
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

MERGING HTML TABLES FOR EXTRACTING RELATIONS

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

JHOMARA TATIANA LUZURIAGA CARPIO

PROFESOR GUÍA:
AIDAN HOGAN

MIEMBROS DE LA COMISIÓN:
GONZALO NAVARRO BADINO

JORGE PÉREZ ROJAS
RENZO ANGLES ROJAS

SANTIAGO DE CHILE
2019

RESUMEN

Con la aparición y evolución de la Web Semántica, las bases de conocimiento (e.g.
DBpedia y Wikidata) han ido adquiriendo gran importancia como fuente de
información para nuevos proyectos; existen al menos 1700 bases de conocimiento
registradas en la nube de Linked Open Data, mientras se cuenta con cerca de 2
billones de sitios en la web; de aquí nace la necesidad de incrementar la información
en formato estructurado. Cuanta más información con un alto grado de confianza se
encuentre en dichas bases de conocimiento mayor será el beneficio para las aplica-
ciones que la utilizan.

En este trabajo proponemos extraer información de tablas HTML en formato
estructurado (RDF) para alimentar estas bases de conocimiento, específicamente
Wikidata. El lenguaje HTML permite crear documentos web en un formato
semiestructurado que es interpretado por cierto software para mostrar los
documentos al usuario; sin embargo, ya que el contenido carece de estructura
semántica, el software está limitado para leer y explotar el contenido HTML. Extraer
información de HTML y proporcionarle una estructura semántica es por lo tanto un
tema de muchos trabajos de investigación.

En general, las tablas tienen una estructura relacional de donde se pueden extraer
entidades, atributos y relaciones; sin embargo, en la web encontramos innumerables
diseños de tablas, que plantean un desafío no trivial para extraer su información.

Nuestro trabajo de investigación se basa en la extracción de relaciones entre
entidades que pueden ser identificadas en tablas HTML. Aunque una serie de
trabajos de investigación ya han abordado este problema, los enfoques de extracción
de relaciones existentes tienden a procesar cada tabla de forma individual. Nosotros
proponemos una extensión de estos métodos basados en la agrupación de tablas con
información similar, de modo que podamos aumentar el contexto de la información
contenida en tablas pequeñas y complejas, que por sí mismas no proporcionan
suficiente información para extraer relaciones con un buen nivel de confianza.
Aplicamos el método propuesto para enriquecer Wikidata con triples extraídos de
Wikipedia.

Los resultados de la tesis muestran que nuestro método para agrupar tablas obtiene
mayor precisión al proporcionar características más robustas para clasificar relaciones
candidatas como correctas o incorrectas, alcanzando 75% de precisión en la
evaluación realizada sobre tablas individuales; mientras que al considerar las
características propuestas por el método de Muñoz et al. [30] se obtuvo 71%. Además
con 70% de precisión se pudo obtener más triples mediante nuestra propuesta de
agrupar tablas. Consideramos estos resultados satisfactorios ya que a pesar de la gran
cantidad de triples incorrectos que se pueden generar al agrupar las tablas pudimos
obtener nuevos triples con similar nivel de precisión.

i

ABSTRACT

With the appearance and evolution of the Semantic Web, knowledge bases (e.g.
DBpedia and Wikidata) have acquired great importance as a source of information
for new projects; there are at least 1700 knowledge bases registered in the Linked
Open Data cloud, while there are about 2 billions of websites, hence the need to
increase information available in a structured format. The more information with a
high degree of confidence available in these knowledge bases, the greater the benefit
will be for the applications that use it. In this paper we propose to extract
information from HTML tables in a structured format (RDF) to feed these knowledge
bases, specifically Wikidata.

The HTML language allows to create web documents in a semi-structured format that
is interpreted by certain software to show the documents to the user; however, since
the content lacks semantic structure, the software is limited in terms of
exploiting to read and exploit the HTML content. Extracting information from HTML
and providing it with a semantic structure is therefore the subject of many research
papers.

In general, the tables have a relational structure from which we can extract entities,
attributes and relationships; nevertheless, on the web we find innumerable designs of
tables, which pose a non-trivial challenge to extract their information.

Our research work is based on the extraction of relationships between entities that
can be identified in HTML tables. Although a number of research papers have already
addressed this problem, existing relationship extraction approaches tend to process
each table individually. We propose an extension of these methods based on the
grouping of tables with similar information, so that we can increase the context of
the information contained in small and complex tables, which by themselves do not
provide enough information to extract relationships with a good level of confidence.
We apply the proposed method to enrich Wikidata with triples extracted from Wikipedia.

The results of the thesis show that our method for grouping tables obtains greater
precision by providing more robust characteristics to classify candidate relationships
as correct or incorrect, reaching 75% precision in the evaluation performed on
individual tables; in comparison, considering the characteristics proposed by the
method of Muñoz et al. [30], 71% was obtained. In addition, with 70% precision,
more triples could be obtained through our proposal of grouping tables. We consider
these results satisfactory since, despite the large number of incorrect triples that can
be generated when grouping the tables, we were able to obtain new triples with a
similar level of precision.

ii

A Dios que siempre me acompaña a donde voy. A mis padres: José y Gloria; hermanas
y hermanos: Diana, José, Ronny, Linda, Lesly y mis sobrinas: Vivianne, Danna, María

Fernanda y el más reciente José Vinicio; que los adoro con mi alma, por su apoyo
incondicional y paciencia hasta culminar este objetivo. A los amigos que en este

camino conocí, por animarme a seguir en esos momentos de cansancio y a los amigos
que permanecieron a pesar de mi ausencia.

iii

Agradecimientos

A mi profesor guía Aidan, por su eterna paciencia, siempre dispuesto a enseñar, ayudar
y responder mis inquietudes. A todos los profesores y compañeros que conocí y de
quienes aprendí mucho en este recorrido, así como a Angélica Aguirre, Sandra Gaez
y demás personal del DCC por su gran empatía y ayuda con todas las inquietudes
que se me presentaron durante el programa. A Emir Muñoz y Henry Rosales por su
colaboración en el desarrollo de este trabajo. Al grupo de "Forasteros del DCC", por
los gratos momentos compartidos. A todos ellos por hacer de este aventurado camino
un recorrido de continuo aprendizaje.

A la Secretaría de Ciencia y Tecnología de Ecuador, que me proporcionó la beca para
acceder al programa y al Instituto Milenio de Fundamentos de los Datos de Chile por
permitirme participar en sus proyectos y eventos de investigación, y poder fortalecer
mis conocimientos.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Motivating Example . 6
1.3 Objective . 9
1.4 Hypothesis . 9
1.5 Results . 11
1.6 Structure of this work . 11

2 Background 12
2.1 Semantic Web standards . 12

2.1.1 Resource Description Framework (RDF) 12
2.1.2 RDF Schema (RDFS) . 14
2.1.3 Web Ontology Language (OWL) . 16
2.1.4 SPARQL . 16
2.1.5 Web Knowledge Bases . 17
2.1.6 Wikidata Knowledge Base . 18
2.1.7 Linked Data . 21

2.2 Information Extraction . 22
2.2.1 Information Extraction from Text . 22
2.2.2 Information Extraction from Web Tables 24

2.3 Machine Learning methods . 26
2.3.1 Clustering methods . 26
2.3.2 Classification methods . 28
2.3.3 Evaluation metrics . 30
2.3.4 Text Processing . 32

3 Related Work 34
3.1 Table detection . 34
3.2 Table interpretation . 37

3.2.1 Parsing and Normalization . 38
3.2.2 Entity detection . 39
3.2.3 Attribute detection . 40
3.2.4 Relation extraction . 42

3.3 Clustering and merging tables . 43

v

3.3.1 Clustering tables . 43
3.3.2 Merging tables . 45

3.4 Summary . 47

4 Proposal 48
4.1 Table extraction and normalization . 49
4.2 Knowledge base querying . 51
4.3 Grouping tables . 52
4.4 Relation Extraction . 53
4.5 Classification and validation . 54

5 Table Corpus 55
5.1 Tables extraction . 55
5.2 Tables classification . 56
5.3 Tables normalization . 56
5.4 Table Interpretation . 59

5.4.1 Header identification . 60
5.4.2 Text processing . 60
5.4.3 Data types . 61

5.5 Article’s table entity . 63

6 Knowledge Base Querying 65
6.1 Wikidata Access . 65
6.2 Entity extraction . 66
6.3 Triple extraction . 67
6.4 Statistics for features modelling . 68

7 Grouping tables 71
7.1 Clustering overview . 71
7.2 Grouping tables proposal . 74
7.3 Evaluation of table groups . 75

8 Relation extraction 77
8.1 Candidate triples from individual tables . 77
8.2 Candidate triples by merging tables . 78
8.3 Evaluation of candidate triples . 80
8.4 Dividing table groups . 83

9 Triple classification 87
9.1 Features description . 87

9.1.1 Adding new features . 89
9.2 Classification algorithms . 91
9.3 Dataset description . 91
9.4 Classification models . 92

9.4.1 Model A . 93
9.4.2 Model B . 95

vi

9.4.3 Model C . 96
9.4.4 Model D . 97

9.5 Model Selection . 98
9.6 Evaluation . 98

Conclusions 99
Bibliography . 103

Appendix A Information Extracted from Wikidata 108

Appendix B Inter-rate agreement 112

Appendix C Model parameters description 114

Appendix D Classification Models 117
D.1 Model A . 117

D.1.1 Features selection . 117
D.1.2 Hyper-parameters tuning . 123
D.1.3 Model selection . 125

D.2 Model B . 126
D.2.1 Features selection . 126
D.2.2 Hyper-parameters tuning . 129
D.2.3 Model selection . 130

D.3 Model C . 131
D.3.1 Features selection . 131
D.3.2 Hyper-parameters tuning . 135
D.3.3 Model Selection . 136

D.4 Model D . 137
D.4.1 Features selection . 137
D.4.2 Hyper-parameter Tuning . 140
D.4.3 Model selection . 141

D.5 Evaluation . 142
D.5.1 Correct triples extracted . 142

vii

List of Tables

3.1 Example of table interpretation per Gentile’s approach 44

4.1 Example of table 4.4b normalized . 50

4.2 Example of merging two tables with same headers (Colors pink and green
identify the rows that come from both tables from example in Figure 4.4 . 53

5.1 Tables classification . 56

5.2 Results after table normalization . 58

5.3 Useful tables . 58

5.4 Top 20 stemmed header names in tables 61

5.5 Example of a normalized table with article entity 63

6.1 Tables with hyperlinks . 66

7.1 Cluster visualizations of sample set of 10000 tables 73

8.1 Example of candidate triples extracted based on Figure 8.3 79

8.2 Example of triple classification . 81

8.3 Initial labeling of sample triples from I and G− I 82

8.4 Annotation agreement . 85

9.2 New proposed features . 90

9.3 Validation and test set . 92

9.4 Results A1: Initial validation, A2: Features selection, A3:Balancing train-
ing set, A4: Hyper-parameters tuning . 94

9.5 Results B1: Initial validation, B2: Features selection, B3:Balancing train-
ing set, B4: Hyper-parameters tunning . 95

9.6 Results C1: Initial validation, C2: Features selection, C3:Balancing train-
ing set, C4: Hyper-parameters tuning . 96

9.7 Results D1: Initial validation, D2: Features selection, D3:Balancing train-
ing set, D4: Hyper-parameters tuning . 97

9.8 Results of classifying triples extracted from individual I tables (Model B
and C) and triples extracted by merging tables (Model D) 99

viii

A.1 Top 20 predicates from existing triples . 110

A.2 Predicates with fewer than 10 triples . 111

B.1 Inter-rate agreement for triples from I . 112

B.2 Inter-rate agreement for triples from F-I 113

B.3 Inter-rate agreement for triples from G-I 113

D.1 Features with high correlation for Model A 119

D.2 Examples of triples with maximum similarity between column names and
predicate . 121

D.3 Top AUC values with Random Forest parameters Model A.1 123

D.4 Top AUC values with Bagging Decision Tree parameters Model A.1 123

D.5 Top AUC values with XGBoost parameters Model A.1 124

D.6 Features with high correlation for Model B 127

D.7 Top AUC values with Random Forest parameters Model B.1 129

D.8 Top AUC values with Bagging Decision Tree parameters Model B.1 129

D.9 Top AUC values with XGBoost parameters Model B.1 129

D.10Features with high correlation for Model C 132

D.11Top AUC values with Random Forest parameters Model C.1 135

D.12Top AUC values with Bagging Decision Tree parameters Model C.1 135

D.13Top AUC values with XGBoost parameters Model C.1 135

D.14Top AUC values with Random Forest parameters Model D.1 140

D.15Top AUC values with Bagging Decision Tree parameters Model D.1 140

D.16Top AUC values with XGBoost parameters Model D.1 140

D.17Examples of triples classified as correct to feed Wikidata 142

ix

List of Figures

1.1 Relational table . 3

1.2 Vertical table (Infobox) . 4

1.3 Matrix table . 4

1.4 Route map for metro bus, designed using a table structure 4

1.5 Table with combined cells and multiple headers 5

1.6 Table with no main entity inside . 5

1.7 Table with ambiguous header . 5

1.8 Extracting relations from tables according to Muñoz et al. [29] 7

1.9 Example of incorrect candidate triples . 7

1.10 Example of small tables with no available candidate triples 8

2.1 RDF Graph for listing 2.1 . 13

2.4 Resource linked to Wikidata and DBpedia 21

2.5 Abstract Information Extraction Architecture [12] 23

2.6 HTML table design . 24

2.7 Example of a dendrogram in hierarchical clustering 27

3.1 Listings: vertical and horizontal tables . 35

3.2 Attribute-value table . 35

3.3 Table Matrix . 36

3.4 Enumeration table . 36

3.5 Table used for navigational content . 36

3.6 Table used as organization chart . 37

3.7 Nested Table . 38

3.8 Split Table . 38

3.9 Multivalued Table . 38

3.10 Table with colspan and rowspan . 38

3.11 Normalized table from figure 3.10 . 39

3.12 Entity detection . 40

3.13 Example of attribute detection . 41

3.14 Relation extraction from tables . 42

3.15 Example of horizontal merging . 45

3.16 Example of vertical merging . 46

3.17 Example of full merging . 46

x

4.1 Proposal: Table relations extraction . 48

4.2 Complex table design . 49

4.3 Table with different type of data . 49

4.4 Two example HTML tables from Wikipedia 50

4.5 Example entity extraction from HTML tables 51

4.6 Mapping entities from a normalized table 52

5.1 HTML files extraction . 55

5.2 Table normalization model . 56

5.3 Table with inner tables . 57

5.4 Table with inner tables used as an organizer chart 57

5.5 Table structure recognition . 58

5.6 Table with empty header . 60

5.7 Text processing over table headers . 61

5.8 Table with numeric type of columns . 62

5.9 Table with repeated name headers . 62

5.10 Distribution of column data types . 63

6.1 Example of inverse relations extracted . 67

6.2 Example of predicate multiplicity . 68

6.3 Example of object entity not in range of predicate 69

6.4 Range and domain predicate extraction . 69

7.1 Cluster visualization of sample test using T-SNE algorithm (the color rep-
resents the normalized distance from each point to the closest points) . . 72

7.2 Mean of jaccard distances sample set . 72

7.3 Distribution of tables with same headers 74

7.4 Example tables from group 1 . 75

7.5 Evaluation of pair of tables from top 10 groups 76

8.1 Example of candidate triples extraction from individual tables 77

8.2 Example candidate triples extraction by merging tables 78

8.3 Example of existing triples from two tables indicating the source rows . . 79

8.4 Number of tables by group (a) including article’s entity relations and (b)
with no article’s entity relations . 79

8.5 Application used for triples annotation . 81

8.6 Example table from which triples in table 8.2 where extracted 81

8.7 Table with multiple entity cells . 82

8.8 Triples generated from tables (I) with multiple entity cells 83

8.9 Triples generated by merging tables (G− I) with multiple entity cells . . 83

8.10 Tables with conflicting relations . 84

8.11 Number of tables by group, conflicts analysis 85

9.1 Cross-Validation Model A.4 (including results for 100 triples from held-
out test set for each fold) . 94

xi

9.2 Cross-Validation Model B.4 (including results for 100 triples from held-
out test set for each fold) . 95

9.3 Cross-Validation Model C.4 (including results for 100 triples from held-
out test set for each fold) . 96

9.4 Cross-Validation Model D.4 (including results for 100 triples from held-
out test set for each fold) . 97

9.5 Precision vs number of validated triples . 100
9.6 Precision vs total triples classified as correct (estimated from labeled

sample) . 100

A.1 Word cloud of article classes from which tables were extracted 108
A.2 Number of different classes by column in tables 109

D.1 Correlation Matrix (Model A) . 117
D.2 Correlation between features and class (Model A) 118
D.3 Features 32 - 34 . 120
D.4 Features 32 - 36 . 120
D.5 Features 34 - 36 . 120
D.6 String similarity between predicate and subject column name 120
D.7 String similarity between predicate and object column name 120
D.8 Gini score of features for Model A . 122
D.9 Precision-Recall curves Model A.4 . 125
D.10 ROC-curves Model A.4 . 125
D.11 Learning curves Model A.4 (Using F1-score) 125
D.12 Correlation between features and class (Model B, (+) indicates new fea-

ture) . 126
D.13 Gini score of features for Model B . 128
D.14 Precision-Recall curves Model B.4 . 130
D.15 ROC-curves Model B.4 . 130
D.16 Learning curves Model B.4 (Using F1-score) 130
D.17 Correlation between features and class (Model C, (+) indicates new fea-

ture) . 131
D.18 Gini score of features for Model C . 133
D.19 Ratio of rows where predicate holds in table (32) and group (62) 133
D.20 Precision-Recall curves Model C.4 . 136
D.21 ROC-curves Model C.4 . 136
D.22 Learning curves Model C.4 (Using F1-score) 136
D.23 Correlation Matrix with new proposed features 137
D.24 Correlation between features and class (Model D, (+) indicates new fea-

ture) . 138
D.25 Features importance for model D . 139
D.26 Precision-Recall curves Model D.4 . 141
D.27 ROC-curves Model D.4 . 141
D.28 Learning curves Model D.4 (Using F1-score) 141

xii

Chapter 1

Introduction

1.1 Motivation

The information available on the Web has grown rapidly as access to technology in-
creases; with this growth there is then the need to have large data warehouses and
tools to enable the fast retrieval of relevant information. Such tools have been devel-
oped over the years in the area of Information Retrieval (IR), which with the emer-
gence of the World Wide Web (WWW) in the late 80’s, has overseen the development
of methods and techniques used by Web Search Engines to operate with large volumes
of data.

To search a phrase in a set of documents it is necessary to index the content of all
documents and perform efficient lookups with the query phrase. For making the sys-
tem usable over millions of documents, it is necessary to identify those that are most
relevant. The relevance of a document in IR is defined using measures such as TF-IDF
(Term Frequency - Inverse Document Frequency), based on the word frequencies in
a collection of documents. In this way, search engines based on this measure return
relevant documents in a short time; however they do not know if documents really
contain the information that the user needs.

Although search engines have improved in recent years, they are only capable of re-
trieving documents not answers as results. For example search engines are typically
unable to integrate information from multiple sources when responding to a user re-
quest. The Semantic Web (SW) was proposed to facilitate and improve the automatic
process of search and retrieval, bestowing on the Web a semantic structure with the
use of technologies, formats and standards such as RDF (Resource Description Frame-
work), OWL (Web Ontology Language) and RDFS (RDF Schema), making it possible for
software to retrieve, integrate and process information from multiple sources before
showing it to users.

1

The Semantic Web encourages the description and linkage of resources on the Web
using structured formats like RDF, which represents content as graphs and where each
resource is identified with a URI (Uniform Resource Identifier), that can be referenced
from across the Web. With this structure some projects like Freebase [32], YAGO [42],
DBpedia [5] and Wikidata [45] have emerged as large popular knowledge bases.

With the expansion of this technology organizations such as: the UK Data Govern-
ment 1, the US Data Goverment 2, the National Library of Spain 3, etc., have devel-
oped websites based on the Semantic Web scheme, with the philosophy of Open Data.
Such datasets have been joined by many others from different domains such as Music
Brainz 4, Geo Linked Data 5, UnitProt 6, building the "Linked Open Data" cloud.

The ratio of content with semantic structure available on the Web has increased, how-
ever there is still a significant gap when compared with the content of the Web without
structure; with the aim of reducing this gap, different methods, techniques and tools
for Information Extraction (IE) have been proposed. The main challenge of Infor-
mation Extraction is the extraction of structured data from diverse sources, be they
documents in PDF format, documents with lightweight structure such as HTML, etc.

YAGO [42] and DBpedia [5] developed automatic processes to extract information from
the infoboxes of Wikipedia, getting a large amount of data about different entities in
several languages. YAGO also includes information from sources such as WordNet
and GeoNames, and its information has been linked to DBpedia and other knowledge
bases. These two knowledge bases have served for many years as important sources
of structured data on the Semantic Web.

Freebase [42] was a collaborative project developed with the aim of allowing users
to add and edit structured data, collecting information from different sources. Wiki-
data [45] incorporates Freebase and also adopts a collaborative platform. The broad
domain of these knowledge bases has allowed them to succeed DBpedia and YAGO in
becoming the main sources of structured data on the Semantic Web and also a source
for different methods of information processing.

One way to increase the availability of structured data on the Web would be to au-
tomatically extract such data from legacy unstructured and semi-structured sources.
Extracting structured data in formats such as RDF from text implies many difficulties
such as ambiguity, lexical and syntactic errors, different languages and dialects, etc.,
that limit the process; hence some works have rather been interested in extracting
RDF from semi-structured HTML elements such as tables. Infoboxes from which DB-
pedia extracts data are tables of a particular format and there are millions of other

1https://data.gov.uk/
2https://www.usa.gov/
3http://www.bne.es
4https://musicbrainz.org/
5http://linkedgeodata.org
6https://www.uniprot.org/

2

tables on the web that contain rich meta-data, which can expand these knowledge
bases.

The general process of extracting data from HTML tables involves some important
tasks: 1) table detection, where tables have to be identified, extracted, cleaned and
classified to reject useless tables and 2) table interpretation to detect concepts, enti-
ties and relations within tables.

The main objective of this thesis is to explore the extraction of structured data (as RDF)
from web tables using and enriching knowledge bases, for achieving better results on
extraction tasks. These tasks entail diverse challenges due to the diversity of formats
in which content is arranged. Many of these difficulties arise from the fact that Web
tables (unlike relational tables in databases, for example) are primarily used to make
documents easier for humans to read, but not necessarily for machines to read. Some
of these difficulties are listed below.

1. Diversity across tables

There are several types of tables whose content is organized in a human readable
way such as relational tables (Fig. 1.1), vertical tables like infoboxes (Fig. 1.2),
and others that arrange their content in matrices (Fig. 1.3).

Figure 1.1: Relational table

Also many tables are used to build organizational charts, or as layouts to build
aesthetic Web pages as is shown in Figure 1.4

2. Diversity within tables

Table interpretation is also a complex task, due to the existence of tables with
multiple headers, combined cells, etc., which complicate the automation of the
extraction process. The table in Figure 1.5 gives examples of cells merged verti-
cally (colspan) and horizontally (rowspan).

3. Context

3

Figure 1.2: Vertical table (Infobox)

Figure 1.3: Matrix table

Figure 1.4: Route map for metro bus, designed using a table structure

Headers do not always tell us the full story about the content of cells. Addition-
ally the information in tables may not make sense independently of their context.
Many tables describe the main entity of the document or entities described in
the content outside the table, which cannot be identified easily. For example the
table in Figure 1.6 does not mention the football club that is sponsored by the
brands, and in Figure 1.7, the column names say nothing about what was actually
won.

4

Figure 1.5: Table with combined cells and multiple headers

Figure 1.6: Table with no main entity inside

Figure 1.7: Table with ambiguous header

4. Representation

Due to the diversity of table formats it is not possible to establish a unique map-
ping process to extract information appropriately as RDF. For example, an in-
fobox table (Fig. 1.2) describes attributes and values of a single entity while a
table matrix (Fig. 1.3) describes information about different entities in each row,
considering the same property in different years. Along these lines tables can

5

represent the same content in many ways where the extraction process should
ideally give the same output for the same content in diverse table representa-
tions.

5. Efficiency

There are billions of web pages, many of which have tables with rich information,
that can be extracted. Hence the extraction process ideally should be efficient to
allow Information Extraction from tables at large scale.

As was mentioned before DBpedia [5] and YAGO [42] developed an automatic process
of extraction from infoboxes, but other works have emerged trying to extract informa-
tion from more diverse tables [47, 13, 25, 15]. These approaches address information
extraction tasks over tables such as Entity Linking (EL) and Relation Extraction (RE).
Entity Linking maps the recognized entities in a table with their related entities in a
knowledge base, while Relation Extraction extracts relations between entities across
columns. Despite advances in these topics, works do not achieve high precision and
recall for large-scale data, and do not cover all available formats of tables. It is difficult
to develop an automatic process to interpret table with good results for the reasons
described. More recent approaches [17, 35, 8, 43, 3] develop methods using knowl-
edge bases to guide the extraction process; however many of these approaches limit
their process to some specific types of tables, such as relational tables from a specific
context referring to people, places and organizations, and achieve results of varying
quality (described in Chapter 3).

