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ABSTRACT
Necessary and sufficient conditions for qualitative properties
of infinite dimensional linear programing problems such as
solvability, duality, and complementary slackness conditions
are studied in this article. As illustrations for the results, we
investigate the parametric version of Gale’s example.
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1. Introduction

A linear program is an optimization problem with a linear objective func-
tion and linear constraints. It is an extremely powerful tool for addressing
a wide range of applied optimization problems. Up to now, a complete the-
ory of linear programing exists only for problems involving a finite number
of decision variables subject to a finite number of constraints. Thus far,
there exists a theory of infinite dimensional linear programing with many
interesting results, yet the theory for strong duality has not
been completed.
Infinite dimensional linear programing is both important and fascinating.

Its importance arises from its position within the general theory of opti-
mization, and from numerous real-world problems which can be modeled
as infinite dimensional linear programing models [1, 2]. The fascination
comes, in part at least, from the difficulty of extending the finite
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dimensional theory to the infinite dimensional case, when the infinite
dimensional linear programing problem is superficially so similar to the
finite dimensional linear programing problem. It is difficult to date the first
attempts to extend the theory of linear programing to more general set-
tings, but an early study of duality theory for infinite dimensional linear
programs is due to Duffin. In his fundamental article [3], Duffin gave
some results in locally convex topological vector spaces forming the base
theory of infinite dimensional linear programing. Kretschmer [4] extended
Duffin’s results in the paired linear spaces. He posed the problem in a way
which uses dual pairs of vector spaces, rather than a topological vector
space and its (topological) dual; giving a formulation which is one of the
most general possible.
Excellent reviews on duality theorems in infinite dimensional linear pro-

graming and some related topics were given by Anderson [5], Anderson
and Nash [1]. In 2001, Shapiro discussed about the intimate relations
between the duality theory and sensitivity analysis in [6]. This topic was
also considered by Grestsky et al. [7], coming to conclusion that the neces-
sary and sufficient condition of the zero duality gap and solvability is the
existence of subdifferential of the value function at the primal constraint.
Some information about recent achievements in infinite dimensional linear
programing can be found in [8–12] and the references therein.
Most of the work that has been done on infinite dimensional linear pro-

graming has been aimed at producing an analogous theory, particularly of
duality, to that of the finite case. Thus, many results which relate to the
existence of primal or dual optimal values and solutions, duality, and com-
plementary slackness conditions have been derived. The fundamental the-
orem of finite dimensional linear programing states that the finiteness of
optimal value implies the existence of a solution. The second crucial prop-
erty of finite linear programs is that the optimal values of the primal and
dual problems are equal if either one of them is feasible. These are not
always the cases for infinite linear programs (see, e.g., [1, Problem 3.9] and
[1, Section 3.4.1]). Sufficient conditions for the fundamental theorem to
hold were obtained in [1, Theorem 3.22] via the closedness of some convex
cone constituted from the data of the primal problem. It is interesting that
these conditions also ensure the absence of the duality gap between the pri-
mal and dual problems (see [1, Theorem 3.9] and [6, Proposition 2.6]).
Examples can be found to point out that those conditions are not necessary
(see Section 3 below). This leads to the following question: What are the
weakest conditions for the solvability of the primal problem and for the
absence of the duality gap?
The present article gives a complete solution for this question by estab-

lishing the necessary and sufficient conditions (the weakest conditions) for
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the solution existence and other qualitative properties of infinite linear pro-
grams such as duality and complementary slackness. This is done by using
some well-known properties of the primal and dual problems and duality
results in infinite dimensional linear programs. In addition, by using the
parametric version of Gale’s example, we are able to give a series of illus-
trative examples for our results.
The remaining of the article is organized as follows. Some preliminaries

are given in the next section. Section 3 investigates the necessity of the
closedness for qualitative properties in infinite dimensional linear program-
ing. Necessary and sufficient conditions for the solvability, duality, and
complementary slackness are given in Section 4.

2. Preliminaries

We initially need to define a certain amount of notation. The results that
we need on topological vector spaces can be found in most books on the
subject, for example those by Robertson and Robertson [13] and Schaefer
[14]. Let (X, Y) and (Z, W) be two dual pairs of vector spaces. As there is
no danger of confusion the bilinear forms on X and Y and on Z and W
will both be represented by h:; :i. Let rðX;YÞ and rðZ;WÞ be weak topolo-
gies on X and Z, respectively, and A be a rðX;YÞ�rðZ;WÞ continuous lin-
ear map from X to Z. The adjoint (transpose) of A is the linear map
A� : W ! Y defined by the condition

hx;A�wi ¼ hAx;wi 8x 2 X;8w 2 W:

It is well known that A� is rðW;ZÞ�rðY;XÞ continuous, where rðW;ZÞ
and rðY;XÞ are weak topologies on W and Y, respectively. Let P, Q be the
convex cones in X and Z, respectively. The dual cones of P and Q are
defined by setting

P� :¼ y 2 Y : hx; yi � 0; 8x 2 P
� �

;

Q� :¼ w 2 W : hz;wi � 0; 8z 2 Qf g:

Consider the set constrained linear problem and its dual [1, Sect. 3.3] as
follows

ILPð Þ min hx; ci : Ax�b 2 Q; x 2 Pf g;
ILP�ð Þ max hb;wi : �A�wþ c 2 P�;w 2 Q�f g:

Define the sets H � Z � R and K � Y � R as follows

H :¼
[
x2P

Ax� b� Qð Þ � hx; ci;þ1½½ Þ;�
(1)

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 3



K :¼
[
w2Q�

�A�wþ c� P�ð Þ�� �1; hb;wi� �Þ: (2)

Most of the work of this article will be done with respect to the weak
topologies, rðZ � R;W � RÞ on Z � R and rðY � R;X � RÞ on Y � R.
For the sets A � Z � R and B � Y � R, we denote by A and B the closures
of A and B, respectively.

