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PROF. GUÍA: Héctor Ramı́rez Cabrera, Alain Rapaport

MODELACIÓN MATEMÁTICA Y OPTIMIZACIÓN PARA PRODUCCIÓN
DE BIOGÁS

La digestión anaeróbica es un proceso biológico en el cual diferentes poblaciones microbianas
transforman compuestos orgánicos en biogás (dióxido de carbono y metano), el cual puede ser
luego utilizado como fuente de enerǵıa renovable. Esta tesis analiza distintas estrategias de
control y diseño de bio-reactores que maximicen la producción de biogás. La primera parte se
enfoca en el problema de control óptimo para maximizar la producción de biogás en un bio-
reactor continuo o Quimiostato. Se considera el modelo de una reacción y la tasa de dilución
es la variable de control. Para el problema con un horizonte finito, se estudia controles retro-
alimentados (o tipo feedback), similares a los utilizados en la práctica, y que consisten en
llevar el reactor hacia un nivel de sustrato determinado y mantenerlo alĺı. Nuestro enfoque se
basa en establecer ĺımites de la función valor considerando diferentes funciones de costo para
las cuales la solución óptima admite una forma expĺıcita, del tipo feedback, independiente del
tiempo. En particular, esta técnica proporciona ĺımites expĺıcitos para la sub-optimalidad
de los controles estudiados para una amplia clase de funciones de crecimiento dependientes
de sustratos y biomasa. A continuación, consideramos el problema con horizonte infinito,
tanto para un costo promedio como para uno descontado. Cuando la tasa de descuento
tiende a cero, probamos que la función valor del problema descontado converge y que el
ĺımite es igual a la función valor para el costo promedio. Luego, se muestra que los controles
óptimos para el problema con costo promedio son los que llevan al sistema a un estado que
maximiza el flujo de biogás en un conjunto invariante. Posteriormente, volvemos al problema
con horizonte finito dado y, usando el Principio Máximo de Pontryagin, demostramos que
el control óptimo tiene una estructura bang - arco singular y somos capaces de construir
una familia de controles parametrizadas por el valor constante del Hamiltoniano. Usando la
ecuación de Hamilton-Jacobi-Bellman, el control óptimo se identifica como el asociado con el
valor del Hamiltoniano que satisface una ecuación de punto fijo. A continuación, se propone
un algoritmo para determinar el control óptimo mediante la resolución de esta ecuación de
punto fijo. En la segunda parte se estudia el impacto de la heterogeneidad del medio en la
producción de biogás. Este bioreactor se divide en tres secciones, siendo sólo la intermedia
la que contiene biomasa. En dicha sección, el modelo matemático propuesta da cuenta de la
geometŕıa del reactor y reduce la dimensión espacial a una sola. Por otro lado, en las otras
secciones, las ecuaciones 3D de Navier-Stokes son utilizadas para modelar la dinámica de
fluidos. Para representar la actividad biológica se utiliza un modelo de dos reacciones y para
los sustratos se utilizan ecuaciones de advección-difusión-reacción. Como ya establecido, sólo
consideramos la biomasa que está fijada en la sección intermedia y modelamos su crecimiento
con una función densidad dependiente. Hemos demostrado que nuestro modelo para este bio-
reactor reproduce adecuadamente el gradiente espacial de datos experimentales y proporciona
una mejor comprensión de la dinámica interna del reactor. En particular, las simulaciones
numéricas indican que al mezclar menos, el reactor es más eficiente y produce más biogás.
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ABSTRACT

Anaerobic digestion is a biological process in which organic compounds are degraded by
different microbial populations into biogas (carbon dioxyde and methane), which can be used
as a renewable energy source. This thesis works towards developing control strategies and
bioreactor designs that maximize biogas production. The first part focuses on the optimal
control problem of maximizing biogas production in a chemostat in several directions. We
consider the single reaction model and the dilution rate is the controlled variable. For the
finite horizon problem, we study feedback controllers similar to those used in practice and
consisting in driving the reactor towards a given substrate level and maintaining it there.
Our approach relies on establishing bounds of the unknown value function by considering
different rewards for which the optimal solution has an explicit optimal feedback that is time-
independent. In particular, this technique provides explicit bounds on the sub-optimality of
the studied controllers for a broad class of substrate and biomass dependent growth rate
functions. With numerical simulations, we show that the choice of the best feedback depends
on the time horizon and initial condition. Next, we consider the problem over an infinite
horizon, for averaged and discounted rewards. We show that, when the discount rate goes to
0, the value function of the discounted problem converges and that the limit is equal to the
value function for the averaged reward. We identify a set of optimal solutions for averaged
problems as the controls that drive the system towards a state that maximizes the biogas flow
rate on an special invariant set. We then return to the problem over a fixed finite horizon
and with the Pontryagin Maximum Principle, we show that the optimal control has a bang
singular arc structure. We construct a one parameter family of extremal controls that depend
on the constant value of the Hamiltonian. Using the Hamilton-Jacobi-Bellman equation, we
identify the optimal control as the extremal associated with the value of the Hamiltonian
which satisfies a fixed point equation. We then propose a numerical algorithm to compute the
optimal control by solving this fixed point equation. We illustrate this method with the two
major types of growth functions of Monod and Haldane. In the second part, we investigate
the impact of mixing the reacting medium on biogas production. For this we introduce
a model of a pilot scale upflow fixed bed bioreactor that offers a representation of spatial
features. This model takes advantage of reactor geometry to reduce the spatial dimension of
the section containing the fixed bed and in other sections, we consider the 3D steady-state
Navier-Stokes equations for the fluid dynamics. To represent the biological activity, we use a
2 step model and for the substrates, advection-diffusion-reaction equations. We only consider
the biomasses that are attached in the fixed bed section and we model their growth with a
density dependent function. We show that this model can reproduce the spatial gradient of
experimental data and helps to better understand the internal dynamics of the reactor. In
particular, numerical simulations indicate that with less mixing, the reactor is more efficient,
removing more organic matter and producing more biogas.
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RÉSUMÉ

La digestion anaérobique est un processus biologique au cours duquel des micro-organismes
décomposent de la matière organique pour produire du biogaz (dioxyde de carbone et methane)
qui peut être utilisé comme source d’énergie renouvelable. Cette thèse porte sur l’élaboration
de stratégies de contrôle et la conception de bioréacteurs qui maximisent la production de
biogaz. La première partie se concentre sur le problème de contrôle optimal de la max-
imisation de la production de biogaz dans un chemostat avec un modèle à une réaction, en
contrôlant le taux de dilution. Pour le problème à horizon fini, nous étudions des commandes
type feedback, similaires à ceux utilisés en pratique et consistant à conduire le réacteur vers
un niveau de substrat donné et à le maintenir à ce niveau. Notre approche repose sur une
estimation de la fonction valeur inconnue en considérant différentes fonctions de coût pour
lesquelles la solution optimale admet un feedback optimal explicite et autonome. En partic-
ulier, cette technique fournit une estimation de la sous-optimalité des régulateurs étudiés pour
une large classe de fonctions de croissance dépendant du substrat et de la biomasse. À l’aide
de simulations numériques, on montre que le choix du meilleur feedback dépend de l’horizon
de temps et de la condition initiale. Ensuite, nous examinons le problème sur un horizon
infini, pour les coûts moyen et actualisé. On montre que lorsque le taux d’actualisation tends
vers à 0, la fonction valeur du problème actualisé converge vers la fonction valeur pour le coût
moyen. On identifie un ensemble de solutions optimales pour le problème avec coût moyen
comme étant les contrôles qui conduisent le système vers un état qui maximise le débit de
biogaz sur un ensemble invariant. Nous revenons ensuite au problème à horizon fini fixe et
avec le Principe du Maximum de Pontryagin, on montre que le contrôle optimal a une struc-
ture bang arc singulier. On construit une famille de contrôles extrémaux qui dépendent de
la valeur constante du Hamiltonien. En utilisant l’équation de Hamilton-Jacobi-Bellman, on
identifie le contrôle optimal comme étant celui associé à la valeur du Hamiltonien qui satisfait
une équation de point fixe. On propose ensuite un algorithme pour calculer la commande
optimale en résolvant cette équation de point fixe. On illustre enfin cette méthode avec les
deux principales types de fonctions de croissance de Monod et Haldane. Dans la deuxième
partie, on modélise et on étudie l’impact de l’hétérogénéité du milieu réactionnel sur la pro-
duction de biogaz. Pour cela, on introduit un modèle de bioréacteur pilote qui décrit les
caractéristiques spatiales. Ce modèle tire parti de la géométrie du réacteur pour réduire la
dimension spatiale de la section contenant un lit fixe et, dans les autres sections, on considère
les équations 3D de Navier-Stokes en régime permanent pour la dynamique des fluides. Pour
représenter l’activité biologique, on utilise un modèle à deux réactions et pour les substrats,
des équations advection-diffusion-réaction. On considère seulement les biomasses qui sont
attachées au lit fixe et on modélise leur croissance avec une fonction densité dépendante. On
montre que ce modèle peut reproduire le gradient spatial de données expérimentales et per-
met de mieux comprendre la dynamique interne du réacteur. En particulier, les simulations
numériques indiquent qu’en mélangant moins, le réacteur est plus efficace, élimine plus de
matières organiques et produit plus de biogaz.
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Chapter 1

Introduction

1.1 Anaerobic Digestion and Biogas Production

Anaerobic Digestion (AD) is a natural process of degradation of organic matter by microor-
ganisms in the absence of oxygen. It is the result of successive steps performed by different
groups of microorganisms, progressively degrading matter from large organic polymers into
simple monomers (sugars, amino acids and fatty acids) and further into biogas (methane and
carbone dioxyde) [43].

The interest in this process is that it allows the re-valorization of waste as a renewable
energy source since the methane in biogas can be used as fuel for heating or producing elec-
tricity. This reduces greenhouse gas emissions by producing an alternative to fossil fuels and
by capturing the emissions of biodegrading matter that would otherwise be released to the
atmosphere. Furthermore, biogas presents a potential for electrical grid balancing since it
can be stored and therefore the power generation is controllable, unlike other renewable en-
ergy sources, such as solar and wind. An additional environmental benefit is the production
of digestate, the matter not consumed by microorganisms (minerals, certain organic com-
pounds such as structural plant matter including lignin and cellulose) and this can be used
as fertilizer.

This process is implemented in anaerobic digesters, a type of bioreactor, and these devices
are designed to offer the best conditions to support microorganisms and maintain the process.
Dedicated AD plants have been developed to process agricultural waste, manure and energy
crops, but biogas can also be recovered from landfills or in wastewater treatment, during the
removal of organic matter [71].

The current installations in Europe and North America are mainly large scale electricity
and heat biogas plants but in Asia and Africa, many small domestic scale digesters can be
found in rural areas [86]. For the European Union, studies [96] have underlined that despite a
high potential, production remains low. Biogas represented 4.4% of natural gas consumption
in 2015, however, this average hides a heterogeneous situation : this figure can be as high as
23.2% in Sweden while in France it is only 1.5%. In Chile, again a high capacity is expected
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due to the importance of the agricultural sector and an estimated 4.1 TWh could be produced
[90] for a total electricity consumption in 2016 of 67 TWh [22], but only 2% of the potential
is achieved.

Various factors could explain this situation, despite the fact that the necessary technology
has been available for several decades now. First, a high starting investment is required as
large AD bioreactors are needed to process the important volumes in wastewater treatement
or to produce a significant amount of biogas. Secondly, there is a serious difficulty in assessing
the economic viability of a project due to the volatility of energy markets and, in addition,
estimating the production of a bioreactor in advance remains a challenge. Finally, there has
been reports of poor profits due to high costs and low yields that have lead to the closing of
biogas plants [9].

For wastewater treatment, the use of AD for the removal of organic matter is still uncom-
mon and the alternative method, aerobic digestion, has prevailed for a long time. Nonetheless,
AD presents several advantages compared to aerobic digestion: less sludge is produced, treat-
ment of water with higher organic loadings is possible and the production of biogas reduces
the energetic cost of the process [88]. However, in addition to the problems previously men-
tioned, AD requires a longer time to start up, needs to be maintained at high temperature
and is susceptible to toxic substances.

This last point, and in general the instability of the process is an important aspect of
AD when considering its implementation. Indeed, this process can be inhibited by wide
range of substances, either that enter the reactor such as pathogens, or that are intermediate
products of the process, specifically volatile fatty acids (VFA) that can significantly increase
the pH [19]. Another reason explaining the complexity of the process is the important
differences between microorganisms producing acids and those producing methane [80]. The
consequence of this instability and the complexity of microbial ecosystems and bioprocesses,
is that when developing implementations of AD, the stability of the process is considered
first and foremost, often neglecting optimization of production.

1.2 Mathematical Models of Bioreactors

Bioreactors are used for science and industry, for the study of microorganisms, cell and
tissue culture or production of derivatives and end products for chemical processes. The first
models were introduced in the 1950s when the chemostat device was invented independently
by Jacques Monod [73] and Aaron Novick and Leo Szilard [77]. Since then, a large variety of
models have been developed [105, 109]. The purpose of this section is not to review the wide
range of models but rather to present the key properties of the models used in this thesis.

The key aspect of microbial ecosystems is the important diversity of microorganisms,
in terms of physiology, nutritional needs, growth kinetics, and sensitivity to environmental
conditions. As a consequence, population models become rapidly complicated and their
mathematical analysis extremely difficult. However, we are interested in the macroscopic
behaviour of a bioreactor and in particular how matter is transformed. From this point of
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view, a bioreactor can be modelled as the combination of a biological process, the result
of the microbial activity, and a physical process, the dynamics of the substances inside the
reactor and how they enter and leave.

This approach relies on characterizing microorganisms not as a population but instead
representing the biological process essentially as a bio-chemical reaction. The basis of the
model is then mass conservation and modelling the biological process corresponds to account-
ing how matter is transformed from one substance into another. The considered variables
are the concentrations of reacting matter, in units of mass per volume. This includes mi-
croorganisms and they are characterized as biomass, which can be measured although it is
a complicated task, in addition to being costly and imprecise. When the bioprocess is the
result of a complex ecosystem, it can be viewed as the sum of several reactions, grouping
microorganisms by functional role and how they transform matter.

An important property of these bio-reactions is that the microorganisms are at the same
time a catalyst and a product : they both consume reactants and grow as a result. The
usual hypothesis of biological activity is that consumption and production are proportional
to growth, so that the reaction rate of each substance is obtained from a growth rate and a
yield coefficient.

In the simplest cases, when it can be considered that microorganisms have equal access
to the substrate they consume, the growth rate is considered linear with respect to biomass
concentration. The dependence on the substrate consumed is however more complex, non
linear and represented by a specific growth rate function, the rate of growth per unit of
biomass. It generally depends on a single limiting substrate but eventually other factors
affecting the microorganisms can be taken into account (inhibition by other substances,
impact of physical or chemical properties of medium).

A wide range of specific growth rate functions have been considered and the Monod
function [72] was one of the first to be proposed. It models the fact that the reaction can
take place up to a maximum rate µmax. Here, s denotes the concentration of limiting substrate
and Ks the half-saturation constant,

µM(s) =
µmax s

Ks + s
.

The Haldane function can be used to represent an inhibition of the reaction by the substrate,
with Ki the inhibition parameter,

µH(s) =
µ̄ s

Ks + s+ s2

Ki

.

To represent crowding effects, for example when microorganisms do not have equal access to
the substrate, the Contois function can be considered, which also depends on the biomass
concentration x,

µC(s, x) =
µmaxs

Kxx+ s
.

It is important to note that this remains an empirical approach, and that the parameters
of growth functions and yield coefficients are obtained by fitting the model to measurements.
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Monod

Haldane

Figure 1.1: Examples of Monod and Haldane growth functions

In particular, for AD this needs to be done for each bioreactor, as the microbial community
adapts itself to the feedstock.

This has lead to the development of many different models of anaerobic digestion. The
current standard, the ADM1 model [5], was developed by the International Water Association
(IWA) Anaerobic Digestion Modelling Task Group, and is composed of 19 reactions and at
least 32 dynamic concentration state variables. Such large dimensions make this model
impractical for analytical optimization or control, so simplified models have been proposed.
A widely used model [13], is composed of two biochemical processes to take into account the
inhibition of the methane production by intermediate products, namely volatile fatty acids.

Further simplification is possible, as it has been shown that a single step model can
reproduce the qualitative behaviour of the anaerobic digestion process [12]. Indeed, for the
two-step model, the second reaction is the most limiting due to inhibition by the substrate
and then a one-step model can be used to focus on the second reaction. In particular, a
common assumption is to consider that the first step is fast and then the two reactions can
be reduced to a single one with a slow-fast approximation, in which case it provides a good
representation of the biogas production.

Modelling the physical part of the process consists in taking into account the design
features of a bioreactor that have an impact on the biological activity. The first aspect to
consider is how the reactor is fed and how products are retrieved. The 3 main modes of
operation are :

• Batch : the contents are introduced at the beginning of the process, after which nothing
is added or removed.

• Fed-batch : similar to the batch mode, although susbtrate can be added during process
operation, but nothing is removed until the end.
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• Continuously fed : during all of the process operation contents are added and removed
from the reactor at the same rate such that the volume remains constant.

The last case is the most common for wastewater treatment and anaerobic digesters and the
one we will consider in this thesis.

An important question is then if the reacting medium is homogeneous or heterogeneous.
The first case occurs when the reacting contents are mixed and concentrations can be consid-
ered constant throughout the bioreactor such that the mass balance corresponds to a system
of Ordinary Differential Equations (ODE). The basic example is the chemostat, a continu-
ously fed, well mixed bioreactor [50, 98]. For a single step biological processes, denoting s
the substrate concentration and x the biomass, the model equations are

ṡ = D(sin − s)−
1

Y
µ(s)x,

ẋ = µ(s)x−Dx,

with sin the input concentration, µ(·) the specific growth rate, Y the yield coefficient, and D
the dilution rate which is equal to the feeding rate divided by the constant volume.

However, there is a diversity of designs that take advantage of a spatial gradient in the
concentrations, such as plug-flow reactors. In this case, bioreactors can be modeled using
Partial Differential Equations (PDE) [92] but this leads to complex models, especially when
authors try to account for all phenomenons (turbulence, different phases of matter, sedi-
mentation,...). In particular, anaerobic digesters are generally very large since AD is a slow
process and important volumes are treated, so that simulating an industrial scale bioreac-
tor requires substantial computational resources. An alternative is compartment models,
where the reactor is seen as a network of interconnected homogeneous zones, each of which
is modeled as a chemostat, resulting in a system of ODE, although of large dimension.

1.3 Optimization of Biogas Production

The topic of this thesis is the maximization of biogas production, through the study of
mathematical models and optimization problems. The first part will focus on bioreactor
operation and the problem considered is the optimal control of the dilution rate for the
chemostat. In a second part, a question of bioreactor design is investigated to understand
the impact of heterogeneity of the reacting medium on biogas production.

It is important to point out that the aspect of stability of the bioprocess will not be
directly considered in the problems addressed. Since biogas is a final product, maximizing
it guarantees, although indirectly, that the process is kept in a healthy state. However, this
reasoning is limited and the extreme nature of an optimum could result in running the process
close to an unstable state, with the risk of tipping over inevitable due to the variability of
bioprocesses.

In addition to discarding the issue of stability, we are looking at theses questions of biore-
actor operation and design as mathematical problems and it is important to remember that
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a mathematical model is only an imperfect representation. There are also important sources
of model errors, as we have seen in the previous section, rendering the models essentially
qualitative rather than predictive.

The consequence is that we can not expect our results to be directly applicable. Instead,
the objective here is to find a qualitative description of the optimal solution in order to
understand the levers that can help increase biogas production. For instance, with optimal
control problems, the aim is not to obtain controls to be used in practice but rather to find
what characterizes the optimal control, to help practitioners improve their strategies in terms
of biogas production.

Furthermore, we are working with simple macroscopic models of an extremely variable
microbial ecosystem and a key weakness of this modelling approach is the choice of a growth
function. To remedy this, we want to obtain results for a general class of growth functions,
characterized by general properties of microbial dynamics (for example, to generalize the
Monod function, consider all functions that are increasing and bounded).

Ideally, for this we want to find the explicit or analytical expression of the solution of
the optimization problems considered. However, the analytical resolution of optimization
problems poses a serious challenge. For example, a 2 stage model of AD will have at least
4 dynamic variables and therefore carrying out the computations to obtain an analytical
expression of an optimal control rapidly become complex.

On the other hand, numerical resolution of optimization problems is now well established
and the progress in computer performance in the last decades mean that it is possible to
solve large problems numerically. For the optimal control problems in consideration here,
solvers such as BOCOP [16] can easily and rapidly compute an optimal control. However, it
is obtained in open loop form whereas we aim at finding feedbacks, which are more robust in
terms of possible time delays and measurement errors. More generally, the problem in using
numerical optimization is that the computed solution is valid only for one set of parameters
of a given growth function.

The consequence is that neither of these approaches alone, purely analytical or purely
numerical, is adequate and this is a major challenge in the application of mathematical
optimization for the development of bioprocesses. In this thesis, we propose several new
methods that address this problem.

In Section 1.3.1, corresponding to Chapters 2 and 3, we present the main contributions
of this thesis for the optimal control of the dilution rate. We work with a simple model
to develop new techniques for the analysis of optimal control problems, that could be used
with more complex models. We will also see how to carefully combine both analytical and
numerical approaches. This will allow us to obtain expressions of optimal and sub-optimal
feedback controls and practical ways to compute them and analyze their performance. In
Section 1.3.2, corresponding to Chapter 4, dealing with bioreactor design, we show that it is
not necessary to develop overly complex models to study spatial heterogeneity in bioreactors
and we will see how numerical simulations can be used to obtain qualitative results.
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1.3.1 Optimal Control of Biogas Production

Control of bioreactors is an important and active research topic and more specifically, control
of AD has been the focus of many studies [30, 35, 57, 58, 59, 76]. The feeding rate is typically
considered as the variable input, as it has a rapid and significant impact on the process. Other
inputs have been considered, such as pH or alkalinity, but they are less cost effective as they
require adding substances (such as a concentrated acid or base solution) [78].

The various strategies developed in process control have been applied for the control of
AD and they can be divided in 2 categories : model based and knowledge based. The latter
are mainly proposed by experts, such as bioprocess engineers, who construct strategies based
on practical knowledge. On the other hand, model based controllers are developed by the
automatic control community and the main advantage of this approach is the theoretical
properties that they can guarantee, such as robustness or performance [15].

