
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

CONTRIBUTIONS TO BAYESIAN MACHINE LEARNING VIA TRANSPORT MAPS

TESIS PARA OPTAR AL GRADO DE DOCTOR EN
CIENCIAS DE LA INGENIERÍA, MENCIÓN MODELACIÓN MATEMÁTICA

GONZALO ANDRÉS RÍOS DÍAZ

PROFESOR GUÍA:
JOAQUÍN FONTBONA TORRES

PROFESOR GUÍA 2:
FELIPE TOBAR HENRÍQUEZ

MIEMBROS DE LA COMISIÓN:
ALEJANDRO JOFRÉ CÁCERES
JAIME SAN MARTÍN ARISTEGUI

ELSA CAZELLES

Este trabajo ha sido parcialmente financiado por CMM Conicyt PIA AFB170001 y
Conicyt-PCHA Doctorado Nacional 2016-21161789

SANTIAGO DE CHILE
2020





ABSTRACT OF THE TESIS TO QUALIFY TO THE DEGREE OF
DOCTOR OF SCIENCE IN ENGINEERING, MENTION MATHEMATICAL MODELING
BY: GONZALO ANDRÉS RÍOS DÍAZ
DATE: 2020
GUIDES: JOAQUÍN FONTBONA TORRES AND FELIPE TOBAR HENRÍQUEZ

CONTRIBUTIONS TO BAYESIAN MACHINE LEARNING VIA TRANSPORT MAPS

The uncertainty is intrinsic in machine learning since it is present in data, models, parameters,
and prediction. The Bayesian approach to machine learning considers all the uncertainty
under the same point of view, and thanks to Bayes law, it applies the probabilistic reasoning
on all levels, including the inference of the parameters of statistical models. In this work, we
develop two lines of research, using results of transport maps on two Bayesian contexts, each of
them under a unifying approach of previous works from the literature. After an introduction
to the Bayesian paradigm for modelling, the first part of this work reviews Gaussian processes
(GP), to then propose generalisations of these Bayesian non-parametric models for regression.
The second part focuses on the study of novel estimators and practical methods for training
models from data. We develop both topics in a fundamental way, in the sense that we present
general models and techniques that can be applied, potentially, in any context of natural
science, social science or engineering. In each chapter, we provide illustrative numerical
examples, using synthetic and real-world datasets, in order to experimentally validate the
proposed models and methods, to finally confirm their applicability, accuracy and robustness.

On the first half of this thesis, we introduce GPs, non-parametric prior distributions over
functions, used as generative models with appealing modelling properties for Bayesian inference:
they can model non-linear relationships with noisy observations, have closed-form expressions
for training and inference, and are governed by interpretable hyperparameters. However, GP
models rely on Gaussianity, an assumption that is not true in several real-world scenarios, e.g.,
when observations are bounded or have extreme-value dependencies, a natural phenomenon
in physics, finance and social sciences. First, to model non-Gaussian data, we propose the
compositionally-warped GP, a computationally efficient non-Gaussian generative model. After
that, we extend this model via different layers based on transport maps, which allows us to
isolate marginals, correlations and copula of the induced stochastic process. Our proposal
encompasses GPs, warped GPs, Student-t processes and other models under a single unified
approach. We also provide analytical expressions and algorithms for training and inference of
the proposed models in the regression problem.