In order to improve information extraction over tables, in this work we propose a
new approach based on merging tables and evaluate it over Wikipedia tables using
Wikidata as a reference knowledge base.

We now provide an example to motivate and illustrate our proposal of grouping tables.

1.2 Motivating Example

While the mentioned works are based on identifying the structure of individual tables
and extracting the correspondence of its information to entities and attributes in a
reference knowledge base, we propose extracting information by first merging similar
tables. This proposal aims to solve the problem of not having enough contextual in-
formation for extracting relations from each table individually. More specifically, our
method extends the extraction process proposed by Muñoz et al. [29] to work with
merged groups of tables.

Muñoz et al. [29] extract relations between entities across table columns which in-
volves, detecting entities in table cell contents corresponding to a knowledge base

6

http://dbpedia.org/resource/

Cristiano_Ronaldo

http://dbpedia.org/resource/

Manchester_United_F.C.

http://dbpedia.org/ontology/

team

<http://dbpedia.org/resource/Lionel_Messi, http://dbpedia.org/ontology/team, http://dbpedia.org/resource/FC_Barcelona>

<http://dbpedia.org/resource/Johan_Cruyff, http://dbpedia.org/ontology/team, http://dbpedia.org/resource/Ajax>

candidate relations

Figure 1.8: Extracting relations from tables according to Muñoz et al. [29]

http://dbpedia.org/resource/

Mexico_City

http://dbpedia.org/resource/

Mexico

http://dbpedia.org/ontology/

capital

<http://dbpedia.org/resource/São_Paulo, http://dbpedia.org/ontology/country, http://dbpedia.org/resource/Brazil>

<http://dbpedia.org/resource/Brazil, http://dbpedia.org/ontology/capital, http://dbpedia.org/resource/São_Paulo>

candidate relations

http://dbpedia.org/ontology/

country

Figure 1.9: Example of incorrect candidate triples

entity (they use DBpedia), and extracting existing relations between pairs of entities
in the same row in order to propose these relations for the entity pairs in other rows
of the table (generating new triples). We provide an example in Figure 1.8, where
entities of each column corresponding to the links to Wikipedia articles are mapped to
DBpedia entities such as Cristiano_Ronaldo (object) and Manchester_United_F.C.
(subject), also the relation team between these entities is extracted from DBpedia; the
predicate team is used for generating new triples between the entities of other rows in

7

http://dbpedia.org/resource/

Hudson_City_School

http://dbpedia.org/resource/

Appleton_City,_Missouri

http://dbpedia.org/ontology/

location

Figure 1.10: Example of small tables with no available candidate triples

the same columns [Player, Club] such as the candidate triple (Lionel Messi, team,
Barcelona). Candidate triples that do not already exist in the knowledge base are thus
extracted from all tables of Wikipedia. We observe that the relation team proposed for
the entities Lionel Messi and Barcelona based on the relation found between enti-
ties of previous row is correct, therefore with this method we can generate new triples
based on the existing triples extracted from individual tables.

Despite the fact that the proposed relation is correct, this method cannot be general-
ized completely, even when a higher number of rows with the same predicate is consid-
ered. Considering Figure 1.9, if we extract the relations capitalOf and country from
the entity pairs Lima, Peru and Bogota, Colombia, it is difficult to establish which
relation is correct for the entities in other rows like Sao_Paulo, Brazil, since both
relations have the same number of the occurrences. Furthermore since this approach
is based on the existing relations in a table, if an individual table does not have any
relation between entities in column pairs, it is not possible to add new triples to knowl-
edge base from that table, as per table of Figure 1.10 where the second table has only
one row, and thus no new relation can be proposed for the entities in this row.

In the mentioned work, for classifying the candidate triples as correct or incorrect,
Muñoz et al. [29] consider features extracted for each triple, which are fed into a

8

binary classification; however their approach still does not cover the mentioned cases
when there is little evidence for correct triples. More generally, they propose to ex-
tract local features from individual tables, but as we see in Figure 1.10, often little
information is available given a single table. To solve this issue we propose the idea of
merging similar tables where correct relations that appear in few rows will have more
supporting information, and small tables will be merged with tables with existing re-
lations; this should offer two main advantages: producing more robust statistics for
the purposes of feature engineering and finding additional relations for small tables or
tables that otherwise does not have any.

We now describe our main objective and the hypothesis that we propose at the begin-
ning of this work until achieve the mentioned results.

1.3 Objective

The previous examples lead us to propose a novel method that merge tables accord-
ing to their structure prior to applying extraction, based on existing information in
a knowledge base, with the objective of improving the table information extraction
process and, in turn, augmenting the knowledge base.

1.4 Hypothesis

The hypothesis of this proposal is that Information Extraction from Web tables can
be improved by first grouping and merging the tables according to their content and
structure and then applying the extraction process for merged table instead of doing
so individually for each table.

This hypothesis is based on the observation that on sites such as Wikipedia, there are
many tables with very similar structure, either because they are created by software
automatically or by a manual process where the author of content copies and pastes
a table and replaces information. We believe that this similarity in structure across
tables forms a "meta-structure" that is exploitable for information extraction.

We will explore this hypothesis in a concrete setting: for extracting RDF triples from
tables in Wikipedia, comparing the methods of Muñoz et al. [30] with and without
grouping tables. Though we believe that our hypothesis should generalize to other
settings involving extracting information from Web tables, evaluation in other settings
is considered out of scope for the current work.

Given the hypothesis we pose the following research questions.

9

Research Question 1

How can merging tables improve the information extraction process?

We believe that merging tables could provide more information for the extraction pro-
cess, as per the previous examples where using information from similar tables, it
is possible to extract more accurate data; although these examples show relational
tables, this approach should also be able to extract information from more complex
tables as we discussed previously, though only from pairs of cells with entities (not
numerical values) in the same row.

Research Question 2

What criteria should be used to merge tables?

The headers of tables can provide some information about the context of a table, but
it does not ensure that columns with the same names contain similar information; it
is necessary to determine if header information is sufficient to group tables or what
additional information should be considered.

Research Question 3

How many tables with the same structure can be merged?

We propose this work based on informal observations of similar tables in Wikipedia;
however we need more concrete information about the size of groups of similar ta-
bles and the relevance of their information, to better understand the feasibility of our
proposed approach.

Research Question 4

How can the benefits of merging tables for automated extraction be evaluated?

It is difficult to evaluate automatic processes of table information extraction, as was
mentioned in related works: some previous methods achieve good results but for spe-
cific contexts or types of tables. However we aim for a broader setting which considers
diverse types of tables and contexts, but for which evaluation is more challenging.

10

1.5 Results

Our results will show that with our proposal we can increase the number of triples
extracted by grouping and merging tables and we can also improve the precision by
adding new features for classifying the extracted triples. The results presented corre-
spond to the precision obtained by a classification algorithm (previously validated) that
classifies the triples extracted from tables as correct or incorrect. The validation of
these results was performed on a set of triples classified as correct by this algorithm.
In this validation a similar precision of 70% and 71% was obtained when grouping and
merging the tables and over individual tables, however about a million more triples
were obtained by grouping tables. For classifying the triples the algorithm was fed
with the features proposed by Muñoz et al. [30]; we also add new features achieving a
better precision of 75% compared with 71% obtained by using the baseline features.

1.6 Structure of this work

Next, we describe briefly the topics covered in the next chapters:

Chapter 2: contains a description of the main concepts related to this work, mainly
Semantic Web and Machine Learning methods used throughout.

Chapter 3: describes the revision of related works that implement Information Extrac-
tion over HTML tables, their contribution and the challenges involved in the proposed
approaches.

Chapter 4: contains the proposal of this thesis, describing the necessary steps to
achieve the proposed objectives.

Chapter 5: provides an overview of the corpus of tables used, the tasks of prepro-
cessing and data preparation, as well as the features selected for identifying correct
candidate triples.

Chapter 6: describes the process of extracting information from the knowledge base,
for feature generation and triple extraction.

Chapter 7: contains a brief exploration of groups of similar tables, using clustering
methods and visualizations.

Chapter 8: describes the method proposed for grouping and merging similar tables.

Chapter 9: describes the methods and techniques used for triple classification and the
results obtained by applying this methods.

11

Chapter 2

Background

In this chapter we introduce some relevant concepts that are mentioned throughout
the work. We describe the standards of the Semantic Web, the data model of the
Wikidata knowledge base that was used for mapping table information, the tasks and
processes involved in Information Extraction, and some Machine Learning techniques
required for the evaluation of the methods proposed.

2.1 Semantic Web standards

For achieving the interoperability of Web content the Semantic Web proposes stan-
dards such as RDF, RDFS and OWL. The RDF standard provides a data model based
on graphs to facilitate interoperability and file formats such as Turtle, and N-Triples
to materialize the information in a structured format. The RDFS and OWL standards
allow for defining the semantics used in an RDF dataset. SPARQL meanwhile is the
query language used for RDF. We now describe these standards in more detail.

2.1.1 Resource Description Framework (RDF)

On the Web, each element of a Web page that can be accessed independently is con-
sidered a resource; it may be the entire HTML page or the elements inside it, such as
images or style files, etc., that can be accessed through their Uniform Resource Lo-
cator (URL) using the transfer protocol such as http, ftp, etc. On the other hand, the
Resource Description Framework considers a resource to be anything with identity,
which may include not only web pages but also people, places, books, categories, etc.
Given that URLs are used to identify information resources (web pages, images, etc.),
Uniform Resources Identifiers (URIs), generalize URLs and can be used to identify
anything with identity. For example, on Wikidata the URL: https://www.wikidata.org/

12

wiki/Q9685 identifies a web page displaying data about Diana, Princess of Wales, while
the URI http://www.wikidata.org/entity/Q9685 identifies the person herself, and this
URI may redirect to the previous URL. The use of URI(s) was extended by another In-
ternet standard, the Internationalized Resource Identifier (IRI) which allows to include
more Unicode characters in resource names, rather than just ASCII.

While RDF uses IRIs to identify resources, it defines a data model based on triples of
the form <subject, predicate, object>, to describe them.

The predicate in an RDF triple provides the property, characteristic or attribute used
to describe the subject; it can also be seen as a relation between the subject and object
terms.

While the subject and predicate are typically resources identified by IRI(s), the object
can also be a literal with a primitive value such as number, date, string, etc. RDF
uses many of the same data types as XML: integer, numeric, string, etc. The syntax
to define an integer is “45"ˆˆxsd:integer; if the data type is not defined, type string
will be assigned. Furthermore we can establish the language of a string literal with a
suffix, for example: “Princess_Diana"@en.

The subject and object can also be blank nodes that represent unknown resources and
they can also be used to define complex relations. Blank nodes are often serialized
with a blank namespace like _:b.

@prefix ex: <http://example.org/>

ex:PrincessDiana ex:hasName _:anon1 .
_:anon1 ex:firstName "Diana"^^xsd:string .
_:anon1 ex:lastName "Frances Spencer"^^xsd:string .

Listing 2.1: Example RDF Graph in Turtle Syntax

In the example shown in Listing 2.1 the resource ex:Princess_Diana has the predicate
ex:hasName with a complex value represented by a blank node. Figure 2.1 shows a
graph resulting from these statements, where the predicates are represented as edges
and the subjects and objects form the nodes of the graph. Along these lines, a set of
RDF triples is referred to as an RDF graph.

ex:Princess_Diana

"Diana"

"Frances Spencer"

_:anon1
ex:hasName

ex:firstName

ex:lastName

Figure 2.1: RDF Graph for listing 2.1

RDF graphs can be stored using different formats such as RDF/XML, N-Triples and
Turtle. We discuss N-Triples and Turtle which describe a set of triples and are amongst

13

the simplest and most readable of the RDF syntaxes available.

• N-Triples
This format represents triples without abbreviations with one triple per line, as
shown in Listing 2.2.

• Turtle
Turtle format introduces a variety of abbreviations, Listing 2.3 shows an ex-
ample where the Wikidata resource Q9685(Diana,Princess_of_Wales) is de-
scribed with the properties P21(gender): Q6581072(Female) and P27(country
of citizenship): Q145(United Kingdom). This format is more concise, ab-
breviating the prefixes of common URI(s) such as wd for entities and wdt for
properties, as well as grouping triples with the same subject, for example.

<http://www.wikidata.org/entity/Q9685>
<http://schema.org/name>

"Diana Princess of Wales"@en .

<http://www.wikidata.org/entity/Q9685>
<http://www.wikidata.org/prop/direct/P21>
<http://www.wikidata.org/entity/Q6581072> .

<http://www.wikidata.org/entity/Q9685>
<http://www.wikidata.org/prop/direct/P27>
<http://www.wikidata.org/entity/Q145> .

Listing 2.2: Example of an RDF Graph in N-Triples format

@prefix schema: <http://schema.org/> .
@prefix wd: <http://www.wikidata.org/entity/> .
@prefix wdt: <http://www.wikidata.org/prop/direct/> .

wd:Q9685 schema:name "Diana, Princess of Wales";
wdt:P21 wd:Q6581072;
wdt:P27 wd:Q145.

Listing 2.3: Example of an RDF Graph in Turtle format

2.1.2 RDF Schema (RDFS)

The information described in RDF graphs can be enriched by creating ontologies.
An ontology provides the definition of all concepts and relations with high seman-
tic expressiveness. For example, we could state that since ex:PrincessDiana is a
ex:Person, this means that children of Diana also are persons; these relations can be
covered with the semantics of properties and classes defined in RDFS and OWL (Web
Ontology Language). We describe some relevant concepts from RDFS in the following.

RDFS was created for representing the semantics of terms used in RDF based on
property and class definitions.

A class represents a set of resources, with common properties, such as Person, Build-

14

ing, Movie, etc., these resources are called instances. For example:
ex:PrincessDiana is an instance of the class ex:Person; RDFS describes this rela-
tion with the property rdf:type. A class like ex:Person is itself considered a resource
and an instance of rdfs:Class.

Properties in RDF allow to define or describe characteristics of the instances of a class.
For example, in the triple ex:PrincessDiana foaf:gender ex:Female the property
foaf:gender describes the gender of the subject entity.

RDFS itself defines some built-in classes. We previously mentioned that rdfs:Class is
the class of all classes. The class rdfs:Resource contains all resources and these are
sub-classes of rdfs:Class. Literals are represented by the class rdfs:Literal and
rdfs:Datatype; each instance of rdfs:Datatype is a sub-class of rdfs:Literal.

RDFS also defines a number of built-in properties used to define the semantics of
terms. Properties are represented by a class named rdf:Property.

The property rdfs:subClassOf denotes that all instances of a subject class are also
instances of the object class. For example ex:Musician rdfs:subClassOf ex:Person
means that all instances of ex:Musician will be instances of the ex:Person class.

The property rdfs:subPropertyOf denotes that all pairs of resources related with the
subject property are also related with the object property. For example:
ex:placeOfBirth rdfs:subPropertyOf ex:countryOfCitizenship means that every
subject and object related by ex:placeOfBirth also can be related with
ex:countryOfCitizenship.

Properties rdfs:range and rdfs:domain establish the types for subjects and objects
in a triple, respectively. More specifically rdfs:domain denotes the class of which the
subjects of a property are instances, while rdfs:range denotes the class of resources
analogously for objects on a property. In Listing 2.4 the property ex:author has range
of class ex:Person, which means that the object of the triples with this property are
implied to be instances of Person, while the subject is implied to be an instance of the
class Book.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

ex:Book rdf:type rdfs:Class .
ex:Person rdf:type rdfs:Class .
ex:author rdf:type rdf:Property;
rdfs:domain ex:Book;
rdfs:range ex:Person .

Listing 2.4: Example domain and range definitions

15

2.1.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL) provides a set of RDF terms with well-defined
meaning for reasoning support that are not included in RDFS. We now describe some
OWL terms by way of example to illustrate the idea.

The property owl:equivalentClass allows to declare that two classes are synony-
mous. For example ex:Person and ex:Human. The property owl:disjointWith allows
to declare that an object that belongs to a class cannot be an instance of another;
for example ex:Country and ex:City. While the previous terms provide mechanisms
to define relationships between classes, there also exist terms in OWL for defining re-
lationships between properties such as owl:equivalentProperty and owl:inverseOf.
For example, the property ex:hasChild is equivalent to ex:isParentOf while
ex:hasParent and ex:hasChild are inverse properties.

OWL also provides terms for defining classes based on restrictions of the elements
that they can contain; these include owl:minCardinality which determines the mini-
mum quantity of values allowed for a property on an instance of a particular class , and
owl:maxCardinality for the maximum quantity of values. For example, the
owl:maxCardinality of the property ex:headOfState on an instance of class ex:Country
is 1.

We consider that cardinality concept is useful to know if we can propose new objects
for a given subject and predicate, for example when the predicate has a cardinality of
1 and there already exists a triple in knowledge base with that value, we may avoid
proposing another value for that predicate as part of an information extraction pro-
cess.

Here we have only described the most relevant features of RDFS and OWL. Other
features of these standards are not used in the current work.

2.1.4 SPARQL

SPARQL is an RDF query language for retrieving information stored in RDF format.
SPARQL provides a set of query operations such as join, aggregate, sort, and so on.
This language allows to generate results in table format using the select operation
and also in RDF format using construct. Listing 2.5 shows an example of a query
for getting the name and country of citizenship of a person; the result of this query
will be a table with three columns named firstName, lastName and country with their
respective values.

The variables of a query take the prefix (?) and it is possible to query for multiple facts
in one statement, splitting the facts by (;), and finishing the statement with (.).

16

PREFIX ex: <http://example.org/>
SELECT ?firstName ?lastName ?country
WHERE {
ex:PrincessDiana ex:hasName ?name;

ex:countryOfCitizen ?country .
?name ex:firstName ?firstName;

ex:lastName ?lastName.
}

Listing 2.5: Example SPARQL query

2.1.5 Web Knowledge Bases

Knowledge bases are large networks of entities, representing their semantic types,
properties, and relationships between entities. Web knowledge bases are published
online and are accessible to the public; the Semantic Web standards previously de-
scribed are often used to publish such knowledge bases on the Web.

We review some of the most prominent knowledge bases in practice, that have been
published on the Web using the Semantic Web standards.

• DBpedia

The first release of DBpedia [5] project was in 2007, and it is updated roughly
once a year. The information of DBpedia is automatically extracted from in-
foboxes, and geo-coordinates of Wikipedia. The resources in this knowledge base
also are linked to others such as Freebase, GeoNames, Musicbrainz, Uniprot
among others. DBpedia contains about 13 million instances and 6721 mapped
properties 1.

• YAGO

The information of YAGO [42] is also extracted from Wikipedia, but it also in-
cludes WordNet and GeoNames. Even though it contains fewer properties than
DBpedia, YAGO provides more context for its facts using temporal and spatial
properties. The latest version, YAGO3, includes about 10 million entities and 120
million facts 2.

• Freebase

Unlike DBpedia and YAGO, Freebase [32] was a project created for humans to
edit structured data directly. It was acquired by Google in 2010 but later retired
and integrated with Wikidata in 2015.

1https://wiki.dbpedia.org/services-resources/datasets/data-set-38/data-set-statistics, Dic. 2018
2https://datahub.io/collections/yago. Dic. 2018

17

• Wikidata

The Wikimedia Foundation manages the Wikidata Project [45], whose main goal
is to be a collaboratively edited knowledge base with a Creative Commons Li-
cense. Aside from representing Wikipedia data, it extracts data from external
public encyclopaedias, making it possible for Wikidata to also feed other sibling
projects. Wikidata 3 currently describes 44 million entities.

There are some comparative studies (e.g. [19, 38, 1]) of these knowledge bases, where
authors contrast characteristics such as languages, domain, access, and structure.

DBpedia and YAGO extract data from Wikipedia periodically, while Wikidata is con-
stantly updated by its collaborators. In this thesis we use Wikidata as a reference
knowledge base though the methods we propose should also generalize to similar
knowledge bases. The following section provides more details about Wikidata.

2.1.6 Wikidata Knowledge Base

Wikidata maintains a hierarchical structure based on item labels, descriptions, aliases
and statements (see Figure 2.2). We now describe these elements in more detail.

Figure 2.2: Wikidata Model4

3https://www.wikidata.org/wiki/Wikidata:Statistics. July 2018
4https://www.wikidata.org/wiki/Wikidata:Glossary

18

1. Item

An item is any concept, topic or object identified in the knowledge base by a
unique identifier with prefix Q for entity items and P for property items.

2. Label

The name of the item in different languages.

3. Description

A textual summary of the item indicating to which context it belongs (there can
be more than one item with the same label). Descriptions can also be given in
different languages.

4. Aliases

An item can have more synonyms or expressions with the same meaning. Rather
than create a new item, an alias can be added to an existing item. Aliases can be
given in multiple languages; in each language, an item can have one label, but
multiple aliases.

5. Statements

The statements are the properties of an item, describing facts that may involve
relations with other entities. Such facts may be associated with qualifiers that
provide additional context for the fact. For example start date and end date can
be used as qualifiers for the head of state relation.

Wikidata provides a public SPARQL query service for querying the knowledge base as
shown in the example of Listing 2.6.

The query will return a set of items with Q126826(Aerosmith) on the P463(member of)
property. The query uses a service wikibase:label, which allows to get the property
rdfs:label from the Wikibase Ontology, bound to the variable ?nameLabel.

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX bd: <http://www.bigdata.com/rdf#>
PREFIX wikibase: <http://wikiba.se/ontology#>
SELECT ?item ?itemLabel
WHERE
{

?item wdt:P463 wd:Q126826.
SERVICE wikibase:label { bd:serviceParam wikibase:language "en".}

}

Listing 2.6: Example of a SPARQL Query on the Wikidata Query Service

Wikidata also provides a dump of its content in RDF following the data model shown
in Figure 2.3 for representing the information in dump files. As was mentioned before,
the prefix wdt is used to describe direct relations but for full statements with qualifiers
Wikidata uses the prefix wds; for example in Figure 2.2 the relation P69(educated at)
is a full statement with the following qualifiers: start time, academic major, academic
degree and end time. The statement is described with the relation p, and the value of
the statement with the relation ps; on the other hand the qualifiers are described with

5https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format

19

wiki:URL wdref:r12345

wdv:v12345wds:12345678wds:12345678

wds:12345678

schema:about

prv:

prov:wasDerivedFrom
pr:

p:

wdt:
pq:ps:

psv:

wikibase:quantityAmount
wikibase:timeValue

pqv:

StatementItem Value node

Figure 2.3: Wikidata RDF graph structure5

the relation pq. The values also can be new statements, in which case the relations
used are psv and pqv and the value is represented with prefix wdv. Finally the relations
pr and prv are used to describe references.

The representation of predicate P69(educated at) in Figure 2.2 with the Wikidata
structure is shown in Listing 2.7:

wd:Q42 p:P69 wds:_x1.
wds:_x1 ps:P69 wdt:691283;

pq:P582 "1974-01-01T00:00:00Z"^^xsd:dateTime;
pq:P812 wdt:186579;
pq:P512 wdt:1765120;
pq:P580 "1971-01-01T00:00:00Z"^^xsd:dateTime.

Listing 2.7: Example Wikidata RDF syntax of dump file for a full statement

<http://www.wikidata.org/entity/Q42> <http://www.wikidata.org/prop/direct/P69>
<http://www.wikidata.org/entity/Q691283>.

Listing 2.8: Example of statement in a truthy dump file

Given the complex structure of the RDF graph representing qualified statements, Wiki-
data also provides a "truthy dump" with triples representing binary relations without
qualifiers. Listing 2.8 shows the truthy version of Listing 2.7.

The Truthy dump file contains the "preferred" statements by predicate for an entity;
the "preferred" label is selected by users to indicates the current value for that predi-
cate; for example the entity Brazil has two objects for the predicate capital, however
the the current city Brazilia will be marked as preferred, and only this relation will
be part of truthy file, but if a predicate does not have a preferred statement all values
will be part of this file.

20

2.1.7 Linked Data

In the same way that HTML pages are linked using hyperlinks forming a Web of Doc-
uments, Linked Data defines how RDF can be linked together forming a Web of Data.

Berners-Lee defined the four core principles of Linked Data 6.

1. Use URIs as names for things. All resources on the Web must have an unambigu-
ous identifier.

2. Use HTTP URIs so that people can look up those names. The resources must be
accessible using HTTP protocol; this makes it possible to interconnect knowledge
bases over the web, which is the ultimate goal of LOD.

3. When someone looks up a URI, provide useful RDF information. Providing data in
a structured format like RDF allows for software agents to automatically process
such content.

4. Include RDF statements that link to other URIs, where users can discover struc-
tured data about related things. This principle encourages related descriptions
of entities in RDF to be interlinked, forming the Web of Data.