For knowledge based controllers, recent works have incorporated the aspect of optimiz-
ing performance, but avoiding failure of the process is still prioritized and only when the
process is stable does the controller attempt to push the system towards higher biogas pro-
duction [100]. For example, the feedback controller developed in [89] uses a set-point for
the hydrogen outflow concentration, since it is very sensitive to process destabilization and
therefore guarantees a fast response of the controller. To optimize the biogas production
the gain is dependent on the methane concentration and allows the controller to push the
system to higher dilution rates as long as hydrogen remains close to the set-point level. The
PID (Proportional Integral Derivative) controller developed in [36] uses a cascade strategy
consisting of 2 control loops: the first is used to control the VFA concentration, to avoid the
acidification of the reactor and guarantee process stability. The second loop then attempts to
optimize production by driving the system towards a set-point that maximizes the theoretical
methane outflow. These knowledge based controllers have the advantage to be simple, robust
and effective although they are dependent on the gain parameters and finding the optimal
values can be challenging.

With model based control, maximization of biogas production has been taken into account
more directly but the optimization is generally of static nature in the sense that controls are
designed to drive the process towards a steady state, computed from a model, that maximizes
biogas production. For example, the equilibriums of the 2 step model have been computed
and the dilution rate corresponding to the most productive steady state can be found by
solving an optimization problem [8] or extremum seeking algorithms can be used to reach it
[28, 66]. The few applications of optimal control theory also follow this direction: the minimal
time problem of reaching an optimal steady state has been solved on a 2 dimensional invariant
set of a 2 stage model [7].

In contrast, there has been much less work considering the dynamic optimization problem
over the transients. In [93], the authors study the problem of driving the system to a neigh-
borhood of an optimal steady state of a 2 step model, while maximizing the biogas outflow
rate but with a penalization of the control. The Pontryagin Maximum Principle is used to
show that the optimal control is of bang-bang type and although the switching is not explicit,
this has lead to the development of a control with a heuristic switching strategy based on
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methane measurements [95].

We will consider here the optimal control problem of maximizing the total methane pro-
duced for the single step model of the chemostat. For a fixed final time T ∈ R, initial
data

ξ := (t0, s0, z0) ∈ D := (−∞, T )× [0, sin)× (0,∞)

and maximum dilution rate Dmax > 0, the problem is

Maximize J(ξ,D(·)) :=

∫ T

t0

µ(s(t))x(t) dt

over all D : [t0, T ]→ [0, Dmax] measurable

such that ṡ = D(sin − s)− µ(s)x, s(t0) = s0,

ẋ = µ(s)x−Dx, x(t0) = x0.

(Pbio)

This problem was first stated over 20 years ago [99] and using the Pontryagin Maximum
Principle, it was shown that the optimal control is bang-bang singular arc but the optimal
synthesis was not given and remains unknown today.

Ghouali et al. [38] have made progress by solving (Pbio) for initial conditions in the
invariant set I = {x+ s = sin}, for which the dynamics reduce to a single scalar equation

ṡ =
(
D − µ(s)

)
(sin − s).

This is achieved for a large class of growth functions, only requiring the existence of a unique
maximum on the set I of the growth rate µ(s)(sin−s), or equivalently, monotonicity on either
side of the maximum. This allows to use a comparison result for scalar ODEs to compare
trajectories associated with different controls and then establish which achieves the greatest
production, since the biogas flow rate is proportional to the growth rate. The optimal control
is a most rapid approach path (MRAP) feedback to the unique maximizer s̄

ψs̄(s) =

∣∣∣∣∣∣∣
0 if s > s̄,

µ(s̄) if s = s̄,

Dmax if s < s̄.

(1.1)

Optimal control problems over a fixed time horizon, in general, possess a time-dependent
optimal synthesis, while the duration of process operation is often poorly known. The reduced
problem exhibits the remarkable feature of having an optimal synthesis independent of the
terminal time, which makes it attractive from an application point of view. However, this will
not be the case for the general problem (Pbio) and as we shall see later on, the optimal control
will depend on the time horizon and initial condition considered. This makes it considerably
more difficult to solve and in addition, as the dynamics are 2 dimensional, we can not use
the same comparison technique.

The feedback (1.1) has the additional benefit that it can be implemented without complex
biomass measurements, and only requires estimations of substrate concentration and biogas
flow rate. Finally, this control strategy of driving the process to an optimal substrate level
resembles those used in practice [36, 100]. For these reasons, we have developed a method
of estimating the sub-optimality for all initial conditions of similar MRAP feedbacks to any
substrate level s∗ ∈ [0, sin], and identifying the best one.
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Figure 1.2: State space trajectories with feedback ψs̄. The black line represents the invariant
set {x + s = sin}. Haldane growth function (µ̄ = 0.74, Ks = 9.28, Ki = 256) with sin = 100,
Dmax = 3.

Sub-Optimal Feedback Controls with Guaranteed Value

The starting point of this work is the observation of monotonicity properties arising from
different sources. The first comes from natural assumptions on the growth rate and we will
consider here substrate and biomass dependent functions.

Assumption 1.1 We suppose that µ : R+ × R+ → R+ is a Lipschitz continuous function
that satisfies, for all x > 0

µ(0, x) = 0 and µ(s, x) > 0 for s > 0.

We suppose as well that x 7→ µ(s, x) is non increasing, which models crowding effects, and
x 7→ µ(s, x)x is non decreasing, which models the fact that having more biomass provides at
least the same growth.

A typical instance of this class is the Contois growth function, but this class of functions
also contains growth functions that depend only on the substrate concentration, such as the
Monod and the Haldane functions.

The next monotonic behaviour can be observed in the chemostat model, in the way tra-
jectories are attracted to the invariant domain I, independently of the control. This is
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immediately apparent with the change of variables

z =
x

sin − s
, ż = µ

(
s, (sin − s)z

)
(1− z)z

The consequence is that we can use the fact that z(·) is monotonic for all controls, in conjunc-
tion with the properties of the growth rate to establish a relation between the value functions
of (Pbio) and of an auxiliary problem with an objective function depending only on s(·). To
simplify notations, we denote φ(s, z) = µ

(
s, (sin − s)z

)
(sin − s) and the growth rate is then

φ(s, z)z. We now consider the problem, for z1 > 0,

Maximize Jz1(ξ,D(·)) :=

∫ T

t0

φ(s(t), z1) dt

over all D : [t0, T ]→ [0, Dmax] measurable

such that ṡ = D(sin − s)− φ(s, z)z, s(t0) = s0,

ż = µ
(
s, (sin − s)z

)
(1− z)z, z(t0) = z0.

(Pz1)

We denote the value function of (Pbio) as V (·) and of (Pz1) as Wz1(·), that we can relate in
the following manner.

Proposition 1.2 For any initial data ξ ∈ D and any z1 ∈ [min(z0, 1),max(z0, 1)], we have
the following frame for the value function V of the original problem

min(z0, 1)Wz1(ξ) 6 V (ξ) 6 max(z0, 1)Wz1(ξ). (1.2)

Then, any optimal control u?z1(·) of the auxiliary problem (Pz1) guarantees a (sub-optimal)
value for the original criterion J(ξ, ·) that satisfies

min(z0, 1)Wz1(ξ) 6 J(ξ, u?z1(·)) 6 max(z0, 1)Wz1(ξ)

and we have the following sub-optimality estimation

V (ξ)− J(ξ, u?z1(·)) 6 |1− z0|Wz1(ξ). (1.3)

The first frame (1.2) is remarkable as it gives an estimation of the value function, without
having to solve the associated problem.

On the other hand, the sub-optimality estimation (1.3) will be the basis for assessing the
performance of MRAP feedbacks. It turns out that the optimal controls of (Pz1) are similar
to the solution (1.1) of the reduced problem. Indeed, the objective function Jz1(·) of (Pz1)
does not depends directly on z(·) and since this variable is monotone, the impact of a control
is seen through the s(·) variable. Therefore, we can employ a similar comparison technique,
as used for the reduced problem, to compare the rewards associated with different controls
and prove the optimality of an MRAP feedback. For this, we need again to assume the
existence of a unique maximum, but this time for the growth rate on the set {z = z1}.

Assumption 1.3 For each z1 > 0, the function s 7→ φ(s, z1) admits a unique maximum on
(0, sin), and we denote the substrate level at which this maximum is attained as

s̄(z1) = arg max
s∈(0,sin)

φ(s, z1).
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Figure 1.3: Auxiliary value function (x0, s0) 7→ Wz1(0, x0, s0) with z1 = 1. On the left,
Contois growth function (µmax = 0.74, Ks = 1, umax = 1.5) and on the right, Haldane growth
function (µ̄ = 0.74, Ks = 9.28, Ki = 256, umax = 3). In both cases, sin = 100 and T = 2.

We then have the following result.

Proposition 1.4 For all initial data ξ ∈ D, the MRAP feedback to s̄(z1),

ψs̄(z1)(s, z) =

∣∣∣∣∣∣∣
0 if s > s̄(z1),

µ(s̄(z1), (sin − s̄(z1))z) z if s = s̄(z1),

Dmax if s < s̄(z1),

(1.4)

is optimal for the auxiliary problem (Pz1).

In the case of a substrate only dependent growth function, these feedbacks all coincide
with the MRAP to s̄(1), the maximum on the invariant set I = {z = 1}, since φ(s, z) =
µ
(
s
)
(sin − s). However, for the substrate and biomass dependent case, these controls can

differ and various factors impact which feedback is the best.

We can expect the initial condition to have an influence on the performance of (1.4), as
can been seen with the sub-optimality estimation (1.3). In particular, due to the the term
|1− z0|, the distance to the set I will be important. However, through Wz1(·), the impact of
the initial condition will differ for each growth function. Indeed, in Figure 1.3 we can observe
that, for the Contois growth function, Wz1(·) varies significantly with the initial biomass
and this can be attributed to the dependence of the Contois growth function on biomass
concentration.

On the other hand, the impact of the time horizon is more straightforward. Since the
trajectories are attracted to the invariant set, we can expect ψs̄(1)(·) to be the best when the
horizon is sufficiently large. However, when the horizon is small, the feedback ψs̄(z0) would
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Figure 1.4: Normalized reward JN(T, z1) as a function of z1 ∈ [z0, 1] and T ∈ [0.5, 6] for the
initial condition (s0, z0) = (20, 0.25). Contois growth function (µmax = 0.74, Ks = 1) with
sin = 100, Dmax = 1.5.

seem to be the best option since this strategy consists in remaining close to the maximum of
the biogas flow rate corresponding to the initial condition, whereas another feedback could
drive the system away, towards another maximizing state but that can not be reached in
time.

To examine this we proceed with numerical simulations by computing the reward for a
range of values of z1 ∈ [min(z0, 1),max(z0, 1)] and of final times for fixed initial data. In
order to identify the maximum of J(ξ, ψs̄(z1)(·)) with respect to z1 for different final times,
we normalize the reward by computing

JN(T, z1) =
J(ξ, ψs̄(z1)(·))−miny J(ξ, ψs̄(y)(·))

maxy J(ξ, ψs̄(y)(·))−miny J(ξ, ψs̄(y)(·))

where the minimum and maximum are taken for y ∈ [min(z0, 1),max(z0, 1)]. Hence, for
each final time T , the maximum reward is achieved for z1 such that JN(T, z1) = 1 and the
minimum when JN(T, z1) = 0. Figure 1.4 clearly shows that there is a monotonous relation
between the final time and the best feedback: the greater the time horizon, the closer z1

must be chosen to the invariant set I. This has lead us to examine the case of a infinite time
horizon.
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Infinite Horizon Problems

Stating the optimal control problem (Pbio) on a finite horizon raises a number of issues. In
practical applications, it can be difficult or even impossible to specify a final time in advance,
especially considering that, in general, solutions of finite horizon problems depend on the
given time interval and therefore any change mid-course of the planning horizon will result
in loss of optimality. For a long time now, researchers working on optimization related to
economics have dealt with these difficulties by considering problems over an infinite horizon
[61, 97]. Such a formulation of optimal control problems also reflects the need for preserving
the viability of a system indefinitely.

As the reward is unbounded on a infinite horizon, we have to choose a concept of optimality
[18]. In most cases, the process is operated for a very long duration and the performance
expected from the practitioners is to maintain a high average value over time, so a natural
choice is to consider the limit of the averaged reward

JT (ξ,D(·)) =
1

T

∫ T

0

µ
(
s(t), x(t)

)
x(t) dt. (1.5)

However, we have to consider the inferior and superior limit as it is possible to construct
controls for which the average reward does not converge. We thus consider two optimal
control problems and denote their value functions

V ∞(ξ) = sup
{

lim inf
T→∞

JT (ξ,D(·)) : D(·) ∈ L∞((0,∞), [0, Dmax])
}
, (1.6)

V
∞

(ξ) = sup
{

lim sup
T→∞

JT (ξ,D(·)) : D(·) ∈ L∞((0,∞), [0, Dmax])
}
. (1.7)

Another choice of objective function, often used in problems related to economics, is the
discounted reward, for a discount rate δ > 0,

Jδ(ξ,D(·)) =

∫ ∞
0

δe−δtµ
(
s(t), x(t)

)
x(t) dt. (1.8)

The term e−δt represents a discount rate or a preference for earlier rather than later produc-
tion. For a positive discount rate, the optimal control for this reward could be very different
from the solution of problems (1.6) and (1.7) but, when the discount rate δ goes to 0, the
average and discounted rewards are in fact related. This is the reason for rescaling the inte-
gral in (1.8) with the discount rate δ, in order to guarantee that the limit remains finite. We
thus consider the following value function

Vδ(ξ) = sup
{
Jδ(ξ,D(·)) : D(·) ∈ L∞((0,∞), [0, Dmax])

}
. (1.9)

The relation between the value functions (1.6), (1.7) and the limit of (1.9) as δ goes to 0
has been studied by Grüne [41] and the basis of his work is the following result [41, Lemma
3.1].

Lemma 1.5 Let q : R 7→ R be a measurable and bounded function. If the average 1
T

∫ T
0
q(t) dt

converges when T →∞ then

lim
T→∞

1

T

∫ T

0

q(t) dt = lim
δ→0

∫ ∞
0

δe−δtq(t) dt.
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A similar result can be established for objective and value functions of optimal control
problems for general control systems and we transcribe it here in our setting.

Lemma 1.6 For all initial data ξ ∈ D, and controls D(·) ∈ L∞((0,∞), [0, Dmax]),

lim inf
T→∞

JT (ξ,D(·)) 6 lim inf
δ→0

Jδ(ξ,D(·)) 6 lim sup
δ→0

Jδ(ξ,D(·)) 6 lim sup
T→∞

JT (ξ,D(·)),

and

V ∞(ξ) 6 lim inf
δ→0

Vδ(ξ) 6 lim sup
δ→0

Vδ(ξ) 6 V
∞

(ξ).

The immediate consequence is that equality holds in both these frames if the limit of the
average reward exists. The main result of Grüne shows that the average and discounted value
functions are not only equal but also piecewise constant for general affine control systems
satisfying a controllability assumption. However, the work of Grüne gives no information on
the optimal controls, whether the solutions of the discounted problems for a positive discount
rate might converge to a solution of the limit problem.

In our case, we prove the existence of optimal controls for the discounted problem, which
is a first step in showing the convergence of the optimal controls thanks to the concept of
Γ−limit, the convergence notion guaranteeing that optimal solutions converge to a maximizer
of the limit problem.

Proposition 1.7 For all ξ ∈ D and for all δ > 0, the suprema are attained,

Vδ(ξ) = max
D(·)

Jδ(ξ,D(·)).

If the Γ−limit of Jδ(·) exists as δ goes to 0,

J0(ξ,D(·)) := Γ− lim
δ→0

Jδ(ξ,D(·)),

then the maxima converge, pointwise in ξ, to the maximum of the limit,

V0(ξ) := lim
δ→0

Vδ(ξ) = max
D(·)

J0(ξ,D(·)). (1.10)

Furthermore, if Dδ(·) is an optimal control for (1.9), i.e. if Vδ(ξ) = Jδ(ξ,Dδ(·)) and if Dδ(·)
converges to D0(·) in L∞((0,∞), [0, Dmax]) then D0(·) is an optimal control for (1.10) and

V0(ξ) = J0(ξ,D0(·)) = lim
δ→0

Jδ(ξ,Dδ(·)).

Although our problem does not verify the controlability assumption of Grüne, Lemma
1.6 gives valuable information and allows us to show the equality of the value functions
(1.6), (1.7) and (1.10). The intuition here is that, under suitable conditions, the limit of
the average of a function is its value at infinity. In our case, we can show that the average
reward associated with a converging trajectory is equal to the biogas flowrate reached at
infinity. Moreover, we can exploit a key property of the chemostat model : the invariant
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domain I is attractive for all controls1 and therefore the maximum of the biogas flowrate on
the set I is an upper bound of the value functions. We denote s̄ = s̄(1), a substrate level,
not necessarily unique this time, at which the maximum biogas flowrate is attained. Then
the average reward of a control that drives the system to s̄ is equal to the upper bound and
thus such a control is optimal.

Proposition 1.8 For any initial data ξ ∈ D, any D(·) ∈ L∞((0,∞), [0, Dmax]) that drives
the system asymptotically to the state (s̄, sin − s̄) is optimal for problems (1.6), (1.7) and
(1.10). We then have

V ∞(ξ) = V0(ξ) = V
∞

(ξ) = µ(s̄, sin − s̄)(sin − s̄).

This result allows us to prove that the MRAP feedback (1.4) to s̄ is optimal for the average
reward problems since this control brings the system towards s̄ and maintains it there as it
reaches the set I. However, this is not the only optimal control and, for example, in the case
of a growth function that depends only on the substrate and that is monotone (such as the
Monod growth function), the constant control D = µ(s̄) can also drive the system to the
state (s̄, sin − s̄).

More generally, Proposition 1.8 offers a simple characterization of the optimal controls
and makes this approach valuable for understanding what constitutes a control strategy
that maximizes biogas production. In addition, posing the problem on an infinite horizon is
interesting when considering more complex models due to the relative simplicity of resolution
of these types of problems, compared to the finite horizon problem for instance.

Fixed Point Algorithm

We now consider the full problem (Pbio) on a finite horizon. As mentioned previously, the
optimal synthesis for this type of problem is in general time dependent and a key difficulty
here is understanding the impact of the time horizon on the optimal control. Indeed, when
this problem was first studied [99], although it was shown that the optimal control is bang-
bang singular, the dependence of the singular arcs on the initial data was not given. It is in
this aspect that we seek to advance and we focus here on proposing a candidate to optimal
control in feedback form and giving a practical way to compute it.

To gain information on the singular arcs, we use the Pontryagin Maximum Principle
(PMP) [20], which states that an optimal control maximizes the Hamiltonian, a function
of the state variables and associated adjoint states. An important fact here, is that the
Hamiltonian does not depend explicitly on time and thus is constant and equal to some
h = h(ξ) ∈ R. Combining this with the maximum condition, we can establish an equation
that is valid on a singular arc. Here, in the case of a substrate only dependent growth
function, we can view this as the fact that extremal trajectories during the singular arc
remain in the graph of

s 7→ xh(s) := h
µ′(s)(sin − s)

µ(s)2
. (1.11)

1except a certain set of controls but that can not be optimal
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Figure 1.5: Example of trajectories obtained with feedback ψh with h = 2 and Monod growth
function (µmax = 1.2, K = 7.1), Dmax = 0.7 and sin = 10.

The consequence is that if we know the value of h, we can identify the singular arc and if
we know how the control switches from bang to bang and from bang to singular arc, we can
construct an admissible extremal control.

We assume here, from the knowledge of the solution on the invariant set I, that the
optimal trajectories follow a most rapid approach path to the singular arc, and remain on it.
Althought computing a feedback Dh(s) depending only on s and h, to stay on the graph of
(1.11) is straightforward, there are several challenges to fully construct a control for a large
class of growth functions. In particular, it might not be possible to remain on the singular arc
with an admissible control and then the graph of (1.11) could be divided in several disjoint
admissible sets. Another key point is that bang-singular arc trajectories might not cover all of
the state space and therefore a switching curve for bang-bang-singular arc trajectories must
be determined. However, for the Monod and Haldane growth functions, thanks to further
assumptions, we can determine the admissible section Gh of the singular arc and identify
the set G0

h (resp. Gmax
h ) on which the control is 0 (resp. Dmax). The result is the following

feedback, illustrated in Figure 1.5,

ψh(x, s) =


0, if (x, s) ∈ G0

h,

Dmax, if (x, s) ∈ Gmax
h ,

Dh(s), if (x, s) ∈ Gh.

(1.12)

In order to make this a suitable candidate to optimal control, we can identify the value
of the Hamiltonian h for a given initial data thanks to the link between the PMP and the
Hamilton-Jacobi-Bellman (HJB) equation.

Lemma 1.9 ([3, Theorem III.3.42]) A measurable function D : [t0, T ]→ [0, Dmax] maximizes
(Pbio), the production of biogas problem, if and only if the maximum condition of the PMP
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holds and
(−h, px(t), ps(t)) ∈ ∂+V (t, x(t), s(t)), a.e. on [t0, T ].

where ∂+V is the viscosity superdifferential of the value function of (Pbio) and px(·), ps(·) are
the adjoint states of the PMP.

This Lemma implies that whenever the value function is differentiable at ξ = (t0, x0, s0),
we should have that

h = −∂t0V (ξ).

If ψh is actually an optimal control, we can write the value function as the cost of the control
ψh, that is, V (ξ) = J(ξ, ψh) and therefore

h = −∂t0J(ξ, ψh), (1.13)

In other words, h is a fixed point of the mapping η 7→ −∂t0J(ξ, ψη) and this is the key point
we use to construct an algorithm to identify h.

In addition, equation (1.13) could be seen as a certificate of optimality for the feedback
(1.12) if we could prove that it is an extremal control. Indeed, in this case, if the algorithm
converges to a fixed point, then the computed feedback is a good approximation of an optimal
control, because the reward associated with the feedback ψh is an approximated solution to
the HJB equation.

To solve (1.13), we consider the classical iterative scheme for finding a fixed point of a
function by repeatedly computing the image of the previous iterate. A particularity here
is that the function is composed of a partial derivative and therefore, to approximate it
with a finite difference, we work with a range of initial times and use the fact that J(t0 =
T, x0, s0, ψh) = 0 to start, running through the initial times backwards until reaching the
desired starting time. Testing this algorithm with parameters from published works, we
found that it performs well and converges in only a few iterations, with the relative error
decreasing rapidly.

This method is a promising illustration of an interesting combination of analytical and
numerical approaches. First, it allows to gain an understanding of the problem by obtaining
a sufficiently explicit expression of the solution. Furthermore, the computed solutions show
the complexity of the problem, with trajectories from different initial data having different
singular arcs. This could be used to further justify the use of the simpler and easier to
implement sub-optimal controllers (1.4) previously studied, as these have a similar form to
(1.12) and they can be seen as a way of approximating the singular arcs. On the other
hand, this work shows that numerical computations could be used to confirm the validity
of a candidate, in addition to giving a practical way of computing a precise solution for a
particular case.

