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1. The method
The computation of the area of a given two-
dimensional shape, or the evaluation of a defi-
nite integral, are common tasks in physics. We 
will show a very simple procedure based on the  
Monte Carlo method [1–6] for estimating the 
areas of arbitrary shapes and computing integrals 
using a random number generator.

Consider the problem of computing the area 
enclosed by a simple curve in two dimensions. 
Let S be the region enclosed by the curve and S0 
a region that includes S, but whose perimeter is 
simple enough, e.g. a rectangle, so that its area 
is easily computed (figure 1). Let us now gener-
ate random points (x, y) inside S0. Some of these 
points will fall inside S. As the number of points 
increases, the proportion of points inside S will 
be directly proportional to the ratio of the areas 
of S and S0. The area of S can then be estimated 
as:

Area(S) ≈ N(S)
N(S0)

Area(S0) (1)

where N(S), N(S0) are the number of points inside 
S and S0, respectively.

The algorithm for this type of computation is

For n  =  1 up to n  =  N:

 (a)  Generate a random point (x, y) inside S0

 (b)  If points falls inside S, N(S)  =  N(S)  +  1; 
otherwise do nothing

 (c)  Repeat

At the end of the loop, we compute the ratio 
N(S)/N  and multiply it by the (known in advance) 
area of S0. This will give an approximate value for 
the area of S.

The precision of the result will improve with 
the number of random points used. This is the 
theoretical equivalent of throwing darts against a 
board containing a flat shape. After many (unbi-
ased) throws, we take the ratio of the number of 
hits inside the shape to the total number of hits 
and multiply it by the area of the board, to get 
an estimate for the area of the surface. This is 
the essence of the Monte Carlo method [1–5]. 
The method is conceptually simple, but it has a 
defect: its slow convergence. Typically the error 
is of order O(1/

√
N ) which makes necessary the 

use of a large set of random numbers to obtain a 
good accuracy. This is not a huge obstacle nowa-
days since random numbers can be generated 
with great speed and are usually included in most 
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Abstract
We introduce the basics of the Monte Carlo method that allows computing 
areas and definite integrals, by means of the generation of long sequences of 
random numbers. The areas of some nontrivial shapes are computed, showing 
the convergence towards their exact values. The application of the method 
to the computation of definite integrals is also given, showing an important 
example of the kinematics of a particle under the action of an arbitrary time-
dependent force.
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pocket calculators. This Monte Carlo method can 
be simply generalized to higher dimensions and is 
quite useful when dealing with shapes with com-
plex boundaries.

2. Applications
Equation (1) looks simple enough, but the main 
difficulty in practice is to decide whether a given 
point (x, y) belongs to S or not. To do that we 
need, for instance, an equation for the perimeter 
that encloses S. This equation  has the general 
form f (x, y) = 0, and a given point (x, y) belongs 
to S if f (x, y) < 0 or f (x, y) > 0, depending on 
the shape of the surface z = f (x, y). As an exam-
ple, let us consider the case of the four-leaved 
shape, known as a quadrifolium, and shown in 
figure 2(d):

f (x, y) = (x2 + y2)3 − 4x2y2 = 0. (2)

A 3D plot (not shown here) reveals that all points 
(x, y) inside the leaves satisfy f (x, y) < 0. Next, 
we use algorithm (1) for a number N of random 
points and obtain the estimate SN. As N is increased 
the value of SN approaches the true value of the 
enclosed area S. In the quadrifolium case, the val-
ues converge to 2.83 at large N.

We have also applied the method to several 
other different shapes (figure 2):

 (a)  A unit circle: x2 + y2 − 1 = 0.
 (b)  An astroid: (x2 + y2 − 1)2 + 27x2y2 = 0.
 (c)  A bicuspid: (x2 − 1)(x − 1)2 + (y2 − 1)2 = 0.

In all cases we see the convergence of SN for suf-
ficiently large N. In the case of the unit circle, the 
value should converge to π, which implies that our 
method can be used to estimate π. From figure 2(d) 
we obtain π ≈ 3.14 for N = 5 × 105. Should these 
results change if we compute them with another 
random sequence? The answer is yes, there will 
be fluctuations, but these fluctuations will become 
smaller and smaller as N increase.

