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The strength of goal-oriented behaviors is regulated by midbrain dopamine neurons.
Dysfunctions of dopaminergic circuits are observed in drug addiction and obsessive-
compulsive disorder. Compulsive behavior is a feature that both disorders share, which is
associated to a heightened dopamine neurotransmission. The activity of midbrain
dopamine neurons is principally regulated by the homeostatic action of dopamine
through D2 receptors (D2R) that decrease the firing of neurons as well as dopamine
synthesis and release. Dopamine transmission is also regulated by heterologous
neurotransmitter systems such as the kappa opioid system, among others. Much of
our current knowledge of the kappa opioid system and its influence on dopamine
transmission comes from preclinical animal models of brain diseases. In 1988, using
cerebral microdialysis, it was shown that the acute activation of the Kappa Opioid
Receptors (KOR) decreases synaptic levels of dopamine in the striatum. This inhibitory
effect of KOR opposes to the facilitating influence of drugs of abuse on dopamine release,
leading to the proposition of the use of KOR agonists as pharmacological therapy for
compulsive drug intake. Surprisingly, 30 years later, KOR antagonists are instead
proposed to treat drug addiction. What may have happened during these years that
generated this drastic change of paradigm? The collected evidence suggested that the
effect of KOR on synaptic dopamine levels is complex, depending on the frequency of
KOR activation and timing with other incoming stimuli to dopamine neurons, as well as sex
and species differences. Conversely to its acute effect, chronic KOR activation seems to
facilitate dopamine neurotransmission and dopamine-mediated behaviors. The opposing
actions exerted by acute versus chronic KOR activation have been associated with an
initial aversive and a delayed rewarding effect, during the exposure to drugs of abuse.
Compulsive behaviors induced by repeated activation of D2R are also potentiated by the
sustained co-activation of KOR, which correlates with decreased synaptic levels of
in.org February 2020 | Volume 11 | Article 571

https://www.frontiersin.org/article/10.3389/fphar.2020.00057/full
https://www.frontiersin.org/article/10.3389/fphar.2020.00057/full
https://www.frontiersin.org/article/10.3389/fphar.2020.00057/full
https://loop.frontiersin.org/people/528213
https://loop.frontiersin.org/people/355778
https://loop.frontiersin.org/people/112471
https://loop.frontiersin.org/people/393770
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jfuentea@uc.cl
https://orcid.org/0000-0003-0775-0675
https://doi.org/10.3389/fphar.2020.00057
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.00057
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.00057&domain=pdf&date_stamp=2020-02-18


Escobar et al. Kappa Opioid-Dopamine Interaction Controls Compulsivity

Frontiers in Pharmacology | www.frontiers
dopamine and sensitized D2R. Thus, the time-dependent activation of KOR impacts
directly on dopamine levels affecting the tuning of motivated behaviors. This review
analyzes the contribution of the kappa opioid system to the dopaminergic correlates of
compulsive behaviors.
Keywords: kappa opioid receptor, dopamine, compulsivity, amphetamine, quinpirole, locomotor sensitization
INTRODUCTION

Dopaminergic System in
Compulsive Behaviors
Compulsion is the impossibility of self-stopping to execute a
habitual action with known outcome, despite adverse
consequences (Robbins et al., 2012). Compulsive behaviors are
hallmarks of obsessive-compulsive disorder (OCD) and drug
addiction, among other psychiatric diseases. Checking behavior
is very common in obsessive-compulsive spectrum disorders
being characterized by the constant repetition of a certain
routine, in a stereotyped or ritualistic way (Williams et al.,
2013). A wide range of normal behaviors (e.g., checking,
cleaning, hands washing, etc.) can turn into compulsive in
OCD patients and in general, arises in response to obsessive
and distressing thoughts inducing anxiety. Similarly, seeking and
consuming drugs of abuse become compulsive in drug addicts As
in OCD, anxiety plays a key role triggering compulsive drug
consumption in experienced drug abusers. The same
impairments in reward and punishment processing are
observed in both conditions (Figee et al., 2016), which has led
some authors to discuss OCD as a behavioral addiction
(Holden, 2001).

One possible mechanism leading to compulsive behavior is
framed within the incentive-sensitization theory of addiction
which is that an amplified motivation (“wanting”) for the drug
develops during addiction without developing an amplified
pleasurable (“liking”) effect (Berridge et al., 1989; Berridge and
Robinson, 2016). Enduring sensitization of the reward/
motivation circuit is involved in the induction of incentive-
sensitization associated to drug seeking. The reward/
motivation circuit is composed of midbrain dopamine neurons
of the substantia nigra (SN) and ventral tegmental area (VTA),
which target the dorsal and ventral tiers of the striatum,
respectively. Dopamine neurons that project to the ventral
striatum or nucleus accumbens (NAc) have been traditionally
related to goal-oriented behaviors, whereas dopamine neurons
that project to the dorsal striatum have been associated with
habits acquisition (Everitt and Robbins, 2005; Wise, 2009; Yager
et al., 2015; Volkow et al., 2017).