1.3.2 Spatially Heterogeneous Bioreactor Modelling

The most common type of bioreactor in use today for anaerobic digestion is the continuously
stirred tank reactor (CSTR), which uses a mixing system to homogenize reactor contents.
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The advantages of such a design is that it avoids the accumulation of toxic substances in
one area of the tank and, in addition, mixing can prevent dead zones, with little substrate
and thus a low reaction rate. However, for homogeneous reactors, the output is equal to the
inner concentration, so that, to have a high level of organic matter removal, the bioreactor
must be maintained at a low concentration. This means that CSTR type devices need to be
operated with low dilution rates, either with a low feeding rate or by designing large reactors.
Furthermore, a major disadvantage of the CSTR is that mixing represents a substantial
portion of the energy required to run an anaerobic digester and can thus offset the benefits
of producing biogas.

An alternative design is a un-mixed reactor that has a gradient of concentration from
input to output, such as the plug flow or tubular reactor. This would potentially allow a
high reaction rate at the beginning, and thus high biogas production, but with a low output
concentration. However, few full scale bioreactors have been implemented for AD, as a better
understanding of the impact of heterogeneity of the reacting medium on performance and
stability is still required.

A variety of models have been developed to study questions related to mixing efficiency
and heterogeneity. On one hand, several studies have worked with very complex models,
considering multi-phase and turbulent flow, and generally using comercial computer fluid
dynamics (CFD) software to run simultions [67, 103, 107, 112]. However, the complexity of
these models means that they are computationally intensive to simulate and therefore cannot
be used to study optimization problems.

At the other end of the complexity spectrum, there is compartment models, which rep-
resent a reactor as a network of interconnected well-mixed zones and thus use systems of
ordinary differential equations. The advantage of reducing complexity is that it allows a
more in depth analysis and for example, studies with this type of models have found that
the impact of heterogeneity depends on the graph of interconnections [10, 11, 32, 48, 81].

0 2 4 6 8 10 12 14 16

x

0

1

2

3

4

5

6

7

8

9

10

s

x+ s = sin
s = s∗

D = 0
D = Dmax

D = Dh(s, x)

0 2 4 6 8 10 12 14

x

0

1

2

3

4

5

6

7

8

9

10

s

Figure 1.6: Optimal trajectories in state space, for the Monod growth function (µmax = 1.2,
K = 7.1) with t0 = 0, T = 2.5, Dmax = 0.7 and sin = 10. The initial conditions
are on the left (x0, s0) = {(1, 3), (5, 1), (11, 2), (15.5, 4.5)} and on the right, (x0, s0) =
{(1, 5.5), (2, 6.5), (5, 7), (10, 7)}.
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Figure 1.7: Schematic view of the reactor

A third type of model attempts to find a compromise between model complexity and
physical accuracy. They represent a reactor in 1 or 2 spatial dimensions, often assuming
that fluid velocity is constant in space to focus on the biological activity [31, 65, 75, 111].
Recently, 2D models coupling bio-reactions with fluid dynamics have been developed and
this has allowed the consideration of optimization problems [2, 23, 24, 74].

We introduce here a similar type of reduced complexity model for a real pilot scale biore-
actor. This device is particularly adapted to develop a spatially heterogeneous model as
experimental data was gathered by collecting substrate at different points along the main
axis of the reactor and a spatial gradient was observed. A compartment model has already
been developed for this bioreactor [56], considering two interconnected homogeneous zones
and the two reaction model of [13]. The experimental data was used to fit the biological
parameters and this model was able to reproduce the spatial gradient roughly.

The present work aims at improving the modelling of spatial features, by representing
more faithfully the details of the reactors geometry. This device can be divided in three
sections: the liquid enters at the bottom, goes up through a fixed bed, which helps to fix the
biomass, and the output of the reactor is at the top (Figure 1.7). The contents of the reactor
can be mixed by recirculating liquid from the output back into the input or by an auxiliary
system that pumps liquid from the very bottom back into the tank at the same height. This
makes this bioreactor particularly interesting for the study of heterogeneity as it can either
be operated as a CSTR or as a tubular reactor by changing the recirculation flow rate.

The configuration of the input and output flows, means that we need to consider a 3D
model for the lower and upper parts of the reactor. However, as the fixed bed is made of
narrow PVC tubes, the middle section can be modelled as an array of parallel 1D tubular
reactors. This considerably reduces the complexity of the model, and in particular of the
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fluid dynamics in this section. For the bottom and top sections, we will model the liquid
as an incompressible viscous fluid and since the timescale of the dynamics of fluids is much
shorter than the biological timescales, we consider the steady state Navier-Stokes equations,
denoting U = (ux, uy, uz) the fluid velocity, p the pressure and g the acceleration due to
gravity,

U · ∇U − ν∆U +∇p = g,

∇ · U = 0.

For the biological activity, we use the two reaction model of [13] and therefore need to
compute the spatial distribution of the concentrations of two substrates and two biomasses.
However, to further reduce the complexity of the model, we will consider that the bio-
reactions take place only in the middle section since it has been observed that most of the
active biomass is attached to the fixed-bed. Then, in the bottom and top sections, the
substrate concentrations Sk, k = 1, 2, satisfy advection-diffusion equations

∂tSk + U · ∇Sk −Dk∆Sk = 0

where Dk are the diffusion coefficients. For the middle section, in each tube, we consider
advection-diffusion-reaction equations,

∂tSk + uz ∂zSk −Dk∂
2
zzSk = fk,

where fk is the reaction term which depends on the concentrations of substrate and biomass
through the growth rate functions.

As we suppose that the micro-organisms are fixed, the biomass concentrations Bk, k =
1, 2 are neither transported nor diffused and only react. However, if we use a reaction
term only based on a classical growth rate function, which depends linearly on the biomass
concentration, then it will result in unbounded exponential growth of the micro-organisms.
To remedy this, we will consider a death rate τk and to take into account crowding effects,
we add a density dependent term to the growth function, taken from [68],

gk(Bk) =
1

1 + ck
√
Bk

.

Then, the biomasses satisfy a distributed ODE, denoting µk the specific growth rates,

∂tBk = µk(Sk)gk(Bk)Bk − τkBk,

The model equations can be straightforwardly solved with the Finite Element Method,
but the difference of physical and biological timescales make this type of model difficult to
simulate efficiently. Indeed, we are primarily interested in observing the biological activity
of the reactor over the course of several days, but to correctly resolve the physical processes,
we need to use a time step of the order of seconds for the bottom section due to the high
fluid velocities caused by the mixing system. In addition, with small diffusion coefficients,
fine meshes are required and using the reported values for Dk results in long computations.
However, the solution retains the same macroscopic behaviour even if we take a value for Dk

two orders of magnitudes greater and thus we can use a coarser mesh.
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The detailed representation of the processes of advection and diffusion makes this model a
valuable tool to study the impact of physical operational parameters, such as the recirculation
and mixing flowrates. We first explore this question with numerical simulations of tracer
experiments, which consist in releasing a short pulse of an inert substance in the inflow and
measuring the concentration at the output (Figure 1.8). These reveal that the influence of
the bottom mixing system is mainly seen during the transients and its efficiency is governed
by the ratio between the recirculation and mixing flowrates.

Concerning the biological activity, the computationally cost of simulations make estimat-
ing the model parameters accurately unpractical. It is important to point out that we are
not trying to construct a predictive model here, but instead we want to be able to reproduce
the qualitative behaviour of the bioreactor. Then we can use the growth function parameters
found for the compartment model of [56] and choose the extra parameters (death rates τk
and the density dependence parameter ck) so that model reproduces experimental data. The
results are satisfactory, considering that measurements of bioprocesses have high error mar-
gins. In particular, the ODE model has a tendency to under estimate the spatial variation of
substrate concentration whereas we can reproduce it more accurately (Figure 1.9). However,
the transient behaviour is poorly captured but this can be attributed to the use of a simple
two reaction model and therefore, we will mainly focus on reactor performance at steady
state.

To study the impact of heterogeneity on the biological activity, we run simulations for
a range of recirculation flow rates. We observe that the reactor operates more efficiently
with lower recirculation, removing more organic matter and producing more biogas. For
small recirculation flow rates, the dilution rate is effectively lower, so that the substrate
concentration entering the reactor is much higher than standard operating conditions. In
this case, our simulations showed a very strong gradient of substrate concentrations, with
high levels of biomass at the very beginning of the fixed bed. This indicates that the inhibition
phenomenons are currently not well captured with this model as the biological parameters
where obtained with data that only had low concentrations of substrate. These preliminary

Figure 1.8: Tracer concentration for standard conditions, at 1, 2, 3, 4 and 5 hours after pulse.
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results of ongoing work must therefore be taken with caution.
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Chapter 2

Optimal and Sub-Optimal Feedback
Controls for Biogas Production

This chapter corresponds to the published article

Haddon, A., Ramı́rez, H., and Rapaport, A.
Optimal and Sub-optimal Feedback Controls for Biogas Production.

J Optim Theory Appl (2019) 183:642.
https://doi.org/10.1007/s10957-019-01570-3

2.1 Introduction

Anaerobic digestion is a biological process in which organic matter is transformed by mi-
crobial species into biogas (methane and carbon dioxide). Such transformations have been
used for a long time in waste water-treatment plants to purify water [91]. Valorizing bio-
gas production while treating wastewater has received recently great attention, as a way of
producing valuable energy and limiting the carbon footprint of the process [85]. As a final
product of the biological reaction, the total production of biogas measures the performances
of the biological transformation. Therefore, there is a strong interest in determining control
strategies maximizing biogas production.

With continuous-stirred bioreactors, two kinds of anaerobic models are usually considered
for control purposes in the literature: the one-step model, which corresponds to the classical
chemostat model [50], and the two-step model that has been proposed by Bernard et al.
[13]. Although these models only have few dynamic variables, it has been shown that they
are capable of reproducing the qualitative behavior of the anaerobic digestion process [12].
Furthermore, in the two-step model, the second reaction is the most limiting due to inhibition
by the substrate and we can then consider that a one-step model can be used to focus on the
second reaction. In particular, a common assumption is to consider that the first step is fast
and then the two reactions can be reduced to a single one with a slow-fast approximation
and in this case, the one-step model provides a good representation of the biogas production.
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The control variable is typically the input flow rate (or equivalently the dilution rate,
since the volume of the reactor is constant in continuous operating mode). Several works
have already considered the static optimization problem of maximizing the output flow rate
of biogas at steady state, and various control strategies have been proposed to stabilize the
processes at these nominal states (see for instance [100, 89, 26, 27, 28, 95, 106]).

There has been comparatively much less work considering the dynamic optimization prob-
lem over the transients, while bio-processes are often not initialized at their optimal nominal
state. Although the optimal control problem, which consists in maximizing biogas produc-
tion over a given time interval, has been posed a long time ago [99], it is still unsolved today
(even for the one-step model). Let us mention two attempts to solve approximately or par-
tially this problem. Sbarciog et al. [94] have considered the two-step anaerobic model and
proposed a strategy for maximizing biogas production as an optimal control to drive the
system in finite time in a neighborhood of the optimal steady state, with additive penalty
terms in the criterion. In [38], Ghouali et al. give a complete solution of the original optimal
control problem for the one-step model, but for a particular subset of initial conditions which
belong to an invariant manifold of the system (see also [51]). The dynamics can be then
reduced to a scalar one and the authors show that the optimal solution exhibits a singular
arc with a “most rapid approach path” optimal strategy. Let us underline that optimal con-
trol problems over a fixed time horizon possess generally a time-dependent optimal synthesis,
while the duration of process operation is often poorly known. However, the scalar reduced
problem exhibits the remarkable feature of having an optimal synthesis independent of the
terminal time, which makes it quite attractive from an application view point.

The purpose of the present article is to propose new control strategies for the one-step
model, as time-independent feedbacks for general initial conditions

• either considering an infinite horizon,

• either considering sub-optimal controllers for the finite horizon.

For the infinite horizon (see for instance the book [18]), we consider the limit of the discounted
criterion (when the discount factor tends to zero) and the average cost. We study optimal
strategies and compare their related optimal costs. This study extends the preliminary results
presented in the conference paper [47] and considers a large class of growth functions, that
can be in particular density-dependent (such as the Contois law) or not (such as the Monod
or Haldane law). Our work for the finite horizon exploits and extends an approximation
technique presented in [46]. This consists, for a given initial condition, in framing the optimal
solution by considering a different reward for which the optimal solution can be determined
exactly and that possess the property of having a time-independent optimal synthesis (i.e.
whatever is the time horizon, finite or infinite). This technique has moreover the advantage
of providing bounds on the sub-optimality of the controllers. The results are again obtained
for a large class of growth functions and we show that density dependent growth functions
lead to more sophisticated feedback laws.

The paper is organized as follows. Section 2.2 specifies dynamics, control, criterion and
hypotheses, and gives some preliminary results about controllability and asymptotic behavior
of solutions. Sections 2.3 and 2.4 study the optimal solutions, respectively for the infinite and
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finite time horizons. Finally, Section 2.5 illustrates our results on various growth functions.

2.2 Preliminaries

In this work, we consider the classical chemostat model [50]. This represents a well-mixed
continuously fed bioreactor in which a substrate of concentration s is treated (and then
transformed into biogas) by a population of microorganisms of concentration x

ṡ = u(sin − s)−
1

Y
µ(s, x)x, (2.1)

ẋ = µ(s, x)x− ux. (2.2)

We denote sin > 0 the inflow concentration of substrate, Y the yield coefficient, µ(·, ·) the
specific growth rate and u the dilution rate, which is the control.

The biogas flowrate is assumed proportional to the growth rate so that the biogas produced
during a time interval [t0, T ] is proportional to∫ T

t0

µ(s(t), x(t))x(t) dt

and, without loss of generality, we will suppose that the proportionality coefficient as well as
the yield coefficient are equal to 1.

We will consider the following class of growth functions :

Assumption 2.1 We suppose that µ : R+ × R+ → R+ is a Lipschitz continuous function
that satisfies, for all x > 0

µ(0, x) = 0 and µ(s, x) > 0 for s > 0.

We suppose as well that x 7→ µ(s, x) is non increasing, which models crowding effects, and
x 7→ µ(s, x)x is non decreasing, which models the fact that having more biomass provides at
least the same growth.

A typical instance of this class is the Contois growth function, defined later in (2.37),
but note that this class of functions also contains growth functions that depend only on the
substrate concentration, such as the Monod (2.35) and the Haldane (2.36) functions.

We will study the problem of maximizing the accumulated biogas for controls in the
following set of admissible controls

U([t0, T ]) =
{
u(·) ∈ L∞(t0, T ;R) : u(t) ∈ [0, umax] for t ∈ [t0, T ]

}
with t0 ∈ R and T ∈ R ∪ {+∞}, and where umax > 0 is a given parameter that represents
the maximal dilution rate. We will consider initial conditions taken in the invariant set

D := [0, sin[×]0,∞[
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which corresponds to the most common operating conditions. Notice that for initial con-
ditions in D, any solution of (2.1)-(2.2) cannot reach s = sin in finite time and stays non
negative. Therefore the set D is (forward) invariant.

2.2.1 Properties of the Dynamics

On the invariant domain D, we introduce the change of variables

ζ = (s, z) with z =
x

sin − s
,

under which the dynamics become

ζ̇ =

[
ṡ
ż

]
= f(ζ, u) :=

[ (
u− µ

(
s, (sin − s)z

)
z
)

(sin − s)
µ
(
s, (sin − s)z

)
(1− z)z

]
. (2.3)

We will denote st0,ξ,u(·) and zt0,ξ,u(·) the solution of (2.3), with initial condition ξ = (s0, z0) =
(s(t0), z(t0)) ∈ D and control u(·) ∈ U([t0, T ]). The cumulated biogas production becomes∫ T

t0

φ
(
st0,ξ,u(t), zt0,ξ,u(t)

)
zt0,ξ,u(t) dt (2.4)

with

φ(s, z) = µ
(
s, (sin − s)z

)
(sin − s) (2.5)

and we will denote

φ(z) = max
s∈]0,sin[

φ(s, z). (2.6)

We can now establish an important property of the controlled dynamics.

Lemma 2.2 The trajectories of the system (2.3) for a given initial condition ξ = (s0, z0) ∈ D,
for all admissible controls, remain in the set

L(ξ) = [0, sin]× [min(z0, 1),max(z0, 1)]. (2.7)

Proof. From Assumption 2.1 we have that µ(·, ·) > 0 and since the solutions z(·) satisfy
(2.3), we then have the following

min(z0, 1) 6 zt0,ξ,u(t) 6 max(z0, 1)

for all t > 0, for any admissible control u(·).

In the following, we consider initial conditions that guarantee the controllability of the s
variable.
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Assumption 2.3 We suppose that the initial condition ξ ∈ D is such that

max
(s,z)∈L(ξ)

µ
(
s, (sin − s)z

)
z < umax.

In practice, for a given initial condition it possible to choose umax such that the previous
inequality is satisfied.

We now define a class of feedbacks, that will play an important role, and that are based
on the notion of most rapid approach path, a well known concept in the theory of optimal
control; see, for example, [83, 52].

Definition 2.4 For (s, z) ∈ L(ξ), we define the most rapid approach feedback to a given
substrate level s∗ ∈ [0, sin[, as

ψs∗(s, z) =

∣∣∣∣∣∣
0 if s > s∗,
µ(s∗, (sin − s∗)z) z if s = s∗,
umax if s < s∗.

(2.8)

Clearly, with Assumption 2.3 this feedback is well defined, so that, associated with this
control, for every initial condition ξ ∈ D, there exists a unique absolutely continuous solution
for the dynamics (2.3).

Lemma 2.5 For any ξ ∈ D satisfying Assumption 2.3, a given substrate level s∗ ∈]0, sin[ is
reachable in finite time with the feedback ψs∗.

Proof. First, using the monotonicity properties of µ(·, ·) of Assumption 2.1, it is clear that
ψs∗ is admissible provided Assumption 2.3 is satisfied.

To show that s∗ is reachable in finite time, it is enough to note that when st0,ξ,ψs∗ (t) > s∗,
for t in a given open interval I, we have

ṡt0,ξ,ψs∗ (t) = −µ
(
s, (sin − s)z

)
z(sin − s) 6 k− < 0, ∀ t ∈ I

with k− = −mins∈]s∗,sin[ µ
(
s, (sin − s) min(z0, 1)

)
min(z0, 1)(sin − s∗). This insures that s∗ is

always reachable in finite time from s0 > s∗.

Analogously, if st0,ξ,ψs∗ (t) < s∗, for t ∈ I, we have from Assumption 2.3

ṡt0,ξ,ψs∗ (t) =
[
umax − µ

(
s, (sin − s)z

)
z
]

(sin − s) > k+ > 0, ∀ t ∈ I

with k+ =
[
umax −maxs∈]0,s∗[ µ

(
s, (sin − s) max(z0, 1)

)
max(z0, 1)

]
(sin − s∗). Then s∗ is

reachable from s0 < s∗, again in finite time.

Remark It should be pointed out that there is a similarity with the turnpike property
[115, 104] when using the controller (2.8). The turnpike property has received great atten-
tion in the literature (see, for instance, [42, 83, 52, 84]), and recent results give sufficient
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optimality conditions [34, 33]. However, we shall show in the next sections that the value s∗,
which determines the turnpike, has to depend on the initial condition (excepted for the very
particular case when the initial condition belongs to the invariant set {z = 1} that has been
solved in [38]). So, we are not in the usual framework of a single turnpike [34, 33] or isolated
turnpikes [82], and the results of the literature do not apply.

For the problem on an infinite horizon, we will consider persistently exciting controls,
which are defined as satisfying ∫ T

t0

u(t) dt −→
T→∞

∞.

As the next Lemma shows, the trajectories associated with these controls are such that
zt0,ξ,u(t) converges to 1, which is essential in our approach. Furthermore, for non persistently
exciting controls, st0,ξ,u(t) converges to 0 and thus the biogas production also converges to 0.
As a consequence, the controls that maximize biogas production are necessarily persistently
exciting controls.

Lemma 2.6 For all initial conditions ξ ∈ D and for all persistently exciting controls u(·) ∈
U([0,∞[), we have

lim
t→∞

z0,ξ,u(t) = 1

and

lim
δ→0

∫ ∞
0

δe−δtz0,ξ,u(t) dt = lim
T→∞

1

T

∫ T

0

z0,ξ,u(t) dt = 1.

Moreover, for non persistently exciting controls, we have

lim
t→+∞

s0,ξ,u(t) = 0.

Proof. From equation (2.3), the solution z(·) = z0,ξ,u(·) can be written as follows

z(t) =
z0 + e

∫ t
t0
µ(s(τ),x(τ)) dτ

1 + z0

(
e
∫ t
t0
µ(s(τ),x(τ)) dτ − 1

) (2.9)

where s(·) = s0,ξ,u(·), x(·) = x0,ξ,u(·). From equation (2.2), the solution x(·) is such that

x(t) = x(t0)e
∫ t
t0

(
µ(s(τ),x(τ))−u(τ)

)
dτ
.

Therefore, if the integral function

t 7→
∫ t

t0

µ(s(τ), x(τ)) dτ, t ≥ t0 (2.10)

is bounded, then x(t) must converge asymptotically to 0 when t goes to +∞ and u(·) is a
persistently exciting control. Moreover, from equations (2.1), (2.2) we have

d

dt

(
s(t) + x(t)

)
= u(t)

(
sin − s(t) + x(t)

)
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so that
s(t) + x(t) = sin + (s(t0) + x(t0)− sin

)
e
−

∫ t
t0
u(τ) dτ

and then s(t) must converge to sin when t goes to +∞. Consequently, by continuity of the
function µ, there exists T > t0 such that

µ(s(t), x(t))) > µ(sin, 0)/2 > 0

for any t > T , which implies that the integral defined in (2.10) goes to +∞ when t goes to
+∞, which is a contradiction. We deduce that this integral cannot be bounded and from
equation (2.9) that z(t) converges to 1 when t goes to +∞.

A proof of the equality of limits of the integrals

lim
δ→0

∫ ∞
0

δe−δtz0,ξ,u(t) dt = lim
T→∞

1

T

∫ T

0

z0,ξ,u(t) dt

can be found in [40, Lemma 3.5]. For the value of the limits we use the fact that z0,ξ,u(t)
converges to 1 : for all ε̃ > 0, there exits a time tε̃ such that, for all t > tε̃,

|z0,ξ,u(t)− 1| < ε̃.

