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Abstract

The q‐rung orthopair fuzzy set (qROPFS), proposed by

Yager, is a more effective and proficient tool to represent

uncertain or vague information in real‐life situations.

Divergence and entropy are two important measures,

which have been extensively studied in different informa-

tion environments, including fuzzy, intuitionistic fuzzy,

interval‐valued fuzzy, and Pythagorean fuzzy. In the

present communication, we study the divergence and

entropy measures under the q‐rung orthopair fuzzy

environment. First, the work defines two new order‐α
divergence measures for qROPFSs to quantify the informa-

tion of discrimination between two qROPFSs. We also

examine several mathematical properties associated with

order‐α qROPF divergence measures in detail. Second, the

paper introduces two new parametric entropy functions

called “order‐α qROPF entropy measures” to measure the

degree of fuzziness associated with a qROPFS. We show

that the proposed order‐α divergence and entropy measures

include several existing divergence and entropy measures

as their particular cases. Further, the paper develops a new

decision‐making approach to solve multiple attribute group

decision‐making problems under the qROPF environment

where the information about the attribute weights is

completely unknown or partially known. Finally, an
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example of selecting the best enterprise resource planning

system is provided to illustrate the decision‐making steps

and effectiveness of the proposed approach.
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1 | INTRODUCTION

The management of uncertainty is a very crucial and challenging issue in many decision support
systems. Traditionally, the probability theory was used to handle the uncertainty that arises due to
the random nature of the systems. However, in many real‐world situations, uncertainty arises due
to vagueness, lack of knowledge, imprecise data, and missing information. To cope with these
situations appropriately, Zadeh1 proposed the theory of fuzzy sets (FSs) in 1965. Afterward,
several extensions/generalization of FSs have been introduced to solve many real‐world decision
problems in different areas. Intuitionistic fuzzy sets (IFSs), proposed by Atanassov,2 has become
one of the extensively studied and used generalizations of FSs in the past three decades.3–12 In the
intuitionistic fuzzy theory, the membership grade of each element is presented by a pair of values
in between 0 and 1, in which the first component of each pair represents the membership value,
and the second component denotes the nonmembership value of the corresponding element to
IFS. The primary condition to use IFS theory is that the sum of the values of each pair should be
less than or equal to 1. However, the sum of these two values may be higher than one in many
real‐life situations. For instance, an expert is invited to give his/her opinion about the feasibility of
an investment plan in the share market. Assume that the expert provides the degree of feasibility
as 0.7 and the degree of infeasibility as 0.6 for this investment plan. It is observed that
0.7 + 0.6 > 1, so the IFS cannot be used to describe this information accurately.

The Pythagorean fuzzy set (PFS) theory was introduced by Yager13 and Yager and Abbasov14

as a new and remarkable generalization of IFS. A PFS is characterized by two functions, namely
membership and nonmembership, and satisfying the condition that the square sum of the
membership degree and the nonmembership degree is≤1 for each element. We can observe
that 0.72 + 0.62 < 1, and hence the PFSs are more potent than IFSs to express uncertain and
vague information. In the last 5 years, PFS theory has been gained much attention from
researchers, and many valuable theoretical and practical results have been obtained to use this
theory in different application areas.15–24

Recently, Yager25 introduced the notion of q‐rung orthopair fuzzy sets (qROPFSs) as a more
general form of IFS and PFS in which the sum of the qth power of the membership degree and the
qth power of the nonmembership degree is ≤1. It is worth mentioning that as the value of the
parameter q increases, more and more orthopair satisfy the bounding constraint. It means qROPFSs
give more information space to describe uncertain or vague information. Let us revisit the above‐
discussed example if the expert provides the degree of feasibility as 0.8 and the degree of
infeasibility as 0.9 for the investment plan. In this situation, IFS, as well as PFS, cannot be used to
represent the expert preference information because of 0.8 + 0.9 > 1 and 0.82 + 0.92 > 1.
Nevertheless, it is possible with qROPFS as 0.85 + 0.95 < 1. Thus, qROPFSs are more proficient in
handling the higher level of uncertain real‐world information.
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In a short span, the qROPFS theory has been attracted considerable attention from researchers
working in different application areas. Liu and Wang26 proposed some arithmetic and geometric
aggregation operators, and Liu and Liu27 extended Bonferroni mean (BM) operator for decision‐
making with qROPF information. Peng et al28 defined exponential operational laws for qROPFS
and developed a decision‐making approach by using a new score function. Peng and Dai29

developed a classroom teaching quality assessment method with qROPF information. Du30

discussed correlation and correlation coefficient for qROPFSs. Yang and Pang31 explained
partitioned BM operators; Wei et al32 formulated Heronian mean (HM) operators, and Wei et al33

defined Maclaurin symmetric mean (MSM) operators for aggregating qROPF information. Peng
and Liu34 conducted a detailed study on the relationship between different information measures
under the qROPF environment. Liu and Wang35 studied the BM operators for q‐rung orthopair
fuzzy numbers based on Archimedean norms. In addition, some new MADM approaches based
on q‐rung orthopair fuzzy point weighted aggregation operators were developed by Xing et al.36

In mathematics, while studying a set of objects, we like to associate various quantitative measures
defined over the set. Two basic such measures are‐ quantitative measures with each object and the
difference or divergence measures between any two objects. In uncertainty theory, entropy is an
important tool for measuring uncertain information. In 1972, De Luca and Termini37 defined a
measure of fuzzy entropy analogous to Shannon entropy.38 After that, several entropy functions have
been derived by considering different points of view to measure the fuzziness associated with an
FS.39–45 In 2001, Burillo and Bustince46 first introduced the notion of intuitionistic fuzzy entropy.
Szmidt and Kacprzyk47 extended De Luca and Termini’s axioms on fuzzy entropy and developed an
intuitionistic fuzzy entropy by employing a geometric interpretation of IFSs. Since then, the notion of
intuitionistic fuzzy entropy has been extensively studied by researchers from all over the world, and
several entropy functions have been proposed to measure the fuzziness associated with an IFS.48–55

Recently, Peng and Liu34 have defined some entropy measures for qROPFS.
Inspired by the idea of divergence between two probability distributions, Bhandari and Pal42

introduced the notion of fuzzy divergence, which gives the measure of information
discrimination between two FSs. In 2007, Vlachos and Sergiadis49 extended the idea of fuzzy
divergence to IFSs and defined a measure of divergence between two IFSs. Later, a number of
divergence measures between IFSs have been defined by various eminent researchers,50,52,56–61

and the outcomes have been implemented in different application areas, including pattern
recognition, decision‐making, medical diagnosis, image segmentation problems. In the
Pythagorean fuzzy environment, Xiao and Ding62 studied the Jensen‐Shannon divergence
measure between PFSs and discussed its applications in medical diagnosis.

Although many studies have been done on divergence and entropy measures under fuzzy and
intuitionistic fuzzy environments by several researchers, however, best of our knowledge, there is no
investigation on divergence measures under the qROPF environment. Therefore, the main objective
of this work is to study the divergence and entropy measures with qROPF information. For doing so,
first, we introduce the notion of order‐α divergence measures for qROPFSs based on logarithmic and
exponential functions to analyze the information of discrimination between two qROPFSs. Then, we
discuss several important mathematical properties of these measures in detail. It is noted that the
proposed order‐α qROPF divergence measures include several well‐known fuzzy, intuitionistic fuzzy
and Pythagorean fuzzy divergence measures as their particular and limiting cases. Second, we
propose two new order‐α entropy functions to measure the degree of fuzziness associated with a
qROPF. The work proves their validity requirements and discusses several particular and limiting
cases. Besides, the paper utilizes the proposed order‐α divergence and entropy measures to develop a
nonlinear optimization model for determining the attribute weights with completely unknown or
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partially known information about the attribute weights. We also discuss the application of the
proposed divergence measures in multiple attribute group decision‐making (MAGDM).

The remainder of the paper is organized as follows. Section 2 presents some basic concepts of
qROPFSs, which will be used for further developments. In Section 3 we introduce the standard
definition of divergence measure for qROPFSs and define order‐α divergence measures between
two qROPFSs. We also prove their several important properties with particular and limiting cases.
Further, two new entropy functions called “order‐α qROPF entropy measures” are introduced,
which satisfy the axiomatic requirements.34 Some mathematical properties of the proposed order‐
α qROPF entropy measures are studied. We show that the various existing fuzzy and intuitionistic
fuzzy entropy measures are the special cases of the proposed entropy measures. Section 4
develops a decision‐making approach based on proposed order‐α divergence and entropy
measures to solve MAGDM problems with qROPF information. Then, we consider a real‐life best
enterprise resource planning (ERP) system selection problem to demonstrate the effectiveness of
the developed approach. A comparative study with existing methods is also provided to validate
the obtained results. Section 5 concludes the works and highlights some future directions.

2 | PRELIMINARIES

This section introduces the definition of qROPFS, basic operations, the concept of entropy, and
the qROPF weighted averaging operator.

Definition 1 (Yager25). qROPFS P in a finite universe of discourse Z= {z1, z2,…, zn} is given by

〈 〉 ∈P z ξ z ζ z z Z= { , ( ), ( ) },P P (1)

where ξP : Z→ [0, 1] and ζP : Z→ [0, 1] denote the membership degree (MD) and the
nonmembership degree (NMD) of the element z to the set P, respectively, satisfying the
condition that ≤ ≤ ≥ξ z ξ z q0 ( ) + ( ) 1( 1)P

q
P
q . Moreover, the degree of the hesitancy of z to

the set P is obtained by η z ξ z ζ z( ) = 1 − ( ( )) + ( ( )) .P
q

P
qq Throughout this paper, we denote

the family of all qROPFS in Z by ROPFS Z( )q . For a given qROPFS, the pair (ξP(z), ζP(z)) is
called the q‐rung orthopair fuzzy number (qROPFN) and denoted by χ= (ξχ, ζχ).
Note 1. If we put q= 1 and 2 in Definition 1, then qROPFS is reduced to IFS2 and PFS,13

respectively.
Yager25 and Liu and Wang26 defined some basic operational laws on qROPFSs as follows:

Definition 2. Let P= {〈z, ξP(z), ζP(z)〉 | z∈ Z} and Q= {〈z, ξQ(z), ζQ(z)〉 | z∈ Z} be two
qROPFSs in Z, then

i. P⊆Q if and only if ξP(z)≤ ξQ(z) and ζP(z)≥ ζQ(z) ∀ z∈ Z;
ii. P=Q if and only if P⊆Q and P⊇Q;
iii. 〈 〉 ∈P z ζ z ξ z z Z= { , ( ), ( ) };C