On the second half, we introduce a novel paradigm for Bayesian learning based on optimal
transport theory. Namely, we propose to use the Wasserstein barycenter of the posterior
law on models as model selection criterion, thus introducing an alternative to classical
choices like maximum a posteriori estimator or Bayesian model average. We exhibit general
conditions granting the existence and statistical consistency of this estimator, discuss some of
its broad and specific properties, and provide insight into its theoretical advantages. Finally,
we introduce a novel method which is ideally suited for the computation of our estimator,
explicitly presenting its implementation for expressive families of models. This method
corresponds to a stochastic gradient descent algorithm in the Wasserstein space, so it is of
general interest and applicability for the computation of populations Wasserstein barycenters.
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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
DOCTORADO EN CIENCIAS DE LA INGENIERÍA, MENCIÓN MODELACIÓN MATEMÁTICA
POR: GONZALO ANDRÉS RÍOS DÍAZ
FECHA: 2020
PROF. GUÍA: JOAQUÍN FONTBONA TORRES Y FELIPE TOBAR HENRÍQUEZ

CONTRIBUTIONS TO BAYESIAN MACHINE LEARNING VIA TRANSPORT MAPS

La incertidumbre es intrínseca en el aprendizaje automático ya que está presente en los
datos, modelos, parámetros y predicciones. El enfoque Bayesiano del aprendizaje automático
considera toda la incertidumbre bajo un mismo punto de vista y, gracias a la ley de Bayes, aplica
el razonamiento probabilístico en todos los niveles, incluida la inferencia de los parámetros de
los modelos estadísticos. En este trabajo desarrollamos dos líneas de investigación, utilizando
resultados de mapas de transporte en dos contextos Bayesianos, cada uno de ellos bajo un
enfoque unificador de trabajos anteriores en la literatura. Después de una introducción al
paradigma Bayesiano para el modelado, la primera parte de este trabajo revisa los procesos
Gaussianos (GP), para luego proponer generalizaciones de estos modelos Bayesianos no
paramétricos de regresión. La segunda parte se centra en el estudio de estimadores novedosos
y métodos prácticos para entrenar modelos a partir de datos. Desarrollamos ambos temas
de manera fundamental, en el sentido de que presentamos modelos y técnicas generales que
pueden aplicarse, potencialmente, en cualquier contexto de ciencias naturales, ciencias sociales
o ingeniería. En cada capítulo proporcionamos ejemplos numéricos ilustrativos, utilizando
conjuntos de datos sintéticos y del mundo real, para validar experimentalmente los modelos y
métodos propuestos, para finalmente confirmar su aplicabilidad, precisión y robustez.

En la primera mitad de esta tesis, presentamos GP, distribuciones a priori no paramétricas
sobre funciones, utilizadas como modelos generativos con propiedades de modelado atractivas
para la inferencia Bayesiana: pueden modelar relaciones no lineales con observaciones ruidosas,
tienen expresiones de forma cerrada para el entrenamiento e inferencia, y se rigen por
hiperparámetros interpretables. Sin embargo, los GP se basan en la Gaussianidad, una
suposición que no es cierta en varios escenarios del mundo real, por ejemplo, cuando las
observaciones están limitadas o tienen dependencias de valor extremo, un fenómeno natural en
física, finanzas y ciencias sociales. Primero, para modelar datos no Gaussianos, proponemos el
compositionally-warped GP, un modelo generativo no Gaussiano computacionalmente eficiente.
Después de eso, extendemos este modelo a través de diferentes capas basadas en mapas de
transporte, lo que nos permite aislar marginales, correlaciones y cópulas del proceso estocástico
modelado. Nuestra propuesta abarca GP, warped GP, procesos de Student-t y otros modelos
bajo un único enfoque unificado. También proporcionamos expresiones analíticas y algoritmos
para el entrenamiento e inferencia de los modelos de regresión propuestos.

En la segunda mitad, presentamos un paradigma novedoso para el aprendizaje Bayesiano
basado en la teoría de transporte óptimo. Es decir, proponemos utilizar el baricentro de
Wasserstein de la ley posterior sobre modelos como criterio de selección, introduciendo así
una alternativa a las elecciones clásicas como estimador máximo a posteriori o Bayesian
model average. Exhibimos condiciones generales que garantizan la existencia y la consistencia
estadística de este estimador, discutimos algunas de sus propiedades, y proporcionamos
información sobre sus ventajas teóricas. Finalmente, presentamos un método novedoso que es
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ideal para el cálculo de nuestro estimador, presentando explícitamente su implementación
para familias expresivas de modelos. Este método corresponde a un algoritmo de descenso
de gradiente estocástico en el espacio de Wasserstein, por lo que es de interés general y de
aplicabilidad para el cálculo de baricentros de Wasserstein.
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Introduction

“Machine learning is the field of study that gives computers the ability to learn without
being explicitly programmed.”

