Recall from Section 2.2 on page 15 that the RLCSA uses O(r(2 log(n/r)+log σ)(1+o(1)))
bits of space and can support access to the suffix array A with the help of a regular sampling
of O((n/s) log n) bits, where s is the sampling rate. If A[i] is queried, we iteratively apply
Ψ until we get that Ψk[i] is a sampled position, and return the sample minus k. Access to
the inverse array A−1 is solved in a similar way, using a sampling on A−1 and applying Ψ to
reach the requested position. Finally, the iterated Ψ function, Ψd, required by the operation
letter, is answered by applying Ψ d times, unless d is greater than 2s, in which case the
operation is solved by using A and A−1, Ψd[i] = A−1[A[i] + d].

The samplings in the RLCSA have been very hard to compress [45], so we opt for replacing
these samplings by differential encodings of A and A−1 using LCSA or DABT from Chapter 4
to capture the repetitiveness of these encodings, which let us speed up access to both arrays.
The new versions of CSTs are called BT-CST-{LCSA, NONE}-{LCSA, DABT, NONE},
where the last word corresponds to the implementation of A−1 and the previous to the
implementation of A. Finally, BT-CST-NONE-NONE is renamed to BT-CST, which is our
basic CST.

6.3 Experimental Results

6.3.1 Setup and Datasets

Our experiments ran on an isolated Intel(R) Xeon(R) CPU E5-2407 @ 2.40GHz with 256GB
of RAM and 10MB of L3 cache. The operating system is GNU/Linux, Debian 2, with kernel
4.9.0-8-amd64. The implementations use a single thread and all of them are coded in C++
and use the sdsl library (see Section 2.6 on page 20) for their internal components, GCST
corresponds to the implementation used on its original publication [53]. The compiler is gcc
version 6.3.0, with -O9 optimization flag set.
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We use the datasets dna{0.001, 0.01, 0.1, 1.0}, escherichia, influenza, einstein and kernel
described in Section 2.5 on page 19.

6.3.2 Experiments and Structures

We compare the following structures:

CST_SADA ,CST_SCT3, CST_FULLY. Adaptation and improvements from the sdsl
library on the indexes of Sadakane [67], Fischer et al. [23] and Russo et al. [64], respec-
tively. CST_SADA maximizes speed using Sadakane’s CSA [66] and a non-compressed
version of bitvector H. CST_SCT3 uses instead a Huffman-shaped wavelet tree of the
BWT as the suffix array, and a compressed representation [62] for bitvectorH and those
of the wavelet tree. This bitvector representation exploits the runs and makes the space
sensitive to repetitiveness, but it is slower. CST_FULLY uses the same BWT represen-
tation. For all these suffix arrays we set sa-sampling = 32 and isa-sampling = 64.

CST_SADA_RLCSA, CST_SCT3_RLCSA. Same as the preceding implementations
but (further) adapted to repetitive collections: We replace the suffix array by the
RLCSA [45] and use a run-length-compressed representation of bitvector H [23].

GCST. The Grammar-based Compressed Suffix Tree [53]. We vary parameters rule-sampling
and C-sampling as they suggest.

BT-CST-{LCSA, NONE}-{LCSA, DABT, NONE}. Our new Compressed Suffix Tree
with the described components. For the BT-CT component we vary r ∈ {2, 4, 8} and
mll ∈ {4, 8, 16, 32, 64, 128, 256}. For the versions using LCSA we use LCSA-lengths
to get better time performance and set the sweet point sampling-rate = 128. For the
versions using DABT we use DABT-prefix on a low space version, that is, heuristic-
bt r = 2 and mll = 16. For the versions using LCSA for the suffix array A we do
not consider the space used by the sampling of the RLCSA although it is present on
the implementation. Recall from Section 4.4.3 on page 55 that the implementation
of RLCSA does not use sampling on A−1 and it is very slow. Then we do not apply
Ψd[i] = A−1[A[i] + d] when a representation of A−1 is not present.