P P

iv. ∪ 〈 〉 ∈P
q
Q z ξ z ξ z ζ z ζ z z Z= { , max( ( ), ( )), min( ( ), ( )) };P Q P Q

v. ∩ ∈{ }( ) ( )P
q
Q z ξ z ξ z ζ z ζ z z Z= , min ( ), ( ) , max ( ), ( )P Q P Q ;
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vi. ⊕ ∈{ }P
q

Q z ξ z ξ z ξ z ξ z ζ z ζ z z Z= , ( ) + ( ) − ( ) ( ) , ( ) ( )P
q

Q
q

P
q

Q
q

P Q
q ;

vii. ⊕ ∈{ }P
q

Q z ξ z ξ z ζ z ζ z ζ z ζ z z Z= , ( ) ( ), ( ) + ( ) − ( ) ( ) ;P Q P
q

Q
q

P
q

Q
qq

viii. ∧ ∈{ }P
q
λ z ξ z ζ z z Z= , ( ), 1 − (1 − ( )) ;P

λ
P
q λq

ix. ∈{ }λ
q
P z ξ z ζ z z Z* = , 1 − (1 − ( )) , ( ) .P

q λ
P
λq

Definition 3 (Peng and Liu34). An entropy on ROPFS Z( )q is a real‐valued mapping
→E ROPFS Z: ( ) [0, 1]q q , which holds the following properties:

EP1: E P( ) = 0q if and only if P is a crisp set.
EP2: E P( ) = 1q if and only if ξP(z) = ζP(z) ∀ z∈ Z.
EP3: ≤E P E Q( ) ( )q q if P is less fuzzy than Q, that is, ξP(z)≤ ξQ(z), ζP(z)≥ ζQ(z) for

ξQ(z)≤ ζQ(z) or ξP(z)≥ ξQ(z), ζP(z)≤ ζQ(z) for ξQ(z)≥ ζQ(z) for any z∈ Z.
EP4: E P E P( ) = ( )q q C .

Definition 4. Let26 ( )χ ξ ζ= ,k χ χk k
(k= 1, 2,…, t) be a collection of q‐rung orthopair

fuzzy number (qROPFN) and υ υ υ υ= ( , , …, )t
T

1 2 be the weight vector of χk with υk≥ 0
(k= 1, 2,…, t) and ∑ υ = 1

k

t
k=1

. Then the function →ROPFWA V V:q t defined as

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟∏ ∏

∗ ⊕ ∗ ⊕⋯⊕ ∗

( ) ( )

ROPFWA χ χ χ υ
q
χ

q
υ
q
χ

q q
υ
q
χ

ξ ζ

( , , …, ) =

= 1 − 1 − , ,

q
t t t

k

t

χ
q

υ
q

k

t

χ

υ

1 2 1 1 2 2

=1

1/

=1
k

k

k

k
(2)

is called the q‐Rung orthopair fuzzy weighted averaging (qROPFWA) operator.

Based on these concepts, in the next section, we introduce the order‐α divergence and
entropy measures for qROPFSs and discuss their important properties with particular and
limiting cases in detail.

3 | ORDER ‐α DIVERGENCE AND ENTROPY MEASURES
FOR qROPFSs

3.1 | Order‐α divergence measures for qROPFSs

Analogous to the Vlachos and Sergiadis,49 first, we propose the standard definition of
divergence measure for qROPFSs as follows:

Definition 5. Let ∈P Q ROPFS X, ( )q , then the mapping D : Rq O →PFS Z ROPFS Z( ) × ( )q

[0, 1] is called a divergence measure for qROPFSs if it satisfies the following two properties:
DP1: D(P |Q)≥ 0 with equality if and only if P=Q;
DP2: 0≤D(P |Q)≤ 1.
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3.1.1 | Order‐α divergence measures between qROPFSs under single
element universe

Definition 6. Let P and Q be two qROPFSs defined in a single element universe Z= {z},
and from Definition 1, we have

⎪

⎪

⎫
⎬
⎭

≤ ≤

≤ ≤

ξ z ζ z η z ξ z ζ z η z

ξ z ζ z η z ξ z ζ z η z

( ) + ( ) + ( ) = 1, 0 ( ), ( ), ( ) 1

( ) + ( ) + ( ) = 1, 0 ( ), ( ), ( ) 1
.

P
q

P
q

P
q

P P P

Q
q

Q
q

Q
q

Q Q Q

(3)

Equation (3) recommends that ( )ξ z ζ z η z( ), ( ), ( )P
q

P
q

P
q and ( )ξ z ζ z η z( ), ( ), ( )Q

q
Q
q

Q
q can be

considered as two probability distributions associated with z. Then, based on the notion of
order‐α divergence between two probability distributions,63 we define the following
order‐α divergence measures between two qROPFSs P and Q given by

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

( ) ( )

( )

D P Q
α

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

( | ) =
1

( − 1)
log ( )

( ) + ( )

2
+ ( )

( ) + ( )

2

+ ( )
( ) + ( )

2
,

*
α

q
P
q α P

q
Q
q α

P
q α P

q
Q
q α

P
q α P

q
Q
q α

1 2

1− 1−

1−

(4)

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

∈

( ) ( ) ( )

D P Q

e e
e e

( | )

=
1

( − )
− ,

whereα (0, 1).

*
α

q

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

2

2

( )
( )+ ( )

2
+ ( )

( )+ ( )

2
+ ( )

( )+ ( )

2
α

P
q α P

q
Q
q α

P
q α P

q
Q
q α

P
q α P

q
Q
q α

−1

1− 1− 1−

(5)

Note 2. In all the formulas e denotes the exponential function.
In the next theorem, we prove that the measures D P Q δ( | )( = 1, 2)*

α
q
δ defined in Equations

(4) and (5) are valid divergence measures between qROPFSs.

Theorem 1. The divergence measures D P Q δ( | )( = 1, 2)*
α

q
δ satisfy the properties DP1 and

DP2, as listed in Definition 5.

Proof.

(i) From Taneja,64 we know that

⎧⎨⎩∑ ∑ ∑
≤ ≤

≥ ≥
p q

α

α
p q

1, 0 < 1,

1, 1,
where = = 1.

k

m

k
α

k
α

k

m

k

k

m

k

=1

1−

=1 =1

(6)

Now, by utilizing Equation (3) with the inequality given in Equation (6), we get
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ≤ ∀ ∈

( )

( )

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

α

( ( ))
( ) + ( )

2
+ ( )

( ) + ( )

2

+ ( )
( ) + ( )

2
1 (0, 1).

P
q α P

q
Q
q α

P
q α P

q
Q
q α

P
q α P

q
Q
q α

1− 1−

1−

(7)

Based on the above inequality, we obtain

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

≥

( ) ( )

( )

( ) ( ) ( )

α
ξ z

ξ z ξ z
ζ z

ζ z ζ z

η z
η z η z

e e
e e

1

( − 1)
log ( )

( ) + ( )

2
+ ( )

( ) + ( )

2

+ ( )
( ) + ( )

2

1

( − )
−

0.

P
q α P

q
Q
q α

P
q α P

q
Q
q α

P
q α P

q
Q
q α

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

2

1− 1−

1−

2

( )
( )+ ( )

2
+ ( )

( )+ ( )

2
+ ( )

( )+ ( )

2
α

P
q α P

q
Q
q α

P
q α P

q
Q
q α

P
q α P

q
Q
q α

−1

1− 1− 1−

(8)
Further, when P=Q⇒ ξP(z) = ξQ(z) and ζP(z) = ζQ(z), then we get

D P Q δ( | ) = 0, ( = 1, 2).*α
q
δ (9)

Next, let us consider D P Q( | ) = 0*
α

q
δ (δ= 1, 2), which imply

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

( ) ( )

( )

α
ξ z

ξ z ξ z
ζ z

ζ z ζ z

η z
η z η z

1

( − 1)
log ( )

( ) + ( )

2
+ ( )

( ) + ( )

2

+ ( )
( ) + ( )

2
= 0,

P
q α P

q
Q
q α

P
q α P

q
Q
q α

P
q α P

q
Q
q α

2

1− 1−

1−

(10)

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟( ) ( ) ( )

e e
e e

1

( − )
− = 0.

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

2

( )
( )+ ( )

2
+ ( )

( )+ ( )

2
+ ( )

( )+ ( )

2
α

P
q

j
α P

q
j Q

q
j

α

P
q

j
α P

q
j Q

q
j

α

P
q

j
α P

q
j Q

q
j

α

−1

1− 1− 1−

(11)

From Equations (10) and (11), we get

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

( ( ))
( ) + ( )

2
+ ( )

( ) + ( )

2

+ ( )
( ) + ( )

2
= 1.

P
q α P

q
Q
q α

P
q α P

q
Q
q α

P
q α P

q
Q
q α

1− 1−

1−

(12)

Since α∈ (0, 1), α≠ 1, then Equation (12) holds only when ξP(z) = ξQ(z) and
ζP(z) = ζQ(z)⇒ P=Q.
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Hence based on results mentioned in Equations (8) to (12), we conclude

≥D P Q δ P Q( | ) 0 ( = 1, 2) with equality if and only = .*
α

q
δ (13)

(ii) It has already been proved that ≥D P Q( | ) 0*
α

q
δ (δ= 1, 2), so we must show that the

maximum value attains by the divergence measures D P Q( | )*
α

q
δ is 1.

Note that the divergence measures D P Q( | )*
α

q
δ (δ= 1, 2) attain their maximum for the

following degenerate cases: (a) P= (1, 0, 0) and Q= (0, 1, 0); (b) P= (0, 1, 0) and
Q= (1, 0, 0); (c) P= (0, 0, 1) and Q= (0, 1, 0); and (d) P= (0, 0, 1) and Q= (1, 0, 0).
Therefore, in all these cases, we get

D P Q( | ) = 1.*
α

q
δ (14)

Hence

≤ ≤D P Q0 ( | ) 1.*α
q
δ (15)

This proves the theorem. □

3.1.2 | Order‐α divergence measures between qROPFSs under finite
universe of discourse

The idea of order‐α divergence measures can be easily extended to any finite universe of
discourse. We propose the following formal definition of the order‐α divergence measures
between qROPFSs under the finite universe given as the following definition.

Definition 7. Let P and Q be two qROPFSs defined in Z= {z1, z2,…, zn}. Then, we define
the associated order‐α divergence measures between two qROPFSs P and Q as follows:

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

∑ ∑ ( )

( ) ( )

D P Q D P z Q z
n α

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

( | ) = ( ( )| ( )) =
1

( − 1)
log ( )

( ) + ( )

2

+ ( )
( ) + ( )

2
+ ( )

( ) + ( )

2
,

*
α

q

j

n

α
q

j j

j

n

P
q

j

α P
q

j Q
q

j
α

P
q

j

α P
q

j Q
q

j
α

P
q

j

α P
q

j Q
q

j
α

1

=1

1
=1

2

1−

1− 1−

(16)

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

∑

∑

∈

( )

( ) ( ) ( )

D P Q D P z Q z
n e e

e e

α

( | ) = ( )| ( ) =
1

( − )

× − ,

where (0, 1)

.

