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HEMODYNAMIC ANALYSIS BASED ON BIOFLUID MODELS AND MRI VELOCITY
MEASUREMENTS

For the diagnosis, treatment planning and post-surgical monitoring of cardiovascular disease
(CVD), hemodynamic markers have proven to be of great utility. However, non-invasive assess-
ment of the hemodynamics of a patient is still a challenge. Phase-contrast magnetic resonance
imaging (PC-MRI) canmeasure the distribution of blood velocity along two-dimensional planes or
in three-dimensional volumes and is limited in accuracymainly by the image resolution and noise.
The local variation in the blood pressure cannot be measured non-invasively, but is required in
the clinical practice to evaluate CVD. Other hemodynamic quantities, such as the arterial wall
stiffness or wall shear stress can also be relevant as diagnostic quantities and for understanding
the onset of CVD, but are not observable with imaging techniques.

This thesis approaches the topic of patient-specific hemodynamics on three different paths.
In Chapter 2 of this thesis a method was presented to improve the accuracy of hemodynamic

data recovery from partial 2D PC-MRI measurements by means of solving an inverse problem of
the Navier–Stokes equations of fluid flow. Vessel geometries extracted fromMRI or CT images are
affected by errors due to noise, artifacts and limited image resolution. Small errors in the geometry
propagate into the recovered data and lead to large errors in the solution when standard no-slip
boundary conditions are used on inaccurately positioned walls. The core idea of this work was
replacing no-slip boundary conditions at the arterial walls by slip/transpiration conditions with
parameters which were estimated from velocity measurements. Numerical results of synthetic
test cases showed an important improvement in accuracy of the estimated pressure differences
and the reconstructed velocity fields.

In Chapter 3 a comparison study of different direct pressure gradient estimation techniques
was presented. These methods compute relative pressure fields directly from 3D PC-MRI data.
The new Stokes estimation method (STE) by Švihlová et al. [Švi+16] was applied for the first
time to real phantom and patient data. In comparison to the classical Poisson pressure estimation
method (PPE), the STE method proved more accurate and more robust to noise and the image
segmentation in most cases.

Chapter 4 was dedicated to a numerical validation of the new MAPDD model [Ber+19] for a
domain decomposition reduction of vascular networks. This approach considers the vessels as a
network of thin pipes in which the flow has the shape of aWomersley flow, connected by arbitrary
3D junction domains where the flow is governed by the Navier–Stokes equations. In the MAPDD
model, the thin pipes are replaced by coupling conditions on the junction domains. A strategy
to easily implement the MAPDD model with the finite element method was presented and the
theoretical results of Bertoglio et al. [Ber+19] were reproduced with numerical simulations in a
simple test case. The method was shown to deliver accurate results even for moderately large
Reynolds numbers, far from the regime where the theory is valid.
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ANÁLISIS HEMODINÁMICO BASADO EN MODELOS DE BIOFLUIDOS Y MEDIDAS MRI DE
VELOCIDAD

Los indicadores hemodinámicos han demostrado gran utilidad para el diagnóstico, planifi-
cación y monitoreo post-operatorio de enfermedades cardiovasculares (CVD). Sin embargo, la
evaluación hemodinámica en pacientes continúa siendo un desafío. La Resonancia Magnética de
Contraste de Fase (PC-MRI) es capaz de medir la distribución de la velocidad sanguínea en pla-
nos 2D o volúmenes 3D, siendo mayormente limitada por la resolución de la imágen y el ruido.
Por otro lado, las variaciónes locales en la presión sanguínea sólo pueden ser medidas invasiva-
mente, siendo usualmente requeridas en clínica para la evaluación de las CVD. Otras cantidades
hemodinámicas, tales como la rigidez arterial, pueden ser también relevantes para el diagnóstico
y entendimiento del origen de las CVD, pero lamentablemente estas no son observables en las
imágenes.
Esta tesis aborda el tema de la hemodinámica en pacientes desde tres diferentes perspectivas.

En el Capítulo 2, se presenta unmétodo para mejorar la precisión en la reconstrucción de datos
hemodinámicos, usando medidas 2D en PC-MRI. A partir de las ecuaciones de Navier-Stokes para
un fluido, se plantea y resuelve un problema inverso. Además, las geometrías arteriales extraídas
de imágenes MRI o CT, suelen ser afectadas por errores debidos al ruido, artefactos o propios de
la limitación en la resolución espacial. Pequeños errores en la geometría son propagados en la
reconstrucción, pudiendo generar mayores desviaciones en la solución, por ejemplo cuando con-
diciones de borde tipo no-slip son usadas en paredes mal mente posicionadas. La idea central de
este trabajo es relajar las condiciones no-slip en las paredes por unas slip/transpiration, con pará-
metros a estimar de medidas de velocidad. Los resultados numéricos en casos sintéticos muestran
mejoras en el cálculo de diferencias de presión y campo de velocidades.

En el Capítulo 3 se presenta una comparación entre diferentes técnicas de estimación de pre-
sión. Estos métodos reconstruyen campos de presión directamente de medidas 3D en PC-MRI. Por
primera vez el reciente estimador de Stokes (STE) Švihlová y col. [Švi+16] es aplicado en medidas
a fantomas y pacientes. A diferencia del clásico estimador de Poisson (PPE), este estimador mues-
tra, en la mayoría de los casos, menos error en la reconstrucción y ser más robusto al ruido y a la
segmentación.

El Capítulo 4 es dedicado a la validación numérica del nuevo modelo MAPDD Bertoglio y col.
[Ber+19], para una descomposición reducida de redes vasculares. Este enfoque considera las ve-
nas como una red de delgadas tuberías, en donde el flujo tiene la forma de un flujo de Womersley,
conectado por un dominio arbitrario 3D de uniones, en donde el flujo es gobernado por las ecuacio-
nes de Navier-Stokes. En este modelo, las tuberías delgadas son reemplazadas acoplando distintas
condiciones en el dominio de uniones. Aquí, se presenta una estrategia fácilmente de implementar
usando elementos finitos. Se reproducen los resultados teóricos de Bertoglio y col. [Ber+19] ade-
más de simulaciones numéricas en un caso de prueba simple. El método muestra entregar buenos
resultados incluso para números de Reynolds ligeramente grandes, excediendo los límites donde
es válida la teória.
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Chapter 1

Introduction

1.1 Clinical motivation

Cardiovascular disease (CVD) is the major cause of death globally [WHO18]. Alone in Europe,
CVD causes 3.9 million deaths pear year, accounting for 45% of deaths from all causes. The
estimated overall cost of CVD for the economy of the European Union is €210 billion [Wil+17].

CVD comprises many different diseases, the most common being coronary heart disease. The
risk factors of CVD are numerous, including diet, lifestyle and genetics, and are in many cases
avoidable [MMG08]. A subset of CVD is congenital heart disease (CHD), i.e., anomalies of the
heart or the great vessels in close proximity to the heart present at birth, the cause of approxi-
mately 303 300 deaths per year globally [GBD16].

One example of CHD is coarctation of the aorta (CoA), a complex disease of the vascula-
ture in which a stenosis or long narrowed segment in the aorta, typically located at the ductus
arteriosus insertion, obstructs the blood flow and imposes significant afterload on the left heart
ventricle [Bau+10]. CoA accounts for 5% to 8% of all CHD, with a prevalence of 3 in 10 000 live
births [Erb+14]. If untreated, 80% of patients CoA die from complications associated with the
disease [Hir+10].

CVDs generally affect and alter the blood circulation and the hemodynamic flow patterns
in the heart or blood vessels. This can occur for instance by redirection or obstruction of the
blood flow due to malformations of the heart, vessels or heart valves, or by alteration of the
tissue properties (e.g., stiffness, lesions) or due to plaques. For instance, valvular stenosis and
narrowing of vessels due to CoA or atherosclerosis can cause oscillatory flow disturbances and
turbulence [Ku97], lead to a drop in hemodynamic pressure and thus an increased cardiac load.
Disturbances in the flow patterns on the other hand can cause or contribute to the progression of
CVDs [RE06; NOV11; Ku97]. Naturally, hemodynamic characteristics can act as markers for the
diagnosis of a CVD, for evaluating the severity of the condition for therapeutic decision-making
and treatment planning and for monitoring.

In the context of CoA, valvular stenosis or myocardial infarction, the drop in blood pressure,
related to the resistance the pathology exerts on the flow and thus an increased work load for
the left ventricle and/or insufficient blood transport to the organs, is already routinely used as a
diagnostic indicator [Bau+09; Bau+10; JW99; Cio+11; Kil11].

The local distribution of the blood pressure can bemeasured bymeans of catheterization [Bau+10].
This technique consists in inserting a catheter equipped with a pressure transducer into the vas-
culature of the patient and maneuvering it, under local anesthesia and guided by fluoroscopy, to
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CHAPTER 1. INTRODUCTION

the location of interest. Although it is the ‘gold standard’ for pressure quantification, the invasive
nature of the method is associated with a risk of complications [Wym+88; Vit+98; Omr+03].

Considerable effort has been put into research on the non-invasive recovery of information
on the hemodynamic pressure. The fundamental relationship between the pressure of a fluid and
the flow velocity, described by the Navier-Stokes equations (see Section 1.3), permits estimating
pressure data from velocity measurements.

Clinical blood flow measurement techniques, however, are limited. To this day, the clinically
relevant measurement techniques to assess hemodynamic flow velocities are Doppler echocar-
diography and phase-contrast magnetic resonance imaging (PC-MRI).

Doppler echocardiography (see Nichols et al. [NOV11, chap. 8] for technical details) is capable
of real-time local velocity measurements along a beam or in two-dimensional (2D) planes. It is
versatile, non-invasive, free of ionising radiation and can detect relatively small structures, such
as leaflets and narrow jets [Kil11]. The main limitation is the restricted access due to limited
penetration depth and view angles [Kil11]. In addition, Doppler echocardiography is very user
dependent [Bau+10] and measures only velocities aligned with the beam direction.

PC-MRI (see Taylor and Draney [TD04] for a compact and Brown et al. [Bro+14] for an ex-
haustive introduction) can measure arbitrary velocity components in freely orientable 2D planes
or full volumetric flow fields in 3D volumes (also called 4D-Flow) [Mar+12] with no limits to the
field of view. The technique is non-invasive and free of ionising radiation and (usually) contrast
agents. It is very versatile and can be applied to a vast range of conditions [Kil11]. However, PC-
MRI is mainly limited by the image resolution and slice thickness (for 2D PC-MRI), in the clinical
practice usually of the order of 2mm to 3mm voxel edge length and 2mm to 10mm, respectively.
The acquisition time of 3D PC-MRI is another severe limitation and has been one of the factors
preventing the widespread clinical use of 3D PC-MRI until today. 2D PC-MRI however is a stan-
dard and widely available technique, often preferred to Doppler echocardiography as a means of
obtaining accurate flow information [HOR08].

Themost widespread technique to recover information on the pressure fromDoppler echocar-
diography velocities is the empirical Simplified Bernoulli (SB) formula for CoA and stenosis, a
simplification of the Bernoulli equation. SB relates the maximum velocity measured in a nar-
rowing to a pressure difference over the obstruction. However, the formula does not take into
account spatial or temporal patterns in the flow field, nor the geometry of the vessel or shape of
the obstruction. As a consequence, the SB formula is known to overestimate the pressure drop
[Bau+99; Gar+03; Don+17]. Erbel et al. [Erb+14] consider SB with Doppler velocities unsuitable
for pressure drop evaluations.

The abundance of flow information contained in PC-MRI data enables different methods for
pressure reconstruction which do not suffer from the limitations of the SB approach. If 3D flow
measurements in a complete volume segment are available, the pressure gradient distribution in
the domain can be computed ‘directly’ from the velocity images. In this thesis, this approach
is called direct pressure estimation. Section 1.4 gives an overview of the methodology. Partial
velocity measurements, for instance 2D PC-MRI or Doppler echocardiography, do not cover the
complete domain of interest. However, a reconstruction of the volumetric flow field in the blood
vessel—including the blood velocity and the relative pressure—can be obtained by means of solv-
ing an inverse problem involving the Navier-Stokes equations. The state of the art of this strategy
is discussed in Section 1.5.
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CHAPTER 1. INTRODUCTION

1.2 Research questions
The topics examined in this thesis are:

1. Analysis the impact of geometric errors on the inverse recovery of the hemodynamic
pressure drop and velocity from 2D PC-MRI measurements and development of a
model to compensate such errors (Chapter 2).

2. Analysis and validation of new direct pressure gradient estimation techniques, with
real in vivo and in vitro 4D flow measurements (Chapter 3).

3. Development and efficient implementation of a reduced order multi-scale model for
vascular trees (Chapter 4).

In the remainder of this introduction, the fundamentals of blood flowmodelling are discussed,
followed by a review of methods of direct pressure estimation and inverse problems in hemody-
namics.

1.3 Blood flow modelling
Blood is a suspension of formed elements (i.e., red andwhite blood cells, platelets) in plasma [BM03].
In hemodynamics—themacroscopic description of the dynamics of blood flow through the vessels—
, blood is considered a continuous single-phase fluid (under the continuum hypothesis, cf. Baskurt
[Bas07]). Blood acts as a non-Newtonian fluid with viscoelastic behavior, originating from the de-
formability of the red blood cells. Its apparent viscosity depends on the viscosity of the plasma
(a Newtonian fluid), the hematocrit (volume fraction of blood cells in the blood), red blood cell
mechanical properties and red blood cell aggregation [BM03].

Under the continuum hypothesis, blood flow assumed to be governed by the incompressible
Navier-Stokes equations,

𝜌 𝜕𝒖𝜕𝑡 + 𝜌(𝒖 ⋅ ∇)𝒖 + ∇𝑝 − ∇ ⋅ 𝝉 = 𝟎
∇ ⋅ 𝒖 = 𝟎

(1.1)

with the velocity vector 𝒖 ∶ 𝛺 ×𝑇 ↦ ℝ3, the pressure 𝑝 ∶ 𝛺 × 𝑇 ↦ ℝ, in a spatial domain 𝛺 and
a time interval 𝑇 , and neglecting the gravitational force. 𝝉 denotes the viscous stress tensor and
is determined by a constitutive equation modeling the shear behavior of blood. Classical models
accurately describing the non-Newtonian rheology of blood are the Casson and the Carreau-
Yasuda models [Bir87; GvdVJ99]. At high shear rates and moderate to high Reynolds numbers
blood behaves approximately as a Newtonian fluid [CK91; Joh+04]. It is often assumed that such
conditions exist in the flow through large vessels, on the basis of which blood can be modelled as
a Newtonian fluid [TT16]. Under the assumption of a Newtonian fluid, the viscous stress tensor
becomes

𝝉 = 𝜇 (∇𝒖 + (∇𝒖)⊤)
with the constant dynamic viscosity, 𝜇. When this assumption is acceptable is a question of on-
going debate and it has been shown to be inaccurate in some situations [GvdVJ99].

The arterial system takes an active part in continuously delivering blood at high pressure to
the peripheral vasculature [NOV11, p. 77]. In particular, the large arteries deform elastically un-
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der increasing blood pressure during systole and act as a reservoir (“Windkessel”) storing blood
which is ejected during diastole. Also the long muscular arteries and arterioles actively control
the blood propagation to tissue and organs by different mechanisms (see Nichols et al. [NOV11,
p. 77]). Hence, for an accurate description of the arterial hemodynamics, it is important to take
into account the mechanical properties of the arterial wall tissue. The tissue composition is com-
plex, and in addition to intricate mechanical behavior, involves complex biochemical processes
and perfusion. These phenomena, however, are usually neglected in large-scale hemodynamic
analyses. In a purely mechanistic setting, the elastic deformation, as a response to forces ex-
erted by the blood flow on the vessel wall, can be accounted for by coupling the Navier-Stokes
equations (1.1) with the partial differential equations (PDE) of elasticity with corresponding con-
stitutive laws for the wall deformability. The reader is referred to Sugihara-Seki and Yamada
[SY16] for an introduction on the solid mechanics of the arterial wall tissue.

In the practice of computational hemodynamics, computational cost restricts the analysis to
small portions of the cardiovascular system, for instance, the section of the vessel containing a
stenosis. At the proximal boundary, the inflow velocity profile is usually specified as a bound-
ary condition. At the distal boundary or boundaries, the feedback of the truncated part of the
vasculature can be accounted for by means of lumped network models, see, e.g., Formaggia et al.
[FQV09b] for a review of models. Reduced order modelling of the vasculature and vascular trees
is a topic of intensive research [PV09]. In Chapter 4 of this thesis, a new multi-scale domain
decomposition approach is presented as a contribution to the field.

1.4 Direct pressure gradient estimation

PC-MRI is capable of time-resolved measurements of the 3D velocity field in a 3D volume (called
‘4D-Flow’), containing the vessel of interest. The vessel walls and regions of blood flow are identi-
fied by segmentation of the velocity images or from additional anatomic images in order to create
a 3D domain of the studied vessel. The domain is usually assumed stationary, i.e., averaged over
time, and the time series of measurements associated to the stationary domain. The temporal and
spatial resolution of the measurement data allows computing approximately partial derivatives
of the data with respect to space and time. By inserting the measured velocities directly into
the Navier-Stokes equations (1.1), an approximation of the pressure gradient can be computed
directly by evaluating the velocity terms with a suitable numerical method.

Early attempts to reconstruct the relative pressure were presented, for instance, in Urchuk
and Plewes [UP94]. The authors invoked the assumption of a Womersley flow and computed the
pressure gradient in flow direction from one 2D PC-MR image. Song et al. [Son+94] presented
the first 3D approach using the complete Navier-Stokes equations. They recovered velocity data
from the pixel intensity displacement of 3D ultra fast CT images and computed the pressure via
a Poisson equation, derived by taking the divergence of the Navier-Stokes momentum balance.

This methodology was applied by Yang et al. [Yan+96] to 2D PC-MRI data, who proposed
an iterative method for the pressure computation. Tyszka et al. [Tys+00] introduced some im-
provements to the methodology of Yang et al. [Yan+96] and presented the first relative pressure
recovery algorithm applied to true 4D-Flow, which was further improved by, e.g., Ebbers et al.
[Ebb+02] and Krittian et al. [Kri+12].

Since then, the only studies comparing in vivo in CoA patients the relative pressures com-
puted with PPE-based methods with catheterization data were presented by Riesenkampff et al.
[Rie+14] and recently, Goubergrits et al. [Gou+19]. In the former study, comparing peak systolic
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PPE pressure differences with catheterization in 13 patients with moderate AoCo, a slight sys-
tematic underestimation was found in average of 1.5mmHg with a large variability of ±4.6mmHg
(two standard deviations). The latter study found the PPE method to be sensitive to the image
resolution and introduced a minimum requirement for the resolution based on their data (5 vox-
els/diameter). Furthermore, the PPE method was shown to be sensitive to the lumen segmenta-
tion. By eliminating the outermost layer of voxels, the authors achieved a significantly improved
match of the PPE estimates with catheterization data. Possible causes are poor boundary data
due to partial volume effects and high noise levels, and the artificial pressure Neumann boundary
condition required by the method.

Rengier et al. [Ren+15] validated the PPE method in vitro using a phantom consisting of a
straight elastic tube with a pulsating flow control and found a good correlation with catheteriza-
tion data (𝑟 = 0.89, 𝑝 < 0.001). Other studies validated the PPE using simple phantoms for which
the solution is analytically known, e.g., given by a Womersley flow [Ren+14]. These simplified
scenarios are a ‘special case’ with weak or negligible convective effects and a lack of complex
3D flow patterns which are characteristic for aortic flow, especially under stenosis, and seem to
represent the main challenge for the PPE method in practice.

Several computational fluid dynamics (CFD) studies of the PPE estimatorwere conducted [Mei+10;
Cas+16; Nas+04] for more complex situations, highlighting the shortcomings of the PPE method.
The accuracy of the pressure recoverywas shown to be sensitive tomany factors [Nas+04; Cas+16],
such as the image resolution and segmentation, the velocity encoding and turbulence.

Methodological drawbacks of the PPE are the introduction of artificial pressure boundary con-
ditions on the vessel walls and strong regularity requirements for the pressure and the velocity.
These restrictions are avoided in an alternative approach, applying a Helmholtz decomposition,
rather than the divergence, to the Navier-Stokes equations. This approach leads to a Stokes prob-
lem for an auxiliary, non-physical velocity function and the hemodynamic pressure. The method-
ology was first presented in Cayco and Nicolaides [CN86] in a different context and adapted to
relative pressure reconstruction from PC-MRI velocity data by Švihlová et al. [Švi+16]. This tech-
nique, the Stokes estimator (STE), was shown in numerical studies to deliver more accurate results
than the PPE method [Švi+16; Ber+18b]. In Chapter 3 of this thesis the first comparative study
of the STE and the PPE methods using real PC-MRI phantom and patient data is presented in the
context of CoA.

Other approaches have been proposed for the computation of averaged pressure differences
between two cross-sections of a blood vessel, namely the work-energy relative pressure (WERP)
method [Don+15], and its extensions, the virtual WERP (𝑣WERP) method [Mar+19] and the in-
tegral momentum relative pressure (IMRP) estimator [Ber+18b]. A simplification of the WERP
method was presented in Donati et al. [Don+17] as a generalization of the Bernoulli approach,
which allows to compute the pressure drop from 2D PC-MRI data. These methods are faster to
compute than the PPE or the STE, but instead of 3D and time-resolved pressure maps, yield only
averaged pressure differences between cross-sections. They are therefore suited to assess the
pressure drop, e.g., over a valvular stenosis or CoA, and can be viewed as an alternative for the
Doppler echocardiography–simplified Bernoulli approach. The fact that the pressure difference
is averaged over the entire cross-section renders the comparison with catheter measurements dif-
ficult. The WERP method requires the vessel section of interest not to include any bifurcations
(such as the supra-aortic branches), which is avoided by the 𝑣WERP and IMRP methods.

