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FECHA: 2019
PROF. GUÍA: MARCELO OLIVARES ACUÑA

DATA DRIVEN ANALYTICS IN CAPACITY AND SERVICE QUALITY
MANAGEMENT

La administración de recursos humanos es de suma importancia, ya sea en una tienda física
o una plataforma en línea, ya que contribuyen a determinar la relación entre la firma y
sus clientes. En muchas industrias de servicio, la fuerza de trabajo representa uno de los
principales costos, mientras que proporcionar una rápida atención puede representar una
importante ventaja competitiva, sobre todo si los clientes son sensibles al tiempo de espera o
requieren asistencia especializada para efectuar una compra. Cuando la demanda es variable
y la dotación no puede ser ajustada rápidamente, las decisiones de capacidad requieren
balancear la capacidad de respuesta de la firma con los costos operacionales a través de
la utilización. Este trabajo extiende recientes estudios empíricos que estiman el impacto
de la dotación y calidad del despacho en las ventas, combinando datos transaccionales y
de demanda con datos de dotación, desarrollando un enfoque econométrico para modelar
el comportamiento de los consumidores en el contexto de un call-center, un retailer online
de ropa y una cadena de tiendas tradicionales. La estimación de los modelos es desafiante
debido a problemas de endogeneidad. Este trabajo desarrolla herramientas de apoyo a la
toma de decisiones para administrar la dotación de personal y la definición de turnos de
trabajo, considerando la relación causal entre personal y ventas.

En el contexto del call-center estudiado en el capítulo 1, se encuentra un fuerte impacto del
tiempo de espera en el comportamiento de los consumidores: ventas un 50% más altas si los
clientes son contactados dentro de los primeros 5 minutos de haber visitado la plataforma en
línea en lugar de una hora después. La heterogeneidad en la productividad de los ejecutivos
del call-center es relevante. Un alza de 7, 7% en la utilización genera un alza de entre 0, 9%
y 3, 6% en la conversión debido a una mayor retención de los ejecutivos más calificados.
El capítulo 2 presenta una investigación aplicada que desarrolla una novedosa herramienta
de apoyo en la toma de decisiones de personal en el sector del retail, combinando ideas de
diferentes ramas de la gestión de operaciones. Los resultados empíricos revelan un efecto
no lineal del tráfico y los niveles de dotación en las ventas. Este efecto fue desagregado en
conversión y tamaño de la canasta, encontrando que la mayor parte del efecto es a través de
la conversión, cuya magnitud es comparable a la de estudios previos y del orden del 2%−5%
al aumentar la fuerza de trabajo en tiendas sub-dotadas. En el capítulo 3 se investiga la
relación entre la calidad del despacho y el comportamiento futuro de los consumidores. Se
encuentra que experiencias negativas con el servicio de despacho impactan adversamente el
desempeño del retailer al desalentar futuras compras. No se encontró evidencia de un efecto
directo en el tamaño de la canasta, aunque sí a través de otros mecanismos, particularmente
la frecuencia de compra. Mejorar la calidad del servicio de despacho puede aumentar las
utilidades en hasta un 5, 63%, a través de un aumento en la frecuencia de compra (4, 91%) y
del monto gastado (0, 69%).
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Personnel decisions are of the utmost importance and, whether a brick and mortar store or an
online platform, they contribute to determine the relationship between the firm and its cus-
tomers. In many service industries, labor costs are one of the largest expenses and providing
prompt response to customers can be an important competitive advantage, specially when
customers are time-sensitive or require specialized assistance to make a purchase. When
demand for service is variable and staffing requirements cannot be adjusted quickly, capacity
decisions require making a trade-off between responsiveness to customers versus controlling
operating costs through worker utilization. This work extends recent empirical studies that
estimate the impact of staffing levels and delivery performance on sales, combining detailed
sales transaction and demand data with employee staffing data, and developing an economet-
ric approach to model customer behavior in the context of an out-bound call center, an online
apparel retailer and brick and mortar stores. Model parameters estimation is challenging due
to endogeneity issues. This work develops decision support tools to manage staffing levels
and schedule working shifts, balancing the sales contribution of employees with salary costs,
accounting for the causal relation between personnel and sales.

For the outbound call center under study in chapter 1, a strong impact of waiting time
on customer behavior was found: conversion rates are 50% greater if a customer is contacted
within the first 5 minutes of visiting the platform’s website rather than after an hour. Consid-
ering the role of agents, heterogeneity in worker productivity is relevant, since a 7.7% increase
in utilization translates into a 0.9% to 3.6% increase in conversion rate due to higher retention
of more skilled agents under medium traffic conditions. Chapter 2 presents a practice-based
research project that develops a novel solution to build a decision support tool for workforce
planning in the retail sector. The developed solution combines ideas from different research
streams in Operations Management. The empirical results reveal a non-linear effect of traffic
and staffing levels on sales. This effect was decomposed into conversion and basket value and
found that most of the effect is through the former. The magnitude of the effect is compara-
ble to previous results in the literature: increasing labor in under-staffed stores can increase
sales in the order of 2%− 5%. In chapter 3 the relation between order fulfillment and future
customer behavior is investigated. Negative delivery experiences produce an adverse effect
on the retailer performance by discouraging customers to purchase again. While evidence
of a direct impact of delivery quality on basket size wasn’t found, delivery performance can
impact amount spent through other mechanisms, particularly purchase incidence. Improving
delivery speed can yield a 5.63% increase in revenues if all customers are satisfied with their
order’s fulfillment, stemming from a 4.91% increase in purchase probability and a 0.69%
increase in basket size.
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Introduction

Personnel decisions are of the utmost importance and, whether a brick and mortar store or an
online platform, they contribute to determine the relationship between the firm and its cus-
tomers. In many service industries, labor costs are one of the largest expenses and providing
prompt response to customers can be an important competitive advantage, specially when
customers are time-sensitive or require specialized assistance to make a purchase. When
demand for service is variable and staffing requirements cannot be adjusted quickly, capacity
decisions require making a trade-off between responsiveness to customers versus controlling
operating costs through worker utilization. This work extends recent empirical studies that
estimate the impact of staffing levels and delivery performance on sales, combining detailed
sales transaction and demand data with employee staffing data, and developing an economet-
ric approach to model customer behavior in the context of an out-bound call center, an online
apparel retailer and brick and mortar stores. Model parameters estimation is challenging due
to endogeneity issues. This work develops decision support tools to manage staffing levels
and schedule working shifts, balancing the sales contribution of employees with salary costs,
accounting for the causal relation between personnel and sales.

Chapter 1 focuses on providing insights on how to manage the capacity of flexible agents
in the context of a service platform where customers are sensitive to waiting time. Analyzing
this problem requires to study two empirical questions: (i) what is the impact of waiting time
and agent productivity on revenues? (ii) what is the impact of workload on the attrition of
agents? The answers to these empirical questions can be used to evaluate how changes in the
agent workload ultimately affect revenues and thereby choose an optimal level of capacity
utilization for the service platform. To study this research question and demonstrate its
applicability to a real problem, we partnered with a company that operates an online market
platform to facilitate the search and purchasing process of insurance products. The platform
operates an outbound call center to provide customer support to their purchase decision,
which has a significant impact on the conversion of quotes.

Chapter 2 combines empirical analysis with optimization methods to build a decision
support tool that can be used by managers to plan labor allocation and schedule working
shifts to maximize store profitability, balancing gross margins with labor costs. Operations
Research literature has a long history in developing models to optimize shift schedules in
service delivery systems using tools from mathematical programming. However, these models
typically take the labor requirements as a fixed input, finding a feasible schedule that achieves
these requirements at minimum costs. In our work, the desired labor requirements is one of
the key decisions, which accounts for the trade-off between costs and sales. The methodology
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is separated into three steps. First, an econometric model is developed to estimate the effect
of labor on sales in an hourly basis. This model provides an input to an optimization problem
that seeks to optimize the hour-by-hour labor requirement based on traffic projections. While
useful, this second step provides an ideal labor requirement that cannot be implemented in
practice as it is unlikely to comply with labor regulatory laws, company hiring policies and
employees’ preferences. The third step consists in translating this ideal labor plan into a
feasible working schedule, achieved through a mathematical program. These three steps have
been developed into a prototype that is currently been integrated into a decision support tool
that complements the current services provided by our industry collaborator to its clients.

Chapter 3 studies the relation between order fulfillment, specifically delivery speed, and fu-
ture customer behavior using one year of comprehensive transactional data from a large online
apparel retailer. Literature relies on the theoretical assumption that higher service quality
increases demand and consumer satisfaction, though existing evidence is largely anecdotal
rather than quantitative. We quantify the impact of delivery quality over time on purchase
incidence and amount of future purchases.

2



Chapter 1

Online Service Platform

1.1 Introduction
In many service industries, including the financial sector, restaurants, transportation, retail
and call centers, two major drivers of service quality are the support provided by experi-
enced employees to customers and the speed of the service. In terms of the latter, many
of these service systems exhibit variable demand and relatively inflexible capacity — un-
der these circumstances, making capacity decisions involves balancing operating costs with
responsiveness to customers. To provide prompt service to unpredictable requests of time-
sensitive customers, the service system has to operate at low levels of capacity utilization,
keeping some idleness in the service capacity in order to accommodate unexpected peaks in
the demand. In services that are labor intensive with fixed wages, low utilization implies
higher labor costs, generating a trade-off between waiting times and operational costs.

The ’gig’ economy has enabled an emerging business model — the on-demand service plat-
form (Taylor [2018], Allon et al. [2018]) — that seeks to break this trade-off. Flexibility is
achieved by accessing a large pool of employees (service agents) that are willing to be compen-
sated with piece-rate wages (per customer served). Examples of this business model include
taxi-style transportation (e.g. Uber, Lyft), food delivery (GrubHub, Seamless, InstaCart),
customer contact centers (Liveops) and home services (Handy), among other industries.1 The
key feature of these service platforms is to have access to a large crowdsourced pool of agents
to meet spikes in demand, while managing labor operating costs using variable pay instead
of fixed wages. Past research has studied the role of financial incentives in self-scheduling
labor platforms to better align demand and supply (Cachon et al. [2017], Allon et al. [2018]).
In this work, we examine the long term implications of increasing or reducing the workload
of agents in terms of the selection and retention of the flexible workforce.

Online service platforms can operate with low levels of agent utilization in order to max-
imize the responsiveness to customer requests. However, agent idleness can potentially hurt
performance through agent retention. For services that require higher levels of employee

1The aforementioned examples are business operating in the United States, but similar business models
can be found in other countries.
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training, exhibit learning-by-doing or have significant heterogeneity in agent productivity,
retention of highly-skilled/experienced employees is a critical factor affecting operational
performance. In order to reduce agent attrition, the service platform should also consider
agent satisfaction, which can be negatively affected by idleness during working hours, spe-
cially so when wages are based on piece-rates. Therefore, in choosing service capacity, the
service platform has to balance customer waiting times with agent utilization.

The main goal of this research is to provide insights on how to manage the capacity of
flexible agents in the context of a service platform where customers are sensitive to waiting
time. Analyzing this problem requires us to study two empirical questions: (i) what is
the impact of waiting time and agent productivity on revenues? (ii) what is the impact
of workload on the attrition of agents? The answers to these empirical questions can be
used to evaluate how changes in the agent workload ultimately affect revenues and thereby
choose an optimal level of capacity utilization for the service platform. To study this research
question and demonstrate its applicability to a real problem, we partnered with a company
that operates an online market platform to facilitate the search and purchasing process of
insurance products (auto, travel, home, etc). The platform operates an outbound call center
to provide customer support to their purchase decision, which has a significant impact on the
conversion of quotes. This call center is operated with freelance agents who work remotely
and receive variable pay based on the number of converted quotes. Customers visiting the
platform’s website and not making a purchase join a queue to be contacted by call center
agents.

Overall, this research makes three main contributions. First, we empirically analyze an
outbound call center, focusing on how service speed and workload influence customers and
agents, respectively. Although the empirical analysis of inbound contact-centers is well es-
tablished in the literature, we show that outbound call centers have important differences
that require a different modeling approach. Specifically, outbound call centers need to decide
when to call customers (since customers are not waiting in line to be served). We develop an
empirical framework to incorporate this important feature. In our setting, we find a strong
impact of waiting time on customer behavior: conversion rates are 50% greater if a customer
is contacted within the first 5 minutes of visiting the platform’s website rather than after
an hour. Second, our empirical results show that there is a trade-off between contacting
customers more rapidly and retaining high-performance agents. This trade-off arises due a
positive effect of agent utilization on retention: a 10% increase in workload translates into a
25% percentage decrease in weekly agent attrition rate which yields a 33% increase in agent
tenure. Finally, we show that combining our empirical results with a queuing model and an
agent selection policy can be used to compare the profitability of different choices of capacity
utilization. In the context of our application, we show that customer sensitivity to waiting
time has a predominant effect, and in the margin the outbound call center would benefit by
reducing capacity utilization with more agents, further exploiting the flexibility provided by
online labor platforms – increasing revenues from 2.7% to 4.6% under medium traffic and
from 0.9% to 3.2% under low traffic conditions. This "what-if" analysis can be used as a
decision support tool to manage capacity in service platforms.

The rest of this chapter is organized as follows. Section 1.2 reviews the relevant literature
and develops the hypotheses that will be tested. Section 1.3 describes the empirical context
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and the data used for this study. Section 1.4 presents the econometric formulation of customer
behavior. Section 1.5 presents the results of the econometric model of customer purchases.
Section 1.6 formulates a model of agent attrition and presents the corresponding empirical
results. Section 1.7 uses the results from the empirical analysis to evaluate the profitability of
changes to agent utilization levels. Finally Section 1.8 concludes the chapter with a summary
of the main results and a discussion of avenues for future research.

1.2 Literature Review and Hypothesis
The main research goal of this study is to characterize the impact of agent utilization on the
performance of a service system where both customer waiting time and worker retention affect
profitability. Figure 1.1 describes the different mechanisms through which agent utilization
can affect the performance of the service platform under study, where the main measure of
profitability is sales conversion. We elaborate on each of these mechanisms next, relating
them to the existing literature, the context of the application and using them to motivate
our main hypotheses.

Figure 1.1 Hypothesis schema. Representation of the mechanisms through which employee utiliza-
tion can affect the conversion rate. H1, H2 and H3 indicate the main hypothesis of this study and
plus (+) and minus (-) signs indicate the direction of the anticipated effects.

There is a large body of literature in service operations that studies the relationship
between capacity utilization and waiting time, with many applications to call centers (see
Gans et al. [2003] and Aksin et al. [2007] for recent surveys). The variability of incoming
calls together with the inflexibility of adjusting capacity generates congestion effects: at high
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levels of agent utilization, waiting time increases dramatically even for small increases in
workload (Cachon and Terwiesch [2009]). Queuing models and discrete event simulation
capture this effect and can be used to measure the effect of capacity utilization on waiting
time (Gross [2008]; Carson et al. [2005]).

Whereas the effect of utilization on waiting time can be studied using analytical models,
the impact of waiting time on sales requires an empirical analysis of customer behavior,
which has been studied in the fields of operations management, marketing and economics.
Along this line, Lu et al. [2013] studies the effect of waiting time on customer purchases,
in the context of a deli counter in a supermarket. Batt and Terwiesch [2015] studies the
abandonment of incoming patients in an emergency room. Allon et al. [2011] study the effect
of waiting time on demand and prices in the fast-food industry. Png and Reitman [1994]
study how gasoline stations compete to attract demand by reducing waiting times. In all of
these examples, the queue is visible to the customer, whereas in many call-centers (including
the one in this study) the queue is not directly observable. Aksin et al. [2013] develops a
dynamic structural model to capture customer abandonment based on an optimal stopping
problem, where customers form expectations about waiting time without directly observing
the queue. This work was extended by Akşin et al. [2016] and Yu et al. [2016] to incorporate
delay announcements, which can directly affect customer expectations about waiting time.
Although most empirical studies focus on inbound call centers, Hathaway et al. [2018] studies
a setting where customers are offered a call-back option, which resembles an outbound call-
center.

The aforementioned studies find that customers dislike waiting time and therefore longer
waits lead to lower system performance. But there is also theory that predicts the opposite.
Veeraraghavan and Debo [2009] presents an analytical model where uninformed customers
can learn about the quality of the service through the length of the queue, inducing a herding
effect that implies a positive association between waiting time and demand. Another example
is in the case of purchases that require time for the customer to evaluate options and decide,
in which case it may be preferable to wait before calling. Furthermore, in an out-bound call
center it may not be desirable to call immediately after a failed attempt as the customer may
be unavailable to answer the phone (Samuelson [1999]).

Hence, the effect of waiting time on purchasing behavior is, in theory, ambiguous. However,
given the context of our application – sales of auto insurance – we hypothesize a negative effect
of waiting time on conversion (H1 in Figure 1.1) because: (i) auto insurance is a standard
product and customers are well informed about its characteristics, and therefore herding
effects are unlikely to occur; (ii) insurance markets are competitive with low price dispersion,
therefore time to respond to customers is important to generate conversion (De Treville and
Van Ackere [2006]).

The middle part of Figure 1.1 illustrates a direct effect of workload on performance, which
has been the focus of several recent studies in the operations management literature. This
literature encompasses different mechanisms with an ambiguous prediction of the effect of
workload on productivity and performance. Tan and Netessine [2014] empirically study
restaurant waiters and show that they "fill-in" time when workload is low, decreasing their
performance. KC and Terwiesch [2009] study the effect of employee workload in hospitals
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and its impact on service quality, accounting for the effect of fatigue (a negative effect) and
pressure to work faster (a positive effect). KC [2013] studies hospital emergency departments,
looking at how workload affects multitasking of the doctors and measure how this ultimately
affects service quality. Freeman et al. [2017] studies maternity units and finds that these units
treat patients differently depending on their workload. Although these are all important
factors to consider, they have been well documented in the literature and are not central
to the main trade-off analyzed in this study. Nevertheless, the existing literature is useful
to specify important control variables that need to be included in the econometric models
described in Section 1.4.2.

Next, we discuss the hypothesis related to employee retention. We identify two mecha-
nisms through which retention can affect sales conversion. First, employee experience can
directly impact productivity. There is substantial work in manufacturing and service indus-
tries showing that learning curves are significant (Lapré and Van Wassenhove [1998]; Lapré
et al. [2000]; Lapré [2011]; Lapré and Tsikriktsis [2006]; Ramdas et al. [2018]). Focusing on
the sales function, Misra et al. [2004] empirically measures learning curves for salespeople
in an office supply company. Other papers have documented the importance of considering
different features of worker experience, such as volume and scope (Staats and Gino [2012];
Kc and Staats [2012]; Huckman et al. [2009]; Huckman and Pisano [2006]), and the worker
interactions within a team (Huckman and Staats [2011]). In our setting, the task performed
by agents is relatively standard and performed individually by each agent, so task variety
and team structure are less important; moreover, work is performed remotely without any
interaction among the agents.

Employee retention can affect sales through other mechanisms too, even when learning/
experience effects are not present. Service employees typically exhibit heterogeneity in their
skills and productivity. Gans et al. [2010] studies productivity of agents in a call center,
measured by call duration. This work shows significant heterogeneity across agents, both in
the level of productivity as well as their learning curve (rate of improvement as they gain
experience). Arlotto et al. [2013] develop an analytical model to optimize employee selection
policies when agents are heterogeneous in their productivity. The selection policy needs
to balance "exploration" – testing agents to infer their productivity – with "exploitation",
achieved by allocating work to the more productive agents. In section 1.6 we show a simpler
version of this model which shows that as the retention rate of agents increases, the selection
policy become more effective at screening agents with higher conversion rates. Hence, in
the presence of agent heterogeneity, increasing employee retention increases sales. Based on
this existing literature, our second hypothesis (H2 in Figure 1.1) predicts a positive effect of
worker experience on sales productivity.

We now turn to our third hypothesis (H3 in Figure 1.1) relating agent utilization with
employee retention. In our application, agent’s salary is proportional to converted calls, and
therefore workload has a direct effect on their compensation. Sager et al. [1989] present a
causal model of the turnover process for salespeople, which suggests that satisfaction with
pay and tenure are negatively associated with salesperson turnover. Also related to our work
is Emadi and Staats [2018], which develops a structural dynamic model to analyze factors
that affect voluntary attrition in a business process management company. Their findings
reveal that employee attrition is relatively insensitive to salary and depends instead on the
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characteristics of their supervisors. In that study employees receive fixed salary with annual
adjustments, whereas in our setting pay is variable and can change from week to week depend-
ing on worker utilization, and so the effect could be different. Griffeth et al. [2000] conducts
a meta-analysis of related work analyzing employee attrition and finds that satisfaction with
pay has a relative small effect size relative to other factors. However, the salary effect appears
to be larger for performance-based compensation schemes, suggesting that variable payment
schemes have a stronger effect on retention (relative to fixed payment).