*
α

q

j

n

α
q

j j

j

n ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

2

=1

2 2

=1

( )
( )+ ( )

2
+ ( )

( )+ ( )

2
+ ( )

( )+ ( )

2

α

P
q

j

α P
q

j Q
q

j
α

P
q

j

α P
q

j Q
q

j
α

P
q

j

α P
q

j Q
q

j
α

−1

1− 1− 1−

(17)
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Note that the divergence measures D P Q( | )α
q
δ (δ= 1, 2) are not symmetric. To imbue

the measures with symmetry, we propose the symmetric version of the divergence
measures D P Q( | )α

q
δ (δ= 1, 2) by the following expression:

( )D P Q D P Q D Q P( ) =
1

2
( | ) + ( | ) .α

q
δ α

q
δ α

q
δ (18)

In the next theorem, we study some mathematical properties of the proposed symmetric
divergence measures D P Q( )α

q
δ (δ= 1, 2) in detail, which prepare their application ground in

different areas.

Theorem 2. For all ∈P Q R ROPFS Z, , ( )q , the divergence measures D P Q( )α
q
δ (δ= 1, 2)

hold the following properties:

i.
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∪ ∩D P P

q
Q D Q P

q
Q=α

q
δ α

q
δ ;

ii.
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∩ ∪D P P

q
Q D Q P

q
Q=α

q
δ α

q
δ ;

iii.
⎛
⎝⎜

⎞
⎠⎟∪ ∩D P

q
Q P

q
Q D P Q= ( )α

q
δ α

q
δ ;

iv.
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∪ ∩D P P

q
Q D P P

q
Q D P Q+ = ( )α

q
δ α

q
δ α

q
δ ;

v.
⎛
⎝⎜

⎞
⎠⎟∪ ≤D P

q
Q R D P R D Q R( ) + ( )α

q
δ α

q
δ α

q
δ ;

vi.
⎛
⎝⎜

⎞
⎠⎟∩ ≤D P

q
Q R D P R D Q R( ) + ( )α

q
δ α

q
δ α

q
δ ;

vii.
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∪ ∩D P

q
Q R D P

q
Q R D P R D Q R+ = ( ) + ( |);α

q
δ α

q
δ α

q
δ α

q
δ

viii. D P Q D P Q( ) = ( )α
q
δ α

q
δ

C C ;

ix. D P Q D P Q( ) = ( )α
q
δ

C
α

q
δ

C ;

x. D P Q D P Q D P Q D P Q( ) + ( ) = ( ) + ( ).α
q
δ α

q
δ

C
α

q
δ

C C
α

q
δ

C

Proof. By using a similar methodology as adopted in the references,8,57,59 we can obtain
the proof of these properties easily. Therefore, we omit the proof from here. □

Special cases of the divergence measures D P Q( | )α
q
δ and D P Q( )α

q
δ (δ= 1, 2):
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(1) When α→ 1, then D P Q( )α
q
δ (δ= 1, 2) are reduced to the following measure:

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎛
⎝
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⎠
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⎝
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⎠
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⎠
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⎝
⎜⎜
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⎠
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⎝
⎜⎜
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

∑D P Q
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ξ z
ξ z

ξ z ξ z
ζ z

ζ z

ζ z ζ z

η z
η z

η z η z

ξ z
ξ z

ξ z ξ z
ζ z

ζ z

ζ z ζ z

η z
η z

η z η z

( ) =
1

2

( )log
2 ( )

( ) + ( )
+ ( )log

2 ( )

( ) + ( )

+ ( )log
2 ( )

( ) + ( )

( )log
2 ( )

( ) + ( )
+ ( )log

2 ( )

( ) + ( )

+ ( )log
2 ( )

( ) + ( )

,α
q
δ

j

n

P
q

j
P
q

j

P
q

j Q
q

j
P
q

j
P
q

j

P
q

j Q
q

j

P
q

j
P
q

j

P
q

j Q
q

j

Q
q

j
Q
q

j

P
q

j Q
q

j
Q
q

j
Q
q

j

P
q

j Q
q

j

Q
q

j
Q
q

j

P
q

j Q
q

j

=1

2 2

2

2 2

2

(19)

which gives the J‐divergence measure between two qROPFSs corresponding to Hung
and Yang.56

(2) When α→ 1 and q= 2, then divergence measures D P Q( )α
q
δ (δ= 1, 2) become the

Pythagorean fuzzy Jenson‐Shannon divergence proposed by Xiao and Ding.62

(3) When α→ 1 and q= 1, then divergence measures D P Q( )α
q
δ (δ= 1, 2) become the J‐

divergence measure on IFSs proposed by Hung and Yang.56

(4) When α→ 1 and q= 1, then divergence measures D P Q( | )α
q
δ (δ= 1, 2) reduce into the

intuitionistic fuzzy divergence measure defined by Wei and Ye.65

(5) When α= 1/2, then D P Q( )α
q
δ (δ= 1, 2) are reduced to the following measures:

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎫

⎬

⎪⎪⎪

⎭

⎪⎪⎪

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

∑

( ) ( )

( )

( ) ( )

( )

D P Q

n

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

( )

=
−1

log

( )
( ) + ( )

2
+ ( )

( ) + ( )

2

+ ( )
( ) + ( )

2

× ( )
( ) + ( )

2
+ ( )

( ) + ( )

2

+ ( )
( ) + ( )

2
,

q

j

n
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q

j
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q

j Q
q

j
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q

j
P
q

j Q
q

j

P
q

j
P
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j Q
q

j

Q
q

j

α Q
q

j P
q

j

Q
q

j
Q
q

j P
q

j

Q
q

j
Q
q

j P
q

j

1/21

=1
2

(20)

VERMA | 727



⎡

⎣

⎢⎢⎢
⎤

⎦

⎥⎥⎥

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

∑

{ }( ) ( ) ( )

( ) ( ) ( )

D P Q

n e e

e

e e

( )

=
1

2 ( − )

×

+ − 2 ,

q

j

n

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z

ξ z
ξ z ξ z

ζ z
ζ z ζ z

η z
η z η z
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1/ 2
=1
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( )+ ( )

2
+ ( )

( )+ ( )

2
+ ( )

( )+ ( )

2

( )
( )+ ( )

2
+ ( )

( )+ ( )

2
+ ( )

( )+ ( )

2

P
q

j
P
q

j Q
q

j

P
q

j
P
q

j Q
q

j

P
q

j
P
q

j Q
q

j

Q
q

j

α Q
q

j P
q

j

Q
q

j
Q
q

j P
q

j

Q
q

j
Q
q

j P
q

j

(21)

which we called the Bhattacharyya distance measures between two qROPFSs.

(6) When q= 1 and ∀η z η z j( ) = ( ) = 0P
q

j P
q

j , then D P Q δ( | ) ( = 1, 2)α
q
δ give modified version of

fuzzy divergence of order‐α defined by Hooda.43

(7) When α→ 1, q= 1 and ∀η z η z j( ) = ( ) = 0P
q

j P
q

j , then D P Q( | )α
q
δ (δ= 1, 2) are reduced to

fuzzy divergence proposed by Shang and Jiang.66

We know that the qROPF divergence measures give information of discrimination between
two qROPFSs. In 2007, Vlachos and Sergiadis49 defined a relationship between entropy and
divergence measures for IFSs. It is expected that a similar relation will also valid for qROPFSs.
In the next theorem, based on the developed divergence measures between qROPFSs, we will
define two new entropy measures for qROPFSs.

3.2 | Order‐α qROPF entropy measures

Theorem 3. Let ∈P ROPFS Z( )q , then

⎡
⎣⎢

⎤
⎦⎥∑ ( )

( )

( ) ( ) ( )

E P D P P

n α
ξ z ζ z ξ z ζ z η z

( ) = − | + 1

=
1

(1 − )
log ( ) + ( ) ( ) + ( ) + 2 ( ) ,

α
q

α
q C

j

n

P
q

j

α

P
q

j

α

P
q

j P
q

j

α
α

P
q

j

1 1

=1
2

1−
1−

(22)

∑

∈

( )
( )

E P D P P
n e e

e e

α

( ) = − | + 1 =
1

−
[ − ],

where (0, 1).

α
q

α
q C

j

n

ξ z ζ z ξ z ζ z η z
2 2

2
=1

2 ((( ( )) +( ( )) )( ( )+ ( )) +2 ( )) 2
α

α
P
q

j
α

P
q

j
α

P
q

j P
q

j
α α

P
q

j
α

−1

−1 1− 1− −1

(23)

are qROPF entropy measures.

Proof. To prove the validity of the proposed entropy measures, it is enough to show that
the qROPF entropy measures given in Equations (22) and (23) satisfy the properties EP1
to EP4 mentioned in Definition 3.
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EP1. Let P be a crisp set having membership values either 0 or 1 ∀zj∈ Z. Then entropy
measures defined in Equations (22) and (23) become 0.

Next, if E P E P( ) = ( ) = 0q
α

q
1 2 , that is

⎡
⎣⎢

⎤
⎦⎥∑ ( )( ) ( ) ( )

n α
ξ z ζ z ξ z ζ z η z

1

(1 − )
log ( ) + ( ) ( ) + ( ) + 2 ( ) = 0,

j

n

P
q

j
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P
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P
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j P
q
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α
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P
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2

1−
1− (24)

⎡⎣ ⎤⎦∑
n e e

e e
1

( − )
− = 0.

j

n

ξ z ζ z ξ z ζ z η z
2

=1

2 ((( ( )) +( ( )) )( ( )+ ( )) +2 ( )) 2
α

α
P
q

j
α

P
q

j
α

P
q

j P
q

j
α α

P
q

j
α

−1

−1 1− 1− −1
(25)

From Equations (24) and (25), we get

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ∀ ∈( )

( ) ( )
( )

ξ z ς z
ξ z ζ z

ξ z ζ z
z Z( ) + ( )

( ) + ( )

( ) + ( )
− 2 = 1 − 2 .P

q
j Q

q
j

P
q

j

α

P
q

j

α

P
q

j P
q

j

α
α α

j
1− 1− (26)

Since α∈ (0, 1), then Equation (26) will hold only when ξ z ζ z ξ z( ) = 0, ( ) = 1 or ( ) = 1,P
q

j P
q

j P
q

j

∀ ∈ ⇒ ∀ ∈ζ z z Z ξ z ζ z ξ z ζ z z Z( ) = 0 ( ) = 0, ( ) = 1 or ( ) = 1, ( ) = 0P
q

j j P j P j P j P j j ,that is, P is a
crisp set.