For the CSTs using the RLCSA, we fix their parameters to 32 for the sampling of Ψ and 128
for the text sampling. We only show the Pareto-optimal results of each structure. Note that
we do not include the CST of Abeliuk et al. [1] in the comparison because it was already
outperformed by several orders of magnitude by GCST [53].

We implemented all the suffix tree operations of Table 1.2 on page 12. From those, we
present the performance comparison with other CSTs on ten important operations: first-child,
tree-depth, next-sibling, parent, level-ancestor, lca, suffix-link, string-depth, string-ancestor
and child. Data points are the average of 100,000 random queries, similar to the scheme
used in previous work on Compressed Suffix Trees [1, 53] to choose the nodes on which the
operations are called. For first-child, tree-depth, next-sibling, parent and string-depth we
collect the nodes in leaf-to-root paths starting from random leaves. For level-ancestor we
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choose random leaves v whose tree-depth(v) = td ≥ 10, and choose a random d ∈ [1, td− 1].
For lca we choose random leaf pairs. For suffix-link we collect the nodes on traversal starting
from random leaves, and taking suffix-links until reaching the root(). For string-ancestor we
choose random leaves v whose string-depth(v) = sd ≥ 10, and choose a random d ∈ [1, sd−1].
For child we choose random leaves and collect the nodes in the traversals to the root(),
discarding the nodes with less than 3 children, and we choose the initial letter of a random
child of the node.

Maximal Substrings

To test our suffix trees in more complex scenarios we implemented the suffix-tree-based
algorithm to solve the “maximal substrings” problem [53] on all of the above implementations
except for CST_FULLY (because of its poor time performance).

The problem is as follows. We want to find all the maximal substrings (i.e., adding a
neighbor letter breaks the property) of a pattern S[1,m], which are also substring of a text
T [1, n]. This problem can be solved in O(m) time using the suffix tree of T to find the
requested substrings. More precisely, the algorithm maintains two pointers, which indicate
the borders of the current processed substring of S, S[i, j], and work by iteratively applying
the following two steps: try to increase j by descending in the suffix tree by the letter
S[j+1]. The algorithm first descends by nodes as much as possible, outputs the corresponding
maximal substring, and continues to the next step. In the next step, the algorithm increases
i by taking suffix links, until the algorithm can descend by a node again, returning to the
previous step. This iteration of two steps is repeated until S is completely processed.

We use the same setup of the GCST publication [53], that is, influenza from Pizza&Chili
as our larger sequence and a substring of size m (m = 3000 and m = 2MB) of another
influenza sequence taken from https://ftp.ncbi.nih.gov/genomes/INFLUENZA. BT-CST
uses BT-CT with r = 2 and mll = 128 and GCST uses rule-sampling = 1 and C-sampling
= 210. The tradeoffs refer to sa-sampling ∈ {64, 128, 256} for the RLCSAs. Data points are
the average of 100 executions of the algorithm.

6.3.3 Results and Analysis

We show graphs of the structures answering each of the operations, for each of the inputs.
The graphs are in 2D, where the x-coordinate represents the space in bps (bits per symbol)
and the y-coordinate is the time per operation in microseconds; the input and operation are
indicated in the title of every graph.

In the case of the “maximal substrings” algorithm, the time is shown divided by the length
m of the pattern.

The figures show the space and time for all the indexes and all the operations. The
smallest structure is GCST. The next smallest indexes are BT-CST, and CST_FULLY. The
compressed indexes not designed for repetitive collections use 2–3 bps less if combined with
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Figure 6.1: Performance of first-child in different CSTs. The y-axis is time in microseconds
in log-scale.
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Figure 6.2: Performance of tree-depth in different CSTs. The y-axis is time in microseconds
in log-scale.
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Figure 6.3: Performance of next-sibling in different CSTs. The y-axis is time in microseconds
in log-scale.
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Figure 6.4: Performance of parent in different CSTs. The y-axis is time in microseconds in
log-scale.
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Figure 6.5: Performance of level-ancestor in different CSTs. The y-axis is time in microsec-
onds in log-scale.
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Figure 6.6: Performance of lca in different CSTs. The y-axis is time in microseconds in
log-scale.