Figure 2.4: Resource linked to Wikidata and DBpedia

An advantage of having tagged items connected to as many knowledge bases as pos-
sible (see Figure 2.4) lies in improving, searching and recovering more reliable infor-
mation.

Beside these principles Linked Open Data (LOD) aims to make data accessible and
freely readable on the Web fulfilling the following 5-star recommendations proposed
by Berners-Lee.

1. Data should be made available on the web.
6https://www.w3.org/DesignIssues/LinkedData

21

2. Data should be machine readable, meaning that a software application can open a
document and process its information; for example a scanned document is poorly
machine readable.

3. The software required for reading the data should not be proprietary software;
for example CSV documents, unlike Microsoft Excel spreadsheets, can be read
by any software.

4. Data should identify and describe things, preferably with open standards such as
RDF.

5. Data should contain links to external resources to provide context.

The five stars of LOD indicate some simple principles for publishing data on the Web
in order to improve the efficiency of searching, processing and retrieving information.

The most recent Linked Open Data cloud, tracking websites following these recom-
mendations, has registered about 1231 knowledge bases 7 that accomplish these re-
quirements. However, although LOD has grown in the past years, it still covers a small
part of the web; for this reason developing methods of Information Extraction meth-
ods for enriching knowledge bases remains of great importance. In the next section
we define the process of Information Extraction and describe some key tasks of this
process as applied for HTML tables.

2.2 Information Extraction

The main task of the Information Extraction process is to annotate data without struc-
ture thus generating or enriching information; this task often relies on Natural Lan-
guage techniques and Machine Learning processing.

2.2.1 Information Extraction from Text

For annotations over unstructured text there exist three main Information Extraction
tasks: Entity Recognition (ER), Entity Linking (EL) and Relation Extraction (RE).

1. Entity Recognition (ER)

Allows to identify and tag entities from a text, e.g., "Sebastián Piñera assumed
the position of president of Chile". Some of the works that implement Entity
Recognition are based on identifying nouns, adjectives and verbs in a sentence;
but this task is not straightforward as entities can be formed by more than one
word, the text can be incorrectly spelled or can be semantically incorrect, etc.

7https://lod-cloud.net (2018-11-26)

22

2. Entity Linking (EL)

Associates each entity recognized by ER with its corresponding identifier in a
knowledge base; e.g., Chile is identified by http://www.wikidata.org/entity/Q298
in Wikidata and in DBpedia by http://dbpedia.org/resource/Chile. In some cases
we can have multiple entities with the same name but with different identifiers;
automated EL approaches involve Entity Disambiguation to try to differentiate
entities with the same name.

3. Relation Extraction

Extracts facts that denote relationships between a pair of entities. In the example
sentence "Sebastian_Piñera was born in Chile" the text between both entities is
considered as the relationship. Relation Extraction is considered a challenging
task particularly because few sentences are as simple as the example provided.

Various techniques can be combined to identify relations such as: Part of Speech
(POS) for tagging the parts of a sentence as nouns, adjectives and verbs; and
dependency parsers, which further annotate the structure of sentences. Using
methods of Machine Learning with these features it is possible to localize rela-
tions in a sentence, but it is far from straightforward, particularly for relations
involving more than two entities. For example: "Journalist Martin Bashir in-
terviewed Princess Diana for the BBC current affairs show Panorama on 20
November 1995"; in this sentence there are more than two entities and the
relation identified by the verb interview has an additional predicate that is the
date of the interview. Some works focus on extracting binary relations from text
while others attempt to extract n-ary relations involving three or more entities.
In general, relation extraction from text remains a very challenging problem and
is subject to ongoing research.

Raw text
(String)

Sentence
Segmentation

Tokenization
Part of speech
tagging

Entity
Reorganization

Entity
Disambiguation

Relation
Extraction

Event
Extraction

Sentences Tokenized Sentences

Pos-tagged sentences

Chunked sentences

recognized entity

List of tuples

Figure 2.5: Abstract Information Extraction Architecture [12]

Singh et al. [41] defines the general architecture of an Information Extraction process
(based on a previous proposal by Constantino [12]), as shown in Figure 2.5. This

23

architecture includes text processing techniques for identifying entities and relations
in raw text. However Information Extraction over semi-structured data may require
other methods given that data have lightweight annotations that can be leveraged by
specialized processes for Information Extraction.

2.2.2 Information Extraction from Web Tables

Semi-structured data is based on tagged text, where tags give us some semantic in-
formation of its content; such data include markup documents in Extensible Markup
Language (XML), Hypertext Language (HTML), Portable Document Format (PDF), and
so on. Leveraging the hierarchical structure of these documents, many works have
been developed for extracting information [2, 14, 37], using meta-tags, titles and sec-
tion headers, table tags, etc., but to improve the confidence and efficiency of these
methods is still a major challenge.

Extracting information from HTML tables involves (aside from the general tasks men-
tioned before in general process extraction), some specific tasks to recognize and
match the document content with a semantic structure. There is no a single agreed
upon process for extracting information from HTML tables; however next we describe
some relevant concepts in this topic.

cell <td>

cell with rowspan

cell with colspan
cell <th>

caption

cell <td> with style

Figure 2.6: HTML table design

HTML tables are generated using the root tag <TABLE>, which contains specific tags
to add rows and columns. Figure 2.6 shows an example based on the source code of
Listing 2.9.

24

<table>
<tr>
<th>Header1</th>
<th>Header2</th>
<th>Header3</th>
<td>text</td>
</tr>
<tr>
<td colspan="2">Merged column</td>
<td rowspan="2">Merged row</td>
<td>text</td>
</tr>
<tr>
<td>text</td>
<td>text</td>
<td>text</td>
</tr>

</table>

Listing 2.9: Example HTML code for table design

Using the tag <TABLE> it is possible to identify tables in a document; however this el-
ement is used not only to represent data in web pages, but also for organizing content,
such as layout and chart organizers, navigational panes, etc. Information Extraction
over HTML tables thus often considers an initial classification of tables in the process,
filtering tables that do not contain factual content or potentially applying different
processes to different types of tables.

Automatically interpreting table information is another challenging task, where the
process has to capture entities, attributes and relationships from tables. The imple-
mentation of this process will depend on the table’s structure. Hurts et al. [23],
describes potential challenges faced during this process, some of which are described
in the following:

• Internal cell structure: <th> and <td> are not the only cell builders; sometimes
a tag is used to design the table. For example the table in Figure 2.6,
uses the tag to highlight a header instead of a <th> tag.

• Errors: <colspan> and <rowspan> are not correctly used, specifying erroneous,
or empty values.

• Omissions: Empty cells or spaces are some times added to design a more aes-
thetic table.

In Chapter 3 we discuss in more detail the works developed for table information ex-
traction, which form the related works of this thesis; many such works rely on Machine
Learning methods described in the next section.

25

2.3 Machine Learning methods

There are many Machine Learning models that can be used for clustering, predicting
and classifying information; these methods are used for different purposes in Informa-
tion Extraction, for example for predicting the corresponding entity in a knowledge
base for text in a table cell. Additionally some Natural Language processing tech-
niques are implemented to achieve better results in these models. We now describe
some of these methods and techniques as relevant for this thesis.

2.3.1 Clustering methods

Clustering is an unsupervised method used for grouping similar data in a given data
space; the position of an element in this space will depend on its features. The
method is unsupervised because it does not need to learn about data classes using
pre-classified elements. There are multiple methods for clustering that differ by the
model used, such as connectivity models, centroid models and density models. Given
that the central idea for this thesis is extracting information by grouping similar tables
we now introduce each high-level method of clustering.

2.3.1.1 Connectivity models

Connectivity models are based on creating initial groups, separating elements in classes
and then merging classes as the distance between elements decreases.

Hierarchical clustering is an example of this model; it creates a cluster for each
element, and merges near clusters according to a linkage criteria. It alternatively can
apply a divisive approach, which starts by creating a big cluster with all elements and
dividing it into groups recursively. The distance metric used will depend on the type
of data, but the most common metric is Euclidean distance, measuring the distance of
two points in a Euclidean dimensional space. For merging clusters this algorithm uses
linkage criteria that determine the distance between a set of observations:

1. Complete linkage: Considers the maximum distance between the elements in a
cluster and the rest of the elements. The algorithm joins clusters with minimum
distance recursively.

2. Single linkage: Considers the minimum distance between the elements in a
cluster and the rest of the elements.

3. Average linkage: Considers the average distance between the elements in two
evaluated clusters.

A hierarchical clustering algorithm uses a dendrogram to represent the clusters

26

as per Figure 2.7. The final representation depends on the criteria of linkage
used. For extracting the final clusters it is necessary to establish the height (dis-
tance) where the tree should be cut. For example if we decide to cut the dendro-
gram at a height of 0.5, it will generate the clusters {2,10},{5,8,9},{1,4},{3},
{6,7}. An alternative method is to determine the maximum number of elements
by cluster, where defining a maximum of 3 elements per cluster in the case of
Figure 2.7 will result in the aforementioned clusters.

Figure 2.7: Example of a dendrogram in hierarchical clustering

2.3.1.2 Centroid models

The algorithms based on centroid models are iterative and based on the closeness of
a data point to the centroid of the clusters. One of the most widely used algorithms is
K-means.

K-means aims to find the best centroid position of clusters after a certain number
of iterations. It requires as input the number of clusters, and selects randomly this
number of points to be the initial centroids. In each iteration the algorithm groups
data points to the nearest centroid, and the centroids are updated depending on the
distance of all points in the cluster. This algorithm aims to minimize a square error
function

∑k
j=1

∑n
i=1 ||x

j
i − cj||2, using the distance between each point xi of n data points

and the centroids c of each cluster j.

2.3.1.3 Density models

Using density models, clusters are formed by areas of data points with similar density.
Data points are joined based on the minimum distance higher than a certain threshold.
Such algorithms are based on two principles: the minimum number of points in the
neighbourhood of a point (MinPts) and the maximum radius of the neighbourhood
(Eps) (maximun distance from core of cluster), which allows to detect and separate
border points. Points that are not directly density reachable from a point in a cluster

27

are considered border points: a point p is directly density reachable from a point q if
p is in the set of neighbours of q (NEps(q)) such that the distance d(p, q) <= Eps and
|NEps(q)| >= M inPts.

DBSCAN is an algorithm based on this model, which allows to create clusters of dif-
ferent shapes; these clusters tend to have similar density, separating points of more
sparse clusters as outliers. Variations of the DBSCAN algorithm have been proposed
such as OPTICS and HDBSCAN. OPTICS uses the distance of neighbor points to cre-
ate a reachability diagram used to separate clusters of different densities, needing to
calculate the reachability distance of each point in the cluster to later sort the dis-
tances and build the clusters. On the other hand HDBSCAN [9] is an approach that
uses hierarchical clustering to avoid introducing noise in clusters of different densities,
generating the reachability diagram with the maximum reachability distance between
two data points dmreach−k(a, b), having the core distance (radius of cluster given by the
central point) for each point in the radius of its k nearest neighbors and the distance
between the points d(a, b): dmreach−k(a, b) = max{corek(a), corek(b), d(a, b)}. Figure 2.8
shows graphically the selection of maximum distance between red and green points.
With the distance between all points it is possible to generate clusters hierarchically
using single linkage criteria and a specific threshold.

Figure 2.8: Example distance function HDBSCAN 8

2.3.2 Classification methods

In our proposal, we use classification methods to label initially extracted relations from
tables as correct or incorrect.

8https://hdbscan.readthedocs.io

28

Classification methods constitute a variety of supervised algorithms that need prede-
fined classes and data classified in those classes. The algorithms are trained with
these data searching for the best fitting of the variables to the model. We will describe
briefly some methods that will be used to classify relations extracted from tables.

Logistic Regression: a predictive model to estimate the relation between an de-
pendent variable and one or more independent variables. The outcome (dependent
variable) of this method could be interpreted as the probability of a sample to belong
to the positive class.

Naive Bayes: is a model based on Bayes Theorem, where the class of samples is
taken as the hypothesis and the predictors (features) as the set of events that have
to be evaluated to obtain the probability of that sample belongs to the specified class
considering that events are independent.

Nearest Neighbours: is a classification algorithm that takes a set of classified points
and uses them to learn how to classify other elements closest to them; the similarity is
based on the the distance between two (or more) data points in all their features. The
class selected for a point is given by the most common class of the nearest neighbour
points.

Decision Trees: builds classification or regression models in the form of a tree struc-
ture. The nodes in the tree are feature conditions that split the tree into smaller
sub-trees. This model selects the features that reduce the impurity of the sub-trees,
meaning that the samples in the final node belong to the same class.

Ensemble models: combine various estimators to get a better score for reducing the
variance produced by using a single estimator. There are different types of ensemble
algorithms based on Decision Trees:

• Bagging models: randomly selects a set of instances of the same size as the
input data, with replacement (bootstrapping) [16] , and feeds the estimators with
each sub-set, building the decision trees based on the best features. For getting
the final classification, this model aggregates the weighted class votes from each
individual tree (bagging) [6].

• Random Forest: is a type of Bagging model; however it builds the estimators
with different subsets of randomly selected features, where each feature has
the same probability of being selected by each estimator. The predicted class
of the instances is selected by aggregating the "votes" predicted classes of all
estimators.

• Boosting models: unlike Bagging models, Boosting models are built sequen-
tially; each estimator uses the outcomes of the previous estimator and assigns
weights to incorrect predictions; thus the next estimator will try to predict the
samples with high weights, which are the difficult samples in the training set.
Adaptive Boost (AdaBoost) [20] and Extreme Gradient Boost (XGBoost) [11] are
the most well known algorithms based on this technique; both algorithms boost

29

the performance of a simple base-learner by iteratively shifting the focus towards
problematic observations that are difficult to predict. With AdaBoost, this shift
is done by up-weighting observations that were misclassified before while Gradi-
ent boosting identifies difficult observations by large residuals computed in the
previous iterations [27]. XGBoost, in particular, provides a scalable alternative
for sparse data, which has been evaluated and widely recognized in a number
of machine learning and data mining challenges. Although some variation of Ad-
aBoost have been developed to improve accuracy results XGBoost leads in some
aspects such as robustness to the noise [22]. However, since these models try
to predict difficult samples, developing complex models, they require special pa-
rameter configuration to deal with the overfitting problem, such as to control the
stop criteria and regularization parameters.

While Bagging models attempts to reduce the variance of single estimators, Boosting
models try to reduce the bias, increasing the model’s ability to classify complex data
[36], but both models provide better results than individual learners specially with
Classification and Regression Trees (CART) as base estimators.

2.3.3 Evaluation metrics

For getting the performance of methods used for classifying data, four common mea-
sures are used: Precision, Recall and F-score and Accuracy. Clustering methods are
sometimes also generally evaluated using these metrics, in which case it is necessary
to have pre-classified instances in each cluster.

• Precision is obtained using the formula: |T P |
|T P |+|F P | where TP are the correct eval-

uations of a positive class and FP are the elements that do not correspond to the
evaluated class. Classification approaches aim to get good precision by avoiding
the assignment of erroneous elements to the evaluated class.

• Recall is obtained using the formula: |T P |
|T P |+|F N | where FN are the elements not

classified in the evaluated class. Classification approaches aim to get good recall
by assigning as many correct elements as possible to the evaluated class.

• F1-score is the harmonic mean between recall and precision: 2(precision·recall
precision+recall

);
this metric penalizes lower values, meaning that if one of the metrics reaches a
higher value (1) and the other one a very small value, F1-score also will be small
(relative to an arithmetic mean of the two values, for example).

• Accuracy is the proportion of correct predicted instances over the total instances
evaluated: |T P +T N |

|T P |+|T N |+|F P |+|F N | .

The mentioned metrics are used for evaluating and selecting models, looking for the
best metric value according to the goal of the problem, but there are also metrics used
for comparing the performance of models.

• Kappa Cohen is a metric for comparing the instances agreement between two

30

annotators. In machine learning methods this measure is most often used for
comparing the output of a specific model and a random classifier, where a value
close or equal to 1 means that the evaluated model is not better than a random
classifier. The metric is often also used to measure the agreement score between
two selected classifiers, comparing the agreement between both and a random
model.

• Receiver Operating Curve (ROC) shows the True Positive Rate (TPR) or
Recall versus the False Positive Rate (FPR) reached by the classifier. The ideal
point of the curve is the maximum TPR and minimum FPR. The ROC curve is
often used to quantify the performance of a classifier for different thresholds
levels, thus allowing to understand the trade-off between precision and recall for
different confidence levels.

• Area under the ROC (AUC) allows to measure if classes can be separate cor-
rectly using a probability threshold, where AUC=1 indicates that the classes are
perfectly separable and AUC<=0.5 indicates that the model is not working. The
AUC metric thus extracts from the ROC curve a single value that can be com-
pared across models.

The mentioned metrics allow to evaluate the methods but we can also improve clas-
sification performance by applying some techniques like features selection. Next we
explain the metrics used in features selection.

2.3.3.1 Feature importance

Classification is often performed with respect to features extracted for the instances
under analysis. Using classical Machine Learning methods, an expert will have to
define the set of features to be used according to what they think will help the classifi-
cation model to discriminate the classes. However, often the expert will not know for
sure which features will end up being useful for classification. Having too many (use-
less) features may add noise, affecting the models ability to discriminate the classes.
Hence feature selection is used to select (only) the most important features for classi-
fication.

The importance of individual features can be obtained by using different measures;
specifically for classification models, the Information Gain measure is applied. Infor-
mation Gain is defined as how much a feature can tell us about the data, meaning
that a feature can divide the instances by class very well. To measure the Informa-
tion Gain two basic metrics are used: Entropy (E = ∑n

i=1−pi log2 pi) and Gini Index
(GI = 1 − ∑n

i=1 p
2
i); there is no major difference between them besides perhaps the

time of computation, since Entropy uses a logarithm function [31].

Given a set of features, a feature is evaluated with a value condition separating the
instances into subsets (forming leaves of a tree); it is expected that each leaf only has
instances of the same class, in which case the node will have an entropy close to 1.

31

Since each feature represents a node, the final score is the entropy of the parent node
minus the sum of the weighted entropies of its child nodes.

Using the Scikit-Learn python library, feature importance (FI) is obtained using the
equation 2.1.

FI = Nc

N
∗ [currentGI − (Nr

Nc
∗ rightGI)− (Nl

Nc
∗ leftGI)] (2.1)

Where Nc is the number of instances in the current node, N the total number of
instances, Nr and Nl the number of instances in the right and left nodes (two classes)
resulting from splitting the current node, with their respective Gini value (GI). The
features with higher score will take more importance in the construction of models.

2.3.4 Text Processing

Since identifying entities, attributes and relations from any source involves reading
and understanding text, Natural Language Processing techniques become necessary.
We likewise will pre-process text for extracting similar column names, removing suf-
fixes. We now briefly describe two of the most common tasks implemented for text
processing as specifically relevant for this thesis work.

2.3.4.1 Stop word removal

There are different methods for removing non-relevant words from a corpus; the basic
method consists of removing common words such as articles, prepositions and pro-
nouns that do not give meaning to documents; others include measures such as the
method based on Zipf’s law that uses frequency of words in the document, remov-
ing the most frequent words, singleton words and words with low Inverse Document
Frequency (IDF). Methods based on Mutual Information (MI) measure how much in-
formation a term can offer about a class of documents, given by the probability of a
random term being in a class of documents, etc.; low Mutual Information suggests that
the term does not help to discriminate documents as it appears in different classes, and
thus it should be removed.

2.3.4.2 Stemming

Methods used for stemming text consist of removing all possible suffixes of a word,
thus reducing the vocabulary size, and improving the recall of matching terms. There
are various algorithms for stemming text: ones based on clipping words such as
Porter’s Stemmer, others based on statistical methods such as the N-Gram Stemmer

32

which evaluates similar words depending on the number of letter grams they share,
and algorithms based on co-occurrence of word variants [39], etc.

The Porter Stemmer is the most used stemming algorithm. It is based on rules about
the suffix of a word and the number of syllables to know whether the word is long
enough to apply the rules. For example when a word ends with IES, the end of the
word is replaced with I (e.g. parties for parti). The disadvantage is that it can pro-
duce inappropriate words like gener derived from general. This algorithm has had
some modifications in a second version called Snowball, which includes more rules
and exceptions to improve stemming quality.

33

Chapter 3

Related Work

In the previous chapters we discussed some of the foundational techniques that will
be used in this work. We now discuss works directly related to the main theme of the
thesis: extracting information from tables.

3.1 Table detection

The first task in table information extraction is to identify the physical structure of ta-
bles. Wang et al. [47] propose an approach to classify tables into two groups: Genuine
and Non Genuine; the first group includes tables with some relations between cells and
the second one includes those for layout. To label these tables they use two groups of
features based on the table structure such as number of rows and columns, and oth-
ers based on the table content such as data types (numeric, images, hyperlinks, input
controls and so on) ; these features feed some machine learning algorithms achieving
a 96% F1-measure over 11,477 total tables using cross validation.

A similar classification was proposed by Crestan et al. [13] where the tables are clas-
sified as Relational knowledge tables and Layout tables, with relational knowledge
tables further divided into sub-groups.

We now describe the different types of tables identified in such works and that we can
find on the web and which will be mentioned in the rest of this work:

• Relational tables: The relational table concept is defined as a table with at-
tributes that describe an entity on each row (see Figure 1.1); in some cases one
column contains the main entity, however in other cases it is not specified or may
be composed from various columns.

34

• Listings: tables where content is arranged in a horizontal or vertical way (e.g.
Infoboxes).

(a) Horizontal table

(b) Vertical Table

Figure 3.1: Listings: vertical and horizontal tables

• Attribute-Value: tables listing properties and values for an entity that often is
not inside the table, as per Figure 3.2.

• Matrix: tables with both row and column headers, like Figure 3.3.

• Enumeration: tables with one row or column that has a list of objects, like the
table in Figure 3.4.

Figure 3.2: Attribute-value table

• Form: Some web applications use tables to arrange labels like name, email, etc.
and input controls; such tables can be detected as tables with relational content,
due to the presence of such labels.

• Layout tables: Tables used to organize web content. This group is divided into
navigational tables like Figure 3.5 and formatting tables like Figure 3.6.

To perform this classification of tables Crestan [13] used features such as: ratio of
empty cells, ratio of distinct string cells, ratio of numeric cells, ratio of header cells,
ratio of anchor text and cell length, achieving an overall accuracy of 75%. However the
model had difficulties correctly separating vertical listings and attribute-value tables
due to both sharing some feature distributions like the ratio of distinct strings and

35

Figure 3.3: Table Matrix

Figure 3.4: Enumeration table

Figure 3.5: Table used for navigational content

non-empty cells. Although for attribute-value tables their methods achieved a 90%
recall, only 10% was achieved for vertical tables. To classify layout tables, features
such as the ratio of images, ratio of distinct tags, and number of control inputs tags
were included; with these features tables that don’t belong to another class fell in the

36

Figure 3.6: Table used as organization chart

formatting group.

Lautert et al. [25] delve further into this taxonomy by making a second classification
identifying sub-groups according to their inner structure and content, such as Nested,
Split and Multivalued tables. The Nested and Split groups refer to tables included
inside others; nested tables are those that describe different information of the same
entity in the table (Fig. 3.7) while split tables are those with the same structure ar-
ranged into different cells (Fig: 3.8). The Multivalued group gathers tables with simple
and compound content, meaning that a cell may have more than one entity (Fig.3.9).
Using a dataset of 342,795 tables with 68% layout tables, this work improved upon the
results of Crestan et al.’s approach [13] for identifying Formatting, Vertical and Hor-
izontal tables; however for matrices, a low F1-measure of 22% was again obtained.
According to Crestan et al. [13], 88% of the tables on the Web are used for layout
purposes; in their work a sample of 5,000 from 8.2 billion tables extracted from 1.2
billion web pages was used.

We aim to achieve a large volume of "useful tables", for which we will work with tables
extracted from Wikipedia; given the encyclopaedic nature of Wikipedia, we expect
more content rich tables and fewer layout tables than would be found on the broader
web.

3.2 Table interpretation

Table interpretation can be broken down into a sequence of sub-steps: parsing and
normalization, entity and attribute detection, relation detection and table clustering.
Given that table interpretation has been explored in a variety of contexts and for a

37

Figure 3.7: Nested Table

Figure 3.8: Split Table

Figure 3.9: Multivalued Table

variety of applications, it is important to note that different works may focus on or
omit some of these sub-steps.

3.2.1 Parsing and Normalization

Given the wide range of formats in which tables may be present and the potential use
of merged cells, nested cells, etc., the first challenge is to parse and normalize the
tables extracted from a document.