Sensitization of the reward/motivation circuit is observed in
rodents as the gradual increase in locomotor activity induced by
repeated administration of a potentially addictive drug fixed dose
(Pierce and Kalivas, 1997; Robinson and Berridge, 2001).
Locomotor sensitization is an endurable phenomenon as it is
observable after weeks, months and even a year after drug
withdrawal (Robinson and Berridge, 1993). It was early
in.org 2
suggested that sensitization of the reward/motivation circuit
contributes to the compulsive drug seeking (Robinson and
Berridge, 1993). Accordingly, locomotor sensitization facilitates
self-administration cocaine seeking reinstatement (De Vries
et al., 2002). Moreover, rats with extended access to cocaine
self-administration show greater locomotor response to cocaine
than rats with limited access (Ferrario et al., 2005). In addition,
the neurochemical changes underlying locomotor sensitization
to psychostimulants are also observed in compulsive drug
seeking (Steketee and Kalivas, 2011; Giuliano et al., 2019).
These data support the early proposed correspondence
between locomotor sensitization and compulsive drug seeking
observed in humans (Robinson and Berridge, 1993;
Vanderschuren and Kalivas, 2000). Mechanistically, repeated
administration of drugs of abuse sensitizes mesolimbic
dopamine circuits increasing dopaminergic neurotransmission.
Psychostimulants, like cocaine or amphetamines, that block the
plasma membrane dopamine transporter (DAT), induce a large
increase of dopamine in the synaptic space in the striatum and
NAc, thus activating locomotion (Steketee and Kalivas, 2011). As
in drug addiction, sensitization of the dopamine reward/
motivation circuit contribute to compulsive behaviors seen in
OCD. Indeed, the repeated activation of dopamine D2 receptors
(D2Rs) is enough to induce locomotor sensitization and
checking behavior in both rats and mice (Szechtman et al.,
1998; Szechtman et al., 1999; Sun et al., 2019). Repeated
administration of quinpirole, a D2R/D3R agonist, is an
accepted model of OCD as it recapitulates face validity,
through an increment of compulsive checking and stereotyped
behavior, predictive validity, as seen by a decrease of compulsive
behaviors after chronic treatment with serotonin reuptake
inhibitors (SRI) and construct validity as brain structures
involved in this model are shared with those in the pathology
(Stuchlik et al., 2016; Szechtman et al., 2017). In summary,
repeated activation of dopamine transmission, either by pre-
synaptic (dopamine release) or post-synaptic (activation of D2R)
mechan i sms lead to locomotor sens i t i za t ion and
compulsive behaviors.

The kappa opioid system is one of the most preponderant
systems controlling dopamine transmission in the reward/
motivation circuit. Evidence shows that kappa-opioid
transmission opposes to the effects of dopamine; the acute
activation of kappa opioid receptors (KORs) counteracts the
locomotor activity induced by psychostimulants (Gray et al.,
1999). Conversely, repeated KOR activation maintains and
enhances compulsive and habitual drug seeking (Koob, 2013).
Consumption of drugs of abuse induce a homeostatic enhanced
February 2020 | Volume 11 | Article 57
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kappa opioid transmission, probably contributing to the negative
emotional states of dysphoria (Koob, 2013) triggering
compulsive drug use (Chavkin and Koob, 2016). In fact, the
blockade of KOR prevented stress- but not drug-induced
reinstatement of nicotine (Jackson et al., 2013), cocaine
(Beardsley et al., 2005) and ethanol (Sperling et al., 2010). In
line with this finding, KOR blockade reverts dopaminergic
changes in the dorsolateral striatum of amphetamine sensitized
rats, without modifying their enhanced locomotor response to
the drug (Azocar et al., 2019). Thus, KOR system seems to
enhance negative reinforcement increasing drug-value. In OCD,
negative reinforcement is triggered by obsessions, which
strengthen a given compulsion in order to avoid that
obsession. Although it has not been directly tested, negative
reinforcing could play a role on quinpirole sensitization. Indeed,
D2R are involved in the generation of negative reinforcement.
For example, place avoidance to a morphine- withdrawal-paired
area was not developed in mice lacking the long isoform of D2R
(Smith et al., 2002) and repeated quinpirole treatment during
abstinence period reinstates cocaine and heroin seeking in an
auto-administration paradigm, an effect related to sensitized
locomotion to quinpirole (De Vries et al., 2002), suggesting
shared mechanisms between psychostimulant and quinpirole-
induced sensitization. Moreover, the introduction of the home
cage, but not a novel cage, to the open-field arena reduces
locomotor sensitization and compulsive checking behavior
(Szechtman et al., 2001), indicating that safety/familiar cues
might compete with negative environmental cues that favor
sensit ization. Similarly to psychostimulant-induced
sensitization, the repeated activation of KOR facilitates
locomotor sensitization (Escobar et al., 2017) and compulsive
checking behavior (Perreault et al., 2007) induced by repeated
administration of quinpirole. Whether this potentiating effect is a
consequence of enhanced negative reinforcement remains to
be elucidated.