Then, for all T > max(tε̃, tε̃/ε̃)∣∣∣∣ 1

T

∫ T

0

z0,ξ,u(t) dt− 1

∣∣∣∣ 6 1

T

∫ tε̃

0

|z0,ξ,u(t)− 1| dt+
1

T

∫ T

tε̃

|z0,ξ,u(t)− 1| dt

<
tε̃
T
|z0 − 1|+

(
1− tε̃

T

)
ε̃

< ε̃ (|z0 − 1|+ 1) .

With this, for all ε > 0, we can take ε̃ = ε/(|z0−1|+1) and then we have, for T > max(tε̃, tε̃/ε̃)∣∣∣∣ 1

T

∫ T

0

z0,ξ,u(t) dt− 1

∣∣∣∣ < ε.

Finally, we prove that for non persistently exciting controls, s0,ξ,u(t) converges to 0. There-
fore, suppose that u(·) is an admissible control with a finite integral and we define, for all
t > 0,

I(t) :=

∫ t

0

u(τ) dτ <∞

and
ϕ(t) := (sin − s0,ξ,u(t))e

I(t).

Then
ϕ′(t) = φ

(
s0,ξ,u(t), z0,ξ,u(t)

)
z0,ξ,u(t)e

I(t) > 0

and since ϕ(t) is bounded, we can deduce that ϕ(t) converges as t goes to infinity. Note as
well that ϕ′ is absolutely continuous and thus uniformly continuous. We can therefore use
Barbalat’s Lemma [63, Lemma 4.2] to get that ϕ′(t) converges to 0. Then, as z0,ξ,u(t) cannot
reach 0 (Lemma 2.2), we have that φ

(
s0,ξ,u(t), z0,ξ,u(t)

)
must converge to 0 and by continuity

we conclude that s0,ξ,u(t) converges to 0.
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2.3 Infinite Horizon and Average Reward

In this section, we study the problem of maximizing biogas production over an infinite hori-
zon. Since the dynamics (2.3) are autonomous, without loss of generality, we can assume
here that t0 = 0 and we will then denote sξ,u(·) and zξ,u(·) solutions of (2.3).

We start by defining the average biogas production during a time interval [0, T ] as

JT (ξ, u(·)) =
1

T

∫ T

0

φ
(
sξ,u(t), zξ,u(t)

)
zξ,u(t) dt (2.11)

and we consider the inferior and superior limits as T goes to infinity

J∞(ξ, u(·)) = lim inf
T→∞

JT (ξ, u(·)), (2.12)

J
∞

(ξ, u(·)) = lim sup
T→∞

JT (ξ, u(·)). (2.13)

The optimal control problems in consideration here consist in maximizing these functionals
with respect to the dilution rate u(·) ∈ U([0,∞[), for any initial condition ξ ∈ D. More
precisely, the value functions of these optimal control problems are

V ∞(ξ) = sup
{
J∞(ξ, u(·)) : u(·) ∈ U([0,∞[)

}
, (2.14)

V
∞

(ξ) = sup
{
J
∞

(ξ, u(·)) : u(·) ∈ U([0,∞[)
}
. (2.15)

We need to consider the inferior and superior limits here as there exists controls for which
the rewards (2.12) and (2.13) may differ. Indeed, this is the case for certain oscillating
controls as can be seen in the example in the Appendix. Nevertheless, we will show that the
value functions (2.14) and (2.15) are in fact equal. Moreover, we will connect these problems
to the problem with a discounted reward when the discount factor goes to 0, as in [41].

To this end, we now define the following discounted reward, for a discount rate δ > 0

Jδ(ξ, u(·)) = δ

∫ ∞
0

e−δtφ
(
sξ,u(t), zξ,u(t)

)
zξ,u(t) dt. (2.16)

This type of cost function is often used in problems related to economics for which the term
e−δt represents a discount rate or a preference for the present [18]. In our setting, the use of
this discounted reward can be seen as a preference for earlier rather than later production.
Here, the integral is rescaled with the discount factor δ in order to guarantee that, when we
take the limit as δ goes to 0, the reward remains finite.

The value function of the optimal control problem for a given δ is then

Vδ(ξ) = sup
{
Jδ(ξ, u(·)) : u(·) ∈ U([0,∞[)

}
. (2.17)

Note that both average rewards (2.12) and (2.13), as well as the discounted reward (2.16),
are well defined as the following Lemma shows.

30



Lemma 2.7 For all ξ ∈ D, for all admissible controls u(·) ∈ U([0,∞[) and for all δ > 0, the
rewards J∞(ξ, u(·)), J

∞
(ξ, u(·)) and Jδ(ξ, u(·)) are uniformly bounded.

Proof. From the monotonicity properties of Assumption 2.1, we have that the function
z 7→ φ(s, z) is non increasing. for all s > 0. Thus, for all t > 0

φ(sξ,u(t), zξ,u(t)) 6 φ(0).

The uniform boundedness of the rewards then follows from Lemma 2.2.

2.3.1 Solution of Optimal Control Problems for the Average Re-
wards

We now solve the optimal control problems (2.14) and (2.15). We start by determining an
upper bound for the value functions and then we will exhibit controls that attain this bound.

Proposition 2.8 For all initial conditions ξ ∈ D

V ∞(ξ) 6 V
∞

(ξ) 6 max
s∈]0,sin[

φ(s, 1).

Proof. With the monotonicity properties of µ(·, ·) of Assumption 2.1, we have that z 7→
φ(s, z) is non increasing and z 7→ φ(s, z)z is non decreasing. This implies that

φ(s,max(z0, 1)) 6 φ(s, z) 6 φ(s,min(z0, 1)) (2.18)

and

φ(s,min(z0, 1)) min(z0, 1) 6 φ(s, z)z 6 φ(s,max(z0, 1)) max(z0, 1). (2.19)

First, we consider the case when z0 6 1. For any control u(·), we have

JT (ξ, u(·)) 6 1

T

∫ T

0

φ
(
s(t),max(z0, 1)

)
max(z0, 1) dt

6 max
s∈]0,sin[

φ(s, 1) = φ(1).

Taking the lower and upper limit as T goes to infinity and the supremum with respect to
u(·) we get the result.

Next, for z0 > 1, we have

JT (ξ, u(·)) 6 1

T

∫ T

0

φ
(
s(t),min(z0, 1)

)
z(t) dt

6 max
s∈]0,sin[

φ(s, 1)
1

T

∫ T

0

z(t) dt.
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Using Lemma 2.6, we get that J∞(ξ, u(·)) 6 J
∞

(ξ, u(·)) 6 φ(1) and we conclude taking the
supremum with respect to u(·).

Note that the existence of a maximum of s 7→ φ(s, 1) = µ(s, sin − s)(sin − s) on ]0, sin[
follows from Assumption 2.1. We will denote a substrate level at which such a maximum is
attained as

s̄ = arg max
s∈]0,sin[

φ(s, 1)

Proposition 2.9 For any initial condition ξ ∈ D, any control u(·) ∈ U([0,∞[) that drives
the system asymptotically to the state (s̄, 1) is optimal for problems (2.14) and (2.15). We
then have

V ∞(ξ) = V
∞

(ξ) = φ(s̄, 1) = φ(1). (2.20)

Proof. The continuity of φ implies that for all ε > 0, there exists a time tε > 0 such that,
for all t > tε, ∣∣φ(sξ,ū(t), zξ,ū(t))zξ,ū(t)− φ(s̄, 1)∣∣ < ε. (2.21)

Since sξ,ū(·) and zξ,ū(·) take values in the compact set L(ξ) (2.7), there is a constant Mξ > 0
such that, for all t > 0, ∣∣φ(sξ,ū(t), zξ,ū(t))zξ,ū(t)∣∣ < Mξ. (2.22)

Then, for all T > tε, from (2.21) and (2.22)∣∣∣JT (ξ, u(·))− φ
(
s̄, 1
)∣∣∣ 6 1

T

∫ tε

0

∣∣φ(sξ,ū(t), zξ,ū(t))zξ,ū(t)− φ(s̄, 1)∣∣ dt

+
1

T

∫ T

tε

∣∣φ(sξ,ū(t), zξ,ū(t))zξ,ū(t)− φ(s̄, 1)∣∣ dt

<
2Mξtε
T

+

(
1− tε

T

)
ε

and we have
J∞(ξ, u(·)) = J

∞
(ξ, u(·)) = φ(s̄, 1).

Using Proposition 2.8, we get the equality of value functions (2.20) and deduce the optimality
of u(·) for both average biogas production problems (2.14) and (2.15).

With Lemma 2.6, we know that all persistently exciting admissible controls make z(·)
converge to 1, and from Lemma 2.5, we know that the feedback ψs∗ defined in (2.8) with
s∗ = s̄ guarantees that s(·) reaches s̄. Then, from the previous Proposition we have the
following result.

Proposition 2.10 For any initial condition ξ ∈ D satisfying Assumption 2.3, the most rapid
approach feedback to s̄, defined in (2.8) and denoted ψs̄, is optimal for both average production
problems (2.14) and (2.15).
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Clearly, there is not a unique optimal control for the infinite horizon problems that we
have considered. For example, in the case of a growth function that depends only on the
substrate and that is monotone (such as the Monod growth function), the constant control
u = µ(s̄) can also drive the system to the state (s̄, 1). Nonetheless, for the control ψs̄, we are
able to state an estimation of the sub-optimality for the finite horizon problem.

2.3.2 Relation between Average and Discounted Biogas Produc-
tion Problems

We now discuss the relation between the average and discounted biogas production problems.
We first show that the value function of the discounted problem converges when the discount
factor δ goes to 0.

Proposition 2.11 For all ξ ∈ D, the value function of the discounted problem (2.17) con-
verge as δ goes to 0 to the value functions of the average problems (2.14) and (2.15),

V0(ξ) := lim
δ→0

Vδ(ξ) = V ∞(ξ) = V
∞

(ξ). (2.23)

Proof. This is a consequence of [41] on the relation between average and discounted func-
tionals. First, [41, Lemma 3.3] gives

sup
u(·)

lim inf
T→∞

JT (ξ, u(·)) = lim
T→∞

sup
u(·)

inf
τ>T

Jτ (ξ, u(·))

and
sup
u(·)

lim sup
T→∞

JT (ξ, u(·)) = lim
T→∞

sup
u(·)

sup
τ>T

Jτ (ξ, u(·))

Now, denote Mξ the upper bound of φ(·, ·) on the compact set L(ξ) (2.7), then [41, Lemma
3.4] states that for all T > 0, ε > 0 and δ < ε/2TMξ and all admissible controls,

inf
τ>T

Jτ (ξ, u(·))− ε 6 Jδ(ξ, u(·)) 6 sup
τ>T

Jτ (ξ, u(·)) + ε. (2.24)

Therefore, taking the supremum over all admissible controls and the limit as T goes to infinity,
the result is obtained thanks to the equality of the average value functions of Proposition
2.9.

Now the question is whether the limit (2.23) is the value function corresponding to the
problem for limit of the discounted reward when δ goes to 0. For this we would first need
to show the convergence of the discounted rewards but this remains an open question for
a general control. Notice nonetheless, that [41, Lemma 3.4] actually gives us the following
estimation,

J∞(ξ, u(·)) 6 lim inf
δ→0

Jδ(ξ, u(·)) 6 lim sup
δ→0

Jδ(ξ, u(·)) 6 J
∞

(ξ, u(·))

33



Then, for a given control, if the average cost converges when T goes to infinity, i.e. J∞(ξ, u(·)) =
J
∞

(ξ, u(·)), then the discounted reward also converges. In particular, this means that for the
MRAP feedback to s̄, defined in (2.8), the discounted reward converges to the limit of the
value function,

lim
δ→0

Jδ(ξ, ψs̄) = lim
δ→0

Vδ(ξ). (2.25)

Another interesting question is to determine if the optimal controls converge when δ goes to
0. For this, we could show the Γ−convergence of the rewards and the existence of optimal
controls for δ > 0. We specify this last point in Proposition 2.14 and for this, we will consider
the discounted reward (2.16) as a function of the trajectory ζ(·) =

(
sξ,u(·), zξ,u(·)

)
instead of

the control and with a slight abuse of notation, we will denote it as Jδ(ζ(·)).

Define the set valued map

F (ζ) :=
⋃

u∈[0,umax]

f(ζ, u)

and consider the set of all forward trajectories of (2.3) with initial condition ξ,

S(ξ) :=
{
ζ(·) ∈ AC([0,∞[,L(ξ)) : ζ(0) = ξ, ξ̇(t) ∈ F (ξ(t)) a.e. t ∈ [0,∞[

}
,

where AC([0,∞[,L(ξ)) denotes the set of absolutely continuous functions from [0,∞[ to L(ξ).
We recall from the Filippov Selection Theorem (see for instance [108]) that the optimal control
problem (2.17) is equivalent to the optimization problem on S(ξ),

Vδ(ξ) = sup
{
Jδ(ζ(·)) : ζ(·) ∈ S(ξ)

}
.

We now specify the topology that we will use.

Definition 2.12 For b > 0, we denote by L1
(
0,∞;R2, e−btdt

)
the weighted Lebesgue space

of measurable functions y(·) from [0,∞[ to R2 such that∫ ∞
0

||y(t)||e−btdt <∞

and we denote W 1,1
(
0,∞;R2, e−btdt

)
the weighted Sobolev space of measurable functions y(·)

satisfying

y(·) ∈ L1
(
0,∞;R2, e−btdt

)
and ẏ(·) ∈ L1

(
0,∞;R2, e−btdt

)
.

We consider the topology on W 1,1
(
0,∞;R2, e−btdt

)
for which a sequence yn(·) converges to

y(·), if and only if,

- yn(·) converges uniformly to y(·) on compact intervals,

- ẏn(·) converges weakly to ẏ(·) in L1
(
0,∞;R2, e−btdt

)
.

Next, we define the notion of Γ−limit in our context (see [25] for further details).
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Definition 2.13 For a given initial condition ξ ∈ D and trajectory ζ(·) ∈ S(ξ), the Γ−lower
limit and Γ−upper limit of Jδ(·) are

Γ− lim inf
δ→0

Jδ(ζ(·)) = sup
V∈N (ζ(·))

lim inf
δ→0

inf
η(·)∈V

Jδ(η(·))

Γ− lim sup
δ→0

Jδ(ζ(·)) = sup
V∈N (ζ(·))

lim sup
δ→0

inf
η(·)∈V

Jδ(η(·)).

Here, N (ζ(·)) denotes the set of all open neighbourhoods of ζ(·), for the topology of the space
W 1,1

(
0,∞;R2, e−btdt

)
given in Definition 2.12. If both of these limits coincide, then the

Γ−limit of Jδ(·) is

Γ− lim
δ→0

Jδ(ζ(·)) = Γ− lim inf
δ→0

Jδ(ζ(·)) = Γ− lim sup
δ→0

Jδ(ζ(·)).

We now have the following result.

Proposition 2.14 For all ξ ∈ D and for all δ > 0, the suprema are attained,

Vδ(ξ) = max
ζ(·)

Jδ(ζ(·)).

If the Γ−limit of Jδ(·) exists as δ goes to 0,

J0(ζ(·)) := Γ− lim
δ→0

Jδ(ζ(·)),

then the maxima converge, pointwise in ξ, to the maximum of the limit,

V0(ξ) := lim
δ→0

Vδ(ξ) = max
ζ(·)

J0(ζ(·)). (2.26)

Furthermore, if ζδ(·) is an optimal trajectory for (2.17), i.e. if Vδ(ξ) = Jδ(ζδ(·)), and if ζδ(·)
converges to ζ0(·) in S(ξ), then ζ0(·) is an optimal trajectory for (2.26) and

V0(ξ) = J0(ζ0(·)) = lim
δ→0

Jδ(ζδ(·)).

Proof. To show that the suprema are attained we show that the the set of all forward trajec-
tories of (2.3) with initial condition ξ is compact for the topology on W 1,1

(
0,∞;R2, e−btdt

)
given in Definition 2.12.

For each ξ ∈ D we set
Fξ(ζ) := F

(
PL(ξ)(ζ)

)
where PL(ξ) is the projection on the convex set L(ξ). Then Fξ has linear growth, so that we
can define

c = sup
ζ∈Dom(Fξ)

||Fξ(ζ)||
||ζ||+ 1

,

where ||Fξ(ζ)|| := supη∈Fξ(ζ) ||η||. Note that F is upper semi-continuous and has compact
non-empty convex images (such a map is known as a Marchaud map [1]). With this, the set
S(ξ) is the set of absolutely continuous solutions of the differential inclusion

ζ̇(t) ∈ Fξ(ζ(t)), ζ(0) = ξ.

35



We can therefore use [1, Theorem 3.5.2] to establish that S(ξ) is compact for the topology
of W 1,1

(
0,∞;R2, e−btdt

)
for b > c, thereby proving the existence of optimal trajectories in

S(ξ).

In addition, this allows us to show that the maxima converge to to the maximum of the
limit. Indeed, when the rewards Γ−converge, it is sufficient to show that there exists a
countably compact set on which the suprema are attained for all δ [25, Theorem 7.4]. The
set S(ξ) is clearly independent of δ and countably compact, since it is compact. Finally, the
convergence of optimal trajectories can be shown with [25, Corollary 7.20].

Remark Notice that estimation (2.24) is obtained uniformly in the controls, so that the
discounted reward converges uniformly over the class of controls for which the average cost
converges. Uniform convergence implies Γ−convergence ([25, Proposition 5.2]), so the con-
sequence is that if we restrict the problem to this class of controls then the limit problem is
well defined. Then (2.25) can be written as

J0(ξ, ψs̄) = V0(ξ)

which proves the optimality of the MRAP feedback ψs̄ for the limit problem restricted to the
aforementioned class of controls.

2.4 Finite Horizon and Sub-optimal Controls

We now examine the problem of maximizing biogas production over a finite horizon for a
time interval [t0, T ] where T is fixed. For this we consider the following reward

J(t0, ξ, u(·)) =

∫ T

t0

φ
(
st0,ξ,u(t), zt0,ξ,u(t)

)
zt0,ξ,u(t) dt (2.27)

where we recall that
(
st0,ξ,u(·), zt0,ξ,u(·)

)
is the solution of (2.3) with control u(·) ∈ U([t0, T ])

and initial condition ξ ∈ D. The optimal control problem consists in maximizing this func-
tional with respect to the dilution rate, so that the associated value function is

V (t0, ξ) = sup
{
J(t0, ξ, u(·)) : u(·) ∈ U([t0, T ])

}
. (2.28)

We also consider auxiliary optimal control problems, which consist in maximizing the cost,
for a given z1 ∈ [min(z0, 1),max(z0, 1)],

Jz1(t0, ξ, u(·)) =

∫ T

t0

φ(st0,ξ,u(t), z1) dt (2.29)

for the same dynamics (2.3). The value functions of these auxiliary problems are then defined
as

Wz1(t0, ξ) = sup
{
Jz1(t0, ξ, u(·)) : u(·) ∈ U([t0, T ])

}
. (2.30)

36



The resolution of these auxiliary problems will be presented in Section 2.4.1.

We now show that the value functions of the original problem (2.28) and the auxiliary
problems (2.30) are related.

Proposition 2.15 For all ξ ∈ D, t0 < T and any z1 ∈ [min(z0, 1),max(z0, 1)], we have the
following frame for the value function V of the original problem

min(z0, 1)Wz1(t0, ξ) 6 V (t0, ξ) 6 max(z0, 1)Wz1(t0, ξ). (2.31)

Proof. We start with the case z0 6 1. For a given control u(·) ∈ U([t0, T ]), we define the
following time

t1 = inf {t > t0 : zt0,ξ,u(t) = z1} ∧ T
which it is well defined since zt0,ξ,u(·) is monotonous. Then, for t0 6 t 6 t1 we have z0 6
zt0,ξ,u(t) 6 z1 6 1 and with the monotonicity properties of µ(·, ·) of Assumption 2.1 we have

φ(st0,ξ,u(t), z1)z0 6 φ(st0,ξ,u(t), zt0,ξ,u(t))zt0,ξ,u(t) 6 φ(st0,ξ,u(t), z1)z1.

Next, for t1 6 t 6 T we have z0 6 z1 6 zt0,ξ,u(t) 6 1 and

φ(st0,ξ,u(t), z1)z1 6 φ(st0,ξ,u(t), zt0,ξ,u(t))zt0,ξ,u(t) 6 φ(st0,ξ,u(t), z1).

Combining these inequalities we get∫ t1

t0

φ(st0,ξ,u(t), z1)z0 dt+

∫ T

t1

φ(st0,ξ,u(t), z1)z1 dt 6 J(t0, ξ, u(·))

6
∫ t1

t0

φ(st0,ξ,u(t), z1)z1 dt+

∫ T

t1

φ(st0,ξ,u(t), z1) dt.

Now, since z0 6 z1 6 1 we have

z0Jz1(t0, ξ, u(·)) 6 J(t0, ξ, u(·)) 6 Jz1(t0, ξ, u(·)).

For the case z0 > 1, we proceed in a similar way to get

Jz1(t0, ξ, u(·)) 6 J(t0, ξ, u(·)) 6 z0Jz1(t0, ξ, u(·)).

We conclude by taking the supremum over all admissible controls.

The interest of the previous frames on the value functions is that it allows to find controls
for which we have an estimation of sub-optimality for the original problem.

Proposition 2.16 For all ξ ∈ D and all t0 < T , any optimal control u?z1(·) for the reward
Jz1(t0, ξ, ·) guarantees a (sub-optimal) value for the original criterion J(t0, ξ, ·) that satisfies

min(z0, 1)Wz1(t0, ξ) 6 J(t0, ξ, u
?
z1

(·)) 6 max(z0, 1)Wz1(t0, ξ) (2.32)

and we have the following estimation of the value function V

V (t0, ξ)− J(t0, ξ, u
?
z1

(·)) 6 |1− z0|Wz1(t0, ξ). (2.33)

37



Proof. From the proof of Proposition 2.15, for any control u(·) ∈ U([t0, T ]), we have

min(z0, 1)Jz1(t0, ξ, u(·)) 6 J(t0, ξ, u(·)) 6 max(z0, 1)Jz1(t0, ξ, u(·)).

Evaluating this for any optimal control u?z1(·) for the reward Jz1(t0, ξ, ·) gives the sub-
optimality frame (2.32). The sub-optimality estimation (2.33) then follows from (2.31) and
(2.32).

2.4.1 Resolution of Auxiliary Problems

In order to obtain sub-optimal controls for problem (2.28) we now need to solve the auxiliary
problem (2.30) for a given z1 ∈ [min(z0, 1),max(z0, 1)]. The optimal control of this auxiliary
problem is an autonomous feedback, even though the horizon is fixed and finite. It is similar
to the optimal feedback for the infinite horizon problem ψs̄, defined in (2.8), and it drives
the system towards a maximizer of s 7→ φ(s, z1) but now, this maximizing substrate level
depends on z1. We first need an assumption on the uniqueness of a maximum of φ(·, z1).