EP2. Let ξP(zj) = ζP(zj) ∀ zj∈ Z, then applying this condition on entropy measures
E P δ( )( = 1, 2)α
q
δ yield 1.

Conversely, let E P( ) = 1α
q
δ , then we have

( )( ) ( ) ( )ξ z ζ z ξ z ζ z η z( ) + ( ) ( ) + ( ) + 2 ( ) = 2P
q

j

α

P
q

j

α

P
q

j P
q

j

α
α

P
q

j
α

1−
1− 1−

or

⎛
⎝⎜

⎞
⎠⎟

( ) ( )ξ z ζ z ξ z ζ z( ) + ( )

2
=

( ) + ( )

2
.

P
q

j

α

P
q

j

α

P
q

j P
q

j
α

(27)

Now consider a function

∈ ∈f y y y α( ) = , where (0, 1], (0, 1).α (28)

Differentiating Equation (28) w.r.t. y, then we get

d f y

dy
αy

d f y

dy
α α y

( ( ))
= and

( ( ))
= ( − 1) .α α−1

2
−2 (29)

Since α< 0, when 0 < < 1.
d f y

dy

( ( ))2

So f(y) is a concave function for all α∈ (0, 1).
Consequently, for any y1, y2∈ (0, 1], we get the following inequality

⎜ ⎟
⎛
⎝

⎞
⎠≤ ∈

f y f y
f

y y
α

( ) + ( )

2

+

2
, when (0, 1),1 2 1 2 (30)

with equality only for y1 = y2.
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Therefore, by utilizing the inequalities given in Equation (30) with Equation (27), we conclude that

∀ ∈ξ z ζ z z Z( ) = ( ) .P j P j j (31)

EP3. To prove EP3, we construct the following functions as

⎫
⎬
⎪⎪

⎭
⎪⎪

∈ ∈

h x y
α

x y x y x y

h x y
e e

e e

x y α

( , ) =
1

(1 − )
log [( + )( + ) + 2 (1 − − )]

( , ) =
1

( − )
[ − ]

,

where , [0, 1] and (0, 1).

α α α α

x y x y x y

1 2
1− 1−

2 2
2 (( + )( + ) +2 (1− − )) 2

α

α α α α α α

−1

1− 1− 1− 1−

(32)

Taking the partial derivatives of h1(x, y) and h2(x, y) with respect to x and y, respectively, yield:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫
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(34)

For a critical point of h1(x, y) and h2(x, y), we set
∂

∂

∂

∂
= = 0

h x y

x

h x y

y

( , ) ( , )1 1 and ∂

∂

∂

∂
= = 0

h x y

x
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y

( , ) ( , )2 2 .
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x y= . (35)

Since x, y∈ [0, 1], we have
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,

1 2
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(36)

Hence h1(x, y) and h2(x, y) are increasing functions of x and decreasing functions of y.
Similarly, we obtain
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Let us consider two sets ∈P Q ROPFS Z, ( )q with P⊆Q and Z= {z1, z2,…, zn} be partitioned into
two disjoint sets Z1 and Z2 such that Z1∪Z2 =Z. Further, assume that ∀ zj∈Z1 are dominated by
the condition ξP(zj)≤ ξQ(zj)≤ ζQ(zj)≤ ζP(zj) while ∀ zj∈Z2 satisfying ξP(zj)≥ ξQ(zj)≥ ζQ(zj)≥ ζP(zj).

Hence considering the monotonicity of the functions h1(x, y) and h2(x, y), with Equations
(22) and (23), we get

≤E P E Q δ( ) ( )( = 1, 2).α
q
δ α

q
δ (38)

EP4. It is clear that PC= {zj, ζP(zj), ξP(zj) | zj∈ Z}, then, from the definition of the entropy
measures given in Equations (20) and (21), we get

E P E P δ( ) = ( )( = 1, 2).α
q
δ α

q
δ

C (39)

This completes the proof. □

Theorem 4. Let P = {zj, ξP(zj), ζP(zj) | zj ∈ Z} and Q= {zj, ξQ(zj), ζQ(zj) | zj ∈ Z} be two
qROPFSs defined in Z = {z1, z2,…, zn} such that they satisfy for any zj ∈ Z either P⊆Q or
P⊇Q, then we have

∪ ∩( ) ( )E P Q E P Q E P E Q δ+ = ( ) + ( )( = 1, 2).α
q
δ

q

α
q
δ

q

α
q
δ α

q
δ (40)

Proof. Let Z= {z1, z2,…, zn} be partitioned into two disjoint sets Z1 and Z2 such that
Z1 = {zj∈ Z: P⊆Q} and Z2 = {zj∈ Z : P⊇Q}. That is, for all zj∈ Z1 hold ξP (zj)≤ ξQ (zj), ζQ
(zj)≥ ζP (zj) whereas ∀ zj∈ Z2 satisfy ξP(zj)≥ ξQ(zj), ζQ(zj)≤ ζP(zj).

From Equations (22) and (23), we have

⎜ ⎟⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∑

∑

∪

∈

∈

{ }

{ }

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

E P
q
Q

n α

ξ z ζ z ξ z ζ z ξ z ς z

ξ z ζ z ξ z ζ z ξ z ς z

=
1

(1 − )

× log ( ) + ( ) ( ) + ( ) + 2 1 − ( ) − ( )

+ log ( ) + ( ) ( ) + ( ) + 2 1 − ( ) − ( ) ,

α
q

z Z
Q
q

j

α

Q
q

j

α

Q
q

j Q
q

j

α
α

Q
q

j Q
q

j

z Z
P
q

j

α

P
q

j

α

P
q

j P
q

j

α
α

P
q

j P
q

j

1

2

1−
1−

2

1−
1−

j

j

1

2

(41)

⎜ ⎟⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∑

∑

∪

∈

∈

E P
q
Q

n e e

e e

e e

=
1

( − )

{ − }

+ { − } ,

α
q

z Z

ξ z ζ z ξ z ζ z ξ z ζ z

z Z

ξ z ζ z ξ z ζ z ξ z ζ z

2

2

2 ((( ( )) +( ( )) )( ( )+ ( )) +2 (1− ( )− ( ))) 2

2 ((( ( )) +( ( )) )( ( )+ ( )) +2 (1− ( )− ( ))) 2

α
j

α
Q
q

j
α

Q
q

j
α

Q
q

j Q
q

j
α α

Q
q

j Q
q

j
α

j

α
P
q

j
α

P
q

j
α

P
q

j P
q

j
α α

P
q

j P
q

j
α

−1
1

−1 1− 1− −1

2

−1 1− 1− −1
(42)
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⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∑

∑

∩

∈

∈

{ }

{ }

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

E P
q
Q

n α

ξ z ζ z ξ z ζ z ξ z ζ z

ξ z ζ z ξ z ζ z ξ z ζ z

( ) =
1

(1 − )

× log ( ) + ( ) ( ) + ( ) + 2 1 − ( ) − ( )

+ log ( ) + ( ) ( ) + ( ) + 2 1 − ( ) − ( ) ,

α
q

z Z
P
q

j

α

P
q

j

α

P
q

j P
q

j

α
α

P
q

j P
q

j

z Z
Q
q

j

α

Q
q

j

α

Q
q

j Q
q

j

α
α

Q
q

j Q
q

j

1

2

1−
1−

2

1−
1−

j

j

1

2

(43)

and

⎜ ⎟⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∑

∑

∩

∈

∈

E P
q
Q

n e e

e e

e e

=
1

( − )

× { − }

+ { − } .

α
q

z Z

ξ z ζ z ξ z ζ z ξ z ζ z

z Z

ξ z ζ z ξ z ς z ξ z ζ z

2 2

2 ((( ( )) +( ( )) )( ( )+ ( )) +2 (1− ( )− ( ))) 2

2 ((( ( )) +( ( )) )( ( )+ ( )) +2 (1− ( )− ( ))) 2

α

j

α
P
q

j
α

P
q

j
α

P
q

j P
q

j
α α

P
q

j P
q

j
α

j

α
Q
q

j
α

Q
q

j
α

Q
q

j Q
q

j
α α

Q
q

j Q
q

j
α

−1

1

−1 1− 1− −1

2

−1 1− 1− −1
(44)

Adding Equation (41) with Equation (43) and Equation (42) with Equation (44), we get

∪ ∩E P
q
Q E P

q
Q E P E Q( ) + ( ) = ( ) + ( )α

q
α

q
α

q
α

q
1 1 1 1 and Eα

q
2 ∪P

q
Q( ) + Eα

q
2 ∩P

q
Q( ) = Eα

q
2 P( ) +

E Q( )α
q
2 .

This completes the proof. □

Theorem 5. The entropy measures E P( )α
q
δ (δ = 1, 2) attain maximum value when

ξP(zj) = ζP(zj) ∀ zj ∈ Z and minimum value when ξP(zj) = 1, ζP(zj) = 0 or ξP(zj) = 0,
ζP(zj) = 1 ∀ zj ∈ Z. Also, maximum and minimum values do not depend on the
parameter α.

Proof. It has already been proved in Theorem 3 that the entropy measures
E P( )α
q
δ (δ= 1, 2) attain maximum value if and only if ξP(zj) = ζP(zj) ∀ zj ∈ Z and
minimum value when ξP(zj) = 1, ζP(zj) = 0 or ξP(zj) = 0, ζP(zj) = 1 ∀ zj ∈ Z. Therefore,
we must show that the maximum and minimum values of these entropy measures do
not involve parameters.