The thorough analysis carried out recently shows that the
effect of the kappa-opioid system on dopaminergic transmission
is complex: it depends on the dopamine pathway involved
(Margolis et al., 2006; Margolis et al., 2008), and on the timing
between the activation of the KOR receptor and the activation of
the dopamine receptor (Chartoff et al., 2016). Consistent with
this complexity, the potential therapeutic use of KOR ligands has
been widely discussed. It has been proposed that KOR agonist
may be clinically useful during the drug use phase, attenuating
the drug induced hyperdopaminergia (Shippenberg et al., 2007).
On the other hand, a KOR antagonist may be useful in treating
withdrawal syndrome induced by an increase in dynorphin
expression after repeated drug consumption (Wee and Koob,
2010). Accordingly, it has been proposed that KOR partial
agonist (Béguin et al., 2012) could be a therapeutic option to
treat both the compulsive drug intake and withdrawal symptoms
in addicted individuals (Chartoff et al., 2016; Callaghan et al.,
2018). In this review, we analyze the time/context-dependent
modulation of dopaminergic correlates of behavioral
sensitization and compulsivity.
Frontiers in Pharmacology | www.frontiersin.org 3
Anatomical and Functional Crosstalk
Between Kappa Opioid and Dopaminergic
Systems in Striatal and Midbrain Regions
Striatal Regions
KORs are Gi/o protein-coupled receptors highly expressed in the
midbrain dopamine system (Mansour et al., 1996). These
receptors belong to the family of opioid receptors composed by
mu (MOR), delta (DOR) and kappa (KORs). The endogenous
agonists for these receptors are endorphins, enkephalin and
dynorphin, respectively. In the striatum, dynorphin is
synthetized by dopamine D1receptor (D1R)-containing
medium-sized neurons (MSNs) that have recurrent axons
activating KORs from the same nuclei (Mansour et al., 1995).
Electron microscopy images of rat NAc shows that KORs are
found predominantly in DAT-containing presynaptic structures
while a minor proportion of KORs localizes on dendrites in
apposition to DAT (Svingos et al., 2001; Kivell et al., 2014).
Immunofluorescent studies characterizing presynaptic-
synaptosomal preparations from NAc show that KORs and
D2Rs preferentially coexist in synaptosomes containing the
dopamine synthetizing enzyme, tyrosine hydroxylase (TH)
(Escobar et al., 2017). Moreover, KORs are abundant in cell
bodies of the NAc and striatum, and colocalize with D2Rs in a
cell subpopulation (Escobar et al., 2017). With genetic and
molecular insights, it has been suggested that a 20% of total
KOR binding in the striatum is observed in DA terminals (Van't
Veer et al., 2013). Moreover, Tejeda et al. (2017) showed that
both D1R and D2R MSNs express KOR with a higher preference
for D1R containing MSNs (Tejeda et al., 2017). This anatomical
data indicates that KORs are present pre and postsynaptically,
regulating dopamine neurotransmission in the reward/
motivation circuit.

Several experimental approaches show that the activation of
KORs inhibits dopamine release. The acute activation of KORs
by a systemic injection or the local infusion of agonists decreases
the extracellular levels of dopamine in the NAc (Di Chiara and
Imperato, 1988; Spanagel et al., 1992; Fuentealba et al., 2006) and
dorsal striatum (Gehrke et al., 2008). Supporting a tonic
inhibitory action of KORs over dopamine neurotransmission,
the direct infusion of the long-lasting and selective KOR
antagonist nor-binaltorphimine (nor-BNI) (Broadbear et al.,
1994) increases basal levels of dopamine in the NAc (Spanagel
et al., 1992) and dopamine release in the dorsal striatum (Azocar
et al., 2019). Final evidence of KOR tonic inhibition of dopamine
was shown in KOR knockout mice, which displayed increased
extracellular levels of dopamine in the striatum and NAc (Chefer
et al., 2005). The mechanisms responsible for KOR inhibition of
dopamine release are not completely elucidated. However, it is
well known that the activation of KORs leads to the increase of
K + and decrease of Ca2+ conductances, thus inducing cell
hyperpolarization and blockade of vesicular neurotransmitter
release (Bruchas and Chavkin, 2010; Margolis and
Karkhanis, 2019).