– Arthur Samuel, 1959

Due to the tremendous technological development in the last decade, the amount of data
generated and collected has reached dimensions not known to humanity until now. By this
fact, the field of machine learning has attracted attention in a cross-disciplinary way in various
areas of natural sciences, social sciences, engineering and medicine, to name a few. Besides,
development has not only occurred in the Academy but large companies such as Google,
Facebook and Amazon have strengthened the area with their own research and development
teams. Society is experiencing the fourth industrial revolution, the artificial intelligence
revolution, where machine learning occupies a central role, the role of making machines learn
from data.

There are multiple classifications and divisions of machine learning methods and models,
but we can highlight a characteristic that divides them into two broad groups: those with a
probabilistic approach and those without it. It is a fact that most real-world data is noisy
observations of latent phenomena, so it is necessary to model these random sources, and the
Bayesian approach allows us to infer models and make predictions naturally. This work adopts
the point of view that the best way to make machines that can learn from data is through
the tools of probability theory, which has been the mainstay of statistics and engineering for
centuries, so we can proudly say that this work follows the Bayesian approach.

What initially motivated us to study the Bayesian approach are the so-called non-parametric
models: those models that, despite their name, have infinite parameters, or an unbounded
number of parameters that increases as we observe more data. Some common examples of
non-parametric models are histograms and spline functions, but those based on Bayesian
statistics have more elegant and formal mathematics, coinciding in many respects with the
stochastic processes. An example of this is the so-called Dirichlet process, a distribution on
discrete distributions, so it is very useful in clustering problems.

A widely non-parametric Bayesian model used for regression tasks is the Gaussian process,
a distribution over functions where the well-known Brownian motion is a particular case of
them. Once we understood the elegance of Gaussian processes as regression models, this
made us wonder, are there more general stochastic processes that maintain the same grace
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and beauty as the Gaussian processes? This question initiated an investigation that tries to
answer it in this thesis, but also motivated the development of interactions between Bayesian
statistics and optimal transport theory, a relation not very explored until now. This field,
also known as mass transportation, is a universal and transversal mathematical field that has
vast applications in probability, physics, finance, and has had a growing interest in recent
years given its use in machine learning, mainly by the good results in problems where the
data has an intrinsic geometry, as images, or geospatial data.

This work develops two main topics related to Bayesian statistics and transport maps. The
first topic, as mentioned above, is based on proposing non-parametric Bayesian models more
general than Gaussian processes, but maintaining the suitable properties for their application
as regression models. We recommend to build models based on layers, following the same
paradigm as deep learning models, where the first layer is a fixed Gaussian process, then
we apply different transformations, or transport maps, and thus we generate non-Gaussian
stochastic processes. In our development, we prove the existence of proposed models, provides
methods for training and inference with these models, and expose properties for each of the
defined transports. The second topic is devoted to introducing novel methods and selection
criteria for the Bayesian learning of probabilistic models. Our proposal uses elements from
optimal transport theory, more precisely the Wasserstein barycenter as an estimator for
predictive models. In our development, we provide conditions for existence, uniqueness
and consistency, general and particular characteristics of this estimator, and conclude our
contributions with the derivation of novel practical methods to calculate it.

