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A large number of risk models are currently used in different health institutions. Machine
Learning tools can be used to automate these processes and improve the results of these
models. These models can be incorporated into clinical processes through systems known
as Clinical Decision Support Systems (ML-CDSS). Three different problems were selected,
which are part of these ML-CDSS: Hospital Readmissions, ED Triage, and Decompensation
of inpatients. One of the most important characteristics of these three problems is that: they
focus on assessing the level of risk to make decisions, to adapt the level of care to a predicted
risk. The three problems are also characterized by requiring a level of one patient risk, at a
specific time. The three selected problems are recognized in the international literature as
difficult to resolve, particularly in pediatrics, so there is currently a great interest in research
in this area.

This thesis aims to be a methodological contribution in state of the art of Machine Learning
algorithms applied to patients’ risk problems.

To achieve our goal, a series of operations must be implemented, which considered erro-
neous data cleaning, labeling data, applying class balancing techniques, testing different
classification models and performance evaluation. We have conducted several studies which
show that it is possible to improve risk prediction and multi-class classification using an ML
approach. In these problems, both the performance evaluation and the labels that allow trai-
ning the models, are based on clinical outcomes. This allows a larger dataset to be used and
guarantees the objectivity of the result by limiting the influence of human judgment. In this
thesis, we worked with anonymized data from Exequiel González Cortés pediatric hospital.

The correct use of ML tools improves the predictive result in problems related to patient
risk. The excellent results obtained in different evaluation metrics in risk prediction problems
allow methodological validation of the ML tools used. Even if they are compared with other
knowledge-based and non-knowledge-based methods. This allows enriching the discussion
regarding the benefits of these models in real clinical settings. The methodology presented in
each problem has, in general terms, similar characteristics and can be used in other CDSS.
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Actualmente, se utiliza una gran cantidad de modelos de riesgo en diferentes instituciones
de salud. Las herramientas de Machine Learning (ML) pueden ser utilizadas para automatizar
estos procesos y mejorar los resultados de estos modelos. Estos modelos pueden incorporarse
en procesos clínicos a través de sistemas conocidos como Clinical Decision Support Systems
(ML-CDSS). Se seleccionaron tres problemas diferentes, que son parte de estos ML-CDSS:
reingresos hospitalarios, triage de urgencia y descompensación de pacientes hospitalizados.
Una de las características más importantes de estos tres problemas es que se centran en
evaluar el nivel de riesgo para tomar decisiones y de esta forma adaptar el nivel de atención
al nivel de riesgo determinado. Los tres problemas también se caracterizan por requerir el
nivel de riesgo de un paciente, en un momento específico. Los tres problemas seleccionados
son reconocidos en la literatura internacional como difíciles de resolver, particularmente en
pediatría, por lo que, actualmente hay un gran interés en investigar en esta área.

Esta tesis pretende ser una contribución metodológica en el estado del arte de los algorit-
mos de ML aplicados a los problemas de riesgo de pacientes.

Para lograr nuestro objetivo, se debe implementar una serie de operaciones, que incluyen
la limpieza de datos erróneos, etiquetado de datos, aplicar técnicas de balanceo de clases,
probar diferentes modelos de clasificación y evaluar el desempeño de estos. Se llevaron a cabo
varios estudios que muestran que es posible mejorar la predicción del riesgo y la clasificación
de varias clases utilizando un enfoque de ML. En estos problemas, tanto la evaluación del
desempeño como las etiquetas que permiten entrenar los modelos, se basan en resultados
clínicos. Esto permite utilizar un conjunto de datos más grande y garantiza la objetividad
del resultado, al limitar la influencia del juicio humano. En esta tesis se trabajó con datos
anonimizados del hospital pediátrico Exequiel González Cortés.

El uso correcto de las herramientas de ML permite mejorar el resultado predictivo en
problemas relacionados con el riesgo del paciente. Los excelentes resultados obtenidos con
diferentes métricas de evaluación en problemas de predicción de riesgos permiten la valida-
ción metodológica de las herramientas de ML utilizadas. Incluso si se comparan con otros
métodos knowledge-based y non-knowledge-based. Esto permite enriquecer la discusión sobre
los beneficios de estos modelos en entornos clínicos reales. La metodología presentada en cada
problema tiene, en términos generales, características similares y puede utilizarse en otros
CDSS.
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Chapter 1

Introduction

The concept of risk management has been applied in healthcare since the mid-1970s [155].
Hospitals were always concerned with augmenting safety, but systematic risk management
has been considered only in the last two decades [100, 117].

Modern medicine has advanced in the development of more complex treatments and care
processes allowing to improve patient care, but also increasing the risk of adverse events
and unwanted damage to the patient. [26]. Risks associated with patient care can never be
completely eliminated [170] and treatment decisions for physician and patient depend on the
perception of risk [55]. Therefore, clinical risk management plays a crucial role in enabling
hospitals to enhance patient safety. [170]

Hospitals are considered high-risk organizations [174]. A large number of risk models are
currently used in different health institutions. Research in the field of medicine focuses on
improving these models using the judgment of experts [127] and new clinical evidence [115].
Nevertheless, “To Err is Human” [51, 102, 134] and there is a significant error-rate associa-
ted with manual risk classification, especially in high-workload settings, such as emergency
departments [37, 38].

The use of Electronic Health Records (EHR) has been extended to many health institutions
during the last decade [120]. EHRs are repositories of clinical information making available
a large amount of longitudinal data. Currently, the large amount of accessible scientific and
medical information turns biomedicine into a fast growing field [79, 98]. This huge amount of
data allows the use of modern Machine Learning (ML) models [167] for patient risk prediction
[63], which is a central part of clinical risk management [122]. ML tools can also be used to
automate some steps of health care process and to improve the performance of risk prediction
[20]. It is rewarding to study the use of sophisticated predictive tools in this field; due to its
high health quality impact.

From a clinical viewpoint, systems containing patient risk models provide tools to help
clinical decision, reduce variability, provide protocol interventions, improve quality control,
and decrease the necessary training time of professionals [133, 165].
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Currently, there is scarce evidence that the use of ML tools in real clinical settings may
replace the human decision. The process from innovation to routine clinical use is complex
[107]. In addition, legal issues of the use of ML tools in health care have been raised [27, 72].
In this scenario, it is still necessary to develop and validate ML tools with the capacity to
support important clinical decisions, such as assessing patient risk.

This subject is tremendously interesting because of its great impact and applicability
[78]. Likewise, from scientific research viewpoint, it is interesting to explore the application
and methodological development of this kind of models in real clinical settings under the
constraints and challenges of these environments.

The main applications of ML in health according to [85], that extends the categories
presented by [80], can be clustered into the following categories: Administration and delivery:
managing health care delivery costs; Clinical decision support; Clinical information; Behavior
/ consumer; and, Support Information. The concept of patient risk that will be addressed
falls in the area of Clinical Decision Support Systems (CDSS), specifically the point-of-care
systems defined as “Computer systems designed to impact clinician decision making about
individual patients at the point in time that these decisions are made” [20].

1.1. Clinical Decision Support Systems (CDSS)

Clinical Decision Support is .a process for enhancing health-related decisions and actions
with pertinent, organized clinical knowledge and patient information to improve health and
healthcare delivery"[125]. The aim of Clinical Decision Support Systems (CDSS) is to help
physicians making faster and more reliable clinical decisions. The most common use of CDSS
is for addressing clinical needs [19]. This condition reveals the dynamic characteristic of the
CDSS. Due to this, there is no single definitive classification. There are different publications
such as [18], [152] that claim to categorize the different research in CDSS. A well-studied
criterion [20] divides CDSS into two types: a Knowledge-based and Non-knowledge-based.
The central difference between this two types is that knowledge-based CDSS does not use
any type of artificial intelligence, whereas non-knowledge CDSS does. This work focuses on
CDSS of a type known as non-knowledge based.

Based on [19] and [65] figure 1.1 presents a more appropriate classification. This classifi-
cation is based on the decision task supported by CDSS .

• Alerts and Risk This kind of CDSS contains systems that provides real time risk
classification alerts and warnings to the medical staff. This category contains CDSS
that are based on both continuous (monitoring) and discrete information.
• Diagnostic Assistance This kind of CDSS can be used to help clinicians by recom-

mending a possible diagnosis or providing useful information to make a diagnostic
decision. It includes diagnostic assistance that uses medical images, laboratory results,
among others.
• Treatment and planning This kind of CDSS assists clinicians in the plan, therapy,

and medical prescriptions. This group contains therapy critic and planning, and pres-

2



Figura 1.1: CDSS Classification

cription decision support. This category deals with the prescription of medications, as
part of the patient’s treatment.
• Information Retrieval are used to locate and retrieve an appropriate and accurate

data that could be used for diagnosis or treatment planning.

Clinical decision support has a long history and is undergoing a renaissance with the
advent of new ML techniques [79], giving birth to Machine Learning-based Clinical Decision
Support Systems (ML-CDSS). The potential applications of ML-CDSS are manifold. The
case studies worked out in this Thesis are a sample of this broad area.

In [153] a Framework for Classifying CDSS is presented using 24 descriptive axes. Some
of these axes are used in this thesis to establish similarities and differences between selected
problems.

1.2. Three Paradigmatic Problems of Patient risk mode-
ling

The CDSS categories visualized in the figure 1.1 present different research opportunities,
but also different challenges. Particularly in this Thesis examples of the first group were
addressed, and specifically in predicting patient risk with time discrete information.

In [15] seven groups are presented: High-cost patients, Hospital Readmission, Triage, De-
compensation (when a patient’s condition worsens), adverse events, and treatment optimiza-
tion (for diseases affecting multiple organ systems). In this thesis, three of these particular
problems were selected: Hospital Readmission, Triage, and Decompensation of inpatients.

The motivation behind this selection is to show the capacity of the ML models to improve
the results of the methods currently used by facing problems of similar characteristics, asso-
ciated with the risk of patients. In this way it is possible to experiment with strategies that

3



have potential to improve the predictive results at different stages of the patient care pro-
cesses. Also, these three patient risk problems selected have similar characteristics in terms
of:

• The nature of uncertainty involved in patient risk [110]
• Highly class unbalanced data [17, 99]
• They can be formulated as a supervised learning problems [1, 189]
• Sensitivity is an important evaluation metric [184, 124, 3]
• Features and parameters depend on specific population characteristics [5, 57, 164]

One of the most important common characteristics of these three problems is that they
focus on assessing the level of risk to make decisions adapting the level of care to the predicted
risk. It is fundamental that the proposed solution should be a part of the health care process.
The three problems are also characterized by requiring a level of risk assessment at a specific
time instant. In other words, risk is assessed for a person at a particular time in the heath
care process.

These particular characteristics motivate to focus the investigation on improving risk
assessment models through the use of sophisticated ML techniques. It is important to consider
that local hospitals does not necessarily have the same conditions for deployment as the places
where these models were developed. Conditions like:

• Human and financial Resources
• Available Data
• Demographic and epidemiological characteristics of the populations
• Local politics
• Physical and social environment

Currently, the three selected problems have received a high research interest [73, 142, 181,
104, 67], and are recognized in the international literature as difficult to solve, particularly
in pediatrics settings [2, 88, 21]. In the works reported in this thesis we have worked with
data from Pediatric Exequiel González Cortés Hospital (EGCH), which is one of only three
Pediatric hospitals of Chile. The hospital has approximately 52,000 m2 of surface, 6 Operating
Room, 168 wards, 1046 workers, and around 110,000 ER Visits per year.

1.2.1. Hospital Readmission

A hospital readmission is an episode when a patient who had been discharged from a
hospital is admitted again after a short time. Hospital readmission have different causes that
include many social determinants, such as education, economics, and access to health care
[185]. Readmission occurs within a specified time interval for example 7 or 30 days. In our
scenario, our approach is to predict the second admission at the time of the first discharge.
Hospital readmission is a frequent and expensive problem [6, 50]. It is widely used as an
indicator of quality of care [13, 159]. This problem has been widely studied in the world,
generally based on the information extracted from the EHR [9, 13].
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The problem of predicting hospital readmission is difficult to address because it is multi-
factorial [46, 185] and the data is highly class imbalanced [7]. The objective is to develop a
pediatric readmission prediction method based on the same information used to determine
the Diagnosis Related Groups (DRGs) weight.

There is a large number of publications that address the prediction of the risk of patient
readmission through the use of statistical techniques and using many types of available da-
ta. Logistic Regression (LR) and survival analysis have been the most used models in the
literature, however, there is a growing interest in applying ML techniques to this subject.
Often, these models exhibit poor predictive performance and would be unsuitable for use
in a clinical setting [62]. A systematic review [91] of publications in this area reports AUCs
between 0.56 and 0.72 in adults. However, this result may improve [41] if a greater volume
of data is considered, such as activities of daily living assistance needed, visual impairment,
functional status, or longitudinal data [9, 136].

In our case, to achieve the aim, a series of operations must be implemented, which con-
sidered erroneous data cleaning, labeling data, applying class balancing techniques, testing
different classification models and evaluating results.

Hospital Readmission is a current problem [9], especially when the possibility of correcting
the funding of hospitals based on their DRG production is discussed in Chile. The US expe-
rience shows that hospital funding with this characteristic must be corrected by a readmission
index [42].

1.2.2. Triage

Triage is an assignment of degrees of urgency to wounds or illnesses of a specific patient
to decide the order of treatment of a large number of patients or casualties. Triage are
considered a key tool in emergency care process [69]. The motivation of the study of ML
models is to support a simple and fast screening method based on the patient’s degree and
severity of medical need. It has been estimated that 40% of patients arriving at Emergency
Departments (EDs) have non-urgent problems [25]. This leads to overcrowded waiting rooms
and long waiting times. As a consequence, patients needing care urgently are in risk of not
being treated in time [141].

Triage systems are CDSS [161] that combine individual patient information and triage
decision rules to classify patient’s urgency [118]. The decision is well defined over specific
parameters, such as vital signs, chief complaint, and past medical history [131]. Triage is the
first and most critical step toward the early identification of the sick child and the timely
delivery of emergency health care [111].

In general, triage systems are based on consensus opinion of experts [76]. The experts
design decision trees to support clinical risk assessment or predictions of resource usage to
define urgency levels. Triage systems should be simple to use, accurate, rapid, reproducible,
and discriminative to avoid potentially dangerous under-triage [81].
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In the EGCH a pediatric triage involve rapid recognition of seriously ill or injured children,
assigning an acuity rating level, and anticipating appropriate emergency care and referral.
In EGCH, as in the state-of-the-art triage tools actually in use, acuity rating levels used to
prioritize patients for care go from level 1 (most acute) to level 5 (least acute).

The evaluation of triage systems involves assessment of reliability and validity [118]. Re-
liability refers to the degree of intraobserver variability and interobserver variability. The
validity refers to the degree of triage prediction of “true” urgency. The validity corresponds
to the model sensitivity and specificity [124]. It is difficult to evaluate the validity of a triage
system. The fundamental problem in conducting studies to validate triage tools is the lack of
consensus about the outcome measure [70, 74, 118, 141]. One way to measure validity is to
compare the category assessed with a standard value. This includes the resources used and
the end result of the triage. Hospitalization, admission to the ICU, proportion of children
leaving without being seen by a physician (LWBS), and length of stay (LOS) can be used
only as a surrogate markers of the urgency of a situation, but do not represent a perfect
criterion standard for triage [75].

ML techniques could increase the consistence of triage classification in EDs [106, 30,
105]. As showed in [105] and [30] Neural Networks have shown better performance in triage
prediction in terms of sensitivity. [106] use a combination of Self Organizing Feature Maps
(SOMs) and K-Means cluster analysis to examine the emergency triage database.

Building a Triage system in children seems to be more challenging compared to adults and
no study has compared international pediatric triage systems in the same group population
[2]. Due to this, the EGCH decided to implement its own model in 2013, this model has
proved to be valid as a pediatric triage when standard evaluation metrics of the literature
are used. Both the ML proposal and the description of this model are described in chapter 3.

1.2.3. Decompensation of inpatients

Some decompensations of inpatients can be predicted using periodic bed-side vital signs
observations. Around 85% of severe adverse events (SAE) are preceded by abnormal vital
signs [101], and 59% within 1 – 4 h before cardiac arrest [4]. A group of models developed
with this propose are called Early Warning Systems (EWS). So the bed-side vital signs
observation forms the basis of EWS models. EWS have evolved as a means of alerting health
professionals to patient clinical decompensation risk.

Currently, there are many different EWS in use in different heath institutions. There
are some EWS constructed based on expert opinion, such as the National Early Warning
Score (NEWS) [123, 156], Modified Early Warning Score (MEWS) [160] and VitalPAC Early
Warning Score (VIEWS) [135]. There are also pediatrics EWS based on expert opinion such
as Children’s Hospital Early Warning Score (C-CHEWS) [112], Pediatric Early Warning
Score (PEWS) [54] and Bedside PEWS [130]. MEWS and ViEWS can be used on non-ICU
ward patients with good performance [183].

Others EWS were derived using statistical modeling (Analysis of variance ANOVA, Back-
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ward stepwise Regression) such as the Rothman Index [140] and the electronic Cardiac Arrest
Risk Triage (eCART) score [36]. [12] Shows EWS generated entirely algorithmic using Deci-
sion Tree (DT) analysis. [39] Shows one-class SVM approach using partial AUC to optimize
SVM Parameters. Discrete-time logistic regression are also used as an effective and efficient
methods to predict adverse clinical outcome [97].

Most of this EWS models were designed to detect deteriorating patients in hospital wards,
specifically those at increased risk of: unexpected ICU admission, unplanned return to the
operating theatre, or a prolonged length of stay, cardiac arrest, or death. These outcomes are
used to create labels in training data, and also, to evaluate model performances.

This wide range of models is due to the fact that each one has different characteristics,
such as: the type of patient unit, type of patient (pediatric or adult), the quantity and origin
of the used parameters. In our particular case, we will focus in models for pediatric inpatient,
in non-ICU wards, focused on vital signs monitoring and others bedside observations.

