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Abstract We described a method to solve deterministic and stochastic Walras equi-
librium models based on associating with the given problem a bifunction whose
maxinf-points turn out to be equilibrium points. The numerical procedure relies on an
augmentation of this bifunction. Convergence of the proposed procedure is proved by
relying on the relevant lopsided convergence. In the two-stage versions of our mod-
els, deterministic and stochastic, we are mostly concerned with models that equip the
agents with a mechanism to transfer goods from one time period to the next, possibly
simply savings, but also allows for the transformation of goods via production.

Keywords Walras equilibrium · Stochastic equilibrium · Lopsided convergence ·
Epi-convergence · Augmented Walrasian · Progressive hedging algorithm

1 Introduction

The economic equilibrium model proposed by Arrow and Debreu (1954) for a com-
petitive economy implicitly assumes that the entire economic activity will take place

B Julio Deride
jderide@math.ucdavis.edu

Alejandro Jofré
ajofre@dim.uchile.cl

Roger J-B Wets
rjbwets@math.ucdavis.edu

1 Department of Mathematics, University of California Davis, Davis, USA

2 Present Address: One Shields Avenue, Mathematical Sciences Building #3125, Davis, CA
95616, USA

3 Ingeniería Matemática, Universidad de Chile, Santiago, Chile

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-017-9733-1&domain=pdf
http://orcid.org/0000-0003-4094-8819


316 J. Deride et al.

in a single time span, implicitly instantly. As soon as one includes the agent’s con-
cerns about the future, one has to consider an inter-temporal component, intrinsically
dynamic, and take into account the uncertainty about this future. Here, our primary
goal is to design numerical procedures to solve (two-stage) stochastic Walras equilib-
riummodels where goods get transferred from time 0 to time 1 via “home production;”
clearly, this will usually include the possibility of retention.

The overall approach to this stochastic model is based on a fundamental
decomposition-result that allows us obtain the overall equilibrium by spliting the
calculation into one that deals with each state separately. Consequently, our first
concern is with an algorithmic procedure that will deliver, rather efficiently, an
equilibrium solution for a classical exchangemodel, i.e., in a static, deterministic envi-
ronment. As a stepping stone to our stochastic model, we consider then, a two-stage
(dynamic,deterministic) Walras model that allows for the transfer of goods between
time 0 and time 1 via home production andwe exploit its particular structure to stream-
line the computational procedure. We rely systematically on an augmentation method
applied to what’s called the Walrasian: essentially, the function ‘supposedly solved’
by the Walrasian auctioneer and a maxmin characterization of an equilibrium point.
The fact that the theory allows us to proceed, in the iterative process, with approximate
equilibria turns out to be critical in the development of the overall numerical scheme.

Our approach deviates, even in the deterministic case, from the path-breakingmeth-
ods suggested by Scarf and Hansen (1973), Eaves (2011), Brown et al. (1996), Saigal
(1983), and other approximation strategies described in the books by Judd (1998), and
Brown and Kubler (2008). These earlier methods are not efficient when the economies
have a significant number of goods or agents, even for reaching approximate equilib-
ria, as their solution strategies rely on an enumerative argument, and smoothness of
the excess demand function. Moreover, in stochastic environments, these results are
prohibitively time-expensive.

In this paper, we develop an approach based on an augmented Walrasian technique
and a lopsided convergence approximation procedure, which allows us to cope with
large equilibrium problems including uncertainty and heterogeneity on the agents.
By using this approach we have designed a two-phase algorithm without computing
derivatives of the demand function. We report several numerical experiments for equi-
librium problems involving up to 5 agents, 7 goods and 10 stochastic scenarios, which
can be easily expanded in the number of agents and goods. Finally, the procedure
proposed in this paper might be parallelized in terms of agents and the multi-start
strategy.

The paper is organized as follows. In Sect. 2 we review the general equilibrium
problem for a pure-exchange economy, setting notation, and definitions. In Sect. 3, we
provide the foundation of our newapproach, stating the equilibriumproblemas an opti-
mization problem of the maxinf family, and developing the augmentation technique
to construct a solution algorithm. This section ends with some numerical examples of
pure-exchange economies. Section 4 is a stepping stone in the economies considered
in this manuscript, where the agent problem is given by a two-stage deterministic opti-
mization problem, with home production. In Sect. 5 we proposed our final economic
model, a two-stage stochastic exchange economy, where agents face uncertainty about
the second stage of the economy. We provide the maxinf characterization, as well as
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a solution algorithm based in the augmented Walrasian previously defined. Finally,
Sect. 6 concludes and provides some remarks about the numerical performance of our
algorithm, as well as some prospective future lines of research.

2 The Arrow–Debreu Model

To set the stage and fix terminology and notation, let’s start with the barter, or pure
exchange model, of Debreu (1959). A finite number of (individual) agents i ∈ I with
initial endowments

{
ei ∈ IRL , i ∈ I}

, consisting of a finite number of goods, to be
bartered so as to maximize, individually, their upper semicontinuous (usc) concave
utility functions

{
ui : IRL → [−∞,∞), i ∈ I}

that depend on the level of the
acquisitions xi (p) ∈ IRL of these goods, potentially for “consumption”; one refers to
Xi = dom ui = {

x ∈ IRL
∣∣ ui (x) > −∞}

as the survival sets; note that the concavity
ofui implies that the survival set Xi is convex, typically unbounded.The value to assign
to each good, in this trading process, depends on a market price system 0 �= p ∈ IRL

+
that will restrict each agent to limit the “market value” of its acquisitions to the “market
value” of its endowment, i.e., 〈p, x〉 ≤ 〈p, ei 〉; since these prices don’t necessarily
reflect monetary prices, the “values” are often referred to as units of account. Given
p ∈ IRL

+ , each agent maximizes its utility subject to its budgetary constraint, i.e.,

xi (p) ∈ argmaxx∈Xi ⊂IRL+ ui (x)

For the market to be in equilibrium the total demand must not exceed total supply, i.e.,
with s designating the excess supply function,

s(p) =
∑

i∈I
(ei − xi (p)) ≥ 0.

Since, we haven’t ruled out the possibility that at equilibrium the prices of some goods
might turn out to be 0, as for free disposal goods, one can also write this condition in
terms of a geometric variational inequality:

−
∑

i∈I
(ei − xi (p)) = −s(p) ∈ NIRL+(p),

where NC (p) denotes the normal cone of variational analyis Rockafellar and Wets
(1998) to the set C at p, or still, must be solutions of the linear complementarity
problem,

0 ≤ p ⊥
∑

i∈I
(ei − di (p)) ≥ 0.

Since the budgetary constraints are positively homogeneous in the price p, and the
price is not zero for every good, p �= 0, no additional restriction is introduced by
insisting that the price system should be scaled so that it lies in the unit simplex
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ΔL = {
p ∈ IRL

+
∣∣ 〈p, e〉 = 1

}
. This is often included in the formulation of the

problem to enable appealing to a fixed point argument to establish existence or to
provide boundedness in the design of a computational scheme.

Additionally, to maintain the boundedness of the agent utility maximization prob-
lem, we introduce a natural bound for each agent demand function xi (p) ≤ ∑

i∈I ei

[see Debreu (1959, Ch.5)], i.e., no agent can demand more quantity of each good
than the total resources of that good available in the economy. These bounds naturally
provide a lower bound for the excess supply function, i.e. s(p) > −∞.