First, let ξP (zj) = ζP (zj) ∀ zj∈Z, then from Equations (22) and (23), we get E P( ) = 1,α
q
1 E P( ) = 1α

q
2 ,

which do not contain any parameter.
Next, if ξP(zj) = 1, ζP(zj) = 0 or ξP(zj) = 0, ζP(zj) = 1 ∀ zj∈ Z, then, utilizing Equations (22) and

(23), we have E P E P( ) = 0, ( ) = 0α
q

α
q

1 2 , which are also free from parameter.
This proves the theorem. □
Special cases of the entropy measures E p( )α

q
δ (δ= 1, 2):
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(1) When α→ 1, then E P Q( | )α
q
δ (δ= 1, 2) are reduced to the following measure:

⎡⎣ ⎤⎦∑ ( ) ( ) ( ) ( )E P
n

ξ z ξ z ζ z ζ z η z η z η z( ) =
1

( )log ( ) + ( )log ( ) + 1 − ( ) log 1 − ( ) − ( ) ,α
q
δ

j

n

P
q

j P
q

j P
q

j P
q

j P
q

j P
q

j P
q

j

=1

2 2 2

(45)

which is the entropy measure for qROPFSs corresponding to Vlachos and Sergiadis.49

(2) When q= 1, then entropy measure E P( )α
q
1 reduces into the intuitionistic fuzzy entropy of

order‐α defined by Verma and Sharma.67

(3) When α→ 1 and q= 1, then entropy measures E P Q( | )α
q
δ (δ= 1, 2) become the intuitionistic

fuzzy entropy proposed by Vlachos and Sergiadis.49

(4) When q= 1 and ∀η z η z j( ) = ( ) = 0P
q

j P
q

j , then E P( )α
q
1 is reduced to the fuzzy entropy of

order‐α proposed by Bhandari and Pal.42

(5) When α→ 1, q= 1 and ∀η z η z j( ) = ( ) = 0P
q

j P
q

j , then entropy measures mentioned in
Equations (22) and (23) become De Luca and Termini’s fuzzy entropy.37

Further, assume that the elements in the universe of discourse Z= {z1, z2,…, zn} have the
weight vector ω ω ω ω= ( , , …, )n

T
1 2 such that ωj≥ 0 and ∑ ω = 1

j

n
j=1

. Then, corresponding to
order‐α divergence and entropy measures defined in Equations (16), (17), (22) and (23), we
propose the following weighted order‐α divergence and entropy measures for qROPFS:

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜
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⎠
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⎝
⎜⎜
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⎟⎟

⎤

⎦
⎥⎥

∑ ( ) ( )
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2
+ ( )

( ) + ( )
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( ) + ( )
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α P
q

j Q
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j
α

P
q

j

α P
q

j Q
q

j
α

P
q

j

α P
q

j Q
q

j
α

1

=1
2

1− 1−

1−

(46)

⎡

⎣
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⎤
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⎥⎥⎥

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
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2

2
=1

( )
( )+ ( )

2
+ ( )

( )+ ( )

2
+ ( )

( )+ ( )
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q
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α P
q
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q

j
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q
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α P
q
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q

j
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α P
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(47)

⎡
⎣⎢

⎤
⎦⎥∑ ( )( ) ( ) ( )E P

α
ω ξ z ζ z ξ z ζ z η z( ) =

1

(1 − )
log ( ) + ( ) ( ) + ( ) + 2 ( ) ,α

ωq
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j P
q

j

α

P
q

j

α

P
q

j P
q

j

α
α

P
q
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=1

2

1−
1−

(48)

∑

∈

E P
e e

ω e e

α

( ) =
1

( − )
[ − ],

where (0, 1).

α
ωq

j

n

j
ξ z ζ z ξ z ζ z η z

2 2
=1

2 ((( ( )) +( ( )) )( ( )+ ( )) +2 ( )) 2
α

α
P
q

j
α

P
q

j
α

P
q

j P
q

j
α α

P
q

j
α

−1

−1 1− 1− −1

(49)

In the next section, we develop a new decision‐making approach to solve MAGDM problems
under the qROPF environment.
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4 | MAGDM APPROACH BASED ON ORDER ‐α
DIVERGENCE AND ENTROPY MEASURES

Decision‐making is an integral part of our day‐to‐day life activities. In MAGDM, a preferable
alternative is selected by a group of decision‐makers that satisfying a set of conflicting attributes.
Due to the presence of uncertainty and vagueness in decision information, the traditional multiple
attribute decision‐making methods are incompetent to solve real‐world decision problems. In the
literature, a wide range of decision‐making methods have been developed under uncertain
environment based on fuzzy theory,68–71 intuitionistic fuzzy theory,3,4,6,8,9,52,58 and PFS
theory.15,21,72–74 As we know, the qROPFS theory includes FS, IFS, and PFS as its particular
cases. Therefore, it is essential and valuable to develop new decision‐making methods under the
qROPF environment. For doing so, in this section, we utilize the developed entropy and divergence
measures for qROPFSs to formulate a new decision‐making approach for solving MAGDM
problems with qROPF information.

4.1 | MAGDM problem formulation with qROPF information

For a MAGDM problem with qROPF information, let Q= {Q1,Q2,…,Qm} be a group ofm different
alternatives characterized by another set of n attributes A= {A1,A2,…,An} with a weighting vector
ω ω ω ω= ( , , …, )n T

1 2 such that ωj≥ 0, j= 1, 2,…, n and ∑ ω = 1.
j

n
j=1

All the alternatives are

evaluated by a group of l decision‐makers D= {D(1),D(2),…,D(l)}. Due to insufficient expertise and
limited knowledge about the problem domain, a decision‐maker may only be capable of assessing
the problem on one part rather than on all the aspects. Therefore, it is very significant to assign
different weights to the various decision‐makers according to their expertise, knowledge, and
experiences. Suppose that the weight vector associated with the set of decision‐makers is given as
ν ν ν ν= ( , , …, )l T1 2 with ντ≥ 0, τ= 1, 2,…, l and ∑ ν = 1.

τ

l
τ=1

Further assume that the evaluation
information related to all the alternatives Qi (i= 1, 2,…,m) with respect to different attributes
Aj(j= 1, 2,…, n), provided by the decision‐makers D(τ) (τ= 1, 2,…, l), may be summarized in the
following qROPF decision matrices given by

where 〈 〉χ ξ ζ= ,ij
τ

χ
τ

χ
τ( ) ( ) ( )

ij ij
represents the qROPF evaluation information provided by the decision‐

maker D(τ) of the alternative Qi with respect to attribute Aj. The objective of the decision‐makers
is to select the most feasible alternative among the available alternatives.

4.2 | Decision‐making steps

The following six steps are involved in the whole decision process:
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Step 1: Normalize the decision matrices.
Generally, there are two types of attributes involve in any kind of MAGDM problem: (a) benefit

attributes (b) cost attributes. After converting the cost attributes into benefit attributes, the qROPF
decision matrices R χ= ( )τ

ij
τ

m n
( ) ( )

× are transformed into normalized qROPF decision matrices

R χ˜ = (˜ )τ
ij
τ

m n
( ) ( )

× where

⎧
⎨
⎪⎪

⎩
⎪⎪

χ

ξ ζ

ζ ξ

˜ =

, for benefit attributes;

, for cost attributes.
ij
τ

χ
τ

χ
τ

χ
τ

χ
τ

( )

( ) ( )

( ) ( )

ij ij

ij ij

(51)

Step 2: Compute the attribute weights.
It is worth noting that the attribute weights play a very crucial role in solving MAGDM

problems. In many situations, the attribute weights may be unknown or partially known due to
imprecise data, time pressure, or limited knowledge of the decision‐makers about the problem
domain. We can determine the attribute weights based on decision‐makers’ subjective
evaluation of each attribute, but this approach may be prejudiced by the decision‐makers’
personal judgments. So, it is not feasible to utilize in real‐life decision problems. In the last few
years, some methods, including the TOPSIS method,9 maximizing deviation method,75 entropy
method,76 entropy and divergence based method,52 have been proposed to determine the
attribute weights based on intuitionistic fuzzy information.

As we know, in the MAGDM problems, each DM evaluates all the alternatives based on all
the attributes. By utilizing all the available information, we shall formulate a new optimization
model to determine the attribute weights based on developed entropy and divergence measures
with the dispersion measure of the attribute weights.

Yager77 defined the dispersion measure of an attribute weighting vector ω ω ω ω= ( , , …, )n
T

1 2

given by

∑Disp ω ω ω( ) = − log .
j

m

j j

=1

2 (52)

Note that we should maximize the dispersion measure for determining the optimal attribute
weights.

For the decision‐maker D(τ) and the attribute Aj, the divergence measure between the
alternative Qi and all other alternatives can be given as

∑ ( )Div
m

Div χ χ=
1

( − 1)
,ij

τ

κ

m

ij
τ

kj
τ( )

=1

( ) ( ) (53)

and the total measure of divergence among all the alternatives under the attribute Aj can be
defined as

∑∑ ( )Div
m

Div χ χ=
1

( − 1)
.j

τ

i

m

κ

m

ij
τ

kj
τ( )

=1 =1

( ) ( ) (54)

VERMA | 735



Also, the total measure of divergence among all the alternatives with respect to all the
attributes and DMs can be expressed by the following divergence matrix as

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⋮ ⋮ ⋮ ⋮

⌢
Div

Div Div Div

Div Div Div

Div Div Div

=

…

…

…

.

n

n

l l
n
l

1
(1)

2
(1) (1)

1
(2)

2
(2) (2)

1
( )

2
( ) ( )

(55)

Taking the weights of all the DMs into account, the total divergence measure among all the
alternatives for an attribute Aj can be represented by the following expression

∑ ∑ ∑∑ ( )Div ν Div ν
m

Div χ χ= =
1

( − 1)
.j

τ

l

τ j
τ

τ

l

τ

i

m

κ

m

ij
τ

kj
τ

=1

( )

=1 =1 =1

( ) ( ) (56)

Note that if the evaluation values of each alternative have very little difference under an
attribute, then it shows that such an attribute gives a small contribution in the ranking process
and should be assigned a small weight. On the other hand, if an attribute indicates the
significant difference in evaluation values among all the alternatives, then such an attribute
plays a vital role in the ranking process and should be assigned more considerable weight.

The entropy value of the qROPF information under the attribute Aj given by the DM D(τ) is
defined as

∑ ( )E E χ= .j
τ

i

m

ij
τ( )

=1

( ) (57)

The entropy matrix constructed by the entropy values with respect to all the attributes and
the DMs can be represented as

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⌢

⋮ ⋮ ⋮ ⋮
E

E E E

E E E

E E E

=

…

…

…

.

n

n

l l
n
l

1
(1)

2
(1) (1)

1
(2)

2
(2) (2)

1
( )

2
( ) ( )

(58)

Utilizing entropy matrix given in Equation (58), the overall entropy value of the attribute Aj

is obtained as

∑ ∑ ( )E ν E χ= .j

τ

l

τ

i

m

ij
τ

=1 =1

( ) (59)

Based on the above analysis, we conclude that the ideal attribute weights should maximize
the dispersion and divergence but minimize the entropy of the total qROPF decision matrices.
Combining all these aspects with attribute weights, we have the following function
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τ
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τ
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(60)

In terms of matrices given in Equations (55) and (58), Equation (60) can be written as

 ⌢⌢
F ω ν Div E ω= ( ( − ) − log ),T T

2 (61)

where

ω ω ω ωlog = (log , log , …, log ) .n
T

2 2 1 2 2 2 (62)

We construct the following optimal model to determine the attribute weights:

(MOD 1)



⎧
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⎪⎪⎪

⎩
⎪⎪⎪
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∈
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⌢
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,
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0, = 1, 2, …, .