This thesis is organised as follow. Chapter 1 is an introduction to the Bayesian approach
to learning models from data, describing and exemplifying parametric and non-parametric
models. This Chapter allows us to continue to Chapters 2, 3 and 4, where the Gaussian
models for regression are presented and extended, or we can go directly to Chapters 5 and 6
where we deepen the Bayesian approach to model learning and propose a novel alternative to
classics estimators. In Chapter 2, we present the problem of regression and the solution based
on Gaussian processes from different interpretations and points of view. In Chapter 3 we
introduce a model called Compositionally-Warped Gaussian processes, based on transporting
a Gaussian process by coordinates, or diagonally, through the composition of elementary
functions, its interpretation, the closed-form formulas for training and inference, showing
its advantages experimentally. In Chapter 4, we extend the previous results analysing the
diagonal transports with a more theoretical approach, incorporating new transport families,
that allow us to isolate marginals, correlations and copula of induced stochastic processes.
We study their properties and derive the formulas for their training and inference. In Chapter
5, our motivation is to find an alternative, non-parametric learning strategy which can cope
with some of the drawbacks of standard approaches such as maximum a posteriori (MAP)
or Bayesian model average (BMA). We present a novel Bayesian model estimator based
on Wasserstein barycenter, named Bayesian Wasserstein barycenter (BWB), studying its
existence, uniqueness, consistency and general properties. Finally, in Chapter 6, we introduce
methods to calculate Wasserstein barycenter in general, including BWB, where we highlight
one that can be interpreted as a stochastic gradient method in the Wasserstein space. We
study its properties, convergence and advantages in a theoretical and experimental way.
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Results overview

During the development of this thesis work, we obtained many thought-provoking results, so
we will proceed to give a general overview of them. It is worth mentioning that we separated
our results into two groups; those, under the name of Transport Gaussian Processes, devoted
in the generalisation of Gaussian processes as non-parametric Bayesian models for regression;
and those results that deepen the Bayesian approach to model selection using the Wasserstein
distance of the optimal transport theory, referred to as as Wasserstein Bayesian Learning.

Transport Gaussian Processes

In Chapter 3, our main motivation is to extend the Gaussian processes framework [102]
presented in Chapter 2, to include non-Gaussian processes and to be more accurate in the
assumptions concerning the modelled data. To achieve our goal, first, in Section 3.2 we review
a generative model for non-Gaussian processes, named warped Gaussian processes (WGP)
[125], where a latent Gaussian process is passed through (in a coordinate-wise manner) an
expressive and invertible non-linear transformation, called warping. The main contribution in
this chapter is the proposed model in Section 3.3, termed compositionally-warped GP (CWGP)
[108], that is a WGP where the warping function is the composition of elementary functions.
By choosing elementary functions with derivatives and inverses known in closed-form, this
model requires minimal numerical approximations, achieving an appealing computational
complexity for prediction and learning. In Section 3.4, we describe an ad-hoc set of elementary
functions, with explicit formulas for their derivatives and inverses, and we highlight their
properties together with a recommendation on how to use them, described in Section 3.5.
To conclude this chapter, in Section 3.6, we give illustrative examples using synthetic and
real-world data that validate the proposed method against WGP in terms of replicability,
computational efficiency, and predictive ability.

In Chapter 4, we desire to explore the theoretical limits of expressiveness of CWGP, and
exploit the composition-based principle to unify other non-Gaussian models under the same
point of view. In Section 4.1, we review some results on copulas to towards the study of
the expressiveness of CWGP. The main contribution is the proposed novel procedure to
construct stochastic process, in Section 4.2, named transport Gaussian processes (TGP), by
the composition of transformations or transport maps [78]. We introduce three different types
of transports that allow us to isolate specific characteristics of the stochastic process; the
marginals coordinates (in Section 4.3), the covariance and correlation (in Section 4.4) and the
intrinsic copula [144] (in Section 4.5), thereby setting the strength of dependence between the

3



coordinates. In each Section we determine the way to compose these transports to generate
distributions that satisfy the Kolmogorov consistent conditions [134], besides the derivation
of their formulas and methods for prediction and learning. In Section 4.6 we describe some
computational aspects for the implementation of the families of stochastic processes that TGP
approach allows expressing, including GP, WGP, Student-t processes [119], encompassing
general elliptical [91] and Archimedean [81] processes. Finally, in Section 4.7, we validate our
proposed model with real-world data examples.