Our research is also related to recent studies about flexible working schedules and how they
impact labor supply in service settings. Mas and Pallais [2017] study a call-center to analyze
how agents value different schedule arrangements, which is relevant to calculate labor supply.
Chen et al. [2017] use data from a ridesharing company to analyze how agents (i.e. drivers)
choose their working hours. In that setting, agents have full flexibility to decide when to
work on the platform making a trade-off between the expected income and their reservation
wage, which can vary across the day (i.e. some agents dislike driving in late hours whereas
other agents with day jobs prefer driving at night). Although in our work the main focus is to
study the impact of workload on agent attrition (which is not studied in the aforementioned
studies), the trade-off is similar: workers choose to participate in the service platform based
on the expected pay, which is directly related to the assigned workload. Hence, the work by
Mas and Pallais [2017] and Chen et al. [2017] provide some support for the hypothesis that
the level of workload should increase agent’s participation and thereby reduce attrition, in
settings where workers have flexibility in their working hours and receive variable payment.
In summary, based on the literature and the context of application studied, hypothesis 3
(H3) predicts that increasing labor utilization leads to higher retention rates of agents.

1.3 Empirical Setting
The context of our application is an online market platform selling auto insurance plans to
car owners. The service platform works with several insurance companies that provide in-
surance quotes. The platform acts as a broker that facilitates the comparison of alternative
auto insurance plans that vary in terms of deductibles, premiums and other characteristics.
Transparency is a key aspect of the business model of the platform, providing unbiased in-
formation to customers to assist them during the purchase process. To achieve this, revenues
are acquired through a flat fee charged by the platform to the insurance company for each
plan sold. This fee is constant across all insurance plans and, hence, it is independent of
the premium of each plan. To further assist customers in their search process, the platform
combines online information with personalized assistance over the phone, using an outbound
call center with freelance agents that work remotely from home with flexible hours. This
flexibility allows the company to adjust service capacity when facing variability in customer
arrivals. The freelance agents are paid on commissions for each converted sale, which is also
flat across plans and premiums.

Figure 1.2 illustrates the operation of the service platform. The process is initiated when
the customer generates a quote online, entering vehicle characteristics (make, model, year)
and demographics (age, address, phone number). This information is directed in real-time to
insurance companies that provide one or more insurance plans with different characteristics
(e.g. deductible, coverage and premiums), which are displayed online to the customer in a
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Figure 1.2 Operation of the service platform.

table format that facilitates comparison. Customers may decide to immediately purchase
online choosing from one of the products available. When customers do not purchase within
3 minutes, the quote is added to a priority list of potential outbound calls.

Each quote in the list has a priority score which depends on a set of quote characteristics
and the elapsed time since the quote was generated. The priority list is sorted based on
this priority function and adjusted every minute. An automated dispatcher continuously
monitors the activity of agents and decides how many customers in the top of the priority
list to call. This decision can be based on the number of available agents and the priority
scores of the quotes in the list. When the dispatcher calls and the customer answers, it gets
automatically routed to one of the available agents. When the customer doesn’t answer the
call, the quote is returned to the priority list and its priority score is reduced.

After being assigned a call, the agent observes the list of quotes presented to the customer
and provides assistance in the purchase process. The remaining sales process is entirely
delegated to the agent, who may require additional outbound calls which are coordinated by
the agent based on the customer’s availability. These scheduled calls are considered as busy
time of the agent where he cannot be assigned new outgoing calls.

We collected eight months of comprehensive data regarding each auto insurance quote
including: the date and time when the quote was generated, the online acquisition channel
where the customer reached the website (email promotion, organic/sponsored online search,
etc), customer demographics (age, gender and residence area), car characteristics and the
complete list of offers, including the insurance company, deductible, coverage, premiums
and other characteristics (replacement car option, personal injury insurance, etc.). For each
quote, we observe the number of calls, which may include failed call attempts (where the
customer couldn’t be reached), the first answered call and subsequent scheduled calls. Upon
the first contact, the quote is assigned to an agent who handles subsequent calls. Agent
information includes age, gender and the job starting date. For each answered call, we obtain
the corresponding timestamp, duration and outcome of the call (purchase, no-purchase or
whether a new call was scheduled).

A key descriptive statistic in this study is customer waiting time as measured by the time
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Percentiles of elapsed time [minutes]
Call attempt 25% 50% 70% 90% Contact rate

1st 3.7 5.7 125.3 2,636.0 56.3%
2nd 5.5 61.9 182.1 1,593.0 36.4%
3rd 2.2 68.2 1,003.1 2,853.7 30.5%

Table 1.1 Descriptive statistics. Elapsed times [minutes] since the generation of the quote until the
first call attempt and between calls for the second and third attempt, showing the percentiles of the
distribution of elapsed time and the contact rate.

elapsed between the instant the quote is generated, as a result of a consumer search at the
platform’s website, until the customer is successfully contacted by an agent. Three minutes
after a quote was generated, the quote enters the priority list to schedule the first call attempt
(a few calls were attempted before three minutes but were excluded from the sample). Table
1.1 shows descriptive statistics of the first three call attempts, showing the percentiles of the
distribution of the elapsed time and the contact rate. The elapsed time of the first call is
highly skewed: 50% of the customers contacted in less than 5.7 mins, but the 70% percentile
reaches more than two hours. The contact rate for the first call (i.e., the fraction of first
attempts that are answered by a customer) is 56%. If the first attempt fails, a second call
is made, with a median of 62 mins from the time the first call was made. This time is also
skewed and a histogram shows the distribution to be bi-modal, where some customers are
called soon after the first call and others about an hour later. The contact rate of the second
call is lower, around 36%. The distribution of the third call follows a similar pattern as the
second, but the upper tail is thicker because a higher fraction of these calls are made the
following day.

Figure 1.3 Histogram of customer waiting time. Showing time between first contact and quote and
conversion rate.
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One of the main empirical questions in this study relates to the causal effect of contact
times on conversion. To visualize this relationship, Figure 1.3 shows a histogram of the
elapsed time to contact the customer (bars) and the average conversion rate (solid line) as
a function of this elapsed time. The data shows that conversion peaks within the first hour
and then declines rapidly as waiting time increases. This could be interpreted as a negative
effect of contact time on conversion, but there are several confounding factors that preclude
us from drawing this conclusion. First, the dispatcher prioritizes calls in order to contact
first those customers that are more likely to purchase. Second, a contact may be delayed
because the customer doesn’t answer the calls. Table 1.1 shows that the contact rate goes
down as the number of failed called attempts increases, suggesting a possible selection effect
where uninterested customers remained unreached after several calls. Hence, the negative
association between contact time and conversion may be driven by prioritization of calls or a
skimming process where interested customers are more likely to answer a call attempt. Ac-
counting for these confounding factors –which are applicable to most out-bound call centers–
is the main empirical challenge to test hypothesis 1; the econometric model developed in the
next section provides an empirical strategy to identify the causal effect of contact time on
conversion.

1.4 Econometric Modeling of Customer Purchases
Recall that for the outbound call center to succeed at selling an insurance policy to a customer,
the call center needs to be able to reach the customer and then the interaction between the
customer and the agent has to result in an insurance policy purchase. Hence, the revenue
generated from a quote in the service platform depends on two aspects of customer behavior:
(i) the contact rate, defined as a customer’s probability of answering a call attempt; (ii) the
conversion rate, defined as the probability of purchasing conditional on answering the call.
We model each of these probabilities separately. Consider wit as the elapsed time since quote
i was generated until the time of call attempt t (t = 1 is the first call attempt, t = 2 is
the second, and so on). Define Ait as an indicator of whether call attempt t is answered.
Whenever Ait = 1, the binary r.v. Yit is an indicator of whether the customer purchased after
being contacted. Normalizing the service fee minus the bonus paid to the agent to one, the
expected revenue associated to call attempt t for quote i can be expressed as:

R(wit) = Pr(Ait = 1|wit)× Pr(Yit = 1|wit, Ait = 1) (1.1)

Two separate econometric models are developed to estimate the effect of the elapsed time
wit on the probability functions of Ait and Yit. For both models, an important challenge arises
because the elapsed time wit is endogenous. Below we describe in detail the specification of
these two models and how to handle endogeneity to identify the effect of elapsed time.

1.4.1 Customer Contact Probability

Consider the first call attempt for a new quote, with t = 1. We seek first to estimate how the
probability of answering the call is affected by the elapsed time since the quote was generated,
wit, and other factors. The probability of making contact is parametrized through a random
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utility model, where a customer’s utility Uit, a construct that captures the customer’s interest
in the quote and availability to respond to the call, is represented by:

Uit = f(wi1;αt) + βtXit + εit (1.2)

where f(wit, γ) is a parametric function that captures the effect of the elapsed time between
the quote was generated and the time the call attempt is made. Xit is a vector of observed
quote characteristics and εit is a set of unobserved characteristics. The probability of making
contact is specified by Pr(Ai = 1|Xit, wi1) = Pr(Ui > 0), which becomes a parametric function
for specific choices of the distribution of the unobservable error εit. Hereon, we use a binary
logit model to estimate this random utility model (with εit following a double exponential
distribution).

Since the dispatcher uses a priority rule to schedule calls, customers with a higher prob-
ability of answering will have a shorter elapsed time for the first call attempt. Hence, it
is necessary to include controls in Xit that capture the relevant variables considered by the
dispatcher in prioritizing calls, to avoid an omitted variable bias. Detailed information was
collected about the priority rules used by the platform during the study period. The priority
rule used considers a score that is based on the acquisition channel of the customer (via
email, organic search, direct URL or others), where email has the lowest score and organic
search/direct URL has the highest. To control for this, we focused only on high priority
quotes, acquired through organic search, all of which have the same priority for the first call
attempt. If the first call is not answered by the customer, the priority score is reduced. This
is an important factor that is controlled in the model by constructing separate models for
each call attempt (so that we have customers with the same priority within the same model)
and including all the relevant factors considered in those rules as control variables in the
econometric specifications.

In some cases, a reduction to the score could be applied to customers that have visited
the website before and has not answered call attempts in the past. The company did not
record these data, and although this rule was apparently used infrequently, it can become an
omitted variable that could potentially generate an endogeneity bias. Therefore, in addition
to the set of controls used to account for priority, an additional identification strategy is
used based on instrumental variables (IVs). Following the approach by Kim et al. [2014] and
Dong et al. [2018], the proposed IVs are based on the level of congestion of the system. We
calculated several metrics that capture the system utilization (e.g. the ratio of the number
of new quotes divided by the total available agent hours), and found that higher utilization
is indeed positively correlated with elapsed time w.

The estimation with IVs is implemented through a logistic regression with a control func-
tion. To construct the congestion instrument, the time period comprised by wit is divided
into one-hour length intervals. For each interval, a measure of congestion was calculated by
taking the ratio of the number of labour hours staffed divided by the number of new quotes2.
An average is taken across the time intervals to construct the instrumental variable Zit. To
implement the IV via a control function, the first step is a linear regression of wit on Xit and

2For robustness, an alternative IV was calculated based on the number of call attempts that were made
for other quotes besides the focal, and the results were similar.
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Zit. A function of the residual of this regression is added as an additional covariate to the
logistic model (equation 1.2) to account for a potential correlation between εit and wit

3.

For the IV to be exogenous, it must be unrelated to unobserved factors that affect a
customer’s interest in answering the call. It is therefore important to control for demand
shocks that can increase traffic of customers interested in purchasing and thereby induce
congestion. Part of these demand shocks are captured by the seasonal controls included
in the model (dummies for month, day of the week and hour of the day). In addition, we
obtained the number of Google searches related to auto insurance in the relevant markets
where the service platform is operating. Recall that the sample focuses on quotes that were
acquired through online search, and as expected, the number of searches explains part of the
residual variation in quote volume (after controlling for seasonality).

Other controls in Xit include quote characteristics such as the car model and year, the age
and gender of the customer and seasonality factors (days of the week, hour of the day). The
22 most popular vehicle models after model-year 2007 accounted for 75% of the quotes, and
the sample was focused on this set of quotes.

Insurance premiums are also an important factor affecting purchases. However, price is
also endogenous because insurance companies set premiums based on customer risk profiles
calculated from proprietary data not available to the platform. Riskier customers are offered
higher premiums, but their outside options are also likely to be different. Estimating this price
elasticity requires an identification strategy that accounts for the endogeneity of premiums.
One option is to control for customer risk, which in part is captured by the customer demo-
graphics included in the model. However, insurance companies have much more detailed data
on customers, including their past claim settlements, which are not available to the service
platform. Phillips et al. [2015] face a similar problem analyzing customer loans in banking,
and resolve it using Instrumental Variables for price. They use a Hausman-type instrument,
using the prices offered to customers in other regions. In our context, this type of instruments
are weak and may actually exacerbate the endogeneity bias (Hahn et al. [2004]). For this
reason, we opted to exclude price from the main model, but provide some robustness tests
(reported in section 1.5) suggesting that omitting price from the model does not introduce
bias in the estimation of the coefficients of interest (waiting time and agent experience).

To model subsequent call attempts (t = 2, . . .), a similar approach was used but including
additional covariates to better capture the effect of elapsed time. It is plausible that, in
addition to the elapsed time wit from the generation of the quote, the time from the previous
failed attempt also impacts the probability of answering a call. Calling immediately after a
failed called attempt may result in a low probability of answering, because the customer may
be unavailable to answer the phone. Hence, for call attempts after the first one, we include
an additional set of covariates capturing the time elapsed from the previous call attempt.

3The main results use a quadratic polynomial of the residual to specify the control function. Other
specifications yield similar results.
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1.4.2 Conversion After Contact

The second term of the revenue equation (1.1), Pr(Yi = 1|wit, Ait = 1), relates to the con-
version of a contacted customer. For modeling purposes, a quote is considered as converted
if the agent finishes the sale of the assigned quote anytime after the first contact is made
(which may be in the first contact call or subsequent calls scheduled by the agent).

In contrast to the model of contact probability, which only considers characteristics of the
quote and elapsed time, conversion is also affected by factors related to the agent assigned
to the quote, which include: (i) the idiosyncratic characteristics of the agent; (ii) the agent’s
experience; (iii) the workload of the agent. The first two are directly related to H2 (see Figure
1.1), whereas the third defines important controls that need to be included in the model.

The empirical model of the purchase probability Pr(Yi = 1|wit, Ait = 1) is a binary logit
choice model with random utility:

Vi = fW (wci ; γW ) + fK(Ki; γK) + fL(Li; γL) + βXi + δj(i) + µi (1.3)

where fW , fK and fL are parametric functions of the elapsed time between the quote genera-
tion and the first contact (wci ), the experience of the agent assigned to the quote (Ki) and the
workload handled by the agent at the time of first contact with the customer (Li). Both Ki

and Li, described in detail later in this section, can vary across quotes assigned to the same
agent. To control for time-invariant characteristics, an agent fixed effect δj(i) is also included
in the model (where j(i) indexes the agent assigned to quote i). The set of control variables
Xi are similar to those included in model (1.2), including characteristics of the customer and
vehicle, the relevant variables that are used by the service platform to prioritize calls, and the
controls for demand shocks. The term µi is an error term representing all other unobserved
factors that affect the purchase probability. As with the customer contact model, we opted to
exclude insurance premiums from the covariates; Section 1.5 presents a robustness analysis
to show that this omitted variable does not bias our estimates.

Similar to the contact model (1.2), the contact time wci in model (1.3) is endogenous be-
cause it is affected by the priority rules used to schedule calls. This endogeneity problem can
be addressed using the instrumental variables previously discussed. The identification comes
from comparing identical customers (with the same Xi) that may have different contact time
depending on the level of congestion of the service at the time their quotes were generated.
If the level of congestion is unrelated to µi, then congestion is a valid instrument for the
contact time wci .

Agent experience Ki is measured as the number of weeks the agent has been working in
the service platform at the time the quote is assigned. An alternative measure would be the
number of quotes handled by the agent, but because our dataset comprises only 6 months, we
cannot observe the volume of quotes for agents with longer tenure. The specification includes
a linear and quadratic term of Ki that can incorporate non-linear and non-monotone effects.
The workload of the agent, Li, is measured by the number of new quotes assigned to the agent
previously during the same day of the focal quote. Note that the quote is assigned at random
to any of the idle agents, so that both Ki and Li should be unrelated to the unobservables µi,
thereby providing an ideal setting for the identification of these effects (Aksin et al. [2015]).

14



We end this section providing further details of the specification of the customer contact
model (1.2). Specifically, the specification of f(wit, γ) was implemented with a set of dummy
variables capturing the level of wit, in order to allow for a flexible estimation that allows
for non-linearities. The thresholds for the levels was based on the actual distribution of the
elapsed time wit, which varied depending on the call attempt. For the first call (t = 1), wi1

starts 3 minutes after the call is received, with about 32% in the 3-5 minutes range, and 8%
in the 5-10 minutes interval. More than half of the quotes receive their first call within the
first two hours after the quote is generated. Hence, the thresholds were placed at minutes
4, 5, 6, 10, 20, 40, 60, 80 and 120. This specification puts special focus on measuring time-
sensitivity in the first minutes after the quote, which is where most of the first call attempts
are concentrated. Other specifications were also considered, yielding similar results.

If the first call attempt fails to make contact, about 30% of the second call attempts are
made within 15 minutes after the first call. About 15%, are done within 60 and 80 minutes
after the first call. The time between the 2nd and 3rd call follows a similar pattern. This
variability together with the variability of the first call attempt generates more dispersion in
the elapsed time of the 2nd call attempt. Similar thresholds as with the first call were used
to set the levels of the elapsed time of the second call attempt. An additional set of dummy
variables were used to capture the elapsed time between the 1st and 2nd call, with threshold
levels set every 30 minute intervals.

1.5 Estimation Results
The complete set of results of each of the contact models (1.2) can be found in Tables 1.5 and
1.6 (Appendix A). All of the models were estimated with IVs for the elapsed contact time,
implemented via a control function. Figure 1.4 shows the estimated effect of the elapsed time
for the first call. The estimates suggest a strong time-sensitivity within the first 20 minutes
after the quote was generated: the probability of answering the call drops from 62% to about
52%, i.e. a 17% reduction in the contact rate. The estimates have high precision in the first
10 minute interval (where most of the calls are concentrated), and become less precise after
20 minutes. The estimates also suggest a stable pattern after the first 20 minutes.

For the second call attempt, the estimates suggest that both the elapsed time from quote
generation and the previous call affect the contact probability. To visualize the overall effect,
consider the case where the first failed call attempt was made within the 10 minutes of the
quote generation. Figure 1.5 shows the contact probability of the second call as a function
of the elapsed time from the quote generation (which starts at 10 minutes, after the first call
attempt). The estimates suggest that the probability of answering a call following shortly
after the first one has a low probability of success: the probability of answering increases
sharply 40 minutes following the first call and then becomes relatively stable, at around 45%.
Hence, it seems reasonable to wait at least 30 minutes before making the second call. The
results for the third call attempt (not reported) are similar to those obtained in the second
call.

The results for the conversion model (1.3) are described next. To capture non-linearities,
the impact of contact time was modeled through a non-linear function specified in levels.
Several models were estimated varying the thresholds that determine the levels, and using
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Figure 1.4 Effect of elapsed time on the probability of answering the first call attempt. The gray
area shows the 95% confidence interval.

Figure 1.5 Effect of elapsed time on contact probability for the second call attempt. The first call
was made withing the first 10 minutes since the quote was generated.

more granularity in the first 30 minutes where most of the first calls are concentrated.

Tables 1.7 and 1.8 in the Appendix A describe the details of the estimation, and Figures
1.6 and 1.7 illustrate the impact of contact time. The estimates of the contact time illustrated
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in Figure 1.6 suggest that conversion is highly time sensitive, dropping from 6% to 4% during
the first 90 minutes. The effect of contact time appears to be weaker after 70 minutes. The
analysis with alternative thresholds to specify the levels of contact time yields similar results.

Figure 1.6 Effect of contact time on conversion.

Figure 1.7 Effect of contact time on conversion
Clients contacted in the first call.