All of the methods depend on the description of the blood flow as the incompressible flow of
a Newtonian fluid. The spatial and temporal resolutions at which the underlying Navier-Stokes
equations are evaluated are dictated by the PC-MRI data, i.e., of the order of several millimeters
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and around 40ms. As a consequence, these methods do not include the effects of turbulence or
non-Newtonian properties of the blood. Furthermore, they do not account for the elastic deforma-
tions of the vessel walls. In addition to the model dependency, direct pressure estimation methods
are strongly affected by data perturbation, such as noise, image artifacts, the resolution of the data.
Noise is an important issue in PC-MRI, where white noise levels of 15% of the expected maximum
velocity are common [Dyv+15], leading to low signal-to-noise ratios (SNR) outside of the peak
systole and generally in regions with low flow velocities.

Other approaches estimate the turbulent kinetic energy (TKE) of the flow from the PC-MRI sig-
nals [Dyv+06] and propose pressure loss estimators based on the dissipation of the TKE [Dyv+13;
Ha+19] as an alternative to the Bernoulli-based formulas. In vitro and in vitro studies have shown
promising results for cases of aortic stenosis [Ha+16b; Ha+19]. The methodology is only applica-
ble to turbulent flow. I.e., pressure drop estimation based on the TKE can be useful for valvular
stenosis, where turbulence can be expected, but not for low Reynolds number flows in general, at
mild conditions or during diastole.

A drawback of the discussed direct pressure reconstruction methods is the requirement of 3D
PC-MRI data1. To this day, long acquisition times have prevented the translation of 3D PC-MRI
to the clinical practice and 3D PC-MRI sequences are rarely available. In addition, in direct meth-
ods derived from the Navier-Stokes equations, e.g., Bernoulli-based, PPE, STE, at any instant of
time the pressure is uniquely defined up to a constant (with respect to the spatial coordinates).
Therefore, only instantaneous pressure differences between different locations can be compared
at different times. Catheterization or sphygmanometer pressure measurements are taken relative
to the atmospheric pressure. Hence, the pressures are calibrated with respect to a global refer-
ence and pressure values can be compared at different times. A common measure in the clinical
practice are the so-called peak-to-peak pressure differences, which compare the difference in the
pressure maxima registered at different locations during the complete cardiac cycle, thus taking
into account time shifts due to the vessel elasticity. Peak-to-peak pressure differences can only be
determined by means of catheterization or with the models described above when calibrated with
catheterization data, which however invalidates the non-invasiveness of the estimation methods.

1.5 Patient-specific hemodynamics

Increase in computer performance, the advent of PC-MRI and ever improving image quality gave
rise to the relatively new research topic of patient-specific hemodynamic simulation of large ar-
teries, based on medical images [TS10].

Patient-specific modelling requires the topology of the patient’s vessel under investigation to
be reconstructed by segmentation of medical images, e.g., CT or MRI, and a numerical blood flow
model to be set up within this domain. The proper inflow and outflow boundary conditions, the
initial condition (often neglected) and possibly unknown model parameters have to be calibrated
from measurements, for instance, 2D PC-MR images. The determination of the boundary con-
ditions is arguably the most important issue and has received a lot of attention in the literature,
which shall be reviewed below. Two different approaches can be distinguished: pre-computation
of boundary data directly from PC-MRI data or estimating the required data from the measure-
ments by means of solving an inverse problem. Both approaches are discussed in the subsequent
sections.

1Exceptions are the Bernoulli formula, the simplified advective WERP estimator [Don+17] and early methods
which are clinically irrelevant due to their oversimplifications, such as Urchuk and Plewes [UP94].
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Solving the model equations, a reconstruction of the hemodynamics (e.g., velocity and pres-
sure fields) with great detail can be obtained from a geometric reconstruction of the vessel and
sparse, partial velocity measurements. Since the pressure is (usually) an internal variable of the
fluid flow model, pressure drops are readily obtained.

Importantly, a complete hemodynamic characterization can be estimated from partial, 2D PC-
MRI measurements. This is a big advantage over direct pressure estimation methods, which with
few exceptions2 require 3D PC-MRI data. Hence, relative pressure estimation using hemody-
namic simulation calibrated with 2D PC-MRI allows to significantly reduce the MRI scan time.
This comes at the cost of increased computation times required for the solution of the inverse
problem (an optimization problem constrained by the Navier-Stokes equations), compared to di-
rect pressure estimation, where, e.g., only Poisson or Stokes problems have to be solved.

1.5.1 Forward hemodynamic simulations

Inflow and outflow boundary conditions for a CFD model are often determined beforehand from
2D PC-MRI data recorded on slices along the boundaries. A common approach is calculating
the mass flow rate by integrating the velocity over the measurement slice at a boundary (i.e.,
the component in normal direction to the boundary). By temporal interpolation between the
images (the time step of the simulation is usually at least one order of magnitude smaller than the
temporal resolution of the measurements), the inflow waveform can be obtained. The mass flow
rate is a so-called defective boundary condition [For+02], as they do not ensure well-posedness of
the flow problem [VV05]. An option is using simplified inflow velocity profiles, such as plug flow,
parabolic or Womersley profiles, with time-dependent amplitudes determined by the waveform
as Dirichlet boundary conditions [Cam+12].

However, it was demonstrated that helical and retrograde secondary flowpatterns are inherent
features of the aortic flow, due to the curvature of the aortic arch and the pulsating nature of
the flow [Kil+93; Fry+12; Hop+07]. Simplified inflow profiles prevent the development of such
features downstream of the boundary and can deteriorate the fidelity of the simulation [TGS17].

In order to account for these complex flow features, some authors used 2D or 3D PC-MRI
data directly as Dirichlet boundary conditions by interpolating the velocity measurements onto
the computational mesh and simulation time steps. Several studies compared simplified profiles
with prescribed mass flow with spatially resolved velocity fields and found that flow patterns in
the interior and, for instance the wall shear stress, were sensitive to the inlet boundary condi-
tion [Gou+13; Mor+13; Wak+09; Tan+12; Boz+17; Cam+12; Har+13]. However, this approach
is limited by the high noise levels and low spatial and temporal resolutions (compared to the
numerical discretization) typical for PC-MRI data and possible misalignment of the velocity mea-
surements with the computational domain.

A different approach is enforcing the measured mass flow by means of Lagrange multipli-
ers [For+02; VV05]. This results in an increased computational cost and the need for specialized
numerical methods [VV05].

Different strategies exist for personalized outflow boundary conditions. Especially when mul-
tiple outflow boundaries are present, the choice of the boundary conditions is not straight forward.
Velocity profiles measured with PC-MRI can be prescribed at the outlets, but difficulties arise from
possible phase shifts, measurement noise, limited image resolution and the requirement of instan-
taneous mass conversation [Gal+12]. An alternative present simplified profiles prescribing mass

2see footnote 1
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flow waveforms with fixed flow rate ratios between the inlets and outlets determined from PC-
MRI measurements or according to cross-section areas if no measurements are available. ‘Zero
stress’ homogeneous Neumann conditions can be combined with the former approaches. Wind-
kessel models [For+06; WLW09] and more sophisticated lumped networks [Vig+10; GK08] model
the feedback of the truncated vasculature and have been shown to be accurate in complex situa-
tions with many outlets [Kim+10; Kun+13; Bar+11; Pir+17; Mor+10]. Usually the model param-
eters have to be tuned to each specific patient which can be computationally expensive, see Sec-
tion 1.5.2. A large number of studies uses literature values for the parameters of lumped network
models, undermining to some extent the desired ‘patient specificness’. Gallo et al. [Gal+12] com-
pare different popular combinations of outlet boundary conditions for an aortic flow and, while
not considering lumped networks, conclude that for accurate results, flow rate boundary condi-
tions based on velocity measurements should be preferred over not fully personalized boundary
conditions. Pirola et al. [Pir+17] carried out a similar study of a real aorta, also taking into account
three-element Windkessel boundary conditions with empirical parameters. A comparison with
different combinations of PC-MRI based mass flow and zero-stress boundary conditions revealed
that Windkessel boundary conditions at all outlets were necessary to compute realistic velocity
and pressure fields.

The computational domain is reconstructed from anatomical MRI or CT images. However,
the segmentation process used to determine the vessel contours is subject to errors caused by the
limited image resolution, flow artifacts and partial volume effects [Moo+99]. The impact of errors
in the vessel geometry has received relatively little attention. A first recognition of the effect of
geometry errors on PC-MRI based flow simulations, in particular regarding the wall shear stress,
was presented by Moore et al. [Moo+99] and Moore et al. [MSE97]. Causes of geometric errors
and their effects on the arterial blood flowwere further investigated in Gambaruto et al. [Gam+08;
Gam+11]. The authors found that small changes in geometry cause important variations in the
solution. Their work was followed by Sankaran and Marsden [SM11], Sankaran et al. [SGT15b],
Sankaran et al. [SGT15a], and Sankaran et al. [San+16], studying geometric uncertainties and
other sources of errors in CT-based hemodynamic simulations by means of uncertainty quan-
tification. Again, the results were found to be sensitive to geometric uncertainties. Recently, the
issue of geometric errors was investigated theoretically and error bounds were presented [MR19].
All studies concluded that geometric uncertainties have a strong impact on the problem solution.
In Chapter 2 of this thesis and in Nolte and Bertoglio [NB19], a method is presented to compensate
geometric errors within a data assimilation framework (see the next section).

1.5.2 Inverse problems

Patient-specific model and boundary data required for patient-specific simulations can be esti-
mated from measurements by solving an inverse problem. In the present context, the inverse
problem takes the form of a PDE-constrained optimization problem.

In contrast to pre-computing the unknown parameters from measurements, for instance by
fitting predefined velocity profiles, the optimization approach tunes the parameters such that the
discrepancy between the measurements and the model solution is minimized. The parameter
adjustment is non-local in the sense that they are calibrated with respect to all available mea-
surements. In general, the measurements are not required to be located at the corresponding
boundaries. The inverse approach offers much more versatility regarding the measurement data,
the fluid model and estimatable parameters at the expense of higher computational cost.
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Formulation and solution methods

The PDE-constrained optimization problems considered here consist of

• a hemodynamic model (the PDE constraint),

• measurements of the model state,

• an observation operator mapping the model state to the observation space,

• an objective function to be minimized, i.e., a measure of the discrepancy between the model
predictions and the measurements, weighted by the respective uncertainties.

The task is to estimate uncertain model parameters or the initial condition of the model state by
minimizing the objective function.

The model is a system of PDEs that describes the blood flow dynamics as discussed in Sec-
tion 1.3. In contrast to the direct methods presented in the previous section, this methodology is
not limited to the assumption of incompressible flow within a rigid domain. Let us introduce the
following short-hand notation for the semi-discrete numerical model, representing a differential
algebraic equation (DAE),

̇𝑋 = 𝒜(𝑋 , 𝜃), (1.2)

where 𝒜 ∶ ℝ𝑛 × ℝ𝑝 ↦ ℝ𝑛 is the model operator and 𝑋(𝑡) ∈ ℝ𝑛 denotes the model state with 𝑛
degrees of freedom and an initial condition 𝑋(0). Physical model parameters are summarized in
the parameter vector 𝜃 ∈ ℝ𝑝 .

Measurements, 𝑍(𝑡) ∈ ℝ𝑚, are related to the state via the observation operator, ℋ ∶ ℝ𝑛 ↦
ℝ𝑚, such that

𝑍(𝑡) = ℋ(𝑋) + 𝜁 , (1.3)

where 𝜁 ∈ ℝ𝑚 represents measurement errors, such as noise. This relationship allows partial
measurements, or measurements of derived quantities of the state, to be used to estimate the
state and/or model parameters.

Assuming the initial state 𝑋0 and the parameters 𝜃 are sought, a functional can be defined of
the form

𝐽 (𝑋(0), 𝜃) = ∫
𝑇

𝑡0
‖𝑍 − ℋ(𝑋)‖2𝑊 −1 d𝑡 + ‖𝑋(0) − 𝑋0‖2𝐶−10 + ‖𝜃 − 𝜃0‖2𝑃−10 , (1.4)

with 𝑋 satisfying the model DAE (1.2). 𝑋0 and 𝜃0 denote a priori expected values for the initial
condition and the parameters with their respective uncertainty covariance matrices, 𝐶0 and 𝑃0.
𝑊 is the covariance matrix related to the measurement errors.

By minimizing 𝐽 with respect to 𝑋(0) and 𝜃 , an optimal trajectory of 𝑋(𝑡) can be found (for
instance, velocity and pressure fields), balancing the uncertainty of the measurements with the
uncertainty of the model predictions. The last two terms in Eq. (1.4) act as regularization terms.
Equations (1.2)–(1.4) constitute the typical problem setting of data assimilation (DA), see, e.g., Ta-
lagrand [Tal97] and Kalnay [Kal03], and originate from the formulation of a maximum likelihood
estimation problem assuming that the measurement noise and the a priori parameters have a
Normal distribution.

Two classes of methods exist for solving the DA problem described by Eqs. (1.2)–(1.4). Vari-
ational DA, based on the adjoint of the problem, adjust the complete trajectory of the state 𝑋(𝑡),
the unknown initial condition 𝑋(0) and the unknown parameters 𝜃 to the observations given at
all times (i.e., ‘past’ and ‘future’ observations). This typically requires computation of the adjoint,
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repeated forward and backward solves of the problem in an optimization loop and storing the
complete time history of the state. The complexity, i.e., number of iterations, is independent on
the number of parameters. Applying adjoint-based methods to joint state–parameter estimation
in realistic problems (i.e., 3D, time-dependent, nonlinear) is challenging due to the large require-
ments in computational power, but routinely done in numerical weather prediction [Kal03] using
large computing clusters.

Sequential DA assimilates observations into the model state, once they are ‘encountered’, di-
rectly during the time integration of the forward problem. Sequential methods are recursive and
optimize state and parameters at a point in time with respect to all past observations, but do not
consider future observations. In advantages with respect to variational DA are that storage of the
state is not required and that gradients of the functional 𝐽 and adjoints are avoided (‘derivative-
free’ optimization). On the other hand, the complexity increases with the number of parameters.
Sequential DA methods are often extensions of the linear Kalman filter, such as the Ensemble
Kalman Filter [Eve09] (EnKF) or the Unscented Kalman Filter [JU97] (UKF). The main challenge
of the Kalman filtering approaches is that the covariance matrix of the uncertainties, a dense
square matrix of the size of the dimension of the uncertain parameters and/or initial condition,
has to be propagated in time with the model. Instead, an ensemble of states (‘particles’) can be
used to approximate the error covariance matrix. This is achieved in the UKF and the EnKF, using
deterministic or stochastic particles, respectively. Sequential DAmethods are prohibitive for state
estimation in realistic hemodynamic problems if no assumptions are made to severely reduce the
problem size. The large number of particles required (for instance, 50 to 100 for the EnKF) results
in a high demand in CPU time, since for each particle one independent forward problem has to
be solved. These particle forward problems can be solved simultaneously on a parallel computer.

Joint state–parameter estimation in hemodynamics

In hemodynamics, Funke et al. [Fun+19] used variational DA (4D-Var) to reconstruct the flow
in a patient-specific aneurysm from PC-MRI data. Using a coarse numerical mesh and large time
steps, the computational timewas reported to be 50 to 100 times that of the forward problem. Since
even the accurate forward solution of the Navier-Stokes equations in the convection-dominated
or turbulent flow regime is a challenging task, full-scale variational DA is still out of reach for
state estimation in aortic flow simulations.

Both the UKF and the EnKF have been used successfully for low-order hemodynamic models.
In Pant et al. [Pan+14], patient-specific hemodynamics in an aorta with CoA were computed with
a multi-scale approach, where the parameters of lumped models for the boundary conditions of
the full-dimensional fluid problem were estimated in a 0D surrogate model by means of the UKF.
DeVault et al. [DeV+08] used the EnKF to determine the boundary conditions of a 1D represen-
tation of the blood flow through a vascular network from Doppler echocardiography velocity
measurements.

Parameter estimation in hemodynamics

The data assimilation problem can be greatly simplified by neglecting the uncertainty in the ini-
tial condition of the state (number of unknowns of the order 105 to 107) and only considering
uncertainties in the parameters (typically dozens or less), describing, i.e., boundary conditions
and material properties.
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Both variational and sequential DA methods are applicable to the resulting parameter estima-
tion problem. For small numbers of parameters, the sequential approach offers the advantages of
computational efficiency (mostly due to the recursivity) and implementational simplicity.

A reduced order version of the UKF for parameter estimation was presented in Moireau and
Chapelle [MC11], referred to as the Reduced-Order Unscented Kalman Filter (ROUKF). The num-
ber of particles it employs is the number of parameters to be estimated plus one. The ROUKF has
been used successfully in hemodynamic applications, namely, parameter identification in fluid–
structure interaction problems [Moi+13; BMG12; Ber+14] and in reduced order models of the
arterial network [Lom14; Cai+17; MCB18]. It was furthermore employed in Chapter 2 of this the-
sis and in Nolte and Bertoglio [NB19] for parameter estimation in a CFD study of arterial blood
flow, using a geometric errors compensating wall boundary model. Lal et al. [LMN17] used the
EnKF for parameter estimation in a cardiovascular network.

Sequential data assimilation is not suitable for estimating complex velocity inflow profiles
because of the high number of degrees of freedom to be determined (of the order of hundreds or
thousands).

Variational data assimilation was used for the boundary parameter estimation problem in, for
instance, Formaggia et al. [FVV08], who extended the treatment of defective boundary conditions
presented in Veneziani and Vergara [VV05]. In synthetic 2D and axisymmetric studies of blood
flow, assuming a steady state–hence avoiding the issue of uncertain initial conditions—, D’Elia et
al. [DPV12] estimated Neumann boundary condition data from artificial velocity measurements
using variational data assimilation. The approach was extended in Tiago et al. [TGS17] to the
estimation of full 3D inflow velocity profiles from partial velocity data given at slices in different
locations. In contrast to the assumption of simplified velocity profiles, helical and secondary flow
patterns could be recovered downstream from the inlet. Guerra et al. [Gue+18] presented a further
extension to non-Newtonian blood flow. A similar procedure was presented in Koltukluoğlu and
Blanco [KB18], also assuming stationary flow, for estimating the velocity inflow profile from 4D-
Flow data. The methodology delivered accurate results in an experiment using real data acquired
in an aortic phantom.

An adjoint-based parameter estimationmethod was presented in Ismail et al. [IGW12; IWG13]
and applied to real patient-specific aortic flow problems, considering both a CFD setting and
coupling the hemodynamics to the elastic vessel wall mechanics. Windkessel parameters were
calibrated from flow rate and pressure measurements. The method proved robust and delivered
realistic results.

State observers in hemodynamics

A different approach to state estimation consists in using state observers, which add a feedback
term with a constant and sparse precomputed gain matrix to the model equations, involving
the discrepancy between observations of the state and the measurements (see, e.g., Heys et al.
[Hey+10], Funamoto et al. [Fun+08], and Bertoglio et al. [Ber+13]). This methodology is effec-
tive for estimating the state in presence of uncertainties in the initial guess but estimating model
parameters is not possible.

However, sequential data assimilation methods for parameter estimation can be combined
with state observers in order to enable computationally inexpensive joint state/parameter esti-
mation. See, e.g., Moireau et al. [Moi+13] for applications in hemodynamics, where the observer
was used in the context of joint estimation of the state and boundary tissue support parameters.
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1.6 Thesis overview
This thesis contributes to the areas of patient-specific inverse hemodynamics, direct pressure
gradient estimation and multi-scale modeling of vascular networks.

Patient-specific inverse hemodynamics: Geometric uncertainty in image-based vessel reconstruc-
tions is known to be an important issue in patient-specific simulations. Chapter 2 assesses
in a synthetic test case of coarctation of the aorta the impact of geometry errors on the pres-
sure drop obtained from velocity measurements bymeans of sequential data assimilation. A
boundary model and a numerical method capable of compensating such errors is presented.
While the issue of inflow and outflow boundary conditions has received a lot of attention, to
the best of the author’s knowledge, no previous studies have presented a method to reduce
geometric errors in the vessel wall. However, virtually all studies based on the Navier-
Stokes equations use computational domains obtained from imaging, unavoidably affected
by uncertainty.

Direct pressure gradient estimation: 4D-Flow based pressure gradient estimation techniques have
been widely used in proof-of-concept studies for the last two decades, however they are not
routinely used in the clinical practice. Only few studies compared pressure drop estima-
tors with catheterization. In Chapter 3, a comparison of the PPE and the STE pressure
gradient estimation methods with pressure catheterization measurements is presented for
aortic phantoms and CoA patients. To the best of the author’s knowledge, this is the first
time that the STE method is validated using real data. The impact of image resolution and
lumen segmentation—strongly related to the geometric errors discussed in the previous
paragraph—is investigated.

Multiscale modeling of vascular networks: The method of asymptotic partial decomposition of
a domain (MAPDD), a new multiscale method, describes vascular trees as networks of full-
dimensional junctions in which the flow is governed by the Navier-Stokes equations, con-
nected by vessels in which the flow is assumed to be ofWomersley type. Chapter 4 discusses
a practical implementation of the MAPDD and validates the theory with numerical exam-
ples.
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Chapter 2

Data assimilation: reducing geometric errors

The content of this chapter was published in D. Nolte and C. Bertoglio. “Reducing the Impact of
Geometric Errors in Flow Computations Using Velocity Measurements”. In: International Journal
for Numerical Methods in Biomedical Engineering (2019), e3203. doi: 10.1002/cnm.3203.