T T

j

n

j

j

2

=1

where J represents the set of all incomplete information about the attribute weights.
Based on our developed entropy and divergence measures, the following optimal models can
be designed to determine the attribute weights:

(MOD 2)
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⎜⎜

⎛
⎝
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s.t.

,

= 1,

0, = 1, 2, …, .

j

n

j

τ

l

i

m

τ

κ
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α
q
δ ij

τ
κj
τ

α
q
δ ij

τ
j

j

n

j

j

=1 =1 =1 =1

( ) ( ) ( )
2

=1

As per our choice and requirement, different pairs of entropy and divergence measures can
be used in the optimal model presented in MOD 2 to determine the weighting vector
ω ω ω ω= ( , , …, )n T

1 2 .
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Step 3: Aggregation of all DMs Information.
To aggregate all the individual qROPF decision matrices R χ τ l˜ = (˜ ) ( = 1, 2, …, )τ

ij
τ

m n
( ) ( )

× into a

collective one R χ˜ = (˜ )ij m n× , we utilize the qROPF weighted averaging (qROPFWA) operator given by

⎜ ⎟
⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟∏ ∏( ) ( )( )χ ROPFWA χ χ χ ξ ζ

i m j n

˜ = ˜ , ˜ , …, ˜ = 1 − 1 − , ,

= 1, 2, …, ; = 1, 2, …, .

ij
q

ij ij ij
l

τ

l

χ
τ

q ν
q

τ

l

χ
τ

ν
(1) (2) ( )

=1
˜
( )

1/

=1
˜
( )

ij

τ

ij

τ

(63)

Step 4: Determine the Positive Ideal Solution (PIS) and the Negative Ideal Solution (NIS).
Use the following expressions to obtain the positive ideal solution (PIS) and the negative

ideal solution (NIS) given as

〈 〉 ∈ 〈 〉 ∈PIS A ξ A ζ A A A NIS A ξ A ζ A A A= { , ( ), ( ) | } and = { , ( ), ( ) | },j PIS j PIS j j j NIS j NIS j j (64)

where for each j= 1, 2, …, n

⎫
⎬
⎪⎪

⎭
⎪⎪

{ } { }

{ } { }

ξ A ξ A ζ A ζ A

ξ A ξ A ζ A ζ A

( ) = max ( ) , ( ) = min ( )

( ) = min ( ) , ( ) = max ( )

.
PIS j

i
Q j PIS j

i
Q j

NIS j
i

Q j NIS j
i

Q j

i i

i i

(65)

Step 5: Calculate the Measure of Divergence of all Alternatives with PIS and NIS, respectively.
We can utilize the divergence measures defined in Equations (46) and (47) to calculate the

measure of divergence of all the alternatives Qi with PIS and NIS, respectively.
Step 6: Calculate the Relative Divergence Coefficients ℑi’s.
To determine the relative divergence coefficients ℑi’s corresponding to each alternative Qi,

we use the following formula defined as

D Q PIS

D Q PIS D Q NIS
i m δℑ =

( )

( ) + ( )
, = 1, 2, …, ; = 1, 2.i

α
ωq

δ i

α
ωq

δ i α
ωq

δ i

(66)

Step 7: Finally, rank all the alternatives according to the values of relative divergence
coefficients ℑi’s in ascending order. The alternative corresponding to the lowest relative
divergence coefficient value will be the best alternative.

Next, we present the application of the developed MAGDM approach in the ERP selection
problem.

4.3 | Numerical example

Example 1. In today’s dynamic and competitive environment, companies face many
challenges to expand market share and fulfill customers’ expectations. This requires
reducing the total costs in the entire supply chain, shorten lead‐time, reduce
inventories, provide more choices for product selection, timely delivery, better
customer services, improve the quality of the products to sustain in the global
market, and efficiently coordinate globe demand, supply, and production. To achieve
these objectives, more and more companies are implementing ERP systems. An ERP
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system is a packaged enterprise information system that mechanizes and integrates
whole business tasks such as product planning, purchasing, inventory control, sales,
human resource management, and finance. Implementation of ERP systems is one of
the most significant investment projects due to the difficulty, high cost, and adaptation
risks. It is worth mentioning that any ERP software available in the market cannot
adequately meet the requirements and expectations of companies because every
company runs its business with different strategies and goals. Therefore, ERP software
selection is a significant and challenging decision problem for managers because it
provides high‐quality services for end‐users.

Let us suppose a company plans to implement ERP systems. There are five possible
alternative ERP systems, say, Qi (i= 1, 2,…, 5) available for selection. To assess the ERP systems,
the company decides to form a committee of four experts D(τ); (τ= 1, 2, 3, 4) from different
professional organizations, whose weight vector is ν= (0.20, 0.30, 0.15, 0.35)T. The selection
committee recommends six attributes to evaluate the available alternatives: (a) the function and
technology A1, (b) cost A2, (c) strategic fitness A3, (d) vendor’s reputation and references A4, (e)
support and training A5, and (f) ease of use A6. The experts D

(τ) (τ= 1, 2, 3, 4) evaluate the five
potential ERP systems concerning the attributes Aj(j= 1, 2,…, 6) and form the following qROPF
decision matrices R(τ); τ= 1, 2, 3, 4, as given in Tables 1 to 4.

Now, we apply the developed MAGDM approach to select the best alternative. The
computational process as follows:

Step 1: Since A2 is a cost attribute, therefore, we convert A2 into benefit attribute by using
Equation (51). The normalized decision matrices so obtained are given in Tables 5 to 8.

We consider the following two cases:
Case (i): When the information about the attribute weights is completely unknown.
Step 2: We shall utilize MOD 2 to determine the attribute weights ω ω ω ω= ( , , …, )n T

1 2 .
Here, we are using the divergence measure D P Q( | )α

q
1 and entropy measure E P( )α

q
1 to calculate

the total divergence and entropy values for each decision‐maker concerning all the attributes.
The following divergence and entropy matrices are obtained as (here; we have taken q= 3 and
α= 0.5)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⌢
Div =

0.3251 0.7734 0.4527 0.5886 0.2379 0.1461
0.0993 0.3685 0.5731 0.7289 0.5953 0.3048
0.0392 0.2109 0.3793 0.3881 0.3202 0.6880
0.6180 0.4663 0.4631 0.1135 0.3564 0.2068

, (67)

and

TABLE 1 qROPF decision matrix R(1) provided by the expert D(1)

A1 A2 A3 A4 A5 A6

Q1 〈0.6, 0.7〉 〈0.8, 0.6〉 〈0.5, 0.4〉 〈0.8, 0.7〉 〈0.4, 0.3〉 〈0.6, 0.4〉

Q2 〈0.7, 0.4〉 〈0.5, 0.5〉 〈0.4, 0.8〉 〈0.6, 0.3〉 〈0.5, 0.5〉 〈0.7, 0.3〉

Q3 〈0.5, 0.7〉 〈0.9, 0.6〉 〈0.6, 0.5〉 〈0.4, 0.8〉 〈0.8, 0.3〉 〈0.5, 0.2〉

Q4 〈0.8, 0.4〉 〈0.3, 0.7〉 〈0.6, 0.6〉 〈0.3, 0.5〉 〈0.4, 0.5〉 〈0.7, 0.5〉

Q5 〈0.3, 0.5〉 〈0.7, 0.1〉 〈0.9, 0.4〉 〈0.7, 0.4〉 〈0.6, 0.2〉 〈0.4, 0.4〉
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TABLE 2 qROPF decision matrix R(2) provided by the expert D(2)

A1 A2 A3 A4 A5 A6

Q1 〈0.7, 0.5〉 〈0.4, 0.7〉 〈0.6, 0.4〉 〈0.7, 0.5〉 〈0.3, 0.4〉 〈0.5, 0.7〉

Q2 〈0.6, 0.5〉 〈0.3, 0.4〉 〈0.3, 0.5〉 〈0.5, 0.3〉 〈0.7, 0.7〉 〈0.8, 0.4〉

Q3 〈0.7, 0.3〉 〈0.7, 0.6〉 〈0.8, 0.6〉 〈0.9, 0.6〉 〈0.5, 0.8〉 〈0.6, 0.3〉

Q4 〈0.6, 0.6〉 〈0.2, 0.5〉 〈0.5, 0.3〉 〈0.4, 0.6〉 〈0.9, 0.3〉 〈0.6, 0.6〉

Q5 〈0.5, 0.4〉 〈0.6, 0.2〉 〈0.8, 0.7〉 〈0.9, 0.2〉 〈0.6, 0.6〉 〈0.3, 0.5〉

TABLE 3 qROPF decision matrix R(3) provided by the expert D(3)

A1 A2 A3 A4 A5 A6

Q1 〈0.5, 0.8〉 〈0.4, 0.7〉 〈0.9, 0.3〉 〈0.6, 0.5〉 〈0.5, 0.5〉 〈0.8, 0.2〉

Q2 〈0.6, 0.4〉 〈0.4, 0.8〉 〈0.5, 0.6〉 〈0.4, 0.6〉 〈0.6, 0.7〉 〈0.7, 0.4〉

Q3 〈0.7, 0.2〉 〈0.7, 0.6〉 〈0.7, 0.4〉 〈0.8, 0.3〉 〈0.4, 0.5〉 〈0.2, 0.5〉

Q4 〈0.5, 0.3〉 〈0.5, 0.5〉 〈0.6, 0.2〉 〈0.7, 0.4〉 〈0.8, 0.2〉 〈0.4, 0.3〉

Q5 〈0.8, 0.4〉 〈0.3, 0.6〉 〈0.8, 0.6〉 〈0.9, 0.5〉 〈0.5, 0.3〉 〈0.8, 0.7〉

TABLE 4 qROPF decision matrix R(4) provided by the expert D(4)

A1 A2 A3 A4 A5 A6

Q1 〈0.4, 0.5〉 〈0.7, 0.6〉 〈0.3, 0.8〉 〈0.6, 0.5〉 〈0.3, 0.4〉 〈0.7, 0.5〉

Q2 〈0.8, 0.5〉 〈0.2, 0.7〉 〈0.6, 0.6〉 〈0.8, 0.3〉 〈0.6, 0.7〉 〈0.5, 0.6〉

Q3 〈0.9, 0.2〉 〈0.4, 0.6〉 〈0.8, 0.3〉 〈0.7, 0.4〉 〈0.5, 0.4〉 〈0.7, 0.2〉

Q4 〈0.5, 0.6〉 〈0.3, 0.4〉 〈0.7, 0.5〉 〈0.6, 0.2〉 〈0.8, 0.5〉 〈0.5, 0.5〉

Q5 〈0.7, 0.8〉 〈0.2, 0.9〉 〈0.8, 0.2〉 〈0.7, 0.5〉 〈0.4, 0.4〉 〈0.8, 0.3〉

TABLE 5 Normalized qROPF decision matrix R̃(1)