Additionally, in vitro and in vivo functional data suggests that
KORs modify dopamine extracellular levels by modulating the
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activity of DAT. For instance, the activation of KORs in EM4
cells that co-express KORs and DAT, lead to an increased uptake
of dopamine measured by voltammetry (Kivell et al., 2014). An
ex vivo analysis also using voltammetry in disaggregated tissues,
showed that a systemic injection of KOR agonist U-69593
increased dopamine uptake in the NAc (Thompson et al.,
2000). A similar recent article shows that nor-BNI blocks the
increase of dopamine uptake in the ventral and dorsal striatum,
induced by an acute systemic injection of MP1104, a mixed
Kappa/Delta opioid receptor agonist (Atigari et al., 2019).
Nevertheless, the effect of KOR activation on dopamine uptake
has yet not been not fully elucidated. The systemic
administration of the KOR partial agonist nalmefene decreased
striatal dopamine uptake dose dependently, quantified by fast
scan cyclic voltammetry (FSCV) (Rose et al., 2016). Using a no-
net flux microdialysis in adult male rats, blocking of KOR was
accompanied by an increase in extraction fraction (Ed), which is
an indirect measure of dopamine uptake (Chefer et al., 2006;
Azocar et al., 2019), suggesting that tonic activation of KOR
exerts an inhibitory control on DAT activity (dopamine uptake).
These results highlight the complex role of endogenous KOR
activity on dopamine uptake to control dopamine extracellular
levels. Higher temporal resolution approaches such as FSCV
have failed to show an effect of KOR on dopamine uptake (Ebner
et al., 2010; Ehrich et al., 2015; Hoffman et al., 2016), suggesting
that KOR enhancing DAT activity in striatal regions needs an
incubation period., KOR-mediated enhancement of DAT activity
could be explained by an increase in the number of DAT on cell
membranes induced by KOR activation, as reported in striatal
synaptosomes and cell lines (Kivell et al, 2014).

Midbrain Regions
Autoradiographic assays performed in the rat midbrain show
significant binding for KORs on the rostrocaudal axis of the SN
and VTA (Speciale et al., 1993). On the other hand, electron
microscopy data show that dynorphin-containing terminals
synapse directly on TH positive dendrites in the SN and the
VTA (Sesack and Pickel, 1992), suggesting that KORs localize in
somatodendritic compartments of dopamine neurons. Striatal
D1R-containing MSNs are one of the dynorphin inputs to
midbrain dopamine neurons. Interestingly, blockage of KORs
does not modify the inhibitory effect of D1R-MSNs to VTA
dopamine neurons, indicating that this inhibition is mediated by
GABA (Edwards et al, 2017). KORs modulate somatodendritic
responses of dopamine midbrain neurons. Electrophysiological
studies show that the activation of KORs in the VTA
hyperpolarizes and decreases the spontaneus firing rate of
dopamine neurons (Margolis et al., 2003). Consequently, the
infusion of KOR agonists decreases somatodendritic dopamine
efflux (Smith et al., 1992; Dalman and O'Malley, 1999). However,
this inhibitory effect of KORs on dopamine neurons seems to be
circuit dependent. The infusion of kappa-opioid agonists in the
VTA decreases dopamine release in the medial prefrontal cortex
(mPFC) (Margolis et al., 2006) but not in the NAc (Devine et al.,
1993; Margolis et al, 2006). Moreover, Margolis et al. (2006)
found that KORs inhibit VTA dopamine neurons that project to
the mPFC and basolateral amygdala, but not those that project to
Frontiers in Pharmacology | www.frontiersin.org 4
the NAc. In that same year, Ford et al. (2006) showed that bath
application of KOR agonists in mouse VTA slices induced a
higher outward current in dopamine neurons that project to the
NAc compared to those that project to the basolateral amygdala,
indicating that KORs exert a greater inhibition of dopamine
neurons that project to the NAc than to the amygdala.
Furthermore, the activation of KOR decreases the amplitude of
excitatory (Margolis et al., 2005) and inhibitory (Ford et al.,
2007) postsynaptic currents into midbrain dopamine neurons.
Differences between species and the complex efferents
proyections of VTA to mPFC and NAc (Van Bockstaele and
Pickel, 1995; Carr and Sesack, 2000) make it challenging to
establish whether KORs inhibit selectively some of the neuronal
dopamine populations in VTA. Nevertheless, the data
summarized here indicates that KORs are in the soma and
terminals of dopamine neurons, as well as in the inputs that
regulate them, thus exquisitely positioned to control the synaptic
activity of midbrain dopamine neurons.
Role of KORs Controlling Dopamine
Neurotransmission in Psychostimulants-
Induced Sensitization and
Compulsive Behaviors
Drug addiction is a process that involves initially impulsive drug
seeking associated with their positive-reinforcing effects. On the
other hand, compulsivity is a personality trait observable in drug
addicts. Several neuroadaptations in dopaminergic pathways
have been proposed to account for compulsive drug seeking
and intake following repeated exposure to drugs of abuse (Everitt
and Robbins, 2005; Koob and Volkow, 2016). One of the
proposed hypotheses driving compulsive drug intake is the
sensitization of its negative-reinforcing effects (Koob, 2013).
The inhibitory control of kappa opioid system on dopamine
release could contribute to the negative-reinforcing properties of
drugs of abuse. However, the consequences of KOR activation on
dopamine neurotransmission and compulsive drugs seeking
seems to be complex and apparently contradictory. Indeed,
dopamine release induced by amphetamine and cocaine is
attenuated by concomitant administration of KOR agonists
(Heidbreder and Shippenberg, 1994; Maisonneuve et al., 1994;
Thompson et al., 2000) and even decrease cocaine self-
administration (Negus et al., 1997). Moreover, KORs exert an
inhibitory feedback on dopamine release of the mesolimbic
pathway in response to the sustained activation of post-
synaptic D1R as occurs with repeated exposure to
psychostimulants (Cole et al . , 1995; Nestler, 2001).
Paradoxically, the activation of KORs can also facilitate
dopamine release in the reward/motivation pathway
(Fuentealba et al., 2006; Fuentealba et al., 2007) and
psychostimulants consumption (Wee et al., 2009). Fuentealba
et al. (2007) showed that after four days administering U69593, a
KOR agonist, increased amphetamine induced dopamine release
in the NAc. Recently, it was shown that blocking KORs reverses
the changes in dopamine release and uptake in dorsal striatum
that takes place during the locomotor sensitization induced by
amphetamine (Azocar et al., 2019). Altogether, these data suggest
February 2020 | Volume 11 | Article 57
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that the activation of KORs might also contribute to positive-
reinforcing properties of drug of abuse (Chartoff et al., 2016).