3 Augmented Walrasian

3.1 Walrasian and the Equilibrum Problem

Our assumptions and notation introduced in the previous section follow those of the
article “Continuity properties of Walras equilibrium points” Jofré and Wets (2002).
This article provides a formulation of the equilibrium problem for an exchange
economy as a maxinf optimization problem. It introduces the Walrasian bifunction
associated with this problem

W (p, q) = 〈q, s(p)〉 on Δ × Δ

where p, q ∈ the (unit) price simplex Δ ⊂ IRn , and s is the excess supply function as
defined in the previous section. The first fundamental result that we consider [Jofré and
Wets (2002, Theorem 14)] is relatedwith the existence ofmaxinf points of W , and how
they correspond to the solutions of the equilibrium problem. In our setting, considering
excess supply instead of excess demand functions, it is given by the following lemma

Lemma 1 (Walras equilibrium prices and maxinf-points) The function W has a max-
inf point p̄ ∈ Δ such that

0 ≤ inf
q∈Δ

W ( p̄, q) = max
p∈Δ

inf
q∈Δ

W (p, q),

Moreover, every maxinf-point p̄ of the Walrasian function is an equilibrium point, i.e.
s( p̄) ≥ 0.

Proof The existence of max-inf points for theWalrasian function follows by applying
the Ky-Fan inequality [Aubin and Ekeland (2006, Theorem 6.3.5)] to W . For this, it is
easy to check that W is a Ky-Fan function: (1) Note that the upper-semicontinuity of
the agents’ utility functions grants the upper-semi continuity of W in its first argument,
(2) it is linear in its second argument, and (3) by Walras’ law, W (p, p) ≥ 0.

If p̄ is a maxinf-point of the Walrasian with W ( p̄, ·) ≥ 0, it follows that for all
unit vectors e j = (0, . . . , 1, . . .), the j-th entry is 1, 〈e j , s( p̄)〉 ≥ 0 which implies
s( p̄) ≥ 0. �

The condition of W ( p̄, ·) ≥ 0 follows by the definition of W and noting that for
every price p ∈ Δ, and under local nonsatiation preferences assumption, W (p, p) =
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0. Furthermore, the converse of Lemma (1) also holds, i.e., every equilibrium point is
a maxinf-point of W [Jofré and Wets (2014, Prop. 2.4)].

The formulation of the equilibrium problem as an optimzation problem of finding
themaxinf points of theWalrasian is closely related to the existence proof developed by
in Arrow and Debreu (1954), Kirman (1998, Ch.1) where the existence of equilibrium
points follows by the application of Kakutani’s fixed point theorem to a set-valued
mapping, defined in the interior of the simplex, given in our setting as

p ∈ Δ �→ φ(p) =
{{

π
∣∣ 〈π, s(p)〉 = infq∈Δ〈q, s(p)〉} p ∈ intΔ

{
π

∣∣ 〈π, s(p)〉 = 0
}

p ∈ ∂Δ

It is immediate that the definition of theWalrasian is intrinsically present in the original
proofs. Moreover, one can associate the maxinf optimization problem as the one of
the Walrasian auctioneer: first, the inf-problem identifies the market with the largest
imbalance in supply/demand, and then, the max-problem adjust the prices in order to
reduce it. Therefore, the saddle point reflects the equilibrium state of the market.

3.2 Non-Concave Duality and Augmentation

Since our basic approach, first suggested by Bagh (2002), is related to that for the
augmented Lagrangian, it’s informative to consider the bifunction that might have led
to theWalrasian in a standard non-convex duality scheme [Rockafellar andWets (1998,
§11.K)]. Let’s introduce a pre-Walrasian obtained as a restricted-partial conjugate,
with respect to the q-variable, i.e., for all p ∈ Δ

V (p, u) = sup
z∈Δ

[ 〈u, z〉 − W (p, z) ].

V (p, ·) is clearly convex and one can think of the family of bifunctions
{

V (·, u), u ∈
IRn

}
as ‘perturbations’ of a ‘fundamental’ primal-problem

find p̂ ∈ argmax
p∈Δ

v(p) where v(p) = V (p, 0) = − inf
q∈Δ

[ W (p, q) ].

By conjugacy, since the functions q �→ W (p, q) on Δ are proper, lower semicontin-
uous (lsc) and convex, so are the functions u �→ V (p, u).

Note that min q∈Δ 〈q, s(p)〉 will yield the q that generates the smallest convex
combination of the elements of s(p). So, if for any l, sl(p) < 0, it follows that
v(p) > 0. Thus, p̂ will be such that an element of the vector s( p̂) will be as negative
as possible it will minimize the �∞-norm of s(p).
The process of going from v to the collection {V (·, u), u ∈ IRn} is well-understood;
it can be viewed as associating to a particular optimization problem, max

{
v(p)

∣∣ p ∈
Δ

}
, a perturbed collections that leads to the analysis of stability. But in our settingwhat

is this particular optimization problem? It can be viewed as theWalrasian auctioneer’s
problem. It’s easy to see that it’s optimal value is 0which is attainedwhen theWalrasian
auctioneer has selected a price system that yields an equilibrium. Generally it’s not
a concave as a function of p, and certainly not a strictly concave function, and thus
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one can’t expect a unique maximizer which highlights the well-known fact that, in
general, Walras equilibrium points are not unique.

In order to compute equilibrium points for an economy, we propose a strategy to
find a max-inf point of W by an approximating scheme. Our first goal is to build a
family of approximating bifunctions by relying on an augmentation technique that
skirts the lack of concavity [Rockafellar and Wets (1998, §11.K)]. Let σ : IRn → IR
be an augmenting function, i.e., it’s convex, argmin σ = {0} andmin σ = 0. Typically,
σ = | · | is chosen to be a norm but depending on the application it could be quite
different; recall that we can even choose σ to take on the value ∞, for example, it
could be a norm of some type restricted to a ball centered at 0, or even more exotic. In
particular, the self-dual function, defined as σ = 1

2 | · |2, provides some computational
advantages, as being a quadratic function, with the property that σ ∗ = σ , its conjugate
turns out to be the same function.

Given the augmenting function σ and a scalar r > 0, the augmented Walrasian, by
definition, is

W̃r (p, q) = sup u∈IRn
{〈q, u〉 − V (p, u) − rσ(u)

}
.

For afixed p, considering the convexity ofV (p, ·) andσ , one can re-write the definition
of W̃r as a partial conjugate w.r.t the u-variable. Additionally, by the property of
conjugation of a sum and the definition of the epi-sum ( ), we have the following
chain of identities

W̃r (p, q) = (V (p, ·) + rσ)∗ (q)

= cl
{ (

(V (p, ·)∗ (rσ)∗
)
(q)

}

= inf z
{
(V (p, ·))∗(q − z) + (rσ)∗(q)

}

= inf z
{
W (p, q − z) + rσ ∗(r−1z)

}

where σ ∗ is the conjugate of σ , i.e., σ ∗(v) = supx

{〈v, x〉 − σ(x)
}
. Thus, the aug-

mented Walrasian function in its final form is the infimum of a convex function, and
depending of our choice of σ , possibly quadratic or linear.

Finally, for a given choice of augmenting function σ and a sequence of scalars {rν :
ν ∈ IN }, it is possible to define a sequence of augmented Walrasians, {W ν : ν ∈ IN }.
The next step is to study the approximation and convergence properties of this family,
and how the computation of its associated sequence of maxinf points is related with
the goal of finding an equilibrium price for the original economy.

3.3 Approximation and Lopsided Convergence

Before giving a notion of approximation for equilibrium problems, we first establish
a definition for an approximating equilibrium point, given by a price such that the
associated excess supply function is close to satisfying the market clearing condition.
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Definition 1 (approximate maxinf-points). For ε ≥ 0, pε is said to be an approximate
equilibrium point or approximate maxinf-point of W if inf W (pε, ·) ≥ sup inf W − ε,
and the set of all such approximating maxinf-points is denoted by ε-argmaxinf W .

Note that given an approximating equilibrium price, pε , one can adjust the agents’
initial endowments by a fraction of ε and make pε and equilibrium price. In addition,
note that the concept of an approximating equilibrium price is associated with the
proximity of satisfying the market clearing condition, which is not necessarily related
to proximity to an equilibrium point.