A1 A2 A3 A4 A5 A6

Q1 〈0.6, 0.7〉 〈0.6, 0.8〉 〈0.5, 0.4〉 〈0.8, 0.7〉 〈0.4, 0.3〉 〈0.6, 0.4〉

Q2 〈0.7, 0.4〉 〈0.5, 0.5〉 〈0.4, 0.8〉 〈0.6, 0.3〉 〈0.5, 0.5〉 〈0.7, 0.3〉

Q3 〈0.5, 0.7〉 〈0.6, 0.9〉 〈0.6, 0.5〉 〈0.4, 0.8〉 〈0.8, 0.3〉 〈0.5, 0.2〉

Q4 〈0.8, 0.4〉 〈0.7, 0.3〉 〈0.6, 0.6〉 〈0.3, 0.5〉 〈0.4, 0.5〉 〈0.7, 0.5〉

Q5 〈0.3, 0.5〉 〈0.1, 0.7〉 〈0.9, 0.4〉 〈0.7, 0.4〉 〈0.6, 0.2〉 〈0.4, 0.4〉

TABLE 6 Normalized qROPF decision matrix R̃(2)

A1 A2 A3 A4 A5 A6

Q1 〈0.7, 0.5〉 〈0.7, 0.4〉 〈0.6, 0.4〉 〈0.7, 0.5〉 〈0.3, 0.4〉 〈0.5, 0.7〉

Q2 〈0.6, 0.5〉 〈0.4, 0.3〉 〈0.3, 0.5〉 〈0.5, 0.3〉 〈0.7, 0.7〉 〈0.8, 0.4〉

Q3 〈0.7, 0.3〉 〈0.6, 0.7〉 〈0.8, 0.6〉 〈0.9, 0.6〉 〈0.5, 0.8〉 〈0.6, 0.3〉

Q4 〈0.6, 0.6〉 〈0.5, 0.2〉 〈0.5, 0.3〉 〈0.4, 0.6〉 〈0.9, 0.3〉 〈0.6, 0.6〉

Q5 〈0.5, 0.4〉 〈0.2, 0.6〉 〈0.8, 0.7〉 〈0.9, 0.2〉 〈0.6, 0.6〉 〈0.3, 0.5〉
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⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⌢
E =

4.6720 4.4341 4.5252 4.6408 4.6259 4.7322
4.8038 4.7317 4.8548 4.2684 4.4936 4.6972
4.4705 4.6692 4.3455 4.4322 4.6205 4.5087
4.3544 4.2284 4.1303 4.5064 4.8775 4.5000

. (68)

Then, utilizing available information, we construct the following optimal model to
determine the weight vector corresponding to the attributes:

F ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω

Max. = (−4.1992 − log − 4.0266 − log − 3.9774 − log

− 4.0164 − log − 4.2746 − log − 4.3107 − log ),

1 1 1 2 2 2 3 3 3

4 4 4 5 5 5 6 6 6

(69)

⎧⎨⎩ ≥

ω ω ω ω ω ω

ω j
s.t.

+ + + + + = 1,

0, = 1, 2, 3, 4, 5, 6.j

1 2 3 4 5 6
(70)

Solving the above nonlinear programming model with the help of MATLAB software, the
following weight vector is obtained

ω = (0.1587, 0.1788, 0.1850, 0.1801, 0.1506, 0.1469) .T1 (71)

Step 3: We utilize the qROPF weighted averaging (qROPFWA) operator given in Equation
(63) to aggregate all the individual qROPF decision matrices R χ τ˜ = (˜ ) ( = 1, 2, 3, 4)τ

ij
τ

m n
( ) ( )

×

into the collective one R χ˜ = (˜ )ij m n× . The collective qROPF decision matrix R̃ is represented in
Table 9.

Step 4: We obtain the positive ideal solution PIS and the negative ideal solution NIS given as

⎧⎨⎩
⎫⎬⎭

〈 〉 〈 〉 〈 〉

〈 〉 〈 〉 〈 〉
PIS

A A A

A A A
=

, 0.7938, 0.2902 , , 0.7313, 0.2868 , , 0.8273, 0.3878 ,

, 0.8273, 0.3329 , , 0.7538, 0.3739 , , 0.6950, 0.2591
,

1 2 3

4 5 6
(72)

TABLE 7 Normalized qROPF decision matrix R(3)

A1 A2 A3 A4 A5 A6

Q1 〈0.5, 0.8〉 〈0.7, 0.4〉 〈0.9, 0.3〉 〈0.6, 0.5〉 〈0.5, 0.5〉 〈0.8, 0.2〉

Q2 〈0.6, 0.4〉 〈0.8, 0.4〉 〈0.5, 0.6〉 〈0.4, 0.6〉 〈0.6, 0.7〉 〈0.7, 0.4〉

Q3 〈0.7, 0.2〉 〈0.6, 0.7〉 〈0.7, 0.4〉 〈0.8, 0.3〉 〈0.4, 0.5〉 〈0.2, 0.5〉

Q4 〈0.5, 0.3〉 〈0.5, 0.5〉 〈0.6, 0.2〉 〈0.7, 0.4〉 〈0.8, 0.2〉 〈0.4, 0.3〉

Q5 〈0.8, 0.4〉 〈0.6, 0.3〉 〈0.8, 0.6〉 〈0.9, 0.5〉 〈0.5, 0.3〉 〈0.8, 0.7〉

TABLE 8 Normalized qROPF decision matrix R(4)

A1 A2 A3 A4 A5 A6

Q1 〈0.4, 0.5〉 〈0.6, 0.7〉 〈0.3, 0.8〉 〈0.6, 0.5〉 〈0.3, 0.4〉 〈0.7, 0.5〉

Q2 〈0.8, 0.5〉 〈0.7, 0.2〉 〈0.6, 0.6〉 〈0.8, 0.3〉 〈0.6, 0.7〉 〈0.5, 0.6〉

Q3 〈0.9, 0.2〉 〈0.6, 0.4〉 〈0.8, 0.3〉 〈0.7, 0.4〉 〈0.5, 0.4〉 〈0.7, 0.2〉

Q4 〈0.5, 0.6〉 〈0.4, 0.3〉 〈0.7, 0.5〉 〈0.6, 0.2〉 〈0.8, 0.5〉 〈0.5, 0.5〉

Q5 〈0.7, 0.8〉 〈0.9, 0.2〉 〈0.8, 0.2〉 〈0.7, 0.5〉 〈0.4, 0.4〉 〈0.8, 0.3〉
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and

⎧⎨⎩
⎫⎬⎭

〈 〉 〈 〉 〈 〉

〈 〉 〈 〉 〈 〉
NIS

A A A

A A A
=

, 0.5807, 0.5739 , , 0.5895, 0.6052 , , 0.4918, 0.6017 ,

, 0.5941, 0.5348 , , 0.3678, 0.6544 , , 0.6033, 0.4892
.

1 2 3

4 5 6
(73)

Step 5: Using the divergence measure given in Equation (46) with ω1 to calculate the
measure of divergence of the alternatives Qi with PIS and NIS, respectively. The results are
presented in Table 10.

Step 6: Based on Equation (66), we get the relative divergence coefficients ℑ′is corresponding
to each alternative as

ℑ = 0.7540, ℑ = 0.6126, ℑ = 0.3278, ℑ = 0.3929, ℑ = 0.3273.1 2 3 4 5

Step 7: The ranking of the alternatives according to the relative divergence coefficients ℑ′is in
descending order is obtained as

≻ ≻ ≻ ≻Q Q Q Q Q .5 3 4 2 1

Hence Q5 is the best ERP system.
Case (ii) When the information about the attribute weights is partially known.
Suppose that the known information about the attribute weights is expressed as

≥ ≤ ≤ ≤ ≤ ≥ ≤ ≤ ≤ ≤J ω ω ω ω ω ω= { 0.10, 0.15 0.20, 0.25 0.35, 0.15, 0.20 0.30, 0.10 0.15}.1 2 3 4 5 6

Then we construct the following optimization model to derive the attributes’ weighting vector:


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F

ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω
Max. =

−4.1992 − log − 4.0266 − log − 3.9774 − log

− 4.0164 − log − 4.2746 − log − 4.3107 − log
,

1 1 1 2 2 2 3 3 3

4 4 4 5 5 5 6 6 6

(74)

TABLE 9 Collective qROPF decision matrix R̃

A1 A2 A3 A4 A5 A6

Q1 〈0.5807, 0.5739〉 〈0.6510, 0.5589〉 〈0.6407, 0.4883〉 〈0.6866, 0.5348〉 〈0.3678, 0.3905〉 〈0.6624, 0.4610〉

Q2 〈0.7107, 0.4624〉 〈0.6383, 0.3010〉 〈0.4918, 0.6017〉 〈0.6658, 0.3329〉 〈0.6214, 0.6544〉 〈0.6950, 0.4352〉

Q3 〈0.7882, 0.2902〉 〈0.6000, 0.6052〉 〈0.7600, 0.4271〉 〈0.7846, 0.4970〉 〈0.5977, 0.4807〉 〈0.6033, 0.2591〉

Q4 〈0.7938, 0.4986〉 〈0.5895, 0.2868〉 〈0.6794, 0.3878〉 〈0.5941, 0.3706〉 〈0.7538, 0.3739〉 〈0.6459, 0.4892〉

Q5 〈0.6377, 0.5331〉 〈0.7313, 0.3797〉 〈0.8273, 0.3945〉 〈0.8237, 0.3633〉 〈0.5337, 0.3767〉 〈0.6813, 0.4206〉

TABLE 10 The divergence measures D Q PIS( )q ω
i1 0.5

1 and D Q NIS( )q ω
i1 0.5

1

D Q PIS( )q ω
1 0.5 1

1 0.0472 D Q NIS( )q ω
1 0.5 1

1 0.0154

D Q PIS( )q ω
1 0.5 2

1 0.0438 D Q NIS( )q ω
1 0.5 2

1 0.0277

D Q PIS( )q ω
1 0.5 3

1 0.0157 D Q NIS( )q ω
1 0.5 3

1 0.0322

D Q PIS( )q ω
1 0.5 4

1 0.0319 D Q NIS( )q ω
1 0.5 4

1 0.0493

D Q PIS( )q ω
1 0.5 5

1 0.0271 D Q NIS( )q ω
1 0.5 5

1 0.0557
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⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

≥

≤ ≤

≤ ≤

≥

≤ ≤

≤ ≤

≥

ω

ω

ω

ω

ω

ω

ω ω ω ω ω ω

ω j

s.t.