In addition, KORs activation also seem to contribute to
compulsive drug seeking; KORs blockade reduces cocaine
(Wee et al., 2009), heroin (Schlosburg et al., 2013) and
methamphetamine (Whitfield et al., 2015) intake in rats with
unlimited access to the drug (Wee et al, 2009). This effect is also
evidenced in stress-induced drug seeking. For instance, the KOR
knockout mice did not show cocaine place preference after
forced swimming stress (McLaughlin et al., 2006a). The
blocking of KORs attenuates the nicotine place preference
induced by forced swim stress exposure (Smith et al., 2012).
Interestingly, the blocking of KOR attenuates the cocaine and
nicotine seeking induced by stress but did not affect seeking
induced by a drug challenge (Beardsley et al., 2005; Jackson et al.,
2013). This facilitator KOR effect induced by stress seems to be
mediated by the reward/motivation circuit (Shippenberg et al.,
2007; Wee and Koob, 2010). In an elegant study performed by
Dr. Kauer and her group, it was shown that blocking KORs in
the VTA, either previously or after an acute stress, inhibits the
reinstaintment of cocaine-seeking, an effect associated to the
rescue of long-term-potentiation of inhibitory synapses in
dopamine neurons (Graziane et al., 2013; Polter et al., 2014).

The facilitation of psychostimulants intake exerted by KORs
seems to depend on a time-window regarding drug exposure.
The administration of the KOR agonist U50488 1 h before
cocaine exposure potentiates both cocaine place preference and
the relative dopamine release evoked by cocaine in the NAc,
while the opposite effects are observed when given 15 min before
(McLaughlin et al., 2006a; Ehrich et al., 2014). Using intracranial
self-stimulation Chartoff et al. (2016) observed that the KOR
agonist Salvinorin A, has an initial aversive and a delayed
rewarding effect, accompanied by a decrease and an increase in
stimulated dopamine release in the NAc, respectively. All
together these data indicate a time-dependent effect of KOR
activation on the rewarding properties of cocaine, and points to
the stress-mediated KOR activation as a key player for the
development of compulsive drug-seeking.

Quinpirole-Induced Locomotor
Sensitization and Compulsive Behavior
The facts that the dopamine system is involved in the generation
of sensitization and compulsivity is strengthened by the behavior
observed in rodents treated with the D2R agonist, quinpirole.
Briefly, D2Rs are Gi coupled receptors widely expressed in the
reward/motivation circuit; they are expressed somatodendritically
and on axon terminals of dopamine neurons (Sesack et al., 1994),
and its activation decreases dopamine extracellular levels
(Imperato and Di Chiara, 1988). In the striatum, D2Rs are also
located postsynaptically on medium spiny neurons (Sesack et al.,
1994) and its activation inhibits the indirect pathway allowing
locomotor activity.

Dr. Henry Szechtman began studying the effects of quinpirole
on the behavior of rats ending the decade of 1980. Their initial
findings showed that the acute administration of quinpirole has
dose-dependent effect on locomotor activity. At low doses (0.03
Frontiers in Pharmacology | www.frontiersin.org 5
mg/kg) it decreases locomotor activity, while at higher doses
(>0.5 mg/kg), it increments. (Eilam and Szechtman, 1989). These
effects are associated with the activation of high-affinity
presynaptic D2Rs and low-affinity postsynaptic D2Rs,
respectively (Usiello et al., 2000). Unexpectedly, the repeated
(every other day) administration of quinpirole induces a gradual
and sustained increase in locomotion, resembling the locomotor
sensitization induced by psychostimulants (Szechtman et al.,
1993; Szechtman et al., 1994). The locomotor sensitizing effect
was shown to depend on D2Rs, since mice deficient for this
receptor do not develop locomotor sensitization to quinpirole
(Escobar et al., 2015).