Possibly, simultaneous use of a Triage system and a model of the risk of decompensation
of inpatients can improve the predictive capacity of ED triage [23]. Currently, the EGCH has
a pioneering self-developed pediatric EWS model in Chile, however, evaluation and improve-
ment of these models must be developed.

1.2.4. Categorization of the Paradigmatic Problems

In Table 1.1 16 of 24 axes of a Framework for Classifying CDSS [153] were presented to
show similarities and differences between the three paradigmatic problems dealt with in this
Thesis.

Table 1.1 shows that the selected problems coincide in: Clinical Task, Unit of Optimiza-
tion, Relation to Point of Care, Reasoning Method, Delivery Format, Delivery Mode, Action
Integration effort and Explanation Availability. This shows that three selected problems are
similar in terms of context and information delivery, but not in terms of Workflow and the
Decision that is supported.

1.3. Objective

We plan to research three paradigmatic problems: Hospital Readmissions, Triage and
Decompensation of inpatients. The idea is to improve model results in terms of different
performance metrics.
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Tabla 1.1: Selected problems coded using taxonomy
Readmission Triage Dec. of inpatients

Context
Clinical setting Inpatient Outpatient Inpatient
Clinical Task Screening Screening Screening
Unit of Optimization Outcomes Outcomes Outcomes
Relation to Point of Care Physician-patient Clinician-patient Clinician-patient
Decision Support
Reasoning Method ML approach ML approach ML approach
Clinical Urgency Non-urgent Urgent Urgent
Recommendation Explicitness Non-Explicit Explicit Explicit
Logistical Complexity Complex Non-Complex Complex
Information Delivery
Delivery Format Integrated w/EMR Integrated w/EMR Integrated w/EMR
Delivery Mode Pull Pull Pull
Action Integration Minimal effort Minimal effort Minimal effort
Explanation Availability Non-available Non-available Non-available
Workflow
System User Physician Clinician and patient Clinician
Target Decision Maker Physician Clinician Clinician
Output Intermediary Non-intermediary Clinician Non-intermediary
Workflow Integration Moderate Full Full

1.3.1. General Objective

This thesis aims to be a methodological contribution in state of the art of Machine Learning
algorithms applied to patients’ risk problems.

1.3.2. Specific Objectives

• Review of the state of the art of different ML techniques applied in three different
patient risk problems.
• Benchmarking these techniques using hospital real data.
• Explore and propose different ways to improve models results.
• Propose methodological models will be deployed in real clinical settings.

1.4. Methodology

CRoss-Industry Standard Process for Data Mining (CRISP-DM) [32, 33] is the most used
methodology for developing Data Mining and Knowledge Discovery projects. It is actually a
”de facto” standard in this area [148]. The CRISP-DM methodology is a hierarchical process
model, divided into six phases: Business Understanding, Data Understanding, Data Prepa-
ration, Modeling, Evaluation and Deployment. Some of these phases are cyclic, which means
that some phases will allow partially or totally revising the previous phases, as shown in
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Figure 1.2.

Understanding the business is a phase in which objectives and requirements must be
established from a non-technical perspective. This requires an evaluation of the situation
from the point of view of resources, requirements, assumptions, constrains, etc.

Figura 1.2: CRISP-DM framework (Source CRISP-DM 1.0 http://www.crisp-dm.org)

The Data Understanding phase involves the compilation, description and initial data ex-
ploration. This is done in order to comply with an adequate quality verification of the data.

The next CRISP-DM phase corresponds to a selection, cleaning, construction, integration
and formatting of data. This phase is called Data Preparation and its objective is to obtain
the minable view of the data.

The next phase aims to apply the techniques of data mining to the dataset from the
previous stage. This stage is called Modeling and requires the selection of the modeling
technique, the design of the evaluation metrics, the construction of a preliminary model and
its evaluation in first iterations of the methodology.

The next phase is called Evaluation of the models selected in previous phase and determine
if they are useful to the needs of the business. In this stage, the results obtained and their
application in real clinical environments must be evaluated.

The final stage is called Deployment and its objective of this phase is to implement the
models, integrating them into the decision-making tasks of the organization.

1.5. Structure

This thesis consists of two publications plus a working paper Under Review at International
Journal of Medical Informatics. First paper (chapter 2 of this thesis) corresponds to an
international publication that shows the results obtained after implementing a prediction
model of hospital readmissions in 30 days. This publication shows a methodological proposal
that involves the use of different ML models combined with other tools such as: labeling,
class balancing and Cross-validation. This corresponds to the first publication that uses the
ML approach in solving the problem of pediatric readmission.

The second paper (Chapter 3 of this thesis) corresponds to a publication that addresses the
problem of pediatric triage with ML approaches. This publication shows a methodological
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proposal to use and evaluate these ML tools from a technical and clinical viewpoint. The
results obtained in this publication exceed those presented in other publications in the case
of adults and show slightly better results in the case of another single publication in pediatric
triage.

The third paper (Chapter 4 of this thesis) shows the development and evaluation of a
Pediatric Early Warning System supported by ML approaches. The results obtained in this
work outperform the results shown in literature for similar problems. The proposal uses, in
general terms, the same methodology shown in the other two previous publications.

In Chapter 5 the First findings are presented, the Proposed methodology is discussed, as
well as the Results obtained and the Applications and implications of the results obtained.
In this chapter the Final remarks and Further research are also presented.

1.6. Contributions List

The following is the list of academic contributions made during this PhD Thesis. It inclu-
des indexed and peer-reviewed journal papers and conference posters, as well as conference
presentations.

1.6.1. Indexed Journal Papers

• Wolff P, Graña M, Ríos S & Yarza MB (2019) Machine learning readmission risk mo-
deling: a pediatric case study, BioMed Research International, 2019:9. [178].
[JCR (2018) 2.197 (Q3 BAM, MRE)]
• Wolff P, Ríos S & Graña M (2019) Setting up standards: A methodological proposal

for pediatric Triage machine learning model construction based on clinical outcomes,
Expert Systems with Applications, 138:112788 [180].
[JCR (2018) 4.292 (Q1 CSAI, EEE, ORMS)]
• Wolff P & Ríos S (2019) A pediatric early warning system machine learning model

based on clinical outcomes, International Journal of Medical Informatics [Submitted in
July 2019]
[JCR (2018) 2.731 (Q2 MI, CSIS, HSS)]

1.6.2. Other Related Indexed Journal Papers

• Durán G, Rey P, & Wolff P (2017) Solving the operating room scheduling problem with
prioritized lists of patients. Annals of Operations Research, 258(2):395–414. [56]
[JCR (2017) 1.864 (Q2 ORMS)]
• Julio C, Wolff P & Yarza MB (2016) Waiting lists management model based on time-

liness and justice. Revista Médica de Chile, 144(6):781–794. [90]
[JCR (2016) 0.519 (Q4 MGI)]
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1.6.3. Peer-reviewed Journal Papers and Conference Presentations

• Wolff P & Ríos S (2019) Predicción de readmisión de pacientes pediátricos mediante
aprendizaje supervisado [Accepted] Revista Ingeniería de Sistemas.
• Wolff P, Yarza MV & Ríos S (2018) Predicción de readmisión hospitalaria utilizando

data del GRD. In: XXXIII Jornadas Chilenas de Salud Pública. Santiago de Chile.
• Wolff P, Alcaina E & Nalegach ME (2018) Modelo de riesgo de descompensación/dete-

rioro clínico en pacientes hospitalizados. In Poster: XXXIII Jornadas Chilenas de Salud
Pública. Santiago de Chile.
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Chapter 2

Machine learning readmission risk
modeling: a pediatric case study

Wolff P, Graña M, Ríos S & Yarza MB.1

Background:Hospital readmission prediction in pediatric hospitals has received little
attention. Studies have focused on the readmission frequency analysis stratified by disease
and demographic/geographic characteristics but there are no predictive modeling approaches,
which may be useful to identify preventable readmissions that constitute a major portion of
the cost attributed to readmissions.

Objective: To assess the all cause readmission predictive performance achieved by Ma-
chine Learning techniques in the emergency department of a pediatric hospital in Santiago,
Chile.

Materials: An all cause admissions dataset has been collected along six consecutive years
in a pediatric hospital in Santiago, Chile. The variables collected are the same used for the
determination of the child’s treatment administrative cost.

Methods: Retrospective predictive analysis of 30-day readmission formulated as a binary
classification problem. We report classification results achieved with various model building
approaches after data curation and preprocessing for correction of class imbalance. We com-
pute repeated cross-validation (RCV) with decreasing number of folders to assess performance
and sensitivity to effect of imbalance in the test set and training set size.

Results: Increase in recall due to SMOTE class imbalance correction is large and statisti-
cally significant. The Naive Bayes (NB) approach achieves the best AUC (0.65), however the

1 The following is an unabridged version of the paper published in ”BioMed Research International”.
Please cite this paper as follows: Patricio Wolff, Manuel Graña, Sebastián A. Ríos, and Maria Begoña Yarza,
”Machine Learning Readmission Risk Modeling: A Pediatric Case Study”, BioMed Research International,
vol. 2019, Article ID 8532892, 9 pages, 2019. https://doi.org/10.1155/2019/8532892.The original publication
is available at: https://www.hindawi.com/journals/bmri/2019/8532892/
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shallow multilayer perceptron has the best PPV and f-score (5.6 and 10.2, resp.). The NB
and support vector machines (SVM) give comparable results if we consider AUC, PPV and
f-score ranking for all RCV experiments. High recall of deep multilayer perceptron is due to
high false positive ratio. There is no detectable effect of the number of folds in the RCV on
the predictive performance of the algorithms.

Conclusions: We recommend the use of Naive Bayes (NB) with Gaussian distribution
model as the most robust modeling approach for pediatric readmission prediction, achieving
the best results across all training dataset sizes. The results show that the approach could
be applied to detect preventable readmissions

2.1. Introduction

Hospital readmission is defined as the non-scheduled return of a patient within a short pre-
specified period of time after hospital discharge. An internationally extended standard period
to count a patient return as readmission is 30 days, but it may change for political reasons [91].
In the United States (US), hospital readmission is being used as an indicator of patient care
quality. Both public an private funding agencies use this measure to penalize underperforming
institutions [121]. It has been argued that up to two thirds of the readmissions are preventable,
therefore advances in patient readmission prediction are worth the investment [15, 62]. US
policy has inspired similar concerns in other countries, so that readmission analysis and
prediction is under consideration worldwide. The data collected in the Electronic Health
Record (EHR) is the main information source for the predictive modeling of readmissions,
and the analysis of their consequences and structural/organizational causes [15, 151].

Readmission prediction in the case of adult patients has been tackled with diverse statis-
tical approaches [6, 91] such as logistic regression [66, 126], and survival analysis [67]. Recent
works favor the application of predictive machine learning approaches, formulating readmis-
sion prediction as a binary classification problem [7, 66]. For example, the literature report
results from support vector machines (SVM) [62, 189, 44], deep learning [137, 181], Artificial
Neural Network [126], and Naive Bayes [171, 151].

Despite this long history of studies about hospital readmission for adult patients, but there
are almost no studies devoted to readmission of pediatric patients [121]. In the pediatric
case, hospital readmission prediction has been only reported in the setting of emergency
department [5, 17] and intensive care units [93]. Few studies report results on both adult and
pediatric patients [66], finding lower sensitivity in the pediatric population than in the adult
population, due to greater class imbalance in the pediatric datasets. In this paper we report
the predictive modeling results over a large cohort of all cause admissions to the emergency
department of a pediatric hospital in Santiago, Chile. We tested four modeling applications
considering various numbers of folds in a repeated cross-validation approach, achieving results
comparable to those reported for adult patient readmissions.
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Figura 2.1: Study design

2.2. Materials and Methods

The overall model training and validation process is shown in Figure 2.1. First, the EHR
data entries were labeled as readmissions according to the following rules: a) we consider
admissions in period of less than 30 days after the previous discharge; b) we discard an
admission if it corresponds to programmed treatments such as chemotherapy, or if it is
intended for services that are not urgent. We check (corroborate) the correctness of the
generated labels by an expert committee; which consisted of two experienced medical doctors
and two nurses from the hospital’s quality and safety care team. The whole data is then used
for validation in a repeated cross-validation (RCV) process with different numbers of folders,
we carried out 10-fold, 5-fold, 4-fold and 3-fold RCV. Each cross-validation repetition consists
in the following steps: 1) partition of the dataset in the selected number of folds, 2) each
fold is alternatively used as the test dataset while the remaining folders are used for model
training, 3) average performance measures are computed over all cross–validation folds and
repetitions . As illustrated in Figure 2.1, training at each RCV step is preceded by a class
balance process carried out on the training dataset. We apply a SMOTE [34] up-sampling
procedure using the five nearest neighbors of each minority class sample [7, 66]. The reported
results are the average of the 30 repetitions of the CV results. We have published the script
of the implementation as open source code for independent examination [179].

2.2.1. Cohort and dataset

The descriptive statistics of the dataset used for the study are summarized in Table 2.1. It
contains records of 56,558 admissions with 2106 readmissions in the period from July 2011 to
October 2017 at the pediatric Hospital Dr. Exequiel González Cortés in Santiago, Chile. All
data has been anonymized for the study. One author (PW) acts as the honest data broker
ensuring compliance with data protection regulations. The categories of data available to
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Tabla 2.1: Descriptive statistics of the dataset.
Dataset characteristic

Total number of admissions 56,558
Number of unique individuals 35,064

Percent readmission within 30 days 3.72%
Number of unique procedures (ICD-10 AM) 1,124
Number of unique diagnoses (ICD-10 AM) 4,370

Variables used in prediction
Age (years), mean (SD) 5.78 (5.04)

Male (%) 59.2
Public facilities 1

Number of Transfers (SD) 0.61 (0.8)
Length of Stay (days), mean (SD) 3.77 (10.03)

build machine learning based predictors are the following ones:

• Data used by the administrative cost coding system, specifically Age, Sex, Ethnic group,
anonymized geographical information (i.e. postal code), Public insurance plan, Principal
Diagnosis, Secondary Diagnosis, Tertiary Diagnosis and Main Procedure performed.
• Information about patient’s admission: the date of admission, the service in which

he/she was admitted, and his/her origin.
• Information on internal transfers: Date/hour, Service of origin and Internal destination.
• Information about the patient’s discharge: Discharge date, Service that performs the

discharge, and the patient’s destination.

Though we have not carried out a detailed statistical survey of the occurrence of readmissions
according to specific diagnostics [119], we have been able to identify the diagnostic at dis-
charge accounting for most of readmissions as detailed in Table 2.2. There is a big prevalence
of respiratory conditions that can be attributed to pollution events in the city of Santiago.

To improve data quality a manual data curation process was carried out. Identification of
admissions that are actual readmissions was carried out automatically. The resulting labeled
dataset is heavily class imbalanced. A taxonomy of methods to deal with imbalanced data
is presented in the context of readmission prediction is given in [6]. For training, we applied
a class balancing technique, specifically a SMOTE [34] on the minority class using five nea-
rest neighbors. We have considered increasing sizes of the balanced training set, leaving the
remaining (imbalanced) as the test set.

2.2.2. Classification methods

Several machine learning [177, 84] approaches have been selected for predictive model
building . These models have been reported in the literature about readmission prediction
for adult patients [6, 91]. We have discarded application of deep learning approaches [71]
because the available data is too shallow. There is no spatial information, the time sequences
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Tabla 2.2: Diagnostics at discharge accounting for most readmission
Diagnostic ICD10 %

Viral pneumonia J129 9.50
Respiratory syncytial virus pneumonia J121 9.16

Acute bronchitis J209 3.94
Unspecified gastroenteritis A090 2.80

Disorders of prepuce N47 0.90

of readmissions are too short to be exploitable, and the number of variables per patient
data entry is too small to generate high dimensional hierarchical representations. Therefore
we focus on well known classical methods. The reported applications of deep learning to
readmission prediction are restricted to a specific disease, i.e. lupus patients [137], for which
there are long clinical histories per patient accessible through the EHR, so that the abundance
of data allows for the training of deep models.

Support Vector Machines [169] Support Vector Machines (SVM) classifiers are linear
discriminant functions built from samples placed at the boundaries of the classes. Their
learning algorithm looks for the discriminating hyperplane maximizing its distance to the
boundaries belonging to each class, i.e. maximizing the margin of the decision function re-
lative to the class boundary. The parameters that define the solution hyperplane come from
the optimization of a quadratic programming problem. When the classes are not linearly
separable, then it is possible to project the data into a space of superior dimensionality using
the kernel trick [150], so that the transformed dataset becomes linearly separable. The li-
terature shows that SVMs are quite robust against the curse of dimensionality, achieving
good results on small datasets of high dimensionality feature vectors. We used LibSVM [31]
library for training and estimation of the SVM metaparameters via grid search. Best results
were obtained with a Radial Basis Function (RBF) kernel. We have used LibSVM2 for SVM
training.

Multilayer perceptron Multilayer Perceptron (MLP) are the classical feed-forward arti-
ficial neural networks (ANN) composed of multiple densely interconnected layers of compu-
tational units, aka artificial neurons. The output of each unit is computed as the linear
combination of the incoming connection weights and their source units in the previous layer
filtered by a non-linear activation function. The classical sigmoid activation function has been
replaced by other like the rectified linear activation used in deep learning architectures. The
connection weights implement a discriminant function that may take arbitrary shapes. In
fact it has been shown that, even with a single hidden layer, an MLP can approximate any
function. The connection weights can be learned from data applying the back-propagation
algorithm [84].

We have applied two flavors of MLP to pediatric readmission prediction. The first one
(denoted MLP1 in the results section) is an auto-tunable implementation, called AutoMLP

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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for short, that performs automatic online model parameter tuning during training process,
including the creation of an ensemble of MLPs [144]. The number of maximum training cycles
used for the ANN training was 10 equals to the number of generations for AutoMLP training
and the number of MLPs per ensemble chosen was 4.