Figure 3.10: Table with colspan and rowspan

38

Figure 3.11: Normalized table from figure 3.10

TARTAR is an approach [35] that relies on parsing data tables from different sources
(such as HTML, PDF, Excel, text) to a different structure: logical frames. The pro-
cess is based on extracting regions that have attributes (table headers) and instances
(values). These regions are generated using vector distances that are built from data
cell types and the position of cells. Distance measures allow to distinguish regions or
merge them. Hence, it is possible to extract relations from data structured hierarchi-
cally as trees where each leaf is an attribute with the list of values of every instance;
the instance then has an attribute-value in each leaf. The evaluation of this method
was made comparing frames produced by the system against ones produced by hu-
mans; the system could transform 85% of 158 tables of which 50% of frames were
annotated correctly, corresponding to the expert-defined frames.

Muñoz et al. [29] extract tables from Wikipedia using the TARTAR approach [35].
They further discuss normalization, which aims to generate flat m × n (m rows and n

columns) tables without merged cells or nested structure. They approach this in the
natural way, duplicating the content of merged cells into individual cells (see Figures
3.10, 3.11), unnesting tables, etc. However due to the presence of cells with incorrect
colspan and rowspan values, they do not succeed in normalizing all tables where 4.2%
from 3,923,427 tables were considered ill-formed and filtered from their extraction
process.

3.2.2 Entity detection

Entity detection consists of mapping values of table cells into a specific entity in one or
more knowledge bases. There are many works that attempt to annotate unstructured
text in this way, called Entity Linking, where content around query text is very impor-
tant to disambiguate an entity. In contrast table cells have sparse context, including
for example the table in Figure 3.12, where cell values have multiple entity candidates
(mapping to Wikidata entities); even considering text similarity with column names
like the column song, disambiguating entities in a table can be challenging (in cases
where links are not available).

Mulwad et al. [43] introduce the T2LD framework for interpreting and extracting
entities and relations from the tables of Wikipedia. They use the Wikitology index

39

Be My Girl (Q4875538)

single by New Kids on the Block

Be My Girl (Q30668168)

single by Eamon

Sting (Q483203)

(Actor) Gordon Matthew Thomas Sumner

Sting (Q44640)

(Musician) Steve Borden

Sting (Q20152)

artefact from J. R. R. Tolkien’s fantasy universe

Figure 3.12: Entity detection

for querying a Knowledge Base, with parameters such as: the column header, the
row data, the table cell value; and the parameters used in Wikitology index such as:
the Wikipedia title, the first sentence of the article, the page rank for the Wikipedia
concept, a list of contents, redirects and categories associated with the concept, prop-
erty values from DBpedia that appear in the infobox, and types related to the con-
cept from Knowledge Bases (Freebase, DBpedia, WordNet and YAGO). The algorithm
generates a list of pairs [ci, si], where ci is a class selected from a list of candidate
classes C and si is a string from a cell in the evaluated column; the pairs are ranked
by the highest ranking instance (R) that matches with ci; the score is computed as
score = w × (1/R) + (w) × NPR where w is a specific weight and NPR the normal-
ized page rank obtained from Wikitology. For example for the column with writ-
ers in the previous example, the algorithm will get a set of classes C={dbpedia-
owl:Actor, dbpedia-owl:Musician,..,cn}, and it will generate the pairs {[Sting, dbpedia-
owl:Actor],[Sting, dbpedia-owl:Musician],..} with their respective rank. This approach
is evaluated with tables of people, places, and organizations reaching 83% of accuracy
for person entities, 80% for places, 61% for organizations and 29% for other types of
entities. Their approach was evaluated against 15 tables with 611 entities.

Limaye et al. [26] introduce an approach to annotate table content based on "lemmas".
A set of lemmas contains the entity candidates extracted from YAGO for a value cell,
where they use TF-IDF cosine similarity to evaluate if a cell value matches with any of
the candidates. They reached an accuracy of 83% for entity annotation.

3.2.3 Attribute detection

The attribute detection task consists in identifying the content of cells that correspond
to the attributes of one or more entities in the table. In this setting table headers
are considered as attributes, for example in Figure 3.13 the columns Date of birth,

40

Height and Weight can be considered attributes of the entities in the first column; in
this case, the names of columns describe perfectly their content, however this work
often requires differentiating columns by their name or content and to detect to which
entity the attributes correspond.

entity attributes
entity

Figure 3.13: Example of attribute detection

Wang et al. [46] use the Probase taxonomy to identify table attributes. The function
used receives the set of row content and it returns a triple (entity_type,
<set_possible_attributes>, confidence), where confidence indicates how many
attributes match with the given query. The evaluation results reached 91% in the
average confidence score where 53 of 90 queries returned all-correct results. The
main weakness of this approach is the coverage of the taxonomy used, which will not
reach a good confidence for unknown contexts. Furthermore, there is the problem of
common attribute names; for example in a table with headers [Name, Location, Date],
where the information in column Name may mention stadiums, hospitals, artworks,
etc., it is not possible to assign one of these labels without first exploring the cell
content and table context.

Another problem is selecting which column contains the main entity of a table for iden-
tifying related attributes. Figure 3.12 shows a table with songs, writers and albums;
the column year may be identified as an attribute for song and also for album. Some
works use a simple heuristic based on selecting the leftmost column as the main col-
umn entity including approaches by Cafarella et al. [7] and Pinto et al. [33], who
introduce this approach for querying information over tables. Venetis et al. [44], com-
pare the leftmost heuristic (select the leftmost column) with a classification method us-
ing Support Vector Machines (SVM) incorporating features such as: cells with unique
content, cells with numeric and date content, and the index position of the evaluated
column. They reached an accuracy of 83% selecting the leftmost column and 93% with
the classification method.

Not all approaches for table information extraction rely on identifying a main entity.
Approaches such as that described by Muñoz et al. [29] can rather extract relations
from tables without identifying or requiring a main entity column to be present; we
refer to these approaches as relation extraction approaches.

41

3.2.4 Relation extraction

The main idea of relation extraction lies in identifying relations between entities across
columns. We differentiate relations from attributes where we consider that attributes
represent specific values of a main entity while relations always are given between en-
tities; Figure 3.14, shows the relation written by between columns songs and writers,
and the relation part of between songs and original release. The column headers do
not always describe the name of the relation as per the second case, where the rela-
tion between the song and album columns is represented as part of in the Wikidata
Knowledge base.

part of
lyrics by

Figure 3.14: Relation extraction from tables

Mulwad et al. [43] extract relations from DBpedia, using an algorithm to get the score
of each relation based on the number of rows that have the same relation; the relation
with the highest score is selected, and after that, a heuristic is used to get the best
relations that describe the table, where the column involved in the most relations is
deemed to be the subject column identifying the main entity.

Limaye et al. [26] propose an approach for annotating table content based on lemmas:
sets of possible types, entity names and relations for a table taken from the YAGO
KB; their approach, reaches an accuracy of 83% for entity annotation, 56% for type
annotation and 68% for relations over a corpus of 1,691 entities, 73 types and 10
relations taken from 36 Wikipedia tables; they find similar results for a larger corpus
of web tables. One limitation of this approach is that it assumes regular tables without
merged cells and a small labeled dataset to evaluate results.

Other relation extraction methods based on local evidence were proposed by Muñoz
et al. [30], where they extract existing relations between a pair of columns in tables,
further incorporating relations between columns and the article name. Instead of us-
ing heuristics, they used machine learning algorithms to predict correct triples trying
to reduce the selection of incorrect candidate triples that may appear in common pair
columns. For example: consider a table with the column header (Player, Team, Coun-
try) and with the row (Lionel Messi, Barcenola F.C., Spain) ; if most table rows have
the relation birthPlace between the first and third column, relation birthPlace(Lionel

42

Messi,Spain) results in an erroneous candidate triple. The goal of the classification
step is to distinguish correct and incorrect candidate triples based on a set of features
defined on tables, columns and rows. They reached 81% precision over 34.9 million
unique triples extracted from 1.1 million Wikipedia tables.

In this work, we propose that if local evidence about tables is increased, relation ex-
traction methods could achieve better results. One such way would be through merg-
ing similar tables, which is the subject of the present work. We take the approach de-
fined by Muñoz et al. [29], which works on individual tables, as our baseline method;
we adapt it to work with merged groups of tables, comparing the results with and
without merging.

3.3 Clustering and merging tables

In this section we describe some works that use techniques to cluster and merge HTML
tables, which we believe may be useful for table interpretation, even though most such
techniques have been explored in other settings.

3.3.1 Clustering tables

Cafarella et al. [7] presents a relation search engine to retrieval tables given a string
query. The list of attributes of a table is used as a schema; for example [Name,
Date of birth, Height, Weight] is a schema from a table of persons. The attribute
<Weight> could occur in many schemas, including those from another context like
[Name, Weight, Diameter, Mintage], that makes reference to Olympic medals for
games. They use agglomerative clustering to join schemas with a function to measure
if a shared attribute like Name plays the same role in similar schemas. The results of
a join are presented to the user, suggesting a list of schemas related to the query text
so the user can browse through them to get more specific results.

Bhagavatula et al. [3] also introduce a method for mining and matching web tables
using semantic metrics. The method consists of joining two tables by similar columns.
To predict the most related columns they use the Semantic Relatedness score (SR)
[28], which allows to estimate the similarity of two article’s context, and the number
of shared column values; the pair of columns from the two evaluated tables with higher
scores are selected and joined.

A different approach for clustering was proposed by Yoshida et al. [48], where they
group tables that share a "unique" attribute in the tables dataset; the uniqueness of an
attribute means that the attribute identifies a unique context of a table in all datasets;
for example: a table column named <Capital> identifies with high probability a table

43

of cities or countries, while another column named <Station name> refers to metro
transportation routes. The related attributes with high probability of co-occurrence
are joined to create an ontology. They chose tables from the top 15 clusters by the
number of tables formed from 35,232 tables in Japanese, where each cluster is rep-
resented by a unique attribute; the method reached a precision of 94% in a Capital
cluster; nevertheless for more ambiguous column names as Name, Cache, etc. the
method reached only 50% and 33% of precision.

Cannaviccio et al. [10] introduce a system called Mentor, which extracts RDF triples
from groups of tables that share two columns like [country, capital]. They predict the
relation and type of entities based on a ranking of existing relations between entities
across columns, achieving 81% of precision using relational tables from Wikipedia. In
this work, tables are decomposed into pairwise binary relations before being merged
without considering the adjacent columns of the table and also filtering columns with
heterogeneous information; for applying this filter they use the entity types extracted
from DBpedia keeping columns with maximum coverage (> 0.8 ratio of entities of a
type in a column).

Gentile et al. [21] propose an approach for clustering tables based on word embed-
dings where table information is transformed to sentences using the subject column,
attributes and values, where the subject column is the left-most column with the high-
est number of unique values of type string; the attributes are extracted from the first
non-empty row, and use only string cell values. For example for the table in Figure 3.12
and the attributes [Song, Writer, Original release, Year], the sentence <h:song h:writer
h:original_release h:year> is created. Table 3.1 shows an example table interpretation
of table content. They cluster tables computing the cosine similarity between vectors
generated for each table. To evaluate the method they compare clustering using word
embeddings and bag of words, and use the pair completeness measure: the number
of entity matches (recall) and the reduction ratio of pair comparisons. They do not
evaluate the method in an information extraction process, but achieved 97% recall in
20 clusters using K-means with word embeddings and 50% using bag of words, while
for pair comparison reduction ratio they reached 94% and 92% respectively. They use
233 Web tables with 50,072 entity correspondences.

h:song h:writer(s) h:original_release h:year

v:be_my_girl_sally v:sting_andy_summers v:outlandos_d’_amour \$NUM\$

v:the_bed’s_to_big_without_you v:sting v:reggata_de_blanc \$NUM\$

..

Table 3.1: Example of table interpretation per Gentile’s approach

44

3.3.2 Merging tables

Once tables are clustered, they can be merged to combine their content. In the men-
tioned works there is no a definition of table merging; however we identify and de-
scribe the methods that can be used for this task.

3.3.2.1 Horizontal merging

Horizontal merging requires finding columns on which to merge tables, similar to a join
in the relational algebra, as shown in Figure 3.15. From a group of tables, one of them
is selected as the source table or source schema to which new columns (attributes)
will be added. In this case the type of join can be considered as a left-outer-join.

Figure 3.15: Example of horizontal merging

Google Fusion 1 is an experimental data visualization web application to gather tables
for data management using this type of merging as well as Bhagavatula et al. [3] that
implements automatic joins for table search tasks, where the system receives a source
table and retrieves tables that share values of the column key.

One of the advantages of this method is that it allows to merge information for entities
that are in different tables with different columns; however it requires establishing a
correct match between cell contents to ensure that the available information is joined
correctly.

1https://fusiontables.google.com

45

3.3.2.2 Vertical merging

Vertical merging consists of creating a new table with rows of grouped tables, similar
to a union in the relational algebra. For example in Figure 3.15, the table that would
result from vertical merging is shown in Figure 3.16, where a table with headers of
both tables was created and all rows were added.

Figure 3.16: Example of vertical merging

Vertical merging requires matching only columns rather than cell contents. Cannavic-
cio et al. [10] offer an example of an approach using this type of merging; they extract
and merge bi-column tables (e.g. [Name, Team] from the previous example) based on
the type and column names (the type is defined by the entity class identified in each
column). Yoshida et al. [48] merge table contents based on a main schema (set of
headers) which is generated using a special header that allows to identify the table
context, for example birthday (a table with birthday header might talk about people);
a table is generated with this column header and other columns that could appear in
the same context such as hobby; finally the new table is filled with information from
tables with these headers or similar header like interest instead of hobby.

3.3.2.3 Full merging

Full merging is similar to a full outer join in relational algebra where tables are joined
by a key and also new rows are added. Figure 3.17 shows the resulting table of ap-
plying this type of merging. We are not aware of a work applying such a merge in the
literature.

Figure 3.17: Example of full merging

46

3.4 Summary

Table information extraction involves different perspectives derived from the pro-
cesses mentioned in this chapter, such as entity and attribute detection and relation
extraction. Each work achieves different results due to the data and techniques used.
Table clustering has also been explored by a few works; the works of Cannavicio and
Gentile propose techniques that promise good results, grouping tables in different
ways. The former work clusters relational tables by pairs of columns for extracting re-
lations, but does not consider the full table structure; the second work uses word em-
beddings from the content of tables for mapping entities but uses a small dataset and
was not evaluated for the purposes of relations extraction. We believe that grouping
tables can improve information extraction in this setting and we evaluate this hypoth-
esis by extracting relations and comparing the results with and without clustering. In
the next chapter we present our proposal in various steps including grouping tables.

47

Chapter 4

Proposal

In this chapter we introduce our proposal briefly, describing the main tasks: the ex-
traction of the table corpus, the preparation of the knowledge base for querying and
feature extraction, and finally the extraction of triples. In the next chapters we will
address individual steps of the whole process in more detail.

HTML articles JSON tablesTable classification

and normalization

KB dump file
Pre-processing
dump file

Read KB Index file

JSON tables Filtered KB

JSON tables

KB index file

Triples + Features

wikipedia.org/Chile? entity/Chile

Querying data

Load filtered KB
in memory

Grouping tables

Figure 4.1: Proposal: Table relations extraction

48

4.1 Table extraction and normalization

The first task involves the extraction of HTML pages; in this work, we take the English
version of Wikipedia. Wikipedia has not provided a dump in HTML format since 2016;
currently it has dumps in XML and OpenZim formats, which can be read for extracting
tables, but there is also the possibility of downloading HTML files one by one using an
API, considering a filter for English articles. We extract the tables from Wikipedia by
using this API.

The HTML files have to be processed for extracting tables, trying to reject useless
tables such as layout tables, which often do not contain factual data and infoboxes
(extraction from which has been well-covered by previous works, such as DBpedia [5]
and YAGO [42]).

There are many tables with complex designs as per the example in Figure 4.2. To read
these tables automatically, it is necessary to convert them to matrices splitting merged
cells and extracting inner HTML tables.

Header

Inner table

Header

Figure 4.2: Complex table design

Figure 4.3: Table with different type of data

The challenges of this tasks are to keep the cell distribution and avoid losing the table’s
meaning, to support different and complex table designs, and to deal with some design
errors, and different types of content (see Figure 4.3).

49

(a) Wikipedia article:Giancarlo_Esposito

(b) Wikipedia article:Sadie_Sink

Figure 4.4: Two example HTML tables from Wikipedia

In this step the tables are extracted and normalized individually preserving the arti-
cle’s title, and serialized in JSON format; in this way we attempt to group similar tables
that belong to the same or different files, as per the example in Figure 4.4 whose tables
correspond to the articles related to the actor Giancarlo Esposito and the actress Sadie
Sink respectively. The result of normalizing Table 4.4b is present in Table 4.1; the cell
with the content Stranger Things was split, thus we can extract relations between the
entities mapped from each row.

Table 4.1: Example of table 4.4b normalized

Year Awards Category Nominated work Result

2018
Screen Actors

Guild Awards

Outstanding Performance

by an Ensemble in Drama Series

Stranger

Things
Nominated

2018
MTV Movie &

TV Awards

Best On-Screen Team

(with G. Matarazzo, F. Wolfhard,

C. McLaughlin, N. Schanapp)

Stranger

Things
Nominated

50

4.2 Knowledge base querying

Knowledge Basewikip
ed

ia.
or

g/M
ex

ico
?

entity/ex/M
exico

Country Position Name

Mexico FW Abraham Carreño

Mexico MF Jesús Manuel Corona

Argentina DF José María Basanta

Mexico DF Hiram Mier

(a) HTML table (players)

Country Position Name

ex:Mexico ex:Forward ex:AbrahamCareno

ex:Mexico ex:Midfielder ex:JesusCorona

ex:Argentina ex:Defender ex:JoseBasanta

ex:Mexico ex:Defender ex:HiramMier

(b) Table with entities

Figure 4.5: Example entity extraction from HTML tables

Our method for extracting information from tables relies on a reference knowledge
base, where we use Wikidata. For each table we need to detect entities in Wikidata
mentioned in each cell, extract the existing triples (binary relations) between pairs of
entities on the same row, and extract statistics about the entities and triples’ predi-
cates in order to build features which we will use for classifying correct triples.

We considered three ways of querying the knowledge base for extracting information.
Wikidata has a SPARQL query service for extracting up-to-date information, however
the query time is too slow, considering an average delay of 5 seconds; the second
option is to use a local endpoint to avoid the delay time, but due to the large size
of Wikidata, the use of on-disk indexes by most SPARQL engines, it also takes too
much time for the amount of random-access style queries that are required. The last
option is to load the required information for tables in memory. We adopt the last
option of loading and querying Wikidata locally in memory. To make the data fit in
memory, the dump file needs to be pre-processed, extracting only entity, relation and
predicate information relevant to the table corpus; this attempts to avoid overloading
the in-memory index and reduce query time.

There are many methods for mapping text to entities, as we have shown in previ-
ous chapter, and various Entity Linking techniques allow extracting Wikipedia links
corresponding to identified entities. Considering this insight we map the links in
table cells to the corresponding entities in the knowledge base. This task uses the
links provided by Wikidata between its entities and Wikipedia articles, but it requires
some preprocessing for correctly identifying links and looking for redirect pages, since
Wikipedia manages multiple URLs for one resource. Figure 4.5 shows an example
of mapping the links from a table to entities. Where a table cell does not offer a
link to a Wikipedia article we currently do not consider it in the extraction process.

51

Though not the focus of the current work, this limitation could be overcoming by
using the aforementioned Entity Linking techniques [26, 40, 4]. We create an in-
dex (for querying the knowledge base) only with the Wikidata entities mapped from
the tables in our corpus, as well as the relations found between the pairs of enti-
ties. Figure 4.6 shows the corresponding entities from Wikidata to the Wikipedia
links in the table (previously normalized); also we extract the existing relations be-
tween the mapped entities including the article entity, for example the relation cast
member:P161 between Stranger Things:Q19798734 and Sadie Sink:Q27452406. The
index that we keep in memory consists on a pair of key and value (k, v), where the
key corresponds to the Wikipedia link and the value to the Wikidata ID, for example
(https://en.wikipedia.org/wiki/Stranger_Things, Q19798734) and also the ex-
isting relations between the entities (Q19798734, P161, Q23452406); thus we will look-
ing for the Wikidata ID corresponding to a hyperlink and get the existing relations
between two entities. This initial process will allow us to create a "filtered knowledge
base" that can be stored in memory for later look-ups.

Figure 4.6: Mapping entities from a normalized table

4.3 Grouping tables

Considering a small table like Figure 4.4b, if it does not have any relation between
entities across columns, we could propose the relations extracted for entities of table
in Figure 4.4a by merging (taking the union of) the rows of both tables; considering
that they have the same headers, as per the example in Table 4.2. To achieve this we
elaborate on the criteria for grouping and merging tables that have the same structure.

The task of grouping tables requires a preliminary analysis to establish characteristics
of the data, an appropriate similarity measure, and the method for grouping tables,
particularly considering that our corpus contains tables from multiple topics; therefore
the main challenge for us is grouping and merging tables without selecting a specific
knowledge area within a large corpus while trying to support a variety of different
types of table structures.

52

Table 4.2: Example of merging two tables with same headers (Colors pink and green
identify the rows that come from both tables from example in Figure 4.4

Year Awards Category Nominated work Result

1995
Independent

Spirit Awards
Best Supporting Male Fresh Nominated

1995
National Board

of Review
Best Cast The Usual Suspects Won

...

2018
Screen Actors

Guild Awards

Outstanding Performance

by an Ensemble in Drama Series
Stranger Things Nominated

2018
MTV Movie &

TV Awards

Best On-Screen Team

(with G. Matarazzo, F. Wolfhard,

C. McLaughlin, N. Schanapp)

Stranger Things Nominated

4.4 Relation Extraction

There are many tasks in table information extraction, and many of them have been
implemented in different works, mentioned in the related work chapter; some of
these works are focused on extracting entities with their properties and correspond-
ing classes, while others are focused on extracting relations between entities. We will
focus on extracting relations across table columns, extracting the existing relations
for entities in a pair of columns and using these reference triples for generating new
candidate triples.

Associating properties to pairs of table columns, we extract binary relations that do
not already exist in Wikidata, which are proposed as candidate relations. Consider, for
example, in the merged Table 4.2 the relation (Q132351,P1411,Q697007) in Wikidata
indicating The Usual Suspects nominated for Best Cast, then we will propose this re-
lation to generate a candidate triple such as (Q19798734,P1411, Q2530270) indicating
Stranger Things nominated for Outstanding Performance by an Ensemble in a Drama
Series.

Within the set of candidate triples we also can find some incorrect relations, such as
(Q19798734,P166,Q268200) corresponding to Stranger Things was awarded Outstand-
ing Performance by an Ensemble in a Drama Series, because the exiting relation be-
tween The Usual Suspects and Best Cast; hence we have to identify which triples from
the set of candidate triples are correct; the next step is to perform a binary classifica-
tion to attempt to identify extracted relations as correct or incorrect.

53

4.5 Classification and validation

We perform supervised classification of triples, by training Machine Learning algo-
rithms with triples previously classified as correct or incorrect. Different algorithms
are validated to determine which performs better for our data, using validation and
test sets of triples (labeled by two annotators). The input for these algorithms con-
sists of features defined in Muñoz work [30] and some new features proposed by us.
The features are extracted from: the table, like the length of the content cell from
which entities were extracted; the occurrences of the predicate in the table; and some
statistics related to the proposed predicate such as the number of objects per subject
existing in the knowledge base.

The best algorithm is selected and trained with a set of labeled triples and later eval-
uated over the set of candidate triples; finally a sample of triples classified as correct
are randomly selected to manually verify if they were indeed correctly classified. The
final results consist of the precision obtained from this verification.

In the next chapters we discuss each step with more detail.

54

Chapter 5

Table Corpus

In this chapter we describe the corpus of tables used in this thesis, how it was ac-
quired, the data preprocessing applied over it, as well as data exploration results to
better understand the contents of the corpus.

5.1 Tables extraction

A total of 5,582,225 articles were downloaded from English Wikipedia. For getting
these articles we used an XML dump to extract article’s titles, since Wikipedia does
not have dump files in HTML format using these titles; we then downloaded HTML
pages using the Rest API of Wikipedia 1. (See Figure 5.1). From these pages we
extract a corpus of 17 million tables.

Wikipedia Dump

Article’s title Extraction

https:../api/rest_v1/...?

HTML articles

Figure 5.1: HTML files extraction

1https://en.wikipedia.org/api/rest_v1/

55

5.2 Tables classification

We perform an initial classification of the tables in our corpus (see Table 5.1) to de-
tect tables with useful content, based on Muñoz et al.’s [29] approach, where the style
classes of the tables are employed for detecting infobox tables used for defining at-
tributes and values of the article’s main entity; layout tables, such as toc tables used
for designing tables of content; and format tables that contain tables with navigation
controls and message boxes. In this classification we found that 52.5% of tables in
the dataset are format tables and 21.7% are infoboxes; for our purposes we do not
consider infoboxes since information extraction for this type of table is already well-
covered by works such as DBpedia [5] and Yago [42].