The estimates of Figure 1.6 include customers that were called either one, two or three
times until the first contact. These three groups of customers may have different preferences,
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which could lead to an endogenous sample selection: customers that did not answer the first
call constitute a higher proportion of the sample of customers with higher contact time. The
lower conversion rate observed at higher levels of contact time may be due to this sample
selection mechanism and not through a causal effect of waiting time on conversion.

Our instrumental variable identification strategy should address this concern, because
identification comes from variation in contact time due to congestion, thereby removing the
sample selection mechanism (under the assumption that congestion levels are not related to
customer’s propensity to purchase). Nevertheless, to further validate our results, a separate
model was estimated using only the sample of customers that answered the first call attempt
(using similar instrumental variables to control for endogeneity). The estimates of the effect
of contact time (which in this case coincides with the time of the first call attempt) are
reported in Figure 1.7. The estimates look similar to those obtained with the complete
customer population. The standard errors are higher for the estimated effect beyond 60
minutes after the quote is generated, which is expected because most of the first call attempts
are done within the first hour. Overall, the main results regarding customer sensitivity to
waiting time appear to be robust to potential sample selection bias.

Finally, the estimates of the contact model and conversion models were combined to
measure how waiting time affects the expected revenue generated by a call (see equation
(1.1)). We focus on the first call attempt because the empirical results suggest that: (i)
customer sensitivity to answer the call is high within the first 50 minutes of the call (Figure
1.4); (ii) the probability of answering a second call after a failed first attempt is low within the
first hour (Figure 1.5); (iii) conversion rates tend to be stable when customers are contacted
after the first hour (Figure 1.6). Figure 1.8 illustrates the expected revenue function obtained
by multiplying the contact model of Figure 1.4 with the conversion model of Figure 1.7 (which
is estimated only for customers that answer the first call). These results suggest high customer
sensitivity to waiting time, specially within the first 10 minutes of the call. After 70 minutes,
the expected revenue is insensitive to waiting time.

We now consider Hypothesis 2, which requires us to evaluate the effect of agent related
factors on conversion rate. The results reveal that agent experience does not have a statisti-
cally significant effect on conversion. That is, as an agent increases the length of time working
for the platform, productivity as measured by the conversion of quotes remains unchanged.
In contrast, we do find heterogeneity across employees, as reflected by the variation in the
agent fixed effects estimated in the model. There is a moderate degree of heterogeneity in
conversion rates across agents (captured by the estimated fixed effects), as shown in Table
1.2. The average agent achieves a conversion rate of 8.6%, and the corresponding standard
variation yields a coefficient of variation of the conversion of rate of 0.1.

2.5% Median 97.5% Mean Sd CV
0.080 0.085 0.11 0.086 0.009 0.10

Table 1.2 Conversion rate distribution across agents. Computed from the estimated fixed effects
in the conversion model. Values were computed under average conditions of the model covariates.
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Figure 1.8 Effect of contact time on expected revenue. Given by Pr(Contact) ×
Pr(Conversion|Contact).

1.5.1 Discussion and Robustness of The Results of Customer Be-
havior Models

In summary, the main conclusions of the customer behavior analysis are: (i) customers are
highly sensitive to waiting time within the first hour after a quote is generated; (ii) this
sensitivity is both due to a a decline in their probability of answering the phone and a lower
conversion rate after making contact; (iii) experience –measured by agent tenure– doesn’t
affect the conversion rate of the agent; (iv) there is moderate heterogeneity in conversion
rates across agents. We now discuss alternative specifications to assess the robustness of
these conclusions, particularly with respect to the inclusion of prices in these models.

Price is an important factor that can potentially affect both the probability of answering
a call and the conversion after making contact. If price promotions increase a customer’s
interest in an insurance policy offered through the platform, it is possible that these price
promotions may increase the probability of answering a call, which translates into a positive
correlation between prices and the error term εit in model (1.2). But because the platform
doesn’t prioritize calls based on prices, there is no association between prices and the elapsed
time until the first call and subsequent attempts (wit). Hence, omitting prices from the
model should not bias the coefficients of interest in the contact model (1.2). Furthermore,
because insurance companies use pricing strategies that account for customer risk, it is likely
that prices are positively correlated with purchase intentions (because risky customers have
fewer outside options). This would induce a positive association between price premiums
and µi (the error term in equation (1.3)). Moreover, if price also affects the probability
of answering calls —for example, if price promotions increase a customer’s interest in the
products offered by the platform— it will also be correlated with the contact time wc. Under
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these circumstances, omitting price from the model can lead to bias in the estimated effect
of contact time wc. However, the IV strategy helps to mitigate this potential bias. The level
of congestion of the system is unrelated to price, because both customer traffic and staffing
are not affected by prices in this setting. Hence, using congestion as an IV helps to correct
for all of the potential sources of endogeneity bias that can affect the estimation of coefficient
γ1 associated with the contact time.

To further assess whether the exclusion of price from the model could affect the results, we
ran additional specifications including prices as a covariate. More specifically, we calculated
a metric of the attractiveness of the prices offered to a customer as follows. We first ran a
hedonic regression of insurance policy prices as a function of policy and customer charac-
teristics. We then used the residual as a proxy for the (un)attractiveness of the offer (the
residual indicates the deviation of the price from the expected price given the product char-
acteristics). Accordingly, the average and the minimum value of the residuals of the offered
prices are included as a measure of price in models (1.2) and (1.3). In both cases, the results
and conclusions obtained from the empirical analysis were similar to those discussed earlier
in this section.

1.6 Modeling Agent Retention
This section describes an econometric model to test Hypothesis 3 (see Figure 1.1): the effect
of agent utilization on retention. To model turnover, we use a duration model to estimate
how agents’ churn probability is affected by their workload, among other factors that are
used as controls. A discrete duration model is specified, using weekly observations following
each agent during our study period. Each agent k is observed for t = 1 . . . Tk, where t = 1
is the week the agents starts receiving calls in the platform and Tk is the week in which
the agent leaves the platform. The binary dependent variable ykt is equal to one when the
agent quits and zero for all previous periods. The probability that the agent leaves on tenure
week t is modeled as Pr[Ykt = 1] = p(Xkt, θ) (conditional on not leaving prior to t), which
represents the hazard rate of the discrete time duration model. A parametric specification of
the hazard rate based on a logistic regression is used. The covariates of this regression, Xkt,
are discussed next.

To provide flexibility in the estimation of the hazard rate, the logistic regression model
includes a linear and quadratic term of the agent experience –measured as the number of
weeks working for the platform– in order to capture a time-varying baseline hazard rate of
attrition. An additional set of covariates were included to capture the characteristics of the
agent: (i) dummy variables capturing different levels of agent age in years ([18-35];[36,50]
and 51 or older); (ii) a dummy for the agent’s gender.

The main objective of this model is to measure the impact of workload on the attrition
probability p(Xkt, θ). One possible approach to capture this effect is to use the number of
converted calls, which directly affects the agent’s income from working on the platform. There
are two reasons why we do not include the number of converted calls as measure of workload.
First, the platform cannot directly control the number of converted calls – this can only be
affected indirectly by allocating more calls to an agent, which is the main decision variable
that this study focuses on. Second, the conversion rate of an agent is endogenous: more
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skilled and motivated agents determine both their retention and productivity (as measured
by conversion). An agent’s intrinsic skill and motivation is an omitted variable that confounds
the causal effect of converted calls on agent retention.

For these reasons, instead of using converted calls, we opted to use the assigned workload
to an agent to measure its effect on attrition. The workload assigned to an agent in a given
week depends on: (i) the number of hours that the agent was available to attend calls; and
(ii) the number of quotes that arrived during the working hours of the agent. Unfortunately,
the data don’t provide a precise measure of how many hours an agent was available to attend
calls. However, using the time-stamps of the calls that were attended, we can infer the
morning and afternoon shifts that an agent worked during the week (because agents always
receive at least one call during a working shift). Using this information, a measure of weekly
workload was computed using the number of calls attended per shift worked by the agent,
Calls per Shift.

Logit Logit with RE
(1) (2) (3) (4)

1wk lag 2wk lag 1wk lag 2wk lag

Calls per Shift −3.160∗∗∗ −2.081∗∗∗ −3.160∗∗∗ −2.081∗∗∗

(0.552) (0.552) (0.555) (0.556)

Observations 1, 515 1, 515 1, 515 1, 515

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1.3 Estimation results of the of agent retention model. Coefficients represent the estimated
elasticity of the attrition probability to changes in the assigned workload, measured by the Calls per
Shift.

Table 1.3 shows the estimation results of four different specifications of the agent attrition
model. All models include controls for age, gender and the agent’s experience (not shown in
the table for brevity). Columns (1) and (2) show the estimates of a logistic regression model
with different lags to measure past workload. Column (1) uses the calls per shift on the
most recent past week (weeks were the agent did not work were dropped from the sample).
Column (2) uses the average calls per shift during the last 2 weeks (excluding weeks were the
agent didn’t work in the calculation). Columns (3) and (4) estimate similar specifications
but including an agent random effect to capture heterogeneity (a fixed effect cannot be used
because a single spell is observed for each agent).

To facilitate the interpretation of the results, Table 1.3 shows the estimated elasticity
of Calls per Shift on the retention probability, for an average female agent of 40 years old
and 10 months of experience. The elasticity – measured as the percent change in attrition
probability – is negative and statistically significant in all specifications, and economically
meaningful, in the range of −2 to −3 depending on the specification. The models with a one
week lag tend to have a larger elasticity: a 10% increase in the calls assigned per shift lowers
the probability of quitting by 30%, decreasing it from 2% to 1.4% in every period. The effect
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is smaller when considering the last 2 weeks of assigned workload, with an elasticity of −2.
Comparing the fit of the models (1) and (2), the Akaike and Bayesian Information criterion
tend to favor the one-week lag model (AIC: 291.3 vs 313.8; BIC: 339.2 vs. 361.7). The
estimates of the model including random effects (columns (3) and (4)) are nearly identical.

To evaluate the magnitude of the effect of workload on attrition and experience, we con-
ducted the following counterfactual. Each agent i is retained for Ti weeks, which follows a
geometric distribution with attrition probability p and expected lifetime E(Ti) = 1/p. For
an average agent, p = 0.02 and E(Ti) = 50 weeks. Based on the estimates of Table 1.3, using
the average elasticity from columns (1) and (2) of approximately −2.5, a 10% increase in the
number of calls per shift drops the hazard rate by 25%. This in turn increases the expected
lifetime of a randomly picked agent by 33.3%, which is economically significant. Note, how-
ever, that an arriving customer is more likely to encounter an agent with a longer lifetime:
the expected lifetime of an agent as seen by an arriving customer is E(Ti) + V ar(Ti)/E(Ti),
equal to 2/p − 1 when Ti is geometric4. Consequently, an arriving customer is attended by
an agent with expected lifetime of 100 weeks, which is twice the average lifetime of an agent.
Repeating the above calculations reveals that the relative change in this expected lifetime
due to a 10% increase in workload is 33.7%, similar to what is obtained for the expected
lifetime of a randomly picked agent.

1.7 Balancing Customer Waiting Time and Agent Reten-
tion

The empirical results show that it is important to contact the platform visitors quickly to
improve the chances that they will buy one of the insurance policies. This speed could
be improved by increasing the number of call center agents. This would decrease their
utilization and hence decrease the average time to contact customers. At the same time, a
lighter workload, as shown in the previous section, may lead to greater employee attrition,
which in turn may affect the platform’s effectiveness at converting visitors into buyers. We
study this trade-off by considering scenarios where we modify the call center capacity and
for each of them determine expected revenues.

To implement this analysis, note that platform revenues depend on the time elapsed since
a quote is generated until an attempt is made to contact a customer (wit). Since this is a
random variable which depends on the capacity of the system (i.e., the number of active
agents), it is necessary to integrate its distribution when determining expected revenues.

We derive the distribution of contact time (wit) by formulating an M/M/c queuing model.
The arrival rate and capacity are estimated from the data. Focusing on peak hours (i.e.,
weekdays between 10 and 11 am), the platform makes 5.2 calls per minute and has an
average of 45 agents. The service rate of the M/M/c model can be estimated by matching
the observed elapsed times to the ones predicted by the model. Figure 1.9 shows that this
model provides a reasonable approximation of the empirical elapsed times.

A change in capacity also affects the probability of retaining agents. Agents abandoning
4This result is known as the inspection paradox in renewal theory. See Kulkarni [2016], chapter 7.
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Figure 1.9 Waiting time distribution: M/M/c model vs data.

the platform will be replaced and to compute expected revenues, it is necessary to specify
an agent recruiting and retention process. Assume that the service platform can hire agents
from a pool of candidates. These candidates are heterogeneous in the average revenue s ∈ IR
they generate per contacted customer. This heterogeneity is characterized by the distribution
F (x) ≡ Prob(s < x), which can be estimated from the empirical results in Section 1.5. In
our simulations we will use three alternative specifications of F (x), all of them centered
around the empirical mean, but with a variation coefficient of either 0.1, 0.3 or 0.5, where
0.1 is consistent with the degree of agent heterogeneity estimated from our data. This will
be helpful to illustrate the impact of agent heterogeneity on our results.

Define a tenure process such that an agent hired by the service platform will be evaluated
at the end of R periods. After those R periods, the call center learns the agent’s average
revenue s and if it falls below a threshold θ, then the agent’s contract is not renewed and
the call center hires a new agent with an average revenue per customer drawn from the
distribution F (·), which will be learnt after R periods. Based on our empirical results, after
R = 8 weeks the platform should be able to estimate an agent’s conversion rate with a
reasonable precision (i.e., with a standard error equal to 5% of the population mean of s).

Agents with average revenue below (above) θ will be denoted as low (high) quality agents.
Therefore, the fraction of low quality agents in the population is given by q ≡ F (θ). In
addition to this evaluation process, at the end of every period, an agent hired by the ser-
vice platform may voluntarily quit with probability p. To characterize the revenues of the
platform, we determine the fraction of customers that will be served by a high quality agent.
Appendix B shows the derivation of this fraction and of the optimal retention threshold (θ)
using results from renewal theory.
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Given this assumptions, we begin by analyzing a medium traffic scenario with λ = 2.5
customers arriving per minute, a service rate of µ = 0.2 calls per minute and c = 14 servers.
Under these conditions, server utilization reaches 89% and on average customers are contacted
2 minutes after they visited the platform’s website (see Table 1.4).

Consider next a change in capacity such that one of the servers is removed from the system:
c = 13. As expected, agent utilization increases to 96%. This higher level of utilization has
two consequences. On the one hand, it leads to longer elapsed times (8.4 minutes on average),
which in turn decrease conversion by 10.2%. On the other hand, a higher utilization level
leads to greater agent workload (+7.7%), which lowers employee attrition, increasing the
number of periods that a high quality agent can be retained by the platform. Assuming a
low level of heterogeneity among potential agents (i.e., CV (agent) = 0.1), this translates into
a 0.9% revenue improvement. Higher levels of heterogeneity yield stronger improvements of
3.6%, partially compensating the 10.2% revenue decrease from longer contact times.

Similarly, consider a capacity increase such that one server is added to the system: c = 15.
As a consequence, agent utilization decreases to 83%. As before, there are two implications
of this lower utilization level: a 5.3% increase in conversion due to shorter contact times (0.8
minutes) and a 0.6%-2.5% decrease in conversion due to lower agent experience depending
on the degree of heterogeneity among agents. Overall, under these medium traffic conditions,
increasing capacity leads to a more favorable forecast than a capacity reduction.

It is also interesting to consider other scenarios. As shown in Table 1.4, under low traffic
conditions, with c = 11 servers, a negative or positive change in capacity is associated with a
smaller impact on waiting times, and hence a smaller impact on revenues (−7% and +4%).
In addition, the impact on agent workload is greater than under medium traffic conditions,
yielding stronger impacts on revenue associated with agent retention.

Medium Traffic Low Traffic
Rate and capacity λ = 2.5, µ = 0.2, c = 14 λ = 1.8, µ = 0.2, c = 11
Utilization & W̄ 89%, 2.0′ 82%, 1.1′

↑ Workload ↓ Workload ↑ Workload ↓ Workload
Change in Capacity (c− 1) (c+ 1) (c− 1) (c+ 1)

∆ Workload +7.7% −6.7% +10% −8.3%

Effect of workload through Waiting Time
Utilization 96% 83% 90% 75%

Waiting time W̄ (avg) 8.4′ 0.8′ 3.3′ 0.4′

∆ Exp Rev −10.2% +5.3% −7% +4%

Effect of workload through Retention
∆ Exp Rev [CV(agent)=0.1] +0.93% −0.63% +1.27% −0.77%
∆ Exp Rev [CV(agent)=0.3] +2.45% −1.67% +3.34% −2.03%
∆ Exp Rev [CV(agent)=0.5] +3.63% −2.47% +4.96% −3.02%

Table 1.4 Balancing waiting time with employee retention.
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1.8 Conclusions
In this study we consider the problem of managing utilization of workers for a service platform.
We focus on settings with two key features: i) customer response is time sensitive and ii) the
heterogeneity in skill of the agents providing this service is relevant. Under these conditions,
the platform faces an important trade-off between increasing speed of service and providing
a sufficiently attractive workload to its workers.

This research shows the importance of empirically measuring this trade-off when managing
a labor platform. For the outbound call center under study, we find that customers are indeed
sensitive to the time elapsed between their visit to the platform’s website and when they are
reached by a platform agent. In particular, the probability that a customer answers a phone
call from the platform drops from 62% to 52%, as this elapsed time increases from 3 to 20
minutes. In addition, conditional on successfully reaching a customer, the probability that
a customer will purchase one of the insurance policies drops from 6% to 4% as the elapsed
time increases from 5 to 90 minutes.

Considering the role of agents, we find that heterogeneity in worker productivity is rele-
vant, since a 7.7% increase in utilization translates into a 0.9% to 3.6% increase in conversion
rate due to higher retention of more skilled agents under medium traffic conditions. Our
agent attrition model results show that agent attrition depends on their assigned workload.
For this platform, we find that a 10% increase in workload translates into a 25% percent-
age decrease in weekly agent attrition rate which yields a 33% increase in agent tenure. In
conclusion, these results highlight the importance of considering and modeling the behavior
of both customers and workers when making capacity and utilization decisions for service
platforms.