88



Figure 6.7: Performance of suffix-link in different CSTs. The y-axis is time in microseconds
in log-scale.
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Figure 6.8: Performance of string-depth in different CSTs. The y-axis is time in microseconds
in log-scale.
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Figure 6.9: Performance of string-ancestor in different CSTs. The y-axis is time in microsec-
onds in log-scale.
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Figure 6.10: Performance of child in different CSTs. The y-axis is time in microseconds in
log-scale.
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Figure 6.11: Performance of CSTs when solving the maximal substrings problem. The y-axis
is time in microseconds per base in the smaller sequence (of length m).

a RLCSA. Our smallest BT-CST variants are BT-CST and BT-CST-LCSA-NONE and the
largest are BT-CST-LCSA-LCSA and BT-CST-LCSA-DABT.

From the BT-CST space, component H takes just 2%–9%, the RLCSA takes 23%–47%,
and the rest is the BT-CT (using a sweetpoint configuration).

In operations first-child and tree-depth (Figures 6.1 and 6.2), which uses the basic access
and rank primitives, CST_SADA[_RLCSA] solves these primitives using techniques of plain
bitvectors (see Section 1.3.1 on page 6), which yields an order of magnitude of advantage
over BT-CT and two orders over GCT. CST_SCT3[_RLCSA] and CST_FULLY are orders of
magnitude slower in these operations as they do not store the topology explicitly.

In operations next-sibling, parent and level-ancestor (Figures 6.3, 6.4 and 6.5), which rely
most heavily on the suffix tree topology, our BT-CT component building on Block Trees
makes BT-CST excel in time: The operations take nearly one microsecond (µsec), at least
10 times less than the grammar-based topology representation of GCST. CST_FULLY is
three orders of magnitude slower on this operation, taking over a millisecond. Interestingly,
the larger representations, including those where the tree topology is represented using 2.79
bits per node (CST_SADA[_RLCSA]), are only marginally faster than BT-CST, whereas the
indexes CST_SCT3[_RLCSA] are a bit slower than CST_SADA[_RLCSA] because they do
not store an explicit tree topology.

Operation lca (Figure 6.6), which on BT-CST involves essentially the primitive min-excess,
is costlier, taking around 10 µsec in almost all the indexes, including ours. This includes again
those where the tree topology is represented using 2.79 bits per node (CST_SADA[_RLCSA]).
Thus, although we cannot prove upper bounds on the time of min-excess, it is, in practice, as
fast as on perfectly balanced structures, where it can be proved to be logarithmic-time. The
variants CST_SCT3[_RLCSA] also require an operation very similar to min-excess, so they
perform almost like CST_SADA[_RLCSA]. For this operation, CST_FULLY is equally fast,
owing to the fact that operation lca is a basic primitive in this representation. Only GCST
is several times slower than BT-CST, taking several tens of µsec.
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Note that for tree topology operations (first-child, tree-depth, next-sibling, parent, level-
ancestor and lca), the time behavior of our BT-CST variants is the same, because the dif-
ference between them is their underlying CSA. The same occurs between CST_SADA and
CST_SADA_RLCSA, and between CST_SCT3 and CST_SCT3_RLCSA.

Operation suffix-link (Figure 6.7) involves min-excess and several other operations on
the topology, but also the operation Ψ on the corresponding CSA. Since the latter is rel-
atively fast, BT-CST also takes nearly 10 µsec, whereas the additional operations on the
topology drive GCST over 100 µsec, and CST_FULLY over the millisecond. This time the
topology representations that are blind to repetitiveness are several times faster than BT-
CST, taking a few µsec, possibly because they take more advantage of the smaller ranges
for min-excess involved when choosing random nodes (most nodes have small ranges). The
CST_SCT3[_RLCSA] variants also solve this operation with a fast and simple formula. Our
BT-CST variants have the same behavior as only Ψ is applied, so all of them use the Ψ
function from the RLCSA, which is faster.