Assumption 2.17 For each z1 > 0, the function s 7→ φ(s, z1) admits a unique maximum
on ]0, sin[, and we denote the substrate level at which this maximum is attained as

s̄(z1) = arg max
s∈]0,sin[

φ(s, z1). (2.34)

Note that implies that s 7→ φ(s, z1) is increasing on ]0, s̄(z1)] and decreasing on [s̄(z1), sin[.

Proposition 2.18 For all ξ ∈ D satisfying Assumption 2.3 and all t0 < T , the most rapid
approach feedback to s̄(z1), defined in (2.8) and denoted ψs̄(z1), is optimal for the auxiliary
problem (2.30).

Proof. We start with the case s0 > s̄(z1). With the control u = 0, the solution of (2.3)
is such that st0,ξ,0(·) is monotonic and non increasing. Therefore there exists a time tmin,
possibly larger than T , such that st0,ξ,0(tmin) = s̄(z1) and then the solution with the feedback
(2.8) is, with t∗ = min(tmin, T )

st0,ξ,ψs̄(z1)
(t) =

{
st0,ξ,0(t), if t0 6 t < t∗,

s̄(z1), if t∗ 6 t 6 T.

Next, for all u ∈ [0, umax] and for all (s, z) ∈ L(ξ),

−µ(s, (sin − s)z)(sin − s)z 6 (sin − s)u− µ(s, (sin − s)z)(sin − s)z.

By the theorem of comparison of solutions of scalar differential equations, this implies that
st0,ξ,0(t) 6 st0,ξ,u(t), up to time t∗, for all controls u(·) ∈ U([t0, T ]). Since s 7→ φ(s, z1) is
decreasing on [s̄(z1), sin[, we have

φ(st0,ξ,0(t), z1) > φ(st0,ξ,u(t), z1).
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Finally, as s 7→ φ(s, z1) reaches its maximum at s̄(z1) we get

Jz1(t0, ξ, ψs̄(z1)) =

∫ t∗

t0

φ(st0,ξ,0(t), z1)dt+

∫ T

t∗

φ(s̄(z1), z1)dt

>
∫ T

t0

φ(st0,ξ,u(t), z1)dt

= Jz1(t0, ξ, u).

We now consider s0 < s̄. From Assumption 2.3, the feedback is admissible and we have

umax > µ(s, (sin − s)z)z for all (s, z) ∈ L(ξ)

Thus, with the control u = umax, the solution of (2.3) is such that st0,ξ,umax(·) is monotone
and non decreasing. Therefore, there exists a time tmax, possibly larger than T , such that
st0,ξ,umax(tmax) = s̄(z1) and then the solution with the feedback (2.8) is, with t∗ = min(tmax, T )

st0,ξ,ψs̄(z1)
(t) =

{
st0,ξ,umax(t), if t0 6 t < t∗,

s̄(z1), if t∗ 6 t 6 T.

Next, for all u ∈ [0, umax] and for all (s, z) ∈ L(ξ)

(sin − s)(umax − µ(s, (sin − s)z)z) > (sin − s)(u− µ(s, (sin − s)z)z)

and this implies that st0,ξ,umax(t) > st0,ξ,u(t), up to time t∗, for all controls u(·) ∈ U([t0, T ]).
Since s 7→ φ(s, z1) is increasing on ]0, s̄(z1)], we have

φ(st0,ξ,umax(t), z1) > φ(st0,ξ,u(t), z1).

Finally, since s 7→ φ(s, z1) reaches its maximum at s̄(z1), we get

Jz1(t0, ξ, ψs̄(z1)) =

∫ t∗

t0

φ(st0,ξ,umax(t), z1)dt+

∫ T

t∗

φ(s̄(z1), z1)dt

>
∫ T

t0

φ(st0,ξ,u(t), z1)dt

= Jz1(t0, ξ, u).

2.5 Application to Particular Growth Functions

The controls that we have considered up to now are all most rapid approach feedbacks to
s̄(z1), with z1 ∈ [min(z0, 1),max(z0, 1)], and this leads to the question of which is best in
terms of biogas production. It turns out that it depends on the initial conditions and the
horizon considered.
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Indeed, we know that for an infinite horizon, the feedback ψs̄(z1) with z1 = 1 is optimal and
we can then expect that when the horizon is large, the best of the considered feedbacks would
be for z1 close to 1. On the other hand, when the horizon is small, the feedback ψs̄(z0) would
seem to be the best option since this strategy consists in remaining close to the maximum of
the biogas flow rate corresponding to the initial condition, whereas another feedback could
drive the system away, towards another maximizing state but that can not be reached in
time.

In this section, we apply our main results to the most common growth functions and
explore with numerical simulations the question of determining the best feedback ψs̄(z1) for
a given initial condition and final time. In particular, we will work with the Monod function

µM(s) =
µmaxs

Ks + s
(2.35)

the Haldane function

µH(s) =
µ̄s

Ks + s+ s2

Ki

(2.36)

and the Contois function
µC(s, x) =

µmaxs

Ksx+ s
(2.37)

where µmax, µ̄, Ks and Ki are positive numbers. We shall see later that these functions
satisfy our assumptions (Lemma 2.19).

First, note that the Monod and Haldane functions only depend on the substrate, so
that in this case, the maximizers s̄(z1), defined in (2.34), are all equal to s̄(1) = s̄, for all
z1 ∈ [min(z0, 1),max(z0, 1)]. We illustrate the associated feedback ψs̄ for a Haldane function
with a graph of the state space trajectories in Figure 2.1. The case of a Monod function leads
to a similar dynamical behavior and the only major difference is the value of s̄.

From now on we will only consider the Contois growth function, for which we plot the
trajectories in state space obtained with the feedback ψs̄(z0) in Figure 2.2.

To determine which of the feedbacks ψs̄(z1) is the best, we now compute the associated
reward for a range of values of z1 ∈ [min(z0, 1),max(z0, 1)] and of final times for a given
initial condition. In order to easily identify the maximum of J(ξ, ψs̄(z1)(·)) with respect to
z1, we normalize the average reward (2.11) by computing

JN(T, z1) =
JT (ξ, ψs̄(z1)(·))−miny J

T (ξ, ψs̄(y)(·))
maxy JT (ξ, ψs̄(y)(·))−miny JT (ξ, ψs̄(y)(·))

where the minimum and maximum are taken for y ∈ [min(z0, 1),max(z0, 1)]. Hence, for
each final time T , the maximum reward is achieved for z1 such that JN(T, z1) = 1 and the
minimum when JN(T, z1) = 0.

Figure 2.3 shows a case when z0 < 1 and Figure 2.4 is an example of z0 > 1. We can see
clearly that for small final times, the maximum is attained for a value of z1 close to z0 and
that for z1 = 1 the reward is the smallest. However, as the final time increases, the value of
z1 for which the reward is maximum approaches 1, and with the feedback ψs̄(z0) the reward

40



Figure 2.1: State space trajectories with feedback ψs̄. The black line represents the invariant
set {(x, s) : x + s = sin}. Haldane growth function (µ̄ = 0.74, Ks = 9.28, Ki = 256) with
sin = 100, umax = 3.
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Figure 2.2: State space trajectories with feedback ψs̄(z0) for z0 ∈ {0.2, 0.7, 1.5, 3} and s0 ∈
{10, 60, 75}. The color and type of line indicates the value of z0. Contois growth function
(µmax = 0.74, Ks = 1) with sin = 100, umax = 1.5.
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Figure 2.3: Normalized average reward JN(T, z1) as a function of z1 ∈ [z0, 1] and T ∈ [0.5, 6]
for the initial condition (x0, s0) = (20, 20). Contois growth function (µmax = 0.74, Ks = 1)
with sin = 100, umax = 1.5.
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Figure 2.4: Normalized average reward JN(T, z1) as a function of z1 ∈ [1, z0] and T ∈ [0.5, 6]
for the initial condition (x0, s0) = (70, 60). Contois growth function (µmax = 0.74, Ks = 1)
with sin = 100, umax = 1.5.
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Figure 2.5: On the left, t 7→ x(t) (solid lines) and t 7→ s(t) (dashed lines) with feedbacks
ψ ∈ {ψs̄(z0), ψs̄(1), ψS} and on the right, the corresponding open loop controls. Contois
growth function (µmax = 0.74, Ks = 1) with sin = 100, umax = 1.5 and initial condition
(x0, s0) = (30, 2).

is the smallest. In particular, we can see that the best of the feedbacks ψs̄(z1) depends on the
final time.

This leads us to consider a new feedback that keeps the system in the set of maximizers

S =
{

(s, z) ∈ D : s = s̄(z)
}
. (2.38)

We therefore introduce the following most rapid approach feedback to S

ψS(s, z) =

∣∣∣∣∣∣
0, if s > s̄(z),
ū(s, z), if s = s̄(z),
umax, if s < s̄(z),

(2.39)

where ū(s, z) is the feedback that keeps the system in the set S, that we compute by differ-
entiating with respect to time the equation s(t) = s̄(z(t)).

We first illustrate this feedback in Figure 2.5 where we show the states as functions of
time and the open loop realizations of the feedbacks ψs̄(z0), ψs̄(1) and ψS . Next, in Figure 2.6
we compare the reward of the feedback ψS to the others and we can notice that the reward
associated with the feedback ψS is always one of the best, although for any given final time
it is possible to do better with a feedback ψs̄(z1) for the right z1.

Note also that the feedback ψS will drive the system asymptotically towards the state
(s, z) = (s̄, 1) so that it is also optimal for the infinite horizon problems (2.14), (2.15) and
(2.23).

In Figure 2.8, we show the difference between the rewards of the feedbacks ψs̄(1) and ψs̄(z0)

as a function of the initial condition for various final times. From this, we see that the
feedback that is best changes, depending on the initial condition and the horizon considered.

The sub-optimality estimation (2.32) is affected similarly, as this bound depends on the
initial condition and in particular, the distance to the set {z = 1} has a major impact on
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Figure 2.6: On the left, average reward as function of final time T 7→ JT (ξ, ψ(·)) with
feedback ψ ∈ {ψs̄(z0), ψs̄(z1), ψs̄(1), ψS} with z0 = 0.25 and z1 = 0.625. On the right, the
corresponding state space trajectories. Contois growth function (µmax = 0.74, Ks = 1) with
sin = 100, umax = 1.5 and initial condition (x0, s0) = (20, 20).
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Figure 2.7: On the left, average reward as function of final time T 7→ JT (ξ, ψ(·)) with feedback
ψ ∈ {ψs̄(z0), ψs̄(z1), ψs̄(1), ψS} with z0 = 1/3 and z1 = 2/3. On the right, the corresponding
state space trajectories. Contois growth function (µmax = 0.74, Ks = 1) with sin = 100,
umax = 1.5 and initial condition (x0, s0) = (10, 70).
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Figure 2.8: Difference between rewards associated to the feedbacks ψs̄(1) and ψs̄(z0) as
functions of the initial condition and for various final times : (x0, s0) 7→ J(0, x0, s0, ψs̄(1)(·))−
J(0, x0, s0, ψs̄(z0)(·)). Contois growth function (µmax = 0.74, Ks = 1) with sin = 100, umax =
1.5.

the sub-optimality of the considered feedbacks. In addition, the growth function has an
influence on our estimation, through Wz1(·), and we illustrate this in Figure 2.9 by plotting
this value function for the Haldane and the Contois growth function. Observe that, for
the Contois growth function, Wz1(·) varies significantly with the initial biomass and thus
the sub-optimality bound as well. This can be attributed to the dependence of the Contois
growth function on biomass concentration and this effect is not seen with the Haldane growth
function, which depends only on the substrate.

We finish this section with a Lemma that shows that the considered growth functions
satisfy our assumptions.

Lemma 2.19 For all positive µmax, µ̄, Ks and Ki the Monod, Haldane and Contois growth
functions satisfy Assumptions 2.1 and 2.17.

Proof. Notice that the function φ with the Monod or Haldane function does not depend on
z. Let us show that the function µM is increasing and strictly concave

µ′M(s) =
µmaxKs

(Ks + s)2
> 0, µ′′M(s) = −2

µmaxKs

(Ks + s)3
< 0.

Now, since the function φ(·, 1) is non-negative on [0, sin] and vanishes at 0 and sin it admits
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Figure 2.9: Auxiliary value function (x0, s0) 7→ Wz1(0, x0, s0) with z1 = 1. On the left,
Contois growth function (µmax = 0.74, Ks = 1, umax = 1.5) and on the right, Haldane growth
function (µ̄ = 0.74, Ks = 9.28, Ki = 256, umax = 3). In both cases, sin = 100 and T = 2.

a maximum on ]0, sin[. One has

d

ds
φ(s, 1) = µ′M(s)(sin − s)− µM(s), (2.40)

d2

ds2
φ(s, 1) = µ′′M(s)(sin − s)− 2µ′M(s). (2.41)

The function φ(·, 1) is thus strictly concave on ]0, sin[, which provides the uniqueness of its
maximum.

For the Haldane function, we have

d

ds
φ(s, 1) = µ̄

sinKs − 2Kss− s2(1 + sin
Ki

)

(Ks + s+ s2

Ki
)2

such that d
ds
φ]0, 1) > 0 and d

ds
φ(sin, 1) < 0 and since d

ds
φ(·, 1) is continuous it must have

an odd number of zeroes in the interval ]0, sin[. But notice that the equation d
ds
φ(s, 1) = 0

admits at most 2 solutions and φ]0, 1) = φ(sin, 1) = 0 and therefore φ(·, 1) has a unique
maximum.

For the Contois function, notice that µC(s, x) = µM(s/x) so that,

φ(s, z1) = µM

(
s

(sin − s)z1

)
(sin − s),

for z1 ∈ [min(z0, 1),max(z0, 1)], and since s 7→ s
(sin−s)z1 is an increasing function, φ(·, z1) is

also strictly concave.
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2.6 Conclusions

In this work, we have proposed a novel approach to obtain autonomous sub-optimal feed-
backs for the open problem of maximizing biogas production in the chemostat model out of
equilibrium. These controllers generalize the “most-rapid approach path” feedback control
that is known to be optimal when the initial condition belongs to a certain manifold. Indeed,
we obtain a family of feedback controls of similar structure, for which we are able to give
bounds on the sub-optimality. This last point merits to be underlined as it usually difficult
to evaluate a priori the performances of sub-optimality without having to determine or com-
pute the optimal solution. This choice gives also flexibility for the practitioners to choose
a controller depending on the time horizon or simply to pick one when the finite horizon is
poorly known (as each controller guarantees a sub-optimality bound), or to adjust it when
the horizon is changed. For infinite horizon we show that each controller guarantees the same
optimal averaged cost.

This methodology, based on a framing of the dynamics, could be investigated for a larger
class of dynamics, such as the two-step model, and be the matter of future work.

Appendix: A Particular Example

We construct here a control u(·) for which the average rewards (2.12) and (2.13) do not
coincide. For this, let us consider an initial condition ξ = (s0, z0) = (ε, 1), with ε ∈]0, sin[
fixed. The set {(s, 1) ∈ R2

+ : s ∈ [0, sin]} is clearly invariant for the dynamics (2.3) and
therefore the chosen initial condition ensures that trajectories (sξ,u(·), zξ,u(·)) remains in this
set.

Now consider the 2 following paths :

(A) Starting at ξ := (ε, 1), use the control u = umax to reach a prescribed level of substrate
s∗ ∈ (ε, sin[ in finite time. Then, apply the control u = 0 to return to ξ in finite time,
which is possible by Assumption 2.3. Denote this control by u∗, and let t∗ be the (finite)
time necessary to follow this path and I∗ be the biogas produced by this path.

(B) Starting at ξ := (ε, 1), use u = µ(ε, sin − ε) to stay at (s = ε, z = 1) for any time
interval.

Then, define control u(·) as follows:

• For t ∈ [0, t∗], set u(t) = µ(ε, sin − ε) so that the biogas production for this period is
Iε := t∗φ(ε, 1).

• For t ∈]22kt∗, 2
2k+1t∗], with k ∈ N, set u = u∗ in order to follow the path (A) repeatedly

22k times. For each of these intervals the biogas production is 22kI∗.

• For t ∈]22k+1t∗, 2
2k+2t∗], with k ∈ N, set u = µ(ε, sin − ε). For each of these intervals
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the biogas production is 22k+1Iε.

Thus, when we apply control u(·) up to a time 22N t∗, for a given N > 1, the average
biogas production is computed as follows

KN =
1

22N t∗

∫ 22N t∗

0

φ(sξ,u(t), 1) dt

=
1

22N t∗

(
Iε +

N−1∑
k=0

22kI∗ +
N−1∑
k=0

22k+1Iε

)

=
I∗ + 2Iε

t∗

N∑
j=1

2−2j +
Iε

22N t∗

which yields

KN −→ K∞ :=
I∗ + 2Iε

3t∗
as N → +∞.

We have used here the fact that the sum sN =
∑N

j=1 2−2j converges to 1/3. Indeed, this
follows from the identity

4sN =
N∑
j=1

22(−j+1) =
N−1∑
i=0

2−2i = 1 + sN − 2−2N .

However, for the same control u(·), the average biogas production is, up to time 22N+1t∗,
computed as follows

LN =
1

22N+1t∗

∫ 22N+1t∗

0

φ(sξ,u(t), 1) dt

=
1

22N+1t∗

(
22N t∗KN + 22NI∗

)
=

1

2

(
KN +

I∗
t∗

)
which yields

LN −→ L∞ :=
2I∗ + Iε

3t∗
as N → +∞.

Since s∗ > ε, it follows that I∗ > Iε, and consequently, L∞ > K∞. We thus obtain that

J
∞

(ξ, u(·)) > L∞ > K∞ > J∞(ξ, u(·)).
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Chapter 3

An Algorithm for Maximizing the
Biogas Production in a Chemostat

This chapter corresponds to the published article

Haddon, A. and Hermosilla, C.
An Algorithm for Maximizing the Biogas Production in a Chemostat.

J Optim Theory Appl (2019) 182:1150.
https://doi.org/10.1007/s10957-019-01522-x

3.1 Introduction

Biogas is a product of the anaerobic digestion process, in which several populations of mi-
croorganisms break down organic matter in the absence of oxygen. This process is an in-
teresting technology for the treatment of liquid and solid waste since the collected biogas is
mainly composed of methane and therefore can be used as a renewable energy source [85]. In
this context, it is relevant to develop control strategies that maximize methane production,
in order to increase the efficiency and sustainability of waste treatment. As a matter of fact,
a major reason that has been reported for the closing of anaerobic digestion plants, is the
insufficient profits associated with poor biogas production [9].

Substantial expertise is needed to operate the anaerobic digestion process properly as it is
a complex non-linear and unstable process. Although it is possible to use various inputs for
control, such as pH or alkalinity [44], the dilution rate (also called feeding rate) is considered
in general as the variable input. It is important to note that most studies on the control of
anaerobic digestion have focused primarily on process stability [76]. However, recently, some
works have incorporated the aspect of optimizing performance and, among these, a wide
range of control strategies have been used: PID controllers [36], expert systems [89], fuzzy
logic [29] and adaptive control [28], to mention a few strategies.

In this work, we address the problem of biogas production from an optimal control point of
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view. We focus our attention on the one reaction model in a chemostat. We are particularly
interested in providing a practical method to determine an optimal control in feedback form
for maximizing the production of biogas. The numerical scheme we propose for such purpose
(Algorithm 1) has been obtained by combining the two major techniques in optimal control,
namely, the Pontryagin Maximum Principle (PMP) and the Hamilton-Jacobi-Bellman (HJB)
equation. The PMP allows us to describe the structure of the optimal synthesis and the
singular curve in terms of a given parameter, while the HJB equation gives a practical way
to compute such a parameter.

As far as we are aware of, there are few works dealing with the dynamic optimization
problem of biogas production. Actually, due to the complexity of the problem, only models
with one or two bio-reactions have been considered [94, 7]. In addition, only problems on
well-mixed continuously stirred tanks have been studied, since the non-linearities and the
high dimension of a more complex bio-reactor model make the analysis of the associated
optimal control problem hard to handle. It is worth mentioning that models with only
few dynamic variables are capable of describing the qualitative behaviour of the anaerobic
digestion process [12]. The tradeoff between practical solvability and qualitative description
justifies the use of these simplified models, and in particular the one reaction model we study
in this paper.

The problem for a one reaction model was first considered in [99] and later solved for a
special set of initial conditions for which the model reduces to a one dimensional problem
[38]. More recently, the general one reaction model has been revisited to propose a sub-
optimal control for which there is an estimation of sub-optimality [46]. Let us mention that
the problem has also been considered in the infinite horizon case [47]. To the best of our
knowledge, a complete synthesis for the problem of maximizing biogas production over a
fixed finite horizon has not been addressed before, even for the single reaction model. This
work contributes in this direction, by proposing a candidate to optimal synthesis and giving
a practical way to compute it.

Notice that for general optimal control problems a wide range of algorithms have been
studied and implemented as open source software. Either based on Shooting methods, Dy-
namic Programming or Discretize-then-optimize methods such as Nonlinear Model Predictive
Control ; see for example [102, 37, 14, 114]. The problem we study in this paper can in prin-
ciple be solved numerically with any of these methods, provided that one knows exactly the
parameters of the model (which are hard to estimate in practice). However, as pointed out
earlier, the goal of studying simplified models is to provide a good picture of how an optimal
synthesis may look like (qualitative description) rather than giving a specific solution for the
maximization of biogas production problem.

This paper is organized as follows. In Section 2 we describe the problem at hand. In
Section 3 we analyze the optimality conditions and we identify a class of extremal controls. In
Section 4, we explain the algorithm we propose and we provide some numerical simulations in
Section 5. Finally, in the appendix, we give an analytic proof (based on the HJB approach) for
the optimality of the feedback law we found in Section 3 for a special set of initial conditions.
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3.2 Problem Statement

In this work, we consider a single reaction model of the anaerobic digestion process where
a substrate of concentration s is transformed by a microbial population of concentration x
into biogas. The bioreactor is assumed to be continuously-fed and well-mixed, for which the
mass balance equations are the classical chemostat equations [69] :

ẋ = µ(s)x−Dx, ṡ = D(sin − s)− µ(s)x, (3.1)

where sin > 0 is the substrate inflow concentration and D is the dilution rate, which will
be the controlled variable (it is assumed to be a measurable function of time). We suppose
here, without loss of generality, that the units are chosen such that the yield coefficient of
the reaction is equal to 1.

The specific growth rate of the microorganisms µ(·) is usually chosen of Monod type (µM)
or of Haldane type (µH): given µmax, K,Ki > 0

µM(s) := µmax
s

K + s
, µH(s) := µmax

s

K + s+ s2/Ki

. (3.2)

However, at first we will study the optimal control problem for a rather general class of
functions, which in particular covers the Monod and Haldane cases.