Finally, there are interesting avenues for future research focusing on improving both sides
of the labor platform, i.e. increasing agent retention and their conversion rate. In particular,
future work could consider call routing policies that take into account agent retention and
conversion. For example, regarding agent retention, a larger volume of calls could be assigned
to agents that are at a higher risk of abandoning the platform. In terms of conversion rates,
the platform could identify customers that are less sensitive to contact time (e.g., those that
after one hour have still not been contacted) and assign them a lower priority. This is an
important avenue for future research, since most of the relevant literature focuses on inbound
call centers (e.g., Allon et al. [2011]). Overall, the complexity of labor platforms offers several
interesting research opportunities and we hope this work may stimulate multidisciplinary
research aimed at improving their performance and deepening our understanding of the gig
economy.
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Appendices

Appendix A: Detailed Estimation Results

1st Call IV 2nd Call IV
Time elapsed since quote
≤ 4[m] 0.37232∗∗∗ −0.48448∗∗

(0.02440) (0.17772)
5[m] 0.18904∗∗∗ −1.87195∗∗∗

(0.02877) (0.18788)
6[m] 0.10953∗∗ −1.41776∗∗∗

(0.03779) (0.18884)
10[m] −0.04424 −0.80365∗∗∗

(0.03459) (0.13309)
20[m] −0.08290∗ 0.41247∗∗∗

(0.03844) (0.10023)
40[m] −0.05313 0.85035∗∗∗

(0.04222) (0.09838)
60[m] −0.15673∗∗ 0.22593

(0.04938) (0.12286)
80[m] −0.01807 −0.03864

(0.05649) (0.04101)
120[m] −0.09035 −0.12569∗

(0.05054) (0.05741)
Observations 113,808 46,521
Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Table 1.5 Estimation results of the contact model, elapsed time since quote covariates. Table shows
estimated parameters of the logit model defined by equation (1.2).
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1st Call IV 2nd Call IV
Time elapsed since previous call
≤ 30[m] −2.05303∗∗∗

(0.04524)
30[m]− 60[m] −0.37060∗∗∗

(0.09096)
60[m]− 90[m] 0.06625∗

(0.03088)
90[m]− 120[m] −0.06692

(0.07026)
Price Index −0.09938∗∗∗ −0.07855

(0.02460) (0.04186)
Google Searches 0.00028 0.00063

(0.00041) (0.00072)
Res 0.00001∗∗∗ 0.00001∗∗

(1.89e−6) (2.51e−6)
Res2 −2.94e−11 −2.22e−11

(1.52e−11) (1.81e−11)
Constant −1.15314 0.18806

(1.16632) (0.32958)
Observations 113,808 46,521
Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Table 1.6 Estimation results of the contact model, other covariates. Table shows estimated param-
eters of the logit model defined by equation (1.2).
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Customers contacted Customers contacted
in 1st call in 1, 2 or 3 calls

≤ 4[m] 0.394 ∗ ∗∗ 0.483 ∗ ∗∗
(0.0513) (0.0396)

5[m] 0.330 ∗ ∗∗ 0.422 ∗ ∗∗
(0.0623) (0.0533)

6[m] 0.186∗ 0.286 ∗ ∗∗
(0.0865) (0.0798)

10[m] 0.323 ∗ ∗∗ 0.427 ∗ ∗∗
(0.0781) (0.0706)

20[m] 0.345 ∗ ∗∗ 0.505 ∗ ∗∗
(0.0944) (0.0846)

40[m] 0.179 0.380 ∗ ∗∗
(0.120) (0.103)

60[m] 0.121 0.252
(0.160) (0.137)

80[m] −0.182 0.0908
(0.198) (0.0656)

120[m] −0.0146 0.0895
(0.170) (0.105)

Observations 51,680 73,218
Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Table 1.7 Estimation results of the conversion model, elapsed time covariates. Table shows esti-
mated parameters of the logit model defined by equation (1.3).
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Customers contacted Customers contacted
in 1st call in 1, 2 or 3 calls

#quotes×1<4month −0.000209 −0.000264∗
(0.00013) (0.000112)

#quotes×1≥4month −0.000118 −0.000097
(0.00011) (0.0000941)

Agent Experience −0.000495 −0.000125
(0.00741) (0.00638)

Agent Experience Sq. 0.00000121 −0.000015
(0.0000243) (0.0000213)

Price Index −0.860 ∗ ∗∗ −0.910 ∗ ∗∗
(0.0675) (0.0585)

Google Searches 0.00361∗ 0.00258∗
(0.00141) (0.00122)

Res −0.0000478∗∗∗ −0.0000343∗∗∗
(0.00000854) (0.00000528)

Res Sq. 3.27e−10∗∗∗ 2.50e−10∗∗∗
(6.27e− 11) (3.57e− 11)

Constant −4.016 ∗ ∗∗ −4.951 ∗ ∗∗
(0.960) (0.942)

Observations 51,680 73,218
Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Table 1.8 Estimation results of the conversion model, other covariates. Table shows estimated
parameters of the logit model defined by equation (1.3).
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Appendix B: Optimal Tenure Process

In this appendix we derive the optimal agent retention policy. We begin by characterizing
the revenues of the platform, which depends on the fraction of customers that will be served
by a high quality agent. Using results from renewal theory, define a cycle as a period of time
that begins when a high quality agent is hired and ends when the next high quality agent is
hired. Note that this cycle may include cases where:

• a high quality agent replaces another high quality agent.
• a high quality agent is consecutively replaced by several low quality agents until the

next high quality agent is hired.

Denote the number of low quality agents in a cycle by NL. Using the properties of a
geometric distribution, its expected value corresponds to q

1−q . Denote by T the number of
periods an agent would voluntarily wish to work, which follows a geometric distribution with
parameter p. Using Theorem 3.4.4 in Ross et al. [1996], the long run probability of observing
a high quality agent within a cycle is given by:

πH ≡ lim
t→∞

Prob[H in time t] =
E(T )

E(T ) + q
1−qE(min{T,R})

=
E(T )(1− q)

(1− q)E(T ) + qE(min{T,R})

=
E(T )(1− q)

E(T )− q(E(T )− E(min{T,R})

=
E(T )(1− q)

E(T )− qE(max{T −R, 0})

Using once again the properties of the geometric distribution, E(max{T − R, 0}) = (1 −
p)RE(T ). Hence:

πH =
1− q

1− q(1− p)R
=

1− F (θ)

1− F (θ)(1− p)R
.

where the last equality follows from the definition of q, i.e. q = F (θ). Accordingly, the long
run probability of observing a low quality agent within a cycle is given by:

πL =
F (θ)(1− (1− p)R)

1− F (θ)(1− p)R
.

Using πL and πH , long run average revenues per contacted customer Y are given by:
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Y = E(s|L)πL + E(s|H)πH

=
1

1− F (θ)(1− p)R

F (θ)(1− (1− p)R)

θ∫
−∞

sdF (s)

F (θ)
+ (1− F (θ))

∞∫
θ

sdF (s)

1− F (θ)


=

1

1− F (θ)(1− p)R

(1− (1− p)R)

θ∫
−∞

sdF (s) +

∞∫
θ

sdF (s)


=

1

1− F (θ)(1− p)R

E[s]− (1− p)R
θ∫

−∞

sdF (s)


=

1

1− F (θ)(1− p)R
[
E[s]− (1− p)RF (θ)E[s|s < θ]

]
Under regularity conditions for F (·), an interior solution for θ maximizing long run ex-

pected revenues solves:

dY

dθ
=

f(θ)(1− p)R

(1− F (θ)(1− p)R)2

E[s]− (1− p)R
θ∫

−∞

sdF (s)

+
1

1− F (θ)(1− p)R
[
−(1− p)Rθf(θ)

]
= 0

=
f(θ)(1− p)R

1− F (θ)(1− p)R


E[s]− (1− p)R

θ∫
−∞

sdF (s)

1− F (θ)(1− p)R
− θ

 = 0

=
f(θ)(1− p)R

(1− F (θ)(1− p)R)2
[E[s]− (1− p)RF (θ)E[s|s < θ]− θ + θF (θ)(1− p)R] = 0

Therefore, θ∗ solves the following fixed point equation:

θ∗ = E[s] + F (θ∗)(1− p)R(θ∗ − E[s|s < θ∗]).

Note from this last equation that an interior solution for the optimal threshold θ∗ is greater
than the population mean E[s].
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Chapter 2

Brick and Mortar Stores

2.1 Introduction
Labor operating costs are among the largest expenses in the retail sector, and one of the main
sources of employment in developing countries. Whereas retail operations management has
made significant progress in improving inventory management (the largest operating expense
in retail), labor management has now become critical to improve operational efficiency, in part
enhanced by new technologies that provide real-time data on customer traffic and employees.
These data has propelled empirical research in retail labor management, starting with the
seminal work by Fisher et al. [2006] that studies how changes in the staffed labor affects
the sales of retail stores. That study and others that follow show that labor is an important
driver of revenues. This work builds over this important stream of work to combine empirical
analysis with optimization methods to build a decision support tool that can be used by
managers to plan labor allocation and schedule working shifts to maximize store profitability,
balancing gross margins with labor costs.

Following Fisher et al. [2006], Perdikaki et al. [2012] studies the relationship between
labor and sales, but account for customer traffic as an additional factor. Chuang et al. [2016]
expands this work to develop a decision model to plan labor hours at a weekly level by store,
accounting also for heterogeneity across stores in a chain. Although this is similar to our
work, our goal is to provide a more detailed plan of labor staffing in an hour-by-hour, day-to-
day basis, including working shifts of full-time and part-time employees. Our work is related
to Mani et al. [2015], that seeks to measure over and under staffing of stores. Their approach
uses structural estimation to uncover the gross margin and costs of labor, assuming that the
retail store staffs optimally at the weekly aggregate level. We use a different methodology
that does not assume that the store sets staffing levels optimally; moreover, the objective of
our work is to provide a more detailed description of the different time slots at which a store
can be over and understaffed. We also consider labor regulatory restrictions and worker’s
scheduling preferences to jointly optimize the staffing hours and shift scheduling.

The Operations Research literature has a long history in developing models to optimize
shift schedules in service delivery systems using tools from mathematical programming (e.g.
Thompson [1995]). However, these models typically take the labor requirements as a fixed
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input, finding a feasible schedule that achieves these requirements at minimum costs. In
our work, the desired labor requirements is one of the key decisions, which accounts for the
trade-off between costs (employee salaries) and margins (sales).

Our methodology is separated into three steps. First, an econometric model is developed
to estimate the effect of labor on sales in an hourly basis. This model provides an input to
an optimization problem that seeks to optimize the hour-by-hour labor requirement based
on traffic projections. This second step is important, because although some previous work
has provided valid approaches to plan labor requirements at a weekly level (e.g. Fisher
et al. [2017]; Chuang et al. [2016]), these solutions don’t provide details to a store manager
on how to allocate his labor budget across days of the week and hourly shifts. While useful,
this second step provides an ideal labor requirement that cannot be implemented in practice
as it is unlikely to comply with labor regulatory laws, company hiring policies and employees’
preferences. The third step consists in translating this ideal labor plan into a feasible working
schedule, achieved through a mathematical program that seeks to find the best feasible
schedule (with several regulatory and practical constraints) to maximize store profitability.
These three steps have been developed into a prototype that is currently been integrated
into a decision support tool that complements the current services provided by our industry
collaborator to its clients.

Evaluating the staffing requirements at an hourly level requires to analyze granular sales
data. Although previous work by Mani et al. [2015]; Fisher et al. [2017]; Chuang et al. [2016];
Perdikaki et al. [2012] have also studied the impact of staffing levels on sales, their analysis is
at a more aggregate level – daily or weekly. At an hourly level, it is quite common to observe
zero sales, which can complicate the specification of the econometric model. To account for
this, we decompose the effect of labor on sales into two parts: (i) conversion, which is modeled
through a Poisson regression or other similar models for count data that can account for zero
transactions during the time interval; and (ii) ticket value, which is always positive and can
be modeled through a log-linear regression.

Figure 2.1 General scheme of the decision support tool. The first step uses an econometric model
to estimate the impact of employees on sales. The second step uses optimization tools to set an ideal
staffing requirement for each store, per hour. The third step translates this ideal labor requirement
into a feasible schedule that meets labor regulatory restrictions and practical constraints to ensure
compliance with company labor policies and employee’s preferences.

Closest to our work is Kabak et al. [2008], who develop a decision model to optimize work-
force planning and shift scheduling considering the impact of staffing levels on sales. They
use a model similar to Lam et al. [1998] to estimate the sales response to changes in labor.
We make several contributions to that work. First, our math programming formulation is
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easier to adapt to incorporate alternative constraints that limits the set of possible feasible
schedules. This is particularly important in the markets that we study, where the retail sec-
tor has been facing a growing number of legal restrictions that make the workforce planning
process challenging. In addition to the regulation, employee preferences for working sched-
ules have been shown to be important in determining productivity. Mas and Pallais [2017]
study the relationship between schedule preferences and productivity in the context of call-
centers. In retail, the recent field study by Williams et al. [2018] shows that providing stable
schedules to store employees leads to meaningful lift in sales and productivity, mostly due
to improvements in employee retention, which has been shown to impact performance (Ton
and Huckman [2008]). The mathematical formulation developed in this research is flexible
to incorporate alternative sets of constraints, which we evaluate in section 2.6.

A second difference with Kabak et al. [2008] is on the econometric model used to mea-
sure the impact of staffing on sales. Our model is tailored specifically to handle granular
hourly sales data with frequent zeros. Moreover, we develop a novel specification to cap-
ture the interaction of traffic and staffing levels, and we show that this formulation improves
the goodness-of-fit compared to the models of Lam et al. [1998] and Chuang et al. [2016].
Finally, our econometric model handles some potential endogeneity problems that were not
considered by Kabak et al. [2008] and Lam et al. [1998]. On this regard, the recent work
by Fisher et al. [2017] shows that identifying a causal effect of labor on sales is challenging
because staffing levels are endogenous: a positive correlation between staffing and sales can
be generated by omitted variables in the regression model which are observed and accounted
for by the store managers in the labor planning process. To identify the causal effect of labor
on sales, we follow the same strategy as Fisher et al. [2017], using deviations between the
planned and actual staffing level of the store as exogenous variation. However, our deviations
are measured at a more granular level using hourly planned and actual schedules, which were
collected from the stores archival data (Fisher et al. [2017] uses weekly labor hours).

The empirical results reveal a non-linear effect of traffic and staffing levels on sales, similar
to the findings of Chuang et al. [2016] and Perdikaki et al. [2012]. We decompose this effect
into conversion and basket value and find that most of the effect is through the former. The
magnitude of the effect is comparable to the results of Fisher et al. [2017]: increasing labor
in under-staffed stores can increase sales in the order of 2%− 5% (depending on the level of
traffic of the store).

In terms of the optimization of hourly staffing requirements, the ideal staffing plan sug-
gested by the optimization is compared to the historical staffing levels used by the retailer
to evaluate potential inefficiencies. In general, we find that most stores are both over and
understaffed at different time periods and days of the week. This patterns of over and un-
derstaffing by hour and day of the week is a contribution to the literature, which has usually
analyzed this problem at a more aggregated level, which misses some of the inefficiencies
that can be identified with the more detailed approach we propose. The results suggest that
the stores analyzed exhibited severe understaffing during Fridays and weekends from 3pm to
6pm and moderate overstaffing during the weekday lunch period (12-3pm). We provide some
insights of potential causes of these inefficiencies based on traffic patterns and the observed
deviations between planned and actual labor.
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In summary, our work integrates several features of previous work, combining hourly
customer traffic, planned and actual staffing levels and optimization methods to develop
a decision support tool that can be used by store managers to optimize the labor plan
together with a detailed shift schedule that complies with labor regulations and other real-
world constraints. We effectively test this methodology in a children apparel retail chain in
South America. We also use the model to quantify the economic impact of labor regulatory
restrictions on store profitability, which are relevant in the context of our application due to
ongoing changes in the regulatory environment.

2.2 Industry Collaboration and Data
This research is in collaboration with a company focused on providing technology services to
retailers, focused in solutions to analyze customer traffic and store operations with objective
metrics. One of the main products is a system to monitor customer traffic in retail stores
of different format, including specialty stores and big-box retailers, providing descriptive
data reporting traffic patterns and forecasts. The company realized that traffic counters and
other related technologies are rapidly becoming “commodities” in a competitive market of
providers that offer similar solutions for retailers. Consequently, the company is motivated
to expand its services with its current clients to provide additional solutions that go beyond
descriptive reports, developing decision support systems to prescribe improvements to the
operational execution of retail chains. Big-box retailers and large international chains use
enterprise system solutions for workforce management (e.g. Kronos), but these systems are
to complex and costly for smaller retail chains. Moreover, retail labor tends to be more
heavily regulated in Latin America relative to the U.S., and adapting the existing solutions
to the idiosyncrasies of each country is not straightforward. Hence, we started a research
collaboration with the objective of developing a decision support tool aimed for this market –
a workforce management solution for medium-sized specialty retail stores in Latin America.

The first stage of the research project involved discussing with retail managers how they
planned working schedules across the chain. In general, labor budgets for each store were
calculated using historical sales, projecting labor allocations based on future sales forecasts
and a fixed sales to labor ratio. However, because sales are a function of labor, this approach
misses the opportunity of realizing the full demand potential in periods where the stores have
been systematically understaffed. An important improvement of the new tool is to allocate
labor in relation to traffic, which is a better measure of the demand potential on the store
and is not directly affected by staffing levels. It was also observed that the decisions of trans-
lating labor requirements to working schedules was delegated to store managers, and each
manager used a different approach to implement the workforce scheduling. Consequently,
another improvement of the new tool is to provide a systematic approach to translate labor
requirements into a feasible working schedule, through an interactive system that be used by
store managers to evaluate alternative scenarios.

Based on these observations, we concluded that the proposed solution had to be built
with three complementary modules, represented in Figure 2.1, addressing three interrelated
challenges in retail workforce management. The first module uses as input traffic data and
staffing levels to generate a prediction of sales, which is used to build a sales curve as a function
of staffing levels. The second module uses this sales response curve and traffic forecasts
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to conduct a cost-benefit analysis that trades-off revenues (times margins) with employee
salaries, to determine labor requirements. This information is useful for retail executives to
plan labor budgets across the chain. The third module is focused on implementing a feasible
workforce schedule in order to attain the labor requirements, providing a systematic approach
to support the decisions currently made by store managers.

To develop a prototype of this decision support system, we also partnered with a medium
sized retail chain of children apparel, with more than 30 stores located in Chile, open from
9am to 9pm seven days a week. Eleven stores were chosen for the purpose of the research
study, located in Santiago (Chile’s capital), which had customer traffic data for more than
one year of history. The following data were collected for the period of February to December
of 2016:

• Transactional data: This information was collected through the detailed transactions
of each sales ticket, which were aggregated to calculate the number of tickets sold and
the monetary value of each ticket.
• Personnel data: The actual number of employees working in each store were calculated

using the attendance control system, which captures the times when employees check
in and out of their shift, as well as lunch breaks. In addition, we also collected data on
the planned schedule for employees, which are used to handle some of the endogeneity
issues discussed in section 2.3.
• Traffic data: This information is collected via video cameras and image recognition

algorithms, tracking inbound and outbound traffic in the store (including multiple
entrances in some stores).

A summary of the data for the stores in our study is presented in Table 2.1. The table
reveals some heterogeneity across stores in terms of sales, traffic, conversion rates and staffing
levels. Later in the analysis, store 9 was chosen as a representative store to illustrate some
of the results.

Store Traffic Sales Conversion Staffing
1 313.84 0.96 0.28 2.73
2 328.91 0.57 0.15 2.51
3 340.11 0.64 0.15 2.50
4 351.35 0.58 0.13 2.06
5 331.66 0.61 0.14 2.43
6 252.66 0.56 0.17 2.37
7 397.96 0.68 0.14 2.74
8 590.68 1.00 0.14 3.01
9 485.04 0.94 0.17 3.11
10 376.17 0.70 0.14 3.01
11 196.40 0.54 0.20 2.22

Table 2.1 Summary statistics. Daily averages for the eleven stores in the study, covering February
to December of 2016. Sales column was rescaled by store 8 sales volume.

The next section describes how the data is used to estimate the impact of staffing levels
on sales, which corresponds to the first module of Figure 2.1.
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2.3 Empirical Model of Sales Response to Labor
Choosing appropriate staffing levels in a retail store requires to evaluate a trade-off between
the cost of employee wages versus the additional profits accrued from increasing labor. Hence,
the first step to develop a model that can predict sales as a function of the staffed labor in
the store. This section describes an econometric model that measures the causal effect of
increasing labor on sales, which is moderated by the level of customer traffic to the store.

Our empirical model of sales is based on the original work by Lam et al. [1998] and the
extensions developed by Chuang et al. [2016]. The model is formulated over a panel of stores,
where i indexes the store and t a time period. The exact specification of the period depends
on the application, and will be discussed in further detail later in this section.

Let yit denote the total sales (in $) of store i in a specific period. Let Eit denote the
average number of employees that worked in the store during that period, and denote by Tit
the flow of customers that entered the store. Lam et al. [1998], Chuang et al. [2016] and
Mani et al. [2015] use an econometric model of the form:

yit = αiT
1−ρ
it exp(f(Tit, Eit; β) + Controls + εit) (2.1)

which essentially captures the effect of traffic and labor on sales. Equation 2.1 captures a
saturation effect through traffic, as measured by the coefficient ρ. When 0 < ρ < 1, there is
a marginally decreasing effect of traffic on sales, which is in part determined by the limited
resources of the store. When customer traffic increases, the store offers limited capacity to
provide customer service, which reduces the sales per customer. For example, the cashiers
may be operating at capacity, leading to long lines and customers that opt to walk out of the
store without purchasing to avoid the waiting (Lu et al. [2013]). In apparel stores such as the
one studied in this application, fitting rooms become congested thereby precluding customers
to try on clothes, which leads to lower sales. In all the aforementioned studies that use this
class of model, the coefficient ρ is positive taking values in the range of 0.7− 1.0, consistent
with this saturation effect. In other studies, this saturation effect is so severe that sales may
actually decrease at high levels of traffic, generating a inverted U-shape effect of traffic on
sales (Perdikaki et al. [2012]).