Considering the family of augmented Walrasian perturbations, and a sequence of
their corresponding approximate max-inf points, one should be able to guarantee a
convergence result of this sequence of points, given the convergence of the family of
augmented functions. This condition can be obtained by appealing to lopsided con-
vergence, or lop-convergence, of the augmentedWalrasian to theWalrasian. Given the
compactness of the domain, one doesn’t have to appeal to the (more comprehensive)
definition of lopsided convergence it suffices to refer to a more restrictive version,
namely tight lopsided convergence; for the general definition and further details, con-
sult Jofré and Wets (2009, 2014).

Definition 2 (tight lopsided convergence) A sequence in finite-valued bivariate func-
tions, fv-biv(IRn+m), defined over a compact set C × D,

{
Fν : C × D → IR

}
ν∈IN

lop-converges tightly to a function F : C × D → IR, also in fv-biv(IRn+m), if

(a) for all y ∈ D, and all (xν ∈ C) → x ∈ C , there exists (yν ∈ D) → y such
that

lim sup
ν

Fν(xν, yν) ≤ F(x, y),

(a−t) and for all ε > 0, there is a compact set Aε such that for all ν large enough,

sup
x∈Cν∩Aε

inf
y∈Dν

Fν(x, y) ≥ sup
x∈Cν

inf
y∈Dν

Fν(x, y) − ε.

(b) For all x ∈ C , there exists (xν ∈ C) → x such that given any (yν ∈ D) → y ∈
D,

lim inf
ν

Fν(xν, yν) ≥ F(x, y),

(b−t) and for any ε > 0 and one can find a compact set Bε �= ∅, possibly depending
on

{
xν → x

}
, such that for all ν sufficiently large,

inf
Dν∩Bε

Fν(xν, ·) ≤ inf
Dν

Fν(xν, ·) + ε.

The desired convergence result for the equilibrium points follows from adaptating
the tight lop-convergence given by Jofré and Wets (2014, Theorem 3.2) to our case
with compact (and invariant) domains.
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Theorem 1 [convergence of maxinf-points, Jofré and Wets (2014, Theorem3.2)] Let
C × D be a compact subset of IRn+m. When the bifunctions

{
Fν

}
ν∈IN lop-converge

tightly to F, all in fv-biv(C × D) with sup inf F finite, and εν ↘ε ≥ 0, then every
cluster point x̄ ∈ C of a sequence of εν-maxinf points of the bifunctions Fν is an
ε-maxinf point of the limit function F.

In particular, this implies that in these circumstances, every cluster point of a
sequence of maxinf-points of the bifunctions Fν is a maxinf-point of the lop-limit
function F.

In order to obtain our convergence result for approximating maxinf points, the
following result is an application of the previous theorem in our framework. It tells
us that tight lopsided convergence of the augmented Walrasian entails convergence of
equilibrium points.

Theorem 2 (convergence of ε-maxinf points) Suppose that p �→ s(p) is usc on Δ.
Consider the non-negative sequences

{
rν, ν ∈ IN

}
and

{
εν, ν ∈ IN

}
such that

rν ↗∞, εν ↘ε ≥ 0. Let
{
W ν, ν ∈ IN

}
be a family of augmented Walrasian functions

associated which each augmenting parameter rν . Let pν ∈ εν-argmaxinf W ν and p̄
be any cluster point of

{
pν, ν ∈ IN

}
. Then p̄ ∈ ε-argmaxinf W .

Proof It suffices to show that
{
W ν, ν ∈ IN

}
lop-converges tightly to W and conclude

by Theorem (1) the convergence of a (sub)sequence of εν-maxinf points. In order
to prove tight lopsided convergence, let q ∈ Δ,

{
pν, ν ∈ IN

} → p ∈ Δ. Define
qν ≡ q, ν ∈ IN . Then

W ν(pν, qν) = inf z∈IRn
{
W (pν, z) + rν ∗ σ ∗(qν − z)

} ≤ W (pν, qν),

and as the function p �→ s(p) is usc,

lim sup W ν(pν, qν) = lim sup W (pν, q) ≤ W (p, q).

On the other hand, let p ∈ Δ and
{
qν, ν ∈ IN

} → q. By compactness of Δ,
q ∈ Δ and defining pν = p, ν ∈ IN , W ν(p, q) is the inf-projection of the function
Fν(q, z) = W (p, q − z) + rν ∗ σ ∗(z) in the z-variable. Thus, Fν is level bounded in
z locally uniform in q and therefore W ν(p, ·) is lsc by Rockafellar and Wets (1998,
Theorem 1.17). Finally,

lim inf W ν(pν, qν) ≥ W (p, q),

since for any q0 ∈ Δ, W ν(p, q0) → W (p, q0) as ν → ∞ and the conclusion follows
from a standard diagonal argument. �
The following inmediate corollary of this theorem, with ε = 0, plays a pivotal role
form a numerical viewpoint

Corollary 1 (ε-maxinf and equilibrium points) Let εν ↘0. Then, every cluster point
of a sequence of εν-approximating equilibrium points of a sequence of augmented
Walrasian functions is an equilibrium point for the original economy.
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The major thrust of the eventual algorithmic procedures is to replace finding local near
maxinf-points of W by finding a local saddle point of a W̃ ν for ν large enough (but not
too large to avoid numerical instabilities). Under this scheme, there are several options
for choosing the augmenting function σ . For example, one can consider σ = | · | a
norm whose dual norm will be denoted by | · |o, then one can express the augmented
Walrasian as

W̃ ν(p, q) = min
z

[
W (p, z)

∣∣∣ z ∈ IB0(q, rν) ∩ Δ
]
,

where IB0(q, rν) is the dual ball with center in q and radius rν . Alternatively, for σ

be the self-dual function, i.e., σ = 1
2 | · |22, the augmented Walrasian takes the form

W̃ ν(p, q) = min
z

[
W (p, z) + 1

2rν
|z − q|22

∣∣∣ z ∈ Δ

]
.

There is quite a variety of procedures for finding these near local saddle-points. One
possible procedure to solve the problem at hand is described next:

– At iteration ν + 1, given (pν, qν) with r = rν+1 (≥ rν), the Phase I (or primal)
consists in solving

qν+1 ∈ argmin
q∈Δ

W̃ ν+1(pν, q)

note that the ‘internal’ minimization is either that of a linear form on a ball, this
seems to favor | · |o as the �∞-norm, or the self-dual augmenting function which
yields an immediate solution.

– How to carry out the next step will depend on the ‘shape’ and the properties of
the demand functions. For example, this turns out to be rather simple when the
utility functions are of the Cobb–Douglas type, defining the Phase II (or dual) as
finding

pν+1 ∈ argmax
p∈Δ

W̃ ν+1(p, qν+1)

In virtue of the Corollary (1), we know that as rν ↗∞, pν → p̄ a maxinf-point of
W , equivalently an equilibrium price system for Walras’ problem. The strategy for
increasing rν should take into account (i) numerical stability, i.e., keep rν as small as
possible and (ii) efficiency, i.e., increase rν sufficiently fast to guarantee accelerated
convergence.

We appeal to this new formulation to highlight two major features of our approach.
First, embedding the equilibrium problem into a family of perturbed optimization
problem induces a notion of stability of each iteration,where the algorithmperforms its
iteration in a robust manner, and without jumping too far ahead of the current iteration
point. Secondly, the optimization nature of the maxinf problem opens a wide variety
of well-known and developed computational libraries that can solve the corresponding
optimization problem for each phase of the algorithm.

123



324 J. Deride et al.

3.4 Numerical Implementation for the Arrow–Debreu Model.

The proposed algorithm was implemented in Pyomo [Python Optimization Modeling
Objects, Hart et al. (2012)], a mathematical programming language based on Python.
The problems that we solve come with the following features:

– In order to describe the economy, we consider utility functions of Cobb–Douglas
and Constant Elasticity of Substitution (CES) type, and strictly positive aggregated
initial endowment for every good.