Standing Assumptions: The growth rate of the microorganisms µ(·) is a twice contin-
uously differentiable function on [0,+∞[ such that

µ(0) = 0, µ(s) > 0 and
d

ds

(
µ′(s)

µ(s)2

)
6= 0, ∀s > 0.

In the Monod and Haldane cases we have that

µ′M(s)

µM(s)2
=

K

µmaxs2
and

µ′H(s)

µH(s)2
=

K

µmaxs2
− 1

µmaxKi

respectively. Thus in particular, they satisfy our Standing Assumptions.

The biogas flow-rate is assumed proportional to the growth rate of the microorganisms
[4] and therefore the biogas production during a time interval [t0, T ] for a given substrate
concentration s(·) and a given microbial population concentration x(·) is∫ T

t0

µ(s(t))x(t)dt.

The goal of the problem we deal with here is to maximize the biogas production over a
finite horizon [t0, T ] for a given initial condition x0, s0 > 0 by controlling the dilution rate
t 7→ D(t) of the bioreactor under the constraint that D(t) ∈ [0, Dmax], where Dmax > 0 is the
maximal dilution rate allowed.
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In summary, the optimal control problem that we will study is the following

Maximize

∫ T

t0

µ(s(t))x(t)dt

over all D : [t0, T ]→ [0, Dmax] measurable

such that ẋ = µ(s)x−Dx, x(t0) = x0,

ṡ = D(sin − s)− µ(s)x, s(t0) = s0,

0 ≤ s(t) ≤ sin and 0 ≤ x(t), ∀t ∈ [t0, T ].

(Pbio)

With a slight abuse of notation, we may sometimes write

J(t0, x0, s0, ψ) :=

∫ T

t0

µ(s(t))x(t)dt

for the biogas production associated with a control ψ : R2 → [0, Dmax] in feedback form and
some initial conditions (x0, s0) = (x(t0), s(t0)). Under these circumstances, the functions s(·)
and x(·) denote a solution of control system (3.1) in closed-loop form associated with these
data.

Remark Since feedback controls ψ : R2 → [0, Dmax] are not necessarily continuous functions
of the state variables, the classical theory of ordinary differential equations (ODEs) cannot
be evoked for ensuring the existence and uniqueness of solutions to the ODEs system:

ẋ = µ(s)x− ψ(s, x)x, ṡ = ψ(s, x)(sin − s)− µ(s)x.

In our setting, the feedback controls are going to be regular enough to ensure the well-
posedness (existence and uniqueness) of the control system (3.1) in closed-loop form. This is
due to the fact that the feedback controls considered later on have an underlying stratified
structure and so they can be handled with a tailored ODEs theory; see for instance [54].

3.2.1 About the State-Constraints

Let us point out that in the formulation of the problem we have included state-constraints
over the system, described by a set K := [0,+∞[×[0, sin]. In the rest of the paper this
restriction will be disregarded. The main reason for doing so is that the system (3.1) is
invariant on K (see for example [21, Theorem 4.3.8]). Indeed, the set-valued map

F (x, s) := {(µ(s)x−Dx,D(sin − s)− µ(s)x) : D ∈ [0, Dmax]}

is locally Lipschitz continuous, has linear growth, has nonempty compact and convex images
and satisfies the invariance condition F (x, s) ⊆ TK(x, s) for any (x, s) ∈ K; where TK
stands for the Contingent Cone. The last affirmation comes from the fact that F (0, s) ⊆
{0} × [0,+∞[ for any s ∈ [0, sin] and

F (x, 0) ⊆]−∞, 0]× [0,+∞[, F (x, sin) ⊆ R×]−∞, 0[, ∀x > 0.
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By similar arguments we can see that the set {0} × [0, sin] is also invariant, which means
that no trajectory of the system that starts from x(t0) = x0 > 0 and s(t0) = s0 ∈]0, sin[ will
reach that set. Moreover, the fact that F (x, sin) is contained in R×] −∞, 0[ for any x > 0
implies that no trajectory can reach the level s = sin provided that s(t0) < sin. Also, note
that for any x ≥ 0 we can find sx > 0 small enough such that D(sin − sx) − µ(sx)x ≥ 0
for any D ∈]0, Dmax]. Moreover, a trajectory of (3.1) associated with D = 0 cannot reach
the level s = 0 in finite time, otherwise there would be two backward solutions to the
corresponding ODE starting from the same point. In practice, this means that whenever the
initial conditions are taken such that s0 ∈]0, sin[ and x0 > 0, we will have that the condition
over the states of the system holds, and is even stronger, in the sense that we will also have
that

0 < s(t) < sin and 0 < x(t), ∀t ∈ [t0, T ]. (3.3)

3.3 Optimality Conditions

The preceding discussion implies in particular that admissible trajectories exist for the opti-
mal control problem (Pbio). Furthermore, since the objective function to be maximized does
not depend explicitly on the control function D(·), standard assumptions that guarantee the
existence of optimal control can be evoked (for example [20, Theorem 23.11]). Thus in the
rest of the paper we might assume that optimal trajectories for the maximization of biogas
production problem exists and focus on optimality condition to understand and approximate
such solutions. Also, since we are mainly interested in the case that the initial conditions
are such that s0 ∈]0, sin[ and x0 > 0, we will assume, unless otherwise stated, that optimal
trajectories satisfy (3.3).

3.3.1 Pontryagin Maximum Principle

We begin our study of problem (Pbio) by establishing necessary conditions of optimality
with the Pontryagin Maximum Principle (PMP) [20, Corollary 22.3]. For this we set the
Hamiltonian H : R2 × R2 × [0, Dmax]→ R as

H(x, s, px, ps, D) := µ(s)x+ ps(D(sin − s)− µ(s)x) + px(µ(s)x−Dx). (3.4)

We consider an optimal control D(·) of (Pbio) and its associated states x(·) and s(·), solution
of (3.1) with initial condition (x0, s0) = (x(t0), s(t0)). Then, the PMP states that there exist
adjoint states ps, px : [t0, T ]→ R satisfying, for almost every t ∈ [t0, T ], the adjoint equations

ṗx = Dpx − µ(s)(1 + px − ps), ṗs = Dps − µ′(s)x(1 + px − ps), (3.5)

the transversality condition px(T ) = ps(T ) = 0 and the maximum condition, for almost every
t ∈ [t0, T ],

H(x(t), s(t), px(t), ps(t), D(t)) = max
d∈[0,Dmax]

H(x(t), s(t), px(t), ps(t), d). (3.6)
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In addition, since the Hamiltonian does not depend explicitly on time, it is constant, which
means that for some c = c(t0, x0, s0) ∈ R we have

H(x(t), s(t), px(t), ps(t), D(t)) = c, a.e. on [t0, T ]. (3.7)

This, along with the transversality condition, yields c = µ(s(T ))x(T ) > 0.

Let us call extremal trajectory and extremal control to any trajectory (x(·), s(·), px(·), ps(·))
and control D(·) satisfying (3.1)-(3.5)-(3.6)-(3.7).

Since the Hamiltonian is affine in the control variable, an extremal control will depend on
the sign of the commutation function

φ(t) :=
∂

∂D
H(x(t), s(t), px(t), ps(t), D(t)) = ps(t)(sin − s(t))− px(t)x(t).

We then have that D(t) = 0 if φ(t) < 0 and D(t) = Dmax if φ(t) > 0, while no information
can be directly obtained from the PMP in the case φ(t) = 0.

We recall that a singular arc is a time interval during which we have φ(t) = 0 and since
this equation is valid along a singular arc, we also have d

dt
φ(t) = 0. Therefore, during a

singular arc the state variables and the adjoint states satisfy the following equations

(sin − s)ps − xpx = 0, µ′(s)(sin − s)(1 + px − ps) = µ(s). (3.8)

With this, we can get an equation that the state variables satisfy during a singular arc, that
depends only on the constant value c of the Hamiltonian. Indeed, when the commutation
function vanishes, we have

c = µ(s)x(1 + px − ps)
and using (3.8) we get

cµ′(s)(sin − s) = µ(s)2x. (3.9)

We now define the following function, for h > 0 given

xh(s) := h
µ′(s)(sin − s)

µ(s)2
, 0 < s < sin.

Then, from (3.9), we have that the extremal state trajectories during the singular arc remain
in the graph of s 7→ xc(s). This means that if we knew the value of c then we would be able
to construct the singular arc and construct an admissible extremal control in feedback form
for the optimal control for problem (Pbio).

Remark In the Monod and Haldane cases, we have that the curve described above has,
respectively, the form

xMh (s) :=
hK(sin − s)
µmaxs2

, xHh (s) :=
hK(sin − s)
µmaxs2

− h(sin − s)
µmaxKi

.

Remark Note that in general the curve xh(s)→ 0 when s→ sin, and xh(s)→ +∞ if s→ 0

provided that µ′(s)
µ(s)2 → +∞ as s→ 0; this is for instance the case of the Monod and Haldane

growth rate functions.
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3.3.2 Construction of Extremal Controls

To identify the extremal controls, we start by constructing explicitly a control that drives
the system to a singular arc associated with a given h > 0.

We first need to compute the control Dh that keeps the system on the singular curve
{(xh(s), s) : 0 < s < sin}. For this, we differentiate with respect to time the relation x(t) =
xh(s(t)) to get

µ(s)xh −Dhxh =
(
Dh(sin − s)− µ(s)xh

)
∂sxh

and we then have the following expression for the control on the singular arc

Dh(s) =
µ(s)xh(s)(1 + ∂sxh(s))

xh(s) + (sin − s)∂sxh(s)
, (3.10)

with

∂sxh(s) = h

(
d

ds

(
µ′(s)

µ(s)2

)
(sin − s)−

µ′(s)

µ(s)2

)
, ∀s ∈]0, sin[. (3.11)

Our Standing assumptions, in particular the fact that d
ds

(
µ′(s)
µ(s)2

)
6= 0 implies that Dh(s) is

well defined (as a real valued function) for any s ∈]0, sin[.

The control Dh is not necessarily an admissible control for the problem at hand. For some
s ∈]0, sin[ it could happen that Dh(s) 6∈ [0, Dmax]. We assume that the singular control Dh(s)
is admissible only on a bounded interval Is where the bounds s0 and smax are defined as the
solutions of

Dh(s
0) = 0 and Dh(s

max) = Dmax. (3.12)

Remark It is straightforward to see that the control on the singular curve associated with
a Monod growth rate function is given by

DM
h (s) =

hK(2sin − s)− µmaxs
3

2s(K + s)(sin − s)
, ∀s ∈]0, sin[.

It follows that DM
h (s) → +∞ if s → 0. However, the behavior of DM

h (s) when s → sin

depends on the data of the problem. As a matter of fact

lim
s→sin

DM
h (s) =


+∞, if hK > µmaxs

2
in,

−∞, if hK < µmaxs
2
in,

2µmaxsin
K+sin

, if hK = µmaxs
2
in.

This means that, depending on the data of the problem, singular optimal trajectories may
not occur at all; for instance if DM

h (s) > Dmax for every s ∈]0, sin[. We plan to study this
issue in more details and for general growth rate functions elsewhere.

For (s, x) 6∈ Is × xh(Is), we extend the singular curve such that the control to stay on
that curve is equal to 0 or Dmax. For this we integrate the dynamics backwards with D = 0
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(respectively D = Dmax) starting from s0 (respectively smax). We therefore have the following
singular curve :

Gh :=


(
xh(s), s

)
: s ∈ Is(

x(τ, xh(s
0), 0), s(τ, s0, 0)

)
: τ 6 0(

x(τ, xh(s
max), Dmax), s(τ, smax, Dmax)

)
: τ 6 0

 (3.13)

where we denote s(τ, smax, Dmax) the value at time τ of the solution with control Dmax starting
at smax at time τ = 0 and similarly for x(τ, xh(s

max), Dmax), x(τ, xh(s
0), 0) and x(τ, xh(s

0), 0).

Note that with D = 0 we have ẋ+ṡ = 0 so that the trajectory {
(
x(τ, xh(s

0), 0), s(τ, s0, 0)
)

:
τ 6 0} corresponds to the graph of the mapping s 7→ −s+ s0 + xh(s

0). This is a decreasing
function of s and with D = 0 the trajectories are such that s(t) is also decreasing and
therefore {

(
x(τ, xh(s

0), 0), s(τ, s0, 0)
)

: τ 6 0} corresponds to the set{(
− s+ s0 + xh(s

0), s
)

: s0 < s < sin,−s+ s0 + xh(s
0) > 0

}
. (3.14)

The singular curve Gh divides the state space in 2 sets on which the control must be
either 0 or Dmax and we thus denote G0

h (respectively Gmax
h ) the set on which the control is

0 (respectively Dmax).

To distinguish these sets we use again the fact with D = 0 the trajectories are such that
s(t) is decreasing and therefore either the trajectory reaches the singular curve or approaches
asymptotically the set {(x, 0) : x > 0}. This corresponds to determining whether there
exists a point (−s+ x0 + s0, s) that belongs to Gh for s ∈]0, s0]. We then have the following
expression for G0

h

G0
h = {(x, s) : ∃ s̃ 6 s such that (−s̃+ x+ s, s̃) ∈ Gh}

and then Gmax
h := R2

+ \ (G0
h ∪Gh).

With this, we have the following family of feedback controls

ψh(x, s) =


0, if (x, s) ∈ G0

h,

Dmax, if (x, s) ∈ Gmax
h ,

Dh(s), if (x, s) ∈ Gh.

(3.15)

An example of the trajectoires obtained with this feedback is show in Figure 3.1. Note
that, because of the way the feedback control ψh has been constructed, solution of related
the closed-loop system do exist and are uniquely determined by the initial data.

3.3.3 Hamilton-Jacobi-Bellman Equation

In order to make the feedback law (3.15) a suitable candidate to optimal control, we now need
to identify the value of the Hamiltonian for a given initial condition and initial time, that is,
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Figure 3.1: Example of trajectories obtained with feedback ψh with h = 2 and Monod growth
function (µmax = 1.2, K = 7.1), Dmax = 0.7 and sin = 10. The thicker lines correspond to
the singular curve Gh.

we need to calculate or approximate c. For this purpose, we use the Hamilton-Jacobi-Bellman
(HJB) equation, motivated by the fact that the cost associated with an optimal control, seen
as a function of the initial data, can be completely characterized by an appropriate HJB
equation.

The value function for the production of biogas problem (without state constraints) is

V (t0, x0, s0) := sup
D(·)

{∫ T

t0

µ(s(t))x(t)dt :
ẋ = µ(s)x−Dx, x(t0) = x0,

ṡ = D(sin − s)− µ(s)x, s(t0) = s0

}
where the maximum is taken over all D : [t0, T ]→ [0, Dmax] measurable. It is not difficult to
see that, thanks to the continuity of the trajectories of the control system (3.1) with respect
the initial data, the value function (t0, x0, s0) 7→ V (t0, x0, s0) is continuous. We have already
discussed that optimal controls do exist, and then the supremum is actually a maximum.
Furthermore, because of the invariance of the set [0,+∞[×[0, sin] with respect to the control
system (3.1), this value function agrees with the value function of the original problem (Pbio)
with state constraints. Let us mention that problems with state constraints are considerably
harder to deal with and so the fact stated above simplifies considerably the ensuing analysis
(cf. [55]).

The HJB equation for the problem we are dealing with is

∂tu+ sup
D∈[0,Dmax]

H(x, s, ∂xu, ∂su,D) = 0, in ]−∞, T [×R2, (3.16)

where H is the Hamiltonian given in (3.4). Existence and uniqueness of solutions in the
viscosity sense for HJB equations is a well-known and studied fact, see for instance [3]. As
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a matter of fact, the value function V is the unique viscosity solution to (3.16) that satisfies
the terminal condition

u(T, x, s) = 0, ∀x, s ∈ R.

Furthermore, the HJB equation and the PMP are related via the following lemma, which
links the derivatives of the value function with the adjoint arcs.

Lemma 3.1 ([3, Theorem III.3.42]) Under the Standing Assumptions, a measurable func-
tions D : [t0, T ] → [0, Dmax] maximizes (Pbio), the production of biogas problem, if and only
if the maximum condition (3.6) holds and

(c, px(t), ps(t)) ∈ ∂+V (t, x(t), s(t)), a.e. on [t0, T ].

where c = H(x(t), s(t), px(t), ps(t), D(t)) for a.e. t ∈ [t0, T ] and

∂+u(z) :=

{
q ∈ Rn : lim sup

y→z

u(y)− u(z)− q>(y − z)

|y − z|
≤ 0

}
stands for the viscosity superdifferential of a function u : Rn → R.

The preceding lemma implies that whenever the value function is differentiable at (t0, x0, s0),
we should have that

(px(t0), ps(t0)) = ∇(x0,s0)V (t0, x0, s0) and c = −∂t0V (t0, x0, s0).

This fact is the key point we use for proposing an algorithm for solving the production of
biogas problem. Indeed, we have seen that the control that maximizes the Hamiltonian is
ψh given by (3.15), where h > 0 is the (constant) value of the Hamiltonian. The value of the
Hamiltonian can be obtained, for example, by evaluating at initial time:

h = H(x0, s0, px(t0), ps(t0), ψh(x0, s0))

From the previous section, we can deduce that ψc is the optimal control associated with
optimal singular trajectories (it is the unique candidate to be an extremal control in this
case). Also, in the appendix we show that ψc is the optimal control for a particular choice
of initial conditions1. If ψc is actually an optimal control, we can write the value function as
the cost of the control ψc, that is, V (t0, x0, s0) = J(t0, x0, s0, ψc). With Lemma 3.1 we then
get

c = H(x0, s0,∇(x0,s0)J(t0, x0, s0, ψc), ψc(x0, s0))

Thus, using the HJB equation (3.16), we also have

c = −∂t0J(t0, x0, s0, ψc) (3.17)

In other words, c is a fixed point of the mapping h 7→ −∂t0J(t0, x0, s0, ψh). Hence, if we are
able to compute or approximate a fixed point of the mapping h 7→ −∂t0J(t0, x0, s0, ψh) we
will be able to reconstruct an optimal synthesis for the production of biogas problem. In the

1The approach we have taken provides a new proof for the optimality of the synthesis already known for
the reduced model, that is, the case where sin = x0 + s0. To show consistency of our approach, the details
for this case have been included in the appendix.
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next section we will present an algorithm, one of the main contribution of this work, based
on a classical iterative scheme for finding a fixed point of a function by repeatedly computing
the image of the previous iterate.

Let us point out that the HJB equation is valid regardless of the structure of the optimal
control. This means that this equation can be seen as a certificate of optimality for the
feedback control (3.15), in the sense that if the algorithm converges, then the proposed
feedback control is a good approximation of an optimal control, because the value function
obtained with the feedback ψc is an approximated solution to the HJB equation.

3.4 An Algorithm for Maximizing the Production of

Biogas

We present now a way to compute the extremal feedback control ψc by solving the fixed
point equation (3.17) numerically, in order to get the value of the Hamiltonian c for any
initial condition (x0, s0) ∈]0,+∞[×]0, sin[.

3.4.1 HJB Fixed Point Algorithm

The algorithm we propose is based on a classical iterative scheme for finding a fixed point
of a function by repeatedly computing the image of the previous iterate. More precisely, if
the equation to be solved is F (h) = h for some given mapping F : Rd → Rd, then starting
from an initial guess h0, the numerical scheme consists in computing hn+1 = F (hn) for
n = 0, 1, 2, ... The algorithm is then considered to have converged to a fixed point when the
iterates stabilize to a given tolerance ε, specifically when ||hn+1 − hn|| < ε.

In our case, the function for which we need to compute a fixed point, −∂t0J(t0, x0, s0, ψh),
is composed of a partial derivative and therefore to estimate it numericaly with a finite
difference approximation, we must work with a discrete range of initial times. For N ∈ N, we
denote {tk0}k=1,..,N a set of initial times with constant step ∆t0 = tk+1

0 − tk0. We will therefore
compute a vector of fixed points c̃ = (ck) ∈ RN , where each ck will correspond to the value
of the Hamiltonian for the initial time tk0.

To obtain hn+1 from the previous iterate hn = (hkn) we start by computing for each tk0
the trajectories with the control ψhkn and the associated cost J(tk0, x0, s0, ψhkn) with standard
numerical integration tools. For this the singular curve Ghkn

must be first determined by
solving equations (3.12) to establish the admissible range [smax, s0] and then integrating
backwards to obtain

(
x(·, xh(smax), Dmax), s(·, smax, Dmax)

)
.

We can then approximate the partial derivative of the cost as

∂t0J(tk0, x0, s0, ψhkn) ≈
J(tk+1

0 , x0, s0, ψhk+1
n

)− J(tk0, x0, s0, ψhkn)

∆t0
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and if we set tN0 = T , we can use that J(T, x0, s0, ψh) = 0 to start the computations of these
partial derivatives, running through the range of initial times backwards beginning with tN−1

0

and ending with t10.

In summary, for a fixed initial condition (x0, s0) ∈]0,+∞[×]0, sin[ and final time T , the
algorithm is shown below.

Algorithm 1:

Input: N , MaxIterations, ε, h0

for n < MaxIterations do
for k = N − 1, ..., 1 do

Solve Dhkn
(s0) = 0 and Dhkmax

(smax) = Dmax

Compute singular curve Ghkn

Compute x(·, tk0, x0, s0, ψhkn), s(·, tk0, x0, s0, ψhkn) and J(tk0, x0, s0, ψhkn)

hkn+1 ← −(J(tk+1
0 , x0, s0, ψhk+1

n
)− J(tk0, x0, s0, ψhkn))/∆t0

if ||hn+1 − hn|| < ε then
return hn+1

The main issue that can prevent the convergence of this algorithm is the accumula-
tion of numerical errors that can propagate through the finite difference approximation of
∂t0J(t0, x0, s0, ψh). Indeed, since we need J(tk+1

0 , x0, s0, ψhk+1
n

) to compute hkn+1, any errors

made to get hk+1
n will propagate to hkn+1 and all following values hjn+1 for j < k. Another

consequence of this inter-dependance is that to have hkn converge, hk+1
n must have already

converged to a fixed point.

With these considerations in mind, it might seem unnecessary to compute the whole vector
hn+1 at every iteration and instead computing one fixed point at a time would appear to
be more efficient. An alternative algorithm would then consist in first iterating only on
hN−1
n until convergence, which is possible because we only need J(T, x0, s0, ψh). Then using

the obtained fixed point to get J(tN−1
0 , x0, s0, ψcK−1) we could move on to computing cK−2.