2.1 Introduction

In this chapter, the performance of the PDE-constrained optimization approach from 2D PC-MRI
is analyzed in numerical test cases when geometric errors in the reconstructed 3D domain are
present. In cardiovascular modeling, geometry errors arise unavoidably from the segmentation
of anatomical medical images (i.e., CT or MRI), which are of limited resolution, contain measure-
ment noise, include partial volume effects [MSE97; Moo+99]. Figure 2.1 illustrates this issue with
white pixels denoting interior and black pixels exterior regions of a blood vessel. The separation
between both is blurred due to the aforementioned imaging limitations (gray pixels). The blue
lines mark possible segmentations of the vessel wall.

Figure 2.1: Illustration of potential segmentation errors in a medical image.

The problem of geometric errors in blood flow computations has been recognized and stud-
ied previously by Moore et al. [MSE97] and Moore et al. [Moo+99]. Uncertainty quantification
studies of geometric uncertainty in CT-based hemodynamics simulations were subsequently pre-
sented in a series of papers [SGT15a; SM11; SGT15b; San+16]. Recently, theoretical error bounds
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were derived for finite element discretizations of PDEs under geometric uncertainties [MR19]. To
the authors’ best knowledge, other than improvements to the image segmentation process, no
methods have been reported to cope for these inaccuracies.

In this work we introduce a flow reconstruction methodology which considers alternative
slip/transpiration boundary conditions estimated from velocity data, which are able compensate
the geometric errors. The methodology is detailed in section 2.2. In section 2.3 the method is
tested in numerical experiments. The results are discussed in section 2.4, followed by conclusions
in section 2.5.

2.2 Methodology

2.2.1 Fluid Flow Model

Geometry definitions

Assume that an approximation of the geometry of a blood vessel is obtained by segmenting med-
ical images. We consider both the true geometry and the segmented, approximate version. The
true domain of the vessel is denoted by 𝛺, such that 𝜕𝛺 = 𝛤𝑤 ∪ 𝛤𝑖 ∪ 𝛤𝑜 , with 𝛤𝑤 representing the
true vessel wall. The segmented domain is denoted by 𝛺 and bounded by 𝜕𝛺 = 𝛤𝑤 ∪ 𝛤𝑖 ∪ 𝛤𝑜 . Both
the true and the segmented domains of a sample vessel are illustrated in Figure 2.2.

𝛺
𝛤𝑖

𝛤𝑜

𝛺

𝛤𝑤

𝛤𝑤

𝛤𝑖

𝛤𝑜

Figure 2.2: ‘Approximate’ segmented domain𝛺 (gray) and cut plane of true domain𝛺 (blue). 𝛤𝑖 , 𝛤𝑖
are proximal to the heart, 𝛤𝑜 , 𝛤𝑜 distal. 𝛤𝑤 , 𝛤𝑤 denote the vessel wall.

The incompressible Navier-Stokes equations

Restricting the analysis to large vessels and neglecting elastic effects of the vessel walls, the un-
steady Navier-Stokes equations of an incompressible, Newtonian fluid [SY16] are a suitable model
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to compute the blood flow inside the vessel 𝛺 (and therefore also valid in 𝛺),

𝜌 𝜕𝒖𝜕𝑡 + 𝜌(𝒖 ⋅ ∇)𝒖 + ∇𝑝 − 𝜇𝛥𝒖 = 𝟎 in 𝛺 (2.1a)

∇ ⋅ 𝒖 = 𝟎 in 𝛺 (2.1b)

𝒖(0) = 𝒖0 in 𝛺 (2.1c)

𝒖 = 𝒈𝑑(𝒙, 𝑡) on 𝛤𝑖 (2.1d)

𝒏 ⋅ [𝜇∇𝒖 − 1𝑝] = 𝑔𝑛(𝒙, 𝑡)𝒏 on 𝛤𝑜 (2.1e)

with the velocity vector 𝒖 ∶ 𝛺 → ℝ3, the pressure 𝑝 ∶ 𝛺 → ℝ, the density 𝜌 and dynamic
viscosity 𝜇. 𝛤𝑖 denotes inflow boundaries, where the velocity profile 𝒈𝑑(𝒙, 𝑡) is specified by means
of a Dirichlet boundary condition. Boundary patches denoted by 𝛤𝑜 are those where Neumann
boundary conditions are given. As boundary conditions for the vessel walls, 𝛤𝑤 and 𝛤𝑤 , two
models will be used in this work, which are detailed in the following sections.

No-slip boundary conditions

The most used wall boundary condition is the no-slip condition, namely

𝒖 = 𝟎 on 𝛤𝑤 or 𝛤𝑤 .

In the remainder of this work, we will assume that this is the correct boundary condition at the
true vessel wall 𝛤𝑤 . We will study the errors which no-slip boundary conditions on 𝛤𝑤 induce in
the results computed in the approximate geometry 𝛺.

Slip/transpiration boundary conditions

If the boundaries 𝛤𝑤 reside inside of the flow region, i.e., 𝛺 ⊂ 𝛺, it may be more appropriate to
allow for some slip along and transpiration (leakage) across the wall. This situation is illustrated
in Figure 2.3, where a virtual boundary, 𝛤𝑤 , is immersed in the fluid region 𝛺.

𝛺𝛺

𝛤𝑤 𝛤𝑤

Figure 2.3: Sketch of slip and transpiration at a virtual boundary 𝛤𝑤 of the domain 𝛺, embedded
in a ‘physical’ domain 𝛺 with the physical boundary 𝛤𝑤 .

Robin-type boundary conditions on such artificial domain boundaries allow for flow in wall-
normal and tangential directions, controlled by coefficients, which in the general case may vary in
space and time. The coefficients can be defined in such a way that the solution is equal to the cor-
responding portion of the solution computed on the complete domain with no-slip conditions on
the ‘true’ wall. These boundary conditions, which we refer to as slip/transpiration conditions, can
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be written in the following form, separating the contributions in the normal and in the tangential
directions:

𝑑−1
∑
𝑘=1

𝒏 ⋅ [𝜇∇𝒖 − 1𝑝] ⋅ 𝒕𝑘 + 𝛾𝒖 ⋅ 𝒕𝑘 = 0 on 𝛤𝑤 (2.2a)

𝒏 ⋅ [𝜇∇𝒖 − 1𝑝] ⋅ 𝒏 + 𝛽𝒖 ⋅ 𝒏 = 0 on 𝛤𝑤 . (2.2b)

Here, 𝒏 denotes the outward unit normal vector and 𝒕𝑘 , 𝑘 = 1, … , 𝑑−1 are orthogonal unit tangent
vectors. The number 𝑑 ∈ {2; 3} denotes the geometric dimension of the problem.

Equation (2.2a) is a slip-friction (also called Navier-slip) boundary condition, see, e.g., John
and Liakos [JL06]. The coefficient 𝛾 controls the ratio the of tangential stress to the tangential
velocity. For 𝛾 = 0, this boundary condition is equal to a free slip condition. In the limit 𝛾 → ∞,
the no-slip boundary condition (for the tangential velocity component)∑𝑑

𝑘=1 𝒖⋅𝒕𝑘 = 0 is recovered.
The transpiration boundary condition, Equation (2.2b), allows for flow perpendicular to the wall.
Transpiration has been used extensively in the context of fluid–structure interaction, see, e.g.,
Hall and Crawley [HC89], Mortchéléwicz [Mor00], Fernández and Le Tallec [FL03], and Figueroa
et al. [Fig+06]. The amount of transpiration through the wall is controlled by the parameter 𝛽 .
The limit 𝛽 → ∞ approaches no-penetration boundary conditions. In the case of 𝛽 = 0, the
fluid is allowed to freely pass through the wall in normal direction. Both conditions can be set
independently, for instance a free-slip condition in the tangential directions and a no-penetration
condition for the normal velocity component. In particular, 𝛾 = 𝛽 = 0 characterizes a free outflow
condition, whereas 𝛾 , 𝛽 → ∞ asymptotically recovers no-slip boundary conditions. Hence, the
combined slip/transpiration boundary conditions are able to represent very different types of
boundary conditions, depending only on the coefficients 𝛽 and 𝛾 . A theoretical analysis of slip/
transpiration boundary conditions in the context of the finite element method was presented in
John [Joh02].

For cases where an analytical solution to the Navier-Stokes equations is known, the parame-
ters can be determined exactly. In Appendix 2.A the slip model is applied to a Poiseuille flow and
the slip parameter computed. Note that in the general case, the values of these coefficients are
unknown. Estimating 𝛽 and 𝛾 from velocity measurements is the subject of section 2.2.2.

Note that while our physical justification of the slip/transpiration boundary conditions is
based on the assumption 𝛺 ⊂ 𝛺, the model can also be applied to cases where the assumption is
violated. However, large improvements in accuracy over no-slip boundary conditions cannot be
reasonably expected. Here, we limit our study to cases where the assumption is valid.

Fractional step scheme

For the sake of computational efficiency, in particular since solving the inverse problem requires
flow computations for several parameter combinations, we employ a fractional step scheme, split-
ting the original coupled system (2.1a)–(2.2b) into a sequence of decoupled, easier to solve PDEs.
In particular we use a version of the classical Chorin-Temam non-incremental pressure correction
scheme [GMS06].

Themethod is given in linearized, time-semidiscretized form in algorithm 1, for the case where
slip/transpiration boundary conditions are applied on the boundary patch 𝛤𝑤 . Note that the al-
gorithm is stated for the segmented domain, 𝛺 with 𝜕𝛺 = 𝛤𝑤 ∪ 𝛤𝑖 ∪ 𝛤𝑜 . For the reference domain,
simply replace 𝛺 by 𝛺 and the boundaries 𝛤∗ by 𝛤∗. No-slip boundary conditions can be defined
on 𝛤𝑤 (or 𝛤𝑤 ) by replacing Eqs. (2.5d)-(2.5e) by the condition �̃�𝑘+1 = 𝟎 on 𝛤𝑤 (or 𝛤𝑤 ).
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Algorithm 1 Restarting fractional step algorithm using slip/transpiration boundary conditions.

Given an initial field �̃�0, compute for 𝑘 = 0, … , 𝑁 :

1. Projection step:

∇2𝑝𝑘 = 𝜌
𝛥𝑡 ∇ ⋅ �̃�𝑘 in 𝛺 (2.3a)

𝒏 ⋅ ∇𝑝𝑘 = 0 on 𝛤𝑖 (2.3b)

𝑝𝑘 = 𝑔𝑘𝑛 on 𝛤𝑜 (2.3c)

𝒏 ⋅ ∇𝑝𝑘 + 𝜌
𝛥𝑡 𝛽

−1𝑝𝑘 = 𝜌
𝛥𝑡 �̃�

𝑘 ⋅ 𝒏 on 𝛤𝑤 (2.3d)

2. Velocity correction step:

𝒖𝑘 = �̃�𝑘 − 𝛥𝑡
𝜌 ∇𝑝𝑘 in 𝛺 (2.4)

3. Tentative velocity step:

𝜌
𝛥𝑡 (�̃�

𝑘+1 − 𝒖𝑘) + 𝜌(𝒖𝑘 ⋅ ∇)�̃�𝑘+1 + 𝜌
2 (∇ ⋅ 𝒖𝑘)�̃�𝑘+1 − ∇ ⋅ (𝜇∇�̃�𝑘+1) = 𝟎 in 𝛺 (2.5a)

�̃�𝑘+1 = 𝒈𝑘+1𝑑 on 𝛤𝑖 (2.5b)

𝜇𝒏 ⋅ ∇�̃�𝑘+1 = 𝟎 on 𝛤𝑜 (2.5c)

𝑑−1
∑
𝑘=1

𝒏 ⋅ [𝜇∇�̃�𝑘+1 − 1𝑝𝑘] ⋅ 𝒕𝑘 + 𝛾�̃�𝑘+1 ⋅ 𝒕𝑘 = 0 on 𝛤𝑤 (2.5d)

𝒏 ⋅ [𝜇∇�̃�𝑘+1 − 1𝑝𝑘] ⋅ 𝒏 + 𝛽�̃�𝑘+1 ⋅ 𝒏 = 0 on 𝛤𝑤 . (2.5e)

Note further that the algorithm starts with the projection and velocity correction steps instead
of the tentative velocity step due to the fact that the pressure is required by the slip/transpiration
conditions in the tentative velocity step. The given formulation is also convenient with regard to
the optimization problem introduced in the subsequent section, since an iteration of the algorithm
depends only on the previously computed tentative velocity, representing the state variable of
the system. Optionally, steps 1 and 2 (computationally inexpensive compared to step 3) of the
algorithm can be repeated at the end of each iteration to obtain 𝑝𝑘+1 and 𝒖𝑘+1 for post-processing
purposes.

The slip/transpiration boundary conditions appear in both the tentative velocity step, Eqs. (2.5d)
and (2.5e), and in the pressure projection step, Equation (2.3d). In the tentative velocity step, the
slip/transpiration conditions are treated semi-implicitly with implicit velocity and explicit pres-
sure from the previous time step. In the pressure projection step, while the slip part does not
contribute, the transpiration boundary condition can be expressed via a Robin condition for the
pressure with implicit treatment of the velocity and the pressure. This Robin condition, Equa-
tion (2.3d), is derived by considering the normal projection of the velocity correction equation (2.4)
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and rearranging,

𝒏 ⋅ ∇𝑝𝑘 = 𝜌
𝛥𝑡 (�̃�

𝑘 − 𝒖𝑘) ⋅ 𝒏 on 𝛤𝑤 . (2.6)

Assuming that the corrected velocity 𝒖𝑘 and the unknown pressure 𝑝𝑘 satisfy the transpiration
boundary condition,

𝒏 ⋅ [𝜇∇𝒖𝑘 − 1𝑝𝑘] ⋅ 𝒏 + 𝛽𝒖𝑘 ⋅ 𝒏 = 0 on 𝛤𝑤 , (2.7)

we can replace 𝒖𝑘 ⋅ 𝒏 in (2.6) by (2.7), assuming 𝛽 > 0 and obtain

𝒏 ⋅ ∇𝑝𝑘 = 𝜌
𝛥𝑡 (�̃�

𝑘 ⋅ 𝒏 − 𝛽−1 (𝑝𝑘 − 𝒏 ⋅ 𝜇∇𝒖𝑘 ⋅ 𝒏)) on 𝛤𝑤 .
As is usual in fractional step methods applied to blood flows [FGG07; BCF13], we neglect the
viscous term. This results in the final form in Equation (2.3d). A similar discretization scheme
was presented in Caiazzo et al. [Cai+10] in the context of immersed porous interfaces.

Note that the implicit treatment of the velocity in the slip/transpiration condition in the ten-
tative velocity step avoids the need of a (in practice very restrictive) stability criterion on the
time step. This is particularly reasonable in the context of the Chorin-Temam method, where
additionally very small time steps can cause spurious pressure oscillations if equal order.

2.2.2 The Parameter Estimation Problem

Formulation and solution method

Let us introduce the following short-hand notation for the discretized numerical model,

𝑋𝑘 = 𝒜𝑘(𝑋𝑘−1, 𝜃),
where𝒜𝑘 is themodel operator. In the case of the fractional step algorithm 1 given in section 2.2.1,
the state corresponds to the discrete tentative velocity, 𝑋𝑘 ∶= �̃�𝑘ℎ ∈ ℝ𝑛 and 𝒜𝑘 ∶ ℝ𝑛 × ℝ𝑝 ↦ ℝ𝑛
represents one time iteration of the discrete fractional step scheme. The physical parameters
related to the boundary conditions are summarized in 𝜃 ∈ ℝ𝑝 , 𝑝 ≥ 1 denoting the number of
parameters.

The aim of this work is to estimate 𝜃 from a sequence of 𝑁 partial velocity measurements
𝑍𝑘 ∈ ℝ𝑚, 𝑘 = 1, … , 𝑁 by means of PDE-constrained inverse problem. Here we assume that the
measurements are related to the (true) state variable 𝑋 𝑡

𝑘 ∈ ℝ𝑛 of the fluid model by means of a
measurement operatorℋ ∶ ℝ𝑛 ↦ ℝ𝑚, such that

𝑍𝑘 = ℋ𝑋 𝑡
𝑘 + 𝜁 ,

where 𝜁 ∈ ℝ𝑚 represents uncertainty due tomeasurement errors. The superscript 𝑡 in𝑋 𝑡
𝑘 indicates

the ground truth, whereas 𝑋𝑘 refers to the state computed by the numerical model.
For the inverse strategy, we adopt a Bayesian estimation approach, where the a priori proba-

bility distribution of the parameters is corrected by using the measurements and the model. As-
suming that both the probability distribution of the noise and the a priori parameters is Gaussian,
the solution of the inverse problem reads: find

̂𝜃 = arg min
𝜃

𝐽 (𝜃),

𝐽 (𝜃) = 1
2 ‖𝜃 − 𝜃0‖2𝑃−10 +

𝑁
∑
𝑘=1

1
2 ‖𝑍𝑘 − ℋ𝑋𝑘(𝜃)‖2𝑊 −1 .

(2.8)
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𝜃0 is an initial guess for the parameters and 𝑃0 the associated covariance matrix. 𝑊 is the covari-
ance matrix associated to the measurement noise.

In this work we solve problem (2.8) approximately with the Reduced-order Unscented Kalman
Filter (ROUKF), described in Moireau and Chapelle [MC11] and Bertoglio [Ber12]. It has the ad-
vantage of being derivative-free, hence well adapted to complex solvers, including multi-physical
problems. It allows also to be flexibly adapted to different discretization strategies. Moreover, as
an inherent property of the Kalman filter approach, the parameters are estimated recursively over
time and therefore there is no need to store the full dynamic solution as in adjoint-based methods.
The number of forward solutions grows linearly with the number of parameters to be estimated,
but the forward solves can be parallelized since they are independent of each other. The ROUKF
has become very popular in cardiovascular modeling in general and in particular in computa-
tional hemodynamics, see e.g. Bertoglio et al. [BMG12], Moireau et al. [Moi+13], Bertoglio et al.
[Ber+14], Caiazzo et al. [Cai+17], and Müller et al. [MCB18].

The estimation procedure consists in the following steps: given a sequence of measurements
and an approximation of the vessel geometry,

1. estimate the boundary coefficients with the ROUKF,

2. solve the forward problem with the optimized parameters,

3. post-process the optimized velocity and pressure solution of the forward problem.

Parameters

The inlet velocity (to be set via a Dirichlet boundary condition) is a priori unknown. In this work
we assume a pulsating plug flow,

𝒈𝑑(𝒙, 𝑡) = − ̄𝑈𝒏𝑓 (𝑡),
where ̄𝑈 is the velocity amplitude and 𝒏 is the outward normal vector at the boundary. 𝑓 (𝑡) is
the waveform of the temporal oscillation, for instance

𝑓 (𝑡) =
𝑀
∑
𝑘=1

𝑎𝑘 sin(𝜔𝑘𝑡), 𝑎1 = 1.

The amplitude ̄𝑈 is an unknown constant and needs to be recovered by the parameter estima-
tion procedure. The waveform can easily be estimated prior to solving the inverse problem by
postprocessing the measurements. Different parameterizations than the one given are possible.
It is assumed here that 𝑓 (𝑡) is known beforehand. In practice, a simple approach to obtain the
waveform is computing the spatial mean of the velocity data given at the inlet boundary (as-
suming there are measurements at the inlet) for every measurement time and fitting the time
profile. Otherwise, for some chosen small value of𝑀 , 𝑎𝑘 and 𝜔𝑘 can be included in the parameter
estimation.

If the slip/transpiration wall-model is used, the corresponding coefficients 𝛽 and 𝛾 need to be
estimated and are included in the parameter vector.

Summarizing, the parameter vector 𝜃 consists of the following boundary parameters:

• inflow condition, plug flow parameter ̄𝑈
• slip parameter 𝛾 (if slip/transpiration BC, per boundary patch),

• transpiration parameter 𝛽 (if slip/transpiration BC, per boundary patch).
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2.3 Setup of the numerical experiments

Numerical experiments are conducted with the goal of comparing the slip/transpiration approach
with standard no-slip boundary conditions in cases where geometric errors are present in the
vessel wall. Three realistic synthetic test cases are analyzed, representing arteries with different
degrees of stenoses. The setup of the test cases and the numeric solvers used for the forward and
the inverse problems are explained in this section.

2.3.1 Geometries

Three geometries with different obstruction ratios of the stenosis of 40%, 50% and 60% are con-
sidered. The latter case is illustrated in Figure 2.2. The study is conducted under the assumption
𝛺 ⊂ 𝛺, where the slip/transpiration boundary conditions have a sound physical justification.
For each stenosis, three computational domains are generated: a reference domain with radius
𝑅 = 10mm in the unconstricted parts, which is considered the true domain, and two domains with
the outer vessel walls shifted inward by 𝛥 = 1mm and 𝛥 = 2mm. These offsets are considered
segmentation errors with respect to the reference, due to uncertainty—e.g., limited resolution (of
the order of 𝛥) and noise—in the medical images. In addition to the reference domain, Figure 2.2
shows the approximate domain for 𝛥 = 2mm. In this case, the difference in the radius is 20% in
the unconstricted sections, whereas in the throat of the stenosis with 60% obstruction ratio, the
radius is halved due to the errors in the geometry.