– For the selection of the augmenting function σ , we primarily considered the self-
dual type, given by σ = 1

2 | · |22.
– For the agent problem, everyone has to maximize a concave utility function over
a linear constrained set determined by budgetary constraint and nonegativity
of the solution. This problem is solved using the interior point method, Ipopt,
implemented by Wächter and Biegler (2006) (which gives satisfactory results for
problems of this nature).

– Phase I consists of the minimization of a quadratic objective function over the
simplex of prices. This is solved using Gurobi Optimization (2014), a state-of-the-
art and efficient algorithm.

– Phase II is the critical step of the entire augmented Walrasian algorithmic frame-
work.Weneed to overcome the (typical) lack of concavity of the objective function.
Thus, the maximization is done without considering first order information and
relying on BOBYQA algorithm Powell (2009). which performs a sequentially
local quadratic fit of the objective functions, over box constraints, and solves it
using a trust-region method.

All the examples were run on a 3.30 GHz Intel Core i3-3220 processor with 4 GB of
RAM memory, under Ubuntu 12.04 operating system.

In what follows, a set of numerical examples is described. The first example corre-
sponds to a toy model, which turns out to be useful in the general description of how
the algorithm acts in every interation to get to an equilibrium price. The second one
provides a direct benchmark for the performance of our algorithm applied to a classical
example in the literature, provided by Scarf [Kirman (1998, Chapter 4)]. This section
ends with an example of an exchange economy with symmetric agents and a large
size of commodities reflecting the computational power of the augmented Walrasian
approach.

Example 1 (symmetric agents). To test the overall performance of the algorithm we
start with a basic example. Consider an economy of three goods and two agents, with
utility functions within the CES family, i.e.,

ui (x) =
⎛

⎝
3∑

j=1

(ai, j )
1
bi (x j )

bi −1
bi

⎞

⎠

bi
bi −1

,

with survival sets Xi = [10−3,∞)2, for each agent.
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Fig. 1 Homogeneus Agents (Example 1)

Details In this first example, the agents are symmetric, i.e., their utility functions’
coefficients are equal, given by ai, j = 1

3 , i = 1, 2, j = 1, 2, 3 and bi = 1
2 , i = 1, 2,

as well as their initial endowments ei, j = 1, j = 1, 2, 3 , i = 1, 2. It is easy to see
that, by symmetry of the agents, the equilibrium price for this economy is given by
p∗ = ( 13 ,

1
3 ,

1
3 ), and it is unique. Computationally, we initialize the algorithm at an

arbitrary point of the simplex, in this case, p0 = (0.12, 0.56, 0.32). The trajectory
of prices {pν} and excess supply evaluations {s(pν)} performed by our algorithm are
depicted in Fig. 1. The first graph describes the price evolution, where each good
is represented by a line (prices are scaled by a factor of 100). The second graph
depicts the behaviour of the corresponding excess supply function, where each good
is again represented by a line. The adjustment process of the prices shows theWalrasian
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Table 1 Initial endowments for Example 2

Consumer Initial endowments ei j

1 0.6 0.2 0.2 20.0 0.1 2.0 9.0 5.0 5.0 15.0

2 0.2 11.0 12.0 13.0 14.0 15.0 16.0 5.0 5.0 9.0

3 0.4 9.0 8.0 7.0 6.0 5.0 4.0 5.0 7.0 12.0

4 1.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 3.0 17.0

5 8.0 1.0 22.0 10.0 0.3 0.9 5.1 0.1 6.2 11.0

Table 2 Utility parameters for Example 2

Consumer Utility parameters

ai, j bi

1 1.0 1.0 3.0 0.1 0.1 1.2 2.0 1.0 1.0 0.07 2.0

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.3

3 9.9 0.1 5.0 0.2 6.0 0.2 8.0 1.0 1.0 0.2 3.0

4 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.2

5 1.0 13.0 11.0 9.0 4.0 0.9 8.0 1.0 2.0 10.0 0.6

auctioneer’s problem, where in every iteration, the algorithm identifies the good of the
excess supply function with the corresponding least value, and performs an iteration
adjusting its price for the next period. As the algorithm progresses, it converges to the
equilibrium price. �

Example 2 (exchange economy; Scarf example). Consider the example described in
Scarf in Kirman (1998, Chapter 4): exchange economy involving five type of con-
sumers and ten comodities. The initial endowment for each agent is given by Table
1.

Details The utility functions correspond to the CES-type, for which the parameters
ai j and bi for each consumer are described in Table 2.
The algorithm was set with the self-dual augmenting function, and the centroid of the
simplex as the initial point. Additionally, the augmenting parameter was updated by a
geometric progression rν = 1.259ν . The trajectory of prices {pν} and the correspond-
ing sequence of excess supply evaluations are depicted in Fig. 2. In this example, the
convergence to an approximate equilibrium point for ε = 10−1 is obtained within
37 iterations, taking a machine time of 114 [min]; for ε = 10−2, 53 iterations were
required taking 179 [min]. The price is given by

p∗ = (18.4, 11.0, 9.9, 4.4, 12.5, 7.7, 11.7, 10.2, 9.9, 4.3)

As in the previous example, the price sequence describes a trajectory that can be
associated with the Walrasian auctioneer’s problem. Note the stability of the per-
formance: after few iterations, the algorithm reaches an approximating equilibrium.
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Fig. 2 Scarf’s example (Example 2)

Similar results are obtained with different starting points, as well as different aug-
menting sequences, that are not included in this manuscript. �

Example 3 (large scale, symmetric agents economy). In this example, we consider a
larger economy,with a total of 50 consumption goods and 10 agentswith homogeneous
CES utility functions defined over survival sets given by [10−3,∞)50.

Details The starting price is a random point in the simplex. As expected, the tra-
jectory of the approximating prices {pν} converges to the unique equilibrium price
system, in which every good has the same price, i.e., pg = 1

50 , g = 1, . . . , 50. The
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Fig. 3 Large scale, symmetric agents (Example 3)

convergence of the sequence of prices, {pν} and the corresponding sequence of excess
suppy functions {s(pν)} is illustrated in Fig. 3. �

From the examples previously described, a crucial observation can be made regard-
ing the stability of the iterative process: the algorithm approaches an approximating
equilibrum with about half of the total iterations. This behaviour is robust in every
simulation performed, and one find a reason in the introduction of the augmenting
function.

It’s noteworthy that, in all cases, after a few iteration, the procedure finds an approx-
imate equilibrium which one should be able to exploit when dealing with equilibirum
problems in a stochastic environment.
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4 Two-Stage Deterministic Equilibrium Model

As a stepping stone to the solution of stochastic Walras equilibrium models, we are
going to rely on solving, efficiently, deterministic two-stage versions of the Walras
equilibrium model. This model includes an exchange economy with a determinis-
tic two-stage structure, where agents make intertemporal consumption decisions, as
well as an activity-level decision for their particular home-production plan. Equilib-
rium conditions and an approximation scheme via augmented Walrasian is provided.
Finally, a solution strategy for the agents’ problems is provided, in order to solve them
efficiently.

4.1 Agents’ Problem and Equilibrium Formulation

Given a price system p = (p0, p1) with pt the price vector in vigor at time t , each
agent i ∈ I determines its optimal consumption plan x̄ = (x̄0i , x̄1i ) as the solution of
the following utility maximization problem,

max
x0,y,x1

u0
i (x0) + u1

i (x1)

so that 〈p0, x0 + T 0
i y〉 ≤ 〈p0, e0i 〉,

〈p1, x1〉 ≤ 〈p1, e1i + T 1
i y〉,

x0 ∈ X0
i , y ∈ Yi , x1 ∈ X1

i ,

where ut
i , et

i and Xt
i are the utility functions, the endowments and the survival sets for

agent i at time t = 0, 1. As in Sect. 2, the utility functions are assumed to be usc and
concave, providing the closedness and convexity of the corresponding survivals sets.