Remark 2.1. Clearly, H and K are convex. Consider the set H0 � Z � R

(see [5, p. 53] and [1, p. 387])

H0 :¼ Ax�z; hx; ci þ rð Þ : x 2 P; z 2 Q; r � 0
� �

: (3)

The relations between H and H0 are given by

H ¼ H0� b; 0ð Þ� �
; H ¼ H0� b; 0ð Þ� �

: (4)

We recall some basic concepts related to (ILP) and (ILP�).

Definition 2.1. For the problem (ILP), a vector x 2 X is said to be feasible
if x 2 P and Ax�b 2 Q. If (ILP) has a feasible vector then it is called con-
sistent. And in this case, the infimum value of this problem, denoted by
val(ILP), is defined as

val ILPð Þ :¼ inf hx; ci : Ax�b 2 Q; x 2 Pf g:
If (ILP) has a feasible vector x satisfying hx; ci ¼ valðILPÞ then (ILP) is

said to be solvable and x is called a solution of (ILP).

Remark 2.2. (ILP) is consistent if and only if there exists r 2 R such that
ð0Z; rÞ 2 H, or equivalently, H \ ðf0Zg � RÞ 6¼ ;. Moreover, (ILP) is solv-
able if and only if (ILP) is consistent and ð0Z; valðILPÞÞ belongs
to H \ ðf0Zg � RÞ.

Definition 2.2. Problem (ILP) is called subconsistent if there exists r 2 R

such that ð0Z; rÞ 2 H . If (ILP) is subconsistent then its subvalue, denoted
by subval(ILP), is defined as

subval ILPð Þ :¼ inf r : 0Z; rð Þ 2 H
� �

:

Definition 2.3. For the problem ðILP�Þ, a vector w 2 W is said to be feas-
ible if w 2 Q� and �A�wþ c 2 P�. If ðILP�Þ has a feasible vector then it is
called consistent. And in this case, the infimum value of this problem,
denoted by val(ILP�), is defined as

val ILP�ð Þ :¼ sup hb;wi : �A�wþ c� 2 P�;w 2 Q�f g:
If ðILP�Þ has a feasible vector w satisfying hb;wi ¼ valðILP�Þ, then ðILP�Þ

is said to be solvable and w is called a solution of ðILP�Þ.

4 P. D. KHANH ET AL.



Remark 2.3. ðILP�Þ is consistent if and only if there exists r 2 R such that
ð0Y ; rÞ 2 K, or equivalently K \ ðf0Yg � RÞ 6¼ ;. Moreover, ðILP�Þ is solv-
able if and only if ðILP�Þ is consistent and ð0Y ; valðILP�ÞÞ belongs
to K \ ðf0Yg � RÞ.

Definition 2.4. Problem ðILP�Þ is called superconsistent if there exists r 2
R such that ð0Y ; rÞ 2 K . If ðILP�Þ is superconsistent, then its supervalue,
denoted by supervalðILP�Þ, is defined as

superval ILP�ð Þ :¼ sup r : 0Y ; rð Þ 2 K
� �

:

A weak duality relation between (ILP) and (ILP�) can be found in [1,
Theorem 2.1].

Theorem 2.1. If x is feasible for (ILP) and w is feasible for ðILP�Þ, then
hx; ci � hb;wi:

The following complementary slackness results follow directly from
Theorem 2.1.

Corollary 2.1. If x is feasible for (ILP), w is feasible for ðILP�Þ, and the pair
(x, w) satisfies the complementary slackness condition

hx; c�A�wi ¼ 0;
hAx�b;wi ¼ 0;

�
(5)

then x is optimal for (ILP) and w is optimal for ðILP�Þ.

Corollary 2.2. Suppose that x is a solution of (ILP) and w is a solution of
ðILP�Þ. Then hx; ci ¼ hb;wi if and only if the pair (x, w) satisfies the com-
plementary slackness condition (5).
The next theorem establishes the central result in the theory of duality

that there is never a duality gap between the subvalue and dual value.

Theorem 2.2. (ILP) is subconsistent with a finite subvalue M if and only if
ðILP�Þ is consistent with a finite value M.

Proof. Using the relations (4), [5, Theorem 3], and the remarks after [5,
Theorem 4], we deduce the conclusion of the theorem. w

If the positive cones P, Q are closed, then this theorem has an immediate
corollary obtained by reversing the roles of the primal and dual programs.

Corollary 2.3. Assume that the positive cones P, Q are closed. Then, (ILP) is
consistent with a finite value M if and only if ðILP�Þ is superconsistent with
a finite supervalue M.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 5



The following theorem is an analog in a locally convex topological vector
space setting of the separating hyperplane theorem. There are many
roughly equivalent ways of stating such theorem. The following version [1,
Proposition 6] is the most convenient one for our purposes.

Theorem 2.3. Let (X, Y) be a dual pair of vector spaces, B � X be a nonempty
convex set, and a 2 X. Then a 62 B if and only if there are y 2 Y and a real num-
ber a such that ha; yi<a and hx; yi>a for each x 2 B. (In these circumstances we
say that a is strictly separated from B by the hyperplane defined by y.)
We will need a result on subduality which is in a sense parallel to weak

duality theorem.