Operations string-depth and string ancestor (Figures 6.8 and 6.9) are solved by combina-
tions of topology operations and access to the suffix array A, being the latter the costliest
for the indexes using the RLCSA. For this reason, the time difference between BT-CST and
GCST is reduced in these operations. The impact in the use of A is also shown in the
comparison between CST_SADA and CST_SADA_RLCSA, and between CST_SCT3 and
CST_SCT3_RLCSA. CST_FULLY is one order of magnitude slower in these operations. Our
variants using a differential encoding of A present about one order of magnitude time im-
provement, as the access to A is improved.

Finally, operation child (Figure 6.10) is the most expensive, requiring one application of
string-depth and several of next-sibling and letter, thereby heavily relying on the CSA. BT-
CST-bin and CST_SCT3[_RLCSA] binary search the children; the others scan them linearly.
The indexes using a CSA that adapts to repetitiveness require nearly one millisecond on
large alphabets, whereas those using a larger and faster CSA are up to 10 (CST_SCT3) and
100 (CST_SADA) times faster. Our BT-CST-bin variant is faster than the base BT-CST
by 15% on einstein and 18% on kernel, and outperforms the RLCSA-based indexes. On
DNA, instead, most of the indexes take nearly 100 µsec, except for CST_SADA, which is
several times faster; GCSA, which is a few times slower; and CST_FULLY, which stays in the
millisecond. Our variants of BT-CST behave differently depending on the input sequence: on
the dna{0.001, 0.01, 0.1, 1.0}, the major time improvement (about one order of magnitude)
is given by the presence of a differential encoding of A, because in this case the costliest
operation is the string-depth done at the beginning. However, for inputs with large alphabets,
such as einstein and kernel, the presence of a differential encoding of A−1 is more important
(one order of magnitude improvement), as in this case nodes have more children, and then
more applications of letter are required.

Figure 6.11 shows the results for the maximal substrings problem. BT-CST sharply domi-
nates an important part of the Pareto-curve, including the sweet point at 3.5 bps and 200-300
µsec per symbol. The other structures for repetitive collections take either much more time
and slightly less space (GCSA, 1.5–2.5 times slower), or significantly more space and slightly
less time (CST_SCT3, 45% more space and around 200 µsec). CST_SADA is around 10
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times faster, the same as its CSA when solving the dominant operation, child. Our BT-CST
variants using a differential encoding of A present significant time improvements, but at cost
of several bps.

We offer all our variants in the code publicly available at https://github.com/elarielcl/
BT-CST. For researchers and practitioners we recommend to use two representative options:
BT-CST as the low space version using BT-CT, and BT-CST-LCSA-NONE as the next low
space alternative, achieving orders of magnitude improvements on operations involving A. In
the case of highly repetitive inputs, einstein in our datasets, we recommend BT-CST-LCSA-
NONE, which turns to be both time and space superior to its relatives.
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Conclusion and Future Work

We have introduced the Block-Tree Compressed Suffix Tree (BT-CST), a new compressed
suffix tree aimed at indexing highly repetitive text collections. Its main feature is the BT-CT
component, which uses Block Trees to represent the parentheses-based topology of the suffix
tree and exploit the repetitiveness it inherits from the text collection. Block Trees [10] are a
novel technique to represent a sequence in space close to its Lempel-Ziv complexity (with a
logarithmic-factor penalty), but in a way that direct (logarithmic-time) access to any element
is supported. The BT-CT enhances Block Trees with the more complex operations needed to
simulate tree navigation on the parentheses sequence, as needed by the suffix tree operations.

Our experimental results show that the BT-CST requires 1–3 bits per symbol in highly
repetitive text collections, which is slightly larger than the best previous alternatives [53],
but also significantly faster (often by an order of magnitude). In particular, the BT-CT
component uses 0.3-1.5 bits per node on these suffix trees and it takes a few microseconds to
simulate the tree navigation operations, which is close to the time obtained by the classical
2.79-bit-per-node representation that is blind to repetitiveness [55]. This structure may be
interesting for other repetitive trees beyond compressed suffix trees, such as XML datasets.