Each agent has access to (their individual) technology to transform goods from
the first stage to the second one. The technology for each agent is modeled by a
given pair of matrices T 0

i , T 1
i , and the agent’s decision is modeled by an activity-

level variable y. Therefore, each agent determines a set of activities at time 0 that
requires an input of goods T 0

i y and produces a deterministic output T 1
i y at time 1.

The set of potential activities that are at the disposal of agent-i is determined by the
closed convex cone Yi ⊂ IRm ; in many instances, one would simply have Yi = IRm+
but not necessarily in general. One can think of the pair of matrices (T 0

i , T 1
i ) as

determining an input/output (home production) process that could simply be savings
including enhancements or deterioration, or investment activities, retention, and so
on. Of course, the agent chooses y so as to maximize its overall utility; note, u1

i could
include a discount factor that doesn’t have to be made explicit here.

The excess supply function s(p) = (s0(p0, p1), s1(p0, p1)) is given as usual as
the difference between the total amount of goods available in each time period and the
total endowments adjusted by the goods used or generated by the input/output process,
i.e.,
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s0(p) =
∑

i∈I [ e0i − (x0i (p) + T 0
i yi (p)) ],

s1(p) =
∑

i∈I [ (e1i + T 1
i yi (p)) − x1i (p) ],

where (x0i (p), yi (p), x1i (p)) is the optimal solution for agent i of its utility maximiza-
tion problem.
The Walrasian bifunction for this economy, W : Δ2 × Δ2 → IR is defined by

W (p, q) = 〈q, s(p)〉 = 〈q0, s0(p0, p1)〉 + 〈q1, s1(p0, p1)〉,

where a price p̄ = ( p̄0, p̄1) is and equilibriumprice system if s( p̄) ≥ 0. As in the static
(one-stage) model, it can be shown that such a p̄ is a maxinf-point of the Walrasian
and its existence is provided as W is a Ky Fan function. One possible approach in
finding such a maxinf-point is based on the AugmentedWalrasian approach described
in §3.

Theorem 3 (dynamic deterministic maxinf-points) Consider the Walrasian function
W for the previous economy. Assuming local nonsatiation preferences, every maxinf-
point p̄ = ( p̄0, p̄1) of W is an equilibrium point, i.e., s0( p̄) ≥ 0 and s1( p̄) ≥ 0.

Proof Adapting the same pattern of proof as in Lemma 1, for every price system
p = (p0, p1), it is easy to check that W (p, p) = 0, thus 〈p0, s0(p)〉 = 0 and
〈p1, s1(p)〉 = 0. Then, if p̄ is a maxinf-point of W , W ( p̄, ·) ≥ 0. It follows that for
vectors q = (e j , p̄1) defined for every unit vector e j , 0 ≤ 〈q, s( p̄)〉 = 〈e j , s0( p̄)〉 +
〈 p̄, s1( p̄)〉 which implies s0( p̄) ≥ 0. Analogously, taking q = ( p̄0, e j ) it follows that
s1( p̄) ≥ 0. �
Theorem 4 (convergence of ε-maxinf points and equilibrium). Suppose that the func-
tion p �→ s(p) is usc on Δ2. Consider the non-negative sequences

{
rν : ν ∈ IN

}

and
{
εν : ν ∈ IN

}
such that rν ↗∞, εν ↘ε ≥ 0.1 Let

{
W ν : ν ∈ IN

}
be a fam-

ily of Augmented Walrasian functions associated which each augmenting parameter
rν . Let pν ∈ εν-argmaxinf W ν and p̄ be a cluster point of

{
pν : ν ∈ IN

}
. Then

p̄ ∈ ε-argmaxinf W . In particular, when ε = 0, p̄ is an equilibrium point.

Proof The tight lop-convergence of the augmented Walrasian
{
W ν : ν ∈ IN

}
follows

the same arguments as those in the proof of Theorem 2 and the conclusion follows
from Theorem 1. �

4.2 Two-Stage Deterministic Model: A Solution Strategy

A crucial observation on the structure of the two-stage deterministic problem help us
design an efficient solution procedure for this type problem. After dropping reference
to agent-i , for a fixed choice of activities y, the two-stage deterministic model is

1 Note that the equilibrium case ε = 0 is included.
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essentially just an extension of a one-stage problem. Let y = ȳ ∈ Y , then the problem
reads:

max
(x0,x1)

u0(x0) + u1(x1)

so that 〈p0, x0〉 ≤ 〈p0, e0 − T 0 ȳ〉,
〈p1, x1〉 ≤ 〈p1, e1 + T 1 ȳ〉,

x0 ∈ X0, x1 ∈ X1.

Considering a fixed ȳ, the agent’s problem become separable: notice that in each
budget constraint, the terms T 0 ȳ and T 1 ȳ are constant terms, and therefore, one can
think of having modified endowments ẽ0 = e0 − T 0 ȳ, and ẽ1 = e1 + T 1 ȳ. Thus,
as the objective function is separable, and the constraints are decoupled, this problem
can be solved by maximizing separately in the x0 and x1 variables:

maxx0∈X0 u0(x0) so that 〈p0, x0〉 ≤ 〈p0, e0 − T 0 ȳ〉,
maxx1∈X1 u1(x1) such that 〈p1, x1〉 ≤ 〈p1, e1 + T 1 ȳ〉.

If these problems are of the Cobb–Douglas or CES-type, one can find (closed-form)
explicit solutions to these problems at negligible computational cost, detailed in
Sects. 4.2.1 and 4.2.2
The agent’s problem can now be seen as finding the best y ∈ Y that will maximize
the overall reward function r , defined as

r(y) = sup
x0∈X0

{
u0(x0)

∣∣ 〈p0, x0〉 ≤ 〈p0, e0 − T 0y〉}

+ sup
x1∈X1

{
u1(x1)

∣∣ 〈p1, x1〉 ≤ 〈p1, e1 + T 1y〉}.

The agent’s problem can be translated to:

find y∗ ∈ argmaxy∈Y r(y).

We refer to this reduction as the transfer-first approach and the algorithmic procedure
to solve it (nonlinear convex optimization problem) very much depends on the proper-
ties of r . In the Cobb–Douglas or CES case, the function r is twice differentiable and
one can find explicit expressions for the gradient and the Hessian of r .When Y = IRm+,
the problem boils down to maximizing a convex function on the non-negative orthant.
Assuming further that r is differentiable, the optimality conditions read:

for k = 1, . . . , m, y∗
k ≥ 0,

∂

∂yk
r(y∗) ≤ 0, y∗

k
∂

∂yk
r(y∗) = 0.

A number of specialized algorithmic procedures have been designed for precisely this
problem-type.
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4.2.1 The Cobb–Douglas Case

The utility function of agent-i takes the form

ui (x) =
∏n

j=1
x

βi, j
j with

∑

j=1
βi, j = 1, βi, j ≥ 0.

For any price p ∈ Δ and assuming that the survival set Xi = IRn+, agent-i solution is

for j = 1, . . . , n, x̄i, j (p) = βi, j

p j

∑n

l=1
plei,l;

the endowment of agent-i : ei = (ei,1, . . . , ei,n) and the utility attached to this solution:

ui (x̄i ) = αi (p)
( ∑n

l=1
plei,l

)
where αi (p) =

∏N

j=1

(βi, j

p j

)βi, j
.