Table 5.1: Tables classification

Tables Total %

Infobox 3,816,975 21.7%

Small (dim<2x2) 566,883 3.22%
Toc 496 0.002%
Layout tables 9,211,566 52.5%
Tables with usefull content 3,957,549 22.5%

Total 17,553,469 100%

5.3 Tables normalization

Figure 5.2: Table normalization model

After the initial classification we perform normalization, following the next steps:

• Split merged cells (colspan and rowspan) duplicating their content.

• Extract and separate tables arranged inside other tables per Figure 5.3.

56

Figure 5.3: Table with inner tables

Figure 5.4: Table with inner tables used as an organizer chart

The result of table normalization is an m × n matrix MT for each table T in the set of
tables T , from which the set of headers HT of length n is extracted. The table header
may be composed of multiple rows (the table caption was extracted separately and is
not part of the table matrix), hence we identify the table body as BT for (i ≤ m, j ≤ n),
(see Figure 5.2).

A total of 3,967,412 (98.68%) tables were successfully normalized (the number of total
tables increased because of the extraction of inner tables).

As we require headers for grouping tables, we reject tables without headers. While
some tables without headers are part of the original set, others are the result of unnest-
ing tables (per Figure 5.4) where all are discarded. As a result a total of 3,631,229
(90.31%) tables with headers are considered. In the next section we describe the

57

Table 5.2: Results after table normalization

Tables normalized 3,967,412 98.68%

- Wikitables 2,479,245 61.66%

- Tracklist 128,194 3.19%
- Multicol 146,950 3.67%
- Others (collapsible, no
style class, etc.)

1,213,023 30.17%

Tables not normalized 52,999 1.31%

- Ill-formed 4,488 0.11%
- With inner tables 48,511 1.20%

Total 4,020,411 100%

Table 5.3: Useful tables

Useful tables 3,631,229 90.31%

- More than one column
header

3,523,890 87.64%

- One column header 107,339 2.66%

No-useful tables 389,189 9.68%

Total 4,020,411 100%

preprocessing tasks for detecting table headers.

Table title

Table headers

Table body

Figure 5.5: Table structure recognition

58

5.4 Table Interpretation

The normalized tables are saved in a JSON format keeping their HTML content, which
allows to interpret the table structure and extract specific information such as the
table title and headers. The content of JSON files is described following:

{"tableId": "942176.1",
"title": "Wettest tropical cyclones and their remnants in Antigua and

Barbuda Highest-known totals",
"htmlMatrix": [[..],[..],[..]],
"startRows": 2,
"colHeaders": ["precipitation**rank@1", "precipitation**mm@1", "

precipitation**in@1","storm**storm@3", "location**location@3","ref

**ref@1"],
"rowHeaders": [],
"nrows": 4,
"ncols": 6,
"tableType": "WELL_FORMED",
"articleTitle": "List of wettest tropical cyclones by country",
"articleId": 942176,
"attrs": {class: ["wikitable"],..},
"articlePath": ’../’
}

Listing 5.1: Example of JSON file structure for a table

• tableId: unique ID to identify the table, (e.g. 10.1 indicating table 1 of article
10).

• title: the table’s title that was extracted from the caption element; if a table
does not have a caption, the first row with colspan that covers all columns is
considered to be the table title.

• htmlMatrix: matrix generated after table normalization, splitting span cells
where each cell contains an HTML tag from the original table.

• startRows: index of row where the table body starts (k).

• colHeaders: ordered list of the column headers.

• rowHeaders: ordered list of the row headers extracted from the first column of
a table.

• nrows: number of table body rows.

• ncols: number of table columns.

• tableType: identifies if a table is WELL_FORMED, ILL_FORMED or is a table
WITH_INNER_TABLES. For the remainder of this work, we use only WELL_FORMED
tables. ILL_FORMED tables do not have a well defined table matrix, as the orig-
inal table could not be normalized. Tables marked as WITH_INNER_TABLES,

59

have multiple tables inside that could not be extracted.

• articleTitle: article’s title.

• articleId: unique number for the article in the corpus.

• attrs: HTML attributes of the table.

• articlePath: path of the original article file.

In what follows we describe in more detail the process of extracting these metadata
from the raw tables.

5.4.1 Header identification

HTML tables have the element <th> to represent table headers; nevertheless in some
tables these tags may not be present, where we also consider the following criteria to
recognize headers that do not use this tag:

• Cells with element for text with bold style.

• Cells with element <abbr> used to make abbreviations of text.

For extracting table headers, we look over table rows and and get the last row with
headers without colspan. We then join headers in all levels to avoid ambiguous infor-
mation. For example in Figure 5.5 the two row headers are joined getting the struc-
ture: [precipitation**rank@1, precipitation**mm@1, precipitation**in@1,
storm**storm@3, location**location@3, ref**ref@1], where ** indicates a sub-header
and @ indicate the type of values in the column (discussed later). We also consider
columns without names from tables like Figure 5.6 where the second column has no
name; such columns are named spancol, and the resulting header structure is [no@1,
spancol@4, position@3, player@3].

spancol

Figure 5.6: Table with empty header

5.4.2 Text processing

Because we wish to merge as many similar tables as possible, the text header was
stemmed to represent it in its basic linguistic form. This process was necessary to

60

eliminate minor differences between headers, such as those differentiated by singular
and plural; for example, taking writer and writers, after stemming the header for
both columns will be writer. Common special characters were also eliminated, such
as periods and parentheses. For example in Figure 5.7 we extract the column names
[name_of_award, award, award_as, award] as a result of applying text processing over
the table headers. Given that stemming words produces similar headers as per the
example, it may also lead to false matches between table headers; for this reason it is
necessary to consider other properties to identify better the table columns; in the next
section we will describe this process.

name_of_award award_as awardaward

Figure 5.7: Text processing over table headers

To eliminate noise in the dataset we replace number headers with word numberheader
(e.g., columns named 1,2,3, etc.) and years by yearheader. In Table 5.4 we provide a
list of the top twenty words in table headers.

Table 5.4: Top 20 stemmed header names in tables

year 376405 name 187896
no 336579 player 187014
titl 293632 posit 168954
parti 274531 result 162588
vote 249535 rank 160743
candid 241385 length 135635
percentag 241086 numberheader 133440
note 227520 pts 120074
team 212292 pos 116233
date 199161 time 104324

5.4.3 Data types

To differentiate tables by the type of content in each column the types: numeric[1],
date[2] and string[3] and other[4] (empty columns) were used. For example in the
table of Figure 5.6 the types corresponding to each header are [1,4,3,3], so the com-
plete header structure is represented as [no@1, spancol@4, posit@3, player@3]. This
assignment allows to differentiate columns with the same name but different types
of content per the example in Figure 5.8, where column headers teams and players

61

(being transformed to singular words) have the data types numeric instead of string,
unlike the column player in the previous example (Figure 5.6).

Figure 5.8: Table with numeric type of columns

Some tables have repeated column names as per the example in Figure 5.9 (after
colspan normalization). To avoid incorrect assignments, we numbered the columns
with the same name resulting in the header [event@3, 1_gold@3, 2_gold@1, 1_sil-
ver@3, 2_silver@1, 1_bronze@3, 2_bronze@1], where the columns can be distinguished
by their number and data type; we only assign numbers to repeated columns to allow
for matching tables that reorder columns with unique names.

Figure 5.9: Table with repeated name headers

For extracting data types various patterns were used. For the Date data type we used
the library dateutil 2, which consider a list of common date patterns 3 used on the Web,
such as month and day abbreviations, and time zone; additionally we add a pattern to
recognize periods of year like 1990-2000, because there are many tables with this
type of content. For Numeric data, we consider a numeric pattern extracting special
characters such as parenthesis, grades and currency symbols; the remainder of string
data was recognized as String while the empty text columns were marked as Other.
Figure 5.10 shows the data type distribution in our tables, extracting the ratio of each
column type by table, from which we make the following high-level observations:

• 60% of the tables have numeric columns while 20% of tables have more than 50%
numeric columns.

• About 20% of the tables have date columns.
2https://dateutil.readthedocs.io/en/2.5.0
3https://www.w3.org/TR/NOTE-datetime

62

Figure 5.10: Distribution of column data types

• 75% of the tables have at least two string columns.

• About 25% of tables have empty columns.

There is a large percentage of tables with numeric columns, from which we currently
do not extract entities; however almost all tables have at least one string column from
which we can potentially extract entities, while 75% of tables have at least two string
columns, which makes it possible to extract entity relations between them. In fact, we
are able to also extract relations from tables with a single string column, as we add a
"virtual" column to each table containing the entity of the article. We describe this in
the next section.

Table 5.5: Example of a normalized table with article entity

Protagonist article City Country Pop. (2015)

South America Sao Paulo Brazil 11,967,825

South America Rio de Janeiro Brazil 6,476,631

South America Mexico City Mexico 8,918,653

South America Santiago Chile 5,507,282

5.5 Article’s table entity

The article’s name is included in each row of the tables as a new "virtual" column
for extracting relations between entities within tables and the entity corresponding
to the article’s title, as Muñoz et al. [29] propose in their work. This method aims

63

to find relations, for example, in attribute-value tables where the main entity is not
within table. In Table 5.5 is an example of a table with the article entity included as
a new column. We use a representative index of -1 for the new column and the name
"protagonist article" for the column.

64

Chapter 6

Knowledge Base Querying

In this chapter we describe the process of extracting reference knowledge from Wiki-
data, which we use to enrich data from tables and later to propose relations between
table columns, extracting new candidate triples. We also present some statistics of the
data extracted.

6.1 Wikidata Access

Wikidata has an endpoint to query its knowledge base; however since we have a large
amount of data extracted from tables for querying, we used a dump file downloaded
from the official site 1 to extract information rather than overloading the endpoint.
Wikidata has multiple versions of dump files in different formats. For our purposes we
used two versions:

• A Turtle file that contains the entire knowledge graph of Wikidata, from which
we extracted the entities.

• An N-triples dump file that contains direct relationships without qualifiers.

A total of 51,488,027 entities and 4,936 properties were extracted from these files. To
achieve an efficient querying process, we load the information in memory, building a
virtual index to store all the necessary information over which we can perform efficient
lookups to find candidate relations and features.

1https://dumps.wikimedia.org/wikidatawiki/ - July 30, 2018

65

6.2 Entity extraction

Most tables in Wikipedia with String content have hyperlinks to Wikipedia resources;
we use these hyperlinks to identify the Wikidata entities in each table cell. In Section
5.3 we describe table normalization where each table is represented as an m×n matrix
with the table body BT (i, j) (for i ≤ m − k, j ≤ n). A cell of table body can contain
multiple links, which we represent as WT (i, j) (using the notation applied in Muñoz et
al. [29]). For each w ∈ WT (i, j) we map the Wikipedia URL (pre-processed replacing
special characters and adding the namespace http://en.wikipedia.org/wiki/ when
links are incomplete) as well as the article title to the corresponding entity in Wikidata.

For mapping the URLs, we use the Turtle file that contains triples about the Wikidata
ID of each Wikipedia Article, as is shown in Listing 6.1. The entity ID can also be
extracted using SPARQL by querying for the Wikipedia Article as per the example in
Listing 6.2.

<https://en.wikipedia.org/wiki/Santiago> a schema:Article ;
schema:about wd:Q2887 ;
schema:inLanguage "en" ;d
schema:isPartOf <https://en.wikipedia.org/> ;
schema:name "Santiago"@en .

Listing 6.1: Example of triple of Wikidata that has ID and Wikipedia Article

PREFIX schema: <http://schema.org/>
SELECT ?id WHERE {
<https://en.wikipedia.org/wiki/Santiago> schema:about ?id.
}

Listing 6.2: Example query ID from Wikipedia Article

Additionally it was necessary to query for redirect pages in Wikipedia using the Wikipedia
service available for this task (see Listing 6.3). A total of 929,336 new hyperlinks were
found. Finally 3,175,548 entities were identified from hyperlinks in table cells. The
number of tables with hyperlinks is shown in Table 6.1.

https://en.wikipedia.org/w/api.php?action=query
&titles=page1&redirects&format=jsonfm&formatversion=2

Listing 6.3: Example redirect Wikipedia Querying

Table 6.1: Tables with hyperlinks

Total Tables 3,631,230 100%

Tables with hyperlinks 3,100,794 85%
Tables with Wikidata entities 3,050,328 84%

66

There is an average of 5 Wikidata entities per column in the tables, and an average of
5 columns and 13 rows per table with such entities.

Finally we denote by ET (i, j) the set of Wikidata entities extracted from the corre-
sponding cells of table T .

6.3 Triple extraction

With Wikidata entities now identified we extracted candidate relations by finding ex-
isting relations in Wikidata for pairs of entities on the same row of a table.

We used the N-triples file dump for extracting relations between entities; this file
contains triples of the form (subject, predicate, object), which was converted to a
simple CSV file using the entity and predicate identifiers.

For extracting relations in both directions we add inverse triples (object, predicate-inv,
subject), for example (Chile, capital, Santiago) and (Santiago,capital-1,Chile). After
sorting the file we can get all (inverses) relations where Santiago is involved such as:
(Santiago, capital-1, Chile), (Santiago, region, Region Metropolitana) (see an example
of extracted triples in Figure 6.1), making it possible to create an index in memory
and look up relations by a given subject entity; we discarded triples where either the
subject or object entity do not appear in any table, to save space.

Figure 6.1: Example of inverse relations extracted

67

6.4 Statistics for features modelling

In addition to triples, we extracted statistics for each predicate. We believe that this
information is relevant to determine features that help to describe relations (explained
in Chapter 9); for example if there exist multiple objects for a subject and predicate
we could add a new object, but we often should not add new objects for a predicate
that usually has only one object like capital, and where an object already exists. Fig-
ure 6.2 shows the multiplicity of predicates capital and located in administrative
territorial entity of Wikidata.

Figure 6.2: Example of predicate multiplicity

On the other hand we also add information about the range and domain of predicates
to identify triples that do not comply with this condition. For example in Figure 6.3,
is an example of table where a triple proposed with predicate country for sport is
incorrect given the observed class of the object entity.

For extracting such information about entities and predicates we read Wikidata dump
files, extract necessary information and build local indexes containing the following
data, which later will be used for extracting candidate triples from tables, that will be
classified as correct or incorrect by associating features to them.

• WikidataRedirects: list of Wikipedia links extracted from tables with their redi-
rect links.

• WikidataLinks: list of links extracted from tables and article names with their
corresponding Wikidata ID.

• WikidataRels: list of entity pairs (Wikidata ID) related with one predicate by
line.

68

Figure 6.3: Example of object entity not in range of predicate

Figure 6.4: Range and domain predicate extraction

• WikidataEntityClass: list of entities with their corresponding list of classes.
Wikidata uses the predicate P31 that indicates the class of an entity. One entity
can belong to multiple classes.

• WikidataDomain: list of domain classes by predicate. Wikidata does not offer
explicit domain or range definitions so we rather extract this information from
the data. Figure 6.4 shows the classes in the domain and range of a predicate;
since an entity is related to many classes we consider all classes for subjects

69

(domain) and objects (range) existing in the knowledge base.

• WikidataRange: list of range classes by predicate.

• WikidataPropStats: statistics by predicate with the number of unique objects,
number of unique subjects, number of triples, maximum number of objects by
subject and maximum number of subjects by object.

• WikidataSubjPredCount: number of objects by subject and predicate.

• WikidataObjPredCount: number of subjects by object and predicate.

In Appendix A there is a summary of predicates and entity classes that were extracted
from tables.

70

Chapter 7

Grouping tables

This chapter contains an overview of the tables extracted from Wikipedia, using some
clustering algorithms to explore the distribution of the data and gain initial insights
about existing groups of tables.

7.1 Clustering overview

Related works [7, 3, 48, 10, 21] present different ways of grouping and joining tables.
The method to be used depend on the general objective; for example for extracting
relevant information about a certain topic, which involves searching and retrieving
similar tables based on a specific query, the search may be implemented based on
a similarity measure for recovering the most similar tables based on matching the
specific query to table content. On the other hand, for extracting information at large
scale, as is our goal, the grouping task is independent of a particular query, and rather
requires scalable methods for partitioning the entire corpus of tables into groups; a
natural place to start is to consider clustering methods, where we present exploratory
results for applying standard clustering methods over our tables.

We used table headers to generate clusters over 10,000 tables extracted randomly,
considering the hypothesis that tables with same column names will contain similar
entities, for which we vectorize the table headers using the term frequency in the
dataset.

We consider that column table headers are a set of words (without a specific order
e.g: [country, city, name, elevation] and [name, city, country, elevation]), and use the
Jaccard distance which measures the similarity between two sets: J(A,B) = |A∩B|

|A∪B| .

In the following we present some results of applying clustering algorithms over the
sample data.

71

Figure 7.1: Cluster visualization of sample test using T-SNE algorithm (the color
represents the normalized distance from each point to the closest points)

Figure 7.2: Mean of jaccard distances sample set

Figure 7.1 shows a cluster representation using the T-SNE algorithm (T-Distributed
Stochastic Neighbour Embedding), which makes a non-linear dimensionality reduc-
tion preserving the local distances from each point to their neighbours. Its goal is to
minimize the difference between the normal distribution of points in high-dimensional
space to the distribution when projected to 2-dimensional space. The algorithm uses
a parameter called perplexity that is roughly equivalent to the number of the nearest
neighbours considered for matching the two distributions, and the learning rate for
the gradient descent process applied to find the best fitting. After some iterations,
we consider a perplexity and learning rate of 10; using a larger number for the model
improves learning speed but the visualization does not change significantly. Figure 7.1
shows small dense clusters with Euclidean distance of 0, which reflects the presence of
identical sets of headers and a large quantity of headers with about 0.5 distance. The
mean distance to the 10 nearest neighbours is 0.08, as is shown in Figure 7.2. More
than 50% of tables in the sample set have at least one table with the same header;
for this reason the mean distance of all points is small. If we apply DBSCAN anecdo-
tally over the sample data set considering a maximum distance of 0.2, and 2 minimum

72

Table 7.1: Cluster visualizations of sample set of 10000 tables

Algorithm
2D visualization of clusters 2D visualization of clusters size

DBSCAN

HDBSCAN

HIERARCHICAL

COMPLETE

LINKAGE

points by cluster, we get 582 clusters. Despite the fact that DBSCAN groups tables
that share similar headers (e.g. country, capital, population and country, city, popu-
lation), the algorithm clusters data points of less dense areas, due to the min_points
parameter selected; if we increase this parameter, we can avoid some noise, but skip
small clusters. The density variation algorithm HDBSCAN resulted in 167 clusters;
the main difference between both algorithms is that the second one considers points
in less dense space as clusters while DBSCAN considers them as noise and groups
those points with similar density. We also used hierarchical clustering, building a tree

73

with maximum distance of 0.2; the result was 2,842 clusters.

Table 7.1 shows the visualization of clustering using these three algorithms, consider-
ing Jaccard distance. Our exploratory analysis here raises three problems using stan-
dard clustering methods. First we note that different clustering methods give different
results depending on the parameters configuration required for each one, where it is
not clear how we should configure the clustering algorithm, since we are not focused
on performing the algorithms for specific groups. Second, these clustering methods
tend to group by overlapping terms in table headers, but this does not necessarily cor-
respond to what we want, which is to group table for which the same knowledge-base
relations hold between pairs of columns; for example two tables with [country, city,
elevation] and [artist, city, country] have a Jaccard distance of 0.5, but we do not want
to merge these tables. Third, there is the issue of scale, where we perform clustering
experiments on a small fraction of our overall corpus, but scaling these methods for
the full corpus has a high cost.

7.2 Grouping tables proposal

Figure 7.3: Distribution of tables with same headers

In the previous section we show different clustering methods for grouping tables using
the headers; this overview suggests that the tables in our Wikipedia corpus do indeed
form natural clusters which may be due to the use of standard templates that auto-
matically generate tables with a particular structure for a particular purpose (e.g. the
climate of a city) or due to users manually copying and pasting similar tables from re-
lated articles and changing the content. Such results are encouraging for this work as
we expect clusters to capture large groups of tables for which the same relations exist
between pairs of columns. Also we observe that it is possible to group similar tables
considering a distance measure; however, such methods are not directly applicable

74

for our use-case; for this reason we propose to group tables based on having the same
(normalized) headers. We choose this conservative form of grouping tables to avoid
introducing noise to the relation extraction process, for which not merging relevant
tables will have less (negative) effect than merging two unrelated tables for which dif-
ferent relations are applicable, allowing us validate our method over the whole corpus
of tables without filtering those that do not fit in any cluster if we apply other cluster-
ing methods. We thus consider to sort the headers of the table to group tables with
headers in different order but with similar information.

Grouping tables by their header, we achieve a total of 1,135,977 groups; this large
number is due to tables with unique headers. Figure 7.3 shows the number of tables
by group; we can see that 30% of the tables have unique headers, and conversely
about 30% of the tables are in groups formed with more than 1000 tables. Within
these groups, there may still be tables that happen to have the same header but that
are unrelated, meaning that different relations hold between their columns. In the next
chapter, we will propose a heuristic method to detect and repair such cases based on
the relations extracted for individual tables, but first we present a initial evaluation of
groups of tables with the proposed method.

7.3 Evaluation of table groups

We extracted the top 10 groups of tables extracted from grouping tables with the same
header, to evaluate how similar in structure and context are the tables in each group.
A total of 250 pairs of tables were randomly extracted from each group. These pairs of
tables were then evaluated manually to see if they should be merged (yes), should not
be merged (no), or were partly similar, meaning that the structure is similar but not
exactly the same, as per the example in Figure 7.4. The results of this evaluation are
shown in Figure 7.5. From the 10 groups evaluated, one of them contains tables that
are partly similar, since we excluded the name of empty table columns in the dataset;
the difference in this group is because it contains tables with an empty column and
others without it (see Figure 7.4), nevertheless this variation does not change the
meaning and context of the tables inside the evaluated group.

Figure 7.4: Example tables from group 1

With this manual evaluation we have more certainty that the proposed relations (at
least) for the larger groups of tables are in the same context, however there is still

75

0. 1__parti@3, 2__parti@3, candid@3, percentag@1, vote@1, +/- @1
1. 1__parti@3, 2__parti@3, candid@3, percentag@1, vote@1
2. no@1, player@3, posit@3
3. review_score**rate@1, review_score**sourc@3
4. length@1, no@1, titl@3
5. countri@3, descript@3, ship@3
6. note@3, role@3, titl@3, year@2
7. 1@1, 2@1, 3@1, 4@1, spancol@3, total@1
8. length@1, no@1, titl@3, writer@3
9. player@3, posit@3

Figure 7.5: Evaluation of pair of tables from top 10 groups

the possibility of finding tables with same headers but with different information, for
example in tables with not very specific headers like [name, country], where name can
contain different types of entities. Rather than use the classes of entities from each
table, we explore another alternative using the candidate triples. In next chapter we
present the candidate triples extracted from individual tables and also from the group
of tables that are merged using the vertical merging method.

76

Chapter 8

Relation extraction

As we propose to compare two methods of extracting relations with respect to Wiki-
data: from individual tables based on Muñoz et al.’ [29] approach and from merged
tables, in the present chapter we present the candidate triples extracted using both
methods.

8.1 Candidate triples from individual tables

For extracting the candidate triples from individual tables we iterate over the m × n
body BT (i, j) of each table matrix (for i ≤ m, j ≤ n), reading the entity pairs {(ei,j, ei,k) |
ei,j ∈ ET (i, j), ei,k ∈ ET (i, k), i ≤ m, j < k ≤ n}, where any relations found in (ei,j, ei,k), are
added to the pair of corresponding columns (hj, hk) = (HT (i), HT (k)); after extracting
the candidate relations from each entity pair, we iterate over the table generating
candidate triples with the suggested relations for each (hj, hk). The article’s entity is
added as a virtual column in the table (e.g. ha in Figure 8.1); in this way candidate
triples between entities within tables and the article’s entity can be also extracted.

Figure 8.1: Example of candidate triples extraction from individual tables
.

In Figure 8.1 we observe that relations r1 and r2 extracted from the triples between
entities (a,b) can be proposed for the pair of entities (d,e) generating two novel can-
didate triples: (d,r1,e) and (d,r2,e).

77

About 14 million existing triples were extracted from Wikidata and a further 62 mil-
lion candidate triples can be proposed considering these existing relations. Next we
describe the method used for extracting candidate triples by merging tables.

8.2 Candidate triples by merging tables

Figure 8.2: Example candidate triples extraction by merging tables
.

We apply vertical merging to join table rows generating a virtual merged table (keep-
ing the merged table in memory) from each group of tables with same header. We
illustrate the relation extraction process with an example in Figure 8.2; here we iden-
tify two types of candidate triples: the candidate triples from the same table (red line),
for example triples with relations r1 and r2 for the entity pair (d,e); and the candidate
triples by merging both tables (green line), resulting in the relations proposed for (x,y)
and the relation r3 for the entity pairs (A,a) and (A,d); we denote the set of candidate
triples that can be extracted without merging tables as I and the new triples that only
would be achieved by grouping and merging tables, which we denote as G − I, since
G includes all triples.