Repeating this process, we can thus find all the fixed points ck until reaching the desired
initial time. However, due to the accumulation of errors, to get the convergence of hjn with
a certain tolerance it is necessary to get the convergence of hkn for j < k with a smaller
tolerance. It is then complicated in practice to determine an efficient stoping condition that
guarantees the convergence of the last fixed point to the desired tolerance.

On the other hand, by computing the whole vector hn+1 at every iteration, we can
stop the algorithm when the vector has converged for the maximum norm, that is, when
maxk |hkn+1 − hkn| < ε. This guarantees that all components of the vector have converged to
a desired tolerance. In addition, the algorithm will keep iterating on the first components
(hN−1

n , hN−2
n , ...), which converge to the desired tolerance first, but as such it will keep on

reducing the errors automatically to achieve convergence of the last components (h1
n, h

2
n, ...).
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3.4.2 Initial Guess

Concerning the initial guess h0, recall that with the optimal control we have c = µ(s(T ))x(T ).
In most cases, we can broadly approximate this by taking hk0 = µ(s0)x0, for all k, and
Algorithm 1 will converge.

However, in the most difficult cases, this is not sufficient and the accumulation of errors
that were previously mentioned can cause the algorithm to diverge. In fact, the only problems
we encountered were when the solution has a bang-bang-singular arc control with a switch
from D = 0 to D = Dmax before reaching the singular arc. To deal with these cases, we
propose to first to identify an extremal candidate by solving the fixed point equation

c = µ
(
s(T, t0, x0, s0, ψc)

)
x(T, t0, x0, s0, ψc)

Then using the obtained fixed point as an initial guess for Algorithm 1, we can check the
optimality of the associated extremal candidate.

In this case, as we do not need to compute the partial derivative of the cost with respect
to initial time we do not need to compute the fixed points for a range of initial times simul-
taneously. Other than this, the algorithm to solve this equation is similar to the previous
and is shown below as Algorithm 2.

Algorithm 2:

Input: MaxIterations, ε
h0 ← µ(s0)x0

for n < MaxIterations do
Solve Dhn(s0) = 0 and Dhmax(smax) = Dmax

Compute singular curve Ghn

Compute x(·, t0, x0, s0, ψhn), s(·, t0, x0, s0, ψhn)
hn+1 ← µ(s(T, t0, x0, s0, ψhn))x(T, t0, x0, s0, ψhn)
if |hn+1 − hn| < ε then

return hn+1

3.5 Numerical Simulations

In this section, we illustrate the fixed point algorithm with the growth functions of Monod
and Haldane (3.2) with parameter values from [13].

In Figures 3.2 and 3.3, we show examples of optimal trajectories in state space for various
initial conditions but with the same initial and final times for each growth function. The
solutions are similar for both growth functions and there is both bang-singular arc and bang-
bang-singular arc optimal solutions. Note that, the singular curve varies for each initial
condition but that all trajectories that reach a singular arc finish with

s(T ) = s∗ = arg max
s∈[0,sin]

µ(s)(sin − s).
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Figure 3.2: Optimal trajectories in state space, for the Monod growth function (µmax = 1.2,
K = 7.1) with t0 = 0, T = 2.5, Dmax = 0.7 and sin = 10. The initial conditions
are on the left (x0, s0) = {(1, 3), (5, 1), (11, 2), (15.5, 4.5)} and on the right, (x0, s0) =
{(1, 5.5), (2, 6.5), (5, 7), (10, 7)}.

This is expected since c = µ(s(T ))x(T ) and using the expression for the singular curve (3.9)
evaluated at final time we get µ′(s(T ))(sin − s(T )) = µ(s(T )) and we recognize this as a
necessary condition for maximizing s 7→ µ(s)(sin − s).

Next, Figures 3.4, 3.5 and 3.6 each show optimal trajectories in state space for various
initial times but for fixed initial conditions and final time. We can see that the singular curve
varies for different initial times and the strategy can also change. For instance, in Figure 3.5,
we can see that for t0 = 1.875 the optimal trajectory corresponds to the control D = 0 and
as the initial time decreases, the optimal control switchs to a bang-bang-singular arc with
first D = Dmax and then D = 0 before reaching the singular arc.

Alongside each set of trajectories is also shown the corresponding values of the Hamiltonian
as a function of the initial time. Although the function t0 7→ c(t0) appears to be continuous
it is clearly not continuously differentiable everywhere and the points at which this function
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Figure 3.3: Optimal trajectories in state space, for the Haldane growth function (µmax =
0.74, K = 9.28, Ki = 256) with t0 = 0, T = 2, Dmax = 1 and sin = 100. The initial
conditions are on the left (x0, s0) = {(5, 10), (40, 5), (110, 1), (230, 23)} and on the right,
(x0, s0) = {(15, 40), (20, 60), (50, 70), (140, 70)}.
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and on the right, t0 7→ c(t0) value of the Hamiltonian as a function of initial time. Monod
growth function (µmax = 1.2, K = 7.1) with T = 1, Dmax = 0.7 and sin = 10.

is not smooth correspond to initial times when there is a change in the type of control. For
example, in Figure 3.4 we can see on the state space trajectories graph that the optimal
control for t0 = 0.5 is a single bang D = 0 whereas for t0 = 0.25 it is bang-bang with a
switch from D = 0 to D = Dmax and on the graph of t0 7→ c(t0) there is indeed a point of
irregularity near t0 = 0.4.

We illustrate the performance and convergence of Algorithm 1 and 2 in Figure 3.7 with
graphs of error as function of iterations : n 7→ |hkn+1− hkn|. For Algorithm 1, we can see that
for initial times close to the final time, the convergence is very fast. However, as the horizon
increases, not only is convergence slower but there is a limit for the errors and eventually
they stop decreasing. This is likely due to the numerical errors when computing the finite
difference approximation of ∂t0J(t0, x0, s0, ψh) since this behaviour is not seen for Algorithm 2
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Figure 3.5: For the initial condition (x0, s0) = (1, 4.5), on the left, optimal trajectories in
state space and on the right, t0 7→ c(t0) value of the Hamiltonian as a function of initial time.
Monod growth function (µmax = 1.2, K = 7.1) with T = 2.5, Dmax = 0.7 and sin = 10.
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Haldane growth function (µmax = 0.74, K = 9.28, Ki = 256) with T = 2, Dmax = 1 and
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which does not need the computation of ∂t0J(t0, x0, s0, ψh). Notice however, that Algorithm 2
requires more iterations but that the convergence accelerates at the end and reaches machine
precision.

3.5.1 Comparison with Bocop

Finally, we compare our feedback to the control obtained with the open source toolbox for
optimal control Bocop [102, 16]. This package implements a direct method that approx-
imates the optimal control problem by a finite dimensional optimization problem using a
time discretization.

Table 3.1 presents a performance comparison by looking at the biogas production of each
control and the relative difference. We can see that our feedback achieves nearly as much as
Bocop and that the difference is greater for the last 2 rows which correspond to trajectories
that are bang-bang-singular arc as in Figures 3.4 and 3.5.

Table 3.1: Performance comparaison with Bocop
(x0, s0) Biogas (ψc) Biogas (Bocop) Relative Difference
(3, 2) 3.2232 3.2235 9 · 10−5

(3, 6) 5.3285 5.3290 9 · 10−5

(1, 4.5) 1.8725 1.8729 2 · 10−4

(7, 8) 4.7904 4.7933 6 · 10−4

Next, in Table 3.2 we show some computational times associated with our feedback (for
various error tolerances ε) and Bocop. We can see that the time necessary to compute our
feedback is similar to the time reported by Bocop, although it is important to note that
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Figure 3.7: Error as a function of iterations : n 7→ |hkn+1 − hkn| of Algorithm 1 on the
left and of Algorithm 2 on the right. Monod growth function (µmax = 1.2, K = 7.1) with
T = 1, Dmax = 0.7 and sin = 10. On the left initial condition (x0, s0) = (2, 2) and on the left
(x0, s0) = (7, 8)

Bocop only computes the control for a single initial time, where as our algorithm for a range
of initial times.

Table 3.2: Computation time (in seconds) comparison with Bocop
(x0, s0) CPU time (ψc) ε = 10−4 CPU time (ψc) ε = 10−6 CPU time (Bocop)
(3, 2) 2.32 3.60 2.06
(3, 6) 1.37 1.74 1.74

3.6 Conclusions

In this work, we have given an algorithm to compute an extremal control for the problem
of maximizing biogas production for the classical model of the chemostat for a fixed finite
horizon. The extremal control is obtained in state feedback form which has advantages in
terms of robustness with respect to pertubations on the initial data. In order to achieve this
we first studied necessary optimality conditions thereby obtaining an analytical expression
of a family of extremal feedbacks. Then we use a sufficient optimality condition (the HJB
equation) to single out one of the extremal feedbacks as a candidate to optimal control. The
resulting algorithm is fast and converges rapidly in practice. As pointed out before, the
HJB equation can be seen as a test of optimality for the proposed feedback control (3.15),
in the sense that if the algorithm converges, then the proposed feedback control is a good
approximation of an optimal control. This fact has also been corroborated with the numerical
examples we have exhibited and the comparison done with Bocop.

Let us finally mention that the technique we have introduced in this paper is well suited
for the one reaction model. Some extensions to more general cases, such as two reactions
models, should be possible. This is work in progress.
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Appendix: Reduced Model

In this final, part we provide a HJB proof for the optimal synthesis for the reduced model,
that is, the case where the initial data satisfy sin = x0 + s0. In particular, we show how the
fixed point characterization of the optimal control can be used analytically in a special case
when the dynamics reduces to a single equation. A well known property of the chemostat
model is that the set I := {(x, s) ∈ R : x + s = sin} is invariant for the dynamics (3.1) and
thus, for initial conditions in I, the dynamics reduce to ṡ =

(
D−µ(s)

)
(sin− s). This special

case was solved in [38], with the following assumptions

(H1) The function s 7→ µ(s)(sin − s) has a unique maximizer s∗ on [0, sin].

(H2) The upper bound on the controls is such that Dmax > µ(s∗).

The optimal control is then D∗(s) = 0 if s > s∗, D∗(s) = Dmax if s < s∗ and D∗(s) = µ(s∗) if
s = s∗. Here, we will give another proof of the optimality of this control, by using the fixed
point characterization. First, we can identify the control D∗ as a control of the type (3.15)
where the singular arc is reduced to s = s∗. In other words, it corresponds to the control
ψh∗ where h∗ satisfies equation (3.9) for the singular arc with s = s∗, which in this case is
h∗µ′(s∗) = µ(s∗)2. Next, since s∗ is a maximizer we have µ′(s∗)(sin − s∗) − µ(s∗) = 0 and
therefore h∗ = µ(s∗)(sin − s∗).

To prove the optimality of ψh∗ , we must now show that h∗ is a fixed point of the mapping
h 7→ −∂t0J(t0, x0, s0, ψh). For this we first study the trajectories obtained with the feedback
control ψh∗ . We denote in the remainder of the section the right-hand side of the differential
equation for s(·) with control ψh∗ as f(s) := (ψh∗(s)− µ(s))(sin − s).

Notice that for s > s∗ we have f(s) = −µ(s)(sin − s) < 0 and for s < s∗ we have
f(s) = (Dmax − µ(s))(sin − s) > 0 from assumption (H2). Thus, s∗ is reachable from any
initial condition in I with control ψh∗ . We define the time t∗ when s∗ is reached, from
a given initial condition s0 ∈ [0, sin] and initial time t0 with control ψh∗ , that is, t∗ :=
inf {t > t0 : s(t, t0, s0, ψh∗) = s∗} . Finally, note that with control D = µ(s∗) the point s = s∗

becomes a steady state. Therefore the trajectories with control ψh∗ are

s(t) =

{
s(t, t0, s0, ψh∗), for t0 6 t 6 min(t∗, T ),

s∗, for min(t∗, T ) 6 t 6 T.

We can now compute ∂t0J(t0, x0, s0, ψh∗) and for this we need the following.

Lemma 3.2 For any initial condition (x0, s0) ∈ I, for the trajectories with control ψh∗ we
have ∂t0s(t) = −f(s(t)) at time t ∈ [t0, t

∗].

Proof. We can write the differential equation satisfied by s(·) as s(t) = s0 +

∫ t

t0

f(s(τ)) dτ

and differentiating we get ∂t0s(t) = −f(s0)+

∫ t

t0

f ′(s(τ))∂t0s(τ) dτ. This is a linear differential
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equation and the solution is ∂t0s(t) = −f(s0) exp

(∫ t

t0

f ′(s(τ)) dτ

)
. Now, as f(s(t)) does not

change sign for t ∈ [t0, t
∗) and since f(s(t)) is the derivative of s(t) we have

∫ t

t0

f ′(s(τ)) dτ =∫ s(t)

s0

f ′(s)

f(s)
ds = ln

(
f(s(t))

f(s0)

)
.

We are now in a position to prove the optimality of the feedback control proposed earlier.

Proposition 3.3 For any initial condition (x0, s0) ∈ I and for any initial time t0 such that
s∗ is reachable, that is when t∗ 6 T , we have ∂t0J(t0, x0, s0, ψh∗) = −µ(s∗)(sin − s∗), so that
ψh∗ is the optimal control.

Proof. We start by writing the cost as

J(t0, x0, s0, ψh∗) =

∫ t∗

t0

µ(s(t))(sin − s(t)) dt+ (T − t∗)µ(s∗)(sin − s∗)

differentiating with respect to t0 we get

∂t0J(t0, x0, s0, ψh∗) = −µ(s0)(sin − s0) +

∫ t∗

t0

∂s
(
µ(s(t))(sin − s(t))

)
∂t0s(t) dt.

Note that the terms with ∂t0t
∗ cancel out because s(t∗) = s∗. Now, using Lemma 3.2 we get

∂t0J(t0, x0, s0, ψh∗) = −µ(s0)(sin − s0)−
∫ t∗

t0

∂s
(
µ(s(t))(sin − s(t))

)
ṡ(t) dt

= −µ(s0)(sin − s0)−
∫ t∗

t0

d

dt

(
µ(s(t))(sin − s(t))

)
dt

= −µ(s∗)(sin − s∗).

We conclude by recalling that h∗ = µ(s∗)(sin − s∗) and therefore h∗ is a fixed point of
h 7→ −∂t0J(t0, x0, s0, ψh).
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Chapter 4

Spatially Heterogeneous Modelling of
an Upflow Fixed-bed Bioreactor

This chapter corresponds to ongoing work.

4.1 Introduction

Anaerobic digestion (AD) is a commonly used process for the removal of organic matter
in the treatment of wastewater and agricultural waste. Through a series of biochemical
reactions, organic compounds are degraded by microorganisms into biogas, a mixture of
methane and carbon dioxyde, which can be used as a renewable energy source, thereby
reducing the energetic cost of the process.

The design and operation of AD bioreactors raises a number of challenges, since anaerobic
digestion is known to be a complex, nonlinear and unstable process. The most common
type of reactor in use for AD is the continuously stirred tank reactor (CSTR), which uses a
mixing system to homogenize the reacting medium. Increasingly, reactors with heterogeneous
contents are being developed and implemented. However, the benefits of a spatial gradient
of concentration are unclear: while some experimental studies report better performance or
process stability with mixing [17, 60], others have observed the opposite [45, 101] or that
mixing has little impact on biogas production [62].

Mathematical modeling of bioreactors has been recognized as an important tool for the
analysis, control and optimization of the process [6] and in addition to giving a deeper insight
into the process, modeling allows to evaluate different bioreactor designs and operational
scenarios. Therefore, models have been developed that are capable of representing spatial
variations of reactor contents in order to study the impact of heterogeneity. These differ
from the classical models that focus on the biochemical kinetics and generally assume that
the reactor is perfectly mixed.

The first examples of such models, known as compartment models or gradostat [98],
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represent a reactor as a network of interconnected well-mixed zones and thus use systems
of ordinary differential equations, which facilitates analysis and simulation. Studies with
this type of models have found that the impact of heterogeneity depends on the graph of
interconnections [48, 81] and that mixing is either be beneficial [11], disadvantageous [10] or
has little impact [32].

The emergence of computer fluid dynamics (CFD) has allowed the simulation of models
of AD bioreactors that take into account complex physical phenomenons and although many
studies only consider fluid dynamics without bioreactions, this leads to complex models. This
has been widely used to study and optimize various mixing systems for CSTR [67, 103, 107,
112]. Recently however, simulations have been performed that consider bioreactions [70, 87]
and one study [113] has concluded that mixing has little impact on methane yield.

A third type of model attempts to find a compromise between model complexity and
physical accuracy. These models represent a reactor in 1 or 2 spatial dimensions with simple
fluid dynamics or even assuming that fluid velocity is constant in space to focus on the
bioreactions [31, 65, 75, 111]. The advantage of reducing complexity is that it allows a more
in depth analysis or the consideration of optimization problems [2, 23, 24, 74].

The first objective of the present work is to continue the development of this type of model
that offers a more accurate representation of spatial features than compartment models but
that is still tractable for optimization of bioreactor design and operation. In addition, we are
interested in investigating the impact of heterogeneity on organic matter removal and biogas
production.

For this, we model here a pilot scale reactor operated in Guadalajara-Jalisco (Mexico)
that is used to treat diluted tequila vinasses by anaerobic digestion and produce biogas.
This bioreactor is particularly interesting for the study of heterogeneity as it is half way in
between a CSTR and tubular unmixed reactor. Indeed, there is no internal mixing system
and instead, homogenization is achieved primarily by recirculating liquid from the output
back into the input and therefore, by changing the recirculation flow rate, this reactor can
either be operated as a CSTR or as a tubular reactor. For the moment, experiments were run
only with a high recirculation, but nonetheless, a spatial gradient was observed as data was
gathered by collecting substrate at different points along the main axis of the reactor. This
was used to develop a compartment model consisting of two interconnected homogeneous
zones [56]. This model was able to reproduce the spatial gradient roughly and the present
work aims at improving the representation of spatial features.

In Section 2, we present our model and the challenges of its numerical simulation. Section
3 deals with parameter estimation and model verification. Finally, in Section 4, we study the
impact of mixing on biological activity.
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4.2 Model

The bioreactor that we model here is a vertical cylinder with the liquid to be treated entering
at the bottom and exiting at the top (Figure 4.1). A portion of the liquid from the top is
recirculated and mixed with the influent before re-entering the tank at the bottom. Mixing
is also helped by pumping out liquid from the very bottom of the tank which is injected back
into the tank at the same height. Furthermore, both the inflows at the bottom are such that
the liquid enters nearly tangentially in order to induce a circular current in the bottom of
the tank. In the middle, there is a fixed bed made of vertical PVC tubes with honeycomb
structures (cloisonyl), which helps to fix the biomass.

The configuration of this reactor and in particular the arrangement of the input and output
flows, means that we need to consider a 3D model and can not use symmetry to reduce the
spatial dimensions for the lower and upper parts of the reactor. However, the PVC tubes
in the middle section of the reactor are narrow and once the fluid has entered one of these
tubes from the bottom, it remains in the same tube until it reaches the top section. We
can therefore consider that the contents inside each tube are homogeneous in the horizontal
directions and only model the spatial distribution of substances along the vertical dimension.
Furthermore, observations of this reactor have reported that most of the active biomass is
attached to the walls of the tubes and we will thus neglect the suspended biomass, considering
that the bio-reactions take place only in the middle section.

The result is a model of the reactor in 3 parts : bottom and top sections in 3D, where we
must consider the fluid dynamics to compute the spatial distribution of the substrates; and
the middle section, modelled as an array of parallel 1D tubular reactors, thereby reducing
considerably the complexity of the model is this section.

Figure 4.1: Schematic view of the reactor
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4.2.1 Fluid Dynamics

The vinasses that are treated are completely liquid and do not contain any solid material, so
that we can consider that the contents of the reactor are only in liquid or gas phases. We will
model the liquid phase as an incompressible viscous fluid, having similar physical properties
to water. It is important to note that the timescale of the dynamics of fluids is much shorter
than the biological timescales and therefore we can consider that the liquid flow remains in
a steady state, as long as the input-output flows are constant. We therefore use the steady
state Navier Stokes equations to compute the fluid velocity and pressure.

The gases produced by the biological activity collect at the top of the reactor and the
main impact gases can have on reactor dynamics is through pressure. Indeed, the solubility
of certain gases can vary with the pressure, such as CO2 for instance. This effect could be
taken into account by adding a boundary condition for the pressure at liquid-gas interface
at the top of the reactor, with the pressure of the gas phase obtained from the ideal gas
law. However, we are primarily interested in the biological activity and we can estimate
biogas production through the methane generation. Indeed, due to the very low solubility
of methane, its molar flow rate is unaffected by pressure. Then, since the pressure in the
Navier-Stokes equations is defined only up to a constant, we will neglect the dynamics of
gases and consider that the upper boundary of the liquid is fixed and similar to a wall.

We now detail the model equations for the fluid dynamics in the three sections of the
reactor.

Bottom This part is a cylinder ΩB ⊂ R3, with boundary ∂ΩB = Γin∪ΓBM ∪Γmi∪ΓBmo∪
ΓBw. The fluid enters on the side through Γin, leaves towards the middle section through
ΓBM and ΓBw is the wall of the tank, through which the fluid cannot pass. For the mixing
system, the fluid is pumped out through Γmo and renters through Γmi.

We denote the fluid velocity

U(t, x, y, z) = (ux(t, x, y, z), uy(t, x, y, z), uz(t, x, y, z)),

and p(t, x, y, z) the pressure and g the acceleration due to gravity. The steady state incom-
pressible Navier-Stokes equations in 3 dimensions are

U · ∇U − ν∆U +∇p = g,

∇ · U = 0.
(4.1)

Table 4.1: Physical parameters
Parameter Value Unit

g Acceleration due to gravity 9.81 m2 s−1

ν Fluid viscosity 10−3 m2 s−1

Ds Substrate diffusion coefficient 10−7 m2 s−1

Qin Influent flow rate 5 L h−1

Qr Recirculation flow rate 150 L h−1

Qm Mixing flow rate 1000 L h−1
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Concerning boundary conditions, for the walls of the bioreactor we consider a no-slip condi-
tion,

U(t, x, y, z) = 0 on ΓBw.

For the inflow and the mixing system, we consider classical Poiseuille flow profiles: let
UBin, Umi and Umo be unitary parabolic functions such that∫

ΓBin

UBindσ =

∫
Γmi

Umidσ =

∫
Γmo

Umodσ = 1.

We denote the total input flow rate as Qtot = Qr + Qin, Qin the influent flow rate, Qr the
re-circulation flow rate and Qm the mixing flow rate. If α is the angle between the direction
of injection and the outwards unit normal n, the boundary conditions are then

U(t, x, y, z) = Qtot

(
UBin(x, y, z) cosα, UBin(x, y, z) sinα, 0

)
on Γin,

U(t, x, y, z) = Qm

(
Umi(x, y, z) cosα, Umi(x, y, z) sinα, 0

)
on Γmi,

U(t, x, y, z) = Qm Umo(x, y, z)n on Γmo.