Given the dynamic model, once the activity levels y ≥ 0 are fixed, the problem
becomes separable (per-stage) and the solution takes the same form provided that y
is chosen so that e0i − T 0

i y remains non-negative, otherwise agent-i would enter the
exchange market with a negative quantity of certain goods. It’s implicitly assumed
that the technology matrices T 0

i , T 1
i are non-negative: negative entries in T 0

i would
imply goods-production at time 0 and negative entries in T 1

i would imply negative
outputs would be generated by certain technologies at time 1. Hence, assuming that
T 0

i y ≤ e0i , the solutions (consumption vectors) that result from the choice of y and
p = (p0, p1) ∈ Δ × Δ would be

for j = 1, . . . , n, x̄0i, j (p0) = β0
i, j

p0j

∑n

l=1
p0l (e0i,l − 〈T 0

i,l , y〉);

where T 0
i,l is the lth row of T 0

i ,

for j = 1, . . . , n, x̄1i, j (p1) = β1
i, j

p1j

∑n

l=1
p1l (e1i,l + 〈T 1

i,l , y〉);

and consequently,

ri (y) = u0
i (x̄0) + u1

i (x̄1)

= α0
i (p0)

(∑n

l=1
p0l (e0i,l − 〈T 0

i,l , y〉)
)

+ α1
i (p1)

( ∑n

l=1
p1l (e1i,l + 〈T 1

i,l , y〉)
)

As detailed in Sect. 4.1, the optimization problem for agent-i is reduced to

find ȳi that maximizes ri (y) such that T 0
i y ≤ e0i , y ∈ IRm+.
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This is a linear programming problem whose feasible region is bounded and non-
empty; y = 0 is always a feasible solution.

4.2.2 The Constant Elastiticity of Substitution (CES) Case

If the utility functions for agent i take the following form

u0
i (x0) =

⎛

⎝
n∑

j=1

(a0
i, j )

1
b0i (x0j )

b0i −1

b0i

⎞

⎠

b0i
b0i −1

.

u1
i (x1) =

⎛

⎝
n∑

j=1

(a1
i, j )

1
b1i (x1j )

b1i −1

b1i

⎞

⎠

b1i
b1i −1

.

Then, the KKT optimality conditions Rockafellar and Wets (1998), are satisfied if,
and only if, the budget constraint is active. On the other hand, each agent must satisfy
the constraint for feasibility T 0

i y ≤ e0i . Then, for a given a feasible y ∈ Yi , we can
find an explicit solution, given by

for j = 1, . . . , n, x̄0i, j (p) = a0
i, j

(p0j )
b0i

∑n
k=1(p0k )1−b0i a0

i,k

n∑

l=1

p0l (e0i,l − 〈T 0
i,l , y〉);

where T 0
i,l is the lth row of T 0

i ,

for j = 1, . . . , n, x̄1i, j (p1) = a1
i, j

(p1j )
b1i

∑n
k=1(p1k )

1−b1i a1
i,k

n∑

l=1

p1k (e
1
i,l + 〈T 1

i,l , y〉);

Defining for agent-i

for t = 1, 2, θ t
i (p) =

⎛

⎜
⎝

n∑

j=1

(at
i, j )

1
bt
i

(
at

i, j

(pt
j )

bt
i

1
∑n

k=1(pt
k)

1−bt
i at

i,k

) bt
i −1

bt
i

⎞

⎟
⎠

bt
i

bt
i −1

.

consequently

ri (y) = u0
i (x̄0) + u1

i (x̄1)

= θ0i (p0)

(
n∑

l=1

p0l (e0i,l − 〈T 0
i,l , y〉)

)

+ θ1i (p1)

(
n∑

l=1

p1l (e1i,l + 〈T 1
i,l , y〉)

)
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This is again a linear function of y. Thus, if Yi = IRm+, the problem for each agent is
given by

find ȳi that maximizes ri (y) such that T 0
i y ≤ e0i , y ∈ IRm+.

5 Stochastic Equilibrium

In Sect. 4 we introduced an intertemporal deterministic exchange economy. In this sec-
tion, we enrich this model by incorporating uncertainty. This stochastic model reflects
a more realistic approach to the economic activity, where agents face an intertemporal
decision problem, andwhere the outcome in the second stage hasmultiple possibilities.
This model is intrinsically dynamic, and the price adjustment procedure is uniquely
driven by the market interaction between agents. Considering this modification, we
analyze the agent’s problem, as well as proposing an equilibrium formulation and an
augmenting Walrasian algorithm to solve this problem.

5.1 The Agent’s Problem

In an uncertain (stochastic) environment the agent’s decision strategy is modeled as a
stochastic two-stage optimization problem, that can be formulated as follows:

max
x0,y,x1·

u0
i (x0) + Ei {u1

i (ξ , x1ξ )}

so that 〈p0, x0 + T 0
i y〉 ≤ 〈p0, e0i 〉,

〈p1ξ , x1ξ 〉 ≤ 〈p1ξ , e1i,ξ + T 1
i,ξ y〉, ∀ ξ ∈ Ξ

y ∈ IRm+, x0 ∈ X0
i , x1ξ ∈ X1

i.ξ , ∀ ξ ∈ Ξ,

where, the utility functions are usc, concave and the survival sets are convex and
unbounded. Additionally, the uncertainty on the second stage is modeled by a finite
number of possible states (scenarios), denoted by the set Ξ , and agent-i is calculating
the expectation with respect to agent-i beliefs, i.e., to each possible state ξ ∈ Ξ ,
agent-i assigns a probability πi,ξ ≥ 0 such that

∑
ξ∈Ξ πi,ξ = 1. It’s possible, although

unlikely, that all agents have the same information about the future in which case these
probabilities wouldn’t depend on i . As before, the agents set up their trades in full
knowledge of the suggested price system, eventually an equilibrium price system,

p = (p0, (p1ξ )ξ∈Ξ);

in particular, p1ξ is known for every contingency ξ ∈ Ξ . Note that the goods required

T 0
i y to carry out activities at level y are still well determined, the output at time

1 is now stochastic, namely T 1
i,ξ y. This reflects a more realistic view of the output

process. Even in the simple case of savings via buying certificates of deposit, bonds
or stocks, their value at time 1 can’t be known with certainty. This is even more so, if
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the activities are decisions involving manufacturing, the marketing or distribution of
goods (perishable or not) and so on.

The agents’ problems are thus (two-stage) stochastic programs with recourse Birge
and Louveaux (2011) with stochastic entries in the right-hand side 〈p1ξ , e1i,ξ 〉, the so-
called technology matrix T �

i,ξ and the recourse matrix p1ξ ; the recourse decisions are

x1i,ξ . Under the ‘usual’ conditions that guarantee the existence of an equilibrium price
system, recalled in Jofré andWets (2002), Magill and Quinzii (2002), these stochastic
programs are necessarily feasible; note however that straightforward feasibility of
these stochastic programs doesn’t really require such stringent conditions, for example,
one could rely on an adaptation of the ample survivability assumption introduced in
Jofré et al. (2017). From the stochastic programming viewpoint, these conditions
can be viewed as sufficient conditions to guarantee the relatively complete recourse
property. For our problem, this can be stated as follows: for every agent, and for every
possible state of nature, there exists a consumption plan and an activity-level decision
that allows survivability of the agent. Mathematically, for every agent (dropping the
dependence on i), for all ξ ∈ Ξ , there exists (x̃0, ỹ, x̃1ξ ) ∈ X0 × IRm+ × X1

ξ such that

e0l − x̃0l − (T 0 ỹ)l ≥ 0, l = 1, . . . , L

e1l,ξ − x̃1l,ξ + (T 1
ξ ỹ)l ≥ 0, l = 1, . . . , L , ∀ξ ∈ Ξ

From the economic perspective, this assumption is weaker than the usual survivability
conditions, and can be interpreted as every agent being able to survive or participate
in the economy, independently of the market prices.