The true domain, 𝛺, is used to compute a reference solution for comparison with the estima-
tion framework and to generate synthetic measurements. We pretend that for the pressure drop
estimation, this true domain is unknown, but that one of the approximate domains is available
(𝛺).

2.3.2 Reference solution

Configuration

The reference solution is obtained by solving the fractional step system in the true domain𝛺, with
no-slip boundary conditions imposed on the lateral walls 𝛤𝑤 . At the distal boundary, 𝛤𝑜 , intersect-
ing the flow, a homogeneous Neumann boundary condition is used, i.e., 𝑔𝑛 = 0 in Eq. (2.3c) and
(2.5c). On the proximal boundary, 𝛤𝑖 , a pulsating plug flow profile is set via a Dirichlet boundary
condition,

𝒈𝑑(𝒙, 𝑡) = − ̄𝑈𝒏 sin(𝜔𝑡).

Note that 𝒖 = 𝟎 on 𝛤𝑖 ∩ 𝛤𝑤 due to the no-slip boundary conditions. As above, 𝒏 denotes the
outward normal vector on the boundary. To mimic physiologically relevant conditions, we set
𝜔 = 2.5𝜋 s−1 and consider the time interval 𝑡 ∈ [0 s, 0.4 s], approximating the first half of a cardiac
cycle, with the peak systole at 𝑡 = 0.2 s. The viscosity of blood (treated as a Newtonian fluid) is
𝜇 = 0.035 g/(cm s) and the density 𝜌 = 1 g/cm3. The amplitude of the pulsating inflow velocity is

set to ̄𝑈 = 43.75 cm/s, resulting in a peak Reynolds number based on the inlet of 𝑅𝑒 = 𝜌2 ̄𝑈𝑅
𝜇 = 2500.

The Reynolds numbers based on the throat of the stenoses, 𝑅𝑒𝑠 , at the time of peak systole is
(obtained from the solution presented below) are listed in Table 2.1.
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Table 2.1: Reynolds numbers at peak systole based on the maximum velocity.

obstruction ratio 40% 50% 60%
𝑅𝑒𝑠 4063 4863 6055

Discretization and numerical solution

The partial differential equations that constitute the fractional step scheme (2.3a)–(2.5e) are dis-
cretized in space with the finite element method, using ℙ1/ℙ1 basis functions for the velocity and
the pressure on an unstructured tetrahedral mesh. Furthermore, streamline-diffusion stabiliza-
tion is used with the formula for the stabilization parameter given in Bazilevs et al. [Baz+07].
Since backflow is likely to occur at the outflow boundary, velocity-penalizing backflow stabiliza-
tion [Ber+17] is added on 𝛤𝑜 . Note that also transpiration boundary conditions allow for inflow
to occur, and therefore instabilities could potentially arise. In our numerical examples, however,
we did not observe such problems, probably since the values of the transpiration parameter are
high enough to control that advective energy. However, in case they appear, additional backflow
stabilization terms could be added [Ber+17]. In particular, the tangential regularization method
presented in Bertoglio and Caiazzo [BC14] would be the most suitable since it has shown to be
the least intrusive for the pressure field [Ber+17].

The meshes use a reference cell size of ℎ = 0.25mm and consist of 3 086 306 to 3 606 417
tetrahedrons and 561 761 to 655 858 vertices, depending on the geometry. The constant time step
size is 𝛥𝑡 = 1ms.

The solver is implemented using the finite elements library FEniCS [Aln+15]. Preconditioned
Krylov methods are used to solve the linear systems, provided by the PETSc package [Bal+18].
We make use of the fact that in the case of no-slip boundary conditions the velocity compo-
nents are completely decoupled in the discretized versions of Eqs. (2.4) and (2.5a), and solve three
smaller problems for each component separately with the same system matrix, instead of one
large system for the complete velocity vector. For solving the tentative velocity equation we use
BICGSTAB preconditioned with diagonal scaling. The pressure Poisson equation is solved with
the CG method in the no-slip case and GMRES if slip/transpiration boundary conditions are used,
in both cases with an algebraic multigrid preconditioner. The velocity correction system is solved
using CG with a diagonal scaling preconditioner (cf. Saad [Saa03]).

2.3.3 Inverse solutions

Measurements

Synthetic partial measurements are generated from the reference solutions in such a way that
the measurements are representative for typical 2D PC-MRI images. This means that 2D planes,
intersecting with the 3D domain, are chosen on which the velocity is measured in one specified
direction 𝒅. I.e., the measurement is a scalar projection

𝑐 = 𝒖 ⋅ 𝒅, |𝒅| = 1.

Since the inflow velocity is unknown and needs to be estimated, one plane will be placed at the
inlet (Figure 2.4(a)). We consider here the 𝑥 velocity component, orthogonal to the plane. A
second plane intersects the domain lengthwise with an inclination of ≈ 10° with respect to the
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𝑥𝑧-plane. It connects points at the inlet, in the throat of the stenosis and at the outlet, as shown
in Figure 2.4(b). The velocity component is chosen tangential to the plane in the streamwise
direction (i.e., parallel to the longer edge).

𝑋
𝑌

𝑍

(a) Interior slice

𝑋𝑌
𝑍

(b) Inlet slice

Figure 2.4: Measurement slices with reference geometry (60%) at the peak time 𝑡 = 0.2 s, with
resolution 𝐻 = 2mm.

These slices have a finite thickness and consist in one layer of 3D voxels. The measurement
data is represented on a mesh of uniform, equally sized tetrahedra. The thickness of the slices
equals the element edge length on the plane, 𝐻 . The element length is chosen to match typical
voxel sizes for PC-MRI, namely 𝐻 = 1mm and 2mm. We limit this study to the cases where
the geometry error 𝛥 is equal to the voxel size of the measurements, supposing that the same
hypothetical image resolution was used to obtain the 3D vessel geometry and the PC-MRI velocity
images. We refer to the case 𝛥 = 𝐻 = 1mm as ‘𝛥1’ and 𝛥 = 𝐻 = 2mm as ‘𝛥2’.

The measurements are obtained by interpolating the selected component of the reference ve-
locity to the barycenters of the tetrahedra of the slicemeshes. Themeasurement data is considered
constant within each tetrahedron, as can be seen in Figure 2.4 for noisy example data. The tem-
poral sampling of the measurements is 𝛥𝑇 = 20ms, representing a typical value for 2D-PCMRI.

The noise intensity in the velocity data in PC-MRI is proportional to the VENC parameter
of the scan, which encodes the intensity of the velocity encoding magnetic gradients [Car+18;
LPP95]. Therefore, in practice the VENC is chosen as small as possible to reduce the noise in
the velocity image. However, this parameter has to be set for each measurement sequence to a
value higher than the expected maximum velocity in order to avoid velocity aliasing [Car+18;
LPP95]. Since the VENC is fixed for the entire duration of a MRI scan, the noise level in all voxels
is proportional to the global maximum velocity in space and time in the measurement region,
regardless of the measured instantaneous local velocities. It is therefore realistic to assume that
in practice, in order to improve the velocity-to-noise ratio, different values of the VENC parameter
would be used for the different slices, according to the anticipated flow conditions. In the clinical
practice it can be expected that high-quality acquisitions contain a velocity noise of 10% of the
peak velocity [Dyv+15].

Therefore, in the numerical experiments presented here, Gaussian white noise is added to
each of the slices independently with a standard deviation of 15% of the maximum velocity of
the reference solution in the measurement region. Table 2.2 lists the values of the maximum
velocities of the reference configurations (the complete results are presented in section 2.4.1) and
the corresponding measurement noise intensities in terms of the standard deviation for the inlet
slice and the interior slice with different coarctation ratios of the stenosis.
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Table 2.2: Maximum velocities and standard deviation of Gaussian noise at the inlet and in the
interior image slices, for different obstruction ratios of the stenosis.

inlet slice interior slice
all stenosis 40% stenosis 50% stenosis 60% stenosis

max 𝑈 43.75 cm/s 140 cm/s 200 cm/s 320 cm/s
𝜎noise 6.56 cm/s 21 cm/s 30 cm/s 48 cm/s

Forward solution

The optimization procedure requires evaluations of the forward model, i.e., the fractional step
algorithm. The configuration of the forward model and solvers is identical to the reference sim-
ulations, with the following exceptions:

• the ‘approximate’ computational domains 𝛺 with geometric errors are used,

• no-slip or slip/transpiration boundary conditions on 𝛤𝑤 ,
• boundary parameters are unknown and estimated (see the next paragraph).

Note that using slip/transpiration boundary conditions in implicit form, the velocity components
in the momentum equation (2.5a) are coupled and cannot be solved for separately. This results in
an increase in CPU time compared to the no-slip case. In the case of slip/transpiration boundary
conditions, the momentum equation is solved with GMRES, preconditioned with algebraic multi-
grid. With no-slip boundary conditions the same solvers are used as for the reference solution,
see section 2.3.2.

Physical model parameters

We compare two wall models:

1. standard no-slip boundary conditions and

2. slip/transpiration boundary conditions.

The only parameter of the no-slip model is the plug flow parameter at the inlet. It seems there-
fore reasonable to estimate the plug flow parameter only from measurements given at the inlet.
Regarding the geometric errors, it will be examined if the results can be improved by providing
additional measurements in the interior of the domain, i.e., by using both measurement slices
discussed above. In the case of slip/transpiration boundary conditions, measurements at the inlet
and in the interior will be used in order to estimate the plug flow parameter and the boundary
coefficients 𝛽 and 𝛾 .

Summarizing, the parameters to be estimated are:

• no-slip
𝜃 = ̄𝑈 ,

• slip/transpiration
𝜃 = ( ̄𝑈 , 𝛽, 𝛾) .
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Kalman filter parameters

The physical parameters to be estimated (see paragraph above) are reparameterized as 𝜃′ =
log2(𝜃). By optimizing 𝜃′, it is ensured that the physical parameters 𝜃 , which enter the fluid
model, stay positive. This is required to guarantee the positivity of the variational formulation of
the forward problem and in agreement with basic physical intuition, since, for instance, with a
negative slip parameter the wall-tangential flow would be accelerated by the traction, instead of
slowed.

Initial guesses for the parameters and the associated uncertainties have to be provided for the
ROUKF algorithm. We choose

𝜽0 = {
40

0.001
5000

}
plug flow,
slip parameter,
transpiration parameter.

The initial variances of the reparameterized parameters 𝜃′ are set to 𝜎20 = 1. The weights 𝑊
in (2.8), representing the uncertainty in the measurements, is set to the known noise intensity in
each of the slices, i.e.,𝑊 = diag(𝜎), with 𝜎 ∈ ℝ𝑚 the vector of the noise standard deviations in all
𝑚 measurement data points. In practice, 𝜎 is the estimated noise level proportional to the VENC
value used for each measurement.

2.3.4 Summary

The cases included in this study are summarized in Table 2.3. In total, 540 optimization problems

Table 2.3: Summary of numerical experiments using no-slip or slip/transpiration boundary con-
ditions

model obstruction ratio measurement
slices

𝛥, 𝐻 parameters random
sam-
ples

no-slip {40%, 50%, 60%} inlet only {𝛥1, 𝛥2} ̄𝑈 30
no-slip {40%, 50%, 60%} inlet +

interior
{𝛥1, 𝛥2} ̄𝑈 30

slip/transp. {40%, 50%, 60%} inlet +
interior

{𝛥1, 𝛥2} ̄𝑈 , 𝛽 , 𝛾 30

with subsequent forward simulations with each optimized set of parameters are solved. Each sim-
ulation is computed on 16 Intel Xeon 2.5GHz cores on the Peregrine HPC cluster of the University
of Groningen.

2.4 Numerical results

The results obtained with no-slip and with slip/transpiration boundary conditions are mainly
analyzed in terms of the pressure drop and the velocity error. The pressure drop is defined as
the difference in the pressure averages at two cross-sections, upstream and downstream of the
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stenosis,

𝛿𝑝𝑘 = 1
|𝛤𝑖 | ∫𝛤𝑖

𝑝𝑘 − 1
|𝛤𝑜 | ∫𝛤𝑜

𝑝𝑘 , (2.9)

with |𝛤⋆| denoting the area of a boundary patch and the superscript 𝑘 the 𝑘th time step. Note that
the pressure drop is determined by the pressure gradient alone and does not depend on fixing the
pressure constant. The velocity error is considered in the 𝐿2-norm over the whole approximate
domain, scaled by the global maximum velocity, and defined as

ℰ𝑘 ∶=
‖�̂�𝑘 − ℐ 𝒖𝑘‖𝐿2(𝛺)
max𝑘‖ℐ 𝒖𝑘‖𝐿2(𝛺)

. (2.10)

Here ℐ is the operator which interpolates the reference velocity 𝒖𝑘 to the space of the optimized
velocity �̂�𝑘 , i.e., from the reference geometry 𝛺 to the approximate geometry, 𝛺.

We proceed by first presenting the numerical solutions of the reference setups, followed by a
discussion of the results of the inverse problems using no-slip boundary conditions on the walls.
Lastly, we present the results of the slip/transpiration model and compare them to the no-slip
results.

2.4.1 Reference solution and measurements

We briefly discuss the numerical solutions of the reference cases. These form the basis of the
subsequent analysis of the results of the optimization problems, because they serve as the ground
truth which the solutions of the inverse problems are compared to. In addition, the measurements
are generated from the velocity solution of the reference, as was explained above.

Streamlines of the velocity field are shown in Figs. 2.5–2.7, for peak systole, 𝑡 = 0.2 s. The
domain is cut along the 𝑋𝑍 plane and only one half is shown, since the flow is approximately
symmetrical with respect to that plane. The figures furthermore include the interior measurement
plane with a resolution of 𝐻 = 2mm.

Since the flow is of pulsating character, dynamic effects are very pronounced. We restrict the
discussion here to the flow situation at peak systole, 𝑡 = 0.2 s, where the maximum velocities and
pressure drops can be expected. Round jets are formed due to the constrictions, surrounded by
annular recirculation zones. The jets impinge on the curvedwall and aremainly deflected towards
the outlet. Secondary circulations form in particular below the jets and are fed by azimuthal wall-
bound flow produced by the impingement. In the example with 40% obstruction ratio, this effect
is most pronounced. The recirculation velocities are considerable compared to the velocities of
the jet, and the strong recirculation bubble acts back on the jet flow by pushing it upward. Such
an interaction between recirculation zones and jets does not appear in the cases of more severe
stenosis, 50% and 60%, where the jets remain unperturbed. The magnitude of the secondary
flow patterns seems negligible in comparison to the very high jet velocities. The snapshot of
the measurement of the 40% case, Figure 2.5(a), shows that the recirculation is captured to some
degree in the measurements. There is a ‘dead region’ of low in-plane velocities in the center, near
the outlet, surrounded by higher magnitude wall-bound flow. Such features are not recognizable
in the 50% and 60% cases due to the high noise intensity. Weak backflow is present at the outflow
boundary in all examples, confirming the need for backflow stabilization.

Isosurfaces of the corresponding pressure fields are shown in Figure 2.8. The pressure is close
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Figure 2.5: Streamlines of the reference flow and sample noisy velocity measurement (in-plane
component, 𝛥2) at peak systole for 40% obstruction ratio.
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Figure 2.6: Streamlines of the reference flow and sample noisy velocity measurement (in-plane
component, 𝛥2) at peak systole for 50% obstruction ratio.

to zero along the outflow boundaries, due to the homogeneous Neumann boundary condition.
As the flow accelerates in the stenosis, strong very localized pressure minima appear at the wall
in the narrowest section, and propagated downstream. The jet impingement creates a region of
relatively high pressure in the region of the impact. The maximum pressure is naturally located
upstream of the stenosis, and distributed rather uniformly. The maximum pressure is highest for
the stenosis with 60% obstruction ratio.

2.4.2 Estimation results for the no-slip model

Consider first the scenario where measurements are given only at the inlet. The PDE-constrained
optimization problem is solved with no-slip boundary conditions, estimating the plug flow pa-
rameter.

Statistics of the plug flow parameters estimated from measurements at the inlet with different
resolutions and geometry errors in the computational domain 𝛥 = 𝐻 = 1mm and 2mm are
listed in Table 2.4 Since the ROUKF algorithm optimizes the log2-reparameterized parameter and
assumes 𝜃 to be normally distributed, a lognormal distribution can be considered for the physical
parameters, 2𝜃 . The table shows the mean and the square root of the variance of the physical non-
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Figure 2.7: Streamlines of the reference flow and sample noisy velocity measurement (in-plane
component, 𝛥2) at peak systole for 60% obstruction ratio.
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Figure 2.8: Pressure isosurfaces of reference problems with different coarctation ratios at the peak
time 𝑡 = 0.2 s.

logarithmized parameter assuming a lognormal distribution over 30 identical repetitions of the
experiment for independent random realizations of measurement noise. The plug flow parameter

Table 2.4: Mean and square root of the variance of the estimated plug flow parameter, using no-
slip BCs and measurements only at the inlet. Statistics from 30 independent realizations of noisy
measurements. Ground truth: 43.75 cm/s.

40% stenosis 50% stenosis 60% stenosis
𝛥 (mm) mean √Var mean √Var mean √Var

1 43.98 0.06 43.98 0.06 43.93 0.05
2 43.67 0.15 43.61 0.20 43.71 0.13

is recovered with a very good accuracy, with errors of less than 0.5% compared to the ground
truth. The variability of the parameter is generally very small, being largest for 𝛥 = 2mm in
all investigated obstruction ratios, possibly due to the lower resolution of the measurements and
thus less data being available.

The mean pressure drop, obtained by forward-solving the Navier-Stokes equations with the
optimized parameters, is visualized in Figure 2.9 over time for the three investigated obstruction
ratios and for both geometry errors/measurement resolutions, 𝛥1 = 1mm and 𝛥2 = 2mm. The
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Figure 2.9: Mean pressure drop with no-slip BCs for 30 realizations of noise. The peak standard
deviation is of the order of 0.1% of themean. Measurementswere given at the inlet with resolution
𝐻 = 𝛥, 𝛥 denoting the error in the geometry (cf. legend); 𝛥1 = 1mm and 𝛥2 = 2mm.

standard deviation over 30 experiments is below 0.5% of the mean value at peak systole, similarly
to the plug flow parameter. This indicates that the procedure is very robust to noise and with
respect to small changes in the parameter.

On the other hand, it is immediately evident from the figures that the accuracy of the pressure
gradient reconstruction is very poor, especially for large obstruction ratios, when errors in the
geometry are present. In the best scenario, the mildest stenosis with 40% obstruction and for 𝛥1
(i.e., for the smaller geometry error and measurement resolution 𝛥 = 𝐻 = 1mm), the error in the
pressure drop at the peak is about 50%. With 𝛥2 (𝛥 = 𝐻 = 2mm), the error exceeds 100%. For
the more severe 50% and 60% stenoses, the peak error is of the order of 100% for 𝛥1, and for 𝛥2
rises up to 300% to 400%.

The pressure drop estimates are improved by taking into account additional measurements in
the interior. Figure 2.10 shows the pressure drops obtained for the case where two measurement
slices were used (label ‘II’ in the figure), at the inlet and the lengthwise intersecting slice, in com-
parison to measurements only at the inlet (label ‘I’, same curves as in Figure 2.9). The discrepancy
between the model and reference pressure gradient solutions is reduced by a large factor in the
case of 𝛥 = 2mm, and to a lesser degree for 𝛥 = 1mm.
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Figure 2.10: Mean pressure drop with no-slip BCs for 30 realizations of noise; standard deviation
of the order of 0.1% of themean. Measurements given on two slices (labeled ‘II’) vs. measurements
only at the inlet (‘I’). 𝛥1 = 1mm and 𝛥2 = 2mm (cf. Figure 2.9).

Table 2.5 compares the corresponding estimated plug flow parameters for the cases with mea-
surements at the inlet (rows labeled ‘I’) and measurements at the inlet and in the interior slice
(‘II’). By considering measurements in the interior, the estimated plug flow parameter deviates
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Table 2.5: Mean and square root of the variance of the estimated plug flow parameter, using no-
slip BCs and measurements only at the inlet. Statistics from 30 independent realizations of noisy
measurements. Ground truth: 43.75 cm/s.

40% stenosis 50% stenosis 60% stenosis
𝛥 (mm) # slices mean √Var mean √Var mean √Var

1 I 43.98 0.06 43.98 0.06 43.93 0.05
II 41.48 0.05 41.58 0.05 41.82 0.06

2 I 43.67 0.15 43.61 0.20 43.71 0.13
II 37.40 0.11 36.46 0.19 35.06 0.14

significantly from the ground truth, compared to inlet-only measurements, the error is largest
for the 60% stenosis with 𝛥 = 2mm with 20% underestimation of the ground truth, compared to
0.1% using only measurements at the inlet. Hence, the improved pressure drop estimation comes
at the cost of large errors in the inflow profile.

Figure 2.11 shows the velocity error, defined by Equation (2.10), over time. The velocity error
globally increases slightly with augmenting obstruction ratios of the stenoses, but to a much
lesser degree than the error in the pressure drop. Computations with a bigger geometry error,
i.e., 𝛥2 instead of 𝛥1, lead to increased errors in the velocity by roughly 50% in all three cases. By
taking into account interior measurements (lines labeled ‘II’ in Figure 2.11), the errors are slightly
reduced, especially for 𝛥2. Again, the results are very robust to noise with relative standard
deviations of the velocity error of the order of 0.1% at peak systole.
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Figure 2.11: Mean velocity error with no-slip BCs for 30 realizations of noise; peak systole stan-
dard deviation of the order of 0.1% of the mean. Measurements given on two slices (‘II’) vs. mea-
surements only at the inlet (‘I’). 𝛥1 = 1mm and 𝛥2 = 2mm.