The second (denoted MLP2 in the results section) is a multi-layer feed-forward artificial
neural network trained using back-propagation with stochastic gradient descent [71]. The
activation function used by the neurons in the hidden layers was a Rectifier function. The
MLP2 has two hidden layer, each of 50 neurons. It was trained in 10 epochs using an adaptive
learning rate algorithm (ADADELTA) [186] which combine the benefits of learning rate
annealing and momentum training to avoid slow convergence. We used the H20 package3 for
this MLP training and validation [43].

Naïve Bayes method The Naïve Bayes (NB) approach is based on the assumption that
the individual features are statistically independent, therefore we approximate the joint pro-
bability distribution of a high-dimensional feature vector as the product of the unidimensional
distribution probabilities of each feature. In our study we use unidimensional Gaussian pro-
bability density models of the independent feature distributions. Training was carried out by
straightforward estimation of these unidimensional probability densities.

2.2.3. Classification performance metrics

At each cross-validation fold we compute the confusion matrix and performance metrics
derived from it, finally reporting the average of these results. Let us define TP, TN, FP, and
FP as true positive, true negative, false positive and false negative counts. Then we compute
the Recall (aka sensitivity) as:

R =
TP

TP + FN
, (2.1)

Positive predictive value as:

PPV =
TP

TP + FP
, (2.2)

and f-score as:
F =

2

1/R + 1/PPV
(2.3)

These measures are more informative than the accuracy (A = TP+TN
TP+TN+FP+FN

) of the
successful detection of the minority class (i.e. the readmissions) because the dataset is strongly
class imbalanced. The analysis using Receiver Operating Characteristic (ROC) curves has
been widely used to compare different binary classifiers. The ROC is a plot of sensitivity
versus the false positive rate (FPR = FP

FP+TN
). It is widely used to compare performances

3https://www.h2o.ai
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of state of art of supervised learning classification methods. Specifically the integral of the
ROC, i.e. the Area Under ROC Curve (AUC), is often reported in readmission prediction
studies of adult patients [6].

We compute these measures over the test dataset after training the models in an RCV
process explained above. At each fold test, the remaining folds are put together as the training
dataset. The training dataset is class-balanced using SMOTE [34] with five nearest neighbors
on the minority class training samples until we have the same number of samples of each class.
However, the test set remains unaffected and heavily imbalanced. One consequence is that
small errors in absolute terms (e.g. one misclassified sample) translate into large reductions of
the performance measures. The proportion of samples of the minority class in the test dataset
depends on the number of folds used for RCV. High number of folds implies big reductions
in the number of minority class samples in the test fold, thus increasing its imbalance ratio
(the ratio of the majority class sample size to the minority class sample size), which may
lead to numerical instabilities of the performance results. For this reason, we have explored
the results obtained using a decreasing number of RCV folds.

2.3. Results

Figura 2.2: Average ROCs of machine learning approaches in 5-fold RCV (applying SMOTE
class imbalance correction). Solid line corresponds to the ROC mean.
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Tabla 2.3: Average ± standard deviation Recall (R) performance [%] of SVM, MLP1, MLP2,
and NB for decreasing number of folders in the RCV process. no SMOTE = no oversampling
correction of class imbalance is done.

nfolds SMOTE
SVM MLP2 MLP1 NB

10 45.63 ±3.35 96.29 ±2.15 59.93 ±5.51 70.8 ±2.68
5 44.64 ±2.69 96.58 ±1.77 61.39 ±6.14 69.8 ±4.97
4 43.83 ±1 95.11 ±1.06 59.87 ±6.29 70.23 ±3.82
3 43.64 ±1.11 96.86 ±0.37 52.8 ±5.24 67.57 ±0.97

no SMOTE
SVM MLP2 MLP1 NB

10 0.95 ±0.76 27.60 ±11.13 0.00 ±0.00 14.81 ±1.83
5 1.04 ±0.71 33.24 ±8.65 0.00 ±0.00 14.77 ±1.43
4 1.00 ±0.21 29.11 ±13.90 0.00 ±0.00 14.91 ±1.6
3 1.14 ±0.23 30.32 ±17.48 0.00 ±0.00 14.67 ±1.89

Tabla 2.4: Average ± standard deviation Positive predictive value (PPV)[%] of SVM, MLP1,
MLP2, and NB for decreasing number of folders in the RCV process. no SMOTE = no
oversampling correction of class imbalance is done.

nfolds SMOTE
SVM MLP2 MLP1 NB

10 5.52 ±0.35 3.92 ±0.09 5.61 ±0.47 5.28 ±0.16
5 5.43 ±0.27 3.98 ±0.1 5.25 ±0.14 5.29 ±0.31
4 5.39 ±0.1 3.99 ±0.01 5.29 ±0.19 5.29 ±0.07
3 5.48 ±0.1 3.94 ±0.03 5.34 ±0.07 5.4 ±0.09

no SMOTE
SVM MLP2 MLP1 NB

10 42.22 ±29.86 6.23 ±1.53 NA 9.05 ±1.11
5 32.47 ±16.63 5.40 ±0.59 0.00 9.02 ±0.95
4 45.24 ±5.35 6.60 ±1.96 0.00 9.09 ±1.13
3 45.24 ±12.14 6.22 ±0.82 NA 8.90 ±0.89

Tables 2.3, 2.4, 2.5, and 2.6 show the average recall, positive predictive value, f-score, and
AUC, respectively, of the machine learning techniques after 30 repetitions of the RCV experi-
ments with varying number of folders, with and without SMOTE class imbalance correction.
The effect of the number of folds is negligible. An F- test over the number of folds shows that
there is no statistically significant difference (p>0.1).

The difference between results due to the use of SMOTE class imbalance correction at
model building is largely statistically significat (p<0.00001 one sided t-test of PPV, f-score
and AUC values almost for all models). For the the results without SMOTE are somehow
paradoxical. The PPV grows significatively in some cases (for SVM >40%), but the recall is
extremely low (for SVM <2%). The interpretation is that the number of cases classified as
positive is very small, so that a small number of true positives gives high PPV. For MLP1
we found many instances of NA values due to the lack of positive responses.
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Tabla 2.5: Average ± standard deviation f-score (F) performance [%] of SVM, MLP1, MLP2,
and NB for decreasing number of folders in the RCV process. no SMOTE = no oversampling
correction of class imbalance is done.

SMOTE
nfolds SVM MLP2 MLP1 NB
10 9.85 ±0.63 7.54 ±0.16 10.23 ±0.8 9.83 ±0.3
5 9.67 ±0.49 7.65 ±0.19 9.67 ±0.26 9.83 ±0.53
4 9.6 ±0.17 7.65 ±0.02 9.71 ±0.23 9.83 ±0.13
3 9.73 ±0.18 7.57 ±0.06 9.69 ±0.07 9.98 ±0.17

no SMOTE
SVM MLP2 MLP1 NB

10 1.86 ±0.00 9.70 ±1.45 NA 11.23 ±1.37
5 2.04 ±0.00 9.16 ±0.82 NA 11.20 ±1.14
4 1.95 ±0.40 9.62 ±0.75 NA 11.29 ±1.32
3 2.22 ±0.45 9.60 ±0.52 NA 11.08 ±1.23

Tabla 2.6: Average ± standard deviation AUC performance of SVM, MLP1, MLP2, and
NB for decreasing number of folders in the RCV process. no SMOTE = no oversampling
correction of class imbalance is done.

SMOTE
nfolds SVM MLP2 MLP1 NB
10 0.597 ±0.022 0.539 ±0.022 0.643 ±0.020 0.654 ±0.014
5 0.587 ±0.010 0.55 ±0.018 0.634 ±0.011 0.653 ±0.014
4 0.585 ±0.008 0.548 ±0.021 0.63 ±0.009 0.655 ±0.008
3 0.584 ±0.009 0.55 ±0.011 0.628 ±0.010 0.653 ±0.011

no SMOTE
SVM MLP2 MLP1 NB

10 0.495 ±0.020 0.631 ±0.026 0.661 ±0.021 0.656 ±0.014
5 0.481 ±0.019 0.615 ±0.008 0.661 ±0.008 0.658 ±0.007
4 0.473 ±0.004 0.631 ±0.011 0.661 ±0.012 0.659 ±0.008
3 0.471 ±0.007 0.627 ±0.015 0.657 ±0.002 0.658 ±0.009

Let us consider the case when we apply the SMOTE class imbalance correction. Attending
to recall (R) in Table 2.3, MLP2 is well above SVM, MLP1, and NB, however, this is at the
cost of a high false positive ratio, as demonstrated by the values of the PPV in Table 2.4,
which is much lower for MLP2 than for SVM, MLP1, and NB. Figure 2.2 shows the ROC
curves for all approaches in the case of RCV with 5 folders.

The f-scores shown in Table 2.5 confirm that SVM, MLP1, and NB improve over MLP2 re-
gardless of RCV number of folders. An F-test carried out over these results confirms (p<0.01)
that the performance differences between predictive models are statistically significant. En-
suing specific one-sided t-tests comparing each pair of modeling approaches confirms that
SVM, MLP1, and NB perform significantly better than MLP2. The AUC results in Table
2.6 confirm that NB is significantly better than the remaining approaches (F-test p<0.01,
pairwise t-test p <0.001). However, the superiority of NB relative to MLP1 is less pronoun-
ced (pairwise t-test p<0.05). Notice that statistical significance is due also to small standard
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deviation of the results, if we consider the mean performance values, we can assert that SVM
and NB show comparable performances.

2.4. Discussion

Readmission as a healthcare quality measure Readmissions as a healthcare quality
measure has been the subject of strong debate both in adult and pediatric hospital envi-
ronments [121]. The cost of readmissions within a 365 day period is estimated as $1 billion
in United States pediatric hospitals [14], hence the need for focused analysis and predictive
tools. There are, however, some studies that question the value of readmissions as a quality of
care metric for specific type of patients, e.g. those suffering heart failure [128]. Other studies
argue that too much emphasis in readmissions as a measure of the quality of care may lead to
an increase of the unequal distribution of resources [91]. There is a need to be precise in the
definition of which readmissions are to be penalized. For instance, if there is not distinction
between planned and unplanned readmissions, there is a possibility that the hospitals would
tend to delay required readmissions after the 30-day limit to avoid financial penalties [10]. It
is also well known fact that a small percentage of pediatric patients with chronic conditions
and special technological assistance needs account for a big percentage of the actual read-
mission costs [89]. The emphasis is, therefore, in the identification of the kind of readmission
events that can be prevented through special care after discharge, such as phone calls [60].

Quantitative analysis of readmissions in pediatric care Thought readmission pre-
diction has been extensively studied in adult patients, there is very little effort in children
hospitals. One reason is that the percentage of admissions that result in readmission is much
less frequent event in the pediatric case, in the range 3% to 5% on average, that in adult
patients, which is close to 17% on average [62], so it was dismissed in cost analysis studies
until recently. To our knowledge, our study is among the first ones applying machine learning
techniques to all cause pediatric readmissions. We have only found one similar study with a
smaller cohort [17] in an Italian hospital. Recent studies are devoted to the characterization
of the readmission events in the pediatric setting. Auger et al. [10] propose a method for
the identification of unplanned versus planned readmissions which has many implications in
the way readmissions are treated in order to avoid financial penalties. For instance, planned
readmissions may be delayed to avert financial penalties. It is also important to identify
which pediatric conditions are lead to higher readmission rates, realizing that they may be
changing from one institution to another due to local demographic and environmental con-
ditions, for instance some studies found strong dependence of frequency of readmissions on
the ethnic, disease, chronic condition, and other demographic information such as the public
versus private insurance [89, 129, 28]. Dependency of readmission frequency on clinical and
geographic factors for a specific chronic condition (i.e. sickle cells disease) has been reported
[113]. On the other hand, shorter length of stay in pediatric hospitals is not a cause for hig-
her readmission rate [119]. Another issue is the impact of the use by the administrations in
charge of financial control of the hospital of proprietary algorithms for the detection of pre-
ventable readmission detection. Being proprietary, the actual reasoning behind the decision
is unknown, and thus it is quite difficult to predict its outcome in order to optimize patient
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care and financial management simultaneously [68].

The difficulties are faced when trying to look for agreement among readmission prediction
research studies or assessing the significance of a new study are the following:

1. The conditions for readmission are local to the population treated by the hospital. It
is unrealistic to apply the same risk assessment/prediction model in two countries with
huge differences in life parameters and conditions. Therefore, it is widely recognized
that predictive models need to be developed at each site using local data [5, 91].

2. Because hospital readmission is a much less frequent event than no readmission, data
used in all reported studies is heavy class imbalanced [17]. In our study, the readmissions
account for only 3, 7 % of the samples. Therefore, class balancing techniques are required
to avoid model bias towards the majority class [175].

3. Often, EHR data has a lot of errors and missing information due to the stressful con-
ditions of its capture. Moreover, there is no guarantee that the collected variables are
indeed the most relevant for the intended prediction. However, it is the only availa-
ble data for this purpose most of the times. Recent reviews and comparative studies
[6, 62, 91] have found that studies on adult readmissions reported low values of area
under ROC Curve (AUC aka c-statistic) ranging between 0,56 and 0,72. One way to im-
prove prediction results is to carry out stratified studies, i.e. building specific predictive
models for specific patient categories [22].

Class imbalance The readmission rate in our case study is 3, 7 % which is similar to
the percentage of readmissions reported in other studies about pediatric readmissions, i..e.
2,6 % in [28]. Class imbalance poses great difficulties both during training and validation. At
training time, machine learning approaches are biased towards the majority class, so data
preprocessing is required to create balanced training datasets[6, 66]. We choose to up-sample
the minority class using SMOTE [34]. Additionally, care must be taken in the selection of
the performance metric. Overall accuracy is strongly influenced by the majority class correct
classification, therefore we need to use performance measures that take into account the
performance regarding the minority class, hence we consider the positive predictive value
(PPV), f-score (F), and the area under the ROC (AUC). The cost of false positive decision
is much lower than false negatives, therefore we have not considered setting a false positive
ratio for all algoriths. The AUC measure has been reported in most predictive studies of
readmission. Our top result (AUC=0.655 for NB) is similar to the results already reported
for adult readmissions (between 0,56 and 0,72). For a dramatic illustration of the effect of the
class imbalance, we report the results without using SMOTE class imbalance correction. We
find a huge decrease in recall performance, meaning that the readmission prediction drops
drastically relative to the models built upon SMOTE corrected training data, beause of large
bias towards the majority class in the non-SMOTE models. The small number of positive
predictions lead to some paradoxical results, such as the increase of PPV value relative to
the SMOTE models, because the false positive predictions are also very scarce.

Limitations of the study The dataset comes from a single hospital, so results reported
need to be assessed with data coming from a network of hospitals in the same country. In-
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cluding data from other countries risk the introduction of uncontrollable variations due to
diverse data gathering protocols and differences in prevalent morbid conditions. For instance,
sickle cell crisis is a costly and frequent readmission condition in USA [68] while it is non-
existent in Chile. Therefore, it is quite necessary to carry out local studies in order to assess
predictability and preventability instead of importing models from other countries which may
be misleading. The existence of EHR data collection, anonymization, and distribution infras-
tructures in United States, such as the Pediatric Health Information System of the Children’s
Hospital Association (https://childrenshospitals.org) or the Nationwide Readmissions
Database (https://www.hcup-us.ahrq.gov/nrdoverview.jsp), has favored the realization
of studies covering many institutions and large cohorts [89, 68, 119, 28, 14, 129]. We hope
that the study in this paper will encourage the creation of similar infrastructures outside
United States.

On the practical implementation of the predictive system Reviewers have raised the
relevant question of the cost-benefit tradeoff of the implementation of the predictive approach
in the clinical practice. In their words, a relevant question is whether it is worth to intervene
almost twenty patients in order to reduce the likelihood of one readmission (according to
PPV values). From the technical point of view, the system would be implemented as an
assistive device, so that the intervention decision is always in the clinician hands. Clinicians
have expressed the desire to have some kind of objective reference to help them focus on
the risky cases. On the other hand, implementation of a predictive system as described in
the paper would give a dichotomy decision. However, there is a gradation of risk underlying
this decision, which may be modeled by the a posteriori probability estimations computed
by the predictive models. In fact, the dychotomic decision is the result of the application
of an arbitrary threshold (often 0.5) to these a posteriori probability estimations. Future
work should be addressing the task of providing a risk gradation to the clinicians, easing
the task of targeting really critical cases that need more specific intervention, such as giving
detailed training to the parents for child treatment at home, or delaying the child discharge
from the hospital. From the administrative point of view, the hospital is increasing the
decision assistant tools provided to the clinicians. For instance, there is a tool providing
triage recommendations. Therefore, they are definitively in favor of the implementation of
the kind of tools described in the paper. Furthermore, the continuous inflow of information
and the addition of new variables will allow the improved tuning of the tool. Finally, from
the human point of view, any parent will be in favor of the implementation of such tools if
they improve somehow the health care quality of their children.

2.5. Conclusions

Following the track of political decisions in United States regarding cost effective quality
healthcare, hospital readmissions have become a concern worldwide. There have been many
quantitative analysis, mostly for adult patients, including predictive approaches based on
machine learning. However, pediatric hospital readmissions have received little attention until
recently. One of the lessons learned is that there is much variability between locations so that
it is preferable to develop local predictive models than trying to apply models developed upon
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foreign country data. Another lesson learned is that it is desirable to have research oriented
nationwide data collection and distribution resources that may allow to carry out precise and
extensive quantitative analysis.

In this paper we report the results of an all cause predictive modeling study carried
out over the anonymized dataset collected over six years of operation in a public pediatric
hospital in Santiago, Chile. The amount of data gathered is large for a single site study
(56,558 discharges and 2,106 readmissions), but it would be desirable to enlarge it with the
contribution of other institutions in Chile. We have applied four predictive methods upon
the administrative data used for patient cost estimation. The results are good, achieving
a top predictive performance AUC=0.65 that is comparable to other predictive studies on
adult patients data. However, this is the result of a dychotomic decision, which puts together
mild risk cases with high risk cases. Future work should be addressed to give a more precise
quantification of the risk of readmission, allowing to focus more efforts on the riskiest cases.