The relation extraction process allows us to propose relations for entities in tables that
do not have any one, or add new relations for entity pairs. For instance, considering
the two tables in Figure 8.3, we add the relations residence for the entity pairs of
rows 2, 3, 4 and also add this relation for the entity pairs of the second table; likewise
the relation placeOfBirth is added to entity pairs of the first table. Since both rela-
tions are used to create triples from tables where no such relation previously existed,

78

Country Position Name

1 Mexico FW Abraham Carreño

2 Mexico MF Jesús Manuel Corona

3 Argentina DF José María Basanta

4 Mexico DF Hiram Mier

Country Position Name

5 Portugal DF Paulo Ferreira

6 Germany MF Marko Marin

7 England DF Ashley Cole

8 Spain DF César Azpilicueta

1 residence (Abraham Carreño, Mexico)

5 placeOfBirth(Paulo Ferreira, Portugal)

6 placeOfBirth(Marko Marin, Germany)

7 placeOfBirth (Ashley Cole, England)

8 placeOfBirth (César Azpilicueta, Spain)

Figure 8.3: Example of existing triples from two tables indicating the source rows

Table 8.1: Example of candidate triples extracted based on Figure 8.3

Relation Source

2 residence (Jesús Manuel Corona, Mexico) I

3 residence (José María Basanta, Argentina) I

4 residence (Hiram Mier, Mexico) I

1 placeOfBirth (Abraham Carreño, Mexico) G− I
2 placeOfBirth (Jesús Manuel Corona, Mexico) G− I
3 placeOfBirth (José María Basanta, Argentina) G− I
4 placeOfBirth (Hiram Mier, Mexico) G− I
5 residence (Paulo Ferreira, Porugal) G− I
6 residence (Marko Marin, Germany) G− I
7 residence (Ashley Cole, England) G− I
8 residence (César Azpilicueta, Spain) G− I

Figure 8.4: Number of tables by group (a) including article’s entity relations and (b)
with no article’s entity relations

79

we marked the triples as "triples from group". The results of triples extraction are
shown in Table 8.1.

With this approach we reached 398 million candidate triples that can be extracted only
by merging tables. These triples result from proposing relations extracted from about
26.3% of the 3,631,230 individual tables, generating new triples for about 24.1% of
the tables that contain no relation, including triples involving the article’s entity and
10% of tables with no article entity relations. Finally it is possible to propose relations
for 1,830,189 tables (50%), as shown in Figure 8.4.

The next step is to identify which of the extracted relations are correct, since as we
see in Table 8.1 the relation residence may not be correct for entities in the second
table; thus we propose to evaluate triples from both groups: those extracted from the
same table (I) and those resulting only by merging tables (G− I).

8.3 Evaluation of candidate triples

The precision of candidate triples was evaluated initially considering the number of
correct triples that we can achieve with this method.

From the 62 million candidate triples extracted from individual tables and 398 million
candidate triples extracted by merging tables, we randomly selected 100 triples from
each group and classified them as correct or incorrect; we also consider to add two
classes: contextual and unknown. We describe these labels following:

• Correct: indicates that a triple is semantically correct following the use of the
predicate in the Wikidata knowledge base and being applicable for the given sub-
ject and object. An example of this class is the triple extracted from a table with
the columns [artist@3, song@3]: (Just_Like_Fire :Q23902348, P76:lyrics
by, Pink_(singer):Q160009).

• Incorrect: indicates that the triple is not correct per the previous definition. For
example from a table with columns [citi@3,countri@3] the triple (United_States:
Q30, P36:capital, Burlington,_Vermont:Q31058) is incorrect.

• Contextual: the triple was correct at some point but not currently. For example
given a table with headers [countri@3, represent@3] the triple (United_States:
Q30, head_of_state:P35, Barack_Obama:Q76) is contextual.

• Unknown: a triple for which the judge lacks the required knowledge and in-
formation for classifying it as correct or incorrect; this may include highly sub-
jective cases. For example a table with columns [actor@3, film@3] the triple
(Mos_Def:Q38875, P800:notable work, The_Italian_Job:Q1051032).

The triples were classified manually through a web application that provides links to

80

Wikipedia articles and Wikidata entities to facilitate the annotations (see Figure 8.5).
For example, from the table in Figure 8.6, we extracted the triples shown in Table 8.2,
one of which is classified as correct and the other one as incorrect.

Figure 8.5: Application used for triples annotation

Figure 8.6: Example table from which triples in table 8.2 where extracted

Table 8.2: Example of triple classification

Table Subject Predicate Object Label

500871.10
Mostasteless
:Q778240

record label
:P264

Psychopathic_Records
:Q2116093

Correct

500871.10
Myzery
:Q6949375

lyrics by
:P676

Twiztid
:Q1849210

Incorrect

81

Table 8.3: Initial labeling of sample triples from I and G− I

Triples Annotators Correct Incorrect Contextual Unknown

I
A1 11 73 3 3

A2 18 68 0 4

Agreement 73% 10 63 0 0

G - I
A1 5 93 0 2

A2 10 86 1 3

Agreement 88% 4 84 0 1

Table 8.3 shows the results of labeling the sample set of triples, where we initially
achieved about 80% of agreement in both sets of triples. According to this exercise
we realize that some triples, where we do not achieve a total agreement, are mostly
because of the use of predicates and also of lack of knowledge. For example the triple
(Copernicus:Q619, P17:country, Poland:Q36) may be correct, however the pred-
icate P17:country should be used only for objects and places or events; another ex-
ample is the triple (Q19444:Birmingham_City_FC, P5138:season of club or team,
Q3996006:2009-10_ Tottenham_F.C._season) here the correct subject should be
Tottenham_Football_Club or the correct predicate P1923:participating team. Af-
ter reviewing the cases with different labels finally we agree on 23 correct triples from
I and 10 correct triples from G−I, leaving 73 and 86 incorrect triples from each group
respectively. The difference (2%) was considered contextual and unknown.

Figure 8.7: Table with multiple entity cells

82

Figure 8.8: Triples generated from
tables (I) with multiple entity cells

Figure 8.9: Triples generated by merging
tables (G− I) with multiple entity cells

The results show that the number of incorrect candidate triples increases in the case
of merged tables, which is to be expected as we extract candidate triples for all rows
if any row witnesses a given relation; larger tables thus lead to more candidate triples
and more noise. In absolute terms, however, merging tables does lead to more correct
triples extracted as candidates. Whether or not the information extraction process
benefits from merging tables then depends on the next phase, which attempts to auto-
matically classify the large amount of candidate triples. Nevertheless the low number
of correct triples was deemed a risk for training a good model, where we thus looked
for a way to filter (mostly) incorrect triples.

In the initial annotation process we observed that most of the triples that come from
cells with more than one entity are incorrect as per Figure 8.7 where the column
Best Director contains cells with more than one entity and we can not propose correct
relations with entities from the first column. From the total of sample triples, 59 triples
from I are from cells with more than one entity, of which 53 are incorrect; while 35
triples from G − I come from this type of cells, of which 32 are incorrect. Based on
this observation we decide to delete triples that come from multiple entity cells.

After applying the filter, 21 million candidate triples from I and 145 million candidate
triples from G−I were extracted respectively; and considering that cells with multiple
entities also produce multiple candidate triples for rows with one subject and object
entities, we do not consider these candidate triples. Finally 18 and 134 million of
triples were extracted from each set.

8.4 Dividing table groups

Additionally to solve the issue where unrelated tables can be erroneously grouped
producing incorrect triples we explore the option of dividing groups that may have un-

83

related tables, splitting those whose tables contain columns with conflicting relations;
for example two tables with headers [name, country] may be conflicting as per Figure
8.10, where the first one has the relation P276:location between rivers and country
and the second one P1532:country for sport. Given that pairs of columns may have
more than one relation, we rank the relations by frequency and consider only the most
frequent.

Figure 8.10: Tables with conflicting relations

We define the conflict of two relations in the knowledge base by the number of entity
pairs (a, b) in the corresponding columns that have two different relations r1 and r2.
If the two relations have multiple common entity pairs the conflict is lower than in
the other case. For example if the predicate P19:place Of Birth and P1532:country
for sport have multiple entity pairs in common (e.g. {(Lionel_Messi, Argentina),
(Diego_Maradona, Argentina)} then these predicates have a high correlation and
there is no conflict between them. We consider a threshold of 0.5 as the ratio of the
number entity pairs (a, b) with both predicates (e.g. r1:P276 and r2:P1532) and the
number of existing triples with the predicate in the knowledge base, as following.

correlation = max(|r1,r2(a,b)|
|r1(a,b)| ,

|r1,r2(a,b)|
|r2(a,b)|)

Where |r1, r2(a, b)| is the number of entity pairs that have both relations r1 and r2, while
|r1(a, b)| is the number of entity pairs that have the relation r1 and |r2(a, b)| the number
of entity pairs that have the relation r2; since one of the relations may be more popular
in the knowledge base we take the maximum of both ratios. If the correlation obtained
is less than the threshold it means that there are few pairs of entities that have both
relations; in this case they will be considered in conflict and tables with those relations
between corresponding columns should not be merged.

With this conflict estimation we split groups of tables achieving 33,705 more groups
than the previous division; in Figure 8.11 we see that larger groups (more than 10000
tables) are reduced.

84

Figure 8.11: Number of tables by group, conflicts analysis

By splitting these groups of tables with incompatible relations, we attempt to reduce
the number of incorrect triples, produced by merging tables. We believe that by in-
creasing the ratio of correct triples the classification methods could achieve better
precision considering the unbalanced condition of the dataset, thus we denote the
new set of triples from split groups as F . To evaluate the number of correct triples
that we can achieve from each set we annotated anew 100 triples randomly selected
from each group, this time without considering relations from multiple entity cells.
In Table 8.4 are shown the results of annotation made by two annotators with the
observed agreement.

Table 8.4: Annotation agreement

Triples Correct Incorrect Contextual Unknown

I
A1 37 57 4 2

A2 38 59 2 1

Agreement 84% 31 51 2 0

G− I
A1 5 91 - 4

A2 5 91 - 4

Agreement 91% 4 87 0

F − I
A1 11 81 4 4

A2 9 85 2 4

Agreement 84% 6 77 1 0

In Appendix B we present the inter-rater agreement achieved for each group of triples.
We calculate the Kappa Cohen metric achieving 69% for triples from I, 47% for triples
from F − I and 46% for triples from G − I and interpret these values according to
Landis et al. [24] where they define an agreement in range 41%−60% as moderate

85

agreement and a value in range 61%−80% as substantial agreement. Although we
did not achieve a substantial agreement in the triples extracted by merging tables
we consider that moderate agreement is acceptable to continue evaluating the triples
using classification algorithms, since the total set of triples generated by merging
tables includes I.

By splitting the initial groups of tables we obtained about 10% fewer incorrect triples
in the evaluated test set increasing the ratio of correct triples; although this is not a
significant variation, since we want to reduce the quantity of incorrect triples in our
dataset for the classification process, we will use the dataset splitting the initial groups
of tables, even when this task implies that we will omit some correct triples.

Grouping and merging tables should allow us to increase the number of novel triples
that may be obtained from individual tables; however an issue we have to deal now is
the ratio of correct triples for training a good algorithm and classifying the extracted
triples. In next chapter we will present how we address this issue and the results
achieved.

86

Chapter 9

Triple classification

In the present chapter we elaborate on the use of machine learning models to classify
candidate triples as correct and incorrect using the features proposed in the baseline
work [29] and compare the results with our approach with table merging. Based on
experiments with various models and configurations, we choose one model, it is ap-
plied over the entire dataset to get the total number of correct triples that we can
achieve by applying the baseline and our approach. We describe the dataset, features
and algorithms that will be used for classification.

9.1 Features description

We extracted the features associated with candidate triples proposed by Muñoz et al.
[29], categorized in 5 groups, which are shown in Table 9.1. Given that many features
are self explanatory, rather than discuss each feature individually, we now discuss
features by group, providing details only for selected features whose definition might
not otherwise be clear. We aim to keep the features precisely as defined by Muñoz et
al. [29].

• Table features: number of rows and columns and total number of relations ex-
tracted from the table. Triples extracted from the same table will have the same
value for this features; however the remaining features will be different for each
triple.

• Column features: features with the count of entities in subject and object
columns and the relations extracted by row for each entity pair.

– Feature 15/16: (Unique) Potential Relations counts the number of entity
pairs in the table for which a relation could hold (i.e., entity pairs (a,b) from
two columns in the same row). Given that the same pair could appear in
multiple rows, feature 16 provides a unique count.

• Predicate features: features related to the existing information in the knowl-

87

Table 9.1: Features for classification in Muñoz [30] approach

Table Features

1 Num. of tables in article

2 Table id in article

3 Num. of rows

4 Num. of columns

5 Ratio (3)/(4)

6 Total relations extracted

Column Features

7 Subject column index

8 Object column index

9 & 10 Num. entities in subject and object column

11 Ratio (9)/(10)

12 & 13 Num. unique entities in subject and object column

14 Ratio (12)/(13)

15 Potential relations

16 Unique potential relations

Predicate Features

17 Normalized unique subject count

18 Normalized unique objects count

19 Normalized triples count

20 Ratio (18)/(19)

Cell Features

21 & 22 Num. entities in subject and object cell

23 Ratio (21)/(22)

24 & 25 String length in subject and object cell

26 & 27 Formatting present in subject and object cell

28 String similarity for predicate and subject header

29 String similarity for predicate and object header

30 Maximum between 28 and 29

Predicate/Column Features

31 Num. of rows where predicate holds

32 Ratio (31)/(3)

33 Num. of potentital relations where predicate holds

34 Ratio (33)/(15)

35 Num. of unique potential relations where predicate holds

36 Ratio (35)/(16)

Triple Features

37 From article or body relation (if the relation extracted corresponds to article’s entity)

38 Exists in Wikidata

edge base for the predicate of the candidate triple; we describe these features in

88

more detail in the following.

– Feature 17: Normalized unique subject, number of unique subjects for the
predicate divided by the maximum number of unique subjects for a predicate
in the knowledge base.

– Feature 18: Normalized unique object, number of unique objects for the
predicate divided by the maximum number of unique objects for a predicate
in the knowledge base.

– Feature 19: Normalized number of triples, number of triples for the predi-
cate divided by the maximum number of triples for a predicate in the knowl-
edge base.

• Cell features: features related to the content of the subject and object cells.

– Features 21/22 : The number of entities by cell. These features have the
value of 1 after the filter where triples with more than one entity by cell
where removed, due to the analysis made in Chapter 7.

– Features 24/25, 26/27: The length of content in the pair of cells from which
entities were extracted, and a Boolean value to evaluate the presence of
formatted content such as bullets or bold text.

– Features 28/29/30: String similarity between the predicate and subject/ob-
ject column header, computed using two metrics: one based on characters
(Jaro Winkler) and the other based on terms (Dice Score). For this feature
the stemmed text from column names and predicates from Wikidata were
used (e.g. locat for the predicate location).

• Predicate / Column features: are the features related to the frequency of a
predicate by entity pairs (a, b) in the rows and in the total number of relations by
a column pair, named as the number of potential relations where the predicate
holds.

• Triple features: feature 37 is a Boolean feature that describe if the triple is
extracted using the article entity (1) or not (0), while feature 38 indicates if the
triple already exists in Wikidata; we filter triples that already exist in Wikidata;
then this feature will have value of 0, for training and test data.

9.1.1 Adding new features

In this work we propose to add new features related to the table cells, predicates and
features resulting from merging tables, which are presented in Table 9.2. We attempt
to improve the results of classifying triples with these new features; the results will be
presented in the next sections.

We discuss the new features added by category according to Table 9.2:

• Cell features: we include features related to the length of additional text in sub-
ject and object cell; there are two features (24,25) about the content cell length

89

Table 9.2: New proposed features

Cell features

41 & 42 Length of additional text in subject and object cell (without links)
43 & 44 Number of links in subject and object cell
45 & 46 Exist colspan or rowspan in subject and object cell (Values: 1,0)

Predicate features

39 Object entity is in range of predicate (Values: 1,0,-1)
40 Subject entity is in domain of predicate (Values: 1,0,-1)
47 Maximum number of subjects by predicate
48 Maximum number of objects by predicate
49 Num. of objects by the subject and predicate
50 Num. of subjects by the object and predicate
64 Inverse predicate

Tables group features

51 Num. of entities in subject column by tables group
52 Num. of entities in object column by tables group
53 Num. of unique entities in subject column by tables group
54 Num. of unique entities in object column by tables group
55 Num. of potential relations in tables group
56 Num. of unique potential relations in tables group
57 Num. of potential relations where predicate holds in tables group
58 Num. of unique potential relations where predicate holds in tables group
59 Num. of rows where predicate holds in tables group
60 Num. of rows in tables group
61 Ratio (58)/(56)
62 Ratio (59)/(60)
63 Ratio (57)/(55)
65 Num. tables by group

in the baseline work, however it includes the size of links, hence we consider to
use the length of additional text that are not links; furthermore we add Boolean
features that indicate if a triple was extracted from cells with colspan or rowspan.

• Predicate features: we add features capturing information about of the predi-
cates in the knowledge base; as we discuss previously we decided to add features
that indicate if the subject and object entities of the triple are in the domain and
range of predicate respectively (value −1 if the respective domain/range classes
do not appear in the knowledge base) and also the maximum number of existing
subjects and objects by predicate in the knowledge base. In addition to feature
20 (the ratio of objects by predicate), we include the number of existing objects
per subject for predicate, and the existing subjects per the object, thus indicating
the observed multiplicity in the knowledge base (in both directions).

90

• Table group features: we replicate the features extracted from individual ta-
bles, such as number of entities in subject and object columns, the number of
potential relations, etc., but this time from merged tables; thus we have, for in-
stance the ratio of potential relations where a predicate holds in the individual
table, and also in the corresponding group of tables to which the individual table
belongs.

A total of 65 features were described, however we considered only 60 features for
classifying triples since the features related to the number of links and entities by cell
(features: 21,22,23, 43 and 44) have a unique value as a result of applying the filters
explained previously (Chapter 7); furthermore we do not consider existing triples in
the knowledge base, where feature 38 was also removed, along with feature 1 indi-
cating the number of tables from the corresponding Wikipedia article (feature 1 was
not considered due to fact the tables were extracted and saved individually to pro-
cess them in parallel, improving the time of processing). We will analyse the features
correlation and feature importance later.

9.2 Classification algorithms

We use the same models that achieved better results in the baseline work [29]: Naive
Bayes, Bagging Decision Tree (BDT), Random Forest (RF) and Logistic Regression
(LR). The best results presented in the previous work correspond to Bagging Decision
Tree, which achieves 81% precision and 79.4% recall, we additionally add two new
algorithms: K-Nearest Neighbours (KNN) and Extreme Gradient Boost (XGBoost).

9.3 Dataset description

In the previous chapter we presented an initial manual evaluation of candidate triples
from individual and merged tables; now we describe the sets of triples to be used to
validate and test different classification algorithms.

For building the training dataset we randomly selected 700 triples from two sets I

and F , and we classified them considering the four classes explained previously (see
Section 8.3) (correct, incorrect, contextual and unknown) ; however finally we reject
those triples classified as contextual and unknown and keep those triples where two
raters agreed, collecting 600 triples classified as correct and incorrect from each set.
We are not interested in contextual triples, which can be considered correct, but only
if additional information is provided (e.g., start date, end date); we filter them from
the training and validation data and although they can appear in the final set of triples,
we will manually label these later in a separate process.

91

From each set of extracted triples we keep (out-of-bag) 100 triples for testing the
models and use 500 triples for validating them in the different steps proposed in our
methodology (explained later). In Table 9.3 we present the number of corresponding
triples of each class and set; as we observe in the previous chapter the number of
incorrect triples in each set is higher, but mostly in triples extracted from merged
tables where we have 14% of incorrect triples; to deal with this issue we propose to
use some known techniques to balance the sets of triples, we will present the results
of applying these techniques in the next section.

Table 9.3: Validation and test set

Training set Test set

Correct Incorrect Correct Incorrect

Triples from individual tables (I) 191 (38%) 309 (62%) 38 (38%) 62 (62%)

Triples from merged tables (F) 74 (15%) 426 (85%) 13 (13%) 87 (87%)

9.4 Classification models

In order to obtain comparable results applying both methods of relations extraction
from tables (with and without grouping tables), we generate and validate models us-
ing different sets of features for the labeled sets of triples from I and F described
previously.

• Model A : we validate the models for triples from set I with the baseline features.

• Model B : we add the predicate and table features (e.g. the range and domain of
the predicate) proposed in Table 9.2, to evaluate how these features contribute
to the classification over set I. In other words, Model B includes the baseline
features and new features that we propose, defined for individual tables.

• Model C : we use the baseline features and all new features proposed including
those for groups of tables (e.g. the ratio of rows where the predicate holds in
the group of tables), considering that each individual table belongs to a specific
group. With this experiment we will test how the features of groups of tables
impacts the performance of classification over set I.

• Model D : we use all features for the set of triples F where candidate triples for
single tables without any relation between a pair of columns are also included.
We attempt to validate how many novel triples we can reach by applying this
approach.

For validating and selecting the final model for each group of features and set of
triples, we develop four experiments in order to identify the best models. These exper-
iments are validated using the test set (of 100 triples) that we left out of the validation
and training process for this purpose.

92

1. Initial validation: We validate the proposed classification algorithms using their
parameters by default.

2. Features selection: We apply features selection removing highly correlated fea-
tures and also features not correlated with the positive class. We do not consider
only pair-wise correlation, for each pair of correlated features we looked for those
with the maximum mean correlation with the remaindering features. This experi-
ment is designed to address the imbalance in data available for both classes (38%
correct for I, 15% correct for F).

3. Balancing training set : We balance the training set adding triples extracted
from tables that already exist in Wikidata.

4. Hyper-parameters tuning: We look for the best parameters for the algorithms
by using Grid Search method where a set of different values for each parameter
is given. The algorithm is validated with a combination of all parameters using
cross-validation. Finally the models are configured with the best parameters and
validated with the test set.

We next describe the results achieved for each of these four experiments; the details
of the Feature selection task and Hyper-parameter tuning are described in Appendix
D.

9.4.1 Model A

Considering the features proposed in the baseline method (see Table 9.1) we validate
the four configurations previously described using initial validation (denoted A.1), fea-
ture selection (denoted A.2), balancing training set (denoted A.3) and hyper-parameter
tuning (denoted A.4). All configurations are tested over a held-out training set with the
original distribution of correct/incorrect triples.

For the first configuration we validate the classification models with default param-
eters (described in Appendix C); the results of this exercise are presented in Table
9.4 (A.1) where we observe that ensemble models achieve the higher F1-scores, while
Naive Bayes achieves a high recall but with lower precision.

We apply features selection over the baseline features removing those with high cor-
relation with each other and with remaining features; some of the features removed
are the number of rows and columns in the table that are mostly correlated with the
number of entities and relations in the table. After removing these features the models
did not generally achieve better results as we see in Table 9.4 (A.2).

The training set of triples extracted from I consists of 38% of correct triples. We bal-
ance the classes using triples extracted from tables but that already exist in Wikidata;
then we randomly selected 59 triples extracted from this set of triples and removed
the same number of incorrect triples resulting in a new training set with 50% (250) of
correct and 50% incorrect triples. The results of this experiment are presented in Ta-

93

Table 9.4: Results A1: Initial validation, A2: Features selection, A3:Balancing training
set, A4: Hyper-parameters tuning

A.1 A.2 A.3 A.4

P R F P R F P R F P R F

KNN 54% 32% 40% 40% 18% 25% 54% 31% 40% 77% 18% 30%

NB 44% 87% 57% 49% 68% 57% 44% 87% 58% 44% 87% 58%

LR 78% 18% 30% 50% 18% 27% 78% 18% 30% 78% 18% 30%

RF 78% 66% 71% 76% 50% 60% 69% 53% 60% 72% 55% 62%

BDT 68% 71% 70% 73% 63% 68% 66% 61% 63% 71% 66% 68%

XGB 72% 61% 66% 73% 57% 65% 72% 61% 66% 73% 71% 72%

ble 9.4 (A.3). We do not validate the set of existing triples but rather assume they are
correct. The results of balancing the training set with these triples does not present an
improvement, while XGBoost reached the same results as for the initial configuration
without balancing the training set.

The last experiment was conducted by setting the parameters of models based on the
AUC metric and using the GridSearch method; the best combination of the parameters
is used for validating the models. The details of the configuration of parameters for the
ensemble models are presented in Appendix D.1.2; for KNN model we only changed
the number of neighbors considering a value of 2, since the default value is 5. We
do not change parameters for Logistic Regression and Naive Bayes algorithms, and
so these models keep their results. We observe that KNN improved in precision, as
XGBoost, which reached a better precision with similar recall (see Table 9.4 (A.4).