At the beginning of the 90's, Szechtman and Eilam reported
that along with locomotor sensitization, rats developed a
stereotyped behavior, which is reinforced with each
administration of quinpirole (Eilam and Szechtman, 1989;
Szechtman et al. , 1993). Today, quinpirole repeated
administration is a validated model for OCD (Szechtman et al.,
1999; Szechtman et al., 2001; Eilam and Szechtman, 2005;
Stuchlik et al., 2016; Szechtman et al., 2017), based on the
observation that the behavior of rats becomes increasingly
structured and inflexible, reminiscent of the ritual behavior
characteristic of compulsive checking behavior (Szechtman
et al., 1998; Szechtman et al., 2017). Recent studies show that
repeated quinpirole also induces compulsive behaviors in mice,
such as compulsive checking (Sun et al., 2019), behavioral
inflexibility and compulsive chewing (Asaoka et al., 2019), the
latter reverted by D2Rs blockade in the striatum, further
supporting that repeated D2Rs activation is needed to induce
compulsive behaviors. Together the data points to a crucial role
of D2Rs within the midbrain dopamine pathways to induce
locomotor sensitization and compulsivity. Repeated quinpirole
administration primes cocaine-induced stereotyped behavior
(Thompson et al., 2010) and the locomotor effects of
amphetamine (Cope et al., 2010), strengthening the idea that
D2Rs activation underlie psychostimulant-induced sensitization
and suggesting a shared mechanism between quinpirole and
psychostimulants-induced sensitization. Interestingly, the
sensitizing effect of repeated D2Rs activation seems to be
stronger than that induced by psychostimulants, since every rat
treated with quinpirole develop locomotor sensitization (Escobar
et al., 2015), while around sixty percent of rats sensitize to
amphetamine (Escobar et al., 2012; Casanova et al., 2013).

Behavioral sensitization induced by repeated activation of
D2Rs is accompanied by adaptations in the reward/motivation
circuit. Rats sensitized with quinpirole have lower dopaminergic
tone in the NAc, observed as decreased basal (Koeltzow et al.,
2003) and stimulated tonic and phasic dopamine release
(Escobar et al., 2015), indicating decreased dopamine release
capacity of dopamine midbrain circuit. Synaptic dopamine levels
in the NAc are controlled by the activity of both, DAT and
dopamine neurons activity (Goto and Grace, 2008), which in
vivo consists of tonic and burst firing (Wilson et al., 1977; Grace
and Bunney, 1980). Previous reports show that quinpirole-
sensitized rats display a smaller number of dopamine neurons
in tonic and burst firing in the VTA (Sesia et al., 2013). Together
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these data indicate that the decrease in dopamine release seen
after quinpirole sensitization is a result of a decrease in the
overall activity of dopamine neurons. The compulsive behavior
and sensitized locomotor activity induced by the repeated
treatment with quinpirole could be a consequence of
sensitization of D2Rs, due to decreased dopaminergic tone in
the NAc. Indeed, quinpirole-sensitized rats show an increase in
the binding of dopamine D2R (Culver et al., 2008) and an
increase in the affinity state of these receptors (Perreault et al.,
2007), supporting this hypothesis.

KOR-Dopamine Interactions in Quinpirole-
Induced Compulsive Behaviors
Initial studies regarding the role of KOR in D2R-induced
compulsive behaviors also came from Szechtman's lab. This
group examined the concomitant administration of the KOR
agonist U69593 with quinpirole on locomotor activity.
Specifically, the authors administered subcutaneous injections
to rats with a mixture U69593 and quinpirole, until 8 to 10
injections were completed. Contrary to the hypolocomotor effect
of U69593 alone, hyperlocomotion was observed when
administered concomitantly with low (presynaptic) and high
(postsynaptic) doses of quinpirole. U69593 changed the
hypolocomotor effect of a presynaptic dose of quinpirole to
hyperlocomotion and enhanced the hyperlocomotor effect of a
postsynaptic dose of quinpirole (Perreault et al., 2006). Co-
activation of KORs also accelerated the induction of locomotor
sensitization and potentiated the effect of D2Rs activation, since
the maximum locomotion achieved by the double treatment
duplicates the locomotor effect induced by quinpirole alone
(Perreault et al., 2006; Escobar et al., 2017). Co-activation of
KORs also accelerates the acquisition of compulsive checking
behavior (Perreault et al., 2007). These potentiating effects of
KORs on quinpirole-induced behaviors require KORs repeated
activation. In fact, acute injection of the KOR agonist U69593 did
not further modify the locomotor activity in rats sensitized with
quinpirole (Escobar et al., 2017). The mechanism of KOR
potentiating D2R-induced sensitization is unknown. One
possibility is that the endogenous kappa opioid system itself is
mediating D2R-dependent sensitization. However, this
possibility was discarded by showing that pre-administration
of norBNI did not modify locomotor sensitization to quinpirole,
suggesting that dynorphin is not released downstream D2R
activation (Escobar et al., 2017). This data does not rule out
that dynorphin might have a role in sensitizing compulsive
behaviors, for example, stress induces the release of dynorphin
and activation of KORs which facilitates compulsive behaviors
(McLaughlin et al., 2003; McLaughlin et al., 2006a; McLaughlin
et al., 2006b).