Theorem 2.4. Consider the problems (ILP) and (ILP�).

a. If (ILP) is subconsistent and ð0Z; rÞ 2 H, then for any w feasible for
(ILP�), we have r � hb;wi;

b. If (ILP�) is superconsistent and ð0Y ; rÞ 2 K, then for any x feasible for
(ILP), we have r � hx; ci.

Proof. (a) Suppose, contrary to our claim, that there is w 2 Q� satisfying
�A�w þ c 2 P� such that r<hb;wi: Then for any x 2 P, any q 2 Q and any
a � 0, one has

r<hb;wi þ hq;wi þ hx;�A�w þ ci as hx;�A�w þ ci � 0 and hq;wi � 0
� �

� hAx�b�q;�wi þ hx; ci þ a;

which means that the hyperplane ð�w; 1Þ strictly separates ð0Z; rÞ from H.
It follows from Theorem 2.3 that ð0Z; rÞ 62 H , which is a contradiction.
(b) Similarly, to obtain a contradiction, suppose that there exists x 2 P

satisfying Ax�b 2 Q such that r>hx; ci: Then for any w 2 Q�, any p� 2 P�

and any b � 0, we get

r>hx; ci�hAx�b;wi�hx; p�i as hAx�b;wi � 0 and hx; p�i � 0
� �

� hx;�A�wþ c�p�i þ hb;wi þ b;

which means that the hyperplane ðx; 1Þ strictly separates ð0Y ; rÞ from K.
We get from Theorem 2.3 that ð0Y ; rÞ 62 K . This contradicts our assump-
tion. The proof is complete. w

3. On the necessity of the closedness for qualitative properties

Let us review some qualitative properties of the primal problem (ILP) and
its dual (ILP�) under the closedness assumption of the set H given in (1)
(see [1, Theorems 3.9, 3.22] and [5, Theorem 7]).

6 P. D. KHANH ET AL.



Theorem 3.1. Assume that (ILP) is consistent and val(ILP) is finite. If H is
closed with the weak topology rðZ � R;W � RÞ, then (ILP) is solvable and
val(ILP)¼ val(ILP�).

Proof. Using the relations (4), [1, Theorems 3.9, 3.22], and [5, Theorem 7]
we deduce the conclusions of the theorem. w

Corollary 3.1. Assume that H is closed with the weak topology
rðZ � R;W � RÞ. If x is a solution of (ILP) and w is a solution of (ILP�),
then the pair (x, w) satisfies the complementary slackness condition (5).

Remark 3.1. In finite dimension, when P and Q are nonnegative orthants,
H is closed automatically. Thus, Theorem 3.1 and Corolarry 3.1 are actually
natural extensions of the classical results to infinite dimension spaces.

The following parametric version of Gale’s example (see [1, Section
3.4.2]) will be used for two purposes. Firstly, we use it to show that the
closedness assumption of the set H is sufficient but not necessary for the
solvability of the problem (ILP) and the absence of a duality gap between
the primal and dual problems. Secondly, it will also be used to illustrate
the results obtained in Section 4. Note that Gale’s example belongs to an
important special class of infinite dimensional linear programing which is
linear semi-infinite programing, where either the number of constraints or
the number of variables is finite. This class of problems was developed by
Gorbena and Lop�ez [15]. The interested reader is referred to [2] for several
results about linear and nonlinear semi-infinite programing.

Example 3.1. Let a, b be real parameters and consider the parametric lin-
ear program

PGa;bð Þ min x0 : x0 þ
X1
i¼1

ixi ¼ a;
X1
i¼1

xi ¼ b; xi � 0; i ¼ 0; 1; 2; . . .

( )
:

The program (PGa;b) is a model of (ILP) with the following data. The
primal variable space X ¼ R

ðNÞ, called the generalized finite sequence space,
is formed by sequences with finitely many nonzero terms. The dual of X is
Y ¼ R

N, which is the space of all real sequences. In this article, we use the
convention 0 2 N and denote N

� :¼ N n f0g. Note that (X, Y) is a dual
pair with respect to the bilinear form

hx; yi ¼
X1
i¼0

xiyi; 8x ¼ x0; x1; x2; . . .ð Þ 2 X; 8y ¼ y0; y1; y2; . . .ð Þ 2 Y:

In what follows, X and Y are considered with the weak topologies. Let
Z ¼ W ¼ R

2. Clearly, with respect to the bilinear form

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 7



hz;wi ¼ z1w1 þ z2w2; 8z ¼ z1; z2ð Þ 2 Z; 8w ¼ w1;w2ð Þ 2 W;

(Z, W) is a dual pair. Let P ¼ R
ðNÞ
þ :¼ R

ðNÞ \ R
N

þ � X;Q ¼ fð0; 0Þg � Z,
where

R
N

þ ¼ x ¼ x0; x1; x2; . . .ð Þ 2 R
N : xi � 0; i ¼ 0; 1; 2; . . .

n o
;

b ¼ ða; bÞ 2 Z, and c ¼ ð1; 0; 0; :::Þ 2 Y. Let A : X ! Z and its adjoint
A� : W ! Y be the linear maps represented by the infinite matrices

A ¼ 1 1 2 3 . . .
0 1 1 1 . . .