To our knowledge this is the first such study in Chile, and among the first ones worldwide,
devoted to pediatric readmissions. In the future, it will be desirable to have access to a
nationwide data repository, in order to be able to derive general models upon which specific
policies for optimal cost management maintaining while improving the service quality could
be formulated. The inclusion of other data modalities, such as medication, international
disease code, laboratory and clinical data would help to extend this study into the so-called
phenomics realm, which aims to exploit the big data contained in the EHRs in order to
achieve personalized medical recommendations and follow up. Such large data collections
would allow also the application of recent breakthrough technologies such as deep learning.
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Chapter 3

Setting up standards: A methodological
proposal for pediatric Triage machine
learning model construction based on
clinical outcomes

Wolff P, Ríos S & Graña M 1

Abstract: Triage is a critical process in hospital emergency departments (ED). Specifi-
cally, we consider how to achieve fast and accurate patient Triage in the ED of a pediatric
hospital. The goal of this paper is to establish methodological best practices for the ap-
plication of machine learning (ML) to Triage in pediatric ED, providing a comprehensive
comparison of the performance of ML techniques over a large dataset. Our work is among
the first attempts in this direction. Following very recent works in the literature, we use the
clinical outcome of a case as its label for supervised ML model training, instead of the more
uncertain labels provided by experts. The experimental dataset contains the records along 3
years of operation of the hospital ED. It consists of 189,718 patients visits to the hospital. The
clinical outcome of 9,271 cases (4.98%) wa hospital admission, therefore our dataset is highly
class imbalanced. Our reported performance comparison results focus on four ML models:
Deep Learning (DL), Random Forest (RF), Naive Bayes (NB) and Support Vector Machines
(SVM). Data preprocessing includes class imbalance correction, and case re-labeling. We use
different well known metrics to evaluate performance of ML models in three different expe-
rimental settings: (a) classification of each case into the standard five Triage urgency levels,
(b) discrimination of high versus low case severity according to its clinical outcome, and (c)

1The following is an unabridged version of the paper published in ”Expert Systems with Appli-
cations”. Please cite this paper as follows: Patricio Wolff, Sebastián A. Ríos, Manuel Graña, ”Set-
ting up standards: A methodological proposal for pediatric Triage machine learning model cons-
truction based on clinical outcomes”, Expert Systems with Applications, Volume 138, 2019, 112788,
ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2019.07.005.The original publication is available at:
http://www.sciencedirect.com/science/article/pii/S0957417419304841
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comparison of the number of patients assigned to each standard Triage urgency level against
the Triage rule based expert system currently in use at the hospital. RF achieved greater
AUC, accuracy, PPV and specificity than the other models in the dychotomic classification
experiments. On the implementation side, our study shows that ML predictive models trai-
ned according to clinical outcomes, provide better Triage performance than the current rule
based expert system in operation at the hospital.

3.1. Introduction

Triage is the assignment of an urgency degree to the wounds or illnesses of a specific
patient to decide the order of treatment of a large number of patients. Triage is the first and
most critical step when a child enters the Emergency Department (ED). It is necessary to
discriminate the child requiring the most immediate care from those that can wait for some
time, in order to achieve the timely delivery of emergency health care [111, 131], avoiding
under-triage, i.e. assigning a child requiring urgent treatment to a less urgent class, and
over-triage, i.e. overestimating the acuity of the patient [81].

Machine learning (ML) models have been proposed to automate the Triage process in
order to achieve a simplified quick examination of patients ensuring their timely treatment
according to the degree of severity of their condition. It has been estimated that 40% of
patients showing up at EDs have non-urgent problems [25]. This leads to overcrowded waiting
rooms and long waiting times. As a consequence, patients with severe urgent care needs are
at risk of not being treated on time [141].

In general, automated Triage systems are built up from the consensus opinion of clinical
experts [76], which provide the design of urgency level decision trees supporting clinical risk
assessment and predictions of resource usage. Triage systems should be simple to apply,
accurate, rapid, reproducible, and discriminant to avoid potentially dangerous under-Triage,
and costly over-Triage. ML tools have been shown to improve over the results of expert based
methods [53, 86, 104].

A review of ML algorithms used to build Triage systems for ED treating adults is summa-
rized in Table 3.1. We found a strong lack of consensus in the research methodology applied
in these articles. Critical issues, such as how the datasets were collected and curated, are not
explained with sufficient clarity. Also, some papers neither clarify how algorithms were selec-
ted or if they have compared several approaches. Papers show no consensus on the metrics
used to report the performance results. Papers present an arbitrary selection of precision, F-
measure, sensitivity, true positive rate, accuracy, or RMSE as performance results. A general
model construction flaw of the papers in Table 3.1 is that none of them took into considera-
tion that datasets have big class imbalance, thus they did not apply any correction strategy
for improved model building. Finally, authors did not mention that Triage is a multi-class
problem, which is an extremely important aspect when evaluating the final results.

Most studies dealing with the application of ML to the construction of Triage systems try
to predict the actual Triage decisions given by the ED staff. However, these Triage labels may
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not be the most accurate ones. The clinical outcome of the patient (deceased, transferred,
hospitalized) is a more reliable reference to guide the learning process. In a very recent and
influential publication, [73] built ML models predicting the patient clinical outcome. Our
work follows the same approach. However, we propose some methodological improvements
over the work reported in [73]. Specifically, we apply class imbalance correction procedures,
and we report results from more comprehensive performance evaluation methods. In this
paper we apply methodological best practices for ML model building and validation in order
to evaluate the quality of the model in terms of the distribution of the patient outcomes.
Additionally, we report a performance analysis of the predictive capacity of clinical outcome
in high severity classes.

In this study, we work with the staff of the pediatric tertiary care center Dr. Exequiel
González Cortés Hospital (EGCH), serving a population close to 350,000 people in total.
At this institution, the Triage involves rapid recognition of seriously ill or injured children,
assigning a severity rating level, and anticipating appropriate emergency care and referral.
Currently there is an electronic Triage tool in use at EGCH, providing severity rating levels
used to prioritize patients for care, from level 1 (most severe) to level 5 (least severe).

This paper reports three computational experiments that confirm the practical value of
ML models for pediatric ED Triage:

1. First, we relabel dataset cases with the the standard Triage five levels according to
their clinical outcome. We carry out the validation experiments to evaluate ML model
performance over the relabeled dataset.

2. Second, we consider specifically the prediction of the clinical outcome as a dychotomic
classification on the following discrimination problem instances: (a) death versus non-
death, and (b) hospitalization versus non-hospitalization.

3. Third, we propose the classification of dataset cases into the five standard Triage levels.
The resulting model is evaluated according to the clinical outcome. Finally, we compare
the expert knowledge based Triage system currently used at the hospital against the
ML models in terms of the distribution of clinical outcomes over the predicted Triage
levels.

The contents of the paper is as follows: Section 2 provides a discussion of the related work.
Section 3 discusses the data preparation and experimental setup. Section 4 discusses our
actual model evaluation framework for best model selection. Section 5 gives the experimental
results. Section 6 provides a discussion of results. Finally, Section 7 gives our conclusions and
lines for future work.

3.2. Related Work

As we have mentioned before, Triage is a strongly class imbalanced problem. For example,
in EGCH, less than 1% admissions are assigned an emergency level 1. Indeed, training ML
algorithms over small datasets having such big class imbalance poses two big challenges:
(a) the correction of the class imbalance, and (b) the correct selection of the performance
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metric. In the majority of the studies shown in Table 3.1, dataset sizes are rather small. Five
approaches use less than 3000 records, which arguably is not an enough representative sample
to reach generalized conclusions. In our study, we have collected a huge dataset over several
years of ED operation assuring that we have enough data to train, test and evaluate our
results (in fact, ours is - to the best of our knowledge - the biggest dataset in the literature,
cf. Table 3.1).

It is noteworthy that only [104] explains in detail the different data selection criteria ap-
plied in the study. All other works referred in Table 3.1 leave this important matter unexplai-
ned. It is crucial to understand these criteria; specially when manual selection is performed.
Data selection may introduce bias in the model performance evaluation, which, of course,
will affect the generalization of the model and the quality of the results.

Except for [162], the revised publications do not specify the construction of the evaluation
sets (randomized, random, stratified, proportional, etc). Moreover, the research presented
by [53], [104] and [158] do not present a comparison of different models and parameter
configurations.

Regarding performance metrics, some works [172, 158, 35] use the MAPE or the overall
accuracy as a measure of performance of time series models, which is methodologically in-
correct for a strongly class imbalanced classification problem. In addition, it is striking that
multi-class performance metrics are not reported, when all the revised literature recognizes
that the Triage problem is a multi-class classification problem (except [105]).

To the best of our knowledge, there is only one very recent publication on the application
of ML for Triage in a pediatric ED [73] despite it is recognised in recent scientific literature
that this is a problem where ML may play a big role [49]. Many classification performance
metrics have been used for the evaluation of the ML Triage prediction models [73, 104, 190].
Some of them are incorporated as part of our analysis. We note that [104] failed to achieve
good recall (sensitivity) of their model for high-severity levels, which is a requirement for a
useful screening method.

Other publications on the subject of Triage, such as [29] and [11], were not included in
this comparison, because they treat a different problem in terms of the classes identified and
the purposes of the research. In the investigation that [29] carried out over pediatric patients,
the objective of their research is to find a detection mechanism for low complexity patients,
called “Fast track". Thus it is not a study about five-class Triage. In addition, regarding the
amount of data used, the number of cases considered is small: 2223 in [11] and 1205 in [29].

The evaluation of a Triage systems involves reliability and validity assessments [118].
Reliability refers to the ratio of intra-observer variability versus inter-observer variability.
Validity refers to the degree of success of Triage prediction of a “true” urgency. It is measured
by the sensitivity and specificity of the model [124].

A fundamental problem found conducting validation studies of Triage tools is the lack
of consensus on a gold standard reference to measure the performance of the Triage system
[70, 74, 141, 64]. One way to evaluate a Triage system is to compare its output with a
standard cost value (which includes the cost of the use of resources) defined by the experts
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Tabla 3.1: ML-based Triage model Benchmark
[Ref] Dataset ML Validation Observation

Models Method

[190] 402 NB, DT Expert Five Level
Adult Triage

[162] 57,573 ANN, SVM, Outcome Adult
GA Trauma Triage

[105] 2,000 ANN Expert Four Level
Adult Triage

[35] 947 ANN, NBN, ESI N/ALR

[172] 3,000 ANN,SVR Expert Four Level
Adult Triage

[53] 25,198 LR Outcome Five Level
Adult Triage

[104] 172,726 RF Outcome Five Level
Adult Triage

[158] 537 Fuzzy Expert Five Level
Adult Triage

[73] 52,037 DL, LR, Outcome Five Level
RF, DT pediatric Triage

This Article 189,718 DL, NB, Outcome Five Level
RF, SVM pediatric Triage

(usually nurses or medics). Some authors have used standard risk indexing values, such as the
Emergency Severity Index (ESI) [35] model, as the “real” label. However, there is no consensus
about the universal applicability of ESI. Besides, clinical outcomes have been widely used for
validation of adult Triage models [162, 53, 86, 104] and they have been used also in pediatrics
[2, 58, 77, 83].

In this paper, we train multiple ML models on a large real dataset collected from the ED
of the EGCH, in order to determine if ML techniques improve over the performance of the
currently implemented rule based expert system. In addition, we report multiple performance
evaluation metrics, as well as different mechanisms that allow us to improve ML algorithms
performance, such as class imbalance correction techniques. Finally, we will compare the best
ML model against the current Triage expert system in operation.

3.3. Data Preparation and Experimental Setup

The experimental setup shown on figure 3.1 is the framework for the evaluation of ML
based Triage prediction systems. We have evaluated more than eight different ML modeling
approaches ranging from regression (such as logit regressions) to probabilistic models (such
as Naive Bayes). However, in this article we report results only for the best four approaches:
Support Vector Machines (SVM), Deep Learning (DL), Random Forest (RF), and Naive
Bayes (NB).
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Figura 3.1: Study design schema

In order to perform our experiments, we carried out the tasks of manual data curation,
removing cases with inconsistent or missing values, data preprocessing including case re-
labeling, and class imbalance correction techniques. Then we train the selected models, and,
finally, we compare their performance results using several well known metrics. A schema of
this setup can be seen in figure 3.1. The upper experimental module (gray colored) corres-
ponds to a multi-class classification problem into the five standard Triage levels. The input
to this module is the dataset after being relabeled according to clinical outcomes. The lower
experimental module corresponds to the dychotomic classification problem instances (high
versus low severity, death versus non-death, hospitalization versus non-hospitalization) whe-
re we evaluate the models selected from the results achieved in the upper module. In both
experimental modules we use 5-fold Cross-validation (with random stratification according to
clinical outcome). The Final Evaluation in the right-bottom corner of the figure corresponds
to the comparison between ML approaches and the automated Triage currently working at
the EGCH reported in section 3.5.3. We apply a hold-out scheme for this comparison (80%,
151,774 ED visits for training and 20%, 37,944 ED visits for testing). We use hold-out instead
of cross-validation because the EGCH working Triage system can not be trained on data, so
there is no possibility to carry out a k-fold cross-validation on it.

3.3.1. Dataset characteristics

Our study is a single center retrospective cohort study. Records for all ED visits during
the study period were retrieved from the logs of the rule based expert system e-Triage cu-
rrently in operation at EGCH. Anonymized data of pediatric patients (< 18 years) who were
admitted for care between August 1, 2014 and October 31, 2017 were included for analysis.
Traumatology and planned surgery visits were not included. All erroneous or incomplete in-
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formation records were deleted. Finally, our cleaned dataset (see table 3.2) contained 189,718
ED visits, only 9,271 of them became a hospital admission (4,89%).

Tabla 3.2: Dataset information
General
ED visits - number 189,718
Age - median ± SD 2.9 ± 4.03
Female 89,319 [47.07%]

Vital signs
Temperature ◦C - median ± SD 37 ± 0.87
Heart rate - median ± SD 123 ± 27.85
Respiratory Rate - median ± SD 32 ± 4.88
Oxigen saturation% - median ± SD 98 ± 1.64
VAS - median ± SD 2 ± 1.55
LOC (not alert) 438 [0.23%]

Outcomes
Death 24 [0.01%]
Admission Sev. 1 4,304 [2.26%]
Admission Sev. 2 1,123 [0.59%]
Admission Sev. 3 3,844 [2.03%]
Procedures 10,024 [5.28%]
Surgical procedure 1,346 [0.71%]

To identify the visits that became a hospital admission, we use the international standa-
rized cost management system (DRG). Information on deaths and procedures performed on
patients were also obtained from the administration cost management system, because the
hospital did not have an Electronic Health Record (EHR) system at the time of collecting
the data.

3.3.2. Current expert knowledge based Triage system

The main motivation for the local construction and improvement of an automated Triage
system is the fact that the parameters and variables that determine the emergency level are
highly depend on the local characteristics of the population on which it is applied. Our hospi-
tal has different characteristics from the hospitals where conventional commercial structured
Triage systems were developed (hospitals located in first world countries), namely: human
and financial resources, data available on the patients, local policies, educational level of the
population, and epidemiological profile, and many others.

The EGCH’s current five-level Triage system is implemented as a decision tree (illustrated
in figure 3.2) that allows to determine the emergency level based on the chief complaint, vital
signs, and the answers to some additional questions. This expert knowledge based electronic
Triage system has been implemented in the hospital since August 2015. It is applied to 100%
of the ED visits since then. The Triage emergency level assigned to each patient is determined
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Figura 3.2: EGCH’s current rule based e-Triage expert system.

by a structure of qualitative decisions, and quantitative thresholds for the values of hearth
rate (HR), level of consciousness (LOC), respiratory rate (RR), body temperature (Temp.),
pain Visual Analogue Scale (VAS), oxygen saturation (OS), and age of the patient. Local
experts whose criteria was used to built the system were selected among the members of the
ED on the basis of their experience and expertise.

At the time of EGCH’s current ED Triage system development, the committee of experts
was formed by ten pediatricians and three nurses, who defined the basic structure of the
decision tree and the value of the decision thresholds at each node, according to the interna-
tional literature and their own expert judgment. In the initial stages of the implementation,
adjustments were made to these threshold values to improve the results of the classification
in terms of accuracy and sensitivity.

The Triage implementation allowed to improve the care process in the hospital, to reduce
the waiting times of the patients, to incorporate risk assessment in the clinical practice, among
other advantages. Although the results obtained are tremendously positive, it is essential to
advance improving the performance of Triage level assignment as a function of the clinical
outcome. The performance of the Triage will be measured by the clinical outcome prediction,
and the number of ED visits assigned by emergency level in the results section.
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3.3.3. Relabeling according to the clinical outcomes

We need to realize three case relabeling processes. Firstly, according to [2], we reformulate
the classification into a two class problem, where the high and low severity classes are deduced
from the actual case Triage labels. Secondly, according to [73], we guide the learning process
by the clinical outcomes instead of the actual Triage emergency level given by the expert
system. Hence we need to relabel each case accordingly.

Thirdly, we carry out an independent relabeling into five categories for training of ML
algorithms to produce an outcome-guided classification into the conventional Triage five
categories. The relabeling rules are as follows:

1. C1 label was assigned to patients with death or hospitalization severity level 3 (IR-DRG
severity index);

2. C2 label was assigned patients Hospitalized with severity level 2 and 1 (IR-DRG severity
index);

3. Non hospitalized patients with emergency procedure were assigned to C3 label;

4. C4 label was assigned to non-hospitalized patients, without ED procedure, younger
than eight years and without fever;

5. finally, the rest of the patients were labelled as C5.