Another straightforward application of this 
Monte Carlo method is the computation of defi-
nite integrals. In this case, we want to evaluate the 
definite integral of a bounded function f (x) from 
x  =  a to x  =  b (figure 3(a)). This is nothing more 
than the total area between the x-axis and f (x). 
This kind of situation arises when computing the 

anti-derivative of some function f (x), with f (x) 
positive or negative depending on the domain. 
If f (x) is negative for some segments, it is con-
venient to shift f (x) by a judiciously chosen 
height A, so that G(x) = f (x) + A is always 
positive (figure 3(b)). The integral can be cast 

as I =
∫ b

a f (x)dx =
∫ b

a G(x)dx − A(b − a). The 
integral over G(x) can now be computed using the 
random number method outlined in equation (1) 

(figure 3(c)). In this manner we obtain an esti-

mate for 
∫ b

a f (x)dx . Figure 3(d) shows the results 
obtained for f (x) = sin(x)/x for a = −2π,  
b  =  2π and A  =  0.3, as a function of the total 
number of random numbers used.

A very important example from physics is 
provided by the motion of a particle in one dimen-
sion subjected to an arbitrary time-dependent 
force F(t). Newton’s equation reads:

d2x(t)
dt2 =

1
m

F(t), (3)

where m is the particle’s mass and x(t) is the 
particle’s position. Integrating this equation one 
time, we obtain

v(t)− v(0) = (1/m)

∫ t

0
F(s)ds (4)

where v(t) is the velocity of the particle. We can 
see that the value of the particle’s speed at a given 
time calls for the computation of the area under 
F(s) from s  =  0 up to s  =  t which is carried out by 
using the Monte Carlo algorithm outlined before. 
Once we know v(t), the position of the particle at 
time t is obtained by integrating one more time:

Lx

Ly

Lx

Ly

Figure 1. Left: rectangle S0 = Lx × Ly  containing an 
arbitrary flat shape of area S. Right: random points 
covering of S0. A fraction of these fall inside S.
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x(t)− x(0) =
∫ t

0
v(s)ds, (5)

which now calls for the area under the function 
v(t). Since we do not have an explicit expres-
sion for v(t) but only a set {ti, vi}, we must 

resort to an approximation for v(t) for arbitrary 
t. The simplest way is to join each pair {ti, vi} 
and {ti+1, vi+1} with a straight line. In this way 
v(t) is approximated by a sequence of continu-
ous straight lines. Another option is to use a 
data interpolation function available in some 
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Figure 2. Areas SN for different shapes computed according to the Monte Carlo method versus the total number N 
of random points (x, y) used. The insets show the shapes whose area we want to compute: (a) unit circle. (b) Astroid. 
(c) Bicuspid. (d) Quadrifolium.

(a)

−2π 0 2π

0

0.5

1
(b)

−2π 0 2π

0

0.5

1

(c)

−2π 0 2π

0

0.5

1

(d)

8 12

2

2.5

3

Log(N)

In
te

gr
al

Figure 3. Computing the definite integral of function f (x) = sin(x)/x. (a) The given function f (x). (b) The 
shifted function f (x) + 0.3 which is positive inside the range of interest. (c) Computation of the area under the 
shifted function using the method of random numbers. (d) The values of the original integral as a function of the 
total number of random points used. For N  =  106 the estimate gives 2.83 which is close to the exact value 2.8363.
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symbolic manipulators (like Mathematica) or 
in software packages. After this is done, we can 
compute x(t) from equation (5), using the Monte 
Carlo approach. As a simple example, let us take 
F(t) = sin(t)2, m = 1, x(0) = 0, and v(0) = 0. 
Results for N  =  105 are shown in figure  4. The 
curve for x(t) looks nearly ‘parabolic’ which can 
be understood from the fact that the external force 
is constant, on average.

The obtained curves for v(t) and x(t) will look 
smoother the larger the number of random points 
used. The number of points needed will depend 
on how ‘wiggly’ F(t) is in the interval of interest. 
Also, it should be noted that for the computation 
of the area under F(t) both, a single long random 
sequence or an average over a large number of 
shorter random sequences, can be used.

3. Conclusions
We have introduced the very basics of the Monte 
Carlo method that allows for the computation of 
integrals that appear in the calculations of areas 
and of definite integrals. We exemplified the basic 
algorithm with the calculation of areas for some 
non-trivially shaped objects. As a physically rel-
evant example, we have computed the kinematics 
of a particle subjected to a time-dependent force.
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Figure 4. Kinematics in 1D for a particle of unit mass 
subjected to a force F = sin(t)2. Top, middle and 
bottom panels show the time evolution of the force, 
speed and particle’s position, respectively (number of 
Monte Carlo points used: 105).
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