� 	
2 M 2�1ð Þ;

A� ¼ AT ¼ 1 1 2 3 . . .
0 1 1 1 . . .

� 	T

2 M 1� 2ð Þ:

The set H given in (1) is represented by

H ¼
[
x2P

Ax� b� Qð Þ � ½hx; ci;þ1½

¼ x0 þ
X1
i¼1

ixi � a;
X1
i¼1

xi � b; x0 þ r

 !
: r � 0; xið Þ 2 R

Nð Þ \ R
N

þ

( )
:

We will show that H ¼ H1
S
H2, where

H1 ¼ t1 � a;�b; t1 þ t2ð Þ : t1; t2 � 0
� �

;
H2 ¼ t1 þ t2 � a; t2 � b; t3ð Þ : t1; t3 � 0; t2 > 0

� �
:

Take any ðxiÞ 2 R
ðNÞ \ R

N

þ and r � 0. Then,
P1

i¼1 xi ¼ 0 if and only ifP1
i¼1 ixi ¼ 0. Therefore,

x0 þ
X1
i¼1

ixi�a ¼
x0�a if

X1
i¼1

xi ¼ 0;

x0 þ
X1
i¼1

i� 1ð Þxi
 !

þ
X1
i¼1

xi�a if
X1
i¼1

xi>0:

8>>>><
>>>>:

Since x0 � 0 and x0 þ
P1

i¼1ði� 1Þxi � 0,

x0 þ
X1
i¼1

ixi � a;
X1
i¼1

xi � b; x0 þ r

 !
2 H1

[
H2:

Thus, H � H1
S
H2. For any z 2 H1, there exist non-negative real num-

bers t1, t2 such that z ¼ ðt1�a;�b; t1 þ t2Þ. Put

8 P. D. KHANH ET AL.



r ¼ t2;
x0 ¼ t1;
xi ¼ 0 i 2 N

�ð Þ:

8<
:

Since t1; t2 � 0, we have z ¼ ðx0 þ
P1

i¼1 ixi � a;
P1

i¼1 xi � b; x0 þ rÞ 2 H,
and it follows that H1 � H. For any z 2 H2, there exist non-negative real
numbers t1; t2; t3 such that t2>0 and z ¼ ðt1 þ t2�a; t2�b; t3Þ. Since t2>0,
there exists n 2 N

� such that

t2 � t1�min t1; t3f g
n� 1

: (6)

Put r ¼ t3�minft1; t3g and

x0 ¼ min t1; t3f g;
x1 ¼ t2� t1�min t1; t3f g

n� 1
;

xn ¼ t1�min t1; t3f g
n� 1

;

xi ¼ 0 i 2 N
� n 1; nf g� �

:

8>>>>>><
>>>>>>:

Since t3 � minft1; t3g � 0; t1 � minft1; t3g � 0 and (6), we have r � 0;
xi � 0 for every i 2 N. Moreover,

X1
i¼1

xi ¼ t2;

x0 þ
Xn
i¼1

ixi ¼ t1 þ t2;

x0 þ r ¼ t3:

8>>>>>><
>>>>>>:

Hence,

z ¼ x0 þ
X1
i¼1

ixi � a;
X1
i¼1

xi � b; x0 þ r

 !
2 H;

and so H2 � H. Therefore, H ¼ H1
S
H2.

Claim 1. The set H is not closed for every a; b 2 R.
The topology rðZ � R;W � RÞ is indeed a usual topology on R

3. Hence,

H1 ¼ H1;
H2 ¼ t1 þ t2 � a; t2 � b; t3ð Þ : t1; t2; t3 � 0

� �
:

It follows from H1 � H2 that

H ¼ H2 :
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Since H 6¼ H (for instance, ð1�a;�b; 0Þ 2 H nH), the set H is
not closed.
Claim 2. (PGa;b) is solvable if and only if a � b � 0. Moreover,

val PGa;bð Þ ¼ a if a � 0; b ¼ 0;
0 if a � b>0:

�

Clearly, if (PGa;b) is solvable then a � b � 0. Now, we suppose that
a � b � 0. If b¼ 0 then x :¼ ða; 0; 0; :::Þ is the unique feasible solution of
(PGa;b), therefore, it is the only optimal solution of (PGa;b). Thus, (PGa;b)
is solvable and valðPGa;bÞ ¼ a. If b>0 then there exists n 2 N

� such that
nb>a. Put

x1 ¼ nb�a
n� 1

;

xn ¼ a�b
n� 1

;

xi ¼ 0 i ¼ N
� n 1; nf g� �

:

8>>>><
>>>>:

Then, ðxiÞ is a solution of (PGa;b). Hence, (PGa;b) is solvable
and valðPGa;bÞ ¼ 0.
Claim 3. The dual problem of (PGa;b), denoted by (PG�

a;b), is solvable if
and only if a � b � 0 and in this case valðPG�

a;bÞ ¼ 0.
The dual problem (PG�

a;b) is given by

max aw1 þ bw2 : w1;w2ð Þ 2 W;w1 � 1; iw1 þ w2 � 0; i ¼ 1; 2; 3; . . .
� �

:

Suppose that (PG�
a;b) is solvable. Let ðw�

1;w
�
2Þ be a solution of (PG�

a;b).
Since ð0;�nÞ and ð�n; nÞ are feasible for (PG�

a;b) for every n 2 N
�, it fol-

lows that

a0þ b �nð Þ � aw�
1 þ bw�

2;
a �nð Þ þ bn � aw�

1 þ bw�
2:

�

Hence,

min b;a�bf g � � aw�
1 þ bw�

2

n
:

Taking n ! 1 in the above inequality, we obtain b � 0 and a � b.
Now we suppose that a � b � 0. Then (0, 0) is a solution of (PG�

a;b) and
valðPG�

a;bÞ ¼ 0. Indeed, let (w1, w2) be a feasible vector of (PG�
a;b), then

iw1 þ w2 � 0 for all i 2 N. It follows that w1 � 0 and w1 þ w2 � 0.
Combine this with a � b � 0 to obtain

aw1 þ bw2 � bw1 þ bw2 ¼ b w1 þ w2ð Þ � 0 ¼ a0þ b0:

It follows from Claims 1–3 that, although H is not closed, both of
(PGa;b) and (PG�

a;b) are solvable and
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val PGa;bð Þ ¼ val PG�
a;b

� � ¼ 0

for all pairs ða; bÞ such that a ¼ b ¼ 0 or a � b>0.

4. Necessary and sufficient conditions for qualitative properties

We first recall some well-known properties of the sets H and K. For the
sake of clear presentation, we provide a detailed proof.

Proposition 4.1.
a. The set H \ ðf0Zg � RÞ is f0Zg � ½valðILPÞ;1½ or f0Zg��valðILPÞ;1½,

depending on whether (ILP) is solvable or not, respectively;
b. The set K \ ðf0Yg � RÞ is f0Yg���1; valðILP�Þ� or

f0Yg���1; valðILP�Þ½, depending on whether (ILP�) is solvable or not,
respectively;

c. H \ ðf0Zg � RÞ ¼ f0Zg � ½subvalðILPÞ;1½;
d. K \ ðf0Yg � RÞ ¼ f0Yg���1; supervalðILP�Þ�.

Proof. (a) We will show that

H \ ðf0Zg � RÞ ¼
� f0Zg � ½valðILPÞ;1½ if ðILPÞ is solvable;
f0Zg��valðILPÞ;1½ ifðILPÞ is not solvable: (7)

Clearly, from the definitions of H and val(ILP), we have

0Zf g��val ILPð Þ;1½� H \ 0Zf g � Rð Þ � 0Zf g � val ILPð Þ;1½:

Using the observation that (ILP) is solvable if and only if

ð0Z; valðILPÞÞ 2 H \ ðf0Zg � RÞ, we immediately obtain (7).
(b) Similar to the proof of (a) given above, (b) follows from definitions

of K, val(ILP�) and the observation that (ILP�) is solvable if and only
if ð0Y ; valðILP�ÞÞ 2 K \ ðf0Yg � RÞ.
(c) Without loss of generality we can assume that (ILP) is subconsistent.

From the definition of subval(ILP) and the closedness of H \ ðf0Zg � RÞ
we have

0Z; subval ILPð Þ� �
2 H \ 0Zf g � Rð Þ;

0Zf g��subval ILPð Þ;1½� H \ 0Zf g � Rð Þ � 0Zf g � ½subval ILPð Þ;1½:
It follows that (c) is satisfied.
(d) Similar to the proof of (c) given above, (d) follows from definition of

superval(ILP�) and the closedness of K \ ðf0Yg � RÞ. w
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4.1. Solvability

The following theorem is an immediate consequence of part (a) of
Proposition 4.1 above.

Theorem 4.1. For the problem (ILP) the following statements are equivalent
(a) H \ ðf0Zg � RÞ is nonempty, closed and valðILPÞ is finite;
(b) (ILP) is solvable.
We will use Theorem 4.1 to find the necessary and sufficient condition

for the solvability of the parametric problem given in Example 3.1.

Example 4.1. Consider (PGa;b) given in Example 3.1. The corresponding
set H of (PGa;b) is given by

H ¼ t1 � a;�b; t1 þ t2ð Þ : t1; t2 � 0
� �[

t1 þ t2 � a; t2 � b; t3ð Þ : t1; t3 � 0; t2 > 0
� �

:

By some calculations, we obtain

H \ 0Zf g � Rð Þ ¼
0; 0ð Þ� �� ½a;þ1½ if a � 0; b ¼ 0;
0; 0ð Þ� �� Rþ if a � b>0;

; otherwise:

8<
: (8)

The set H \ ðf0Zg � RÞ is closed for all a;b 2 R. It follows from
Theorem 4.1 that (PGa;b) is solvable if and only if H \ ðf0Zg � RÞ is non-
empty and val(PGa;b) is finite. On the other hand, since the objective func-
tion of (PGa;b) is bounded from below on its feasible set, val(PGa;b) is
finite if and only if (PGa;b) is consistent. Therefore, (PGa;b) is solvable if
and only if H \ ðf0Zg � RÞ is nonempty. Combining this with (8) we
deduce that (PGa;b) is solvable if and only if a � b � 0.
The next theorem is an immediate consequence of part (b) of

Proposition 4.1 above.

Theorem 4.2. For the problem ðILP�Þ the following statements
are equivalent

a. K \ ðf0Yg � RÞ is nonempty, closed and valðILP�Þ is finite;
b. ðILP�Þ is solvable.