Equation (2.1) also captures the interaction between customer traffic and store labor
through the parametric function f(Tit, Eit; β). Employees are one of the key resources in the
store to provide valuable service-related activities, including assisting customers, attending
cashiers, organizing the inventory, among other functions. As customer traffic increases, the
utilization of employees goes up and reaching at some point a critical level where service
starts to degrade. This lower service-level can reduce sales per customer, contributing to the
saturation effect mentioned earlier. This effect can be moderated by increasing staffing levels
in the store, so that the marginal effect of traffic on sales is in part determined by the number
of employees in the store, as captured by f(Tit, Eit; β) in equation (2.1). As we describe later,
this function is specified in order to capture the level of worker capacity utilization, so that
f(T,E) increases with demand (traffic) and decreases with the number of employees (E).
For this reason, it is also referred to as the employee utilization effect.
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Equation (2.1) provides the basis to develop an empirical model that captures sales re-
sponse to customer traffic and staffing levels. However, there are specific issues that require
adapting the model to be used in the context of labor staffing and scheduling. In particular,
the objective of this work is to have a sales response model that can be used to plan staffing
levels at a granular level, in order to provide flexibility to plan working shift schedules. Many
of previous work has defined the unit of analysis at a daily (Perdikaki et al. [2012]) or weekly
(Chuang et al. [2016]; Fisher et al. [2017]) level, which works well for assigning labor budgets
but is too aggregated for the purpose of scheduling working shifts. In the context of the
application studied, the daily schedule was divided into 4 time blocks separated at noon,
3pm and 6pm (stores open at 9am and close at 9pm), which provides enough flexibility to
define working schedules of full-time and part-time employees.

The usual approach to estimate equation (2.1) is to take logs and use ordinary least squares
or some variant of linear regression methods. A problem arises when using a model in more
granular periods as in our study, because zero sales within a block of 1-4 hours can happen
frequently and the log-linear regression model cannot be applied directly. Dropping periods
with zero sales can induce a sample selection bias in the estimation. To address this issue,
the method proposed in this work is to decompose the sales equation (2.1) into two separate
outcomes: (i) conversion and (ii) average sales per ticket, and using a different parametric
model to model each outcome. This methodology is described next.

2.3.1 Model Conversion and Basket Sales

Sales can be decomposed as the product of the number of tickets, Nit, times the average sales
per ticket, Bit (also referred as basket sales). If the time unit of analysis t is short, then the
number of tickets can take the value zero frequently. In the context of our application, zero
sales occur quite frequently: grouping transactions in three hour blocks, the histogram of the
number of tickets per block shown in figure 2.2 reveals more than 6% of observations with
no transactions.

A Poisson regression model is appropriate for count data of these characteristics. The
number of transactions Nit is modeled as a Poisson process with rate :

E(Nit) = Tit exp(δi − ρ log(Tit) + f(Tit, Eit; β) + Controls) (2.2)

where the exponential term captures the conversion of traffic into tickets. This conversion
includes a traffic saturation effect ρ and a moderation effect of customer traffic with the
number of employees, plus additional controls. Provided a specification for f(Tit, Eit; β), the
model can be estimated via Maximum Likelihood using standard statistical packages.

To model sales value per ticket, using the monetary value bin of each ticket n = 1 . . . Nit

in period t, compute the average basket (ticket) value as Bit = 1
Nit

∑Nit

n=1 bin for all periods
with positive sales (Nit > 0) and specify the linear regression:

log(Bit) = δi + α log(Tit) + f(Tit, Eit; β) + Controls + uit (2.3)
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Figure 2.2 Zero sales. Histogram showing the frequency of zero sales hour-block periods in the
data.

In this model, in contrast to the conversion model (2.2), average basket value is not
necessarily increasing in sales. Therefore, a traffic-saturation effect in this model would be
captured by a negative α coefficient. Models (2.2) and (2.3) are estimated independently,
with restrictions on the parameters across the models. Note that the sample size of model
(2.3) drops observations with Nit = 0 and therefore has a smaller sample size relative to the
estimation of equation (2.2). Next, we discuss important endogeneity issues that need to be
accounted for proper identification of the model parameters.

The main purpose of this econometric approach is to predict how sales respond to changes
in the level of staffing in the store, Eit. Hence, it is important that the model estimation
properly identifies the causal effect of Eit on sales (through Nit, Bit or both), in order to
predict the outcome of alternative staffing scenarios for the purpose of optimizing labor
schedules. Estimating the causal effect of employee staffing on conversion and basket value
through an econometric analysis using historical transactions data is challenging because the
staffing levels are endogenous: they were decided by store managers based on sales forecasts.
Many retail stores, including the retail chain in this application, plan their staffing levels
based on projected sales, which induces a positive correlation between store labor and sales
which cannot be interpreted as a causal effect of labor on demand. It is therefore important
that the controls included in the econometric model account for factors that retail managers
may use to predict demand and allocate labor resources, in order to avoid a potential omitted
variable bias.

The following covariates were included as controls in the estimation. First, a detailed set
of special dates, including all the main holidays (Christmas, New years, Independence day,
Religious holidays and others) and special promotion dates (including a “children’s day” and
winter and summer vacations). Month and week dummies are included in some specifications,
as well as day of the week and hour of the day indicators. Weather patterns, which in some
cases may be used to forecast sales, were included using a binary indicator variable of rainy
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days.

It is still possible that retail managers used additional factors to predict demand and
choose staffing levels. To account for this, we collected data on the planned staffing level at
each store and hour-block, to compute the average planned labor hours Pit for each store and
time block. A comparison of the predicted (Pit) and actual (Eit) labor across time blocks is
illustrated in Figure 2.3 for one store in the sample. The figures reveal that, on average, the
planned and actual staffing are aligned in weekday up to 3pm, with some dis-adjustment later
in the day. In weekends, however, actual staffing is on average above planned labor. Our
forthcoming analysis shows that currently the stores tend to be understaffed on weekends,
and it appears that store managers are adjusting upwards the planned staffing levels during
the weekend to mitigate this understaffing.

Figure 2.3 Actual versus planned labor. Comparison of average planned labor (Pit) and actual
labor (Eit) in a typical store of the retail chain, for weekday and weekend days.

Figure 2.4 shows a histogram of the deviations from the planned labor hours, as measured
by the relative difference (P − E)/P , for the 12-3pm and 6-9pm hours blocks. The figure
reveals that although on average the actual and planned labor are relatively well aligned, there
is significant deviations (the same pattern was observed for the hour blocks not included in
the figure). The 12-3pm hours blocks reveals a large proportion of less-than-planned labor
around the lunch hour, which could be due to longer lunch periods taken by the staff or
idle times generated during changes of shift for part-time workers. The 6-9pm hour block
reveals the opposite, a higher fraction of observations suggesting more-than-planned labor
(this pattern is consistent with the differences in averages shown in Figure 2.3 for the last
hour block).

It can be concluded that, although planned and actual labor tend to be aligned on average,
there are substantial deviations across time, as observed by Fisher et al. [2017]. That study
uses the deviation from planned labor as an exogenous source of variation to estimate the
effect of staffing on sales, and we follow a similar approach. The underlying assumption is
that the deviations from planned labor due to absenteeism, late arrivals, employees leaving
early, among other factors, are exogenous. Fisher et al. [2017] actually validate this with
a field experiment, showing that deviations from planned labor seem to be an appropriate
source of variation to estimate the effect of labor on sales. However, Fisher et al. [2017] use
a week as the period analysis, whereas models 2.2 and 2.3 use more granular time periods
of 3 hour blocks. Moreover, Fisher et al. [2017] does not use customer traffic, therefore it
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Figure 2.4 Deviation from planned labor. Histogram of the relative deviation from the planned
labor hours, (P − E)/P .

is not clear how to specify the interaction between traffic and the deviations from planned
labor. Hence, we adapted the specification of Fisher et al. [2017] to use it in our econometric
specification in the following way. Rather than computing the difference between planned and
actual number of employees, planned labor Pit was added as an additional control variable
in the model. The main objective here is to use planned labor as a proxy for omitted
variables that affect demand that are also taken into account by store manager. Note that
the estimated coefficient of Pit cannot be interpreted as a causal effect: it is the actual labor
in the store that affects sales, not the planned labor. High levels of Pit should be interpreted
as a signal that the retail management planned for a higher service capacity, possible driven
by high expected demand. Planned labor Pit was included as a set of dummy variables
capturing different levels of planned labor, a total set of eight dummies for discrete value of
planned labor hours.Planned labor was averaged over a time block and rounded up, creating
a categorical variable that was implemented with a set of dummies. It remains to specify the
functional form of f(T,E; β) which captures the effect of the number of employees and its
interaction with customer traffic, which is described next.

2.3.2 Specification of the Interaction Effects Between Labor and
Customer Traffic

As discussed by Chuang et al. [2016], there are alternative specifications for the traffic/em-
ployee moderation effect f(Tit, Eit; β), which aims to capture the effect of employee capac-
ity utilization. Previous literature has used alternative specifications; for example, Lam
et al. [1998] uses the inverse of the number of employees, f(T,E; β) = β/E (Mani et al. [2015]
use a similar specification). Chuang et al. [2016] argue that the level of service provided to
customers is affected by the utilization of the employees, which is better captured by the de-
mand to capacity ratio T/E, so that the elasticity to labor depends on the level of customer
traffic. We tested these alternative specifications and also included a quadratic term (T/E)2

to account for more flexible non-linear effects.

From our experience in working with various specialty-retail chains, practitioners’ view
employee utilization as a function of the ratio between the number of customers shopping in
the store (as opposed to the customer flow T ) and the number of employees staffed, similar
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to what is used in hospitals through the patient to nurse ratio. By Little’s Law, the average
inventory of customers in the store is equal to the average time spent in the store times the
traffic. Hence, if the average time spent in the store is constant and similar across stores
and time blocks, then using the ratio T/E is equivalent to use the customer inventory to
employee ratio: the covariate is simply rescaled by a constant. However, it is possible that
the type of customers vary across stores, days of the week and time blocks, in which case it
may be useful to account for this heterogeneity.

This idea motivates an alternative specification to capture the effect of staffing levels on
sales. Defining ωit as the average time that customers spend in the store, the ratio (ωitTit)/Eit

is a reasonable measure of capacity utilization if demand for service is better captured by
the inventory of customers in the store, rather than the flow (which relates to the Tit/Eit

measure used by Chuang et al. [2016]). Kabak et al. [2008] also discusses the issue of customer
sojourn time in the store, using a weighted average of concurrent traffic and lagged traffic as
an approximate measure of employee utilization.

One approach to estimate the average time spent in the store, ωit, is to use a sample
of customers, measure their store visit time and use it to calculate averages by store and
time-block. This approach requires substantial data collection effort, because the people
tracking technology used in the stores cannot recognize the identity of each customer to
record their individual entry and exit time. Instead, we develop an alternative approach that
uses aggregate customer inflow and outflow data to estimate the distribution of the time
spent in the store, which is based on the method developed in Lu et al. [2013].

Consider a single store (store index i is suppressed) during a specific time-block (e.g. 12-
3pm). Time is discretized in 2 minute intervals, and let It and Ot be the inflow and outflow
of customers in the interval t. Let θs denote the probability that a customer spends s time
intervals in the store, and It = (It, It−1, . . .) the history of inflows up to time interval t. The
expected outflow of customers in period t is given by:

E[Ot|It] =
S∑
s=0

θsIt−s (2.4)

with a number of lags S such that the total probability mass
∑S

s=0 θs is close to one. A
linear regression of Ot on It and its lags, without an intercept, provides consistent estimates
of {θs}Ss=1. In the context of our application, we found that S = 12 was enough to capture
the distribution of the time spent in the store. The regression was run separately for each
of the 11 stores, during the weekend and weekday, providing a total of 22 sets of estimated
coefficients {θs}Ss=1. Figure 2.5 shows the estimates for one of the stores for weekends; for
weekdays the estimates were similar. The figure reveals that there is an important fraction
of customers that spend less than 2 minutes in the store (about 30%). The total probability
accounted for the coefficients is more than 90%. Based on the estimated coefficients for
all the stores, an average customer visit time is calculated for every store on weekends and
weekdays. In general, the overall average visit time is around 6.4 minutes and is relatively
stable across stores and week/weekends, with a coefficient of variation of 6. Nevertheless,
there is some heterogeneity across stores and weekdays/weekends that is relevant to specify
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the ratio of customer inventory to employees, ωitTit/Eit, as an alternative measure of employee
utilization.

Figure 2.5 Time spent in store. Distribution of the time spent in the store, estimated via a linear
regression model of equation 2.4. Dotted lines show the 95% confidence interval of the estimates.

2.3.3 Estimation Results

This section reports the estimation results of alternative specifications of equations 2.2 and
2.3. Table 2.2 reports the results of the conversion model defined by equation 2.2. Recall that
the model is estimated with a Poisson regression to account for the count data associated
with the number of transactions, as well as the frequent zeros observed in time blocks of
low rotation. The first column of Table 2.2 shows the specification with employee capacity
utilization defined as f(Tit, Eit; β) = β/Eit, the second column with βTit/Eit and the third
column with βωitTit/Eit. The coefficients associated to these covariates are reported in the
row labeled “EmpUtil”. Columns (4) to (6) replicate the specifications adding a quadratic
term, with the corresponding covariate labeled as “EmpUtil Sq”. All the specification include
store fixed effects and dummies for day of the week, time block interacted with weekend
dummy, holidays and special promotion dates, a week dummy and rainy day dummy.

In all specifications, the coefficient associated with log traffic (1− ρ) is between 0.93 and
0.99; the saturation effect of traffic appears to be small in this application in comparison
to the results of previous studies. However, an alternative explanation is that the company
partner has made special effort to improve the precision of their traffic counters. If indeed
the traffic metric used in this study is more precise, then it would mitigate the attenuation
error that arises in econometric models with measurement error in the covariates, leading to
a larger and less biased coefficient.

In columns (1)-(3), the coefficient for the linear term "EmpUtil" is negative and significant,
suggesting a positive effect of the number of employees on sales (Eit is in the denominator
of "EmpUtil"). Among the models with the quadratic term for "EmpUtil", columns (5)
and (6) report a positive and significant coefficient on the quadratic term, suggesting a

43



marginally decreasing effect of employee utilization (the effect of the number of employees on
sales is reported later in Figure 2.6). The bottom of the table reports statistics to evaluate
the goodness of fit for the purpose of model selection. The AIC and BIC criteria was
used to compare across models (which are not nested among each other), suggesting that
the quadratic model with Ratio = ωitTit/Eit has the best fit (column (6)). This suggest
that modeling heterogeneity in customer visit time is relevant for the purpose of measuring
the effect of labor, which corroborates the intuition of the store managers that we have
interviewed suggesting that the number of customers in the store is a more appropriate
metric to capture the demand for service.

Recall that the model has covariates that capture the number of planned employees for
the store, with the purpose of controlling for potential omitted variables that affect sales
and are considered in the staffing decisions of retail managers. The estimates suggest that,
in this application, most of these additional controls are not statistically significant, which
appears to be at odds with the results of Fisher et al. [2017] who show that controlling for
planned labor is important to mitigate endogeneity bias. However, an important difference
between this study and Fisher et al. [2017] is that the present study includes customer traffic
as a covariate in the model. Hence, it is possible that factors that are accounted for by
store managers in planning their labor are being captured by store traffic, and therefore
traffic alone is enough to address the endogeneity problem. This arguments were presented
by Chuang et al. [2016] and Perdikaki et al. [2012] to justify their empirical strategy (which
doesn’t use planned labor as a control), and our empirical analysis seems to corroborate that
justification.

The full set of coefficient estimates are reported in Table 2.3 for the specification corre-
sponding to column (6) of Table 2.2, the model with the best fit. The coefficients for day
of week dummies (base level is Sunday) suggest that Monday has the lowest sales, which
gradually progress increasing during the week to reach its peak on Saturday. The morning
time block (the base dummy) has the lowest sales on average, whereas the other blocks have
similar coefficient estimates. Weekends tend to have lower sales after noon, as suggested by
the interaction terms of time block and weekend.

Table 2.4 shows the estimation results of the basket value model defined by equation
(2.3), with the same structure as the previous table. In this model, the effect of "EmpUtil"
is not significant in all the models. The effect of staffing levels appears to operate mainly
by increasing the conversion of customer traffic into tickets, but does not affect the value of
these purchases.

To visualize the magnitude of the effect of staffing levels on sales, the graph in Figure 2.6
uses the estimates of Table 2.2 column (6) to compute the sales response to the number of
employees for different levels of store traffic in a representative store. This model specification
is chosen because: (i) AIC and BIC suggest this has the best fit among all the conversion
models evaluated; (ii) the empirical results suggest that basket value is not affected by staffing
levels, therefore all the impact in sales is captured through the conversion model. The left
panel shows the sales response curve for moderate traffic scenarios, the 3-6pm block during
two weekdays. The y-axis has been rescaled in order to conceal sensitive information of
the retail company that collaborated in the study. These curves show an increasing effect
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Different specifications of EmpUtil, f(T,E)
1/E T/E ωT/E 1/E T/E ωT/E

ln(Traffic) 0.94*** 0.97*** 0.97*** 0.94*** 0.99*** 0.99***
(0.008) (0.010) (0.010) (0.008) (0.011) (0.011)

EmpUtil -0.100*** -0.002*** -0.020*** -0.098* -0.005*** -0.048***
(0.022) (0.0005) (0.005) (0.040) (0.001) (0.008)

EmpUtil Sq -0.0008 0.00003*** 0.003***
(0.023) (0.00001) (0.001)

N 13,481 13,481 12,440 13,481 13,481 12,440
pseudo R-sq 0.639 0.639 0.644 0.639 0.640 0.644
AIC 70,549 70,555 65,423 70,551 70,536 65,403
BIC 71,443 71,448 66,299 71,452 71,437 66,287
Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.2 Conversion model, estimation results. Model in equation 2.2.

Coef. Sd. Err Coef. Sd. Err
ln(Traffic) 0.995*** (0.011) Mon -0.172*** (0.025)
EmpUtil -0.048*** (0.008) Tue -0.136*** (0.024)
EmpUtil Sq 0.003*** (0.001) Wed -0.101*** (0.024)

Thu -0.052* (0.024)
Store2 -0.554*** (0.014) Fri 0.025 (0.024)
Store3 -0.564*** (0.013) Sat 0.158*** (0.011)
Store4 -0.746*** (0.013)
Store5 -0.665*** (0.014) 12-3pm 0.407*** (0.018)
Store6 -0.484*** (0.014) 3-6pm 0.376*** (0.019)
Store7 -0.620*** (0.013) 6-9pm 0.397*** (0.018)
Store8 -0.558*** (0.015) Wknd x 12-3pm -0.119*** (0.024)
Store9 -0.598*** (0.013) Wknd x 3-6pm -0.144*** (0.024)
Store10 -0.666*** (0.014) Wknd x 6-9pm -0.206*** (0.024)
Store11 -0.305*** (0.015)

Rain 0.002 (0.0115) Constant -1.382*** (0.083)
Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.3 Conversion model, full estimation results. Model in equation 2.2, corresponding to the
specification with EmpUtil = ωT/E, column (6) in Table 2.2.

of employees on sales that is also marginally decreasing. The magnitude of the effect is
important: increasing from 1 to 4 employees increases sales in the order of 10%. The right
panel shows scenarios of high traffic on Saturday, which reveals an even larger effect of
increasing staffing from 1 to 4 employees, in the order of 15%.
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Different specifications of EmpUtil, f(T,E)
1/E T/E ωT/E 1/E T/E ωT/E

ln(Traffic) 0.004** 0.005*** 0.005*** 0.004** 0.006*** 0.005**
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

EmpUtil -0.011** -0.00004 -0.0005 -0.013* -0.0002 -0.002
(0.004) (0.0001) (0.001) (0.006) (0.0001) (0.001)

EmpUtil Sq 0.0008 0.000002 0.0001
(0.002) (0.000001) (0.0001)

N 12,941 12,941 11,944 12,941 12,941 11,944
pseudo R-sq 0.000 0.000 0.000 0.000 0.000 0.000
AIC 53,917 53,917 49,779 53,919 53,919 49,781
BIC 54,806 54,806 50,651 54,815 54,816 50,660
Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.4 Basket value model, estimation results. Model in equation 2.3.

The highest traffic scenario, Saturday 3-6pm, shows that at low staffing levels the sales
response curve is not concave. When the store is too congested, increasing from one to
two employees has a negligible effect, where the positive impact of increasing staffing levels
requires a minimum level of staffing, above two employees, to become significant. This is in
contrast to Chuang et al. [2016] who prove (analytically) that the sales response function is
concave under their specification. The main difference between their model and ours is that
we include a quadratic term of the ratio traffic/employees, which in our application is highly
statistically significant, providing the flexibility to accommodate non-concave sales response
curves.