The results of validating the models over the test set are similar to the results achieved
by applying cross-validation with 5 folds over the 500 triples. We also test the models
generated in each fold with the test set for evaluating the models variation. XGBoost
present less variation with higher precision and recall than other models.

Figure 9.1: Cross-Validation Model A.4 (including results for 100 triples from held-out
test set for each fold)

94

9.4.2 Model B

Following the same methodology as for the set of features in Model A, we present the
results of validating models for the same set of triples from I adding the new predicate
and table features defined for individual tables.

Including the new features we observe that models improve their precision. XGBoost
is the best model with 74% precision and 75% recall as we observe in Table 9.5 (B.1).
In the analysis of features importance presented in Appendix D.2.1, the features about
the maximum number of objects and subjects for a predicate achieve a higher Gini
score (0.08) with the ensemble models, then we attribute the performance of these
models to applying the new proposed features.

After applying features selection for this new set of features, we observed that the
models achieve better precision and recall (see Table 9.5 (B.2)) and also by setting
model parameters, where Random Forest achieves a good precision of 84%.

Table 9.5: Results B1: Initial validation, B2: Features selection, B3:Balancing training
set, B4: Hyper-parameters tunning

B.1 B.2 B.3 B.4

P R F P R F P R F P R F

KNN 75% 32% 44% 80% 32% 45% 76% 42% 54% 75% 32% 44%

NB 42% 92% 57% 41% 92% 57% 41% 92% 56% 41% 92% 59%

LR 100% 2% 5% 0% 0% 0% 56% 24% 33% 100% 2% 5%

RF 71% 66% 68% 95% 55% 70% 75% 71% 73% 84% 68% 75%

BDT 72% 68% 70% 76% 68% 72% 70% 74% 71% 74% 68% 71%

XGB 74% 76% 75% 78% 74% 76% 71% 76% 73% 74% 76% 75%

Figure 9.2: Cross-Validation Model B.4 (including results for 100 triples from held-out
test set for each fold)

Finally in Figure 9.2, we present the results of 5-fold cross validation, including the
results for the held-out set of 100 test triples. Though there is variance between
the folds, less variance is presence for the test set. In general, we conclude that
the additional features we propose for individual tables help to improve classification
performance.

95

9.4.3 Model C

We also validate the models for classifying triples from single tables but adding fea-
tures about the corresponding groups to which the single tables belong; the results of
this validation considering the same configurations are presented in Table 9.6.

Considering all features proposed we see a notable increase in the precision achieved
by XGBoost which reached the best results by setting its parameters (C.4), while Bag-
ging Decision Tree only achieve a good precision by applying features selection (C.2).
We consider that given the large number of features (60) the parameters configura-
tion and features selection are more important for the models achieve their best per-
formance. In Appendix D.3.1 we show the features importance based on Information
Gain and we observe that features related to the ratio of rows and relations where
predicate holds in the group of tables take great importance for tree based models,
and also that these features are most correlated with the positive class.

Table 9.6: Results C1: Initial validation, C2: Features selection, C3:Balancing training
set, C4: Hyper-parameters tuning

C.1 C.2 C.3 C.4

P R F P R F P R F P R F

KNN 65% 45% 53% 68% 50% 58% 53% 63% 57% 50% 16% 24%

NB 66% 11% 18% 67% 11% 18% 63% 13% 21% 67% 11% 18%

LR 60% 7% 14% 67% 11% 18% 36% 18% 24% 60% 8% 14%

RF 70% 50% 58% 72% 61% 66% 68% 71% 69% 76% 34% 47%

BDT 69% 63% 66% 82% 61% 66% 63% 68% 66% 70% 55% 62%

XGB 82% 71% 76% 81% 68% 74% 71% 76% 73% 85% 76% 81%

Figure 9.3: Cross-Validation Model C.4 (including results for 100 triples from held-out
test set for each fold)

Of this set of features, Random Forest and Bagging Decision Tree reached a precision
of over 80% with cross-validation; however when we validate the models over the test
set the results decrease except for XGBoost. We can conclude that for the triples
that can already be extracted for individual tables, having group-level features helps
to improve the classification performance, perhaps because such features smooth out
variances that are present in smaller individual tables.

96

9.4.4 Model D

The last models validation consist of use all features with the triples extracted from
set F . In comparison with the set of triples from I the training set from F is much
more unbalanced with 14% correct triples, which motivates the use of oversampling
and undersampling techniques to balance the training set; however by applying over-
sampling, we found that the precision and recall decrease, while with undersampling
we only achieved better recall but with lower precision, hence we do not present these
additional results, but rather present the same configurations as seen for previous
experiments. The results are shown in Table 9.7.

Table 9.7: Results D1: Initial validation, D2: Features selection, D3:Balancing
training set, D4: Hyper-parameters tuning

D.1 D.2 D.3 D.4

P R F P R R P R F P R F

KNN 25% 7% 11% 42% 23% 30% 28% 30% 30% 25% 7% 11%

NB 50% 23% 31% 60% 23% 33% 60% 23% 33% 50% 23% 31%

LR 50% 7% 13% 25% 15% 19% 27% 46% 34% 50% 7% 13%

RF 40% 15% 22% 36% 31% 33% 45% 38% 42% 50% 15% 23%

BDT 50% 15% 23% 60% 46% 52% 44% 53% 48% 50% 15% 23%

XGB 66% 31% 42% 62% 38% 48% 43% 53% 46% 85% 46% 60%

Figure 9.4: Cross-Validation Model D.4 (including results for 100 triples from held-out
test set for each fold)

Removing highly correlated features we observed an increment in recall and also by
balancing the training set; however precision stays low. On the other hand, the best
result we obtained was by applying XGBoost with tuned parameters. In reference to
Figure 9.4 which shows the results obtained with cross-validation, we observe high
variance caused by the low number of correct triples per fold; XGBoost reached the
best performance for this unbalanced training set achieving 72% precision and 40%
recall in the mean results. We conclude that classification of correct/incorrect triples
in the F set of candidate triples is greatly complicated by the significantly higher ratio
of incorrect triples. However, XGBoost with parameter tuning is capable of achieving
precision competitive with that for models on the I set, though with much lower recall.
Given that the F set contains many more correct triples in absolute terms, we require

97

further results to see if this trade-off of more triples with poorer recall is a positive
one.

9.5 Model Selection

Having compared different methods of validating the models for the various set of
features and both set of triples we finally select the best model for classifying the
whole dataset of extracted triples. We are interested in getting a good quantity of
triples for enriching Wikidata with good precision.

In the previous section we presented the results of precision, recall and F1-score, but
we also obtained the AUC metric that is shown in Appendix D for each analysed model.
XGBoost achieves 0.89, 0.90, 0.88 and 0.92 for each model; while these results are not
different for the AUC obtained for Random Forest and Bagging Decision Tree, however
considering that the sets of triples are unbalanced we consider the precision and recall
metrics where XGBoost achieved the best results.

Finally, we considered the option of increasing the number of triples in the training
sets to obtain better results; however the learning curves (Appendix D) indicate that
after 300 triples there is not a significant improvement. Hence the final models we
train will use the 600 triples for I and F labeled previously.

9.6 Evaluation

Our primary goal is to compare the results for relation extraction with and without
grouping tables. Our hypothesis is that grouping tables can help in two ways. First,
more robust statistics for features can be extracted from groups of tables versus in-
dividual tables, which should improve results even for candidate triples extracted al-
ready from individual tables. Second, we should be able to extract additional candidate
triples from groups of tables that would not be extracted from individual tables. In our
final experiments, we thus compare how many triples can be extracted of Wikipedia
and with what level of precision for these different settings.

As we mentioned before the results obtained with new features (Model B) over the set
of triples from individual tables I are better than those achieved only with baseline
features; thus we train a model with these. The second setting takes triples from I

adding features from groups of tables (Model C). The results of both models will be
compared with the classification of triples extracted by merging tables from set F
(Model D).

We train the models with 600 labeled triples from sets I and F (Model B and Model

98

C using set I and Model D using set F) and apply the models achieving the number
of correct triples presented in Table 9.8. From triples classified as correct by each
model, we randomly selected and validated 200 triples. The results of the validation
were 71% precision for triples from set I without including features about the related
groups of tables, 75% precision for triples from set I including features of related
groups of tables and 70% precision for triples from set F .

The final results show that there is an improvement of the precision of triples ex-
tracted from tables adding the features of the corresponding groups of tables (Model
B). Some of these features that contributed to the classification improvement were
the ratio of rows and relations between a pair of entities where a predicate holds in
the corresponding group, as well as the maximum number of objects and subjects for
a predicate. However, the increased precision of Model C comes at the cost of a re-
duced number of triples versus Model B; about 265,000 fewer triples are extracted.
Even though we did not get a higher precision for triples from merged tables (Model
D) where a large number of incorrect triples are present, we achieve a precision of
70%, which is competitive with the Model B baseline without grouping; furthermore,
we achieve over 800,000 more triples.

With these results we conclude that it is possible to achieve better results on relations
extraction by grouping related tables, both in terms of being able to define more ro-
bust features (Model B vs. Model C), and also in terms of being able to extract more
triples with similar levels of precision (Model B vs. Model D). These results are illus-
trated in Figure 9.5 and Figure 9.6, which, by varying the models’ threshold, show
the precision possible versus the number of triples extracted in the labelled sample
and projected for the full sets of candidate triples respectively, without considering an
specific knowledge area or type of tables and also extracting triples from small tables
without any relation.

Table 9.8: Results of classifying triples extracted from individual I tables (Model B
and C) and triples extracted by merging tables (Model D)

Triples and features Total Correct triples Validation Total Precision

Model B 6,773,694

Correct 141

71%
Incorrect 53
Contextual 4
Unknown 2

Model C 6,508,755

Correct 150

75%
Incorrect 49
Contextual 0
Unknown 1

Model D 7,591,258

Correct 140

70%
Incorrect 57
Contextual 1
Unknown 2

99

Figure 9.5: Precision vs number of validated triples

Figure 9.6: Precision vs total triples classified as correct
(estimated from labeled sample)

100

Conclusions

In the present work we propose grouping HTML tables for extracting relations with
better precision considering the small proportion of contextual and correlated infor-
mation that we can find in an individual table.

The research questions of this work have been addressed for extracting triples from
Wikipedia tables using Wikidata as a reference knowledge base.

We first conducted a literature review to find related works that group and merge
tables for information extraction; however we did not find a similar proposal that at-
tempts to merge tables for extracting relations without considering a specific knowl-
edge area or type of tables.

We then evaluate clustering methods using the headers of tables and found that in
Wikidata there exist at least 500,000 pairs of tables with a common header and groups
with more than 10,000 tables. For grouping a larger number of tables, we apply some
text processing tasks for stemming the headers text. To ensure that we merge tables
with similar types of content, we identify the types of content of each column. We
also apply a method for refining the initial grouping of tables, splitting groups having
conflicting relations. With these methods we achieve about 1.1 million groups of tables
over which we apply the relation extraction process to extract candidate triples.

Many of the candidate triples extracted from the previous phase are incorrect. Hence
following the same relation extraction process proposed by Muñoz et al. [29], we
use classification methods to distinguish correct and incorrect candidate triples. To
facilitate this process, we developed a web application that facilitates the labeling of
triples extracted from tables. With this application we achieve a considerable number
of labeled triples that were used for validating the classification methods over two sets
of candidate triples, extracted based on the method proposed by Muñoz et al. [29]
and our method based on grouping tables. We also evaluate different classification
models, looking for the best model by applying techniques of feature selection and
model parameters tuning, trying to select the best model for extracting relations with
both methods.

The results show that by adding features about the corresponding group of tables we
can increase the precision of relations extracted from an individual table. With our

101

grouping method we can also extract new triples that cannot otherwise be extracted
from individual tables; this allows us to obtain more triples from groups of tables with
similar precision to individual tables.

We obtained 7,591,258 novel triples with a precision of 70%, (see examples of ex-
tracted triples in Appendix D.5.1) by merging tables, considering existing entities
and properties in the Wikidata knowledge base. It is hard to compare the precision
achieved by our proposal with the precision of the available data in the Wikidata knowl-
edge base: currently there is no clear evaluation of the precision of Wikidata’s content
[18, 34]. Our dataset can be uploaded to Wikidata, and validated previously to guar-
antee the data quality before to be published1.

The proposed method for grouping and merging tables considers tables with the same
headers; however we demonstrate that clustering methods can be used for grouping
tables based on more specific knowledge areas, where expert people can evaluate the
clusters; furthermore a full merging technique can be used to increase the candidate
triples extracted from a group of merged tables.

Since the method was validated with Wikipedia tables, where Wikipedia links can be
mapped directly to a knowledge base; it cannot be used with tables from other sources
without mapping the table content to the knowledge base entities previously; such a
mapping can be carried out with the aforementioned Entity Linking techniques.

As future work, we are curious about extracting n-ary relations from tables using the
same method, since we could identify different types of content in tables that can be
used for proposing n-ary relations. Additionally by increasing the number of linked
entities within tables to a knowledge base (i.e. using Entity Linking techniques rather
than relying on explicit links) it should be possible to increase the confidence of ex-
tracted relations and even extract more novel triples.

1Wikidata provides tools to import datasets that are validated by Wikidata Community users
https://www.wikidata.org/wiki/Wikidata:Dataset_Imports.

102

Bibliography

[1] D Abián, F Guerra, J Martínez-Romanos, and Raquel Trillo-Lado. Wikidata and db-
pedia: a comparative study. In International KEYSTONE Conference on Semantic
Keyword-Based Search on Structured Data Sources, pages 142–154. Springer,
2017.

[2] Sean Bechhofer, Yeliz Yesilada, Robert Stevens, Simon Jupp, and Bernard Horan.
Using ontologies and vocabularies for dynamic linking. IEEE Internet Computing,
12(3):32–39, 2008.

[3] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. Methods for
exploring and mining tables on wikipedia. In Proceedings of the ACM SIGKDD
Workshop on Interactive Data Exploration and Analytics, IDEA ’13, pages 18–26,
New York, NY, USA, 2013. ACM.

[4] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. Tabel: En-
tity linking in web tables. In Marcelo Arenas, Oscar Corcho, Elena Simperl,
Markus Strohmaier, Mathieu d’Aquin, Kavitha Srinivas, Paul Groth, Michel Du-
montier, Jeff Heflin, Krishnaprasad Thirunarayan, Krishnaprasad Thirunarayan,
and Steffen Staab, editors, The Semantic Web - ISWC 2015, pages 425–441,
Cham, 2015. Springer International Publishing.

[5] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. Dbpedia - a crystallization point for
the web of data. volume 7, pages 154 – 165, 2009. The Web of Data.

[6] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[7] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
Webtables: exploring the power of tables on the web. In Proceedings of the VLDB
Endowment, 1(1):538–549, 2008.

[8] Michael J Cafarella, Alon Y Halevy, Yang Zhang, Daisy Zhe Wang, and Eugene Wu.
Uncovering the relational web. In WebDB, 2008.

[9] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based cluster-
ing based on hierarchical density estimates. In Pacific-Asia conference on knowl-

103

edge discovery and data mining, pages 160–172. Springer, 2013.

[10] Matteo Cannaviccio, Lorenzo Ariemma, Denilson Barbosa, and Paolo Merialdo.
Leveraging wikipedia table schemas for knowledge graph augmentation. In Pro-
ceedings of the 21st International Workshop on the Web and Databases, page 5.
ACM, 2018.

[11] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, pages 785–794. ACM, 2016.

[12] Marco Costantino, Richard G. Morgan, Russell James Collingham, and Roberto
Garigliano. Natural language processing and information extraction: qualitative
analysis of financial news articles. In Proceedings of the IEEE/IAFE 1997 Compu-
tational Intelligence for Financial Engineering, CIFEr 1997, New York City, USA,
March 24-25, 1997, pages 116–122, 1997.

[13] Eric Crestan and Patrick Pantel. Web-scale table census and classification. In
Proceedings of the Fourth ACM International Conference on Web Search and
Data Mining, WSDM ’11, pages 545–554, New York, NY, USA, 2011. ACM.

[14] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-
scale approach to probabilistic knowledge fusion. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 601–610. ACM, 2014.

[15] Julian Eberius, Katrin Braunschweig, Markus Hentsch, Maik Thiele, Ahmad Ah-
madov, and Wolfgang Lehner. Building the dresden web table corpus: A clas-
sification approach. 2015 IEEE/ACM 2nd International Symposium on Big Data
Computing (BDC), pages 41–50, 2015.

[16] B Efron and RJ Tibshirani. An introduction to the bootstrap. chapman and hall,
new york, ny. Farrell, J., Johnston, M. and Twynam, D.(1998),“Volunteer motiva-
tion, satisfaction, and management at an elite sporting competition”, Journal of
Sport Management, 12:288–300, 1993.

[17] David W. Embley, Cui Tao, and Stephen W. Liddle. Automatically extracting onto-
logically specified data from html tables with unknown structure. In Proceedings
of the 21st International Conference on Conceptual Modeling (ER’02, pages 322–
327, 2002.

[18] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Rettinger.
Linked data quality of dbpedia, freebase, opencyc, wikidata, and yago. Semantic
Web, 9(1):77–129, 2018.

[19] Michael Färber, Basil Ell, Carsten Menne, and Achim Rettinger. A comparative

104

survey of dbpedia, freebase, opencyc, wikidata, and yago. Semantic Web Journal,
1:1–5, 2015.

[20] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[21] Anna Lisa Gentile, Petar Ristoski, Steffen Eckel, Dominique Ritze, and Heiko Paul-
heim. Entity matching on web tables: a table embeddings approach for blocking.
In EDBT, pages 510–513, 2017.

[22] Anabel Gómez-Ríos, Julián Luengo, and Francisco Herrera. A study on the noise
label influence in boosting algorithms: Adaboost, gbm and xgboost. In Inter-
national Conference on Hybrid Artificial Intelligence Systems, pages 268–280.
Springer, 2017.

[23] Matthew Hurst. Layout and language: Challenges for table understanding on the
web. In In proceedings of the International Workshop on Web Document Analysis,
pages 27–30, 2001.

[24] J. Richard Landis and Gary G. Koch. The measurement of observer agreement for
categorical data. Biometrics, 33(1):159–174, 1977.

[25] Larissa R. Lautert, Marcelo M. Scheidt, and Carina F. Dorneles. Web table taxon-
omy and formalization. SIGMOD Rec., 42(3):28–33, October 2013.

[26] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and search-
ing web tables using entities, types and relationships. Proceedings of the VLDB
Endowment, 3(1-2):1338–1347, 2010.

[27] Andreas Mayr, Harald Binder, Olaf Gefeller, and Matthias Schmid. The evolution
of boosting algorithms. Methods of information in medicine, 53(06):419–427,
2014.

[28] David Milne and Ian H. Witten. An effective, low-cost measure of semantic relat-
edness obtained from wikipedia links. In In Proceedings of AAAI 2008, 2008.

[29] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. Triplifying i’s tables. In Pro-
ceedings of the First International Conference on Linked Data for Information
Extraction - Volume 1057, LD4IE’13, pages 26–37, Aachen, Germany, Germany,
2013. CEUR-WS.org.

[30] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. Using linked data to mine rdf
from wikipedia’s tables. In Proceedings of the 7th ACM international conference
on Web search and data mining, pages 533–542. ACM, 2014.

[31] Stéphane Mussard, Françoise Seyte, and Michel Terraza. Decomposition of gini

105

and the generalized entropy inequality measures. Economics Bulletin, 4(7):1–6,
2003.

[32] Thomas Pellissier Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas Steiner,
and Lydia Pintscher. From freebase to wikidata: The great migration. In Pro-
ceedings of the 25th International Conference on World Wide Web, WWW ’16,
pages 1419–1428, Republic and Canton of Geneva, Switzerland, 2016. Interna-
tional World Wide Web Conferences Steering Committee.

[33] David Pinto, Michael Branstein, Ryan Coleman, W Bruce Croft, Matthew King,
Wei Li, and Xing Wei. Quasm: a system for question answering using semi-
structured data. In Proceedings of the 2nd ACM/IEEE-CS joint conference on
Digital libraries, pages 46–55. ACM, 2002.

[34] Alessandro Piscopo and Elena Simperl. What we talk about when we talk about
wikidata quality: a literature survey. In Proceedings of the 15th International
Symposium on Open Collaboration, page 17. ACM, 2019.

[35] Aleksander Pivk, Philipp Cimiano, York Sure, Matjaz Gams, Vladislav Rajkovic,
and Rudi Studer. Transforming arbitrary tables into logical form with TARTAR.
Data Knowl. Eng., 60(3):567–595, 2007.

[36] J Ross Quinlan et al. Bagging, boosting, and c4. 5. In AAAI/IAAI, Vol. 1, pages
725–730, 1996.

[37] Abhishek Singh Rathore and Devshri Roy. Ontology based web page topic identi-
fication. International Journal of Computer Applications, 85(6), 2014.

[38] Daniel Ringler and Heiko Paulheim. One knowledge graph to rule them all?
analyzing the differences between dbpedia, yago, wikidata & co. In Joint Ger-
man/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz), pages
366–372. Springer, 2017.

[39] Deepika Sharma and Me Cse. Stemming algorithms: a comparative study and
their analysis. International Journal of Applied Information Systems, 4(3):7–12,
2012.

[40] Wei Shen, Jianyong Wang, Ping Luo, and Min Wang. Liege:: Link entities in web
lists with knowledge base. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 1424–
1432, New York, NY, USA, 2012. ACM.

[41] Sonit Singh. Natural language processing for information extraction. arXiv
preprint arXiv:1807.02383, 2018.

[42] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A large ontol-
ogy from wikipedia and wordnet. Web Semantics: Science, Services and Agents

106

on the World Wide Web, 6(3):203–217, 2008.

[43] Zareen Syed Varish Mulwad, Tim Finin and Anupam Joshi. T2LD: Interpreting and
Representing Tables as Linked Data. In Proceedings of the Poster and Demonstra-
tion Session at the 9th International Semantic Web Conference, CEUR Workshop
Proceedings, November 2010.

[44] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei
Wu, Gengxin Miao, and Chung Wu. Recovering semantics of tables on the web.
Proceedings of the VLDB Endowment, 4(9):528–538, 2011.

[45] Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowl-
edgebase. Commun. ACM, 57:78–85, 2014.

[46] Jingjing Wang, Haixun Wang, Zhongyuan Wang, and Kenny Q Zhu. Understanding
tables on the web. In International Conference on Conceptual Modeling, pages
141–155. Springer, 2012.

[47] Yalin Wang and Jianying Hu. A machine learning based approach for table detec-
tion on the web. In Proceedings of the 11th International Conference on World
Wide Web, WWW ’02, pages 242–250, New York, NY, USA, 2002. ACM.

[48] Minoru Yoshida, Kentaro Torisawa, and Junichi Tsujii. A method to integrate ta-
bles of the world wide web. In Pacific Association for Computational Linguistics,
pages 332–341, 2001.

107

Appendix A

Information Extracted from Wikidata

To know the topics which the tables are related with, we extracted the class of entities
corresponding to article’s titles from Wikidata. We present a word cloud with the top
30 classes by number of tables in Figure A.1. There are many articles related to sport
events of different types, hence many tables can be related to players, teams and sport
events having common headers.

Figure A.1: Word cloud of article classes from which tables were extracted

The most common entities that appear as subject in the triples are countries:
Q30:United States appears in 43,452 triples while the entity Q193592:Midfielder
appears in 30,859; these values are expected given the most common articles’ topics.

Figure A.2 shows the number of entity classes identified for individual columns in the
tables; about 1.2 million tables have one class per column, while 451 tables have more
than 100 entity classes; the columns identified with a large number of different entity
classes are those with names note and description that usually describe many entities
by cell. The values were obtained selecting the class with more instances by entity,

108

Figure A.2: Number of different classes by column in tables

given that an entity belongs to multiple classes.

Triples with 620 different predicates were extracted from tables, considering the en-
tities in a pair of columns and also between the article’s entity and entities inside
tables. In Table A.1 we list the top 20 most common predicates. In this table we can
observe specific predicates such as those related to sport content and locations, but
we observe also more general predicates such as P361:part of. Despite the fact that
Wikidata recommends the use of more specific predicates, we found many triples with
generic types, for example instead of the predicate P54:member of sport team be-
tween a player and a sport team we can find the relation P361:part of which though
not incorrect, since P54 is a subproperty of P361, is not as informative nor as desirable
as the P54 relation (where appropriate). Still, we do not reject triples with more gen-
eral relations, therefore these will be proposed for candidate triples since they appear
in the knowledge base for similar pair of entities; in other words, were Wikidata’s rec-
ommendations to use more specific properties strictly followed by Wikidata editors,
our method would not propose any general relations.

On the other hand from the total number of predicates, there are 210 that appear in
fewer than 10 triples; Table A.2 shows a random selection of these predicates.