Wasserstein Bayesian Learning

In Chapter 5, we continue with the general framework for Bayesian estimation based on
loss functions over probability measures presented in Chapter 1. The first result shows that
this framework covers, besides classical parametric selection criteria as MAP, non-parametric
model-selection alternatives as Bayesian model average estimators and generalisations thereof,
as particular instances of Fréchet means [93] with respect to suitable metrics/divergences
on the space of probability measures. The main conceptual contribution of this section is
the Bayesian Wasserstein barycenter estimator (BWB), a novel model-selection criterion
based on optimal transport theory. In Section 5.2 we recall the notions of the celebrated
p-Wasserstein distance [138, 139] and, relying on the previously developed framework, we
rigorously introduce the proposed BWB estimator in Section 5.3. There we explore the
existence of BWB on the Bayesian context, uniqueness, absolute continuity, and prove that
our estimator has less variance than the Bayesian model average.

The second main contribution of this chapter, carried out in Section 5.4 and culminating
in Theorem 5.4.10, provides sufficient conditions guaranteeing the statistical consistency for
the BWB estimator, under the Wasserstein distances. This behaviour is a highly desirable
feature of our estimator, both from a semi-frequentist perspective as well as from the “merging
of opinions” point of view in the Bayesian framework (cf. [52, Chapter 6]). The main
mathematical difficulty in our analysis comes from the fact that the data space is, in general,
an unbounded metric space. The underlying tools that we employ are the celebrated Schwartz
theorem ([118], [52, Proposition 6.16]) on the one hand and the concentration of measure
phenomenon for averages of unbounded random variables (e.g., [79, Corollary 2.10]) on the
other. We refer the reader to the works [88, 89] for a previous study of posterior consistency
in a Wasserstein topology, though these works focus on discrete-measures under assumptions
incomparable to ours, and do not discuss the convergence of barycenters. At a practical level,
Section 5.5 provides illustrative examples and experimental evidence supporting the potential
of the proposed estimator, highlighting the computationally-appealing Gaussian case and
their use for real-world data.

In Chapter 6, our main aim is to provide an implementable methodology to calculate the
proposed BWB estimator in practice. Current numerical methods allowing to compute
minimisers of integral functionals like eq. (5.1), and therefore to calculate the BWB estimator,
in particular, are mostly conceived for the case when the prior measure over models has finite
support. Among these methods we stress the contributions [6, 93]. This leads us to find a
method which can directly deal with the general case when the support of measures over
models is possibly infinite. In Section 6.1, we present a result that allows us to approximate
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the BWB estimator via an empirical version, which in turn can be calculated by the method
from [93]. The main contribution of this chapter is in Section 6.2, the development of a
novel algorithm which can be seen as a stochastic gradient descent on Wasserstein space.
The proposed method is ideally suited for the computation of the BWB estimator, and more
generally, for Wasserstein barycenters of measures with infinite support. Crucially, we will
establish the almost sure convergence of our stochastic algorithm under given conditions in
Theorem 6.2.4, and for a useful generalisation in Proposition 6.2.8.

Our stochastic gradient descent method, just like all other algorithms for the computation of
Wasserstein barycenters, assumes the availability of optimal transport maps between regular
probability measures. For this reason, we shall present in Section 6.3 examples of model-
families for which these optimal maps are explicitly given. These families also serve to illustrate
how the iterations of our stochastic descent algorithm simplify. We close the work with a
comprehensive numerical experiment in Section 6.4. On the one hand, this serves to illustrate
the advantages of the Bayesian Wasserstein barycenter estimator over the Bayesian model
average. On the other hand, this experiment suggests as well that the stochastic gradient
descent method is a superior alternative for the computation of the Bayesian Wasserstein
barycenter estimator, when compared to the empirical barycenter estimator described in
Section 6.1.
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Chapter 1

Bayesian Approach for Model Learning

“Inside every Non-Bayesian, there is a Bayesian struggling to get out.”