5.2 Solving the Agent’s (Stochastic) Problem

There are many alternatives methods to solve stochastic programs with recourse, but
in this setup the use of the Progressive Hedging algorithm Rockafellar and Wets
(1991), Wets (1989) seems to have many advantages, in particular because solutions
of the individual scenario subproblems are so readily available, cf. Sect. 4.2 with the
transfer-first approach.
The approach is based on relaxing, at the outset, the non-anticipativity constraint,
namely that the first stage variables aren’t allowed to depend on ξ , and then, progres-
sively enforcing this requirement. For now let’s just limit ourselves to a description
of the steps of the algorithm as it applies to the stochastic version of the (two-stage)
agent’s problem in the Cobb–Douglas case, generated by the transfer-first approach
described in Sect. 4.2.1.
Under the transfer-first setting, the only first stage decision variable is y, and the
Progressive Hedging algorithm can be described as follows Step 0. Set ν = 0. Pick
ρ > 0, ȳ0 = 0, wν

i : Ξ → IRm such that Ei {wν
i (ξ)} = 0.

Step 1. For all ξ ∈ Ξ , let

yν+1
i (ξ) ∈ argmaxy

{
rν

i (ξ, y) − 〈wν
i , y〉 − ρ

2
|y − ȳν |2 ∣∣ T 0

i y ≤ e0i , y ∈ IRm+
}
,
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where

rν
i (ξ, y) = α0

i (p0)
(∑n

l=1
p0l (e0i,l − 〈T 0

i,l , y〉)
)

+ α1
i (ξ, p1(ξ))

(∑n

l=1
p1l (ξ)(e1i,l(ξ) + 〈T 1

i,l(ξ), y〉)
)

and

α0
i (p1) =

∏n

j=1

(
β0

i, j

p0j

)β0
i, j

, α1
i (ξ, p1(ξ)) =

∏n

j=1

(
β1

i, j

p1j (ξ)

)β1
i, j

.

Step 2. If ξ �→ yν
i (ξ) is a constant function, stop. yν(ξ), for any ξ , of course,

determines the optimal activity levels and the corresponding vector and function
[x0i , (x1i (ξ), ξ ∈ Ξ)] determine the optimal consumption plans. Otherwise, set
ȳν+1

i = E{yν+1
i (ξ)},

wν+1
i (ξ) = wν

i + ρ(yν+1
i (ξ) − ȳν+1

i ),

and return to Step 1 with ν = ν + 1.
Note that the optimization problem in Step 1 is a quadratic program of a very simple
nature since it’s completely separable. After carrying out some elementary calcula-
tions, it can be written in the form:

max

⎧
⎨

⎩

m∑

j=1

(c̄ j (ξ)y j − ρ

2
y2j )

∣∣ T 0
i y ≤ e0i , y ∈ IRm+

⎫
⎬

⎭
.

One could rely on general quadratic procedures to solve this particular problem, but
a much more efficient procedure could be designed to deal with a problem of this
particular type.

One final remark about this model is that it can be easily extended to the CES utility
functions case, using the same transfer first approach of maximizing r function. In
this situation, is easy to see that the only difference is the sustitution of the linear
coefficientes α by the ones given by the CES parameters, θ . Furthermore, one can
solve the general agent problem, relaxing the dependence of x0 and y on ξ , and apply
the enforcing procedure to progressively converge to a deterministic solution.

5.3 Augmented Walrasian and the Approximating Scheme

In this section, we set the foundations of the augmentation techniques applied to the
Two-stage Stochastic EquilibriumModel. A description of equilibrium points as max-
inf points of the corresponding Walrasian, as well as the approximation scheme based
in tight lopsided convergence of augmented Walrasian is provided. Finally, a gen-
eral description of the computational implementation of the algorithm and numerical
examples are analized.
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As in the previous section, consider the stochastic equilibrium model, where given a

price system p =
(

p0, (p1ξ )ξ∈Ξ

)
, each agent i solves

max
x0,y,x1·

u0
i (x0) + Ei {u1

i (ξ , x1ξ )}

so that 〈p0, x0 + T 0
i y〉 ≤ 〈p0, e0i 〉,

〈p1ξ , x1ξ 〉 ≤ 〈p1ξ , e1i,ξ + T 1
i,ξ y〉, ∀ ξ ∈ Ξ

y ∈ IRm+, x0 ∈ X0
i , x1ξ ∈ X1

i.ξ , ∀ ξ ∈ Ξ,

which defines the individual demand function xi (p) =
(

x0i (p), (x1i,ξ (p))ξ∈Ξ

)
and

the individual transfer vector yi (p). Additionally, the excess supply function for this

economy s(p) =
(

s0(p), (s1ξ (p))ξ∈Ξ

)
is defined as

s0(p) =
∑

i∈I
e0i − x0i (p) − T 0

i yi (p)

s1ξ (p) =
∑

i∈I
e1i,ξ − x1i,ξ (p) + T 1

i,ξ yi (p), ∀ ξ ∈ Ξ

The Walrasian for this model is the function W : (Δ × Δ|Ξ |) × (Δ × Δ|Ξ |) → IR
defined by

W (p, q) = 〈q0, s0(p)〉 +
∑

ξ∈Ξ

〈q1
ξ , s1ξ (p)〉

Aprice system p̄ =
(

p̄0, ( p̄1ξ )ξ∈Ξ

)
is an equilibrium price if s( p̄) ≥ 0, i.e., s0( p̄) ≥ 0

and s1ξ (p) ≥ 0, for every possible state ξ ∈ Ξ . Then, a equilibrium point for the
stochastic model can be described as a maxinf point of the Walrasian. Again, the
existence is granted by noting that W turns out to be a Ky Fan function.

Theorem 5 (stochastic equilibriumprices andmaxinf-points)Consider the Walrasian
function W for the previous economy. Then, under local nonstatiation of preferences,
every maxinf-point p̄ = ( p̄0, ( p̄1ξ )ξ∈Ξ) of W is an equilibrium point, i.e., s0( p̄) ≥ 0

and s1ξ (p) ≥ 0, for every possible state ξ ∈ Ξ .

Proof Considering that for every price system p = (p0, (p1ξ )ξ∈Ξ), under local non-
satiation preferences, the excess supply satisfies the Walras’ law for the first stage
and for every possible state of the second stage, i.e.,〈p0, s0(p)〉 = 0 and for every
ξ , 〈p1ξ , s1ξ (p)〉 = 0. Thus, for p̄ a maxinf point of W , W ( p̄, ·) ≥ 0. Considering

q = (e j , ( p̄1ξ )ξ∈Ξ), 0 ≤ 〈q, s( p̄)〉 = 〈e j , s0( p̄)〉+∑
ξ∈Ξ 〈 p̄1ξ ), s1ξ ( p̄)〉, which implies

that (s0( p̄)) j ≥ 0 for all j . For the second stage, given an scenario ξ0 ∈ Ξ , it suf-
fices to take q = ( p̄0, ( p̄11, . . . , p̄1ξ0−1, e j , p̄1ξ0+1, . . . , p̄1Ξ) and conclude by the same

argument that (s1ξ0( p̄)) j ≥ 0, for every good j and every state ξ0. �
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For the problem of finding equilibrium points, we will follow the approximating tech-
nique described in Sect. 3, where for a given Walrasian function W for the stochastic
economy, we consider the augmenting function σ , and an increasing sequence of
positive scalars rν ↗∞, for which we defined the family of augmented Walrasian
bifunctions W ν as follows

W ν(p, q) = inf
z∈Δ×ΔΞ

{
W (p, z) + rν ∗ σ ∗(q − z)

}
,

and the algorithmic procedure relies in the idea of finding approximatingmaxinf-points
of this augmented Walrasian bifunctions for ν large enough. Finally, the following
convergence result will guarantee the approximation to an equilibrium point for the
initial economy.