The observed poor pressure drop estimates and large errors in the inflow velocity render the
described procedure using no-slip boundary conditions inadequate for the application discussed
here. The decreased radius in the stenosis gives rise to a much higher pressure drop if the inflow
velocity is similar to the reference case. In order to fit interior measurements (for instance the jet
velocities), if given, the inflow velocity has to be strongly decreased.

This reasoning motivates investigating slip/transpiration boundary conditions. The results
of the numerical experiments using slip/transpiration boundary conditions are presented in the
following section.
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2.4.3 Estimation results for the slip/transpiration model

Consider the case where measurements are given at the inlet and on the interior slice. The pres-
sure drop obtained with the slip/transpiration boundary conditions is displayed in Figure 2.12 in
comparison to the no-slip results, also considering both measurement slices. The accuracy of the
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Figure 2.12: Pressure drop comparison, slip/transpiration (‘slip’) vs. no-slip. Mean values with
±2𝜎 bands over 30 samples of measurements, given at the inlet and in the interior plane, with
resolution/geometry error 𝛥1 = 1mm and 𝛥2 = 2mm.

pressure drop estimation is greatly improved in all cases. Especially with 𝛥 = 1mm, for the 40%
and 50% cases, the estimated pressure drop now coincides almost perfectly with the ground truth.
In the most severe 60% stenosis, the pressure drop is overestimated by 15% for both 𝛥1 and 𝛥2.
Using the 𝛥2 geometry and measurements leads to a slight underestimation of the pressure drop
in the 50% example, and to a more pronounced underestimation for the 40% case.

The figure also shows the variability of the pressure drop by means of ±2𝜎 bands computed
for 30 realizations of noise. The spread seems negligible for all cases except in the setting of
the 40% stenosis, using the slip/transpiration model and 𝛥2 measurements, where a larger vari-
ability is present in the pressure drop than in the other experiments. Increasing the sample size
to 50 for this example did not significantly reduce the variance observed in the pressure drop.
Albeit the larger spread with the slip/transpiration model in this particular case, the estimated
pressure drop was still observed to be closer to the ground truth in all simulated cases. This is
shown in Figure 2.13, where the error in the pressure drop at peak systole is plotted for the 30 in-
vestigated realizations of noisy measurements. The slip/transpiration model underestimates the
ground truth by approximately 10% to 25% whereas the error with the no-slip model is around
60%.

The corresponding relative 𝐿2 velocity errors are shown in Figure 2.14. In all cases, the error
is smaller with the slip/transpiration model, the relative improvement being the most pronounced
for 40%. Some variability in the error can be observed after the peak time 𝑡 = 0.2 s in the 40%
case for both values of 𝛥, using the slip/transpiration model.

Statistics of the estimated plug flowparameter are compared for bothmodels in Table 2.6. With
slip/transpiration boundary conditions, the ground truth is recovered with very good accuracy
for both 𝛥1 and 𝛥2. In all settings the errors are significantly smaller compared to those obtained
with no-slip boundary conditions. The variability is generally small with the square root of the
variance below 1% of the mean. In the case of 40% obstruction ratio with 𝛥2 the square root of
the variance is somewhat increased for slip/transpiration conditions, to 2% of the mean. This
coincides with the observation of an increased variability in the pressure drop for the 40% case
with 𝛥2.
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Figure 2.13: Relative, signed pressure drop error at peak systole compared for no-slip and slip/
transpiration boundary conditions, for 40% obstruction ratio and 𝛥2. Each point corresponds to
the result obtained for one realization of noisy measurements.
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Figure 2.14: Velocity error comparison, slip/transpiration (labeled ‘slip’) vs. no-slip. Mean values
with ±2𝜎 bands over 30 samples of measurements, given at the inlet and in the interior plane,
with resolution/geometry error 𝛥1 = 1mm and 𝛥2 = 2mm.

Table 2.6: Mean and square root of variance of the estimated plug flow parameter 𝜃 ̄𝑈 , using slip/
transpiration and no-slip BCs, for 30 independent realizations of noisy measurements at the inlet
and in the interior. Ground truth: 43.75 cm/s.

40% stenosis 50% stenosis 60% stenosis
𝛥 (mm) model mean √Var mean √Var mean √Var

1 noslip 41.48 0.05 41.58 0.05 41.82 0.06
slip 43.19 0.13 44.46 0.07 44.21 0.08

2 noslip 37.40 0.11 36.46 0.19 35.06 0.14
slip 44.01 1.03 44.80 0.16 45.40 0.13

For the transpiration and slip parameters no ground truth values are available. The transpira-
tion parameter 𝛽 , summarized by Table 2.7, increases with the obstruction ratio. The stronger the
stenosis and jet, the higher is therefore the resistance to flow across the boundary in the normal
direction. The parameter is smaller for 𝛥2 than for 𝛥1, since in the former case the boundaries
are located deeper inside the true flow domain and more transpiration has to be permitted. For
the 40% case the variance-to-mean ratio is larger than for the 50% and 60% geometries.

The slip parameter exhibits amore complex behavior. Its statistics are summarized in Table 2.8.
While under 𝛥1 the mean of the slip parameter is of the same order of magnitude for 40%, 50%
and 60% stenoses, the mean values vary strongly with 𝛥2. Using the 50% and 60% geometries in
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Table 2.7: Transpiration parameter 𝛽 . Mean and square root of variance for 30 samples of noisy
measurements (inlet & interior slices).

40% stenosis 50% stenosis 60% stenosis
𝛥 (mm) mean √Var mean √Var mean √Var

1 6684.48 257.45 8654.17 150.88 20 425.33 475.04
2 2075.99 394.95 3573.48 147.31 8413.68 318.07

Table 2.8: Slip parameter 𝛾 . Mean and square root of variance for 30 samples of noisy measure-
ments (inlet & interior slices).

40% stenosis 50% stenosis 60% stenosis
𝛥 (mm) mean √Var mean √Var mean √Var

1 0.41 0.36 0.43 0.04 0.24 0.43
2 0.59 0.97 6.23 × 10−8 4.09 × 10−7 2.75 × 10−5 1.08 × 10−5

the 𝛥2 setting the slip parameter is smaller by orders of magnitude than the corresponding values
observed with 𝛥1, and tends towards free-slip conditions. A high variability in the slip parameter
is observed for 40%, in accordance with the behavior of the pressure drop and the velocity error.
For 50% obstruction ratio, the square root of the variance is much smaller for 𝛥1, only about 10%
of the mean value, and high for 𝛥2. In the 60% case the variance in the parameter is elevated for
both 𝛥1 and 𝛥2. In these scenarios the variability in the pressure drop and the velocity error was
seen to be negligible.

The increased variability obtained with the slip/transpiration model in the case of 40% ob-
struction ratio, compared to the more severe stenoses with 50% and 60%, can most likely be
attributed to the more complex recirculating flow patterns in the former case. The wall-bound,
mainly azimuthally circulating flow of the 40% stenosis is very sensitive to the wall parameters.
The interior measurement slice, however, contains little information about these flow features, as
can be seen in Figure 2.5(a). The optimized slip and transpiration parameters must accommodate
principally to the flow in the stenosis, the impingement region of the jet and also the recirculating
flow caused by the impingement. In the 50% and 60% cases the secondary flow patterns seem
to be of negligible importance. The wall parameters only have to account mainly for the correct
behavior in the stenosis and in the impingement region of the jet.

2.5 Conclusions

We presented a framework for estimating quantities derived from the hemodynamic pressure
and/or velocity, using 2D-PCMRI velocity measurements, a reconstruction of the blood vessel
geometry of interest, and a suitable fluid model. The focus of the analysis was on the effect of
errors in the wall position, e.g., due to imperfect image segmentation, on the estimated pressure
drop in the case of arterial stenosis. Our results are consistent with other studies of the issue of
geometric uncertainties. In Moore et al. [MSE97] and Moore et al. [Moo+99] the importance of
geometric errors on MRI-based hemodynamics was studied for the first time. In Sankaran et al.
[SGT15a] and Sankaran et al. [SGT15b; San+16], uncertainty quantification of CT-based blood
flow simulations showed an important impact of geometric uncertainties on the hemodynamic
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pressure in stenotic coronary arteries and a strong sensitivity of the wall shear stress with re-
spect to geometry errors in a synthetic carotid artery bifurcation aneurysm [SM11]. Also very
recently in Minakowski and Richter [MR19], the problem of geometric uncertainty was studied
theoretically, providing error bounds and finding a large impact of small boundary variations on
the numerical solution. However, to the best of the authors’ knowledge, this is the first time that
a methodology for coping for geometric uncertainties is proposed. In order to reduce the errors
induced in the pressure drop by using no-slip boundary conditions on inaccurate vessel walls, we
employed slip/transpiration boundary conditions, the coefficients of which were included in the
parameter estimation procedure.

Both wall models were compared for synthetic test cases of stenosis with different severi-
ties. It was observed that no-slip conditions imposed on inaccurate walls (i.e., shifted with re-
spect to a ground truth) indeed induce huge errors in the estimated pressure drop. Optimized
slip/transpiration boundary conditions allowed the temporal evolution of the pressure drop to
be estimated with very good precision, and additionally delivered accurate estimates of the inlet
velocity. The method proved capable of handling 2D-PCMRI-type measurements, i.e., a scalar ve-
locity component in a defined direction, on selected pseudo-2D planes, with realistic, coarse image
resolutions and suffering from strong random noise, especially in the regions of low velocities.

In the presented study, the parameters of the slip/transpiration boundary conditions were
considered constant over the whole boundary and in time. Allowing for some variation in space
and time is likely to further improve the results, especially with regard to more complex realistic
geometries and real data.

A limitation of the study was the assumption that the approximate domain was a subset of the
true domain. This is the regime where an improved accuracy with slip/transpiration boundary
conditions can be reasonably expected. However, the model is also applicable to the case where
the assumption does not hold, but a significant reduction of the errors obtained with no-slip
boundary conditions should not be expected. In such a scenario the slip/transpiration model
seems to tend towards no-penetration/free slip behavior and yields marginally reduced errors in
the pressure drop, compared to the no-slip case.

The methodology is limited to large vessels, where 2D-PCMRI scans are feasible and the as-
sumption of blood as a Newtonian fluid is reasonable. Elastic deformation of the vessel walls was
neglected and combining the slip/transpiration model with fluid–structure interaction remains
a question for future work. Furthermore, the flow conditions are likely to be in the regime of
transition to turbulence. It seems worthwhile, especially with regard to real data, exploring the
discussed phenomena using turbulence models, i.e., large eddy simulation.
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Appendix

2.A Slip boundary condition for the Poiseuille flow
In settings where an analytical solution of the incompressible Navier-Stokes equations is known,
the coefficients of the slip/transpiration boundary conditions can be determined exactly. For in-
stance, consider the simple Poiseuille flow example of steady state flow through a straight tube
with constant circular cross-section. In this situation, the Navier-Stokes equations simplify to

1
𝑟 (𝑟

d𝑢
d𝑟 ) = −𝐺𝜇 , (2.11)

in cylinder coordinates, where 𝑢 is the axial velocity component. The radial and the angular
components are zero. 𝐺 is a constant pressure gradient acting on the fluid in the axial direction.

Equation (2.11) can be solved by assuming a symmetry boundary condition
d𝑢
d𝑟 = 0 at 𝑟 = 0, and a

no-slip boundary condition 𝑢(𝑟 = 𝑅) = 0, where 𝑅 is the radius of the tube. The resulting velocity
profile along the radial coordinate 𝑟 is given by

𝑢(𝑟) = 𝐺
4𝜇 (𝑅

2 − 𝑟2). (2.12)

Consider now the situation where the (virtual) boundary of the domain is moved away from the
wall to 𝑟 = 𝑅′ in the interior of the tube. Let us pretend that the velocity distribution is unknown,
but that we know 𝑅, 𝑅′, and the fact that 𝑢(𝑅) = 0. A boundary condition at this virtual boundary
𝑟 = 𝑅′ can be defined in terms of a Robin condition:

𝜇 d𝑢
d𝑟

|||𝑟=𝑅′
+ 𝛾𝑢(𝑅′) = 0. (2.13)

The solution of Equation (2.11) with boundary conditions
d𝑢
d𝑟 = 0 at 𝑟 = 0 and the Robin condition

(2.13) is given by Equation (2.12) if the proportionality factor 𝛾 is chosen such that

𝛾 = 2𝜇 𝑅′
𝑅2 − 𝑅′2 .

Here, 𝛾 depends only on the geometry.
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Chapter 3

Validation of 4D-flow-based pressure
difference estimators

Thework presented in this chapter was submitted for publication and is, at the time of this writing,
under review: D. Nolte, J. Urbina, J. Sotelo, C. Montalba, L. Sok, A. Osses, C. Bertoglio, and S.
Uribe. “Validation of 4D-Flow-Based Pressure Map Estimators”. In: Journal of Magnetic Resonance
Imaging (submitted 2019)

3.1 Introduction

In this chapter, the relative pressure Stokes estimator (STE) [Švi+16] is applied for the first time to
real 3D PC-MRI data. Using data acquired in aortic flow phantoms with coarctation of the aorta
(CoA) of different severities and in two CoA patients, the STE method is compared to the classical
PPE method, reviewed in Section 1.4. Pressure differences measured by means of catheterization
are used as a reference. The PPE and STE methods are analyzed in terms of accuracy with respect
to catheterization data and regarding the sensitivity with respect to the image resolution and
the lumen segmentation. Furthermore, the effects of the CoA severity and cardiac output are
investigated.

3.2 Theory

Maps of relative pressure can be computed directly from the velocity measurements by evaluating
the linear momentum conservation equation of the incompressible Navier–Stokes model, i.e.

−∇𝑝 = 𝜌𝜕𝒖𝜕𝑡 + 𝜌(𝒖 ⋅ ∇)𝒖 − 𝜇𝛥𝒖 (3.1)

where 𝜌 is the density of the fluid and 𝜇 its dynamic viscosity, 𝒖 ∶ 𝛺 → ℝ3 denotes the velocity
vector field and 𝑝 ∶ 𝛺 → ℝ is the pressure field. 𝛺 represents the computational domain obtained
from segmenting the 4D flow images. By inserting the 4D flow velocity data into 𝒖, the pressure
gradient can be recovered by applying numerical methods. In this work we use the Poisson Pres-
sure Equation (PPE) approach [Ebb+02; EF09; Kri+12] and the Stokes Estimator (STE) [Švi+16;
CN86], which will be described in this section.
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Discretizing Equation (3.1) in time, here with the first order backward difference formula,
gives the following expression for the pressure gradient:

− ∇𝑝𝑘 = 𝜌𝒖
𝑘 − 𝒖𝑘−1
𝛥𝑡 + 𝜌(𝒖𝑘 ⋅ ∇)𝒖𝑘 − 𝜇𝛥𝒖𝑘 . (3.2)

The indices 1 ≤ 𝑘 ≤ 𝑁 denote the time snapshot of the measurements and 𝛥𝑡 the temporal offset
between two consecutive measurements or cardiac phases, with time stamps 𝑡𝑘 = 𝑘𝛥𝑡 . For the
first step, 𝑘 = 1, a forward difference has to be used instead since no previous measurements are
available. Evaluating the right hand side of Equation (3.2) for spatially undersampled and noisy
velocity measurements 𝒖𝑚,

𝑅𝑘 ∶= 𝜌𝒖
𝑘𝑚 − 𝒖𝑘−1𝑚
𝛥𝑡 + 𝜌(𝒖𝑘𝑚 ⋅ ∇)𝒖𝑘𝑚 − 𝜇𝛥𝒖𝑘𝑚. (3.3)

yields a pressure gradient estimate ∇ ̂𝑝𝑘 ≈ ∇𝑝𝑘 , given by

− ∇ ̂𝑝𝑘 = 𝑅𝑘 . (3.4)

Higher order time schemes, while more accurate in theory for small time steps, are not bene-
ficial in the present context due to the coarse time sampling of the measured velocities. Note
that in previous works a second-order mid-point scheme was used, see for instance Bertoglio et
al. [Ber+18b] and Marlevi et al. [Mar+19]. However, this leads to stronger underestimations of
the pressure differences. This can be explained from the nature of time under-sampling in MRI,
namely that 𝑢𝑘𝑚 is reconstructed by assuming the flow velocity being constant within the interval
[𝑡𝑘 − 𝛥𝑡/2, 𝑡𝑘 + 𝛥𝑡/2] rather than being an instantaneous measurement at 𝑡𝑘 [Mar+12].

It is important to remark that in direct methods derived from the Navier-Stokes equations, e.g.,
Bernoulli-based, PPE, STE, at any instant of time, the pressure is uniquely defined up to a con-
stant (with respect to the spatial coordinates). Therefore, only instantaneous pressure differences
between different locations can be compared at different times. Catheterization or sphygmo-
manometer pressure measurements are taken relative to the atmospheric pressure. Hence, the
pressures are calibrated with respect to a global reference and pressure values can be compared
at different times. A common measure in the clinical practice are the so-called peak-to-peak pres-
sure differences, which compares the largest pressure difference registered between two locations
at any time during the cardiac cycle, thus taking into account time shifts due to the vessel elas-
ticity. Peak-to-peak pressure differences can only be determined by means of catheterization or
with the models described above when calibrated with catheterization data, which however inval-
idates the non-invasiveness of the estimation methods. For this reason, the present work focuses
on instantaneous pressure differences instead of peak-to-peak values.

Based on Equation (3.4), the pressure Poisson equation (PPE) and the Stokes estimator (STE)
method will be described next.

3.2.1 Poisson pressure equation (PPE)

Assuming sufficient regularity (i.e., assuming that all required derivatives exist), a Poisson equa-
tion for the pressure estimation can be obtained by taking the divergence of the time-discrete
Navier–Stokes equation (3.2),

−𝛥 ̂𝑝𝑘 = ∇ ⋅ 𝑅𝑘 . (3.5)
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Solving Equation (3.5) requires boundary conditions (BCs) on the boundary 𝜕𝛺 of the compu-
tational domain. A priori, no physical BCs for the pressure are known. An artificial Neumann
BC can be obtained by projection of Equation (3.4), restricted to 𝜕𝛺, to the outward unit normal
vector on the wall, 𝒏,

𝒏 ⋅ ∇ ̂𝑝𝑘 = 𝒏 ⋅ 𝑅𝑘 . (3.6)

Equation (3.5) with BCs (3.6) can be discretized in space and solved with the finite element, finite
volume or finite differencemethods. Independently on the spatial discretization, in order to ensure
that the resulting algebraic problem is uniquely solvable, an option is to fix ̂𝑝𝑘 = 0 at one point via
a Dirichlet boundary condition. This, indeed, does not change the pressure differences between
two points in space.

3.2.2 Stokes estimator (STE)

The Stokes estimator introduces a divergence-free auxiliary function 𝒘 with 𝒘 = 𝟎 on 𝜕𝛺. The
Laplacian of 𝒘 is subtracted from Equation (3.4) as a regularization term (with unitary viscosity
here for simplicity) and we obtain

−𝛥𝒘 − ∇ ̂𝑝𝑘 = 𝑅𝑘 in 𝛺
∇ ⋅ 𝒘 = 0 in 𝛺

𝒘 = 𝟎 on 𝜕𝛺.
(3.7)

The auxiliary function 𝒘 holds no physical interest, and it is expected to be negligible compared
to the pressure term as long as the right-hand-side 𝑅𝑘 is the gradient of a scalar (irrotational).
The advantages with respect to the PPE method are (1) that no artificial BCs for the pressure are
necessary and (2) lower regularity requirements, since no additional derivatives are applied on the
measurements 𝑅𝑘 . In fact, in contrast to the PPEmethod, the STEmethod searches the pressure in
the natural energy space of the pressure in the original Navier-Stokes equations. As for the PPE
method, the pressure constant has to be fixed for ensuring solvability of the algebraic problem.

A variation of the STE method was presented in Bertoglio et al. [Ber+18b], where the convec-
tive term was written in ‘energy-conserving’ form, (𝒖 ⋅∇)𝒖 + 1

2(∇ ⋅𝒖)𝒖, and improved results were
obtained compared to the standard method. A third way of formulating the convection term is
the divergence form ∇ ⋅ (𝒖 ⊗ 𝒖). In a preliminary study, the standard method, Eq. (3.3) (results not
shown here), consistently delivered more accurate results than the other variants. Hence only
results obtained using the standard STE formulation will be reported here.

3.3 Methods

3.3.1 Aortic Phantom Study

Phantom setup

The aortic phantom is fully described in Urbina et al. [Urb+16] and Montalba et al. [Mon+18].
It consists in a closed circuit which represents the thoracic aortic circulation, integrated by a
MR compatible unit pump with a control unit (CardioFlow 5000 MR, Shelley Medical Imaging
Technologies, London, Canada) and a realistic aortic model built with flexible silicone (T-S-N 005,
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Elastrat, Geneva, Switzerland). Three nonreturn valves were installed to avoid negative pres-
sures. Additionally, shutoff valves were added to regulate the flow distribution between the dif-
ferent vessels. Also a compliance chamber was installed after the descending aorta in order to
simulate arterial compliance, to obtain physiologic diastolic pressures and physiologic pressure
waveforms. The pump system is operated at 75 bpm to mimic rest conditions and at 136 bpm for
stress conditions.