– Dennis Lindley

Consider samples D = {x1, . . . , xn} in a data space X (e.g. X ⊂ Rq) and a set of feasible
models or probability measuresM⊆ P(X ), where P(X ) is the set of probability measures on
X . Learning a model, also know as model selection, from D consists in choosing an element
m ∈M that best explains the data as generated by m, under some given criterion [26].

We adopt the Bayesian viewpoint, which provides a probabilistic framework to deal with model
uncertainty, in terms of a prior distribution Π on the spaceM of models; we refer the reader
to [52, 85] and references therein for mathematical background on Bayesian statistics and
methods. A critical challenge in the Bayesian perspective is that of calculating a predictive
law on X , usually referred to as the predictive posterior [48], from the posterior distribution
onM. This learning task shall be to which this work is devoted. Let us introduce the adopted
notation.

Consider a fixed prior probability measure Π on the model spaceM, namely Π ∈ P(M). By
virtue of the Bayes rule, the posterior measure Π(dm|x1, . . . , xn) on models given the data,
which is denoted for simplicity Πn(dm), is given by

Πn(dm) :=
Π (x1, . . . , xn|m) Π (dm)

Π (x1, . . . , xn)
, (1.1)

where Π (x1, . . . , xn) =
∫
MΠ (x1, . . . , xn|m) Π(dm) is the marginal likelihood or evidence. The

Radon–Nikodym derivative [19] of Πn(dm) w.r.t. the prior Π(dm) is the normalized likelihood
function Λn(m) = Π(x1,...,xn|m)

Π(x1,...,xn)
, while Ln(m) = Π (x1, . . . , xn|m) is just the likelihood function.

We assume throughout thatM⊆ Pac(X ), where Pac(X ) is the subset of absolutely continuous
measures with respect to a common reference σ-finite measure λ on X (e.g. Lebesgue). As
a convention, we use the same notation for an element m(dx) ∈ M and its density m(x)
w.r.t. λ. Assuming as customary that, conditionally on the choice of model m, the data
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x1, . . . , xn ∈ X are distributed as i.i.d. observations from the common law m, we can write

Π(dx1, . . . , dxn|m) = m (x1) · · ·m (xn)λ(dx1) · · ·λ(dxn). (1.2)

In what follows, we briefly describe how this general framework includes model spaces which
are finitely parameterised, and discuss standard choices in that setting, together with their
appealing features and drawbacks. This scenario could be helpful for readers who are used to
parametrically-defined models.

1.1 Parametric Setting

We say that M is finitely parametrized if there is a number k ∈ N, a set Θ ⊆ Rk termed
parameter space, and a (measurable) function T : Θ 7→ Pac(X ), called parametrisation
mapping, s.t. M = T (Θ); in such case we denote the model as mθ := T (θ). If the model
spaceM is finitely parametrized, learning a model boils down to finding the best parameters
θ ∈ Θ. This is often done in a frequentist fashion through the maximum likelihood estimator
(MLE) given by

θ̂MLE ∈ argmin
θ∈Θ

Ln(θ),

where Ln(θ) = p(x1, ..., xn|θ) is the likelihood function. The frequentist approach disregard
the prior over models. In some particular cases the extreme value is unique, but in general,
there are many local and global extrema. A numerical trick is to consider maximising the log
likelihood function, usually denoted as `n(θ) = logLn(θ), since the solutions that interest us
have positive likelihood, and the logarithm is a strictly increasing function, so maximising the
likelihood is equivalent to maximising the log-likelihood. Furthermore, under the common
i.i.d. assumption, the functional to optimise is a sum of terms instead of a product, which is
more stable numerically, as well as its evaluation and its derivative: `n(θ) =

∑n
i=1 logmθ(xi)

and ∂θ`n(θ) =
∑n

i=1
∂θmθ(xi)
mθ(xi)

. We next illustrate the role of the above objects in a standard
machine learning application.