109

Table A.1: Top 20 predicates from existing triples

Predicate Triples

P54 :member of sports team 299,115

P131 :located in the administrative territorial entity 284,375

P27 :country of citizenship 251,741

P161 :cast member 243,586

P17 :country 146,239

P175 :performer 130,034

P413 :position played on team / speciality 125,401

P102 :member of political party 104,402

P57 :director 90,140

P150 :contains administrative territorial entity 66,737

P361 :part of 65,952

P31 :instance of 62,386

P1344 :participant of 42,404

P58 :screenwriter 38,908

P166 :award received 37,032

P19 :place of birth 36,282

P197 :adjacent station 36,036

P3450 :sports season of league or competition 34,347

P527 :has part 33,618

P495 :country of origin 33,488

110

Table A.2: Predicates with fewer than 10 triples

Predicate Triples

P912 :has facility 2

P795 :located on linear feature 2

P3730 :next higher rank 3

P2647 :source of material 2

P5136 :less than 6

P2888 :exact match 3

P489 :currency symbol description 4

P3161 :has grammatical mood 4

P4100 :parliamentary group 2

P3263 :base 5

P1478 :has immediate cause 5

P769 :significant drug interaction 2

P2289 :venous drainage 4

P532 :port of registry 8

P1420 :taxon synonym 2

P3828 :wears 1

P817 :decay mode 4

P3259 :intangible cultural heritage status 5

P924 :medical treatment 2

P1531 :parent(s) of this hybrid 5

111

Appendix B

Inter-rate agreement

In Table B.1, Table B.2 and Table B.3 we show statistics regarding the inter-rater
agreement for the triples annotated for sets I, F − I and G− I respectively. We show
the number of correct and incorrect triples annotated for both annotators, the Kappa
Cohen k statistic, the relative observed agreement Pr(a) among raters (accuracy), and
Pr(e) is the hypothetical probability of chance agreement; using the observed data to
calculate the probabilities of each observer randomly seeing each class.

κ = Pr(a)− Pr(e)
1− Pr(e)

Pr(e) = 1
N2

∑
k

nk1nk2

For k classes, number of items N and nki the number of times rater i predicted class k.

Table B.1: Inter-rate agreement for triples from I

Correct Incorrect Contextual Unknown Annotator 1

Correct 31 6 0 0 37

Incorrect 5 51 0 1 57

Contextual 1 1 2 0 4

Unknown 1 1 0 0 2

Annotator 2 38 59 2 1 Pr(a) = 84%
Pr(e) = 48% κ = 69%

112

Table B.2: Inter-rate agreement for triples from F-I

Correct Incorrect Contextual Unknown Annotator 1

Correct 6 2 0 3 11

Incorrect 2 77 1 1 81

Contextual 0 3 1 0 4

Unknown 1 3 0 0 4

Annotator 2 9 85 2 4 Pr(a) = 84%
Pr(e) = 70% κ = 47%

Table B.3: Inter-rate agreement for triples from G-I

Correct Incorrect Contextual Unknown Annotator 1

Correct 4 0 0 1 5

Incorrect 1 87 0 3 91

Contextual 0 0 0 0 0

Unknown 0 4 0 0 4

Annotator 2 5 91 0 4 Pr(a) = 91%
Pr(e) = 83% κ = 46%

113

Appendix C

Model parameters description

We describe some relevant parameters that were configured for the classification al-
gorithms.

K-Nearest Neighbors

The main parameter of the KNN classifier algorithm is the number of neighbors
n_neighbors to evaluate the class. Other parameters such as the distance mea-
sure (default=Euclidean) and searching algorithm (default=auto) can also be selected;
however we keep those parameters at their default settings.

Naive Bayes

The Gaussian Naive Bayes algorithm only allows the configuration of two parameters:
priors (default=n_classes) which is adjusted according to the weights of classes, and
var_smoothing (default=1e-9) which according to the Sci-Kit Learn library documen-
tation is the portion of the largest variance of all features that is added to variances
for calculation stability. We keep the default values of these parameters.

Logistic Regression

This algorithm provides more parameters that can be configured like the regulariza-
tion method penalty (default=l2), the class_weight (default=None) where we passed
the value balanced ; and the maximum number max_iter (default=100) of iterations
taken for the solvers to converge.

114

Random Forest

Random Forest like the other ensemble models requires the configuration of certain
parameters for avoiding overfitting in the construction of the model. We describe the
parameters that we consider relevant for our data.

1. n_estimators : (default=10) number of base estimators in the ensemble model.
The value of this parameter is selected by applying cross-validation with different
values, we consider five values to be evaluated [100,200,300,400,500].

2. min_samples_leaf : (default=1) the minimum number of samples required to
be at a leaf node, the algorithm will split the nodes until the leaves have this
number of samples. The default value for this parameter is 1, we configure this
parameter with values: [1,2,3,4,6]

3. max_features : (default=sqrt(n)), the square root of the number of features (n)
is considered. The algorithm evaluates this number of features in each split.

4. max_depth : the nodes are expanded until all leaves are pure or until all leaves
contain less than min_samples_split samples; we validate the model with val-
ues: [2,4,6,8,10,20] to avoid overfitting.

5. class_weight : we configured this parameter with value balanced.

Bagging Decision Tree

We use a Decision Tree as the base estimator for the Bagging model, and config-
ure the same features as Random Forest, namely n_estimators, the max_depth and
min_samples_leaf with the same list of proposed values.

XGBoost

The nature of XGBoost is the Gradient descendent method for adjusting the weights in
each step of classification process, in this manner the method uses more parameters
that are selected according to the problem of classification. Next we describe the
main parameters according to its documentation 1, and the values used for selecting
the best parameters.

1. n_estimators: (default=100) as in Bagging Decision Tree the evaluated numbers
of estimators were [100,200,300,400].

2. learning_rate: (default=0.1) is used for shrinking the weights for non-classified
samples in each step. We tested the values [0.0001,0.001,0.01,0.1,0.2]

1https://xgboost.readthedocs.io/en/latest/

115

3. min_child_weight: (default=1) is used to control overfitting, avoiding that the
model split a node with the min child weight, which is the sum of the weights of
all observations required in a child. We used the values [0,1,2,3]

4. max_depth: (default=3) is the maximum depth of a tree. We test the model with
values [2,4,6,8,10,20].

5. reg_alpha: (default=0) denotes L1 regularization term on weights, used for
shrinking less important features. We tested the values [0.0001, 0.001, 0.01,
0.1],

6. scale_pos_weight: (default=1) is used for balancing the weights for classes.
We conserve the default value of 1 for balancing the weights as the number of
samples in each class.

116

Appendix D

Classification Models

D.1 Model A

D.1.1 Features selection

Figure D.1: Correlation Matrix (Model A)

To obtain the features’ importance we explore the correlation between features and
also with the labeled class by using the Pearson coefficient which gives a value in
the range −1 to 1, where a positive value indicates a positive correlation between

117

Figure D.2: Correlation between features and class (Model A)

two variables, 0 when there is no correlation and a value lower than 0 when there
is a negative correlation; furthermore we obtain the features importance using an
Information Gain metric, which will be explained later.

According to the correlation matrix in Figure D.1, we observe some highly correlated
features, where we selected a cut of 0.80 and present them in Table D.1; in this table
are presented the number of table rows (Feature 3) which is correlated with the num-
ber of entities in table columns (Feature 9 and Feature 10); as well as the number of
columns (Feature 4) is also highly with the indexes of subject and object column (Fea-
tures 7, 8), which is an expected behaviour. Along the same lines in the same way the
features that assess the total number of entities and relations (Feature 15) versus the
unique number of them (Feature 16) are correlated, including for example the number
of potential relations where the predicate holds in the table and the number of unique
potential relations (Features 34 and 36).

On the other hand we observe the features correlated with the positive class, which

118

Table D.1: Features with high correlation for Model A

Feature_1 Feature_2 Correlation

3 5 0.905

3 9 0.901

3 10 0.905

3 15 0.894

4 7 0.857

4 8 0.916

5 9 0.816

7 8 0.808

9 10 0.970

9 15 0.995

9 16 0.873

10 15 0.974

10 16 0.835

12 16 0.879

15 16 0.826

31 33 0.997

32 36 0.821

32 34 0.888

34 36 0.944

are those regarding the predicate frequency in a table. In Figures D.3, D.4 and D.5 we
see that correct triples (points in red) have higher ratio in three features; conversely
these features have a negative correlation with the number of rows in table, since the
ratio of relations with the same predicate may be small as the number of table rows
increases. Likewise features about the similarity of the predicate with column names
(Features 28,29,30) correlate well with the class labeled correct.

Figures D.6 and D.7 show the number of correct and incorrect triples for different
string similarity values, where we observe that 90% of triples have a value lower than
0.1 but those with higher value correspond mostly to correct triples. In Table D.2, we
present some examples of triples that have a value of 1 for these features.

We observe that there are few columns of tables with similar names to the predicate la-
bels (from Wikidata), which makes it difficult to assign relations based on these names;
however being part of the features, the similarity between columns and predicate la-
bels contribute to the classification process.

After analysing the features correlation we obtained the Information Gain score based
on the Gini Index, which gives a measure of how pure are the leaves after splitting the
tree by a given feature.

To analyse this measure we present the Gini score obtained for features with the tree

119

Figure D.3: Features 32 - 34 Figure D.4: Features 32 - 36

Figure D.5: Features 34 - 36

Figure D.6: String similarity between
predicate and subject column name

Figure D.7: String similarity between
predicate and object column name

ensemble models proposed for the classification.

We observe that features related to the number of unique subjects and objects for the
predicate in Wikidata (Features 17,18,19,20) have a higher score and also the ratio
of unique relations where the predicate holds in the table (Feature 36). On the other
hand the features about the presence of formatting content in table cells (Features
26, 27) and the feature that indicates if the triple correspond to the article’s entity
(Feature 37) present a small score.

120

Table D.2: Examples of triples with maximum similarity between column names and
predicate

Column 1 Column 2 Predicate

director@3 titl@3 P57-1 :director

album@3 record_label@3 P264 :record label

countri@4 studio@3 P17-1 :country

album@3 record_label@3 P264 :record label

locat@3 school@3 P276-1 :location

2__team_place_in_nation_championship@3 countri@3 P17 :country

cathedr@3 present_archdioc_or_dioc@3 P1885-1 :cathedral

publisher@3 titl@3 P123-1 :publisher

leagu@3 recruit_from@3 P118-1 :league

genr@3 titl@3 P136-1 :genre

locat@3 univ@3 P276-1 :location

locat@3 main_articl@3 P276-1 :location

With this analysis we consider the following criteria to remove features for this set of
triples:

• From each pair of correlated features we removed the feature with higher mean
correlation with all features, thus we removed features: 3,4,5,9,10,15,31.

• Looking at features contribution we removed features 26, 27 and 29 which achieved
a Gini score lower than 0.01 in all tree based models.

121

Figure D.8: Gini score of features for Model A

122

D.1.2 Hyper-parameters tuning

The selected parameters correspond to the first row of each table.

Table D.3: Top AUC values with Random Forest parameters Model A.1

AUC n_estimators max_depth min_samples_leaf
0.839 100 20 2
0.838 200 20 2
0.838 200 20 5
0.838 500 20 2
0.837 500 20 5
0.837 400 20 2
0.837 500 10 2
0.836 500 20 2
0.836 400 20 4
0.836 500 10 5

Table D.4: Top AUC values with Bagging Decision Tree parameters Model A.1

AUC n_estimators max_depth min_samples_leaf
0.800 500 2 2
0.798 200 2 6
0.794 400 2 1
0.791 500 2 6
0.790 300 2 2
0.787 300 2 1
0.787 400 2 6
0.785 200 2 2
0.785 200 6 1
0.785 200 2 1

123

Table D.5: Top AUC values with XGBoost parameters Model A.1

AUC n_estimators max_depth learning_rate reg_alpha min_child_weight
0.847 100 6 0.01 0.001 1
0.847 100 6 0.001 0.001 1
0.847 100 6 0.0001 0.001 1
0.846 200 4 0.0001 0.1 1
0.846 200 4 0.001 0.1 1
0.846 200 4 0.01 0.1 1
0.846 200 4 0.1 0.1 1
0.846 200 10 0.0001 0.001 2
0.846 200 10 0.001 0.001 2
0.846 200 10 0.1 0.001 2

124

D.1.3 Model selection

Figure D.9: Precision-Recall curves Model A.4

Figure D.10: ROC-curves Model A.4

Figure D.11: Learning curves Model A.4 (Using F1-score)

125

D.2 Model B

D.2.1 Features selection

Figure D.12: Correlation between features and class (Model B, (+) indicates new
feature)

Following the same process for selecting features for Model A, we obtained the top cor-
related features considering the new features proposed for this model and a threshold
of 0.80. From the new features added we obtained two pairs of features with a high
correlation; the values are presented in Table D.6. Features 17 and 18 represent the
number of unique subjects and objects for a predicate respectively while features 47
and 48 indicate the maximum number of subjects by object and the maximum number
of objects by a subject for a predicate. Both pairs of features are highly correlated;
however they do not present the same values since the new features attempt to give
information about how many objects and subjects are "allowed" for a predicate, then
we also analyse the features contribution in Figure D.13.

126

Since we the observed that the results of classification algorithms with the new fea-
tures are better, and these features present a higher Gini score, we decide to remove,
additionally to correlated features found analysed for the Model A, features 17 and 18
for this model.

Table D.6: Features with high correlation for Model B

Feature_1 Feature_2 Correlation

3 5 0.905

3 9 0.901

3 10 0.905

3 15 0.894

4 7 0.857

4 8 0.916

5 9 0.816

7 8 0.808

9 10 0.970

9 15 0.995

9 16 0.873

10 15 0.974

10 16 0.835

12 16 0.879

15 16 0.826

31 33 0.997

32 36 0.821

32 34 0.888

34 36 0.944

17 47 0.894

18 48 0.952

127

Figure D.13: Gini score of features for Model B

128

D.2.2 Hyper-parameters tuning

Table D.7: Top AUC values with Random Forest parameters Model B.1

AUC n_estimators max_depth min_samples_leaf
0.865 200 10 2
0.862 500 10 2
0.862 300 10 1
0.861 400 10 1
0.861 500 10 1
0.860 200 10 1
0.860 300 10 1
0.860 200 10 4
0.859 300 10 2
0.859 100 10 2

Table D.8: Top AUC values with Bagging Decision Tree parameters Model B.1

AUC n_estimators max_depth min_samples_leaf
0.800 300 6 2
0.795 200 20 1
0.795 400 8 1
0.795 100 6 4
0.790 400 20 4
0.790 500 8 2
0.788 200 8 6
0.788 300 10 2
0.788 500 6 1
0.788 400 6 2

Table D.9: Top AUC values with XGBoost parameters Model B.1

AUC n_estimators max_depth learning_rate reg_alpha min_child_weight
0.878 100 10 0.0001 0.001 2
0.878 100 10 0.001 0.001 2
0.878 100 10 0.01 0.001 2
0.878 500 6 0.0001 0.0001 1
0.878 500 6 0.001 0.0001 1
0.878 500 6 0.01 0.0001 1
0.878 400 6 0.0001 0.0001 1
0.878 400 6 0.001 0.0001 1
0.877 400 6 0.01 0.0001 1
0.877 100 20 0.0001 0.001 2

129

D.2.3 Model selection

Figure D.14: Precision-Recall curves Model B.4

Figure D.15: ROC-curves Model B.4

Figure D.16: Learning curves Model B.4 (Using F1-score)

130

D.3 Model C

D.3.1 Features selection

Figure D.17: Correlation between features and class
(Model C, (+) indicates new feature)

The models were also validated with triples from I. We presented the top correlated
features for these models in Table D.10.

We observe that many features extracted from groups of tables are highly correlated
with each other (see Table D.10); for example the number of entities in subject and
objects columns in the group of tables (Features 51, 52), the number of rows in the
group of tables (Feature 60), as well as the number of relations in the rows of the
group (Features 55, 56).

131

Table D.10: Features with high correlation for Model C

Feature_1 Feature_2 Correlation

32 62 0.806

34 63 0.885

34 61 0.827

36 61 0.890

36 63 0.865

51 55 0.998

51 52 0.956

51 60 0.933

52 60 0.985

52 55 0.968

52 65 0.911

52 56 0.860

53 55 0.889

53 65 0.813

54 56 0.957

55 60 0.946

55 65 0.933

56 60 0.872

56 58 0.799

60 65 0.927

61 63 0.939

62 63 0.828

132

Figure D.18: Gini score of features for Model C

Figure D.19: Ratio of rows where predicate holds in table (32) and group (62)

133

We remove the features with higher mean correlation with all the features and also
considering the minimum Gini score obtained applying the tree classification models
(see Figure D.18).

Considering this analysis and the features analysed in previous models we removed
features: 3,4,5,9,10,15,17,18,26,27,29,31,33,51,52,55,56 and 60.

We observed the correlation between the ratio of rows and relations where the predi-
cate holds in the single table and the ratio in the corresponding group; these features
are highly correlated with each other but they present a different tendency with re-
spect to the classes, as we see in Figure D.19; therefore we did not remove these
features.

134

D.3.2 Hyper-parameters tuning

Table D.11: Top AUC values with Random Forest parameters Model C.1

AUC n_estimators max_depth min_samples_leaf
0.857 400 10 1
0.856 300 20 1
0.855 200 10 1
0.855 400 10 2
0.854 300 10 2
0.854 200 20 2
0.854 500 20 1
0.854 500 20 2
0.853 500 10 1
0.852 400 20 1

Table D.12: Top AUC values with Bagging Decision Tree parameters Model C.1

AUC n_estimators max_depth min_samples_leaf
0.822 500 10 1
0.815 300 4 1
0.815 400 8 2
0.808 200 6 1
0.806 200 20 2
0.805 200 8 1
0.803 300 4 1
0.802 300 10 4
0.800 300 10 2
0.799 500 8 2

Table D.13: Top AUC values with XGBoost parameters Model C.1

AUC n_estimators max_depth learning_rate reg_alpha min_child_weight
0.876 100 4 0.001 0.1 2
0.876 100 4 0.01 0.1 2
0.876 100 4 0.1 0.1 2
0.875 100 4 0.001 0.1 2
0.875 100 4 0.01 0.001 2
0.875 100 4 0.1 0.001 2
0.875 100 4 0.001 0.001 1
0.875 100 4 0.01 0.01 1
0.875 100 4 0.1 0.01 1
0.875 200 8 0.001 0.01 1

135

D.3.3 Model Selection

Figure D.20: Precision-Recall curves Model C.4

Figure D.21: ROC-curves Model C.4

Figure D.22: Learning curves Model C.4 (Using F1-score)

136

D.4 Model D

D.4.1 Features selection

Figure D.23: Correlation Matrix with new proposed features

Following the same methodology used for selecting features for validating the models
of set I, we apply features selection to the set of labeled triples from F considering all
features.

The correlation matrix in Figure D.23 for this set of triples shows the same correlated
features as for previous models I; thus then we consider to remove the same features:
3, 4, 5, 9, 10, 15, 26, 27, 31, 33, 51, 52, 55, 56, 60, 33, 17, 18 and also remove those
features with lower Gini score (see Figure D.25) in all models 37,41,42,45,46.

137

Figure D.24: Correlation between features and class (Model D, (+) indicates new
feature)

138

Figure D.25: Features importance for model D

139

D.4.2 Hyper-parameter Tuning

Table D.14: Top AUC values with Random Forest parameters Model D.1

AUC n_estimators max_depth min_samples_leaf
0.858 500 10 1
0.858 300 20 1
0.857 400 20 1
0.857 500 20 1
0.857 100 20 1
0.854 200 20 1
0.854 300 20 2
0.853 500 8 1
0.853 200 8 2
0.853 300 10 1

Table D.15: Top AUC values with Bagging Decision Tree parameters Model D.1

AUC n_estimators max_depth min_samples_leaf
0.705 400 20 4
0.699 200 20 6
0.699 200 6 6
0.697 100 4 1
0.697 200 40 6
0.695 400 6 6
0.694 100 4 4
0.692 100 6 2
0.690 300 4 4
0.69 500 6 4

Table D.16: Top AUC values with XGBoost parameters Model D.1

AUC n_estimators max_depth learning_rate reg_alpha min_child_weight
0.869 500 10 0.0001 0.0001 1
0.869 500 10 0.001 0.0001 1
0.869 500 10 0.01 0.0001 1
0.869 500 10 0.1 0.0001 1
0.868 500 20 0.0001 0.0001 1
0.868 500 20 0.001 0.0001 1
0.868 500 20 0.01 0.0001 1
0.868 500 20 0.1 0.0001 1
0.867 400 10 0.0001 0.0001 1
0.867 400 10 0.001 0.0001 1

140

D.4.3 Model selection

Figure D.26: Precision-Recall curves Model D.4

Figure D.27: ROC-curves Model D.4

Figure D.28: Learning curves Model D.4 (Using F1-score)

141

D.5 Evaluation

D.5.1 Correct triples extracted

Table D.17: Examples of triples classified as correct to feed Wikidata

Subject Predicate Object

Q15531476

The_Eternal_Sea
P161

cast member

Q4800331

Arthur_Space
Q43788

Madison,_Wisconsin
P361

part of

Q1537

Wisconsin
Q7950076

WHBG
P1408

licensed to broadcast to

Q511935

Harrisonburg,_Virginia
Q2183999

FC_Kommunalnik_Slonim
P159

headquarters location

Q863576

Slonim
Q754132
1989–90_UEFA_Cup

P3967

final event

Q744369

1990_UEFA_Cup_Final

Q1946049

Zagórz

P131

located in the administrative

territorial entity

Q1340594
Sanok_County

Q17495911
Sangeet_Singh_Som

P19

place of birth

Q200237

Meerut
Q468264

Candice_Dupree
P54

member of sports team

Q1274643

Phoenix_Mercury
Q16249654
Cut_Bank_(film)

P161

cast member

Q343510

Oliver_Platt

Q7819369
Tommy_Dowd_(baseball)

P413

position played on team /

speciality

Q1142885

Outfielder

Q1066134
Prince_of_Persia:

_Arabian_Nights

P123

publisher

Q48976504

Mattel_Interactive

Q1394498

M88_Recovery_Vehicle
P495

country of origin

Q30

United_States

Q860670

Rolfe_Kent
P1411

nominated for

Q2357620

Satellite_Award_for
_Best_Original_Score

Q16197506

LSU_Tigers_baseball
P286

head coach

Q7152168
Paul_Mainieri

Q580122
1959_Tour_de_France

P710

participant

Q3434758

Robert_Cazala

142

Q6143618

James_Stevenson_(UK
_politician)

P102

member of political party

Q7886824
Unionist_Party_(Scotland)

Q15043347
Million_Dollar_Arm

P750

distributor

Q191224
Walt_Disney_Pictures

Q35

Denmark

P150

contains administrative

territorial entity

Q1748
Copenhagen

Q3695083

Cosetta_Campana
P1532

country for sport

Q38
Italy

Q7146275

CorbinDances
P27

country of citizenship

Q30
United_States

143

	Introduction
	Motivation
	Motivating Example
	Objective
	Hypothesis
	Results
	Structure of this work

	Background
	Semantic Web standards
	Resource Description Framework (RDF)
	RDF Schema (RDFS)
	Web Ontology Language (OWL)
	SPARQL
	Web Knowledge Bases
	Wikidata Knowledge Base
	Linked Data

	Information Extraction
	Information Extraction from Text
	Information Extraction from Web Tables

	Machine Learning methods
	Clustering methods
	Classification methods
	Evaluation metrics
	Text Processing

	Related Work
	Table detection
	Table interpretation
	Parsing and Normalization
	Entity detection
	Attribute detection
	Relation extraction

	Clustering and merging tables
	Clustering tables
	Merging tables

	Summary

	Proposal
	Table extraction and normalization
	Knowledge base querying
	Grouping tables
	Relation Extraction
	Classification and validation

	Table Corpus
	Tables extraction
	Tables classification
	Tables normalization
	Table Interpretation
	Header identification
	Text processing
	Data types

	Article's table entity

	Knowledge Base Querying
	Wikidata Access
	Entity extraction
	Triple extraction
	Statistics for features modelling

	Grouping tables
	Clustering overview
	Grouping tables proposal
	Evaluation of table groups

	Relation extraction
	Candidate triples from individual tables
	Candidate triples by merging tables
	Evaluation of candidate triples
	Dividing table groups

	Triple classification
	Features description
	Adding new features

	Classification algorithms
	Dataset description
	Classification models
	Model A
	Model B
	Model C
	Model D

	Model Selection
	Evaluation

	Conclusions
	Bibliography

	Appendix Information Extracted from Wikidata
	Appendix Inter-rate agreement
	Appendix Model parameters description
	Appendix Classification Models
	Model A
	Features selection
	Hyper-parameters tuning
	Model selection

	Model B
	Features selection
	Hyper-parameters tuning
	Model selection

	Model C
	Features selection
	Hyper-parameters tuning
	Model Selection

	Model D
	Features selection
	Hyper-parameter Tuning
	Model selection

	Evaluation
	Correct triples extracted