The crosstalk between D2Rs and KORs is complex and it
seems to depend on whether the activation of both receptors is
coincident or temporally separated. Anatomical data indicate
that the crosstalk between D2Rs and KORs can occur
presynaptically in axons and soma of dopamine neurons, as
well as postsynaptically in MSNs of the striatum. Although it
does not rule out a role for KORs located on axons of other
Frontiers in Pharmacology | www.frontiersin.org 6
neurochemical systems, the anatomical data strongly points to a
direct role of KORs regulating D2Rs. Either acute or repeated,
the activation of KORs decreases the inhibitory D2Rs function
on dopamine neurons. Electrophysiology studies showed that the
acute activation of KOR in dopamine neurons of the VTA and
SN inhibits D2R-mediated inhibitory postsynaptic current, an
effect mediated by pre and postsynaptic mechanisms as KOR
decreases dopamine release and dynorphin blocks the inhibitory
effect of bath applied dopamine (Ford et al., 2007).
Neurochemical studies showed that the repeated activation of
KORs blocks D2R-induced inhibition of dopamine release in the
NAc (Fuentealba et al., 2006). Moreover, coincident D2Rs and
KORs acute activation decreases the inhibition of dopamine
release in the NAc compared to the effect of each receptor
alone (Escobar et al., 2017). Thus, presynaptic KORs do not
act additively or in synergy with presynaptic D2Rs, conversely,
KORs either inhibit or occlude D2R inhibitory effect. This
mechanism could explain the locomotor activating effect of an
acute dose of KOR agonists concomitant to a low dose of
quinpirole (Perreault et al., 2006).

A recent study shows that KOR activation in the VTA
mediates compulsive behavior measured as behavioral
inhibition and marble burying (Abraham et al., 2017),
reinforcing the idea that KORs activation is indeed a trigger
for compulsivity. Data published by Margolis et al. (2006; 2008)
indicate that KORs and D2Rs interaction should take place on
dopamine neurons targeting the mPFC (Margolis et al., 2006;
Margolis et al., 2008). Notwithstanding, Ford et al. (2006; 2007)
found that KORs inhibition of D2R mediated IPSC takes place
on dopamine neurons targeting the NAc (Ford et al., 2006; Ford
et al., 2007). Together these data show that KOR interaction with
D2R at the somatodendritic compartment of dopamine neurons
could arise as a result of a crosstalk in the same dopamine
neuron. Whether this happens in the mesolimbic or mesocortical
projections is still controversial.

Remarkably, KOR was found in MSNs of the NAc (Escobar
et al., 2017; Tejeda et al., 2017), thus indicating that the
potentiation of D2R-induced compulsive behavior can also
arise by direct actions on the target cells of dopamine neurons.
In this regard, it is worth mentioning that repeated
administration of U69593 increases the amount of D2Rs in the
high affinity state (Perreault et al., 2007). Neurochemical data
indicate that decreased dopamine extracellular levels is
associated to D2Rs sensitization. KORs co-activation does not
decrease further the extracellular levels of dopamine in the NAc
already decreased by the repeated activation of D2Rs (Escobar
et al., 2017), ruling out a role for presynaptic KORs accelerating
or potentiating the sensitization of D2Rs in the NAc through this
mechanism. Therefore, KORs trigger slow molecular
mechanisms that further sensitize the neurochemical and
behavioral effects of D2Rs, suggesting that the locomotion
sensitization enhancement could be due to an adaptive
postsynaptic rather than a presynaptic effect. In this regard
repeated activation of KORs can trigger the inhibition of D2R
indirect striatal pathway switching D1R/D2R balance to D1R
inducing compulsivity (Figure 1).
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Sex Differences of KOR-Dopamine
Interactions in Compulsive Behaviors
Clinical studies have shown sex differences in compulsive
behavior including compulsive drug seeking. An earlier onset
of OCD symptoms is observed in men compared with women
(Mathis et al., 2011), with women showing more prevalence of
contamination and cleaning symptoms (Labad et al., 2008).
Regarding sex differences in drug addiction, clinical evidence
indicates that while the use of drugs is more prevalent in men,
women exhibit a faster progression than men into compulsive
drug seeking (Hernandez-Avila et al., 2004; Fattore and
Melis, 2016).

Lately, pre-clinical evidence has strongly highlighted the
neurobiological bases underpinning the sex differences in drug
abuse observed in clinical studies (Becker and Chartoff, 2019).
Early observations using no-net flux microdialysis showed that
dopamine extracellular concentration in the dorsal striatum
varies during the estrous cycle with higher levels in proestrus
and estrus compared with diestrus. Moreover, while ovariectomy
decreases striatal dopamine extracellular concentration in female
rats, the castration of male rats does not modify dopamine
striatal extracellular concentration (Xiao and Becker, 1994),
suggesting an important role of ovary hormones on dopamine
activity. In addition, female hormones regulate the response to
psychostimulants. Early in vitro experiments showed that
estradiol plus progesterone restore amphetamine-induced
dopamine re lease from str iata l t i ssue obtained of
ovariectomized female rats (Becker and Ramirez, 1981). More
recently, fast scan cyclic voltammetry studies have shown that
females exhibit greater electrically-stimulated dopamine release
Frontiers in Pharmacology | www.frontiersin.org 7
and uptake compared to males (Walker et al., 2000). These sex
differences in dopamine neurotransmission can account for the
higher cocaine and amphetamine seeking observed in females.
(Roberts et al., 1989; Cox et al., 2013).