1.1.1 Regression problem

Given n ∈ N observations, where data consist of input zi and output yi pairs, that is,
xi = (zi, yi) ∈ Rq × R for i = 1, . . . , n, the regression problem aims to find the best function
f : Rq → R, such that f(zi) is close to yi for i = 1, ..., n. Under the frequentist fashion, the
terms close and best are determined only by the likelihood function.

A model m ∈M is given by a joint distributions p(z, y), named the generative model since
p(z, y) = p(y|z)p(z) generate outputs and inputs together. Though in regression one often
needs only to deal with the conditional distribution p(y|z), named as the discriminative model
that generates outputs given inputs. For this reason, we can fix p0 ∈ Pac(Rq) and consider
parametric discriminative models as pθ(z, y) = pθ(y|z)p0(z).
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If we assume a linear relationship between y and z, and that y|z is normally distributed,
then pθ(y|z) = N (y; z>β, σ2) for θ = (β, σ) ∈ Θ = Rq × R+. If the data is i.i.d. then
the likelihood function is given by p(x1, ..., xn|θ) =

∏n
i=1 pθ(yi|zi)p0(zi), so by denoting y =

(y1, . . . , yn)> ∈ Rn and Z = (z1, . . . , zn)> ∈ Rn×q, then β̂MLE = (Z>Z)−1Z>y and σ̂2
MLE =

1
n
(y − Zβ̂)>(y − Zβ̂).

1.1.2 Maximum A Posteriori estimator

Given p ∈ P(Θ) a prior distribution over a parameter space Θ, its push-forward through
the map T is the probability measure Π = T (p) over the space of parametrised models
M = T (Θ), given by Π(A) = p(T −1(A)) for A ∈ B(M). Expressing the likelihood function
Λn(m) in terms of the parameter θ s.t. T (θ) = m, we then easily recover from eq. (1.1) the
standard posterior density over the parameter space,

pn(θ) := p(θ|x1, . . . , xn) =
p(x1, . . . , xn|θ)p(θ)
p(x1, . . . , xn)

.

Analogously to MLE, the maximum a posteriori (MAP) estimate is defined by

θ̂MAP ∈ argmax
θ∈Θ

pn(θ).

Since the marginal likelihood p(x1, ..., xn) is constant for θ, the MAP can be calculated via

θ̂MAP ∈ argmax
θ∈Θ

`n(θ) + log p(θ).

Under a frequentist point of view, the log prior term log p(θ) can be interpreted as a
regularisation term, so in turn the MAP is a regularised estimator of MLE. In the case
that p(θ) is uninformative, i.e. p(θ) ∝ 1, the MAP estimator coincides with the MLE.

The MAP approach is computationally appealing as it reduces to an optimisation problem
in a finite dimensional space. The performance of this method might, however, be highly
sensitive to the choice of the initial condition used in the optimisation algorithm [90]. This
issue is a critical drawback, since likelihood functions over parameters may be populated with
numerous local optima. The second drawback of this method is that it fails to capture global
information of the model space, which might result in an overfit of the predictive distribution.
Indeed, the mode can often be a very poor summary or atypical choice of the posterior
distribution (e.g. the mode of an exponential density is 0, irrespective of its parameter).