Figure 2.6 Sales response to staffing level. Representative store for different scenarios of customer
traffic. The graph is computed using the estimates of Table 2.2, column (6).

Overall, the results suggest that employee utilization, as captured by the ratio of customer
inventory to staffing level, has a significant impact on sales. The effect appears to operate
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mainly by increasing conversion rates; the effect on basket size is not significant, suggesting
that employees do not play an active role in cross-selling efforts in this retail chain. The next
section shows how to use these empirical results to evaluate over and understaffing across
store and time block and how to allocate labor budgets across stores.

2.4 Evaluate Under and Over-Staffing
The estimates of the sales response to staffing levels and customer traffic can be used to
evaluate: (i) the optimal staffing level at each store and hour block; (ii) assess whether the
current number of employees at each store is over or understaffed.

An ideal staffing plan for a store would be to evaluate the number of employees for each
hour block, adding labor until the hourly cost exceeds its marginal profit contribution. If labor
schedules are fully flexible, in the extreme where workers can be hired for a single hour block,
then the problem is decoupled and each store/hour-block is solved separately. This solution
is unlikely to be feasible in practice, because it would not comply with labor regulation
which requires some stability of working schedules. Moreover, unbalanced working shifts are
unappealing for workers and may induce high turnover, which in the long run translates into
lower productivity (Williams et al. [2018]). Nevertheless, it serves as a baseline that provides
a first order evaluation of the labor budgets that should be allocated across stores. It also
provides an upper bound on the profit that could be achieved in a more realistic situation,
that is also useful to asses the economic cost of regulatory constraints and labor preferences
on the scheduling costs of a retail chain. A similar analysis is conducted by Lam et al. [1998]
to allocate labor.

Consider a store/time slot combination, with a traffic forecast T̂it and projected basket
value B̂it (which is independent of labor and traffic, as suggested by the empirical results of
section 2.3.3). Let Nit(T̂it, Eit) denote the expected number of transactions as a function of
the staffing level and the projected traffic. Define "Margin" as the contribution margin (as
a fraction of sales) and wt the salary of employees for hour block t. The optimal number of
employees in store/time block (i, t) solves:

max
Eit

Margin× B̂it ×Nit(T̂it, Eit)− wt × Eit (2.5)

Chuang et al. [2016] shows that the objective function is concave when the employee
capacity utilization function f(E, T ) = βT/E with positive β. In this case, the optimal
solution is to set staffing levels until the marginal contribution Margin × B̂it × dNit/dE
equals the hourly salary wt. For other specifications, including the one used to construct the
sales response function used in our application, this is not necessarily the case. Recall that
Figure 2.6 shows that for hour-blocks with high customer traffic, the revenue function is not
concave. Nevertheless, because the problem is decoupled by hour block, it is possible to do a
fast search to find the optimal staffing level. This can be done for any store and hour-block,
as long as a projection for traffic, basket value and the specification of Nit(·) are provided.
Estimates of Nit(·) and B̂ are obtained from the empirical models described in section 2.3.
Next, we discuss how to generate traffic projections.
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2.4.1 Forecasting Customer Traffic

Lam et al. [1998] develops a time series econometric model to make traffic projections based
on historical traffic data. We replicated this model at the hour-block level, using a logarithmic
transformation on traffic ln(Tit) and differencing with a one week lag (28 hour-block periods)
to account for the weekly seasonality in the data. Additional autoregressive and moving
average components were included to adjust for autocorrelation in the residuals. The resulting
model is defined by zit = ln(Tit), the one-week lag difference ∆it = zit − zit−28 and the time-
series model specified by:

∆it = µ+ αHoliday +
L∑
l

θl∆it−l + εit (2.6)

εit =
K∑
k

φkεit−k (2.7)

where µ is the mean of the differences variable capturing possible trends and Holiday is an
indicator for holidays. We estimated different specifications for the model separately for each
store using data from February 2016 to August 2016; the estimated coefficients of the model
for a representative store are reported in Table 2.5. The specification with 2 autoregressive
and one moving average term shows the best fit to the data according to the AIC and BIC
measures. This model was used to conduct an out-of-sample forecast for October 2016, shown
in Figure 2.7.

Figure 2.7 Traffic forecast accuracy. Out-of-sample traffic forecast vs. actual traffic for October
2016.
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Different specifications of the ARIMA model
AR(3) MA(2) AR(3) MA(1) AR(2) MA(1)

Holiday 0.107 0.108 0.106
(0.0697) (0.0695) (0.0684)

µ 0.0100 0.00998 0.0102
(0.0522) (0.0522) (0.0519)

ARMA
θ1 0.548 1.093*** 1.080***

(0.581) (0.0653) (0.0593)

θ2 0.494 -0.111* -0.131**
(0.591) (0.0537) (0.0458)

θ3 -0.115 -0.0293
(0.0643) (0.0435)

φ1 -0.273 -0.818*** -0.802***
(0.585) (0.0603) (0.0481)

φ2 -0.444
(0.449)

σ(ε) 0.394*** 0.394*** 0.394***
(0.00751) (0.00752) (0.00754)

N 808 808 800
AIC 803.3 802.3 800.8
BIC 840.8 835.1 828.9
Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.5 Estimates of the traffic forecast regression model.

2.5 Evaluating Ideal Staffing Levels
To provide some insights, we illustrate how the methodology can be used to compute the
ideal staffing level for the representative store, and compare this to the actual staffing to
evaluate whether the store is systematically over or understaffed for different hour-blocks of
the week. The model is also used to compute the profit loss due to sub-optimal staffing levels.

The top panel of Table 2.6 shows the average traffic of the representative store during the
period of June-August of 2016, for different hour-blocks. Margins are set at 55%, average
basket value at $16,600CLP (25 USD) and hourly salary at $1,250 CLP (2 USD) (based
at 10% above minimum wage in Chile). Using these parameters, we computed the optimal
staffing level for each hour-block, and compare it to the average staffing level used in the
store. The bottom panel of Table 2.6 shows this comparison, where the number on each cell
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is the average staffing level that was observed in the data and the number in parenthesis is
the difference with respect to the optimal staffing. A minus sign (-) represent over-staffed
hour blocks and a plus sign (+) the under-staffed.

According to the projected ideal staffing levels suggested by the model, Table 2.6 reveals
that the store is severely understaffed on Fridays and weekends after 3pm. On Saturday,
which exhibits high traffic in the 12-3pm hour block, understaffing is extended to that hour
block. Section 2.3 (Figure 2.3) revealed that actual staffing tends to be higher than planned
during weekend afternoon/evening, suggesting that store managers are working around the
schedule to compensate this understaffing. This accommodation is not enough, as suggested
by the comparison of the actual staffing and the ideal staffing for these hour blocks.

Table 2.6 also suggests that, during weekdays, the 12-3pm period is overstaffed. This
could explain why the actual labor during weekday 12-3pm hour block is lower than the
planned labor. Overstaffing implies that the workers are idle and therefore they can take a
longer lunch break or arrive late for the afternoon part-time shift.

What drives the mismatch between the actual staffing and the ideal staffing? Our con-
versation with retail managers suggest three underlying mechanisms. First, the economic
value of increasing staffing levels is not straightforward to quantify and is usually evaluated
in qualitative terms. Planned staffing levels are partially adjusted in response to predictable
patterns of customer traffic, but our analysis – which is based on a quantitative measure-
ment of the impact of staffing on revenues – reveals that this adjustment is insufficient.
Second, managers tend to set staffing levels based on projections of sales, not traffic. If
the stores are understaffed on weekends, there is sales potential that the managers over-look
and they continue to systematically understaff the stores week after week. Instead, if the
staffing requirements were based on traffic projections, planning can realize the unrealized
sales potential of understaffed periods and correctly adjust labor requirements to capture
this potential. This is the main reason why our company collaborator seeks to complement
their traffic counter services with a workforce planning system.

Third, the overstaffing observed during the weekdays is in part caused by labor regula-
tory restrictions. The retail labor sector has experienced numerous changes in recent years
which have restricted the use of flexible labor practices. Moreover, these changes have also
increased the complexity of the workforce scheduling task. Labor regulations in Chile require
a minimum number of hours per shift, a minimum of resting days during a week, a maximum
of Sundays that an employee can work during a six month period, among other restrictions.
With these constraints, the staffing problem cannot be decoupled to analyze each hour-block
independently. This may explain why managers are not able to properly staff stores during
low traffic periods. Motivated by this, the next section develops a mathematical program to
solve for the optimal staffing level, balancing labor operating costs with contribution margin
and complying with labor regulations.

50



Traffic Blocks
9-12 12-3 3-6 6-9

Monday 25 76 120 123
Tuesday 37 78 108 115
Wednesday 33 80 115 126
Thursday 32 82 124 141
Friday 36 98 162 196
Saturday 59 209 308 287
Sunday 32 140 238 227

Staffing Levels Blocks
9-12 12-3 3-6 6-9

Monday 1.6 [–0.6] 3.2 [–1.2] 3.2 [–0.2] 3.2 [–0.2]
Tuesday 1.8 [–0.8] 3.6 [–1.6] 3.3 [–0.3] 3.2 [–0.2]
Wednesday 1.6 [–0.6] 3.2 [–1.2] 3.4 [–0.4] 3.3 [–0.3]
Thursday 1.6 [–0.6] 3.2 [–1.2] 3.2 [–0.2] 3.1 [+0.9]
Friday 1.7 [–0.7] 3.2 [–0.2] 3.4 [+0.6] 3.5 [+2.5]
Saturday 2.5 [–1.5] 4.5 [+1.5] 4.7 [+2.3] 4.8 [+2.2]
Sunday 1.9 [–0.9] 3.4 [+0.6] 3.6 [+2.4] 3.8 [+2.2]

Table 2.6 Comparison of staffing levels. Actual staffing level versus optimal staffing level for a
representative store during June-August 2016. Store traffic is shown in the top panel. The bottom
panel shows the average staffing observed in the data, with the difference with the optimal staffing
in parenthesis. A minus sign (-) indicates overstaffing, a plus sign (+) indicates understaffing.

2.6 Workforce Scheduling Accounting for Labor Regula-
tion and Employee Preferences

The approach to optimize staffing developed in the previous section is unfeasible to implement
in practice. To generate a staffing plan that is feasible, we develop an integer linear program
to maximize store profit subject to constraints that capture regulatory restrictions and worker
preferences for working shifts. Our method is based on previous work in workforce scheduling;
Ernst et al. [2004] provides a comprehensive review of applications of workforce scheduling in
different application domains. The traditional modeling approach in workforce scheduling is
to solve for feasible schedules that comply with a pre-specified labor requirement; see Musliu
et al. [2002] for a review. For example, in the context of a call center, a first step is to
determine the minimum number of agents that are required to fulfill a certain service level
agreement (e.g. average waiting time); in a second step, the scheduling algorithm is used to
find a feasible shift schedule at minimum cost that fulfills the requirement.

However, in the retail context it is not clear how to specify the pre-specified labor require-
ment. In this context, Kabak et al. [2008] uses a variation of the model of Lam et al. [1998]
to first determine a labor requirement based on a cost-benefit analysis that trade-offs labor
costs with sales, similar to what is done in section 2.4. This labor requirement is then used
as an input for a scheduling problem that seeks to meet the labor requirement subject to
constraints. Although we could replicate the approach of Kabak et al. [2008], we found to
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be more efficient to skip the first step and directly solve a math programming formulation
that maximizes profit as the objective function, including revenues, margins and labor costs.
We show that the proposed formulation can be solved quickly, in the order of minutes, and
can therefore be used by a store manager to evaluate alternative workforce schedule plans
interacting with the decision support tool.

The first step in workforce scheduling is to define working shifts that are feasible to
implement. For this purpose, we define the set of possible shift types S, where each shift
type is indexed by s. In the context of this application, the retail industry in Chile uses three
types of shifts:

1. Full time (FT): Shift of five full days per week.
2. Part time, half-day shift (PT30): Typically implemented with a working shift combining

6 half days per week. The typical configuration for these type of shift are: (i) Three
full days, (ii) Two full days and 2 afternoons, (iii) One full day and four afternoons and
(iv) six afternoons.

3. Part time, full-day shift (PT10): Typically consist on working one full day per week.

These shift types have a minimum of half day, so it is reasonable to aggregate time blocks
into the “morning block” (9am-3pm) and the “evening” block (3-9pm). Each shift type has
a set of possible shift configurations, C(s), where each shift in the set is indexed by i and
specifies the time blocks assigned to the shift. Figure 2.9 provides some examples of shifts
for the different types. The set of feasible shifts depends on labor restrictions, employee
preferences and business policies.

To formulate the math programming formulation, it is useful to define the following pa-
rameters:

• Udtm: Expected sales in period t of day d with E = m workers attending the store. This
parameter is calculated directly from the estimates of the empirical model described in
section 2.3.
• Wis: Wages associated to shift i of type s.

• Aisdt :

{
1 Shift i of type s includes period t in day d
0 ∼

The decision variables are defined as:

• Xis: Number of shifts i of type s
• Zdt: Number of employees on period t and day d

• Ydtm :

{
1 Zdt = m
0 ∼

The objective function is given by:

maxMargin×
M∑
m=1

∑
t∈T

∑
d∈D

YdtmUdtm −
∑
s∈S

∑
i∈C(s)

XisWis (2.8)
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where M is the maximum number of employees that can be present in the store at any time,
T is the set of periods (morning / evening), D is the set of days (Mon-Sun), and Margin is
the contribution margin as a fraction of sales.

The following constraints link the decision variables:

∑
s∈S

∑
i∈I(s)

XisAisdt = Zdt ∀d ∈ D, t ∈ T (2.9)

N∑
n=1

n× Ydtn = Zdt ∀d ∈ D, t ∈ T (2.10)

N∑
n=1

Ydtn = 1 ∀d ∈ D, t ∈ T (2.11)

Retailers often want to limit the number of part-time employees and have a minimum of
full-time employees; define the parameters M ins and Maxs as the minimum and maximum
quantity of type s shifts to hire. Two constraints are added to allow limits on the shift types:

∑
i∈I(s)

Xis ≥M ins ∀s ∈ S (2.12)

∑
i∈I(s)

Xis ≤Maxs ∀s ∈ S (2.13)

Full-time employees typically prefer consecutive resting days in their schedule. Defining
the parameter DCi as indicator whether shift i has consecutive resting days, this requirement
can be incorporated in the model with the following linear constraint:

(1−DCi)Xis = 0 ∀i ∈ C(s) ∧ s ∈ SFT (2.14)

Another important regulation in the Chilean legislation for retail labor is a restriction in
the number of consecutive working Sundays for full-time employees. This constraint requires
a rotation of full-time employees on each store. Define SUNi as an indicator whether shift
i includes a Sunday. The rotation of full-time employees can be achieved when the number
of assigned shifts that work on Sunday is balanced with the same number of full-time shifts
that exclude Sunday. This requirement is equivalent to the following linear constraint:

∑
s∈SFT

∑
i∈C(s)

XisSUNi ≤
∑
s∈SFT

∑
i∈I(s)

Xis(1− SUNi) (2.15)
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The model was used to evaluate alternative scenarios with different sets of constraints,
to analyze how reducing flexibility in the schedules affects profits. The base scenario is the
ideal staffing level calculated in Section 2.4, where each hour block is optimized separately
with no constraints. This base case is an upper bound that can be compared with each of
the following scenarios which are solved by optimizing the objective (2.8) subject to different
sets of constraints:

• Scenario 1: three shift types FT, PT30 and PT30, with the constraints 2.9, 2.10, 2.11.
• Scenario 2: similar to scenario 1 with the additional constraint of no consecutive Sun-

days (equation 2.15) and consecutive resting days (equation 2.14).
• Scenario 3: similar to scenario 2 but without PT10 shifts.
• Scenario 4: similar to scenario 2 but without PT30 shifts.
• Scenario 5: similar to scenario 2 but only with full-time shifts.

Results of the optimization are summarized in Figure 2.8, where the profits account for
gross operating profits and labor costs, normalized to 100 for the base scenario. The profit
loss of scenario 1 – the feasible schedule with three types of shifts – reduces profits by 1%.
This is a relevant profit reduction for retail chains with a high fixed cost component in their
cost structure. The additional regulatory restrictions included in scenarios 2 and 3 have a
negligible effect on profits. Figure 2.9 illustrates the optimal solutions for scenarios 1 and
2. The optimal shift for scenario 1 assigns three employees to full-time shifts, working on
Sundays with consecutive resting days. This solution is not feasible in scenario 2 because of
the consecutive Sundays constraint (equation 2.15). To account for this constraint, the solu-
tion is adapted to have two rotating full-time shifts, one with free Sunday, and compensating
with an additional PT30 and PT10 shift.

Figure 2.8 Workforce schedule optimization results across different scenarios. The base case cor-
responds to the ideal schedule calculated by optimizing each hour block separately, an upper bound
for all scenarios. Profits are normalized to 100 for that scenario.

The last three bars in the chart of Figure 2.8 shows the impact of removing part-time
shifts. Eliminating PT10 shifts has a small impact, because the optimal solution in scenario
2 uses three such shifts which can be accommodated by an an extra PT30 shift. But remov-
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Figure 2.9 Optimal solution, model output. Feasible solution specifying the optimal working shifts
for scenarios 1 and 2. Shifts are grouped by shift type, FT corresponding to full-time shift. PT30
is 30 hrs. part-time shift and PT10 is for 10 hrs. Black cells indicates the working hours in the
corresponding shift, columns indicate day of the week and rows the Morning/Evening hours. The
“X=” in the top left of each table indicates the number of workers assigned to that shift.

ing the PT30 shifts is more costly, dropping profits by an additional 0.5%: this shifts are
valuable because they permit hiring part-time employees that work half-days, which is useful
to accommodate the peaks in traffic during the evening hours (recall that PT10 shifts are
required to work full days). The last scenario uses only full-time shifts, taking an extra drop
in profit, with an accumulated loss of more than 2% relative to the base case.

The analysis of scenarios is specific to traffic patterns of a store and to the institutional
regulation of the retail environment, and it is not always possible to generalize to different
conditions. Nevertheless, the analysis above illustrates how the solution provided by the
proposed decision support tool can be used to improve workforce planning and understand
the implications of imposing restrictions on the workforce schedule. We have developed a
prototype of this optimization tool, which can be operated interactively by a store manager
to evaluate alternative scenarios. The optimization was implemented in Julia (Bezanson
et al. [2017]) using Gurobi as an optimization package. We are currently working with our
industry partner to deploy a full-scaled version of this prototype which is planned to be
commercialized in 2019.

2.7 Conclusions
This practice-based research project develops a novel solution to build a decision support tool
for workforce planning in the retail sector. The research is conducted in collaboration with
a technology company that offers traffic counters and other technologies to monitor store
operations, with the objective of broadening the set of services that the company can offer to
its clients in Chile and Latin America. Workforce management is particularly challenging in
Latin American countries, which have been recently adding more restrictions through labor
regulations.
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The developed solution combines ideas from different research streams in Operations Man-
agement. It uses recent developments in empirical OM research to evaluate the impact of
staffing levels in sales. An important contribution in this domain is that we decompose the
impact of staffing into conversion and basket value, which is useful in the context of workforce
scheduling in order to measure this effect at a more granular level – in blocks of three hours –
versus the aggregated models used previously in the literature which cannot be used directly
to optimize working shifts. Other innovation is that we combine traffic information with
deviations from the planned scheduled, showing how these are useful to mitigate endogeneity
bias associated to managers staffing decisions.

We are currently working on the following improvements to the model and the decision
support tool:

• The models developed so far to set staffing levels are based on a deterministic opti-
mization problem. In reality, the uncertainty in the traffic forecast make the objec-
tive function stochastic. We plan to include this uncertainty into the model and use
simulation-based optimization to generate staffing levels. The evaluation of the pre-
scribed staffing levels is then calculated using simulation, to account for the impact of
uncertainty in customer traffic.
• In our analysis, we evaluated the impact of some regulatory constraints that have been

recently introduced in the Chilean labor legislation. We plan to evaluate the impact of
additional labor restrictions in Chile, as well as other regulatory constraints in other
countries. Many of the retail chains that operate in Chile also have presence in other
countries in the region and therefore it is of interest to show the applicability of this
labor planning tool with alternative labor regulations.
• In addition to labor laws, it is also important to account for employee preferences for

schedules. We are planning to conduct a survey about employee preferences, to identify
schedules that, from the employees perspective, are not desirable and should therefore
be removed from the set of feasible shifts.
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Chapter 3

Online Retailer

3.1 Introduction
For a customer of an online retailer, the shopping experience relates both to the physical
products offered by the retailer and the services that enable and facilitate the purchase.
Delivery is one of the most important service components for online retailers (Heim and
Sinha [2001]) and delivery speed and reliability can have a significant impact on the retailer’s
performance as shown by Fisher et al. [2016] and Cui et al. [2018] respectively. Thus, logistics
play a critical role for online vendors and can be a key competitive differentiator, so companies
are enhancing purchase delivery options Mottl [2018].