For the boundary ΓBM between the bottom and middle section, where the vertical inner
tubes begin, we will neglect a small interface layer and consider that the flow is completely
in the vertical direction and homogeneous in the horizontal directions. Denoting |ΓBM | the
surface area of the interface, we have

U(t, x, y, z) =
Qtot

|ΓBM |
(
0, 0, 1

)
on ΓBM .

Middle This is the section of the bioreactor with the honeycomb structure : there are large
tubes each divided in smaller tubes, for a total of Nt ≈ 100 tubes. We model these as 1D
vertical tubular bioreactors, indexed by a horizontal position (xi, yi) ∈ ΓBM , i ∈ {1, ..., Nt},
with each tube Ω(xi,yi) = [z0, z1]× {(xi, yi)}.

The fluid velocity in each tube Ω(xi,yi) is supposed constant in space, equal to the velocity
at the bottom interface ΓBM , so that we have

ux(t, x, y, z) = 0, uy(t, x, y, z) = 0, uz(t, x, y, z) =
Qtot

|ΓBM |
.

Top The upper section, ΩU is similar to the bottom although the fluid enters from the
bottom through ΓUM , leaves through ΓUo and does not pass through the walls ΓUw. The
fluid velocity satisfies the same Navier-Stokes equations (4.1) as in the bottom section but
the boundary conditions are

U(t, x, y, z) = Qb
|ΓBM |

(
0, 0, 1

)
on ΓUM

U(t, x, y, z) = 0 on ΓUw
U(t, x, y, z) = Qin UUo(x, y, z) on ΓUo

where UUo is again a unitary Poiseuille flow.
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4.2.2 Biokinetics

For the anaerobic digestion process, we consider the two reaction model of [13]. The first
reaction, acidogenesis, represents the degradation of organic matter S1 into volatile fatty
acids (VFA) S2 by acidogenic microorganisms B1. Then methanogenes B2 transform the
VFA into methane.

k1S1
r1−→ B1 + k2S2, k3S2

r2−→ B2 + k4CH4

Here reaction rate r1, r2 are the reaction rates and k1, k2, k3, k4 are the yield coefficients. In
[13] the reaction rate were taken as rk = µk(Sk)Bk, for k = 1, 2, where the specific growth
rates µ1, µ2 are the Monod and Haldane growth functions

µ1(s) = µmax1

s

Ks
1 + s

, µ2(s) = µmax2

s

Ks
2 + s+ s2/Ki

.

However in this work, in order to take into account the effects of crowding and the fact
that a majority of the biomass is fixed to the walls of the tubes in the middle section, we
will consider density dependent growth rates rk = µk(Sk)gk(Bk)Bk. Since we model the
tubes in 1 dimension, we consider that every point of these tubes there is a 2D colony of
microorganisms attached to the wall of the tube with the substrate passing through the
center. Biomass inhibition functions have been proposed, for a 2D dimensional colony of
microorganisms in [68] and we will consider the following function

gk(B) =
1

1 + ci
k

√
Bk

.

We now detail the model equation for the substrate and biomass concentrations in the
bottom, middle and top sections.

Table 4.2: Biological parameters
Parameter Value Unit

Sif
1 Influent COD concentration 6.5 g L−1

Sif
2 Influent VFA concentration 100 mmol L−1

µmax
1 Maximum biomass growth rate (Acidogenesis) 1.96 d−1

µmax
2 Maximum biomass growth rate (Methanogenesis) 1.14 d−1

Ks
1 Half saturation constant (Acidogenesis) 8.16 g L−1

Ks
2 Half saturation constant (Methanoogenesis) 14.44 mmol L−1

Ki Substrate inhibition constant (Methanogenesis) 416.77 mmol L−1

k1 Yield for COD degradation 28.35 -
k2 Yield for VFA production 186.45 -
k3 Yield for VFA consumption 58.25 -
k4 Yield for CH4 production (Methanogenesis) 453 -
τ1 Biomass death rate (Acidogenesis) 0.1 µmax

1 d−1

τ2 Biomass death rate (Methanogenesis) 0.1 µmax
2 d−1

ci
1 Biomass inhibition constant (Acidogenesis) 0.6 (g L−1)1/2

ci
2 Biomass inhibition constant (Methanogenesis) 0.8 (g L−1)1/2
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Bottom We suppose that there is no biomass in this section of the reactor and therefore
no reaction. The evolution of the substrate concentration Sk(t, x, y, z) for k = 1, 2 is modeled
by the following advection-diffusion equation

∂tSk + U · ∇Sk −Dk∆Sk = 0

where Dk is the diffusivity of the substrate Sk. The boundary conditions for the inflow and
the walls are

(Sk U +Dk∇Sk) · n = Sin
k U · n on Γin

∇Sk · n = 0 on ΓBw ∪ Γmi ∪ Γmo

where n is the outwards unit normal and Sin
k is the substrate inflow concentration, for k = 1, 2

Sin
k =

QrS
r
k +QinS

if
k

Qr +Qin

where Srk is the substrate recirculation concentration coming from the upper section of the
bioreactor which is computed as, denoting ΓUo the section of the boundary where the liquid
leaves the reactor,

Srk(t) =
1

ΓUo

∫
ΓUo

Sk(t, x, y, z)dσ

For the auxiliary mixing system, we take similar boundary conditions

(Sk U +Dk∇Sk) · n = Smix
k U · n on Γmi

∇Sk · n = 0 on Γmo

with as before

Smix
k (t) =

1

ΓBmo

∫
ΓBmo

Sk(t, x, y, z)dσ

At the interface with the middle section ΓBM , we could consider flux equality conditions

(Sk U +Dk∇Sk) · n
∣∣
ΩB

= (Sk U +Dk∇Sk) · n
∣∣
ΩM

on ΓBM

where ΩM is the middle section. However, it is well know that for advection-diffusion equa-
tions, when the diffusion coefficient is small, this type of interface conditions can be well
approximated by using the following artificial transparent boundary condition [49]

∇Sk · n = 0 on ΓBM .

Middle The various concentrations in consideration here are functions of (t, z) (time and
the vertical direction) and are also indexed by a horizontal position (xi, yi) ∈ ΓBM and we
denote them Sk(t, z;xi, yi) for the substrate with k = 1, 2 and similarly for the biomasses.

The substrates satisfy the following equation, in each Ω(xi,yi)

∂tSk + uz ∂zSk −Dk∂
2
zzSk = fk(ξ),

where fk(ξ) corresponds to the biological reaction with ξ = (S1, S2, B1, B2),

f1(ξ) = −k1µ1(S1)g1(B1)B1 f2(ξ) = k2µ1(S1)g1(B1)B1 − k3µ2(S2)g2(B2)C2.
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Figure 4.2: Streamlines of fluid flow, for standard operating conditions Qr = 150 L/h and
Qmix = 1000 L/h. Bottom section (left) and top section (right).

For boundary conditions we take, at the bottom interface

Sk(t, z0;xi, yi) = Sk(t, xi, yi, z0)
∣∣
ΩB
,

and for the top interface we take again an artificial transparent boundary

∂Sk
∂z

(t, z1;xi, yi) = 0.

We suppose that the micro-organisms are fixed to the wall of the tubes so that the biomass
concentrations are neither advected nor diffused, but we must take into account their death
rate τk

∂tBk = µk(Sk)gk(Bk)Bk − τkBk,

Note that this is a family of ordinary differential equations, so that no boundary conditions
are required.

For the methane flow rate, as proposed in [13], we will consider that it is proportional to
the growth rate of the second biomass. To compute the total flow rate for the whole reactor,
we need to integrate over all the middle section

QCH4 = |ΓBM |
Nt∑
i=1

∫ z1

z0

k4µ2

(
S2

)
g2

(
B2

)
B2 dz.

Top We again suppose that there is no biomass in this section, so that the substrates satisfy
the same equations as in the bottom. The boundary condtions are

sk(t, x, y, z)
∣∣
ΩU

= sk(t, z1;x, y)
∣∣
ΩM

on ΓUM
∇sk · n = 0 on ΓUo ∪ ΓUw

4.2.3 Numerical Resolution

To solve the model equation we use the Finite Element method implemented in the open
source library FreeFem++ [53]. For the fluid dynamics, we solve the time dependent Navier-
Stokes equations until reaching a steady state. We consider the well established combination
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of a characteristics method, to deal with the non-linear convection term [79], and P2-P1 type
finite elements [39]. As expected, the fluid converges to a steady state rapidly and Figure 4.2
illustrates the computed flow for standard operating conditions.

For the substrate equations of the bottom and top sections, we also use a finite element
method with an implicit time discretization, which presents the advantage of being stable for
larger time steps and coarser meshes than explicit time discretizations. However, to correctly
solve these equations it is necessary to take time steps that are very small compared to
the biological timescale. Indeed, especially in the bottom with high fluid velocities due to
the mixing system, we need to take time steps of the order of seconds, whereas the typical
timescale of a bioprocess is of the order of a day.

Another complication comes from the very small diffusion coefficients of the substrates.
For example, a typical component of VFAs, acectic acid is reported to have a diffusion coef-
ficient of the order of 10−9 m2/s [110]. The consequence is that the substrate concentrations
can present sharp spatial variations and to resolve these correctly, fine meshes must be used.
Then, for smaller diffusion coefficients, the computational cost of simulations is substantially
increased, as for example with D = 10−8 it is necessary to use a mesh with 4 times more
points than for D = 10−7 (Table 4.3).

To investigate the effect of lowering the diffusion coefficient on the solution, we have run
simulations of the bottom section for different values of D. Starting from an homogeneous
initial condition, our test case considers a 10% increase in input concentration. The sub-
strate concentrations at the interface between the bottom and middle sections after 8 hours
are shown in Figures 4.3 (with mixing) and 4.4 (without mixing). Note that the main change
of behaviour occurs between D = 10−6 and D = 10−7, when the spatial variations of concen-
tration become sharper and the homogenization effect of diffusion less important. Therefore
we will use D = 10−7 as we are essentially interested in the macroscopic behavior of the
reactor and the qualitative effects of heterogeneity.

Table 4.3: Bottom section mesh parameters
Diffusion Coefficient [m2/s] Number of Points

10−7 61 882
10−8 244 860

4.3 Parameter Estimation and Model Verification

The computational cost of simulations for this type of model makes it unpractical to fit
many parameters by minimizing the difference between model outputs and experimental
data. Instead, we will use parameters values from [56], that were obtained by fitting a
simpler compartment ODE model to experimental data of the reactor that we study here.
This simpler model was also based on the 2 reactions model of [13] and it was shown that it
is capable of reproducing the input-output behavior of the reactor, so that we will use the
same growth function parameters and yield coefficients.
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However, this work did not consider density dependent growth functions or biomass death
rates and therefore we must estimate these parameters. For the death rates, it is generally
accepted that they are small compared to the maximum growth rate and therefore we will
take, somewhat arbitrarily, τ1 = 0.1 · µmax1 and τ2 = 0.1 · µmax2 .

For the density dependence parameters (c1, c2), we will use the same experimental data
used to fit the model of [56], which contains records of VFA concentration. There is however
no data for S1 and therefore to get a first estimate of c1, we use the simpler model of [56].
Indeed, this model takes into account the physico-chemical dynamics of the reactor (including
pH, alkalinity, strong ions, inorganic carbon and carbon dioxyde) for which experimental data
was available and since these variables depend on S1, we can assume that the model represents
correctly the input-output behavior of S1, especially when the reactor is in a steady state.
Therefore, to estimate c1, we have run simulations for various values of this parameter and
we then take the value for which our model converges to the same steady state as the model
of [56]. Figure 4.5 illustrates the best fit.

Figure 4.3: Bottom-Middle interface at 8h after a 10 % change of inflow concentration with
mixing flow rate Qmix = 1000 L/h and different diffusion parameters. Left D = 10−6, Center
D = 10−7, Right D = 10−8.

Figure 4.4: Bottom-Middle interface at 8h after a 10 % change of inflow concentration with
mixing flow rate Qmix = 0 L/h and different diffusion parameters. Left D = 10−6, Center
D = 10−7, Right D = 10−8.
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Figure 4.5: Comparison with ODE model

Now, using the experimental data, we can estimate c2, the parameter of the second growth
function. The VFA concentration was measured from the output but also at several points
within the reactor, at heights of 30 and 90 cm from the bottom. This will allow us to check
how well our model can represent the spatial gradient of concentrations within the reactor.
Figure 4.6 illustrates the best fit, along side the output of the simpler model. Notice that
the 3D model captures well the position where most of the degradation takes place and is
also capable of reproducing the vertical variation better than the ODE model.
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Figure 4.6: VFA (S2) concentrations at different heights within the reactor (30 and 90 cm
from the bottom) and at output, for the 3D model and experimental data. Values of the 2
zone ODE model of [56] are also shown.
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4.4 Impact of Recirculation and Mixing

The value of this model is that it can reproduce the spatial distribution of the contents of the
reactor and thus can help to understand the internal dynamics. In particular, the detailed
representation of the physical processes of advection and diffusion makes this model a valuable
tool to study the impact of physical operational parameters, such as the recirculation and
mixing flowrates. In this section we explore this question with numerical simulations of tracer
experiments and of the full model.

4.4.1 Tracer Pulse

The first simulations that we propose are numerical versions of tracer pulse experiments,
which is a common method of characterizing and understanding the hydrodynamics of reac-
tors. These consist in releasing a short pulse of an inert substance, the tracer, in the inflow
and measuring the concentration at the output. For our simulations, we will therefore run
the model with only one substrate and no bio-reactions. Starting from a homogeneous initial
condition, we consider a short pulse of high influent concentration, with Sin = 60 g/L for 1
min.

Figure 4.7 shows the tracer concentration in the reactor during the first 5 hours. The first
observation that we can make is that the bottom mixing system does not induce a circular
current in the whole of the bottom and instead, mixes the tracer only in a small section.
This can be attributed to the fact that the input and output of the mixing system are close
to each other and therefore the fluid exiting this system is pulled back towards it directly.
This suggests that the complete homogenization of the bottom is achieved not only through
advection but that diffusion is also important.

Figure 4.7: Tracer concentration for standard conditions Qr = 150 L/h and Qm =1000 L/h,
at 1, 2, 3, 4 and 5 hours after pulse.
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Figure 4.8: Tracer output concentration with and without bottom mixing and Qr =150 L/h

This simulation also shows that, although a portion of the tracer goes directly up and out,
an important part of the tracer is pulled in by the mixing system and is delayed before going
up. This is confirmed by comparing the output concentrations with and without mixing, i.e.
for Qm = 1000 L/h and Qm = 0, as show in Figure 4.8. Indeed, the initial spike and the total
mass exiting during the first days (proportional to the integrals of the curves) is much higher
without mixing. This indicates that with mixing an important part of the tracer remains
trapped in the bottom of the reactor and therefore the mixing system also acts as a delay.

Now, to study the impact of the recirculation flow rate, we have run tracer simulations for
Qr ∈ {50, 100, 150, 200} and we show the tracer output concentration in Figure 4.9. Notice
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Figure 4.9: Tracer output concentration for various recirculation flowrates and Qm =1000
L/h
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that for Qr = 100, the initial spike is greatly diminished and seems to disappears completely
for Qr = 50. In fact, for Qr = 50, the maximum output concetration is not reached at first,
which indicates that the pulse of tracer has mainly gone through the mixing pump. More
generally, the mixing system becomes proportionally stronger as the ratio Qm/Qr becomes
higher. The result is that for a given mixing flowrate, better homogenization is achieved with
smaller recirculation flow rates, in the sense that perturbations of the input, like the pulse of
tracer, are absorbed by the mixing system.

Nonetheless, in all cases, after the initial spike the reactor behaves similarly to a well mixed
chemostat, with the output concentration slowly decreasing. Indeed, on longer timescales, the
diffusion process helps with the homogenization of the reactor, for all mixing and recirculation
flowrates.

4.4.2 Impact on Biological Activity

Unlike the inert tracer, the substrates will not always tend towards an even distribution, since
they are consumed through the bio-reactions. Therefore, we now look at the impact of the
flowrates on the biological activity and we are primarily interested in reactor performance at
steady state.

To study the influence of the recirculation flowrate Qr, we have run simulations for a range
of flowrates from 50 to 200 L/h and we plot the steady state values for the output substrate
concentration S1 and S2 and the methane flowrate in Figure 4.10. It appears that a smaller
recirculation flowrate gives better results, in particular in terms of output concentration and
for Qr = 50 L/h there is 7% less S1 and 12% less S2 than for Qr = 150L/h. For the biogas
production, the difference is a lot smaller, with Qr = 50 L/h there is only 1.7 % more methane
compared to standard operating conditions. Nonetheless, there is a clear tendency and the
reactor operates more efficiently with lower recirculation, especially considering the energy
gain of pumping less.

Figures 4.11 and 4.12 show the distributions of VFA and methanogenic biomass for Qr =
50 and 150 L/h. Observe that for the slower recirculation rate, the variations of substrate and
biomass concentrations are a lot sharper and the reaction takes place mainly at the beginning
of the tubes. This can be explained by the fact that, because of the lower recirculation rate,
the influent concentration Sif

k (k = 1, 2) is less diluted as the substrate concentration entering
the bottom is

Sin
k =

QrS
r
k +QinS

if
k

Qr +Qin

.

Then, a higher substrate concentration arrives in the tubes, which translates into a higher
growth rate. This leads to more biomass, which also increases the growth rate and this turns
into a positive feedback, which is only balanced by the density dependence of the growth
rate. The result is that the substrate is rapidly consumed until the concentration drop to
levels at which the growth rate is very low and therefore little reaction occurs in the upper
part of the tubes.

This phenomenon is the reason why the biomass density dependence and substrate inhi-
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bition of the growth rate must be correctly taken into account. In our case, these results
must be taken with caution, as the growth rate parameters where obtained with data that
had low concentrations of substrate and thus the obtained values are not very accurate for
high substrate concentrations. Notice in particular that the substrate inhibition constant Ki

of the second growth rate is very high, so that this function is very close to a Monod function
[64] and therefore a lower value should be used.
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Figure 4.10: Steady state values for the output substrate concentration S1 and S2 and the
methane flowrate for a range of recirculation flowrates Qr ∈ [50, 200] L/h.

4.5 Conclusion

In this work, a 3D model of an Upflow Fixed Bed bioreactor was developed and it was shown
that it is capable of reproducing experimental data and in particular, the vertical variations
of substrate concentration. Then, with numerical simulations, the impact of heterogeneity
on biological activity was studied. A number of conclusions can be drawn from this work.

• First, we have shown the value of simpler models in terms of physical representation:
without turbulence or multi-phase flow, this model can reproduce experimental data
and help to better understand internal dynamics of the reactor.

• Despite the reduced complexity compared to other 3 dimensional models, the difference
of timescales between the physical and biological process mean that simulations are
computationally intensive. Serious work is needed to optimize the numerical method
and implementation.

• The efficiency of the bottom mixing system is governed by the ratio Qm/Qr and its
influence is mainly seen during the transients, by delaying or absorbing and smoothing
out perturbations. The closeness of the input and output of this mixing system is
detrimental and the system might be more efficient if they were further apart.

• The bioreactor could be more efficient with a lower recirculation flow rate. However,
this leads to higher substrate concentration at bottom which could destabilize reactor.
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Figure 4.11: Distribution of S2 and B2 at steady state with Qr = 50 L/h.

Figure 4.12: Distribution of S2 and B2 at steady state with Qr = 150 L/h.
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Further experimental data is necessary to confirm this result and in order to have
adequate representation of inhibition due to high substrate and biomass levels.
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Chapter 5

Conclusions

The purpose of this thesis was the study of optimal control problems and mathematical
models for the maximisation of biogas production. We present here the main contribution of
this thesis and the perspectives of future work.

• Chapter 2

- We presented a method to obtain an estimation of the value function of the prob-
lem of maximization of biogas production in a chemostat on a finite horizon,
thereby establishing sub-optimality bounds for controls used in practice, for a
large class of substrate and biomass dependent growth functions. For the infinite
horizon, we showed that the value function of the discounted problem converge
when the discount rate goes to 0 and that the limit is equal to the value function
of the average reward.

- The time horizon influences the choice of the best MRAP type feedback. For
short horizons it is best to drive the chemostat to a substrate level that maximize
the biogas flow rate on the set { x

sin−s = x0

sin−s0}. On the other hand, as the
horizon becomes longer, it is best to drive the system to a maximizer on the set
{x+ s = sin}, and this becomes optimal, on average, for an infinite horizon.

- The methods developed could be extended to more complex models. For example,
it is straightforward to show that for the two reaction model, there is a 2 dimen-
sional invariant set that is attractive for persistently exciting controls. Then, it
could be shown that any control driving the system to a maximizer on the in-
variant set is optimal for the average reward on an infinite horizon, although the
existence of such a control is not guaranteed. On the other hand, with appropriate
conditions on the growth function, we could establish an estimation of the value
function and we could find sub-optimal control by studying the problem for initial
conditions on the invariant set.

• Chapter 3

- We presented a method to transform the Hamilton-Jacobi-Bellman (HJB) equa-
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tion into a fixed point equation by writing extremal controls as functions of the
Hamiltonian. This allowed us to developed an algorithm to identify the singu-
lar arc of a candidate to optimal control. The computed control is obtained in
feedback form and depends on the initial condition and time horizon considered.

- This method could be extended for more general problems to identify singular
arcs. For example, for systems with dynamics that are affine in the control, it
should be possible to write a expression of extremal controls that depends on the
Hamiltonian and then our algorithm could be used to compute the singular arc.

• Chapter 4

- We have introduced a spatially heterogeneous model of a real bioreactor, capable
of reproducing the spatial gradient of substrate concentration. It helps to better
understand the internal dynamics of the reactor and shows that it is not always
important to consider overly complex fluid dynamics.

- Our preliminary results indicate that a heterogeneous reactor is more efficient than
a well mixed device. However, we must accurately take into account inhibition
phenomenons to confirm our results. For example, we could consider a different
density dependence term in the growth rate, such as

g(B) =
1

1 + cB2

in order to have a reaction rate that goes to 0, when biomass concentrations
become very large.

- The difference of timescales between the physical and biological process make it
impossible to consider complex optimization problems due to the high computa-
tional cost of simulations. However, simulations have shown that although there
are variations at reactor scale, concentrations are ’locally’ homogeneous. This
could be accurately approximated by a compartment model, although more com-
plex than the 2 zone model of [56]. Such a model would be much faster to simulate
and realistic optimization problems could be considered. Our model could be used
to determine the configuration of the interconnections of the compartment model
by minimizing the difference between both models.
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