These new labels let us train our machine learning models to classify ED visits based on
objective information, i.e. final clinical outcome, while allowing us to assign patients to five
classes, as required by hospital rules.

Table 3.3 shows the distribution of labels after a partition of our dataset into train and
test datasets, were it can be appreciated that class C3 is under-represented, and that class
C5 may also be underrepresented relative to class C4 which is the majority class. This
distribution of classes is due to the fact that the hospitalization rate, the mortality rate and
the amount of outpatient procedures in the hospital, in the study period is smaller than
in other studies from the literature. For example, for adult patients the hospital admission
rate (class C2 above) reported by [53], [86], and [61] is 14%, 12%, and 20.3%, respectively,
while in pediatric populations this rate is of the order of 6% [58], much higher than in our
re-labeled dataset.

Tabla 3.3: Cases an percentage per class in train and test dataset
Cat. Train cases [%] Test cases [%]
C1 3,518 2.32 865 2.28
C2 3,899 2.57 1,067 2.81
C3 515 0.34 159 0.42
C4 115,639 76.19 29,092 76.69
C5 28,212 18.59 6,752 17.80

33



3.3.4. Dealing with class imbalance

A major difficulty faced designing ML based Triage systems is the high class imbalance
ratio of the datasets. In general, this is due to the fact that high-acuity events are infrequent.
Nowadays, there is a number of techniques that allow to tackle the class-imbalance problem. A
taxonomy of methods to achieve robust ML model building with imbalanced data is presented
in [6]. Specifically we have used SMOTE [34] to augment the minority classes. In the SMOTE
algorithm, new samples of the minority class are generated by random convex interpolation
between k randomly picked samples from the minority class. Random convex interpolation
means that the new sample is computed as a polynomial of degree one of the reference
samples whose coefficients are in the interval [0,1]. In multi-class datasets, each minority class
is treated independently. Bootstrapping techniques were also tested to achieve class balance,
but in this particular study, they showed lower performance than SMOTE in all selected
classification models. The use of SMOTE allowed us to have a balanced train dataset of
578, 195 patient cases. Randomized subsampling of this balanced dataset retaining 20% of
it(115, 635 patient cases) was used for SVM training, in order to have affordable processing
time.

3.3.5. Machine learning models under evaluation

The selection of ML models will depend on: those that present better results, the characte-
ristics of the problem, and the state of the art. Four state of the art multi-class classification
algorithms were preselected. Specifically we have used R implementations of the following
supervised learning approaches.

Support Vector Machine (SVM)

One of the most important supervised learning methods is Support Vector Machine (SVM)
[169]. SVM can be used to address regression, binary and multi-class classification problems.
In the case of classifiers based on SVM, we look for a hyperplane that divides the feature
space and maximizes the distance between groups of feature vectors belonging to a class,
with respect to the feature vectors belonging to another class. The two classes may not
be linearly separable. In such cases, feature vectors are previously projected to a space of
superior dimensionality using the kernel trick [150]. The parameters that define the solution
hyperplane are obtained solving a quadratic programming problem. SVMs require several
training cases, but they depend on few parameters. The literature shows that SVMs are
not sensitive to the size of training datasets [169], in other words, they are robust to the
dimensionality curse. In our case we use multi-class version of C-SVC with two different
kernels: linear kernel and Radial Basis Function (RBF) kernel, cf. table 3.4 for parameter
details.

34



Deep Learning (DL)

Deep Learning (DL) approaches are considered state of the art, based on the excellent re-
sults obtained in different pattern recognition tasks[71]. To achieve good results, DL require
a large volume of data for their training. The progress of these techniques is also enhanced
by the creation of open source libraries and software freely available to companies and resear-
chers. We use H2O version 3.8.2.6. [43] which is an available library that supports Deep Lear-
ning using a multi-layer feedforward artificial neural network trained with back-propagation
of the error using stochastic gradient descent approach. We have used both Rectifier and
Tanh as alternative activation function of the neurons in the hidden layers. We explore th-
ree different network topologies: (1) with two hidden layers constituted of 50 neurons and
25 neurons, respectively; (2) with two same size hidden layers of 50 neurons; and (3) with
three hidden layers constituted of 50 neurons, 50 neurons and 25 neurons respectively. All
the architectures were trained in 10 epochs (as showed in table 3.4). Adaptive learning rate
algorithm (ADADELTA) [186] was used to combine the benefits of learning rate annealing
and momentum training to avoid slow convergence. Other recommended parameter values
used were epsilon = 10e− 8 and rho = 0,99.

Naive Bayes (NB)

Naïve Bayes methods (NB) is a simple yet very effective method in the machine learning
toolbox. Its main idea is based on the naïve assumption that the individual features are sta-
tistically independent, so that we may approximate the joint probability of a D-dimensional
feature vector as a product of D probabilities of the 1-dimensional features. In our case we
use two different Naïve Bayes methods, based on parametric Gaussian probability density
estimation, and non-parametric kernel density estimators, to model the likelihood density
function of the features.

In kernel density estimation we use greedy search to set the kernel bandwidth. We test 10,
100 and 1000 kernels, with minimal bandwidth of 0,1 in all cases. We also test full estimation
mode with bandwidth selection heuristic and fix (as shown in table 3.4). We use a Laplace
correction to prevent high influence of zero probabilities.

Random Forest (RF)

Random Forest (RF) [24] is an ensemble of random trees trained on bootstrapped sub-sets
of the dataset, each of which is built on a bootstrap sample of the training dataset using a
subset of randomly selected variables.

Each node of a tree represents a splitting rule for one specific attribute. Gain ratio, Gini
index, and Information gain were chosen as a criterion to select attributes for splitting.
Maximal depth used was 20 and we test 10, 100 and 1000 trees (as shown in table 3.4).
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Tabla 3.4: Machine Learning studied models and their parameter setup
ML Alg. Descrip. Descrip. Cont Name

Deep Learning

Rectifier Act. Func.
Neurons 50-25 DL1

Neurons 50-50 DL2

Neurons 50-50-25 DL3

Tanh Act. Func.
Neurons 50-25 DL4

Neurons 50-50 DL5

Neurons 50-50-25 DL6

Naive Bayes

Gaussian d-estimator NB1

Greedy d-estimator
10 kernels NB2

100 kernels NB3

1000 kernels NB4

full d-estimator Heuristic NB5

Fix NB6

Random Forest

Gain-ratio split criterion
10 trees RF1

100 trees RF2

1000 trees RF3

Gini-index
split Criterion

10 trees RF4

100 trees RF5

1000 trees RF6

Info-gain split
Criterion

10 trees RF7

100 trees RF8

1000 trees RF9

Support Vector Machine

RBF kernel
C = 0,1 & γ = 0 SVM1

C = 0,1 & γ = 0,1 SVM2

C = 10 & γ = 0 SVM3

C = 10 & γ = 0,1 SVM4

Linear kernel C = 0,1 SVM5

C = 10 SVM6
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3.4. Evaluation framework and best model selection

Performance evaluation metrics in multi-class classification problems are fundamental in
assessing the quality of learning methods and compare performance of different models. As
we shown in Table 3.1, not many studies take this important issue into consideration. Using
the wrong performance metric might lead to erroneous results, which is especially critical in
hospital context. Thus we aim to recommend several ML performance metrics that should be
used for reporting results in future research studies regarding Triage prediction models. For
example, it is common in highly imbalanced class problems to report very high accuracy over
90% or even close to 100%, while recall of minority class is very low (e.g. 30%); which in a
hospital context means that, many people (i.e. 70%) with high emergency risk is given a low
risk Triage level. Thus, reporting only accuracy or precision (as most publications in Table
3.1 do) is not enough to asses model quality, in fact, some articles report only the success
predicting the majority class, which is uninteresting and misleading.

3.4.1. Multi-class ML performance metrics

In figure 3.1 we represent in red boxes two evaluation phases labelled “Evaluate”. In the
following we explain the performance metrics used in these phases.

Many different measures have been defined in the literature for imbalance multi-class
performance. However, there is not gold-standard performance metrics that can be applied
to all types of multi-class problems [94]. In this subsection we select and present several well
known performance metrics used to evaluate our models. We borrow the notation from [59].

• Overall Accuracy (Acc.) is the most common and simplest measure to evaluate the
degree of right predictions of a classification model.

Acc =

∑m
i=1

∑c
j=1 f(i, j)C(i, j)

m
, (3.1)

were f(i, j) represents the actual probability that case i belongs to class j, m denotes
the number of examples, c the number of classes, and C(i, j) is 1 if j is the predicted
class for i.
• The Cohen’s Kappa (Kappa) [40] measure is frequently used as a performance measure

in multi-class literature, and recently is being used in emergency Triage prediction
research [45].

Kappa =
P (A)− P (E)

1− P (E)
, (3.2)

were P (A) = Acc, and P (E) is defined as follows:

P (E) =

∑c
k=1(

∑c
j=1

∑m
i=1 f(i, j)C(i, j) ·

∑c
j=1

∑m
i=1 f(i, j)C(i, k))

m2
(3.3)

• According to [184] it is recommended to use Triage-weighted Kappa (TWK) when we
are trying to predict the Triage label as an ordinal variable [168].This metric corresponds
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to a Cohen’s weighted Kappa whose weights are determined by:

Wij = (1− ((i− j)2/(c− 1)2))/(i/j) (3.4)

for Over-triage and,
Wij = (1− ((i− j)2/(c− 1)2))/(i/j)2 (3.5)

for Under-triage, where c represents the number of categories, i represents the category
rated by a predictive model, and j represents the category rated by a reference standard
(in our case the result of relabeling described above).
• Mean F-measure (MFM) has been widely used for multi-class problems. It is computed

decomposing the multi-class problem into several binary classification problems. It is
calculated as follows:

MFM =
1

c
·

c∑
j=1

2 · recall(j) · prec.(j)

recall(j) + prec.(j)
, (3.6)

were recall(j) and prec.(j) are recall and precision per class j,

recall(j) =

∑m
i=1 f(i, j)C(i, j)

mj

, (3.7)

and,

prec.(j) =

∑m
i=1 f(i, j)C(i, j)∑mj

i=1C(i, j)
, (3.8)

• We average the binary classification results to obtain Macro-recall (recallM) and Macro-
precision (precM). First we estimate the binary performance measures separately for
each class, independently. Second, we compute the average of the obtained measures
[157]:

recallM =
1

c

c∑
j=1

∑m
i=1 f(i, j)C(i, j)

mj

, (3.9)

and

precM =
1

c

c∑
j=1

∑m
i=1 f(i, j)C(i, j)∑mj

i=1C(i, j)
, (3.10)

The selection of the best ML model will be made by virtue of the performance measured
by these multi-class performance metrics.

3.4.2. Final evaluation metrics

To conclude this section on performance metrics, we explain the “Final Evaluation” block
in Figure 3.1.
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Dychotomic classification instances

We consider two instances of dychotomic classification.

• On the one hand, following the approach of [2] patients were divided into high severity
(Triage levels 1, 2) and low severity (Triage levels 3, 4, 5). We train the ML models
to discriminate these two levels of severity, computing sensitivity and specificity. Given
this two metrics we compute several well studied performance metrics of high severity
level detection.

• On the other hand, [73] poses directly the dychotomic classification problems of death
(or intensive care unit (ICU) use) vs. non death (and non ICU use), and hospitalization
vs. non hospitalization.

The evaluation of ML models in these dychotomic classification problems is carried out
separately in terms of their sensitivity, specificity, Area Under ROC (AUC), Accuracy, PPV
and NPV. To avoid overfitting and to have more reliable results, 5-fold Cross-Validation was
used.

In this dichotomized analysis it is also possible to include the ROC Curve and diagnostic
accuracy measures, which are recommended as evaluation metrics in this type of problems
by [184].

Patients assigned by Triage level

The number of patients assigned per class, also known as ’fingerprint’, is commonly used
(as table or graphic) to visualize the results of a Triage model. Is important to analyze this
representation because it may provide a standardized descriptor of the ED and the hospital
[45]. The idea is to compare the assignation per Triage level, to ensure a consistent dis-
tribution in terms of resources and local demand characteristics. Numerically, we measure
similarity between two distributions computing the maximum distance between their cumu-
lative distributions, known as Kolmogorov–Smirnov statistic test (KS-test) [92], were F (x)
is a cumulative distribution function.

Dn = máx
x
|Fn(x)− F (x)| (3.11)

3.5. Experimental results

In this section we present the results obtained following our proposed methodology. We
discuss all performance metrics together to establish the best ML algorithm for pediatric
Triage problem.
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3.5.1. Initial model selection

We have tested twenty seven different parameter configurations of Deep Learning, Naive
Bayes, Random Forest and Support Vector Machines, as shown in Table 3.4. Table 3.5 sum-
marizes five multi-class performance metrics for all these ML algorithm configurations on the
high versus low emergency level relabelled dataset according to [2].

The average training times per model was as follows: for DL, 13 min; for NB, 2 min;
for RF, 30 min; and for SVM, 105 min. For comparison purposes the models were run on
the same computer, powered by an Intel Core i7-8750H up to 4.1 GHz processor with 8 GB
DDR3 of RAM.

Tabla 3.5: Models performance for the high versus low severity Triage levels. Blue highlights
best model per performance metric

ACC ± SD[%] Kappa ± SD Recall ± SD[%] Prec ± SD[%] TWK ± SD MFM ± SD
DL1 94.2 ± 0.060 0.835 ± 0.002 44.10 ± 0.070 46.67 ± 0.300 0.66 ± 0.003 0.447 ± 0.011
DL2 94.2 ± 80.030 0.839 ± 0.001 45.65 ± 0.200 46.33 ± 0.190 0.66 ± 0.003 0.458 ± 0.013
DL3 94.2 ± 10.080 0.837 ± 0.002 45.10 ± 0.210 51.02 ± 1.670 0.67 ± 0.003 0.458 ± 0.020
DL4 94.1 ± 40.040 0.835 ± 0.002 45.02 ± 0.750 49.13 ± 0.740 0.66 ± 0.003 0.457 ± 0.011
DL5 94.3 ± 90.020 0.840 ± 0.001 45.73 ± 0.530 46.24 ± 0.200 0.67 ± 0.003 0.458 ± 0.015
DL6 94.1 ± 70.070 0.835 ± 0.002 43.42 ± 0.220 46.83 ± 0.530 0.66 ± 0.003 0.439 ± 0.008
NB1 80.8 ± 70.380 0.577 ± 0.005 47.41 ± 0.870 38.61 ± 0.110 0.44 ± 0.004 0.408 ± 0.023
NB2 78.8 ± 10.090 0.561 ± 0.001 46.74 ± 0.590 44.47 ± 0.470 0.40 ± 0.004 0.437 ± 0.022
NB3 91.0 ± 30.010 0.769 ± 0.000 49.68 ± 0.690 46.03 ± 0.180 0.60 ± 0.003 0.465 ± 0.017
NB4 77.8 ± 10.200 0.554 ± 0.003 51.04 ± 1.280 42.45 ± 0.200 0.39 ± 0.004 0.422 ± 0.012
NB5 34.4 ± 90.260 0.218 ± 0.001 44.65 ± 0.590 42.99 ± 0.190 0.27 ± 0.002 0.325 ± 0.015
NB6 77.8 ± 10.290 0.554 ± 0.005 51.04 ± 1.570 42.45 ± 0.260 0.39 ± 0.004 0.422 ± 0.012
RF1 92.1 ± 20.140 0.795 ± 0.004 49.78 ± 0.570 44.11 ± 1.980 0.62 ± 0.003 0.452 ± 0.011
RF2 92.4 ± 10.150 0.801 ± 0.004 49.69 ± 0.500 43.85 ± 1.230 0.62 ± 0.003 0.454 ± 0.009
RF3 92.4 ± 10.140 0.801 ± 0.003 49.69 ± 0.260 44.68 ± 2.440 0.62 ± 0.003 0.454 ± 0.009
RF4 81.0 ± 00.170 0.603 ± 0.003 52.03 ± 0.270 42.78 ± 0.150 0.41 ± 0.004 0.437 ± 0.014
RF5 81.8 ± 30.440 0.615 ± 0.005 52.19 ± 0.970 42.85 ± 0.250 0.42 ± 0.004 0.438 ± 0.013
RF6 82.4 ± 50.150 0.624 ± 0.002 52.22 ± 0.380 42.96 ± 0.150 0.43 ± 0.004 0.440 ± 0.015
RF7 82.8 ± 40.320 0.630 ± 0.006 51.89 ± 0.770 42.95 ± 0.290 0.44 ± 0.004 0.440 ± 0.012
RF8 82.2 ± 40.210 0.621 ± 0.003 52.29 ± 0.360 42.76 ± 0.070 0.43 ± 0.004 0.438 ± 0.014
RF9 82.2 ± 50.290 0.621 ± 0.005 52.23 ± 0.410 42.77 ± 0.230 0.43 ± 0.004 0.433 ± 0.013
SVM1 71.4 ± 30.130 0.473 ± 0.002 46.19 ± 0.340 38.65 ± 0.520 0.28 ± 0.004 0.367 ± 0.010
SVM2 78.1 ± 40.070 0.559 ± 0.001 49.8 ± 0.180 39.21 ± 0.130 0.38 ± 0.004 0.394 ± 0.014
SVM3 81.2 ± 40.100 0.335 ± 0.002 26.89 ± 0.140 37.08 ± 0.270 0.25 ± 0.005 0.285 ± 0.001
SVM4 50.4 ± 30.170 0.258 ± 0.001 38.61 ± 0.700 40.60 ± 0.070 0.16 ± 0.003 0.285 ± 0.008
SVM5 79.7 ± 70.160 0.580 ± 0.002 51.99 ± 1.440 41.42 ± 0.270 0.42 ± 0.004 0.311 ± 0.008
SVM6 79.7 ± 90.120 0.581 ± 0.003 52.00 ± 0.960 41.45 ± 0.110 0.42 ± 0.004 0.427 ± 0.009

According to the results presented in Table 3.5, we selected three model configurations for
further experimentation. These models are:

• DL with Rectifier activation function and 50-50-25 hidden layer topology (DL3), selec-
ted on the basis of its higher macro precision performance;
• DL with Tanh activation function and 50-50 neurons hidden layer topology (DL5),

selected on the basis of its higher Accuracy and kappa performance;
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• NB with 100 kernels of 0.1 bandwidth (NB3), selected on the basis of its mean F-
measure performance;
• and finally, RF with 100 trees using information gain as attributes split criteria(RF8),

on the basis of its superior macro recall performance;

SVM were tested with different configurations of kernel functions, and C and gamma para-
meter settings. However, SVM results were consistently worse than the three selected models
described in this section.