While attention has been given to the optimization of the order fulfillment process, like
the works by Xu et al. [2009] and Acimovic and Graves [2014] who develop decision support
models for real-time order fulfillment decisions, there is not much empirical evidence in the
literature on whether and the extent to which delivery quality matters to customers and
shapes their shopping decisions.

Theoretical models rely on the assumption that higher quality increases demand and
consumer satisfaction Kumar et al. [1997], though existing evidence is largely anecdotal rather
than quantitative. Otim and Grover [2006] studies consumer loyalty on web-based services
using survey data and concludes that post-purchase services positively influence consumer
loyalty. Recent work by Fisher et al. [2016] quantifies the impact of speed, a delivery quality
dimension, on demand while Cui et al. [2018] estimates the impact of both reliability and
speed.

Our work studies the relation between order fulfillment, specifically delivery speed, and
future customer behavior. It is similar in that sense to Rao et al. [2011]. Using one year of
comprehensive transactional data from a large online apparel retailer, we quantify the impact
of delivery quality over time on incidence and amount of future purchases, contributing to the
growing literature in the field (Rust and Huang [2014] and Caro et al. [2019]). We found that
retailer revenues can increase by 5.63% by improving delivery service quality. This increase
originates from improvements in purchase incidence (4.91%) and basket size (0.69%).

57



The rest of this chapter is organized as follows. Section 3.2 describes the empirical context
and the data used for this study. Section 3.3 presents the econometric formulation of customer
behavior. Section 3.4 presents the results of the econometric models of purchase incidence
and basket size. Section 3.5 uses the results from the empirical analysis to quantify the effect
of delivery quality profits. Finally Section 3.6 concludes the study with a summary of the
main results.

3.2 Empirical Setting
We obtained a full year of transactional data from a major online apparel retailer from India.
This information was collected through the detailed transactions of each sales ticket, allowing
us to compute detailed features of each transaction, such as: delivery time, discount, price
paid, basket composition, destination city for each order, date and time the order was placed,
processed and delivered, and a unique identifier for the customer. Our data also includes
information on whether the goods where sold by the retailer or by a third party vendor.
While in both cases the order is fulfilled by the online retailer, third party items are usually
just in time inventory, which could potentially extend the delivery time of orders containing
those items.

Our data comprises more than 7 million purchases by more than 2.4 million customers
that were delivered to almost ten thousand locations in India, although it is important to
note that 80% of all purchases where delivered to about a thousand different locations and
93% of orders to approximately 2, 000 locations, as can be seen in Figure 3.1. This suggests
that we have enough data to compute delivery time distributions for each location for a
subset of cities, which however cover the vast majority of purchases.

Figure 3.1 Distribution of deliveries per location. It’s possible to see that almost all purchases are
delivered to a relatively small subgroup of localities.

A detailed summary for the number of purchases made per client is presented in Table
3.1 and Figure 3.2. Most than half the customers made 1 or 2 purchases during the period
covered by the data, which reduces our sample by more than half since we are studying
future purchase behavior based on past experiences. On the other hand, some customers
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made numerous purchases, 5% of customers made more than 15 purchases during this 1 year
period, behavior we believe is more consistent with small retailers rather than household
clients. In addition, Figure 3.3 shows that most than 80% customers had their purchases
delivered to a single location.

Summary: Purchases per customer

Percentiles Summary
1% 1 99% 34 Max 1, 301
5% 1 95% 15 Avg 4.5
10% 1 90% 10 Mode 2
25% 1 75% 5 Min 1

Table 3.1 Summary statistics: Purchases per customer.

Figure 3.2 Purchases per customer. While almost 75% of active customers made 3 purchases or
less, a small percentage (∼ 1%) purchased in more than 20 occasions.

Figure 3.3 Locations per customer. More than 80% of customers ship to only one location.
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3.2.1 Delivery Time Distribution

Figure 3.4 shows the empirical distribution of delivery time, computed as the number of
days elapsed since the date the order is placed until the day it is delivered to the customer.
Delivery usually takes no longer than a week and it’s worth noting that only standard shipping
was available to customers, since the retailer didn’t offer any kind of expedited or premium
shipping option.

Figure 3.4 Delivery time. Distribution of delivery time, all locations and items.

Some items are procured just in time, typically those sold by third party vendors, while
others are kept as on hand inventory. This could impact delivery speed, so we obtained the
distribution of delivery times by supply type. Less than 5% of baskets had mix supply types,
so we computed delivery time distributions using orders containing only just in time items
and orders containing only on hand goods. It’s not surprising to see that orders containing on
hand items were delivered faster, around 2 days earlier, than orders for just in time procured
products, as can be seen in Figure 3.5.

Figure 3.5 Delivery time by supply type. Distribution of delivery time, all locations by item supply
type.

Shipping times could also vary by location and city characteristics. Figure 3.6 presents
delivery time distributions by city tier1. It’s clear from the figure that delivery time is shorter

1Tier 1 cities correspond to larger more populated areas than tier 2 cities, with tier 4 cities being smaller
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for larger cities than it is for smaller towns.

Figure 3.6 Delivery time by city tier. Distribution of delivery time, all items by city tier.

3.2.2 Delay Distribution

Another metric of delivery performance relates to promised delivery dates. At the time of
making a purchase, the retailer informs the customer of an estimated delivery date which
we’ll refer to as "promised date". Delivery delay can be computed as the difference between
delivery date and promised date – equation (3.1) – so delay takes negative values for orders
delivered earlier than anticipated.

delay = delivery date− promised date (3.1)

Figure 3.7 Delay. Distribution of delay in delivery, all locations and items.

and less populated zones.
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Figures 3.7, 3.8 and 3.9, replicate the analysis from the previous section for the delay
metric. We can see that more than 90% of orders arrived before the promised date, while
delays are observed for just under 6% of transactions. Customers experience more delays
with just in time (8%) than with on-hand items (5%), they also face more uncertainty in
delivery speed. A similar pattern is observed among city tiers, with bigger cities experiencing
less variability in shipping times and suffering delays less frequently than smaller towns.

Figure 3.8 Delay by supply type. Distribution of delay in delivery, all locations by item supply
type.

Figure 3.9 Delay by city tier. Distribution of delay in delivery , all items by city tier.

3.3 Model
Choosing which shipping and delivery options to make available to its customers requires us
to understand consumer preferences, not only what they value, but how much they value
it. Shipping and delivery is a post-purchase service that previous research has shown as
having an influence on customer loyalty (Otim and Grover [2006]), sales (Fisher et al. [2016];
Cui et al. [2018]), company performance and competitiveness (Weise [2018]). This research
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aims to quantify the effects of past delivery experiences on future shopping behavior in a
large online apparel retailer. Our work is similar to Rao et al. [2011] since we both study
order incidence and order size. Rao et al. [2011] uses a difference in difference approach in
a setting where a subset of customers experienced a one time a failure to deliver an order
within a previously promised time limit, while we model each customer’s propensity to make
a purchase during a series of discrete consecutive time periods. In that sense our model is
dynamic because it considers the outcome of every delivery experienced by consumers in the
past.

We follow an approach similar to Schweidel and Knox [2013] as we also model purchase
incidence separately from order size introducing a correlation between both models. Cus-
tomers’ purchase history is introduced as a state dependence (Rosen [1981]) in both the
purchase incidence and order size model, which are specified in detail in sections 3.3.1 and
3.3.2 respectively.

3.3.1 Purchase Incidence Model

We model customers’ purchase decisions as a discrete-time Bernoulli process over two week
periods with probability pit.2 We allow the purchase probability for customer i in period t
to vary over time based on seasonality, promotion depth and customers’ previous delivery
experiences:

pit = Φ

(
βloc(i) +Xtγ +

t−1∑
j=1

[
βexp
i hasDij + βd

i Dij + γbseBSEij

]
e−γmj

)
(3.2)

where Φ(·) is the cumulative distribution function of the standard normal distribution, βloc(i)
is a location-specific random effect and Xt is a vector of seasonal dummies and promotional
depth variables. Covariates hasDit and Dit represent whether customer i received a delivery
during period t and the quality of that delivery experience respectively (please refer to sec-
tion 3.4.1 for a detailed description of each variable). State dependence, which can capture
behavior changes due to past purchase behavior (Dubé et al. [2010]; Dubé et al. [2008]), is
introduced in the summation term through hasDit, which is also a proxy for a purchase being
made, since most orders are received in the same period they are placed. The summation
term accounts for customers’ delivery experiences prior to period t. BSEit accounts for the
existence of a big sales event at the time items delivered in period t were purchased. βexp

i

and βd
i are customer level random effects, while e−γm is a memory term allowing the impact

of delivery on next period shopping behavior to potentially decay over time. Since our model
is dynamic, care must be taken to ensure that the zero order heterogeneity is fully accounted
for in order to distinguish it from time dynamics. Heckman [1981] suggests that ignoring
heterogeneity could lead to a strong spurious state dependence, even when the actual choices
are not correlated over time. Similarly, a model that accounts for heterogeneity, but ignores
state dependence may overestimate the degree of heterogeneity (Keane [1997]).

2Our year long data is discretized in 26 biweekly periods since it is an interval long enough for most goods
to be delivered in the same period they are purchased, while providing sufficient observations per customer
without producing too many periods with no purchase.
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3.3.2 Amount Model

Like Schweidel and Knox [2013], we model basket size (amount spent) conditional on a
purchase being made in period t as a lognormal random variable with parameters µAit and σA
as specified in equation (3.3). Similarly to the purchase incidence model – equation (3.2) –
we allow basket size to vary over time due to seasonality, promotion depth and customers’
previous experiences. Models in equations (3.4) and (3.5) also account for previous purchase
amounts (Ait) and the number of periods since the last purchase (Tit). This last variable
allows for correlation between purchase incidence and basket size. A positive value for αT
indicates a customer will purchase a larger than expected amount after a larger than expected
span without making a purchase. The inclusion of time since last purchase as a covariate
enables the model to account for this compensating behavior, that if ignored can lead to
poorer predictive performance and customer overvaluation (Jen et al. [2009]).

ln(Ait) ∼ N(µAit , σ
A) (3.3)

µAit = αi +Xtαx + αTTit + αai Ai,τ(i,t) + αd
i Di,τ(i,t) + αbseBSEi,τ(i,t) (3.4)

The amount model in equation (3.5) allows the effect of delivery experience to potentially
decay over time. If this is the case this model should provide a better fit than the model in
equation (3.4).

µAit = αi +Xtαx + αTTit + αai Ai,τ(i,t) + αd
i

Di,τ(i,t)

Tit
+ αbseBSEi,τ(i,t) (3.5)

where τ(i, t) is the last period before t in which customer i made a purchase/received a
delivery. The state dependence term in equation (3.4) is different from that in equation (3.2)
because the purchase incidence model considers all past purchases, while the amount model
only considers the last purchase previous to the focal period. This also holds for the covariates
that account for past delivery experiences (Dit and BSEit). This difference is addressed in
detail in section 3.4.3.

3.4 Empirical Analysis
We fit the models in equations (3.2), (3.3) and (3.4) using a hierarchical Bayesian formulation
and MCMC estimation (Kruschke and Vanpaemel [2015], Gamerman and Lopes [2006] and
Smith and Roberts [1993]). Our goal is to quantify the impact of delivery quality – mainly
delivery speed – on future consumer behavior. We calibrate models using different specifica-
tions for delivery quality, and also estimate a model in which we don’t take into account the
impact of delivery quality on consumer behavior as a benchmark model.
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3.4.1 Covariates

The main covariate, which is the focus of our research, is delivery quality (Dit). To calculate
this covariate, we first compute the empirical distribution of delivery time conditional on
location and inventory system. Then, for a given percentile P we define a delivery to produce
a negative experience if it took more time to reach the customer than the P th percentile
of delivery time (conditional on location and inventory system). Dit then corresponds to
the fraction of deliveries that generated a negative experience among deliveries received by
customer i during period t. Since the value of Dit depends on P , from now on we’ll make
explicit this dependence using the notation DP

it . Other covariates included in our models are
specified below.

Xt : Vector containing a promotional depth variable and dummies for each quar-
ter. Promotional depth was computed as the average discount of every
purchase made during period t, using a different sample of customers than
the one used to estimate the model. It is re-scaled so it’s mean is equal to 0
and variance equal to 1.

Ait : Summation of the amount of all purchases made by customer i in period t.

DP
it : Proportion of orders delivered to customer i during period t which had a

delivery time greater than a threshold. Thresholds are specific to location
and supply type, i.e. they were computed using the data corresponding
to the delivery times for each location and supply type combination. Note
that supply type can be either just in time or on hand. Also note that this
covariate takes the value of 0 if the customer received no orders in the period.

BSEit : Proportion of items delivered to customer i during period t purchased during
a big sales event. A big sales event is defined as date in which the average
promotional discount is greater than a threshold. The threshold is computed
as the 70% percentile of the empirical distribution of average promotional
discount, using a different sample of customers. This variable takes a value
of 0 if the customer received no orders.

hasDit : Dummy variable equal to 1 if customer i received a delivery during period t,
and is equal to 0 otherwise. This variable is used to capture state dependence
in the purchase incidence model and when equal to 1, it often coincides with
a purchase being made during that period.

Tit : Number of periods (from t) since the last purchase for customer i.

3.4.2 Sample Selection

Our data allows us to construct a panel in which for a given customer we consider all periods
after her first purchase. This generates an unbalanced panel. Models were calibrated using
a sample of 500 customers randomly chosen among those who met the following criteria:
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• Having made a purchase in 6 or more periods, guaranteeing at least 5 observations per
customer. This criteria keeps 27.2% of transactions.
• Receive deliveries in only one location, which in turn receives at least 365 deliveries

in total. This allows us to estimate a location based random effect and to compute
delivery time distributions, while keeping 49.5% of the remaining transactions.
• Having made no more than 15 purchases during the year that comprises our data. The

goal of this criterion is to exclude small vendors from the sample. This excludes 16.7%
of remaining transactions.

It’s worth noting that 11.2% of transactions are left after excluding transactions of cus-
tomers who didn’t meet the aforementioned criteria. In addition, we only considered transac-
tions that constitute a new purchase occasion, thus excluding the ones labeled as exchanges
or returns.

3.4.3 Model Estimation Results

Models were fitted using MCMC estimation implemented in the programming language Stan
Carpenter et al. [2017] utilizing the NUTS sampler.

Purchase Incidence Model

The model in equation (3.2) is estimated as a Bayesian hierarchical model (Kim et al. [2002];
Manchanda et al. [1999]). Table 3.2 shows the Widely Applicable Information Criterion
(Gelman et al. [2014] and Watanabe [2010]) and Leave-One-Out cross validation for three
delivery quality covariate DP

it specifications and three distributional assumptions for the
delivery speed coefficient: an homogeneous specification in the first and fourth columns, a
normally distributed random effect in the second and fifth columns and a random effect that
is constrained to be negative3 in the third and sixth columns.

WAIC LOO

Random Effect Random Effect
P Homogeneous Normal Lognormal Homogeneous Normal Lognormal
50 8,609.6 8,618.4 8,609.7 8,610.8 8,620.7 8,611.7
70 8,609.6 8,616.8 8,611.7 8,610.8 8,618.5 8,613.5
90 8,623.9 8,628.5 8,618.6 8,625.6 8,630.4 8,619.9

No Delivery Quality No Delivery Quality
8,615.6 8,616.9

Table 3.2 Purchase incidence model selection. Model selection criteria for different delivery quality
variable specifications and distributional assumptions for its coefficient. Lower values are indicative
of a model that better fits the data. Last row corresponds to a model that doesn’t account for
delivery quality.

3For this purpose we model βP
i to be distributed as the negative of a lognormal random variable.
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Table 3.2 shows that specifications with a high threshold for qualifying a delivery experi-
ence as negative (P = 90) and/or a normal distributional prior for the delivery random effect
are outperformed by a model specification that doesn’t account for delivery quality. On the
other hand, lower thresholds produce models that better fit the data, suggesting longer than
average delivery times –conditional on location and inventory type– are perceived as low
quality service, and not just exceptionally long shipping times. Previous research suggests
customers value delivery quality (Cui et al. [2018]) and delivery speed in particular (Fisher
et al. [2016] and Otim and Grover [2006]), serving as theoretical support for constraining βd

i

to be negative, as is the case with the models listed as "Lognormal" in Table 3.2.

mean se mean sd 2.5% 5% 95% 97.5% neff R̂
βd -1.060 0.010 0.538 -2.386 -2.093 -0.383 -0.291 3119.1 1.001

µexp 1.918 0.015 0.785 0.845 0.941 3.427 3.888 2594.5 1.000
σexp 1.616 0.020 0.902 0.476 0.582 3.287 3.884 1938.1 1.000

µloc(i) -0.900 0.001 0.062 -1.021 -1.001 -0.797 -0.779 3754.2 1.000
σloc(i) 0.035 0.000 0.025 0.001 0.003 0.083 0.095 2713.2 1.000

γm 1.678 0.008 0.386 1.020 1.085 2.349 2.468 2368.3 1.000
γbse -0.089 0.004 0.381 -0.851 -0.689 0.527 0.715 7195.3 1.000
γdiscount 0.089 0.000 0.016 0.057 0.062 0.115 0.121 10326.1 1.000
γautumn -0.126 0.001 0.067 -0.254 -0.237 -0.016 0.005 4085.6 1.000
γwinter -0.017 0.001 0.064 -0.145 -0.123 0.088 0.108 4185.7 1.000
γspring -0.145 0.001 0.065 -0.272 -0.253 -0.039 -0.020 3882.7 1.000

Table 3.3 Estimation results, purchase incidence model "HE". Model in equation (3.2), homo-
geneous coefficient for delivery variable. Model was calibrated using MCMC, 1,500 post warm-up
iterations, 4 chains, P = 50.

mean se mean sd 2.5% 5% 95% 97.5% neff R̂
µd -0.774 0.020 0.866 -2.827 -2.336 0.385 0.572 1844.9 1.002
σd 1.142 0.034 0.774 0.051 0.105 2.577 2.954 514.2 1.005

µexp 1.849 0.019 0.788 0.820 0.903 3.419 3.822 1641.5 1.004
σexp 1.482 0.024 0.868 0.408 0.499 3.217 3.740 1320.7 1.003

µloc(i) -0.899 0.002 0.062 -1.021 -1.000 -0.796 -0.777 1601.1 1.000
σloc(i) 0.036 0.001 0.026 0.002 0.003 0.085 0.097 1458.0 1.002

γm 1.639 0.010 0.392 0.984 1.054 2.360 2.487 1621.9 1.003
γbse -0.106 0.005 0.364 -0.841 -0.678 0.502 0.667 4393.1 1.000
γdiscount 0.088 0.000 0.017 0.055 0.060 0.116 0.121 6147.0 1.000
γautumn -0.128 0.002 0.066 -0.257 -0.237 -0.019 -0.001 1739.5 1.000
γwinter -0.018 0.002 0.064 -0.143 -0.122 0.088 0.110 1720.9 1.001
γspring -0.147 0.002 0.066 -0.274 -0.254 -0.038 -0.015 1695.9 1.000

Table 3.4 Estimation results, purchase incidence model "RE". Model in equation (3.2), random
effect for delivery variable, constrained to be negative. Model was calibrated using MCMC, 1,500
post warm-up iterations, 4 chains, P = 50.
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Tables 3.3 and 3.4 present estimation results for both the homogeneous (HE) and negative
lognormal random effects model (RE) which are the models that better fit the data. Priors
for all model parameters are detailed in Table 3.10 in Appendix A. We chose delivery quality
variable thresholds as defined by P = 50, since it’s the specification that best fits the data. β̂d

is negative and significant above 95%, which is consistent with previous research and supports
the negative prior used for the RE model. Since the prior is a negative lognormal, estimated
hyper-parameters µ̂d and σ̂d produce a distribution with mean −0.885 and standard deviation
1.450 for βd

i , which is consistent with the magnitude and sign of β̂d in the HE model. Both
model specifications produce similar values for the rest of the estimated parameters. As
expected, γdiscount and γm are positive so greater discounts increase purchase incidence and
the impact of past experiences decrease over time. The lognormal RE model also suggest
an economically significant degree of heterogeneity among consumers in their reactions to
delivery speed (or lack thereof). Figure 3.11 in the Appendix D shows estimated distributions
for relevant parameters. The plots presented in the figure suggests that parameter estimation
has converged after 6,000 post warm-up iterations considering all 4 chains. Although not
reported, model specifications with P = 70 produce similar results to those from specifications
with P = 50.