Different degrees of aortic coarctation were placed in the descending aorta just after the left
subclavian artery. Aortic coarctations were built with Technyl with effective orifices of 9mm,
11mm and 13mm and a length of 10mm, leading to coarctation indices of 0.6, 0.5 and 0.4 respec-
tively. The coarctation index was defined as the ratio between the CoA diameter and the diameter
of the native DAo distal to the CoA. The liquid used in the system consisted of a blood mimick-
ing fluid homemade with 60% distilled water and 40% glycerol (Orica Chemicals, Watkins, CO),
with a density of 1.119 g/cm3, viscosity of 4.83 × 10−3 Pa s, and a T1 value of 900ms, which are
representative values for human blood.

Catheterization

The phantom was equipped with a catheterization unit to measure invasively and simultaneously
the pressure gradient across the coarctation. For this purpose, two catheters (5 French, Soft-Vu,
AngioDynamics, Latham, NY) with transducers (AngioDynamics) were placed in the AAo and
2 cm after the CoA and were connected to a patient monitor (Contec Medical Systems, Hebei,
China). The pressure catheters were zeroed at the same height of the phantom.

Pressure information from the two catheters was recorded simultaneously during 1 minute in
the CoA phantoms (9mm, 11mm, 13mm) at rest (75 bpm) and at stress conditions (136 bpm), using
the commercial software Central Monitor System V3.0 (Contec Medical System). The pressure
difference is obtained by subtracting both time series and averaging over the cardiac cycles.

4D flow data acquisition

Phantom data were acquired in a 1.5 T MRI system (Achieva, Philips, The Netherlands) using
a 4-channel body coil and retrospective cardiac gating. The control unit of the pulsatile pump
generated a trigger signal to synchronize the MR data acquisition. In order to provide static tissue
for phase correction algorithms used in PC-MRI, 6 liters of 1% agar were placed around the aortic
phantom at least 6 hours before scanning.

4D flow images were acquired with an isotropic voxel size of 0.9mm for all phantoms (CoA
with 9mm, 11mm and 13mm orifice diameter) under rest and stress conditions. The acquisition
parameters are summarized in Table 3.3.1 (see column in vitro).

In order to study the effect of image resolution of the pressure gradient estimation procedure,
different synthetic low resolution data (1.4mm and 2.0mm isotropic voxel) were generated from
the original image (0.9mm isotropic voxel) using linear interpolation.

3.3.2 Patient study: 4D-Flow MRI and catheterization

In addition to the phantom study, we include two subjects with aortic coarctation (Subject 1: 12
years, weight 47 kg, height 151 cm; Subject 2: 35 years, weight 63 kg, height 205 cm), who under-
went combined MRI (4D Flow MRI) and cardiac catheterization investigations, in a 1.5T Achieva
MR scanner and a BT Pulsera cardiac radiography unit (Philips, Best, Netherlands). The data was
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Table 3.3.1: MR acquisition parameters

experiment in vitro in vivo

FOV (mm) 200 × 200 × 114 270 × 270 × 125
Matrix size 224 × 224 × 127 144 × 144 × 50
Recon. voxel (mm) 0.9 × 0.9 × 0.9 1.9 × 1.9 × 2.5
TFE factor rest: 2, stress: 1 rest: 2
Cardiac phases 25 28

Time resolution (ms)
CoA: rest: 32, stress: 18
Normal: rest: 35, stress:

19
rest: 26

VENC (cm/s)

CoA: rest: 160–400,
stress: 250–500

Normal: rest: 150, stress:
150

rest: 300

TE/TR (ms) 3.7/6.4 2.4/3.8
Flip angle (deg) 6.5 5
Scan time (min) 18–22 19

acquired at St. Thomas’ Hospital, London, UK. The local research ethics committee approved this
retrospective study and informed consent was obtained from all patients. Subject 1 presented
a native aortic coarctation and mild aortic valve stenosis, mild left ventricular hypertrophy and
systemic hypertension at rest. Subject 2 presented a repaired CoA using a subclavian flap, situs
solitus, there was a very mild narrowing at the level of the transverse arch, close to the isthmus
and a mild dilatation in the proximal descending aorta and also presented a gothic aortic arch.
The acquisition parameters for the in vivo study are summarized in Table 3.3.1 (see column in
vivo).

3.3.3 Segmentation and mesh generation

The 4D Flow MRI data sets were processed using an in-house MATLAB library (The MathWorks,
Natick, MA), similarly to previous studies [Sot+16; Sot+18]. This process is illustrated in Fig-
ure 3.3.1 and consisted of the segmentation of the thoracic aorta using the anatomical image
(Figure 3.3.1(a)) for the phantom data or the angiographic image proposed in Bock et al. [Boc+10]
for patients. The value of the threshold is around 20% of the maximum intensity of the image.
After applying the threshold, we manually clean the vessel of interest, using labeling and man-
ual delimitation tools of MATLAB. From the final segmented image, we generated a structured
tetrahedral mesh (Figure 3.3.1(b)) such that its vertices matched the centers of the image voxels.
Once the mesh was constructed, each velocity vector was transferred from the 4D flow MRI data
to each node of the mesh (Figure 3.3.1(c)). The last step in the toolchain consists in the pressure
map reconstruction (Figure 3.3.1(d)), described in the next section.

In order to study the effect of different segmentations on the pressure difference estimates,
additional segmentations were created for the phantom velocity images at 0.9mm voxel size. A
reference segmentation was modified by adding or subtracting one voxel at the boundary, thus
extending or decreasing the lumen cross-section.
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(a) Anatomical image (b) Mesh (c) Velocity vectors (d) Pressure

Figure 3.3.1: Pressure recovery toolchain. (a) 2D section from the anatomic image of 4D FlowMRI,
(b) structured tetrahedral mesh from segmentation of the anatomical image, (c) representation of
4D flow velocity vectors on mesh, (d) pressure maps from velocity data (cuts though centers of
AAo and DAo). Example data of the 9mm CoA phantom at rest, at time of peak systole.

A preliminary study compared our structuredmeshing approach to generic tetrahedralmeshes
and found a significantly improved accuracy of the pressure estimation methods at similar mesh
sizes. Here, only the results obtained with structured meshes are considered.

3.3.4 Pressure maps computation

Pressure maps are computed from all 4D flow data sets with the PPE and STE methods. The
pressure differences, to be compared with the corresponding catheter values, are defined as dif-
ferences of the pressure averages over two spheres with a radius of 4mm at locations proximally
and distally to the CoA (e.g., the blue and red spheres in Figure 3.4.1).

The corresponding partial differential equations of the PPE and STE methods are discretized
with the finite element method (FEM). Velocity measurements are assumed to be piece-wise linear
(ℙ1) finite element functions on the tetrahedral meshes described in the previous section. Linear
ℙ1 elements are also used to discretize the PPE and the STE systems, Equations (3.5) and (3.7).
In the latter case, standard pressure stabilization (Brezzi-Pitkaranta) is employed to ensure the
solvability of the saddlepoint problem, avoiding the need of higher order elements. The resulting
linear systems are solved efficiently with direct solvers. Example data is shown in Figure 3.3.1(d),
as result of the last step of the pressure recovery toolchain, described in the previous section
and illustrated in Figure 3.3.1. With the highest resolution of 0.9mm, iterative solvers have to
be used for the STE method due to memory requirements (on a 32GB RAM workstation). We
employ the GMRES method [Saa03] with a Schur complement based block preconditioner, using
algebraic multigrid on the ‘velocity’ block and the diagonal of a pressuremassmatrix for the Schur
complement. The codewas implemented using the python/C++ FEM library FEniCS [Aln+15] and
iterative solvers from the scientific computation library PETSc [Bal+18]. The STEmethod requires
longer computation times due to the larger number of unknowns and the more complex structure
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of the discretization matrix.
The computation times of the PPE and the STE methods are compared in Table 3.3.2 for the

13mm phantom using 25 cardiac phases at different resolutions using 1 or 4 cores of an Intel
Xeon E5-1620 CPU. The iterative solvers employed for the STE method applied to the phantom
data with a resolution of 0.9mm result in a longer computation time.

Table 3.3.2: Computation times and numbers of unknowns of the 13mm phantom at different
resolutions with the PPE and the STE methods.

PPE STE
# CPUs resolution # unknowns time # unknowns time

1 2mm 19597 5.2 s 78388 29.1 s
4 0.9mm 240519 13.7 s 962076 702.0 s

3.4 Results

3.4.1 Phantom study

The streamlines of the 4D flow velocity field and the pressures measured by catheterization in the
indicated locations are illustrated in Figure 3.4.1 for the 9mm CoA phantom at peak systole. In
addition, the instantaneous pressure difference resulting from subtracting both signals is plotted.

120
100
80
60

30
20

10
0

pressures (mmHg)

pressure drop (mmHg)
time (s)

time (s)

Figure 3.4.1: 9mm phantom at rest. Velocity streamlines at peak systole, catheterization pressure
signals, measured at blue and red dots, and resulting pressure differences.

Figure 3.4.2 compares the instantaneous peak pressure differences obtained with the PPE and
the STEmethods from 4D flowwith catheterization data for all investigated phantoms. The figure
shows the data obtained with the three image resolutions, 0.9mm (panels (a) and (b)), 1.4mm
(panels (c) and (d)) and 2mm (panels (e) and (f)) and using the three segmentations, denoted V+0
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Figure 3.4.2: Comparison of 4D flow peak pressure differences obtained with the STE (left col-
umn) and the PPE (right column) methods with catheterization, using different image resolutions
(0.9mm, 1.4mm and 2mm) and segmentations (V+0: reference, V−1: outermost layer of voxels
eliminated, V+1: 1 layer of voxels added at boundary; cf. text)
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(neutral), V−1 (outermost layer of voxels eliminated along the boundary) and V+1 (1 layer of
voxels added at the boundary).

Consider first the results obtained on the V+0 segmentation. The results show an overall good
agreement between the STE peak pressure differences and the catheterization data. The STE un-
derestimates the highest measured pressure difference (catheter pressure difference of 46mmHg
with the 9mm CoA phantom under stress conditions). Another underestimation is visible at
12mmHg in all plots, which was obtained for the 13mm phantom at rest. The results appear to
be robust to the image resolution. A strong dependence on the segmentation exists particularly
for pressure differences above 30mmHg and is more pronounced for large voxel sizes. The PPE
method, in comparison, leads to a stronger underestimation than the STE method for pressure
differences ≥20mmHg. The PPE results are more sensitive to the image resolution.

In the presence of large pressure differences, both the PPE method and the STE method gener-
ally benefit from the narrowed segmentation (denoted V−1 in the figure). In the range of moderate
pressure differences (e.g., 10–20mmHg), the most accurate results with the STE method were ob-
tained on the reference segmentation, while the V−1 segmentation led to a slight overestimation.
The accuracy of the PPE method however was improved throughout the entire range of pressure
differences. This is likely because of an increased sensitivity to boundary issues such as partial
volume effects and low VNR (velocity-to-noise ratio) due to the artificial pressure boundary con-
ditions. Choosing the segmentation too large resulted in underestimating the pressure differences
(V+1 values in Figure 3.4.2).

The mean signed difference, as a measure of the bias, and the spread (two standard deviations)
of the PPE and the STE methods with respect to catheterization data are compared for the three
segmentations in Table 3.4.1. The data is shown for the acquired 4D flow images with a resolution
of 0.9mm. The bias and variability are smallest on the reduced segmentation V−1 and largest on

Table 3.4.1: Mean signed difference (bias) and spread (two standard deviations 𝜎 ) for the PPE
and the STE methods with respect to catheterization data, for the standard (V+0), the reduced
lumen diameter segmentation (V−1), and the widened lumen diameter segmentation (V+1). 4D
flow resolution: 0.9mm

method
V+0

bias±2𝜎
V−1

bias±2𝜎
V+1

bias±2𝜎

PPE
−8.62 ±

14.97mmHg
−5.94 ±

13.56mmHg
−11.13 ±

17.01mmHg

STE
−3.34 ±

9.61mmHg
−1.85 ±

9.29mmHg
−5.35 ±

10.94mmHg

the extended segmentation V+1, with the reference segmentation V+0 ranking in between. The
PPE method appears to be more sensitive to the segmentation. The STE method gives a smaller
bias and variability than the PPE method on all three segmentations. In particular, the STE result
on the standard segmentation appears to be more accurate than the PPE result obtained on the
modified segmentation.

Time profiles of the pressure differences obtained with the V−1 segmentations of the phantom
data with CoA are shown in Figures 3.4.3–3.4.5. Each figure contains the results of the PPE and
the STE methods for 4D flow image resolutions of 0.9mm (acquired) and 1.4mm, 2.0mm (sub-
sampled from 0.9mm) under rest and stress conditions and the pressure difference from catheter
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Figure 3.4.3: 13mm CoA phantom pressure differences obtained with STE (left column) and PPE
(right column) under rest (first row) and stress conditions (second row) using voxel sizes of 0.9mm,
1.4mm, 2.0mm compared to ground truth catheter data.

measurements. For postprocessing reasons, the catheter curves were shifted in time such that the
location of the peaks matched the 4D flow data.

The results of the 13mm CoA phantom study are displayed in Figure 3.4.3. While showing
qualitatively a correct behavior, the amplitude of the oscillation is generally underestimated by
3 to 7mmHg with both methods under rest conditions. The effect of the image resolution is
hardly noticeable (although slightly larger with the PPE method). Under stress conditions, the
peak pressure difference is recovered with a good accuracy. There is a negative pressure differ-
ence peak that was not correctly recovered by any of both methods. It has to be noted that in
the particular case of the 13mm CoA phantom, artifacts appeared in the velocity measurements,
most likely connected to issues with the experimental setup, like bubbles. The 13mm CoA phan-
tom configuration was repeatedly scanned at different resolutions (results not reported) and the
corresponding estimated pressure differences showed similar characteristics in all cases.

In the case of the 11mm CoA phantom, the PPE method exhibits a very good quantitative
agreement with the catheter results under rest conditions during the complete heart cycle (Fig-
ure 3.4.4(b)). In comparison, the STE method overestimates the peak pressure difference. The
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Figure 3.4.4: 11mm CoA phantom pressure differences obtained with STE (left column) and PPE
(right column) under rest (first row) and stress conditions (second row) using voxel sizes of 0.9mm,
1.4mm, 2.0mm compared to ground truth catheter data.

STE result is improved by using the standard segmentation instead of the narrowed segmenta-
tion. Under stress conditions, the width of the pressure differences maxima was overestimated
with both the STE and the PPE methods.

Results from the 9mmCoA phantom under rest conditions showed an excellent agreement be-
tween the catheter data and the pressure difference computed with the STE method (Figure 3.4.5,
panel (a)). The PPE method strongly underestimates the pressure difference under equal con-
ditions (panel (b)). The discrepancy between the pressure difference reconstruction and catheter
measurements increases for stress conditions, the STE method still showing more accurate results
than the PPE method. Both methods are very robust with respect to the image resolution. Using
the narrowed segmentation, the results of the stress case are slightly improved by the lower res-
olutions. With low resolution data, effectively more boundary data is discarded by deleting the
outermost voxel layer. This indicates that the errors introduced by considering boundary data
predominate the effect of image resolution in this scenario. In contrast, in Figure 3.4.2 the V+0
pressure differences at 46mmHg decrease with lower image resolutions.
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Figure 3.4.5: 9mm CoA phantom pressure differences obtained with STE (left column) and PPE
(right column) under rest (first row) and stress conditions (second row) using voxel sizes of 0.9mm,
1.4mm, 2.0mm compared to ground truth catheter data.

3.4.2 Patient data

Pressure differences obtained by catheterization and from 4D flow are shown in Figure 3.4.6 for
both patients. The pressure difference computed with the STE method for subject 1 shows ex-
cellent agreement with the catheter data during systole, underestimating the local extrema after
𝑡 = 0.4 s. While similar qualitative agreement was found with the PPE method, it significantly
underestimates the pressure difference during systole. Subject 2 exhibits excellent qualitative and
quantitative agreement between catheter data and numerical pressure difference reconstruction.
However, the pressure difference peak observed by catheterization is too steep to be captured by
the time resolution of the 4D flow protocol. The resulting maximum value lies below the catheter
value, possibly because no velocity image was recorded coinciding exactly with the maximum
pressure difference.

Note that the lengths of the cardiac cycles differ significantly between catheterization andMRI
scans of both patients. This indicates a change in the heart rate and hence, the hemodynamics in
the cardiovascular system, and can explain the differences between 4D flow and catheter pressure
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Figure 3.4.6: Patient data results, comparison of STE and PPE pressure differences with catheter
data

differences.
Reducing the diameter of the segmentation by one voxel was not possible in one of the patients

due to the large voxel size with respect to the diameter. The original segmentations were thus
not modified.

3.5 Discussion

This study compared two relative pressure reconstruction methods, STE and PPE, in terms of
accuracy and sensitivity with respect to image resolution and to segmentation. The main finding
of this study is that the STE method applied to real data is more accurate than the classical PPE
method at large pressure differences (>20mmHg). The difference between the methods is less
pronounced for small to moderate pressure gradients. The PPE method showed overall a higher
sensitivity to data perturbations, i.e., to image resolution and segmentation. Both the STE and
the PPE methods proved most sensitive to the image resolution and the segmentation in the most
severe cases of 9mm and 11mm CoA during systole. Especially the PPE results were greatly
improved by eliminating the outermost layer of voxels from the segmentation, leading to a more
accurate match with the catheter data than STE in the 11mm CoA phantom. However, the STE
method gave excellent results in this case using the standard segmentation. A reduction of the
segmentation was used before in Goubergrits et al. [Gou+19] and also led to an improved accuracy
of the PPE method. The accuracy improvement can be explained by the reduction of partial
volume effects and eliminating low VNR data near the boundaries. The PPE method is likely
to be more sensitive to the boundary data than the STE method due to the artificial pressure
boundary conditions used in the PPE. The issues of boundary data, possible remedies and the
effect of somewhat arbitrarily reducing the diameter of the vessel geometry deserve a more in-
depth analysis in future studies.

Our results on the standard segmentation (V+0) are coherent with Goubergrits et al. [Gou+19]
and Nasiraei-Moghaddam et al. [Nas+04], who also demonstrated that the pressure profile is de-
graded when the spatial resolution is decreased. In [Gou+19], minimal resolution requirements
were determined for the PPE, namely 5 voxels/diameter. In our study, when the narrowed seg-
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mentation was used (V−1, between 2 and 12 voxels/diameter for the CoA phantoms), the results
were almost insensitive to the image resolution. It is possible that the benefit of removing prob-
lematic boundary data at low resolutions, apparently increasing under low resolutions, balances
with the detriment of a decreased image resolution in the interior.

An advantage of the STE method is that it avoids unphysical boundary conditions. However,
using standard discretization methods, parts of the term 𝑅𝑘 in Equation (3.7) can contribute to
the auxiliary function—not always negligible in practice—instead of the pressure gradient. This
occurs principally where large gradients are present in the velocity field, for instance in the coarc-
tation near the arterial walls, and can result in stronger underestimations of the relative pressure.
We hypothesize that, by choosing a more narrow segmentation with the arterial wall located in-
side the flow, the homogeneous Dirichlet boundary condition for the auxiliary velocity in the
STE on the smaller domain results in a smaller auxiliary velocity everywhere and therefore in
increased pressure gradient estimates with respect to the full geometry for severe CoA. Pressure-
robust FEM could counteract this issue [LM16] and generally improve the accuracy of the STE
method.

Dilated segmentations (V+1) add no-flow voxels with very small VNR, hence introducing spu-
rious information into the estimation problem. The pressure gradient computed with any method
is required to accommodate to the unphysical conditions.

For severe conditions of CoA, i.e., in the presence of high velocity jets and high Reynolds
numbers, the STE method was clearly superior to the PPE method. In such severe cases of CoA,
turbulence can develop [Ku97; Dyv+06] and involves dynamics at scales smaller than the spatial
and/or temporal image resolution. Such effects are not accounted for by the models studied here,
and are likely to reduce the precision especially in the 9mm phantom under stress conditions.
Furthermore, higher velocities require higher VENC values (500 cm/s for the 9mm phantom at
stress) resulting in lower VNR, possibly affecting the estimation. Our study did not include sen-
sitivity to noise. However, we can consider the results present here as a “worst case scenario”
in terms of noise due to the small voxel size of 0.9mm, hence involving a much worse VNR than
what can be expected for typical voxel size in patients (i.e., around 2mm). This issue could be
alleviated by using the dual-VENC techniques [Net+12; Ha+16a; Cal+16; Car+18], allowing for
lower VENC-values (hence lower noise), but at increased scan times.

The STE and the PPE pressure reconstruction methods were also applied to real patient data.
For one of the patients, the STE method showed a great improvement over the PPE method. Both
methods showed satisfactory results for the second patient. From the findings in the phantom
experiments, the differences between PPE and STE in patient one is most likely due to strong
convective effects.

One limitation of the study was the lack of availability of real low resolution MRI data for
all scenarios, hence requiring synthetic subsampling of the high resolution data. In addition, the
comparison of catheter datawithMRI scans is limited by the following observations. The locations
where the catheter recorded the pressure during catheterization are only known approximately.
Fluctuations in the flow can also perturb the catheter position. A mismatch of the catheter po-
sitions with the locations selected for evaluating the computed pressure gradient can introduce
additional errors. Finally, representing an invasive technique, it is possible that the presence of
the catheter in the vessel disturbs and alters the aortic flow during catheterization, while the 4D
flow data was acquired without the catheters. In the patient study it was seen that the heart rate
changed significantly between catheterization and the MRI scan, hence possibly also affecting the
outcome of this comparison.