Theorem 6 (convergence of dynamic stochastic ε-maxinf points) Suppose that p �→
s(p) is usc on Δ. Consider the non-negative sequences

{
rν : ν ∈ IN

}
and

{
εν :

ν ∈ IN
}

such that rν ↗∞, εν ↘ε, for ε ≥ 0. Let
{
W ν : ν ∈ IN

}
be a family

of Augmented Walrasian functions associated wich each augmenting parameter rν .
Let pν ∈ εν-argmaxinf W ν and p̄ be a cluster point of

{
pν : ν ∈ IN

}
. Then p̄ ∈

ε-argmaxinf W . In particular, for ε = 0, p̄ is an equilibrium point.

Proof The proof follows from the application of the Theorem 1, as it was used in
the convergence results of Sects. 3 and 4 (Theorems 2, 4). Finally, the tight lopsided
convergence of the sequence

{
W ν : ν ∈ IN

}
follows from the same argument. �

5.4 Numerical Implementation and Examples

Computationally, we proceed with a primal-dual iteration scheme as described in
Sect. 3. Especial features for this type of economy are considered. In terms of the
agent’s problem, we can adopt a strategy solving the problem directly or solving it
through the maximization of the overall reward function r , coming from the transfer-
first approach
On the other hand, the agent’s problem is nowa stochastic programwith relatively com-
plete recourse, for which Progressive Hedging algorithm is implemented. Exploiting
the structure of the agent’s problem given by the separability in terms of the different
scenarios in the second stage, combined with the progressive hedging approach, we
provide two strategies, one sequential and another one parallel. The efficiency of these
strategies will be discussed later and will basically depend on the size of the economy
considered as the total amount of goods available.
Finally, the global strategy of solution adopted can be summarized in the following
scheme:

Step 0 Set ν = 0. Pick an initial price p(0) (for example, the centroid of the sim-
plex Δ for each ξ ∈ Ξ ), and an augmenting parameter r0 > 0. Define
an strategy for the agent’s problem, directly maximizing the utility function
u(x0, y, (x1ξ )ξ∈Ξ), or indirectly maximizing the overall reward function r(y).
Additionally, defined the procedure for the Progressive Hedging algorithm
implementation, sequential or parallel.
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Step 1 For all i ∈ I, compute xν
i (pν) by applying Progresive Hedging algorithm to

the agent’s problem with the proper choice of strategies. With this, compute
sν(pν), and solve the Phase I iteration for the primal-dual scheme:

qν+1 ∈ argmaxq

{
W ν(pν, q)

∣∣ q ∈ Δ × ΔΞ
}
,

which is a linear problem.
Step 2 Solve the Phase II, given by

pν+1 ∈ argmaxp

{
W ν(p, qν+1)

∣∣ p ∈ Δ × ΔΞ
}
.

Finally, check the optimality condition: if min s(pν+1) ≥ −ε, stop. Otherwise,
set rν+1 > rν and return to Step 1 with ν = ν + 1.

Finally, check the optimality condition: if min s(pν+1) ≥ −ε, stop. Otherwise, set
rν+1 > rν and return to Step 1 with ν = ν + 1.

5.5 Numerical Experimentation

Example 4 (main example). The main example for testing the numerical implemen-
tation of the augmented Walrasian algorithm is described for the following economy,
consisting of seven goods: skilled job, unskilled job, leisure, consumption, risk free
bond, and two stocks.

Details We considered an economy with 5 agents, with utility functions of CES
type, and 9 posible scenarios in the second stage. On the other hand, the transformation
matrices are the same for every agent at the first stage given by T 0 = I and for the
second stage are given by T 1

i,ξ = diag(di,ξ ) for each agent i = 1, . . . I, with

d1,ξ = (0, 0, 1 + 3r/4, 0.7, 1 + r, R1
ξ , R2

ξ ),

d2,ξ = (0, 0, 1 + r/2, 0.8, 1 + r, R1
ξ , R2

ξ ),

d3,ξ = (0, 0, 0, 0.7, 1 + r, R1
ξ , R2

ξ ),

d4,ξ = (0, 0, 1 + r/2, 0.9, 1 + r, R1
ξ , R2

ξ ),

d5,ξ = (0, 0, 1 + r/2, 0.7, 1 + r, R1
ξ , R2

ξ ).

�
where r = 3.25% and R1

ξ ,R
2
ξ are given and labeled by the following table

ξ R2
(+)

R2
(=)

R2
(−)

1.10 1.00 0.95

R1
(+)

1.20 1 2 3

R1
(=)

1.00 4 5 6

R1
(−)

0.85 7 8 9
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Fig. 4 Main example (Example 4), {pν } and {s(pν)}

Agents’ utility functions are CES type, with parameters can be found online,2

as well as their initial endowments and survival sets. Additionally, we consider that
every agent has the same beliefs over the scenarios on the second stage, given by
πi,ξ = 1

9 , i ∈ I, ξ ∈ Ξ .
The algorithm is initialised with p(0) as the centroid of Δ × ΔΞ , the augmenting

function is σ = 1
2 | · |2, and the augmenting sequence of parameters rν is given by

rν = 1.259ν . The trajectory of the prices {pν} for every iteration and the corresponding
excess supply function {s(pν)} are described in Fig. 4. The algorithmwas set for direct

2 http://www.math.ucdavis.edu/~jderide/AugWal/AugWal.html.
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solution for the agent’s problem and for Progressive Hedging, a sequential approach
was considered. It finished after 62 iterations, with a total machine time of 28h. �

6 Conclusions

We introduced a new optimization methodology that allows the computation of equi-
librium, demand, and prices for different economies. This new approach combines
several elements of variational analysis, such as the notion of lopsided convergence
and augmented Lagrangian technique for non-concave optimization problems.
Following Jofré andWets (2002), we characterize equilibrium prices as maxinf points
for the so-called Walrasian bifunction for an exchange economy. The novelty of our
approach relies in the approximation of theWalrasian by augmented Walrasian. Then,
the computation of equilibrium points follows from the convergence of the sequence
of maxinf points for the approximated problems, granted by the lopsided convergence
of the sequence of augmented Walrasians.
We use this methodology to solve, as a prelude, the classical Arrow–Debreu gen-
eral equilibrium model and, then, two periods exchange economies with uncertainty.
For both models we got convergence in every numerical example, including a large
scale problem in the stochastic case. A robust performance of the algorithm is always
obtained, and it can be interpreted as a direct result of the augmentation procedure.
One can appreciate stability of the iterations: by about half of the total iterations
required to get a high tolerance-level solution. Furthermore, different numerical sce-
narios were tested, varying the augmenting function σ and the augmenting parameter
r . The results observed in these variations were not considered significantly different.
The most efficient variant relied on the self-dual augmenting function with exponen-
tial growth in the augmenting parameter. Finally, for the stochastic problem, we tested
an implementation of the algorithm based on a parallel computation for the agent
problem.
The augmented Walrasian algorithm introduced in this manuscript has a fundamental
feature that helps it outperformed earliermethods: it does not rely on smoothness prop-
erties of the demand function. This fact becomes crucial when introducing stochastic
environments. Instead, it relies on non-concave duality properties and lopsided approx-
imation theory, both components that entail a robust and stable performance under
given parameters. Theoretically, the efficiency of this algorithm can be measured by
time efficiency, space efficiency, and complexity theory. However, these rigorous met-
rics are out of the scope of the present paper. Nevertheless, our efficiency claim is
based on the theoretical foundation of our algorithm, as long as the usage of efficient
tools for solving optimization problems that outperform fixed-point based methods.
Finally, this algorithm provides a tool to solve problems from real-life applications,
where other algorithms might fail Guo et al. (2016)
The usage of the augmented Walrasian approximation for the computation of equi-
librium points can be extended for more sophisticated economic models, as the one
presented in Jofré et al. (2017), Brown et al. (1996), where financial markets, col-
lateral, and retention goods are considered. Additionally, considering the structure
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of the problems, computational strategies that consider an efficient use of a parallel
algorithm should improve the overall time performance.
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