We also explored different specifications for delivery quality such as the gap between actual
delivery and expected delivery date4, a binary indicator on whether the shipment is delayed
and absolute delivery time. We found no meaningful results using those alternate specifica-
tions. This is consistent with customers relying more on their past experience than retailer
information regarding service quality expectation, which is documented in the literature, Ofir
and Simonson [2007] results show that pre-purchase expectations are indistinguishable from
evaluations of the store’s past performance.

Amount Model

We first attempted a similar approach to account for customers’ past history with the retailer
in modeling basket size –measured in amount spent– according to equations (3.3) and (3.6).
Covariates are the same as in equation (3.4) and e−αm modulates the impact of customer
history on next period’s shopping behavior as e−γm does in equation (3.2).

µAit = αi +Xtαx + αTTit +
t−1∑
j=1

[
αai Aij + αd

i Dij + αbseBSEij

]
e−αmj (3.6)

The model was estimated using MCMC, with random effect coefficients for αa, αi and αd.
Results for P = 70 are presented in Table 3.5, with fit criteria statistics WAIC = 4, 077.6
and LOO = 4, 089.4. The estimated value of α̂m = 16.3 suggests that previous history might
not have a strong effect on amount spent once the decision to make a purchase is made.
Even though the mean and standard deviation for αd are −5.679 and 34.256 respectively5

those values are modulated by e−αm rendering the effect of the summation term on basket
size minimal. The fact that this model implies the impact of history declines so rapidly over
time, led us to consider a model which only accounts for the last purchase/delivery experience,

4Expected delivery date is informed to the customer at the time of purchase.
5αd was estimated using a negative lognormal prior.
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mean se mean sd 2.5% 5% 95% 97.5% neff R̂
µi 7.088 0.002 0.067 6.959 6.978 7.199 7.216 1786.0 1.001
σi 0.343 0.001 0.029 0.287 0.295 0.391 0.399 1444.2 1.002

µa 4.349 0.183 9.314 -15.629 -12.266 18.911 21.647 2577.0 1.000
σa 20.400 2.660 138.409 0.274 0.504 52.545 97.712 2707.9 1.001

µd -0.031 0.027 1.967 -3.915 -3.334 3.305 3.923 5234.9 1.000
σd 1.918 0.035 1.688 0.061 0.113 5.201 6.146 2284.6 1.001

αm 16.279 0.119 4.348 11.408 11.807 25.114 28.090 1330.5 1.001

αT -0.011 0.000 0.006 -0.022 -0.020 -0.001 0.002 2832.4 1.000
αbse -0.003 0.138 9.811 -19.152 -16.344 16.141 19.419 5048.9 1.000
αdiscount 0.044 0.000 0.020 0.006 0.012 0.077 0.083 3518.8 1.001
αautumn 0.051 0.002 0.074 -0.091 -0.069 0.172 0.195 2068.0 1.001
αwinter 0.049 0.002 0.070 -0.094 -0.068 0.163 0.184 1978.1 1.001
αspring 0.112 0.002 0.072 -0.034 -0.009 0.232 0.255 2146.0 1.002

σA 0.707 0.000 0.015 0.678 0.683 0.732 0.738 2439.3 1.000

Table 3.5 Estimation results, basket size model "RE+T". Model in equations (3.3) and (3.6),
random effect for delivery variable, constrained to be negative. Model was calibrated using MCMC,
1,500 post warm-up iterations, 4 chains, P = 70.

which is the model presented in equation 3.4 in section 3.3.2. Since we are considering only
one period of history for each observation, we will omit the modulating factor from the
model, assuming the last experience will have a lasting effect in customers choice of basket
size. If past delivery history indeed has a negligible effect on customers choice, we would
expect an estimated distribution for αd heavily skewed towards zero. Table 3.6 shows the
WAIC for three delivery quality covariate DP

it specifications and three model configurations
for the delivery speed and time since last purchase covariates: an homogeneous specification
for both coefficients in the first and fourth columns (HE+T), a random effect for delivery and
an homogeneous effect for T in the second and fifth columns (RE+T) and a random effect for
a delivery covariate defined as Dit/Tit and an homogeneous effect for T in the third and sixth
columns (RE/T), this is the model defined by equations (3.3) and (3.5). Both models use a
negative lognormal prior for the delivery random effect, other priors are normally distributed
(3.11 in Appendix B).

Best fitting models are RE/T, which corresponds to equation (3.5), with P = 70 and
the specification that accounts for inter-purchase time but omits delivery speed (ND-T).
This suggests that the effect of past delivery experiences does decay over time, although this
specification fits the data much better than the one defined by equation (3.6). Results for
model specifications ND-T and RE/T are presented in Tables 3.7 and 3.8. In both settings
there is not much heterogeneity in the intercept and previous basket size coefficients. Discount
coefficient is positive and significant at 95%, meaning that promotions increase basket size.
αT is negative and statistically significant, suggesting that longer than usual inter-purchase
times also reduce spending in the retailer’s website, which may indicate that customers may
be substituting some goods and purchasing from another vendor. This values are robust
and remain virtually unchanged among all model specifications tested. Estimated values
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WAIC LOO

Random Effect Random Effect
P HE+T RE+T RE/T HE+T RE+T RE/T
50 4,020.9 4,021.3 4,026.0 4,024.2 4,026.9 4,028.0
70 4,021.4 4,020.9 4,019.1 4,024.2 4,023.5 4,022.8
90 4,022.2 4,021.2 4,019.3 4,024.2 4,025.5 4,024.5

No Delivery Quality No Delivery Quality
4,021.6 4,023.4

No Delivery Quality + T No Delivery Quality + T
4,019.4 4,021.2

Table 3.6 Basket size model selection. Model selection criteria for different delivery quality variable
and model specifications, lower values are indicative of a model that better fits the data. Last rows
correspond to models that doesn’t account for delivery quality.

µ̂d and σ̂d in Table 3.8 produces a negative lognormal distribution with mean −0.000 and
standard deviation 0.001, strongly hinting at the ND-T specification as the preferred one.
Figure 3.12 in the Appendix E shows estimated distributions for relevant parameters. The
plotted graphs in the figure suggest that parameter estimation has converged after 20,000
post warm-up iterations considering all 4 chains. We also calibrated the RE/T model with
P = 50, obtaining similar results for all coefficients, in particular the biggest difference, as
expected, is in the distribution of the delivery random coefficients, with an estimated mean
of −0.001 and standard deviation of 0.009.

mean se mean sd 2.5% 5% 95% 97.5% neff R̂
µi 7.011 0.001 0.071 6.871 6.893 7.128 7.152 3375.2 1.001
σi 0.176 0.001 0.041 0.089 0.106 0.238 0.251 1642.7 1.006

µa 0.00007 0.000 0.000 0.00003 0.00004 0.0001 0.0001 5703.5 1.002
σa 0.00002 0.000 0.000 0.00000 0.00000 0.00005 0.00006 1755.6 1.003

αT -0.011 0.000 0.006 -0.022 -0.020 -0.002 0.000 14626.1 1.000
αbse -0.075 0.000 0.039 -0.153 -0.140 -0.010 0.003 10584.8 1.000
αdiscount 0.043 0.000 0.020 0.004 0.010 0.075 0.082 10276.2 1.001
αautumn 0.069 0.001 0.076 -0.080 -0.056 0.194 0.217 3614.7 1.001
αwinter 0.047 0.001 0.071 -0.095 -0.071 0.163 0.185 3420.1 1.000
αspring 0.119 0.001 0.073 -0.027 -0.004 0.240 0.261 3454.0 1.000

σA 0.749 0.000 0.015 0.721 0.726 0.774 0.779 4222.3 1.002

Table 3.7 Estimation results, basket size model "ND-T". Model in equations (3.3) and (3.4),
delivery variable coefficient constrained to be zero. Model was calibrated using MCMC, 5,000 post
warm-up iterations, 4 chains.
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mean se mean sd 2.5% 5% 95% 97.5% neff R̂
µi 7.013 0.001 0.071 6.873 6.895 7.130 7.152 2842.5 1.002
σi 0.177 0.001 0.041 0.089 0.107 0.239 0.251 1517.3 1.004

µa 0.00008 0.000 0.000 0.00002 0.00003 0.00011 0.00011 5966.1 1.000
σa 0.00002 0.000 0.000 0.00000 0.00001 0.00006 0.00006 1429.8 1.004

µd -12.148 0.133 6.046 -25.825 -23.422 -3.837 -3.191 2080.8 1.003
σd 2.315 0.035 1.851 0.094 0.183 5.945 6.872 2779.2 1.001

αT -0.011 0.000 0.006 -0.022 -0.020 -0.002 -0.000 12780.4 1.000
αbse -0.075 0.000 0.040 -0.153 -0.140 -0.008 0.004 10173.4 1.000
αdiscount 0.043 0.000 0.019 0.005 0.011 0.075 0.081 8695.6 1.001
αautumn 0.068 0.001 0.075 -0.079 -0.056 0.192 0.217 3056.0 1.002
αwinter 0.046 0.001 0.070 -0.092 -0.070 0.161 0.184 2970.2 1.002
αspring 0.117 0.001 0.072 -0.023 -0.000 0.235 0.257 2981.1 1.002

σA 0.749 0.000 0.015 0.721 0.725 0.773 0.778 4316.4 1.001

Table 3.8 Estimation results, basket size model "RE/T". Model in equations (3.3) and (3.4),
random effect for delivery variable, constrained to be negative. Model was calibrated using MCMC,
5,000 post warm-up iterations, 4 chains, P = 70.

3.5 Quantification of Delivery Effect
We have found that negative delivery experiences, particularly when a delivery is in the top
30 or 50 percentile of larger delivery times (adjusted by location and inventory type), produce
an adverse effect on the retailer performance by discouraging customers to purchase again.
While we didn’t find strong evidence of a direct impact of delivery quality on basket size,
delivery performance can impact amount spent through purchase incidence (section 3.4.3).

In order to quantify the effect of delivery on both purchase incidence and basket size,
we simulated four scenarios: i) 0%, a scenario in which every delivery experience is positive
(D = 0); ii) 30%, a scenario in which the delivery outcome is simulated with a 30% rate of
negative experiences; iii) 50%, a scenario in which the delivery outcome is simulated with a
50% rate of negative experiences; iv) 100%, a scenario in which every delivery experience is
negative (D = 1). Each scenario was analyzed based on the estimated parameters of the HE
model for purchase incidence (Table 3.3) and RE/T model for basket size (Table 3.8) using
P = 70 (the simulation algorithm can be found in Appendix C).

Results are presented in Table 3.9 and Figure 3.10. Note that the bottom panel of the
Table 3.9 and Figure 3.10 compare the 0%, 30% and 100% scenarios to a base scenario (50%).
From this analysis we conclude that turning all delivery experiences to positive ones can
increase revenues by 5.63% relative to a scenario in which about half of delivery experiences
are satisfactory. On the other hand, a 4.55% drop in revenues is predicted if delivery speed
is completely neglected. The impact of delivery on purchase incidence can be up to 4.91%
relative to the 50% base scenario, which is much larger than the effect on purchase amount
(up to 0.69%).
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Negative Delivery Rate
0% 30% 50% 100%

Purchase probability 0.1923 0.1867 0.1833 0.1754

Purchase amount 1,732.28 1,725.36 1,720.42 1,716.02

Impact of delivery on performance
(Base scenario with 50% negative delivery rate)

Purchase probability 4.91% 1.85% -4.31%

Purchase amount 0.69% 0.29% -0.26%

Combined effect 5.63% 2.15% -4.55%

Table 3.9 Quantification, simulation results. Simulated impact of delivery on the retailer perfor-
mance. Simulated scenarios corresponds to: i) 0%, a scenario in which every delivery experience
is positive (D = 0); ii) 30%, a scenario in which the delivery outcome is simulated with a 30%
rate of negative experiences; iii) 50%, a scenario in which the delivery outcome is simulated with a
50% rate of negative experiences; iv) 100%, a scenario in which every delivery experience is nega-
tive (D = 1). Simulated values where computed using estimated parameters of the HE model for
purchase incidence (Table 3.3) and RE/T model for basket size (Table 3.8).

Figure 3.10 Quantification, impact of delivery quality. Effect of delivery quality on the retailer
performance relative to a scenario in which half of the delivery instances produce a negative delivery
experience.

3.6 Conclusions
We studied the relationship between service quality in the context of order fulfillment, specif-
ically delivery speed, and future customer behavior. We focused on two aspects of future
customer behavior: i) purchase incidence, and ii) purchase amount. We modeled purchase
incidence in a given period as a hierarchical probit model with state dependence accounting
for previous purchases, and found that negative delivery experiences produce an adverse ef-
fect on the retailer performance by discouraging customers to purchase again. We also found
a small degree of heterogeneity in customers’ future reactions to delivery quality service.
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While we didn’t find evidence of a direct impact of delivery performance on basket size,
delivery performance can impact amount spent through other mechanisms, particularly pur-
chase incidence. Our data suggests that longer than usual inter-purchase times can lead
to smaller baskets, which is consistent with customers switching to other vendors to acquire
products that otherwise would have been sourced from the retailer. Improving delivery speed
can yield a 5.63% increase in revenues if all customers are satisfied with their order’s fulfill-
ment, steaming from a 4.91% increase in purchase incidence and a 0.69% increase in basket
size.
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Appendices

Appendix A: Purchase Incidence Model Priors

Parameters Hyper-parameters

βd ∼ N(0, 22)

βd
i ∼ -lognormal(µd, σ

2
d) µd ∼ N(0, 22)

σd ∼cauchy(0, 22)

βexp
i ∼ N(µexp, σ

2
exp) µexp ∼ N(0, 22)

σexp ∼cauchy(0, 22)

βloc(i) ∼ N(µloc, σ
2
loc) µloc ∼ N(0, 22)

σloc ∼cauchy(0, 22)

γ ∼ N(0, 22)
γbse ∼ N(0, 22)
γm ∼ N(0, 22)

Table 3.10 Priors: Purchase incidence model. βd is the homogeneous parameter for the "HE"
model estimated in Table 3.3, while βdi is the negative lognormal random effect in the "RE" model
estimated in Table 3.4. σ hyper-parameters use a cauchy prior truncated at zero, to ensure strictly
positive values.

Appendix B: Basket Size Model Priors

Parameters Hyper-parameters

αci ∼ N(µc, σ
2
c ) µc ∼ N(0, 102)

σc ∼cauchy(0, 102)

αai ∼ N(µa, σ
2
a) µa ∼ N(0, 102)

σa ∼cauchy(0, 102)

αd
i ∼ -lognormal(µd, σ

2
d) µd ∼ N(0, 22)

σd ∼cauchy(0, 22)

αm ∼ N(0, 102)

αT ∼ N(0, 102)
αbse ∼ N(0, 102)
αx ∼ N(0, 102)

σA ∼cauchy(0, 102)

Table 3.11 Priors: Basket size model. σ parameters/hyper-parameters use a cauchy prior truncated
at zero, to ensure strictly positive values.
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Appendix C: Simulation Algorithm

Algorithm 1: Simulation of shopping behaviour when all delivery experiences are
positive
1 rD(negRate) := (negRate > Uniform())
2 for world = 1 : nWorlds do // loop through model parameter values

3 pModel = Uniform(1, pIter × pChains)
4 aModel = Uniform(1, aIter × aChains)

5 for traj = 1 : nTrajectories do // simulate random variable realizations

6 row = 0

7 for i = 1 : N do // loop through customers

8 Update D = rD(negRate), BSE, hasD = 1, A = A0 and TSLP = 1

9 for t = FirstPeriod(i):LastPeriod(i) do // loop through periods

10 P = Φ(fp(D,BS, hasD,X, β(pModel)))

11 if Uniform(0,1) < P then // purchase occurs

12 µA = fA(D,BS,A, TSLP,X, β(aModel))
13 logA = µA + σA(aModel)×N(0,1)
14 A = exp(logA)
15 Update D = rD(negRate), BSE = avgDiscountt >Threshold,

hasD = 1, TSLP = 1

16 else // no purchase occurs
17 A = 0
18 Update D = rD(negRate), BSE = 0, hasD = 0, TSLP += 1

19 end if

20 row += 1

21 end for
22 end for
23 end for
24 end for
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Appendix D: Estimated Distributions – Purchase Incidence

Figure 3.11 Estimated distributions, purchase incidence lognormal RE model.
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Appendix E: Estimated Distributions – Basket Size

Figure 3.12 Estimated distributions, basket size RE/T model.
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Conclusions

The three chapters that comprise this work address topics in management science deeply
related to quality service. Chapters 1 and 3 address service quality through waiting time and
quantify its effect on the online platform/retailer’s revenue through a mechanism modulated
by service quality. Chapters 1 and 2 tackle questions regarding personnel management ac-
counting for the fundamental relation between human resources and customers. Studies in
all three chapters found a statistical and economically significant effect of the quality of the
service provided on business performance.

The work presented in chapter 1 shows the importance of empirically measuring the trade-
off faced by the online platform when managing labor between increasing speed of service and
providing a sufficiently attractive workload to its workers. For the outbound call center under
study, we found that customers are indeed sensitive to the time elapsed between their visit
to the platform’s website and when they are reached by a platform agent. In particular, the
probability that a customer answers a phone call from the platform drops from 62% to 52%,
as this elapsed time increases from 3 to 20 minutes. In addition, conditional on successfully
reaching a customer, the probability that a customer will purchase one of the insurance
policies drops from 6% to 4% as the elapsed time increases from 5 to 90 minutes. Considering
the role of agents, we also found that heterogeneity in worker productivity is relevant, since
a 7.7% increase in utilization translates into a 0.9% to 3.6% increase in conversion rate due
to higher retention of more skilled agents under medium traffic conditions.

Chapter 2 presents a practice-based research project that develops a novel solution to
build a decision support tool for workforce planning in the retail sector. The developed
solution combines ideas from different research streams in Operations Management. It uses
recent developments in empirical OM research to evaluate the impact of staffing levels in
sales. An important contribution in this domain is that decomposes the impact of staffing
into conversion and basket value, which is useful in the context of workforce scheduling in
order to measure this effect at a more granular level – in blocks of three hours – versus the
aggregated models used previously in the literature which cannot be used directly to optimize
working shifts. Other innovation is that we combine traffic information with deviations from
the planned scheduled, showing how these are useful to mitigate endogeneity bias associated
to managers staffing decisions. This kind of research would also be useful to economically
evaluate the impact of labor policy on retail industry. The empirical results reveal a non-
linear effect of traffic and staffing levels on sales. This effect was decomposed into conversion
and basket value and found that most of the effect is through the former. The magnitude of
the effect is comparable to previous results in the literature: increasing labor in under-staffed
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stores can increase sales in the order of 2% − 5% (depending on the level of traffic of the
store).

The study in chapter 3 investigates the relation between order fulfillment, specifically
delivery speed, and future customer behavior. The work is focused on two aspects of future
customer behaviour: i) purchase incidence, and ii) purchase amount. Purchase incidence
was modeled as a hierarchical probit model with state dependence accounting for previous
purchases, and found that negative delivery experiences produce an adverse effect on the
retailer performance by discouraging customers to purchase again. We also found a small
degree of heterogeneity in customers’ future reactions to delivery quality service. While we
didn’t find evidence of a direct impact of delivery quality on basket size, delivery performance
can impact amount spent through other mechanisms, particularly inter-purchase time. Our
data suggests that longer than usual inter-purchase times can lead to smaller baskets, which
is consistent with customers switching to other vendors to acquire products that otherwise
would have been sourced from the retailer. Improving delivery speed can yield a 5.63%
increase in revenues if all customers are satisfied with their order’s fulfillment, stemming
from a 4.91% increase in purchase incidence and a 0.69% increase in basket size.
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