In conclusion, in our phantom study, the STEmethod delivered results thatweremore accurate
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and robust with respect to resolution and segmentation than the PPE method, in particular in
severe cases of CoA. For cases of mild CoA or no CoA, the advantage of the STE method was
negligible. By eliminating the outermost layer of voxels of the segmentation, the PPE method
could be significantly improved to match the accuracy of the STE method, except for very large
pressure gradients.
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Chapter 4

Multiscale Modeling of Vascular Trees

The present chapter is a short adaption of the article C. Bertoglio, C. Conca, D. Nolte, G. Panasenko,
and K. Pileckas. “Junction of Models of Different Dimension for Flows in Tube Structures by
Womersley-Type Interface Conditions”. In: SIAM Journal on Applied Mathematics 79.3 (Jan. 2019),
pp. 959–985. doi: 10.1137/18M1229572.

4.1 Introduction

The vasculature is a complex tree-like network of vessels. Computing the blood flow in such
networks requires a lot of computational resources. Different approaches exist for reducing the
complexity of vascular flow computations [FQV09b; PV09]. In general, one seeks to avoid solving
the 3D Navier–Stokes equations (which in addition might be coupled with the solid mechanics of
the vessel walls, tracer transport, turbulence) in parts of the domain, where simplifying assump-
tions can be made for the flow profile and/or the geometry. The full flow model is resolved where
a detailed analysis of the flow field is of interest or cannot be neglected or simplified. This would
be typically the case in large vessels with curvature or obstructions, junctions and other situations
of circulating or separating flow. Reduced models can be derived in many different ways. For in-
stance, by assuming a simplified symmetric shape of the vessels such as thin cylinders, the flow
equations can be integrated over the vessel cross section, resulting, e.g., in simplified PDEs and
a reduced geometric dimension (e.g., one-dimensional (1D)). 1D models can also be obtained by
means of asymptotic analysis invoking the assumption that the radius is much smaller than the
length of the vessel [Bar+66]. Considering thin, compliant vessels, 1D models can also be derived
from conservation principles, using different assumptions on the geometry and the physics [HL73;
PV09; BFU07; Bla+09]. Often, the vasculature is modeled by a ‘0D’ lumped parameter network,
where the flow through the vessels (and even organs) is described as electric networks in terms of
resistances, capacities and inductances [PV09; BCF13; Vig+10]. 0D models can be derived either
by averaging 1D or 3D models or from conversation laws [PV09].

Geometric multiscale modeling is concerned with coupling models of different dimensions.
Multiscale models can couple a 3D Navier–Stokes system in a part of a large vessel where the
flow is expected to exhibit strong 3D features with a 1D model describing the flow in smaller
peripheral vessels, or with a 0D model providing boundary conditions for the truncated part of
the vasculature, or both [FQV09b; BFU07; Urq+06]. Usually, the domain is first decomposed, then
the model is reduced within the separate subdomains, finally the resulting models of different
orders are coupled. Such multiscale models result in coupled systems which can be difficult to
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solve numerically. Often, the compartments with different models are separated and solved for
with an iteration scheme. Questions of well-posedness and stability arise.

In this work, to simplify its complex structure, the vascular network is modeled as thin tube
structures. Tube structures are domains which are tree-like sets of thin cylinders (or thin rectan-
gles in the two-dimensional setting). The ratio of the diameters of cylinders to their heights (or
ratio of the sides of rectangles) is a small parameter 𝜀. The method of asymptotic partial decompo-
sition of a domain (MAPDD) allows to reduce essentially the computer resources needed for the
numerical solution of such problems [Ber+19]. This new method combines the full-dimensional
description in some neighborhoods of bifurcations and a reduced-dimensional description of the
connecting tubes, prescribing some special junction conditions at the interfaces between these
3D and 1D submodels (see Blanc et al. [Bla+99], Panasenko [Pan98a], Panasenko [Pan98c], and
Panasenko and Pileckas [PP15]). With the approach presented here, the reduced-order compart-
ments enter directly the full-dimensional model. In contrast to the ‘reduce first, then couple’
approach outlined above, here the subdomains remain fully coupled and are reduced in order
subsequently (‘couple first, then reduce’). As a consequence, the complete multiscale model can
be solved efficiently at once, nested iteration schemes and difficult to solve, coupled systems of
different order ODEs/DAEs can be avoided. Furthermore, well-posedness and error estimates are
covered by the theory. On the other hand, the approach is so far limited to rigid tubes.

Junction conditions for the steady-state Stokes equations and generalizations to the unsteady
Navier–Stokes equations were constructed in Bertoglio et al. [Ber+19]. In the present chapter the
theoretical results are summarized, the numerical implementation is discussed and a validation
study for a 2D test case is presented.

First, in Section 4.2, the full dimensional flow problems will be introduced, followed by a
description of the MAPDD model and a summary of the theoretical results in Section 4.3. The
focus of this chapter is the confirmation of the theoretical error estimates by means of numerical
examples in Section 4.4.

4.2 The full dimensional fluid flow problem in a tube structure

In this section we will introduce the full dimensional fluid flow problem in a tube structure. Fur-
ther its solution will be approximated using partial dimension reduction.

4.2.1 Thin tube structure domain

Let us remind the definition of a thin tube structure [Pan98b; Pan05; PP15], and graphically ex-
emplified in Figure 4.2.1.

Let 𝑂1, 𝑂2, … , 𝑂𝑁 be 𝑁 different points in ℝ𝑛, 𝑛 = 2, 3, and 𝑒1, 𝑒2, … , 𝑒𝑀 be𝑀 closed segments
each connecting two of these points (i.e. each 𝑒𝑗 = 𝑂𝑖𝑗𝑂𝑘𝑗 , where 𝑖𝑗 , 𝑘𝑗 ∈ {1, … , 𝑁 }, 𝑖𝑗 ≠ 𝑘𝑗 ). All
points 𝑂𝑖 are supposed to be the ends of some segments 𝑒𝑗 . The segments 𝑒𝑗 are called edges of
the graph. The points 𝑂𝑖 are called nodes. Any two edges 𝑒𝑗 and 𝑒𝑖 , 𝑖 ≠ 𝑗, can intersect only at
the common node. A node is called vertex if it is an end point of only one edge. Assume that the

set of vertices is 𝑂𝑁1+1, 𝑂𝑁1+2, … , 𝑂𝑁 , where 𝑁1 < 𝑁 . Denote ℬ =
𝑀
⋃
𝑗=1

𝑒𝑗 the union of edges, and

assume that ℬ is a connected set. The graph 𝒢 is defined as the collection of nodes and edges.
Let 𝑒 be some edge, 𝑒 = 𝑂𝑖𝑂𝑗 . Consider two Cartesian coordinate systems in ℝ𝑛. The first one
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Figure 4.2.1: Illustration of the computational domain for 𝑁 = 2 and 𝑀 = 1.

has the origin in 𝑂𝑖 and the axis 𝑂𝑖𝑥(𝑒)1 has the direction of the ray [𝑂𝑖𝑂𝑗); the second one has

the origin in 𝑂𝑗 and the opposite direction, i.e., 𝑂𝑗 �̃�(𝑒)1 is directed over the ray [𝑂𝑗𝑂𝑖). With every
edge 𝑒𝑗 we associate a bounded domain 𝜎𝑗 ⊂ ℝ𝑛−1 having a 𝐶2-smooth boundary 𝜕𝜎 𝑗 , 𝑗 = 1, … ,𝑀 .

For every edge 𝑒𝑗 = 𝑒 and associated 𝜎𝑗 = 𝜎 (𝑒) we denote by 𝐵(𝑒)𝜀 the cylinder

𝐵(𝑒)𝜀 = {𝑥(𝑒) ∈ ℝ𝑛 ∶ 𝑥(𝑒)1 ∈ (0, |𝑒|), 𝑥
(𝑒)′

𝜀 ∈ 𝜎 (𝑒)},

where 𝑥(𝑒)′ = (𝑥(𝑒)2 , … , 𝑥(𝑒)𝑛 ), |𝑒| is the length of the edge 𝑒 and 𝜀 > 0 is a small parameter. Notice
that the edges 𝑒𝑗 and Cartesian coordinates of nodes and vertices 𝑂𝑗 , as well as the domains 𝜎𝑗 , do
not depend on 𝜀. Denoting 𝜎 (𝑒)𝜀 = {𝑥(𝑒)′ ∈ ℝ𝑛−1 ∶ 𝑥(𝑒)′

𝜀 ∈ 𝜎 (𝑒)}we canwrite 𝐵(𝑒)𝜀 = (0, |𝑒|)×𝜎 (𝑒)𝜀 . Let
𝜔1, … , 𝜔𝑁 be bounded independent of 𝜀 domains in ℝ𝑛 with Lipschitz boundaries 𝜕𝜔𝑗 ; introduce
the nodal domains 𝜔𝑗𝜀 = {𝑥 ∈ ℝ𝑛 ∶ 𝑥 − 𝑂𝑗

𝜀 ∈ 𝜔𝑗}. Denote 𝑑 = max1≤𝑗≤𝑁 diam𝜔𝑗 . By a tube

structure we call the following domain

𝐵𝜀 = (
𝑀
⋃
𝑗=1

𝐵(𝑒𝑗)𝜀 )⋃ (
𝑁
⋃
𝑗=1

𝜔𝑗𝜀).

So, the tube structure 𝐵𝜀 is a union of all thin cylinders having edges as the heights plus small
smoothing domains 𝜔𝑗𝜀 in the neighborhoods of the nodes. Their role is to avoid artificial cor-
ners in the boundary of intersecting cylinders, and we will assume that 𝐵𝜀 is a bounded domain
(connected open set) with a 𝐶2-smooth boundary. However for the numerical tests we consider
a domain with corners.

4.2.2 The full dimension fluid flow problem

Let us consider the stationary Stokes or the non-stationary Navier–Stokes equations in 𝐵𝜀 with
the no-slip conditions at the boundary 𝜕𝐵𝜀 except for some parts 𝛾 𝑗𝜀 of the boundary where the
velocity field is given as known inflows and outflows (for alternative boundary conditions on the
inlet and outlet boundaries of the domain, the reader is referred to Bègue et al. [Bèg+87] and
Bertoglio et al. [Ber+18a]).

The inflow and outflow boundaries are denoted 𝛾 𝑗𝜀 = 𝜕𝜔𝑗𝜀 ∩ 𝜕𝐵𝜀 , 𝛾 𝑗 = 𝜕𝜔𝑗 ∩ 𝜕𝐵𝑗1 where 𝐵𝑗1 =
{𝑦 ∶ 𝑦𝜀 + 𝑂𝑗 ∈ 𝐵𝜀} and 𝛾𝜀 = ∪𝑁𝑗=𝑁1+1𝛾

𝑗𝜀 .
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Unsteady Navier–Stokes Problem

The initial boundary value problem for the non-stationary Navier–Stokes equations reads

𝒖𝜀,𝑡 + (𝒖𝜀 ⋅ ∇)𝒖𝜀 − 𝜈𝛥𝒖𝜀 + ∇𝑝𝜀 = 0,
∇ ⋅ 𝒖𝜀 = 0,
𝒖𝜀 ||𝜕𝐵𝜀 = 𝒈𝜀 ,

𝒖𝜀(𝑥, 0) = 0,

(4.1)

where 𝒖𝜀 is the unknown velocity vector, 𝑝𝜀 is the unknown pressure, 𝒈𝜀 is a given vector-valued

function with 𝒈𝜀(𝑥, 𝑡) = 𝒈𝑗(
𝑥 − 𝑂𝑗

𝜀 , 𝑡) if 𝑥 ∈ 𝛾 𝑗𝜀 , 𝑗 = 𝑁1 + 1,… , 𝑁 and equal to zero for the remain-

ing part of the boundary 𝜕𝐵𝜀 \𝛾𝜀 and satisfying the additional conditions given in Bertoglio et al.
[Ber+19].

Introduce the space 𝑯 1
𝑑𝑖𝑣0(𝜕𝐵𝜀 \𝛾𝜀)(𝐵𝜀) as the subspace of vector valued functions from 𝑯 1(𝐵𝜀)

satisfying the conditions ∇ ⋅ 𝒗 = 0, 𝒗|𝜕𝐵𝜀⧵𝛾𝜀 = 0, i.e.,

𝑯 1
𝑑𝑖𝑣0(𝜕𝐵𝜀 \𝛾𝜀)(𝐵𝜀) = {𝒗 ∈ 𝑯 1(𝐵𝜀)| ∇ ⋅ 𝒗 = 0; 𝒗|𝜕𝐵𝜀 \𝛾𝜀 = 0} .

We consider as well the smaller subspace𝑯 1𝑑𝑖𝑣0(𝐵𝜀) = 𝑯 1
𝑑𝑖𝑣0(𝜕𝐵𝜀 \𝛾𝜀)(𝐵𝜀) ∩𝑯

10 (𝐵𝜀) of divergence
free vector-valued functions vanishing at the whole boundary.

A weak formulation corresponding to the Navier–Stokes problem (4.1) is given by the follow-
ing definition.

Definition 1. By a weak solution we understand the couple of the vector-field 𝒖𝜀 and a scalar
function 𝑝𝜀 such that 𝒖𝜀(𝑥, 0) = 0, 𝒖𝜀 ∈ 𝐿2(0, 𝑇 ; 𝑯 1

𝑑𝑖𝑣0(𝜕𝐵𝜀 \𝛾𝜀)(𝐵𝜀)), 𝒖𝜀,𝑡 ∈ 𝐿2(0, 𝑇 ; 𝑳2(𝐵𝜀)), 𝑝𝜀 ∈
𝐿2(0, 𝑇 ; 𝐿2(𝐵𝜀)), 𝒖𝜀 = 𝒈𝜀 on 𝛾𝜀 and (𝒖𝜀 , 𝑝𝜀) satisfy the integral identity for every vector-field 𝝓 ∈
𝑯 10 (𝐵𝜀) for all 𝑡 ∈ (0, 𝑇 ),

∫𝐵𝜀
(𝒖𝜀,𝑡 ⋅ 𝝓 + 𝜈∇𝒖𝜀 ∶ ∇𝝓 + ((𝒖𝜀 , ∇𝒖𝜀) ⋅ 𝝓)) = ∫𝐵𝜀

𝑝𝜀∇ ⋅ 𝝓.

Stokes problem

Consider the Dirichlet’s boundary value problem for the stationary Stokes equation:

−𝜈𝛥𝒖𝜀 + ∇𝑝𝜀 = 0, 𝑥 ∈ 𝐵𝜀 ,
∇ ⋅ 𝒖𝜀 = 0, 𝑥 ∈ 𝐵𝜀 ,

𝒖𝜀 = 𝒈𝜀 , 𝑥 ∈ 𝜕(𝐵𝜀),
(4.2)

where 𝜈 is a positive constant, 𝒈𝜀 is a given vector-valued function 𝒈𝜀(𝑥) = 𝒈𝑗(
𝑥 − 𝑂𝑗

𝜀 ) if 𝑥 ∈
𝛾 𝑗𝜀 , 𝑗 = 𝑁1 + 1, … , 𝑁 , equal to zero for the remaining part of the boundary 𝜕𝐵𝜀 \𝛾𝜀 and satisfying
the additional conditions in Bertoglio et al. [Ber+19].

A weak formulation of the Stokes problem (4.2) is given by the following definition:
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Definition 2. By a weak solution we understand the couple of the vector-field 𝒖𝜀 and a scalar function
𝑝𝜀 such that 𝒖𝜀 ∈ 𝑯 1

𝑑𝑖𝑣0(𝜕𝐵𝜀 \𝛾𝜀)(𝐵𝜀), 𝑝𝜀 ∈ 𝐿2(𝐵𝜀), 𝒖𝜀 = 𝒈𝜀 on 𝛾𝜀 and (𝒖𝜀 , 𝑝𝜀) satisfy the integral
identity: for any test function 𝒗 ∈ 𝑯 10 (𝐵𝜀)

𝜈 ∫𝐵𝜀
∇𝒖𝜀(𝑥) ∶ ∇𝒗(𝑥) = ∫𝐵𝜀

𝑝𝜀∇ ⋅ 𝝓.

It is well known that there exists a unique solution to this problem (see [Lad69]).

4.3 MAPDD: the new junction conditions

The classical MAPDD method was previously described in Panasenko and Pileckas [PP15]. We
propose a new, more general, formulation of the method involving new junction conditions,
which assumes that the flow through the cylinders 𝐵(𝑒)𝜀 has the shape of aWomersley flow. The ad-
vantages are twofold: (1) it removes a restriction on the velocity boundary condition (see Bertoglio
et al. [Ber+19]), therefore being applicable for arbitrary transient regimes, and (2) it considerably
simplifies the numerical implementation in the context of finite elements since only additional,
easy-to-build integral terms need to be added to a standard weak form.

4.3.1 Formulation

Let 𝛿 be a small positive number much greater than 𝜀 but much smaller than 1. For any edge
𝑒 = 𝑂𝑖𝑂𝑗 of the graph introduce two hyperplanes orthogonal to this edge and crossing it at the
distance 𝛿 from its ends, see Figure 4.2.1.

Denote the cross-sections of the cylinder 𝐵(𝑒)𝜀 by these two hyperplanes respectively, by 𝑆𝑖𝑗
(the cross-section at the distance 𝛿 from 𝑂𝑖), and 𝑆𝑗𝑖 (the cross-section at the distance 𝛿 from 𝑂𝑗 ),
and denote the part of the cylinder between these two cross-sections by 𝐵𝑑𝑒𝑐,𝜀𝑖𝑗 . Denote 𝐵𝜀,𝛿𝑖 the
connected truncated by the cross sections 𝑆𝑖𝑗 , part of 𝐵𝜀 containing the vertex or the node 𝑂𝑖 .

The MAPDD model invokes the assumption of Womersley-type flow conditions within each
of the truncated cylinders 𝐵𝑑𝑒𝑐,𝜀𝑖𝑗 , namely

• the velocity is parallel to the edge 𝑒, i.e., the perpendicular (tangential to 𝑆𝑖𝑗 ) components
are zero,

• the longitudinal derivative (normal to 𝑆𝑖𝑗 ) of the velocity is zero (i.e., identical velocity

profiles at every cross-section of the cylinders 𝐵𝑑𝑒𝑐,𝜀𝑖𝑗 ),

• implying a constant longitudinal pressure derivative.

In particular, if the local variables 𝑥(𝑒) for the edge 𝑒 coincide with the global ones, 𝑥 , then the
Womersley flow profile takes the form 𝑾 (𝑒)

𝑃 (𝑥) = (𝑣1(𝑥′/𝜀), 0, … , 0)𝑇 , 𝑣1 ∈ 𝐻 10 (𝜎 (𝑒)). If 𝑒 has the
direction cosines 𝑘𝑒1, … , 𝑘𝑒𝑛 and the local variables 𝑥(𝑒) are related to the global ones by equation
𝑥(𝑒) = 𝑥(𝑒)(𝑥) then the Womersley flow is given by

𝑾 (𝑒)
𝑃 (𝑥) = const (𝑘𝑒1𝑣1 ((𝑥(𝑒)(𝑥))

′ /𝜀) , … , 𝑘𝑒𝑛𝑣1 ((𝑥(𝑒)(𝑥))
′ /𝜀))

𝑇
, 𝑥′ = (𝑥2, … , 𝑥𝑛).
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Consider the Navier–Stokes problem, and furthermore the special case of geometries with
𝑁 = 𝑀 + 1, which leads to the following formulation:

find the vector-field𝒖𝜀,𝛿 and the pressure 𝑝𝜀,𝛿 such that𝒖𝜀,𝛿 (𝑥, 0) = 0, 𝒖𝜀,𝛿 ∈ 𝐿∞(0, 𝑇 ; 𝑯 1(𝐵𝜀,𝛿𝑖 )),
for all 𝑖 = 1, … , 𝑁 , 𝒖𝜀,𝛿,𝑡 ∈ 𝐿2(0, 𝑇 ; 𝑳2(𝐵𝜀,𝛿𝑖 )), 𝒖𝜀,𝛿 = 𝒈𝜀 at 𝛾𝜀 , 𝒖𝜀,𝛿 = 𝟎 at (𝜕𝐵𝜀,𝛿𝑖 ∩ 𝜕𝐵𝜀)\𝛾𝜀 ,
𝑝𝜀,𝛿 ∈ 𝐿2(0, 𝑇 ; 𝐿2(𝐵𝜀,𝛿𝑖 )) for all 𝑖 = 1, … , 𝑁 , 𝒖𝜀,𝛿 ⋅ 𝒕 = 0 on 𝑆𝑖𝑗 ∪ 𝑆𝑗𝑖 , 𝒖𝜀,𝛿 ⋅ 𝒏||𝑆𝑖𝑗 + 𝒖𝜀,𝛿 ⋅ 𝒏||𝑆𝑗𝑖 = 0, where
𝒕 is the unit tangent vector and 𝒏 the unit outward normal vector, and the couple (𝒖𝜀,𝛿 , 𝑝𝜀,𝛿 ) sat-
isfies for all 𝑡 ∈ (0, 𝑇 ) the integral identity for every vector-field 𝝓 ∈ 𝑯 1(𝐵𝜀,𝛿𝑖 ), 𝑞 ∈ 𝐿2(𝐵𝜀,𝛿𝑖 ), for
all 𝑖 = 1, … , 𝑁 , such that 𝝓 = 0 at 𝜕𝐵𝜀,𝛿𝑖 ∩ 𝜕𝐵𝜀 , and for all edges 𝑂𝑖𝑂𝑗 , 𝝓 ⋅ 𝒕 = 0 at 𝑆𝑖𝑗 ∪ 𝑆𝑗𝑖 and
𝝓 ⋅ 𝒏|𝑆𝑖𝑗 + 𝝓 ⋅ 𝒏|𝑆𝑗𝑖 = 0 :

𝑁
∑
𝑖=1

∫𝐵𝜀,𝛿𝑖 𝒖𝜀,𝛿,𝑡 ⋅ 𝝓 + 𝜈∇𝒖𝜀,𝛿 ∶ ∇𝝓 + (𝒖𝜀,𝛿 , ∇𝒖𝜀,𝛿 ) ⋅ 𝝓 − 𝑝𝜀,𝛿∇ ⋅ 𝝓 + 𝑞∇ ⋅ 𝒖𝜀,𝛿

+
𝑀
∑
𝑙=1

𝑑𝑙 ∫𝜎 (𝑒𝑙 )𝜀
𝒖𝜀,𝛿,𝑡 ⋅ 𝝓 + 𝜈∇𝑥 (𝑒𝑙 ),′𝒖𝜀,𝛿 ∶ ∇𝑥 (𝑒𝑙 ),′𝝓 = 0.