Although we have shown that in practice they perform as well as their classical counter-
part [55], an interesting open problem is whether the operations fwd-search, bwd-search, and
min-excess can be supported in polylogarithmic time on Block Trees. This was possible on
perfectly balanced trees [55] and even on balanced-grammar parse trees [53], but the ability
of Block Trees to refer to a prefix or a suffix of a block makes this more challenging. We
note that the algorithm described by Belazzougui et al. [10] claiming logarithmic time for
min-excess does not really solve the operation (as checked with coauthor T. Gagie).

Considering the good performance of BT-CT we proposed a way to improve the operation
child, replacing the sequential search by a binary search on their children. We got a small
time improvement with this new approach, and note that it can be applied to other CSTs
representing its topology, for example GCT or CST_SADA[_RLCSA]. We also use Gram-
mar and Block Tree-based representations of the suffix array and its inverse to enhance the
RLCSA and improve the time performance of BT-CST in the operations using its CSA. We
get improvements of one order of magnitude on these operations. We also note that this
enhancement of the RLCSA could be applied to any CST using RLCSA, for example, GCST,
CST_SADA_RLCSA or CST_SCT3_RLCSA, which will give us a new range of possibilities.

Our BT-CT is the first repetition-aware topology representation whose times are similar
to the statistical rmM-tree. It remains to compare the performance of the rest of topology op-
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erations that were not implemented on its competitors. The BT-CT have them implemented,
and moreover, it has implemented more complex operations not mentioned in this work, for
example, height of deepest-node. To further reduce space we note that we could have applied
a sampling technique on the augmentation of the nodes similar to the sampling applied in
GCT, that is, we do not augment every node in the Block Tree but only a specific sampling
of them and compute the fields of no-sampled nodes on the fly. To further reduce time we
note that some topology operations internally call various primitives, which do redundant
work, for example, the lca operation internally calls to min-excess and later fwd-search for
this minimum, but in the traversal for min-excess we discover a block containing the position
of this minimum, which could be used as precomputed information for fwd-search. Note that
this technique could be adapted as a cache technique for all the BP representations (GCT,
rmM-tree, BT-CT).

It is worth to mention that we obtained on preliminary experiments that Block Trees better
compress topologies starting with regular patterns, for example, many open parentheses,
which is not the case of suffix tree topologies (as they start with the leaves representing the
last suffixes). We think that moving the leaves of suffix trees to the position of the last child
could improve the compression given by Block Trees and the algorithms for suffix trees would
not suffer dramatic changes.

We also have shown that it is possible to adapt Block Trees to obtain a representation
of differential encodings of arrays, however, it uses significantly more space (compared to
their Grammar-compressed counterpart) when dealing with suffix arrays and LCP arrays of
repetitive sequences; we do not have a clear explanation for this behavior.

Our work includes a series of improvements on the previous work on basic Block Trees.
We implemented the first Block Tree faithful to its theoretical proposal, bt, but also a lot
of different versions and heuristics that behave very similarly in practice to bt. It remains
still open a better understanding of the worst-case time and space complexities of these
heuristics. It also remains open to reduce the construction time and space needed for Block
Trees, whose final result can easily reside inside the memory of a typical personal computer,
but that requires much more space at construction time.

Finally, all our implementations have been made public to aid practitioners on using and
experimenting with the presented structures. The code is available on the GitHub repository
https://github.com/elarielcl/BT-CST; another GitHub repository containing only the
Block Tree can be found at https://github.com/elarielcl/BlockTrees. An important
object that we think the area of repetition-aware compressed data structures lacks of is the
existence of a unified library containing all the structures presented in this area, which would
be of great importance to practitioners using them, and for the further development of the
research area itself. We think this library could be a self-contained library such as sdsl or
an extension of itself.
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