4.2. Duality

Theorem 4.3. Assume that (ILP) and (ILP�) are both consistent. The follow-
ing statements are equivalent

a. H \ ðf0Zg � RÞ ¼ H \ ðf0Zg � RÞ;
b. val(ILP)¼ valðILP�Þ.
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Proof. By parts (a) and (c) of Proposition 4.1 we have

H \ 0Zf g � Rð Þ ¼ 0Zf g � val ILPÞ;1½;ð½

H \ 0Zf g � Rð Þ ¼ 0Zf g � subval ILPÞ;1½:ð½
By Theorem 2.2, subval(ILP)¼val(ILP�). This implies the conclusion of

the theorem. w

Combining Theorem 4.1 and Theorem 4.3, we obtain a generalization of
Theorem 3.1.

Theorem 4.4. Assume that (ILP) and (ILP�) are both consistent. The follow-
ing statements are equivalent

a. H \ ðf0Zg � RÞ ¼ H \ ðf0Zg � RÞ;
b. ðILPÞ has a solution and valðILPÞ ¼ valðILP�Þ.

Proof. Observe that H \ ðf0Zg � RÞ � H \ ðf0Zg � RÞ � H \ ðf0Zg � RÞ.
Now the assertion of Theorem 4.4 follows from Theorem 4.1 and Theorem
4.3. w

Let us illustrate Theorem 4.4 by the following example.

Example 4.2. Consider the parametric problem (PGa;b) given in Example
3.1. The corresponding set H of (PGa;b) and its closure are given by

H ¼ t1 � a;�b; t1 þ t2ð Þ : t1; t2 � 0
� �S

t1 þ t2 � a; t2 � b; t3ð Þ : t1; t3 � 0; t2 > 0
� �

;
H ¼ t1 þ t2 � a; t2 � b; t3ð Þ : t1; t2; t3 � 0

� �
:

By some calculations, we obtain (8) and

H \ 0Zf g � Rð Þ ¼ 0; 0ð Þ� �� Rþ if a � b � 0;
; otherwise:

�
(9)

Observe that (PGa;b) is consistent if and only if H \ ðf0Zg � RÞ 6¼ ;.
This is equivalent to a � b � 0. Clearly, the dual problem (PG�

a;b) is con-
sistent. Hence, (PGa;b) and (PG�

a;b) are consistent if and only if a � b � 0
and H \ ðf0Zg � RÞ ¼ H \ ðf0Zg � RÞ if and only if a � 0 or b 6¼ 0. By
Theorem 4.4, (PGa;b) is solvable and val(PGa;b)¼val(PG�

a;b) if and only if

a � b � 0;
a � 0 or b 6¼ 0:

�

This is equivalent to

a ¼ b ¼ 0 or a � b>0:
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Remark 4.1. It is interesting to know whetherH\ðf0Zg�RÞ¼H\ðf0Zg�RÞ
when H\ðf0Zg�RÞ is closed. If so, by Theorem 4.4, the solvability and strong
duality can be checked by the closedness ofH\ðf0Zg�RÞ, which is usually eas-
ier. Unfortunately, the assertion is not true, it is demonstrated by Example 4.2 in
the case a>b¼0.
If the positive cone P, Q are closed, then the above theorems have imme-

diate corollaries obtained by reversing the roles of the primal and
dual programs.

Corollary 4.1. Assume that P and Q are closed, (ILP) and (ILP�) are both
consistent. The following statements are equivalent

a. K \ ðf0Yg � RÞ ¼ K \ ðf0Yg � RÞ;
b. val(ILP)¼ valðILP�Þ.

Proof. Just as the proof of Theorem 4.3 given above, Corollary 4.1 follows
from Corollary 2.3 and parts (b) and (d) of Proposition 4.1. w

Corollary 4.2. Assume that P and Q are closed, (ILP) and (ILP�) are both
consistent. The following statements are equivalent

a. K \ ðf0Yg � RÞ ¼ K \ ðf0Yg � RÞ;
b. ðILP�Þ has a solution and valðILPÞ ¼ valðILP�Þ.

Proof. Similar to the proof of Theorem 4.4 given above, Corollary 4.2 fol-
lows from the observation K \ ðf0Yg � RÞ � K \ ðf0Yg � RÞ �
K \ ðf0Yg � RÞ, Theorem 4.2 and Corollary 4.1. w

4.3. Complementary slackness

Combining Corollary 2.2 and Theorem 4.3, we obtain a generalization of
Corollary 3.1.

Theorem 4.5. Suppose that x is a solution of (ILP) and w is a solution of
(ILP�). Then the following statements are equivalent
(a) H \ ðf0Zg � RÞ ¼ H \ ðf0Zg � RÞ;
(b) The pair (x, w) satisfies the complementary slackness condition (5).
We will use Theorem 4.5 and Corollary 2.1 to solve the parametric ver-

sion of Gale’s example.

Example 4.3. Consider (PGa;b) given in Example 3.1. Let F; F� be the feas-
ible sets of (PGa;b) and (PG�

a;b), respectively. Clearly F� is nonempty and
rewritten as
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F� ¼ w1;w2ð Þ 2 W : w1 � 0;w1 þ w2 � 0
� �

:

Since H \ ðf0Zg � RÞ is closed, as in Example 4.2, H \ ðf0Zg � RÞ ¼
H \ ðf0Zg � RÞ if and only if ða; bÞ 2 P0, where

P0 :¼ p; qð Þ 2 R
2 : p � 0 or q 6¼ 0

n o
:

Suppose now that ða; bÞ 2 P0. It follows from Theorem 4.5 and Corollary
2.1 that x� ¼ ðx0; x1; :::Þ solves (PGa;b) and w� ¼ ðw1;w2Þ solves (PG�

a;b) if
and only if

x� 2 F;
w� 2 F�;
hx�; c�A�w�i ¼ 0;
hAx��b;w�i ¼ 0:

8>><
>>:

The latter system of equations is rewritten as

x0 þ
X1
i¼1

ixi ¼ a;
X1
i¼1

xi ¼ b; xi � 0 i 2 Nð Þ;
w1 � 0; w1 þ w2 � 0;

x0 1�w1ð Þ þ
X1
i¼1

xi �iw1�w2ð Þ ¼ 0;

x0 þ
X1
i¼1

ixi � a

 !
w1 þ

X1
i¼1

xi � b

 !
w2 ¼ 0:

8>>>>>>>>>>><
>>>>>>>>>>>:

(10)

By some calculations, (10) is equivalent to

X1
i¼1

ixi ¼ a;
X1
i¼1

xi ¼ b; xi � 0 i 2 Nð Þ;
w1 � 0; w1 þ w2 � 0;
x0 ¼ 0;
xi iw1 þ w2ð Þ ¼ 0 i 2 N

�ð Þ:

8>>>>><
>>>>>:

(11)

Let P1; P2; P3; P4 � R
2 be defined by

P1 :¼ 0; 0ð Þ� �
;

P2 ¼ p; pð Þ 2 R
2 : p>0

n o
;

P3 ¼ p; qð Þ 2 R
2 : p>q>0

n o
;

P4 ¼ P0 n P1
S
P2
S
P3ð Þ:

8>>>>><
>>>>>:

We consider four cases of the pair ða; bÞ.
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Case 1. ða; bÞ 2 P1
Solving (11), we get

xi ¼ 0 i 2 Nð Þ;
w1 � 0; w1 þ w2 � 0:

�

Therefore, the solution sets and the values of (PGa;b) and (PG�
a;b) are

given by

Sol PGa;bð Þ ¼ 0; 0; . . .ð Þ� �
; Sol PG�

a;b

� � ¼ F�;

val PGa;bð Þ ¼ val PG�
a;b

� � ¼ 0:

Case 2. ða; bÞ 2 P2
Solving (11), we get

xi ¼ 0 i 2 N n 1f g� �
;

x1 ¼ a;
w1 � 0
w1 þ w2 ¼ 0:

8>><
>>:

Therefore, the solution sets and the values of (PGa;b) and (PG�
a;b) are

given by

Sol PGa;bð Þ ¼ 0; a; 0; . . .ð Þ� �
; Sol PG�

a;b

� � ¼ w1;w2ð Þ 2 F� : w1 þ w2 ¼ 0
� �

;

val PGa;bð Þ ¼ val PG�
a;b

� � ¼ 0:

Case 3. ða; bÞ 2 P3
In this case, (11) implies (is in fact equivalent, as we show later)

X1
i¼1

ixi ¼ a;
X1
i¼1

xi ¼ b; xi � 0 i 2 Nð Þ;
w1 � 0; w1 þ w2 � 0;
x0 ¼ 0;
aw1 þ bw2 ¼ 0:

8>>>>><
>>>>>:

Observe that aw1 þ bw2 ¼ ða�bÞw1 þ bðw1 þ w2Þ. Invoking the assump-
tion a>b>0, the above system is equivalent to

X1
i¼1

ixi ¼ a;
X1
i¼1

xi ¼ b; xi � 0 i 2 Nð Þ;
x0 ¼ 0;
w1 ¼ w2 ¼ 0:

8>>><
>>>:
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This is obviously implies (11). Hence, the solution sets and the values of
(PGa;b) and (PG�

a;b) are given by

Sol PGa;bð Þ ¼ 0; x1; x2; . . .ð Þ :
X1
i¼1

ixi ¼ a;
X1
i¼1

xi ¼ b; xi � 0 i 2 Nð Þ
( )

;

Sol PG�
a;b

� � ¼ 0; 0ð Þ� �
;

val PGa;bð Þ ¼ val PG�
a;b

� � ¼ 0:

Case 4. ða; bÞ 2 P4
In this case, we will show that either ðPGa;bÞ or ðPG�

a;bÞ has no solution.
Suppose on the contrary that there exist x� ¼ ðx0; x1; :::Þ 2 SolðPGa;bÞ and
w� ¼ ðw1;w2Þ 2 SolðPG�

a;bÞ. Then ðx�;w�Þ satisfies (11). Then

a ¼ x0 þ
X1
i¼1

ixi �
X1
i¼1

xi ¼ b � 0:

On the other hand, it follows from ða; bÞ 2 P0 that a ¼ b ¼ 0 or
a � b>0. Then ða;bÞ 2 P1

S
P2
S
P3. This is a contradiction.

In the following, let F; F� be the feasible sets of (ILP) and (ILP�), respect-
ively, i.e.

F ¼ x 2 X : Ax�b 2 Q; x 2 Pf g;
F� ¼ w 2 W : �A�wþ c 2 P�;w 2 Q�f g:

Theorem 4.6. The following statements are equivalent

a. H \ ðf0Zg � fhb;wi : w 2 F�gÞ ¼ H \ ðf0Zg � fhb;wi : w 2 F�gÞ;
b. If (ILP�) has a solution w� then (ILP) has a solution x� 2 F and the pair

ðx�;w�Þ satisfies the complementary slackness condition (5).