(4.3)

For 𝑒𝑙 = 𝑂𝑖𝑂𝑗 , 𝑑𝑙 is the distance between the cross sections 𝑆𝑖𝑗 and 𝑆𝑗𝑖 .
The last sum of integrals in Eq. (4.3) is the contribution of the truncated tubes to the full-

dimensional model describing the junctions. They enter the equation by substitution of the
boundary integrals arising from integrating by parts the diffusion term. See Bertoglio et al.
[Ber+19, Appendix A.3] for a complete derivation.

Finally, note that the last two terms in (4.3) are analogous to the ones obtained in the context
the so called Stokes-consistent methods for backflow stabilization at open boundaries [BC16].

4.3.2 Error estimate for the unsteady Navier–Stokes problem

The following estimate for the error of the MAPDD solution of the Navier–Stokes problem with
respect to the exact solution can be obtained (see Bertoglio et al. [Ber+19]):

Theorem 1. Let 𝒈𝑗 ∈ 𝐶[ 𝐽+42 ]+1([0, 𝑇 ];𝑊 3/2,2(𝜕𝜔𝑗)). Given natural number 𝐽 there exists a constant
𝐶 (independent of 𝜀 and 𝐽 ) such that if 𝛿 = 𝐶𝐽𝜀| ln 𝜀|, then

sup
𝑡∈(0,𝑇 )

‖𝒖𝜀,𝛿 − 𝒖𝜀 ‖𝑳2(𝐵𝜀) + ‖∇(𝒖𝜀,𝛿 − 𝒖𝜀)‖𝐿2((0,𝑇 );𝑳2(𝐵𝜀)) = 𝑂(𝜀𝐽 ) . (4.4)

4.3.3 Error estimate for the stationary Stokes problem

Applying the MAPDD method in a similar manner to the Stokes problem, the following error
estimate can be proved with asymptotic analysis for the difference between the exact solution,
𝒖𝜀 , and the MAPDD solution, 𝒖𝜀,𝛿 :
Theorem 2. Given natural number 𝐽 there exists a constant 𝐶 (independent of 𝜀 and 𝐽 ) such that if
𝛿 = 𝐶𝐽𝜀| ln 𝜀|, then

‖𝒖𝜀 − 𝒖𝜀,𝛿 ‖𝑯 1(𝐵𝜀) = 𝑂(𝜀𝐽 ). (4.5)

See Bertoglio et al. [Ber+19] for the full derivation and proofs.
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4.4 Numerical examples
In this section, the previous analysis is complemented by numerical experiments for the new
MAPDD formulation applied to the stationary Stokes problem and the transient Navier–Stokes
problem, for a sequence of values of 𝜀. In the tests we used more natural Neumann’s condition for
the outflow. The errors of the MAPDD solutions obtained in the truncated domain with respect
to reference solutions computed in the full domain are evaluated in the norms given by Eqs. (4.4)
and (4.5).

4.4.1 Problem setup

Consider the two-dimensional geometry illustrated in Fig. 4.2.1. Two junctions are connected
by a straight tube. This straight tube (labeled 𝐵𝑑𝑒𝑐,𝜀1,2 ) is included in the full reference model, or
truncated when the reduced MAPDD model is used.

The radius of the tube is proportional to 𝜀 (we set 𝑅 = 𝜀). For each value of 𝜀, the junction
domains are contracted homothetically by a factor of 𝜀 with respect to the center points marked
with plus signs in Fig. 4.2.1. The distance between these points, 𝐿, remains the same for all values
of 𝜀. Straight tube extensions (blue areas, 𝐵𝜀,𝛿1;2) are added to the junction domains. Theorem 2
requires the associated distance, 𝛿 , from the centers of the junction domains to the interfaces, to
be

𝛿 = 𝐶𝜀| ln(𝜀)|. (4.6)

𝐶 is a user parameter. Pairs of full and reduced domains are created for a sequence of values
𝜀 = 2−𝑘 , 𝑘 = 1, … , 6. In the particular examples of the investigated geometry and our selection of
𝜀, 1/ ln(2) < 𝐶 < 6/ ln(2) is necessary for 𝐵𝜀,𝛿1;2 ≠ ∅ and for 𝐵𝑑𝑒𝑐,𝜀1,2 ≠ ∅, respectively. In what follows,
we choose the values 𝐶 = 𝐾/ ln(2), 𝐾 = 2, 3 and 4. The factor 1/ ln(2) is added for convenience, to
cancel with the ln(𝜀) terms and leave rational numbers as the interface coordinates.

4.4.2 Stationary Stokes test case

Since one of our main motivations is the numerical simulation of blood flows, we choose for the
viscosity and the density values that represent physiologically relevant conditions, assuming the
fluid is incompressible and Newtonian. Typical parameters of blood are a dynamic viscosity of
𝜇 = 0.035 cm2/s and a density of 𝜌 = 1 g/cm3. Remind the relation between the dynamic viscosity 𝜇
and the kinematic viscosity 𝜈 : 𝜈 = 𝜇/𝜌. At the inlet 𝛤𝑖𝑛 of the upstream junction domain a Dirichlet

boundary condition for the velocity is defined as 𝒈𝜀 = (0, 1.5𝑈0(1 − (𝑥1 − 𝑐0)2/𝜀2))𝑇 , where 𝑐0 is
the 𝑥1 coordinate of the center of the boundary and 𝑈0 is chosen such that 𝑅𝑒 = 2𝜌𝜀𝑈0/𝜇 = 1. A
homogeneous Neumann boundary condition for the normal stress is applied on the outlet 𝛤𝑜𝑢𝑡 of
the downstream junction domain.

4.4.3 Transient Navier–Stokes test case

In the transient Navier–Stokes test case, the physical constants are set to the same values as for
the Stokes problem, i.e., 𝜇 = 0.035 cm2/s and 𝜌 = 1 g/cm3. A pulsating inflow velocity is defined

on 𝛤𝑖𝑛 via Dirichlet boundary conditions as 𝒈𝜀 = (0, 1.5𝑈0(1 − (𝑥1 − 𝑐0)2/𝜀2) sin(𝜋𝑡/𝑇 ))𝑇 , where
𝑡 is the actual time and 𝑇 = 0.8 s is the duration of a cycle. 𝑈0 is computed from the Reynolds
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number, 𝑅𝑒 = 2𝜌𝜀𝑈0/𝜇. As for the Stokes problem, a homogeneous Neumann boundary condition
defines the outflow on 𝛤𝑜𝑢𝑡 . For the convergence study, Reynolds numbers 𝑅𝑒 = 1, 25, 50, 80 and
100 are considered. In addition, we analyze the MAPDD model for a high Reynolds number of
𝑅𝑒 = 2500.

4.4.4 Numerical discretization

A mixed finite element method is adopted for discretizing the Stokes and Navier–Stokes equa-
tions. We use monolithic velocity–pressure coupling with inf-sup stable second order Taylor-
Hood elements on unstructured, uniform triangle meshes. The transient Navier–Stokes problem
is discretized in time with the implicit Euler method. The convection term, written in skew-
symmetric form, is treated semi-implicitly. The time step size is 𝛥𝑡 = 0.01 s. The time interval of
the simulations is a half cycle, i.e., 0 ≤ 𝑡 ≤ 𝑇 /2. The numerical meshes of the domains are created
such that the number of elements along the tube diameter is approximately 20 for each value of
𝜀. The average grid size at the boundaries is therefore ℎ = 𝜀/10. This results in 170592 elements
in the full domain for the smallest value of 𝜀 = 2−6 and 𝐶 = 2/ ln(2), which corresponds to 784037
degrees of freedom in the Navier–Stokes system. The triangulation of the corresponding reduced
domain consists of 15366 elements and the solution space contains 70741 degrees of freedoms.
The problem is implemented and solved using the FEniCS finite element library [Aln+15]. The
numerical meshes are generated with Gmsh [GR09].

4.4.5 Results

Stationary Stokes test case

The velocity and pressure field of the stationary Stokes problem, computed with the full model
and with the MAPDD method, are illustrated in Fig. 4.4.1 for the largest value of 𝜀 = 0.5. No
visible differences exist between the full and the MAPDD results.

The velocity error of the MAPDDmodel with respect to the full reference solution is analyzed
quantitatively in Fig. 4.4.2 for the full range of values of 𝜀. The error is computed in the 𝑯 1(𝐵𝜀)
norm, cf. (4.5) in Theorem 2. Note that the error estimate depends on the solutions in the full
domain, 𝐵𝜀 . The mesh nodes of the MAPDD and the full domains match for the junctions. In the
truncated tube, the MAPDD solution was interpolated from one of the interfaces, 𝑆12, to the mesh
nodes of the full mesh. The rate of convergence can be estimated from the numerical results as

𝐽𝑘 = log 𝑒𝑘/𝑒𝑘−1
log 𝜀𝑘/𝜀𝑘−1

where 𝑒𝑘 = ‖𝒖𝜀𝑘 − 𝒖𝜀𝑘 ,𝛿 ‖𝑯 1(𝐵𝜀𝑘 ), 𝜀𝑘 = 2−𝑘 , 𝑘 = 2, … , 6. While not constant, for 𝐶 = 2/ ln(2), 𝐽𝑘 is in
the range 3 ≲ 𝐽𝑘 ≲. The error drops at least with cubic convergence (in the investigated cases).
For 𝐶 = 3/ ln(2) the convergence rate is greatly improved, and even more so using 𝐶 = 4/ ln(2),
namely we obtain 𝐽 ≈ 8 and 𝐽 ≈ 11, respectively, discarding the points where the error stagnates.
The stagnation of both cases for 𝜀 < 2−4 or 2−3 is due to the precision of the numerical method
being reached. Rounding errors gain importance for very small values of 𝜀.

Transient Navier–Stokes test case

The asymptotic behavior of the error of the MAPDD method with respect to the full model is
shown for different Reynolds numbers in Fig. 4.4.3(a), for 𝐶 = 2/ ln(2). The error is evaluated
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(a) Velocity – Full (b) Pressure – Full

(c) Velocity – MAPDD (d) Pressure – MAPDD

Figure 4.4.1: Pressure fields and velocity magnitude and vectors at the outflow boundaries ob-
tained for the stationary Stokes problem using 𝜀 = 0.5 with the full model (top row) and with the
MAPDD model (bottom row).
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Figure 4.4.2: Stationary Stokes test case: convergence of the error with respect to 𝜀 for different
values of 𝐶 (see legend).

in the norm (4.4). For the lowest investigated Reynolds number 𝑅𝑒 = 1, the rate of convergence
𝐽 was computed (omitting the two largest values of 𝜀). The line 𝜀𝐽 is included in the figure for
comparison. With increasing Reynolds numbers the rate of convergence decreases. Exponential
increase of the error was observed for 𝑅𝑒 = 100. Using 𝐶 = 3/ ln(2) (see Fig. 4.4.3(b)), the rate
of convergence obtained for Reynolds numbers 𝑅𝑒 > 1 is improved. In particular, for 𝑅𝑒 = 100
the error now decreases with 𝜀, at least for small values of 𝜀. The errors of the case 𝑅𝑒 = 100
obtained for 𝐶 = 𝐾/ ln(2), 𝐾 = 2, 3, 4, are shown in Fig. 4.4.4. Indeed, for higher 𝐾 , the errors
are lower and convergence is improved for 𝜀 ≲ 2−4. While the error estimate assumes a low
Reynolds number, the MAPDD method can still be applied to these cases. Figures 4.4.5 and 4.4.6
show velocity streamlines and the pressure field obtained with the full reference model and the
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(a) 𝐶 = 2/ ln(2), 𝐽 = 0.45
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Figure 4.4.3: Errors (Eq. (4.4)) of the Navier–Stokes MAPDD model w.r.t. to the full solution for
different Reynolds numbers for different values of 𝐶 .
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Figure 4.4.4: Comparison of the Navier–Stokes error with different values of 𝐶 for 𝑅𝑒 = 100.

MAPDD method applied to the case 𝜀 = 1/4 and for a Reynolds number of 𝑅𝑒 = 2500, as an
example. The boundary mesh size was set to ℎ = 𝜀/20, furthermore 𝐶 = 2/ ln(2). The results
match very well visually. The MAPDD model is able to recover the recirculation zones in both
junctions accurately (Fig. 4.4.5(a) and (b)). For a more detailed comparison, the axial velocity
profiles at the interfaces for the MAPDD solution and for the full solution in the corresponding
location are shown in Figs. 4.4.7. At the left interface, the velocity interface conditions produce
a pressure overshoot near the upper corner, since the Womersley hypothesis is in disagreement
with the high Reynolds number flow conditions. This can be seen more clearly in Fig. 4.4.8(a),
where the pressure profile at the interface is shown for both the MAPDD and the full solution.
However, analyzing the pressure distribution along the cross-section the tube in a slightly more
upstream position (shifted upstream by 2𝜀), the MAPDD recovers the behavior observed for the
full solution with an error of < 8% (Fig. 4.4.9). The pressure on the right interface does not suffer
any nonphysical oscillations, as can be seen in Fig. 4.4.8(b), and the discrepancy between both
models is within 2%.

4.5 Conclusion

TheMAPDDwas shown to be an efficient and accurate method for the steady Stokes problem and
for the low Reynolds number Navier–Stokes problem. In these cases, the error of the MAPDD
methodwas in agreement with theoretical error estimates, (4.5) and (4.4), respectively. For slightly
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(a) Velocity – Full order solution

(b) Velocity – MAPDD solution

Figure 4.4.5: Velocity stream lines of the transient Navier–Stokes test case at peak time 𝑡 = 0.2 s,
for 𝑅𝑒 = 2500, 𝜀 = 0.25. Full model (a) versus MAPDD model (b).

larger Reynolds numbers, the convergence can be improved by modifying the computational do-
main and adjusting the constant in Eq. (4.6). Although the theory is only valid for small Reynolds
numbers, the method yields very good results also for high Reynolds numbers. For the (arbi-
trary) example of 𝑅𝑒 = 2500, 𝜀 = 1/4, the MAPDD velocity and pressure solutions were in good
agreement with the full solution, except for pressure oscillations that occur near the upstream
interface.
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(a) Pressure – Full

(b) Pressure – MAPDD

Figure 4.4.6: Pressure fields of the transient Navier–Stokes test case at peak time 𝑡 = 0.2 s, for
𝑅𝑒 = 2500, 𝜀 = 0.25. Full model (a) versus MAPDD model (b).
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Figure 4.4.7: Axial velocity component 𝑢0 at the interfaces for the MAPDD and the full solutions
computed for 𝑅𝑒 = 2500, 𝜀 = 1/4.
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Figure 4.4.8: Pressure along the interfaces for the MAPDD and the full solutions computed for
𝑅𝑒 = 2500, 𝜀 = 1/4.
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Figure 4.4.9: Pressure along the tube cross-section, at 2𝜀 upstream of 𝑆12, for the MAPDD and the
full solutions computed for 𝑅𝑒 = 2500, 𝜀 = 1/4.
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Chapter 5

Conclusion

5.1 Summary

For the diagnosis, treatment planning and post-surgical monitoring of cardiovascular disease
(CVD), hemodynamic markers have proven to be of great utility. However, non-invasive assess-
ment of the hemodynamics of a patient is still a challenge. Phase-contrast magnetic resonance
imaging (PC-MRI) canmeasure the distribution of blood velocity along two-dimensional planes or
in three-dimensional volumes and is limited in accuracymainly by the image resolution and noise.
The local variation in the blood pressure cannot be measured non-invasively, but is required in
the clinical practice to evaluate CVD. Other hemodynamic quantities, such as the arterial wall
stiffness or wall shear stress can also be relevant as diagnostic quantities and for understanding
the onset of CVD, but are not observable with imaging techniques.

This thesis approaches the topic of patient-specific hemodynamics on three different paths.
In Chapter 2 of this thesis a method was presented to improve the accuracy of hemodynamic

data recovery from partial 2D PC-MRI measurements by means of solving an inverse problem of
the Navier–Stokes equations of fluid flow. Vessel geometries extracted fromMRI or CT images are
affected by errors due to noise, artifacts and limited image resolution. Small errors in the geometry
propagate into the recovered data and lead to large errors in the solution when standard no-slip
boundary conditions are used on inaccurately positioned walls. The core idea of this work was
replacing no-slip boundary conditions at the arterial walls by slip/transpiration conditions with
parameters which were estimated from velocity measurements. Numerical results of synthetic
test cases showed an important improvement in accuracy of the estimated pressure differences
and the reconstructed velocity fields.

In Chapter 3 a comparison study of different direct pressure gradient estimation techniques
was presented. These methods compute relative pressure fields directly from 3D PC-MRI data.
The new Stokes estimation method (STE) by Švihlová et al. [Švi+16] was applied for the first
time to real phantom and patient data. In comparison to the classical Poisson pressure estimation
method (PPE), the STE method proved more accurate and more robust to noise and the image
segmentation in most cases.

Chapter 4 was dedicated to a numerical validation of the new MAPDD model [Ber+19] for a
domain decomposition reduction of vascular networks. This approach considers the vessels as a
network of thin pipes in which the flow has the shape of aWomersley flow, connected by arbitrary
3D junction domains where the flow is governed by the Navier–Stokes equations. In the MAPDD
model, the thin pipes are replaced by coupling conditions on the junction domains. A strategy
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to easily implement the MAPDD model with the finite element method was presented and the
theoretical results of Bertoglio et al. [Ber+19] were reproduced with numerical simulations in a
simple test case. The method was shown to deliver accurate results even for moderately large
Reynolds numbers, far from the regime where the theory is valid.

5.2 Perspectives

As was shown in Chapter 3, the investigated direct pressure estimation methods are sensitive to
the image segmentation and to the image resolution, especially for high Reynolds numbers. The
methodology presented in Chapter 2 using slip/transpiration boundary conditions aims specif-
ically at an improved robustness with respect to errors in the computational domain. Future
work should therefore apply the discussed slip/transpiration data assimilation framework to the
phantom data of Chapter 3. It is hypothesized that pressure estimates using the data assimilation
method are more accurate and less sensitive with respect to the image segmentation and reso-
lution than the PPE and the STE methods. The aortic phantom and realistic aorta geometries in
general require handling multiple outlets. Outflow boundary conditions based on the MAPDD
method discussed in Chapter 4 can be used to model the effect of the truncated parts of the vas-
culature. To that end, the MAPDD junction conditions have to be applied to the corresponding
boundaries and the parameter describing the length of the truncated pipe, 𝑑𝑙 in Eq. (4.3), has to
be estimated with the parameter estimation formalism. The small bifurcating vessels in the aortic
arch justify the assumption of a Womersley flow made by the MAPDD model. Such a boundary
condition is a simpler alternative to Windkessel boundary conditions in terms of modelling com-
plexity, implementation and computational effort when solving the system. Only one parameter
per boundary is required and the model is entirely local. The MAPDD junction conditions are
guaranteed to be stable with respect to backflow. The accuracy of the model needs to be stud-
ied carefully for the proposed application. In addition to 3D PC-MRI data, the data assimilation
method can also be applied to 2D measurements. Minimum data requirements should be identi-
fied for the data assimilation method.

Turbulence was seen to deteriorate the accuracy of direct pressure estimators in Chapter 3.
The Navier–Stokes solver used in the data assimilation framework can be extended in straight
forward manner to include turbulence models, such as large eddy simulation [Pop00]. It is ex-
pected that the precision of the data assimilation framework applied to real data of cases of CoA,
in particular to the 9mm and 11mm CoA phantoms under stress conditions, can be improved by
considering turbulence. Future work should examine this hypothesis for clinically relevant cases
and determine if the increased demand in computational resources is justified.

One of the limitations of the study presented in Chapter 2 was that the coefficients of the
slip/transpiration boundary conditions were assumed constant in space and time. It is expected
that the accuracy of the method can be improved by considering a spatial and temporal distri-
bution of the parameters. Future studies should analyze different approaches, such as spatially
parameterizing the coefficients, e.g., with respect to the center line. Time-dependence could be
implemented, for instance, by considering a sum of shape functions (e.g., sines) with coefficients
to be estimated in the parameter estimation framework.

The elasticity of the arterial walls plays an important role in the arterial hemodynamics and
should be taken into account in many cases for reliable hemodynamic simulations [NOV11]. A
worthwhile path for future work could be exploring the estimation of mechanical wall properties
from velocity measurements (instead of displacements [BMG12; Ber+14]) using data assimilation
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and a fluid–structure interaction (FSI) model [FQV09a; SY16]. If the slip/transpiration model can
be reasonably applied to FSI or should be viewed as an alternative approach is not clear at this
stage. This question should be discussed in the future.
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