The regulation of KOR on dopamine extracellular levels also
shows sex differences (Chartoff and Mavrikaki, 2015). Using
intracranial self-stimulation and cyclic voltammetry, Conway
et al. (2019) showed that the lower sensitivity to the acute
anhedonic effect of a KOR agonist observed in female rats
compared to male rats, is accompanied by an attenuated
inhibition of stimulated dopamine release in the NAc (Conway
et al., 2019). It has been suggested that estradiol contributes to
the blunted inhibition of dopamine release observed in female
rats after KOR activation (Abraham et al., 2018). While the
crosstalk between KORs and dopamine signaling has been
studied in males (Tejeda and Bonci, 2019), research on this
interaction and its impact in the addiction process in females is
lacking (Chartoff and Mavrikaki, 2015). In female rats, the acute
administration of the KOR agonist U69593 attenuated cocaine-
induced hyperlocomotion in both, control and ovariectomized
rats. Interestingly, U69593 repeated administration attenuated
cocaine-induced hyperlocomotion in an estradiol-dependent
manner (Puig-Ramos et al., 2008). These data suggest that
estradiol primes KOR actions in female rats, an effect that
could be related to sex differences in stress response (Puig-
Ramos et al., 2008). Whether in female rats the repeated
activation of KORs facilitates striatal dopamine release as
observed in male is an unanswered question.

Although a facilitation in psychostimulant induced dopamine
release is observed in female compared to male rats, sex
FIGURE 1 | Integrative scheme of Kappa Opioid Receptors (KOR) control on direct (D1R) and indirect (D2R) striatal phatways. (A) KOR are located pre-sinaptically
on dopamine terminals and post sinaptically in medium-sized neurons (MSNs). Its activation controls dopamine extracellular levels and its localization promotes the
interaction with dopamine transporter (DAT) and dopamine D2 receptors. (B) The repeated exposure to a psychostimulant is accompanied by an increase in both
dopamine extracellular levels and dynorphin. The activation of D1 and D2 receptors switch the balance to the D1R direct pathway promoting locomotor sensitization.
(C) The co-administration of quinpirole and U69593 is accompanied by a decrease in dopamine extracellular levels. The concomitant activation of KOR and D2
receptors debilitates the D2 indirect pathway inducing compulsive behavior.
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differences in the dopamine mechanisms underlying
amphetamine locomotor sensitization have not been fully
elucidated (Becker, 1999). The repeated exposure to
amphetamine induces a greater locomotor activity in both,
adolescent (Mathews and McCormick, 2007) and adult female
rats (Milesi-Hallé et al., 2007), with female adolescent rats
showing a more robust locomotor sensitization after repeated
exposure to amphetamine. The neonatal activation of D2
receptor potentiated the amphetamine induced behavioral
sensitization only in female rats (Brown et al., 2011). As
mentioned before, it has been observed in male rats the
repeated exposure to D2 agonist induces locomotor
sensitization and compulsive-like behavior (Dvorkin et al.,
2006). Moreover, the co-activation of KOR potentiates the
locomotor sensitization induced by repeated exposure to
quinpirole, facilitating the inhibitory control of D2 receptors
on DA release in the NAc (Escobar et al., 2017). Sex differences
such as the observed lower sensitivity to the inhibitory effect of
KOR on dopamine release in females (Conway et al., 2019) may
account for a differential contribution of KOR on compulsive
drug seeking.
CONCLUSIONS

How do KORs modulate dopamine signaling to elaborate
motivated behaviors and when does it result in a sensitized
compulsive behavior? Anatomical data shows that KORs are
exquisitely positioned to control the synaptic activity of midbrain
dopamine neurons. Functional data indicate that KORs control
DAT and D2R functioning as well as dopamine neurons firing
rate. Initial evidence showing that the acute activation of KORs
decreases dopamine release induced by drugs of abuse has been
complemented with data indicating that the repeated activation
of KOR facilitates dopamine release and compulsive drug-
Frontiers in Pharmacology | www.frontiersin.org 8
seeking. Dopamine signaling balance direct and indirect output
pathways from striatal areas (Figure 1A). Either chronic
stimulation with psychostimulants that increases dopamine
release activating both D1R and D2R (Figure 1B) or
quinpirole that activate only D2R (Figure 1C) results in
locomotor sensitization and compulsive behaviors by a
debilitated D2R indirect pathway, thus switching the balance to
the D1R direct pathway. KOR transmission is enhanced during
chronic psychostimulant intake by the increase of dynorphin in
striatal D1 neurons (Figure 1B). An enhanced KOR
transmission is emulated in the pharmacological model of
OCD by administering U69593. This concomitant KOR
activation further debilitates the D2 indirect pathway (Figure
1C). Future research should be carried out to fully elucidate the
consequences of KOR activation on the DAT activity,
understand the role of endogeous KOR system in the
quinpirole induced compulsivity and determine the
contribution of KOR system to the sex diffences observed in
compulsive behaviors.
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