3.5.2. Dychotomic classification into clinical outcomes

In this section we report the performance of our selected ML models on clinical outcome
prediction according to [73]. Table 3.6 summarizes the achieved results on the the prediction
of the two main outcomes: hospitalization and death. Figure 3.3 shows the ROC curves for
the hospitalization outcome. The bold lines correspond to the average ROC.

Tabla 3.6: Diagnostic performance measures for the two high severity clinical outcomes.
Outcome (Hospitalization)

AUC (SD) Acc(SD)[%] Sens(SD)[%] Spec(SD)[%] PPV(SD)[%] NPV(SD)[%]
DL3 0.79(0.005) 61.5(3.26) 81.0(3.12) 56.9(4.73) 30.5(1.53) 92.9(0.54)
DL5 0.77(0.014) 56.4(3.89) 80.0(2.23) 54.6(5.12) 29.2(2.21) 92.2(0.61)
NB3 0.78(0.010) 75.5(0.36) 64.7(1.79) 78.1(0.13) 40.5(0.69) 90.5(0.44)
RF8 0.80(0.006) 79.4(0.40) 61.9(1.51) 83.4(0.56) 46.4(0.76) 90.4(0.32)

Outcome (Death)
AUC (SD) Acc(SD)[%] Sens(SD)[%] Spec(SD)[%] PPV(SD)[%] NPV(SD)[%]

DL3 0.79(0.084) 65.8(8.48) 71.4(12.60) 65.8(8.52) 0.5(0.11) 99.9(0.04)
DL5 0.78(0.072) 80.7(4.43) 65.9(10.12) 80.8(4.44) 0.8(0.29) 99.9(0.03)
NB3 0.77(0.154) 61.3(4.72) 72.7(21.72) 61.3(4.70) 0.4(0.16) 99.9(0.09)
RF8 0.86(0.062) 85.3(13.44) 66.7(12.08) 85.4(13.49) 2.3(1.63) 99.9(0.03)

3.5.3. Comparison against current e-Triage system

Our last computational results refer to the comparison of the selected ML models against
the e-Triage system currently in operation at the EGCH. This comparison is made in terms
of the distribution of cases per Triage emergency level. We use the third dataset relabeling
presented in section 3.3.3 for the ML model training. We compute the KS test against the
ideal case distribution discussed in the literature [45]. Table 3.7 gives the achieved results. It
is important to analyze this characteristic because it provides a “fingerprint” or standardized
descriptor of the ED and the hospital [45] that is easily accepted by the medical staff.

Finally, the results of each approach are presented graphically in figure 3.4. We present
the percentage of patients per class admitted for hospitalization (blue plots), and dead (red
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Figura 3.3: ROC curve of Hospitalization (positive class) versus non-Hospitalization classifi-
cation.

Tabla 3.7: Cases assigned per class in preselected models. Expert means the current Triage
system at the EGCH.

C1 C2 C3 C4 C5 KS-test

DL3 513 71 0 30,272 7,079 4347
DL5 622 2 0 30,148 7,163 4307
NB3 1,779 426 417 28,630 6,683 3489
RF8 3,984 1,902 574 24,452 7,023 3868
Expert 116 2,911 1,904 22,832 10,172 -

plots), under the class assignment done by the ML models and the current expert-based
e-Triage at EGCH.

3.6. Discussion

We have tested several ML algorithms with various parameter configurations for Triage
category prediction, finding out that there is not a single model that provides the best values
on all the considered performance metrics. Results on a relabeled dataset are summarized in
table 3.5. Naive Bayes (NB) achieves the best results in terms of Mean F-measure (0,465),
while Random Forest (RF8) model reports the highest recallM (0,523). The Deep Learning
models (DL3 and DL5) showed excellent performance in accuracy (0,943), Kappa (0,840),
Triage-weighted Kappa (0,67) and precM (0,510). Surprisingly, SVM did not surpass the
other models in terms of their performance in the metrics selected for the evaluation. These
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Figura 3.4: Proportion of patient with positive outcome assigned per class by ML models,
Hospital admission (blue) and death (red). Expert means the current Triage system at the
EGCH.

results serve to preselect the best four ML models which are compared against the current
rule based expert Triage system in operation at the hospital.

Model validation is not an easy task in clinical decision problems. Each hospital must
establish its strategic goals before carrying out model validation. This way, it will be possible
to use a combination of well-known performance evaluation metrics to evaluate if the proposed
systems meet these strategic goals. For example, evaluation may be defined in terms of
allocation of patients by category (fingerprint), or the predictive capacity detection of critical
clinical outcome (high severity detection performance).

The results of the tested approaches are also expressed graphically by plotting the propor-
tion of patient with a specific clinical outcome per class, as can be seen in figure 3.4. In this
figure, we appreciate the improved result of the algorithms DL3 and DL5 assigning hospita-
lized patients to the C1 class, compared to the current Triage. Similarly, a better response
of the algorithm NB3 is also observed regarding the proportion of patients hospitalized by
categories of high severity clinical outcome in C1, compared to the current Triage. On the
other hand, DL3 shows a poor result in clinical outcome prediction. Finally, RF8 shows
non-outstanding results in both cases.

The KS-test statistic is used as a metric to determine the distance between two distribu-
tions. It gives us a quantitative basis to determine which model produces patient categoriza-
tion with greatest similarity respect to a desired distribution. The model whose assignation
of patients by category is most similar to the desired distribution is NB3, but the KS dis-
tance of RF8 is not significantly higher. The response of DL models was not good regarding
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this KS metric (cf. table 3.7). This result counts against the use of DL models to replace
the current e-Triage system. It is important to note that the clinical environment imposes
the following constraint: proposed Triage prediction models might not alter significantly the
distribution of allocations per class, due to resource limitations. Our results do not violate
this constraint, but there is plenty of room to improve the construction mechanism of the
desired distribution.

Although, the prediction of the high severity classes was a central objective of the study,
it is relevant to compare the results obtained with traditionally studied Triage models in
pediatric patients. This mechanism that simplifies the multi-class problem in one of binary
classification, cannot be considered as the only measure of evaluation of Triage models, but its
simplicity and objectivity motivate to incorporate it. It is possible to observe that Random
forest (RF8) improves other models in terms of AUC, PPV, accuracy, and specificity in
predicting hospital admissions in the severe classes (C1 and C2).

Naive Bayes (NB) is the most robust approach in terms of patient assignation per class
(see table 3.7). The excellent results of DL models in terms of Accuracy, Kappa and Triage-
weighted Kappa in the most acute classes (as show table 3.5) do not necessary mean that DL
models achieves a good result in term of final evaluation three metrics. Random forests (RF8)
provide good results in assignation of patients by category in terms of KS-test distance to
expert-based class distribution. It is of special interest to note that Random Forest AUC in
high severity prediction improved over all traditional models in a recent pediatric validation
of Triage models [2] and our results are similar to the best models presented in [73].

3.7. Conclusions

A lot of research has been conducted on the application of Machine Learning (ML) techni-
ques for Triage prediction in the context of adult patient care, however, we research conducted
in the applications of ML to the modeling of pediatric Triage has been scarce until very recent
publications. Moreover, reviewing the literature on Triage prediction, we discover a big lack
of methodological standards in terms of how to construct datasets, select the data, and to
pre-process it, and the lack of consensus on the performance metrics used for the presentation
of results. One goal of this paper was to establish methodological best practices in order to
develop future algorithms on the Triage and screening problems in healthcare. This paper
presents a study design detailing how our research was conducted. This methodology may be
transferred to other multi-class classification problems where there is a record of final outco-
mes after the decision, which allows the evaluation of the performance of new combinations
of new (and more objective) labels to train machine learning models.

Because of the nature of the problem, obtaining a huge data set to build and evaluate the
algorithms is a strong barrier for researchers. After several years working with a pediatric
hospital clinical staff, we were able to build a good quality dataset with 189, 718 pediatric
ED visits over a period of three years. This is a large dataset compared to any published
study, even for adults.
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The problem of classifying patients at the very beginning of the emergency care process,
i.e. admittance time, is a difficult problem, closely related to the readmission prediction [178].
The pediatric clinical environment presents specific challenges for the development of rapid
screening methods in the ED for several reasons. It is not always possible to have access
to all the information about the child state, since it is the tutor who refers the history
and the symptoms. Often, he/she does not possess all the relevant information, because he
does not know it or does not remember. Also, the symptoms of pain or discomfort require
sophisticated instruments to capture the intensity perceived by an infant or child who does not
have a clear language to express it quickly and clearly. This, among other things, motivates
the development and constant improvement of the mechanisms of Triage incorporating all
available tools.

From the model viewpoint, our results show a successful experimentation of different
machine learning techniques who have a recent interest in scientific research and has a huge
potential to be used in real clinical settings as a Triage decision support tool. We have tested
several predictive ML tools, finding that Naive Bayes (NB) is the most robust approach in
terms of assignation per class and sensibility of death outcome. Additionally, we found that
Random Forest presented a better AUC, accuracy, PPV and specificity in clinical outcome
predictive capacity of high severity classes than the other models. This result outperforms our
expert-based models and traditional Triage models validated recently in pediatric patients.

Currently, there is a worldwide tendency to talk about how machine learning and artificial
intelligence will replace human experts in different important tasks. However, this is very
difficult to achieve in real clinical context. Moreover, even from the legal and ethical point of
view, it is necessary to understand the decision makers’ responsibility taken and the lack of
knowledge of the real potential that this type of tool has in order to improve the quality of
patient care. Despite this, we have made progress in understanding what is happening in this
kind of socio-technical environment, through electronic health records, there is still a long
way to go.
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Chapter 4

A pediatric early warning system
machine learning model based on clinical
outcomes

Wolff P & Ríos S 1

Background and Objective: Some pediatric inpatients’ decompensation can be pre-
dicted using periodic bedside vital signs observations. A group of models developed with
this proposal is called Pediatric Early Warning Systems (PEWS). PEWS can be constructed
using Machine Learning (ML) techniques. The aim of this study is to develop an ML-based
PEWS to predict unplanned transfer from a general hospital ward to an intensive care unit
(ICU), within 8 hours of a given vital sign observation.

Methods: This study was performed with 178,970 pediatric bedside vital sign observa-
tions from 4,104 patients. We tested 25 different configurations for Multilayer perceptron
(MLP), Naive Bayes (NB), Random Forest (RF) and Support Vector Machine (SVM) consi-
dering different parameterizations. We use 10-fold Cross-Validation with stratified sampling
and SMOTE technique to deal with overfitting and class imbalanced dataset.

Results: RF performs better (p < 0,005) regarding AUC (0,898), Acc (92,4 %) and spe-
cificity (97,94 %) than the other models in our experiments. Naive Bayes (NB) is the most
robust approach in terms of Sensitivity. Receiver Operating Characteristic (ROC) curve is
also presented for the selected 4 best approaches.

Conclusions: Our results show that ML algorithms can outperform ICU transfer pre-
diction AUC compared to expert-based traditional PEWS and other recent ML approaches.
The use of manually-collected vital signs and the inclusion of pediatric patient condition
information (i.e. sleep, awake and crying) and age ranges show an improvement in prediction

1The following is an up-to-date (to the time of writing) version of the paper ”A pediatric early warning
system machine learning model based on clinical outcomes”, please do not cite this paper without authoriza-
tion.
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performance traditional outcome, as well as the supplemental oxygen support information.

4.1. Introduction

Some inpatients’ decompensation can be predicted using periodic bed-side vital signs
observations. Around 85% of severe adverse events (SAE) are preceded by abnormal vital
signs [101], and 59% within 1 – 4 hours before cardiac arrest [4]. The group of models
developed to predict decompensations is called Early Warning Systems (EWS). Currently,
the bed-side vital signs observation are the basis of all reported EWS models. EWS has
evolved to alert health professionals regarding potential clinical decompensation.

4.1.1. Related Work

Currently, there are many different EWS in use internationally. There are some EWS built
based on experts’ perspectives, such as the National Early Warning Score (NEWS) [123, 156],
Modified Early Warning Score (MEWS) [160] and VitalPAC Early Warning Score (VIEWS)
[135]. There are also pediatric EWS based on suggestions from experts such as Children’s
hospital Early Warning Score (C-CHEWS) [112], Pediatric Early Warning Score (PEWS)
[54] and Bedside PEWS [130]. MEWS and ViEWS can be used on non-ICU ward patients
with good results [183].

Other EWS had been derived using statistical modeling (Analysis of variance ANOVA,
Backward stepwise Regression) such as the Rothman Index [140] and the electronic Cardiac
Arrest Risk Triage (eCART) score [36]. Badriyah et al. shows a Machine Learning based
(ML-based) EWS using Decision Tree (DT) analysis [12]. Clifton et al. shows a one-class
Support Vector Machine (SVM) [39]. Discrete-time logistic regression was also used as an
effective and efficient method to predict adverse clinical outcome [97].

This wide range of models use different features, such as patient unit, patient age group
(pediatric or adult) and the quantity and origin of the used observations. In our case, the
objective was to enhance pediatric patient models within the hospital general ward, focused
on manually-collected vital sign measurements and other bedside observations.

4.1.2. Clinical Outcomes

Most of these EWS were designed to detect patient deterioration in hospital general wards,
specifically those at increased risk of: unplanned ICU transfer [116], unplanned return to the
operating theatre, a prolonged stay, cardiac arrest, or death.

Rather than relying only on expert opinion, we assessed our ML-based EWS performance
through the discriminative ability to predict unplanned intensive care unit (ICU) transfer,
within at least 8 hours of a given vital sign observation. This definition is well founded on the
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fact that 8 hours is a reasonable time to react by medical staff in case of a decompensation
alarm, it offers (as it will be seen in section 4.3) a better predictive capacity (see section
4.3). Our selected outcome (unplanned ICU transfer) is related to other outcomes (such as
cardiac arrest). We select unplanned ICU transfer as the only outcome, mainly due to the
low frequency of the death episodes and cardiac arrest events within a general hospital ward.
The prolonged stay was not used, because it is a less objective outcome that could lead to
errors in the training processes and model evaluation.

Rubin et al. approach of a pediatric ML-based EWS shows an AUC performance for
the ensembled model of 0.840 [143]. Watkinson et al. result is shown after a review of 23
EWS (including these authors’ data) whose AUC performance does not exceed 0.868 in the
outcomes early detection (in the 12, 24 and 48 hours prior to the outcome occurrence) [173].

4.2. Materials and methods

Different steps were performed to obtain our results. The overall model training and
validation processes are shown in figure 4.1.

Figura 4.1: Study design schema

4.2.1. Dataset characterization

We carried out a single public center retrospective cohort study. Records for all vital sign
measures during the study period were retrieved from the currently local operating system.
We include 4,104 pediatric patients (< 18 years) who were discharged between January
1, 2018 and December 31, 2018. All erroneous or incomplete data records were discarded.
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Finally, our cleaned dataset (see table 4.1) contained 178,970 manually collected records.
Only 681 of the collected data points are generated 8 hours prior to ICU transfer (0.38%).

Tabla 4.1: Dataset information
General
No. of Patients 4,104
ICU transfers 203
Females 1,793 (43.7%)
Vital signs Records 178,970

Records per Age Range

0 - 1m 10,239 (5.7%)
1m - 3m 12,737 (7.1%)
3m - 1y 30,584 (17.1%)
1y - 2y 22,303 (12.5%)
2y - 4y 22,218 (12.4%)
4y - 8y 27,107 (15.1%)
8y - 10y 13,336 (7.5%)
>10y 40,446 (22.6%)

Patient condition
Awake 109,533 (61.2%)
Sleep 57,709 (32.2%)
Crying 11,728 (6.6%)

Oxygen Support

Airway
Natural airway 177,403 (99.12%)
Tracheotomy 1,549 (0.87%)

Endotracheal tube 18 (0.01%)
Supplemental 45,395 (25,4%)Oxygen Support

In most adult EWS age range is not a central feature. In pediatric case it is relevant to know
the patient age range to determine the heart rate (HR), respiratory rate (RR) and systolic
blood pressure (SBP) risk levels, since the normal vital signs and out of range reference
values of these groups are different (see in the table 4.2). The age ranges were defined based
in Pediatric advanced life support (PALS) [48].

Tabla 4.2: Vital signs records information (mean±SD)
Range HR [bpm] ± SD T [C] ± SD RR [bpm] ± SD SBP [mmHg] ± SD SAT [%] ± SD
0 - 1m 141.13 ±14.50 36.69 ±0.41 39.32 ±7.39 92.80 ± 9.94 98.57 ±1.94
1m - 3m 135.87 ±15.77 36.63 ±0.44 37.13 ±6.92 96.02 ± 10.47 98.59 ±1.94
3m - 1y 127.73 ±17.23 36.53 ±0.49 33.98 ±6.98 98.95 ± 10.46 97.96 ±2.83
1y - 2y 120.79 ±18.15 36.52 ±0.50 30.86 ±6.65 100.81 ± 10.20 97.79 ±2.42
2y - 4y 115.47 ±18.84 36.53 ±0.54 27.92 ±5.83 99.74 ± 10.80 97.80 ±2.11
4y - 8y 101.21 ±18.94 36.52 ±0.55 24.64 ±5.36 100.89 ± 10.35 97.78 ±2.98
8y - 10y 96.09 ±19.00 36.56 ±0.60 23.55 ±4.84 103.01 ± 10.17 97.87 ±2.87
>10y 88.84 ±16.97 36.55 ±0.52 21.41 ±4.84 107.61 ± 11.86 97.89 ±2.88

Additionally, it is possible to see the difference between the medians and quartiles between
age ranges by the Boxplot for the cases of the HR, RR, and SBP (see figure 4.2). With respect
to the age range and patient condition:

• a statistically significant decrease is shown in the case of RR and HR (p < 0,00001
using pairwise t-test in 92.9% of pairs) and
• a significantly increase in SBP (p < 0,01 using pairwise t-test in 73.8% of pairs), can

be also observed in figure 4.2.
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Figura 4.2: Boxplot of (a) Heart Rate, (b) Respiratory Rate and (c) Systolic blood pressure
by age ranges and patient condition

To identify the vital sign measurement prior to ICU transfer, the local Electronic Health
Record (EHR) system was used. In this way, positive labels were generated. All these labels
were manually reviewed by a local committee of medical experts to avoid including errors
in the dataset. This review was very time consuming, but necessary to ensure the data base
quality.