Proof. ðaÞ ) ðbÞ Assume that w� is a solution of ðILP�Þ. Then
valðILP�Þ ¼ hb;w�i 2 R. From Theorem 2.2, (ILP) is subconsistent and
subvalðILPÞ ¼ hb;w�i. By (a) and the definition of subval(ILP), we have

0Z; hb;w�ið Þ 2 H \ 0Zf g � hb;wi : w 2 F�f g� � ¼ H \ 0Zf g � hb;wi : w 2 F�f g� �
:

Thus, there exists x� 2 P such that Ax��b 2 Q and hx�; ci � hb;w�i. It
means that x� 2 F and hb;w�i � hx�; ci. By Theorem 2.1, hb;w�i ¼ hx�; ci,
and so x� is optimal for ðILPÞ. It follows from Corollary 2.2 that the pair
ðx�;w�Þ satisfies the complementary slackness (5).
ðbÞ ) ðaÞ Without loss of generality we can assume that

H \ ðf0Zg � fhb;wi : w 2 F�gÞ is nonempty. Let w� 2 F� such that
ð0Z; hb;w�iÞ 2 H . By Theorem 2.4(a), we have hb;w�i � hb;wi for every
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w 2 F�. Hence, w� is optimal for (ILP�). From Theorem 2.2, (ILP) is sub-
consistent and subvalðILPÞ ¼ valðILP�Þ ¼ hb;w�i. Since (b) holds, (ILP)
has a solution x� and the pair ðx�;w�Þ satisfies the complementary slack-
ness (5). Hence, by Corollary 2.2,

val ILPð Þ ¼ hx�; ci ¼ hb;w�i ¼ subval ILPð Þ:
By parts (a) and (c) of Proposition 4.1, we have

H \ 0Zf g � hb;wi : w 2 F�f g� �
¼ 0Zf g � ½val ILPð Þ;1½� � \ 0Zf g � hb;wi : w 2 F�f g� �
¼ 0Zf g � ½subval ILPð Þ;1½� � \ 0Zf g � hb;wi : w 2 F�f g� �
¼ H \ 0Zf g � hb;wi : w 2 F�f g� �

:

Therefore, (a) is satisfied. w

We will illustrate Theorem 4.6 by finding the solution set of (PG�
a;b) in

parametric version of Gale’s example.

Example 4.4. Consider (PGa;b) and (PG�
a;b) given in Example 3.1. Let F; F�

be the feasible sets of (PGa;b) and (PG�
a;b), respectively. Clearly F� is non-

empty and can be rewritten as

F� ¼ w1;w2ð Þ 2 W : w1 � 0;w1 þ w2 � 0
� �

:

By some calculations, we have

H \ 0Zf g � hb;wi : w 2 F�f g� � ¼ 0; 0; 0ð Þ� �
if a ¼ b ¼ 0;

0; 0; 0ð Þ� �
if a � b>0;

; otherwise;

8<
:

H \ 0Zf g � hb;wi : w 2 F�f g� � ¼ 0; 0; 0ð Þ� �
if a � b � 0;

; otherwise:

�

Therefore, H\ðf0Zg�fhb;wi :w2F�gÞ¼H\ðf0Zg�fhb;wi :w2F�gÞ if
and only if ða;bÞ2P0 where P0 is defined as in Example 4.3.
Suppose now that ða; bÞ 2 P0. It follows from Theorem 4.6 that

w� ¼ ðw1;w2Þ 2 F� solves (PG�
a;b) if and only if there exists

x� ¼ ðx0; x1; :::Þ 2 F such that

hx�; c�A�w�i ¼ 0;
hAx��b;w�i ¼ 0:

�
(12)

Let P1; P2; P3; P4 � R
2 be defined as in Example 4.3. We also consider

four cases of the pair ða; bÞ.
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Case 1. ða; bÞ 2 P1
As calculated in Case 1 of Example 4.3, (12) holds for x� ¼ ð0; 0; :::Þ 2 F

and every w� 2 F�. Hence,

Sol PG�
a;b

� � ¼ F�:

Case 2. ða; bÞ 2 P2
As calculated in Case 2 of Example 4.3, w� ¼ ðw1;w2Þ 2 F� is such that

there exists x� 2 F and ðx�;w�Þ satisfies (12) if and only if w1 þ w2 ¼ 0.
Hence,

Sol PG�
a;b

� � ¼ w1;w2ð Þ 2 F� : w1 þ w2 ¼ 0
� �

:

Case 3. ða; bÞ 2 P3
As calculated in Case 3 of Example 4.3, there is only w� ¼ ð0; 0Þ 2 F�

such that there exists x� 2 F and ðx�;w�Þ satisfies (12). Hence,

Sol PG�
a;b

� � ¼ 0; 0ð Þ� �
:

Case 4. ða; bÞ 2 P4
As calculated in Case 4 of Example 4.3, we cannot find

w� 2 F� and x� 2 F such that (12) holds. Therefore,

Sol PG�
a;b

� � ¼ ;:
Theorem 4.7. If P;Q are closed, then the following statements are equivalent

a. K \ ðf0Yg � fhx; ci : x 2 FgÞ ¼ K \ ðf0Yg � fhx; ci : x 2 FgÞ;
b. If (ILP) has a solution x� then (ILP�) has a solution w� and the pair

ðx�;w�Þ satisfies the complementary slackness (5).

Proof. Just as in the proof of Theorem 4.6, (a))(b) follows from Corollary
2.3 and Theorem 2.1 and (b))(a) follow from Theorem 2.4(b), Corollaries
2.2–2.3, and parts (b) and (d) of Proposition 4.1. w
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