0.10,

0.15 0.20,

0.25 0.35,

0.15,

0.20 0.30,

0.10 0.15,

+ + + + + = 1,

0, = 1, 2, 3, 4, 5, 6.j

1

2

3

4

5

6

1 2 3 4 5 6

(75)

After solving the above optimization model with the help of MATLAB software, we get the
following optimal weight vector of the attributes given by:

ω = (0.1298, 0.1500, 0.2500, 0.1501, 0.2000, 0.1201) .T2 (76)

By repeating the above steps with ω2, the obtained measures of divergence of the alternatives
Qi with PIS and NIS are summarized in Table 11, respectively.and the relative divergence
coefficients sℑ′i corresponding to each alternative are calculated as

ℑ = 0.7436, ℑ = 0.6591, ℑ = 0.3012, ℑ = 0.3542, ℑ = 0.2989.1 2 3 4 5

Therefore, the ranking of the alternatives according to the relative divergence coefficients ℑi′s
in descending order is obtained as

≻ ≻ ≻ ≻Q Q Q Q Q .5 3 4 2 1

Hence Q5 is still the best ERP system.
Besides, we have been considered different values of α to analyze the influence of the parameter

on the ranking order of the alternatives. The obtained attributes’ weighting vectors, relative
divergence coefficients ℑi's and the ranking order of the alternatives are summarized in Table 12.

Furthermore, if we utilize exponential function based order‐α divergence and entropy
measures in the proposed method to solve the above‐discussed numerical example, and then
Table 13 presents the obtained results.

The results presented in Tables 13 and 14 indicate that the ranking order may be different
depending on the considered value of α, which shows the flexibility of the developed method.

4.3.1 | The validity of the proposed method

It is worth mentioning that the above considered ERP selection problem cannot be solved by using
the existing multiple attribute decision‐making approaches developed under IF and PF environments

TABLE 11 The divergence measures D Q PIS( )q ω
i1 0.5

2 and D Q NIS( )q ω
i1 0.5

2

D Q PIS( )q ω
1 0.5 1

2 0.0493 D Q NIS( )q ω
1 0.5 1

2 0.0170

D Q PIS( )q ω
1 0.5 2

2 0.0491 D Q NIS( )q ω
1 0.5 2

2 0.0254

D Q PIS( )q ω
1 0.5 3

2 0.0153 D Q NIS( )q ω
1 0.5 3

2 0.0355

D Q PIS( )q ω
1 0.5 4

2 0.0289 D Q NIS( )q ω
1 0.5 4

2 0.0527

D Q PIS( )q ω
1 0.5 5

2 0.0252 D Q NIS( )q ω
1 0.5 5

2 0.0591
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TABLE 12 The ranking order of the alternatives by taking different values of α in D P Q( | )α
ωq

1
and E P( )α

ωq
1

Case (i): When the information about the attribute weights is completely unknown

α Attribute weights, ω1 Relative divergence coefficients, ℑi’s Ranking order

0.2 (0.1631 0.1746 0.1746 0.1723
0.1584 0.1570)T

ℑ1 = 0.7184, ℑ2 = 0.5783, ℑ3 = 0.3235,
ℑ4 = 0.4090, ℑ5 = 0.3849

Q3≻Q5≻Q4≻Q2≻Q1

0.5 (0.1587 0.1788 0.1850 0.1801
0.1506 0.1469)T

ℑ1 = 0.7540, ℑ2 = 0.6126, ℑ3 = 0.3278,
ℑ4 = 0.3929, ℑ5 = 0.3273

Q5≻Q3≻Q4≻Q2≻Q1

0.8 (0.1553 0.1793, 0.1931 0.1866
0.1457 0.1401)T

ℑ1 = 0.7633, ℑ2 = 0.6304, ℑ3 = 0.3174,
ℑ4 = 0.3948, ℑ5 = 0.3004

Q5≻Q3≻Q4≻Q2≻Q1

→1 (0.1535 0.1791 0.1971 0.1901
0.1431 0.1372)T

ℑ1 = 0.7712, ℑ2 = 0.6532, ℑ3 = 0.3343,
ℑ4 = 0.3907, ℑ5 = 0.2511

Q5≻Q3≻Q4≻Q2≻Q1

Case (ii): When the information about the attribute weights is partially known

α Attribute weights, ω2 Relative divergence coefficients, ℑi’s Ranking order

0.2 (0.1274 0.1500 0.2500 0.1500
0.2000 0.1226)T

ℑ1 = 0.7130, ℑ2 = 0.6216, ℑ3 = 0.3033,
ℑ4 = 0.3799, ℑ5 = 0.3533

Q3≻Q5≻Q4≻Q2≻Q1

0.5 (0.1298 0.1500 0.2500 0.1501
0.2000 0.1201)T

ℑ1 = 0.7436, ℑ2 = 0.6591, ℑ3 = 0.3012,
ℑ4 = 0.3542, ℑ5 = 0.2989

Q5≻Q3≻Q4≻Q2≻Q1

0.8 (0.1288 0.1501 0.2500 0.1548
0.2000 0.1162)T

ℑ1 = 0.7487, ℑ2 = 0.6717, ℑ3 = 0.2996,
ℑ4 = 0.3525, ℑ5 = 0.2798

Q5≻Q3≻Q4≻Q2≻Q1

→1 (0.1277 0.1501 0.2500 0.1581
0.2000 0.1141)T

ℑ1 = 0.7471, ℑ2 = 0.6861, ℑ3 = 0.3242,
ℑ4 = 0.3508, ℑ5 = 0.2488

Q5≻Q3≻Q4≻Q2≻Q1

TABLE 13 The ranking order of the alternatives taking different values of α in D P Q( | )α
ωq

2
and E P( )α

ωq
2

Case (i): When the information about the attribute weights is completely unknown

α Attribute weights, ω1 Relative divergence coefficients, ℑi’s Ranking order

0.2 (0.1579 0.1800 0.1856 0.1779
0.1547 0.1438)T

ℑ1 = 0.7128, ℑ2 = 0.5814, ℑ3 = 0.3264,
ℑ4 = 0.4091, ℑ5 = 0.3829

Q3≻Q5≻Q4≻Q2≻Q1

0.5 (0.1575 0.1833 0.1917 0.1850
0.1480 0.1345)T

ℑ1 = 0.7515, ℑ2 = 0.6127, ℑ3 = 0.3231,
ℑ4 = 0.3943, ℑ5 = 0.3271

Q3≻Q5≻Q4≻Q2≻Q1

0.8 (0.1540 0.1804 0.1953 0.1882
0.1437 0.1384)T

ℑ1 = 0.7622, ℑ2 = 0.6287, ℑ3 = 0.3182,
ℑ4 = 0.3968, ℑ5 = 0.3008

Q5≻Q3≻Q4≻Q2≻Q1

→1 (0.1535 0.1791 0.1971 0.1901
0.1431 0.1372)T

ℑ1 = 0.7712, ℑ2 = 0.6532, ℑ3 = 0.3343,
ℑ4 = 0.3907, ℑ5 = 0.2511

Q5≻Q3≻Q4≻Q2≻Q1

Case (ii): When the information about the attribute weights is partially known

α Attribute weights, ω2 Relative divergence coefficients, ℑi’s Ranking order

0.2 (0.1307 0.1501 0.2500 0.1501
0.2000 0.1190)T

ℑ1 = 0.7109, ℑ2 = 0.6205, ℑ3 = 0.3038,
ℑ4 = 0.3781, ℑ5 = 0.3552

Q3≻Q5≻Q4≻Q2≻Q1

0.5 (0.1291 0.1506 0.2500 0.1518
0.2000 0.1185)T

ℑ1 = 0.7400, ℑ2 = 0.6553, ℑ3 = 0.3020,
ℑ4 = 0.3557, ℑ5 = 0.3021

Q3≻Q5≻Q4≻Q2≻Q1

0.8 (0.1280 0.1504 0.2500 0.1565
0.2000 0.1151)T

ℑ1 = 0.7465, ℑ2 = 0.6701, ℑ3 = 0.3012,
ℑ4 = 0.3542, ℑ5 = 0.2812

Q5≻Q3≻Q4≻Q2≻Q1

→1 (0.1277 0.1501 0.2500 0.1581
0.2000 0.1141)T

ℑ1 = 0.7471, ℑ2 = 0.6861, ℑ3 = 0.3242,
ℑ4 = 0.3508, ℑ5 = 0.2488

Q5≻Q3≻Q4≻Q2≻Q1
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because the preference information provided by the experts does not satisfy the condition
0≤MD+NMD≤ 1 or 0≤ (MD)2 + (NMD)2≤ 1. Therefore, to validate the obtained results, we have
been used Liu and Wang’s method26 based on qROFWA operator and Liu et al.78 TOPSIS method to
solve the above considered ERP selection problem. The obtained score values/closeness index values
and the ranking order of the alternatives are shown in Tables 14 and 15.

From Tables 14 and 15, we can see that the best alternative is Q5, which has an agreement
with our obtained results. This validates that our developed method is reasonable and flexible in
solving real‐life MAGDM problems under the qROPF environment.

5 | CONCLUSIONS

This study has presented a valuable study on divergence and entropy measures for qROPFSs. We
have defined two new order‐α divergence measures between qROsPFSs based on logarithmic and
exponential functions. Several basic and important mathematical properties of these divergence
measures have been proved. Further, the paper has defined two new parametric entropy functions
called “order‐α qROPF entropy measures” to quantify the degree of fuzziness associated with a
qROPFS. The limiting and particular cases of the developed order‐α entropy and divergence
measures have been discussed in detail. It is interesting to note that several known information
measures under fuzzy and intuitionistic fuzzy environments are the special cases of the developed
order‐α entropy and divergence measures. Besides, the paper has formulated a decision‐making
approach for solving MAGDM problems in which the attribute weights are completely unknown
or partially known. To determine the attribute weights, we have constructed a nonlinear
optimization model based on our developed divergence and entropy measures. Finally, a
numerical example has been considered for demonstrating the decision‐making process and the
effectiveness of the developed approach. Note that our developed approach can also be applied to
solve the MAGDM problems with intuitionistic fuzzy and Pythagorean fuzzy information by
selecting the appropriate value of the parameter q. In addition, if there is only one decision‐maker,
then the developed approach can be utilized to solve the MADM problems mentioned in.75,76,79

In future work, we shall explore the applications of the developed decision‐making approach
in different application areas, including green supplier selection, facility location selection, and
faculty recruitment problems.
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