The features selected for the model are the following: HR, level of consciousness (LOC),
RR, body temperature (Temp.), oxygen saturation (SAT), Diastolic blood pressure (DBP),
SBP and patient age range. Also, information about patient condition (sleep, awake and
crying) and about Supplemental Oxygen Support (Airway, O2 in L/min, etc.) were used.

4.2.2. Dealing with Overfitting and class imbalanced

To avoid overfitting, a 10-fold Cross-Validation with stratified sampling were performed.
The Cross-validation technique consists of repeating and calculating the arithmetic mean
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of the results obtained by the model on different partitions of the data. This problem is
characterized by the fact that, in general, the available data is highly unbalanced. To avoid
the negative effect of this imbalance in the learning process, different strategies can be im-
plemented [108]. One strategy that has shown good results is to use the Synthetic Minority
Over-sampling Technique (SMOTE) during the training phase [34]. Random Oversampling
was also tested. The SMOTE tool consists of creating new samples of the minority class
by random convex interpolation between k randomly picked samples (neighbors) from the
minority class. Random convex interpolation means that the new sample is computed as a
degree polynomial, one of the reference samples whose coefficients are in the interval [0,1].
The up-sampling technique is subsequently performed to the split dataset and only applies
to the training set, as it was presented in a previous work [178].

4.2.3. Machine learning models under evaluation

Differently supervised classification methods can be used and compared to solve this pro-
blem. Four methods were selected, based on their good results in classification problems.

Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is a broad set of machine learning methods of different
characteristics. They are based on the theory of artificial neural networks (ANN). MLP is
considered an important method, because of the good results obtained in different classifi-
cation problems. H2O library [43] was used to perform a multi-layer feedforward artificial
neural network, trained for classification with back-prop and stochastic gradient descent [84].
The classical sigmoid activation function of neurons in the hidden layers has been replaced
by others like the Hyperbolic Tangent (Tanh) activation used in Deep Learning architectu-
res [71]. Different neuron topologies were trained, finding the best result in 4 hidden layers
topology with 50-50-25-5 neurons respectively. Adaptive learning rate algorithm (ADADEL-
TA) [186] was used to combine the benefits of momentum and learning rate annealing to
avoid slow convergence in the training process. Models were trained considering 10 epochs,
epsilon = 10e−8 and rho = 0,99. We used the H20 package (https://www.h2o.ai) for training
process.

Naive Bayes (NB)

Naive Bayes (NB) is a simple, and very effective method of machine learning. Its central
concept is the naive assumption of independence of the individual features. This allows us to
approximate the probability of a D-dimensional feature vector as a D probabilities product
of 1-dimensional feature vectors. In this case, Gaussian probability densities estimation was
used to model the likelihood density function of the features. A Laplace correction to prevent
the high influence of zero probabilities was also used.
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Random Forest (RF)

The central concept of Random Forest (RF) [24] is a random trees assembly. These trees
are trained on bootstrapped sub-sets, each of which is built on a bootstrap sample of the
training dataset using a subset of randomly selected variable parameters. Each tree node
represents one specific attribute splitting rule. In our test, Gini index was identified as the
best criterion to select attributes for splitting. Maximal depth used was 8 and 1,000 trees
were trained.

Support Vector Machine (SVM)

Support Vector Machine (SVM) is one of the most important groups of supervised learning
methods [169]. SVM can be used to address regression and classification problems. In the case
of binary classifiers, SVM tries to find a hyperplane that divides the feature space in two and
maximizes the distance between groups of feature vectors belonging to a class, with respect
to the feature vectors belonging to another class. The parameters that define the solution
hyperplane are obtained solving a quadratic programming problem. The two classes divided
by the hyperplane may not be linearly separable. In these cases, either the kernel trick was
used [150] or penalizing an error, in a band around the hyperplane (soft margin) determined
by an additional parameter called C (C-SVM). A C-SVM with Radial Basis Function (RBF)
kernel and C = 0,1) were selected in this case.

4.2.4. Evaluation metrics

In problems like these, it is central to define beforehand the metric that will be used to
measure the model performance. There are many techniques to evaluate the model results.
There are many well-studied evaluation metrics, while the most commonly metrics used in
binary classification are: Accuracy (Acc), Sensitivity, Specificity and Positive predictive value
(PPV).

The Accuracy (Acc) metric will be determined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(4.1)

Sensitivity (Sens) and Specificity (Spec) are obtained using:

Sens =
TP

TP + FN
, (4.2)

and,
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Spec =
TN

TN + FP
, (4.3)

Finally, the values of PPV are obtained using:

PPV =
TP

TP + FP
, (4.4)

where true-positive (TP), true-negative (TN), false-positive (FP) and false-negative (FN)
are case counts in a confusion matrix.

The analysis using Receiver Operating Characteristic (ROC) curves has been widely
used to compare different binary classifiers. ROC curve graphs the Sensitivity versus the
1-Specificity. To identify the trade-off between the Sensitivity and Specificity, the Area Un-
der ROC Curve (AUC) is performed.

4.3. Results

Twenty-five different configurations were tested considering different parameterizations: 6
for Multilayer perceptron (MLP); 1 for Naive Bayes (NB) 9 for Random Forest (RF) and
9 for Support Vector Machine (SVM). In the case of MLP, different activation functions
(Tanh and Rectifier) and different topologies of the hidden layers (50-50-5, 50-25-5, 50-50-
25-5 neurons) were tested. In the RF approach, different tree numbers (10, 100, 500) and
different splitting criteria (Gain ratio, Gini index, and Information gain) were tested. In the
case of SVM, 3 kernels (linear, polynomial and Radial Basis Function) and different values
of C were tested (0,1 , 1 and 10). For each approach, the configuration that showed the best
performance in AUC was selected. In table 4.3, five performance metrics are shown for each
selected approach.

Tabla 4.3: Diagnostic accuracy measures
AUC (SD) Acc(SD)[%] Sens(SD)[%] Spec(SD)[%] PPV(SD)[%]

MLP 0.867(0.021) 97.50(0.17) 53.97(4.64) 97.66(0.17) 7.67(0.93)
NB 0.825(0.031) 92.14(0.22) 65.27(3.71) 92.24(0.22) 2.93(0.20)
RF 0.898(0.013) 97.79(0.10) 54.42(5.92) 97.94(0.10) 8.66(0.79)
SVM 0.844(0.051) 92.40(0.55) 63.73(7.04) 92.51(0.55) 3.17(0.45)

The results of each approach are graphically presented in ROC curves (see figure 4.3).
The figure 4.3 also shows: the ROC thresholds and the area between the Pessimistic ROC
and the Optimistic ROC for RF.

It is possible to observe the effect of performing data balance strategy in the training pro-
cess, as well as the relevance of variables such as: the defined Age Range, patient’s condition
(awake, sleep and crying), and oxygen support information. The AUC performance metric
obtained without considering these conditions are presented in the table 4.4.
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Figura 4.3: ROC curve

Tabla 4.4: AUC (SD) performance by ML model (a) without including Oxygen Support
information, (b) Imbalance data for training, (c) without considering Age Range and patient
condition, and (d) all variables and balanced dataset.

(a) (b) (c) (d)
MLP 0.744(0.046) 0.820(0.024) 0.840(0.024) 0.867(0.021)
NB 0.787(0.029) 0.833(0.017) 0.841(0.029) 0.826(0.033)
RF 0.824(0.038) 0.877(0.036) 0.853(0.019) 0.898(0.013)
SVM 0.804(0.034) 0.486(0.124) 0.824(0.049) 0.844(0.051)

4.4. Discussion

Four ML tools with different configurations to perform a pediatric EWS have been tested.
None of the models tested simultaneously improves all the metrics. Results of these four
models are summarized in table 4.3.

RF showed a better AUC, Acc, PPV, and specificity than the other models in classification
experiments (p < 0,005 using pairwise t-test). NB showed a lower variability in Sensitivity
(p < 0,001 using one-side t-test).

Graphically, the ROC curve (see figure 4.3) allows us to observe a superior performance
in practically the whole thresholds spectrum.

From the clinical viewpoint, a high sensitivity prediction method is preferred to avoid a
false negative errors. However, Accuracy is also a desirable metric that allows you to handle
the trade of between a false negative errors and overload the medical staff. RF simultaneously
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shows a high Accuracy and PPV ratio. In general, EWS models have more than one level
of detection through the use of regression or scoring methods. This allows the EWS to have
different levels of sensitivity and specificity. In this case, it is possible to use the built model
by varying the bias settings and in this way to establish levels based on the expected results.

As it can be seen in table 4.4, the outstanding results can be explained based on the
simultaneous use of information on patient oxygen support, age range and condition. In
addition, it is possible to see that in the case of RF, MLP, and SVM the positive effect in
classification performance of class balancing technique.

It can also be observed that RF is more stable than NB and SVM in terms of its standard
deviation (p < 0,001 using F-test) while RF is less pronounced than MLP.

The inclusion of oxygen support information allows us to significantly improve the per-
formance (in AUC p < 0,05 using pairwise t-test) of all ML models, as in the case of scoring
methods and centile-based unsupervised learning, as shown in a previous work [173].

It is interesting to note a largely statistically significant RF performance improvement
(p < 0,00001 in one-side t-test) when the patient age range and the patient condition are
included.

RF performance in AUC exceeds all reported AUC of models in recent studies in EWS,
for both adult and pediatric populations [143, 173]. Based on the most recent publications
on ML and non-ML models, the EWS presented here exceeds all other models when the
different calculated AUCs are compared. This result is achieved with the incorporation of
specific features in the ICU transfer prediction problem, in combination with widely studied
strategies in the machine learning field. Our results show that ML algorithms can improve
ICU transfer prediction Acc compared to expert-based traditional EWS.

A significant contribution of this publication is to show the positive effect in model perfor-
mance if strategies are used for the class balancing prior to the learning models training. The
use of tools such as Cross-Validation allows us to avoid overfitting and to have more reliable
results. The inclusion of information about patient condition (sleep, awake and crying) and
age ranges of pediatric population in EWS shows an improvement in traditional outcome
prediction performance, as well as the information of supplemental oxygen support.

One of the important limitations of this study is that the data set comes from a single
hospital, so the results reported should be evaluated with data from other pediatric hospitals.
Another important limitation is that it should be compared with other models using the same
data. In addition, the study is limited in the number of clinical variables available that are
used for prediction, such as capillary refill. An important consideration in this work is that
each observation of vital signs was analyzed independently of the rest, and not as a part of
a temporal sequence. Including this feature may allow to improve the results, but it hinders
the construction of the training and test sets and limits the number of models that can be
tested.

In this work we try to provide knowledge about the real potential that this type of tool
has. We have succeeded in understanding the dynamics within this socio-technical environ-
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ment. However, there is still a long way ahead. Even when ML models are able to outperform
an expert based algorithm or local experience, we are still far from being able to completely
replace their knowledge with any of the ML models already developed. However, the develo-
ped models could be integrated into the hospital EHR setting to support the medical staff
to increase the frequency of vital signs monitoring, in specific conditions.

Currently, there is a worldwide preoccupation on how artificial intelligence (AI) will replace
human experts in different important tasks. In our opinion this is very difficult to achieve in
real clinical settings. Moreover, it is necessary to understand that algorithms might help to
take a better decision, however, there is a huge responsibility decision makers assumed with
their patients which prevent us from fully automate these processes.
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Chapter 5

Final Conclusions

5.1. Research aims

Healthcare risk may be approached from several perspectives such as clinical risk ma-
nagement, identification [154], and stratification. This thesis has been focused on clinical
risk management. Particularly, we aimed to improve the results of three risk models based
on Machine Learning tools. These models can be incorporated into clinical decision making
processes embedded into systems generically known as Machine Learning Clinical Decision
Support Systems (ML-CDSS). There is a wide spectrum of clinical issues that may be tackled
with ML-CDSS. We have focused our research effort on three kinds of issues based on their
common characteristics: Readmissions, Triage, and Decompensation of inpatients. These th-
ree problems require assessing the level of risk to guide the clinical decision that is made, in
order to adapt the care level to the predicted risk. In this sense, it is essential that the risk
assessment should be a part of the care process. Another common characteristic of the three
problems is that they require a level of risk at a specific time. Finally, another commonality
is that the risk determined by each model refers to an individual patient, not to a whole
population.

ML methods used in risk prediction have common characteristics such as: Highly class
unbalanced data; Non-unique label; Sensitivity as the relevant performance evaluation me-
tric; and, a strong dependence of modeling features and parameters on specific population
characteristics.

Although we have addressed separately the three problems in different publications, they
belong to this compendium. Furthermore, there is a shared body of strategies used to address
each problem. In other words, our experience of dealing with one problem has contributed
to improve the solution of the next considered problem.

The models selected to deal with in each case study differ as follows: each of them must
be used in different parts of the care process; the number of predicted class in each case is
different; the origin and type of data used in each problem are not the same. In addition,
different performance evaluation metrics are used to report results in each case of study.
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5.2. First findings

One of our first findings was the scarcity of scientific research on pediatric patients, pro-
bably because the construction of predictive models for children seems to be more challenging
than for adults [2].

Another important finding of the international scientific literature review carried out is
the wide variety of decisions that can be supported by computerized systems [19, 65]. This
demonstrates a non-recent interest, which has grown in recent years, due to multiple factors
such as: Availability of datasets; availability of software packages that facilitate the develop-
ment and testing of different models; advances in processing capacity; and recent interest of
clinicians in the advantages of using these models.

Although we found previous research that addresses problems such as triage and decom-
pensation of inpatients, the use of these models is not always correct. In addition, in some
cases, the performance evaluation metrics reported were inappropriate or incomplete for the
assessment of the claimed results. In this Thesis, we describe the correct model validation
methodology, and, in addition, we provide a large number of performance evaluation metrics.

A large number of investigations report model evaluation based on human expert judg-
ment [76, 158, 190, 123, 156, 160, 135, 105]. Although this strategy is widely spread, it may
not be the most appropriate [16]. In the three problems tackled in this Thesis, both the
performance evaluation metrics and the labels that allow training the models, are based on
clinical outcomes. This allows us to use a larger dataset and guarantees the result objectivity,
by limiting the influence of subjective human judgment.

Many studies on ML-CDSS focus their research efforts on different hospital problems, such
as identifying and managing care for high-cost patients [163, 8], and analyzing clinical data
and inferring a diagnostics [182]. The characteristics of the selected models focus on enriching
the quality of patient care and safety, by setting as a central objective the determination of
the patient level of risk in order to adapt the level of care. In this way, our research results
can help to prevent treatment complications to the patient. The focus on risk reduction is a
central component in the Person-centered health care model defined by the hospital [82, 146].

5.3. Proposed methodology

The methodology followed addressing each problem was detailed in-depth in each publi-
cation. The versatility of the tools selected for these three cases allowed us to solve problems
with great importance for hospitals and the safety of care. Some final reflections are presented
regarding common characteristics of the methodology used in approaching these cases.
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5.3.1. Datasets

The informatization level of hospitals in our country is lower than that observed in inter-
national research [136]. Although there are national strategies to reverse this situation, up to
now they have not shown the expected results. This affects the availability of data to carry
out high-level research in the Chilean population since available clinical data is scarce and
unreliable. This project was feasible due to the high commitment of the management team
in charge until 201 of the Exequiel González Cortés Hospital (EGCH) 8, concurrent with the
informatization process that the hospital underwent since 2015.

Both the commitment of the hospital management and the computerization process of the
EGCH, allowed to gather massive datasets containing anonymous information encompassing
vital signs records, and data from the EHR and cost accounting systems. This large volume
of data allowed training models that are quite sensitive to the data sample size, such as
artificial neural networks, with a large number of labeled cases at different levels of risk.

5.3.2. Outcome based models

A key focus on security in all industries is the investigation of the link between the causes
and the risks that underlie faulty outcomes of the industrial process [154], guiding the de-
velopment of predictive models, which is a structured approach to reduce the occurrence of
these negative outcomes. In this Thesis, three examples of how to address different problems
with similar characteristics are presented, using clinical outcomes, both for model training
and performance evaluation.

The labeling or relabeling (in the case of triage) of data samples constructed using clini-
cal outcomes, allowed a more objective approach to solve the problem, than in the case of
approaches where the data sample label was established on the basis of human expert judg-
ment. This was clearly observed in the problems of triage and decompensation of inpatients.
In addition, this data labeling approach allows for greater training and test dataset, since in
general, the manual labeling processes are very time-consuming. Although this approach has
been followed previously dealing with some modeling problems using crowd-sourcing systems
and noisy labels [187, 188], it is a problem solving traversal characteristic of great relevance
in this study.

5.3.3. Class balance techniques

One of the relevant findings of the literature review is the low use of class imbalance
correction strategies. Especially when high-risk classes prevalence is very small. In the case
studies considered in this Thesis, we use minority class upsampling to improve the results
especially when the data sets are unbalanced. Different methods were tested finding that
SMOTE allowed improving the results. When dealing with decompensation of inpatients
and readmission, the effect of carrying out the class balancing strategy before training is
assessed separately. In both cases, it is shown that applying this technique has a significant
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contribution to improve the results of trained predictive models.

5.3.4. Selected ML tools

Four classifier building algorithms were selected on the basis of their performance results,
the characteristics of the problem, and the state of the art. Namely, they are Support Vector
Machine (SVM), Artificial Neural Network (ANN), Naive Bayes (NB), and Random Forest
(RF). These models allow multi-class and dichotomous classification. Other models such
as Gradient Boosting Trees (GBT) and Logistic Regression (LR) were also tested, but not
reported in the published papers.

When presenting and discussing each study, we report the configuration and parameteri-
zation of each predictive model. The inclusion of four different models per study on average
is in striking contrast with the literature. We have explored a wide range of alternatives,
however we select for presentation the best performing models, in order not to overwhelm
the reader. In addition, available open source libraries were used in each case study, so the
experiments are reproducible for researchers with access to the data. Sharing the data was
always a longing of the author of this Thesis, however, by national bioethical regulations,
this was not possible.

5.3.5. Evaluation metrics

The proposed methodology not only provides strategies to improve the performance of the
models but also to achieve a better assessment of their ability to be deployed in real clinical
settings. This is why we propose the "fingerprint.of the chapter 3 and the PPV of the chapter
2. These metrics are not commonly used as a central tool for the evaluation of classification
models, but incorporating them allows enriching the discussion about the applicability of
these models.

In the studies about hospital readmission and decompensation of inpatients, the use of
standard metrics for the evaluation of dichotomous models is proposed. From the point of
view of the results of the models, it is relevant to evaluate the cost-benefit of a model whose
implementation does not leave us with a hypersensitive, but imprecise model. The metrics
selected when dealing with these problems allow for a thorough discussion, not only of the
capabilities of the model but also about their potential to be implemented in real clinical
settings. More precisely, the ability to deal with the costs associated with the adequacy of
the level of care, when necessary, in proportion to a possible over-categorization.

In the case study of the triage into five categories, we make an important methodological
contribution regarding the evaluation of these models. This was achieved by incorporating
traditional metrics into multi-class classification models with specific evaluation metrics to
evaluate emergency triage. The evaluation of results presented as part of the methodology
allows us not only to compare the power of machine learning methods but also to show
their power against other knowledge-based models. In this case, dichotomized analysis is also
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included in order to compare the results obtained with the results obtained in traditional
expert-based models.

5.4. Results

Overall, Random Forest consistently showed a better predictive capacity. In the case of
pediatric readmission, RF results are not presented in the main investigation. However, this
result is presented in a subsequent investigation included as an annex to this thesis (see
Annex A).

In the case of pediatric readmission, it was difficult to compare the results obtained with
other investigations, since no previous experiences of the application of ML tools in readmis-
sion of pediatric patients were found. It is recognized that the AUC of other models may be
higher in the case of readmission prediction of adult patients. However, direct comparisons to
other studies are difficult because of different study designs, incomplete definitions of cohorts
and outcomes, restrictions on disease-specific cohorts, or use of data unavailable [136].

In the case of pediatric triage, the result presented exceeds the AUC of the high-level risk
(C1 and C2) hospital admission prediction of all previous research, only matched by [73]
published in the same year as our paper.

In the case of the prediction of decompensation of inpatients, the AUC of the dichotomous
label is shown to be far superior to a wide range of research shown in recent publications
[173].

Finally, we want to emphasize the discussion included in each publication regarding the
best available metrics and how they express the best result of the model, enriching the
discussion regarding the benefits of these models to face each of the tasks considered in
this Thesis. The excellent results obtained in different evaluation metrics in risk prediction
problems allow methodological validation of the ML tools used, even if they are compared
with other knowledge-based and non-knowledge-based methods.

5.5. Applications/implications

The applicability of the studied predictive models in real clinical settings may vary. Alt-
hough, the three models are designed to be part of the care process, therefore validation by
the clinical teams in charge is essential. Further research is required to validate these models
from a clinical perspective. An important challenge is to determine what characteristics of
systems make them effective in supporting particular types of clinical decisions [114]. More
precisely, to establish which is the best metric, and the decision thresholds that make the use
of an ML model valid in the health care process. In other words, the most important success
factor for CDSS is to make them fit into daily clinical workflow [95, 138].
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There is a research line of legal affairs in the use of ML tools in healthcare [27, 72].
Before an effective implementation can be achieved in hospitals, medico-legal responsibility
will require further attention [147]. Locally, in spite of the validity of the model, the clinicians
consider the ability to audit the implementation as fundamental. This means that the model
must be fully documented and its behavior must be clearly explainable in front of an external
referee [79]. This consideration is raised in the event of a medico-legal dispute. For this reason,
Regression models and Simple Decision Trees have a better chance of being implemented in
real clinical contexts, regardless of lower predictive power, compared to models considered
black-box (difficult to interpret)[52].

During the development and improvement of the expert-based model described in the
publication of the pediatric triage, the central level decided to implement the ESI model in
all Chilean hospitals. At this moment, the commitment of the hospital management team
was fundamental, not only the validity studies. This team was able to defend the use of the
local expert-based triage, through international experience and the benefits of this model.

In the case of the decompensation of inpatients risk model, there is less local regulation
about the type of model that should be used, in contrast with emergency triage. However, in
this case, clinicians also require validated and auditable methods. This last condition favors
the use of scoring models, widely disseminated for this task, as shown in Chapter 4. The
models that analyze the variables separately have the advantage of allowing the system to
report to the operator the cause of the calculated risk. Locally, not only the identification
of the risk is assessed, but also the possibility of having an automated method to determine
what are the characteristics that generate a modification in the risk assessment. This limits
the feasibility of using only ML tools that showed better results.

The prediction of readmissions has as a central objective to prevent them from happening,
by supporting the clinical decision at the time of discharge. In the discharge process, all the
information that is required for the readmission prediction is available. At that moment it is
when the prediction can support hospital staff by recommending, for example, post-discharge
special care, caregiver education or postponement of discharge. If the cost of these strategies
is affordable, then it is possible to consider implementing models such as the one presented.

5.6. Final remarks

The correct use of ML tools allows improving the predictive result in problems related to
patient risk. This was shown in three different examples, in which different ML tools were
used (in the state of the art). The methodology presented in each problem has, in general
terms, similar characteristics and can be used in other CDSS.

The progress of research on patient risk allows a better understanding of the care process.
The development of these tools and the study of their impact on real clinical settings showed
excellent results, even when compared with mechanisms considered standard in the clinical
literature. In addition, this research requires a deep understanding of how CDSS interacts
with their operators in complex socio-technical environments. The success of the proposal is
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due to a clinical point of view of the problem and the opportunities found to improve the
way in which health organizations work.

The proposed models are a contribution to the validation of ML methods as outstanding
performance tools. The outcome perspective (for labeling or relabeling), both in training and
in evaluation, proved to be an improvement from the performance viewpoint. The relabeling
was used to improve the results obtained when an expert label was used for training. The
expert triage labeling was built by a group of clinicians, who do not necessarily label cases
with the same criteria. The result of this is a noisy label that trained models with poor per-
formance. The same happened in the case of EWS, where a label constructed with unplanned
transfers to ICU was used.

The risk characteristic addressed in this thesis is a non-measurable concept, there is no
ground-truth in triage and pediatric EWS problems allowing to determine which tool is better
than another. This research supports the standardization of evaluation metrics in the three
problems studied.

In our country, there is a tacit commitment adopted by the authorities: “children first”.
However, one of the first findings of this thesis is the lack of application of ML models in the
problems described for the pediatric population. In addition, it is recognized in the literature
that it is a difficult problem to address and therefore it is outstanding in this research to
validate our hypotheses in pediatrics.

5.7. Further research

Understanding the business is probably the least documented, structured and researched
element of the CRISP-DM methodology. In this thesis, becoming familiar with the business
fundamentals took about 9 years (prior to this work), due to the concurrent development of
other research projects, process assessment and modeling, and technological implementation
in public hospitals. This accelerated the development of the Thesis, although the author
acknowledges that much remains to be learn.

The problems selected in this thesis are part of a wide range of problems described in
the literature, grouped under the name of CDSS. The proposed approach can be used to
develop models that solve the wide range of CDSS as an extension of this work. As for
example, in other areas of the hospital such as Decision support in mechanical ventilation
[109]; Decompensation risk in chronic outpatients [103]; Medication error prediction [149];
Severity scoring and mortality prediction [132, 87, 47, 176]. In addition, it is possible to
extend this research to other populations such as adult patients, if the data is available.

A limitation of this work is that it was carried out in a single hospital, where it was feasible
to have the necessary data for the training and validation of the models. Future work must
be addressed to validate these studies in a multi-centre setting, in order to evaluate whether
the results and conclusions are altered or not.

Some approaches such as [136] raise the use of Deep Learning tools, considering the longi-
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tudinal data available in the EHR. This data was not fully available since the EHR is still in
the implementation phase. Having more data will allow other supervised learning methods to
be incorporated into the study. A greater amount of information such as active diagnoses will
allow research in subgroups of patients, such as chronic patients or other specific pathologies.

The feature selection is a crucial stage in the ML process. It was addressed in each case
study based on expert knowledge and scientific literature. Consistently selected as a part
of an entity schema of the framework presented in [166]. Nevertheless, there are statistical
techniques for feature selection that have shown good results in other medical applications
[145, 139] and can be incorporated into future research. The most appropriate method of
feature selection will depend on the data, problems characteristics, computational speed and
accuracy [177].

Currently, the validation of the model construction method is not sufficient to allow the use
of the model in real clinical settings. For this reason, its application in the future depends on
the existence of more clinically-relevant studies [96], such as this one, that validates accurate
and reliable methodologies and models. With this Thesis, we aim to lower the barriers to
implementing machine learning methods in real clinical settings, and, in this way, contribute
to enrich the quality and safety of patients.
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Annex A

Model Hyperparameter sensitivity
analysis in Machine learning readmission
risk modeling: a pediatric case study

Machine learning readmission risk modeling: a pediatric case study objective is to assess
the all cause readmission predictive performance achieved by Machine Learning techniques
in the emergency department of a pediatric hospital in Santiago, Chile. In this annex we
present additional results to Machine learning (ML) readmission risk modeling: a pediatric
case study. In particular, the results of testing different hiperparameters are presented in all
ML models used for the calculation of risk of readmissions in a pediatric hospital. We report
classification results achieved with various model building approaches after data curation and
preprocessing for correction of class imbalance.

A.1. Describing the models used

The ML models selected in that publication were: Naive Bayes, Support Vector Machi-
nes, and Multilayer Perceptron. The models are evaluated according to the characteristics
presented in the table A.1. We compute repeated cross-validation (RCV) with 5 folders to
assess performance of this models.We apply a SMOTE up-sampling procedure using the five
nearest neighbors of each minority class sample. The reported results are the average (and
standard deviation) of the test RCV results.

A.2. Results

The evaluation was made based on: AUC, recall, PPV and f1-score. the results obtained
are shown in the table A.2
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ML Alg. Descrip. Descrip. Cont Name

Multilayer Perceptron 1

4 Esemble MLPs
10 cycles, 10 gen. MLP 1-1

100 cycles, 10 gen. MLP 1-2

10 cycles, 100 gen. MLP 1-3

8 Esemble MLPs
10 cycles, 10 gen. MLP 1-4

100 cycles, 10 gen. MLP 1-5

10 cycles, 100 gen. MLP 1-6

Multilayer Perceptron 2

Rectifier Act. Func.
Neurons 50-25-5 MLP 2-1

Neurons 50-50-5 MLP 2-2

Neurons 50-50-25-5 MLP 2-3

Tanh Act. Func.
Neurons 50-25-5 MLP 2-4
Neurons 50-50-5 MLP 2-5

Neurons 50-50-25-5 MLP 2-6

Naive Bayes

Gaussian d-estimator NB1

Greedy d-estimator
10 kernels NB2

100 kernels NB3

1000 kernels NB4

full d-estimator Heuristic NB5

Fix NB6

Support Vector Machine

RBF kernel

C = 0,1 & γ = 0 SVM1

C = 0,1 & γ = 0,1 SVM2

C = 10 & γ = 0 SVM3

C = 10 & γ = 0,1 SVM4

Linear kernel

C = 0,1 SVM5

C = 10 SVM6

C = 1 SVM7

C = 0 SVM8

Tabla A.1: Machine Learning studied models and their parameter setup
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AUC (SD) recall (SD) [%] f-measure (SD) [%] PPV (SD) [%]
MLP 1-1 0.634 (0.011) 61.39 (6.14) 9.67 (0.26) 5.25 (0.14)
MLP 1-2 0.625 (0.004) 50.85 (5.93) 10.05 (0.32) 5.59 (0.24)
MLP 1-3 0.618 (0.170) 47.77 (5.45) 10.03 (0.56) 5.61 (0.32)
MLP 1-4 0.634 (0.008) 52.9 (4.88) 10.28 (0.51) 5.70 (0.32)
MLP 1-5 0.617 (0.011) 48.57(3.11) 10.20 (0.40) 5.70 (0.29)
MLP 1-6 0.620 (0.011) 40.84(3.76) 10.39 (0.37) 5.96 (0.19)
MLP2-1 0.553 (0.033) 96.35 (3) 7.57 (0.24) 3.94 (0.13)
MLP2-2 0.530 (0.054) 86.77 (22.47) 7.28 (0.39) 3.81 (0.16)
MLP2-3 0.612 (0.057) 71.36 (35.78) 8.59 (0.00) 4.57 (0.00)
MLP2-4 0.602 (0.027) 92.78 (3.56) 8.01 (0.39) 4.19 (0.22)
MLP2-5 0.593 (0.032) 91.03 (5.2) 8.21 (0.53) 4.30 (0.30)
MLP2-6 0.654 (0.004) 91.31 (2.02) 8.60 (0.35) 4.51 (0.19)
NB1 0.654 (0.015) 69.19 (4.98) 9.82 (0.38) 5.29 (0.22)
NB2 0.655 (0.014) 34.53 (12.53) 12.34 (1.31) 7.89 (1.33)
NB3 0.667 (0.011) 42.78 (3.43) 11.87 (0.39) 6.90 (0.28)
NB4 0.666 (0.006) 7.77 (0.72) 7.78 (0.66) 7.77 (0.72)
NB5 0.669 (0.015) 76.73 (5.3) 9.80 (0.49) 5.24 (0.30)
NB6 0.485 (0.018) 24.83 (1.77) 6.55 (0.52) 3.77 (0.31)
SVM1 0.607 (0.014) 39.13 (2.59) 11.25 (0.66) 6.57 (0.38)
SVM2 0.469 (0.015) 99.9 (0.12) 7.41 (0.02) 3.85 (0.01)
SVM3 0.572 (0.015) 42.31 (2.28) 9.19 (0.48) 5.16 (0.27)
SVM4 0.465 (0.011) 68.09 (2.17) 6.32 (0.21) 3.31 (0.11)
SVM5 0.590 (0.076) 80.39 (4.13) 8.85 (1.04) 4.68 (0.57)
SVM6 0.587 (0.071) 62.74 (16.14) 8.75 (1.35) 4.78 (0.91)
SVM7 0.524 (0.080) 59.59 (8.12) 7.60 (1.38) 4.06 (0.75)
SVM8 0.534 (0.125) 62.36 (24.8) 7.37 (2.32) 3.92 (1.21)

Tabla A.2: Machine Learning studied models Results
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Annex B

Extension of Machine learning
readmission risk modeling: a pediatric
case study

The idea of this annex is to extend the results of the research presented in [178], testing
other supervised learning methods well studied in the scientific literature. In [178] the results
of the prediction of hospital readmission in pediatric patients were presented, using Support
Vector Machine (SVM), Naive Bayes (NB) and Artificial Neural Networks (ANN). In this
study, class balancing and 5-fold Cross-validation techniques were used, finding that the best
AUC (p < 0,001) was obtained with the Naive Bayes approach (0,655).

In this annex, two models based on Decision Trees (Random Forest and Gradient Boosted
Trees) and one based on logistic regression were trained and tested. In addition, the same
dataset, performance metrics and tools (SMOTE and 5-fold Cross-validation) described in
the previous work were used

Table B.1 shows the results obtained with the 3 models used in this work and including
the best of the results shown in the previous work.

Tabla B.1: Results
AUC (SD) recall (SD) [%] f-score (SD) [%] PPV (SD) [%]

Prev. work [178] 0.653 (0.014) 69.80 (4.97) 9.83 (0.53) 5.29 (0.31)
Random Forest 0.683 (0.009) 24.07 (1.67) 11.94 (0.9) 7.94 (0.62)
Gradient Boosted Trees 0.682 (0.013) 57.65 (5.52) 11.56 (0.6) 6.43 (0.31)
Logistic Regression 0.668 (0.010) 68.90 (1.65) 10.27 (0.17) 5.55 (0.09)

In figure B.1 the ROC curve obtained by the 3 models presented in this annex is presented,
in addition to the best result obtained in the previous work, which corresponds to Naive
Bayes.

The AUC values obtained in this annex for RF show a higher classification behavior
(Pairwise t-test p < 0.004) than the result obtained in the previous work. In the case of
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Figura B.1: Comparison of ROC curves

GBT the result in AUC is higher, but less significant (Pairwise t-test p < 0.008), due to the
variability of the result expressed in a larger standard deviation. Both RF and GBT show
better results (p < 0.025 and p < 0.07) in AUC compared to LR. On the other hand, the
result obtained in PPV shows that the RF model is significantly superior to the result shown
by NB (p < 0.0002) and GBT (p < 0.003).

The ROC curve graphically shows a slightly higher result in RF and GBT models with
respect to the ROC curve previously obtained for readmission prediction. The ROC curves
presented are above the best ROC curve presented previously. This intrinsically shows that
the results based on decision trees in this particular problem show better behavior than SVM
and ANN.
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