Another serious failure of the MAP estimation is its dependence on the parametrisation, in
other words, the estimated model we get depends on the choice of the mapping T : Θ→M [85].
For instance, let X = {0, 1} soM = {mµ ∈ P(X )|mµ({0}) = µ,mµ({1}) = 1 − µ, for µ ∈
[0, 1]} is the space of Bernoulli distributions. Under this natural parametrisation, we can
define an uniform prior Π overM as Π({mµ|µ ∈ I}) = λ(I), where λ denotes the Lebesgue
measure. Given data x1, ..., xn ∈ X , and denoting x̄ = 1

n

∑n
i=1 xi, the log likelihood function is

given by
`n(µ) = nx̄ log µ+ n(1− x̄) log(1− µ).
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Denoting mµ = Be(µ), consider the parameter space Θ = [0, 1] and three bijective parametri-
sation maps: T0(θ) = Be(θ), T1(θ) = Be(θ1/2) and T2(θ) = Be(θ2). Under the natural
parametrisation T0, the prior over Θ is given by p0(θ) = 1{θ∈[0,1]}(θ), and the respective
maximisation functional and their derivative, in function of µ = θ, are given by

J0(µ) = nx̄ log µ+ n(1− x̄) log(1− µ),

∂µJ0(µ) =
nx̄

µ
− n(1− x̄)

1− µ
,

so the MAP estimator coincides with the MLE given by m̂0 = Be(x̄). By the other hand,
under T1 the induced prior over Θ is given by p1(θ) = 1

2θ1/21{θ∈[0,1]}(θ). Analogously, as
µ = θ1/2, then

J1(µ) = c+ (nx̄− 1) log µ+ n(1− x̄) log(1− µ),

∂µJ1(µ) =
nx̄− 1

µ
− n(1− x̄)

1− µ
,

m̂1 = Be

(
nx̄− 1

n− 1

)
.

Finally, under T2 we have that µ = θ2, the induced prior over Θ is p2(θ) = 2θ1{θ∈[0,1]}(θ) and

J2(µ) = c+ (nx̄+ 1/2) log µ+ n(1− x̄) log(1− µ),

∂µJ2(µ) =
nx̄+ 1/2

µ
− n(1− x̄)

1− µ
,

m̂2 = Be

(
2nx̄+ 1

2n+ 1

)
.

Thus the MAP estimate depends on the parametrisation, but the MLE does not suffer from
these issues since the likelihood is a function, not a probability density, and satisfies the
invariance property [83, Theorem 7.2.1]. As discussed below, Bayes estimators do not suffer
from these problems either, since the change of measure is taken into account when integrating
over the parameter space.

1.2 Bayes Estimators

Going back to the general case, given the model spaceM, a loss function L :M×M→ R is
a non-negative functional. We interpret L(m0, m̄) as the cost of selecting model m̄ ∈M when
the true model is m0 ∈M. With a loss function and the posterior distribution over models,
we define the Bayes risk (or expected loss1) R(m̄|D) and the Bayes estimator m̂L as follows:

RL(m̄|D) :=

∫

M

L(m, m̄)Πn(dm) , (1.3)

1In the literature, Bayes risk refers to the expected loss w.r.t. a fixed measure, but in our context, it is
implicitly that the expectations and estimators are w.r.t. the posterior measure Πn.
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m̂L ∈ argmin
m̄∈M

RL(m̄|D). (1.4)

In the parametric setting, any loss function L induces a functional l defined on Θ×Θ (and
vice versa) by l(θ0, θ̄) = L(mθ0 ,mθ̄), interpreted as the cost of choosing parameter θ̄ when the
true parameter is θ0. The Bayes risk [15] of θ̄ ∈ Θ and its Bayes estimator θ̂l are defined by

Rl(θ̄|D) :=

∫

Θ

l(θ, θ̄)pn(dθ) =

∫

M

L(m, m̄)Πn(dm), (1.5)

θ̂l ∈ argmin
θ̄∈Θ

Rl(θ̄|D), (1.6)

where Πn(dm) = Λn(m)Π(dm), with the prior distribution Π = T (p).

For illustration, consider the 0-1 loss defined as l0−1(θ, θ̄) = 1− δθ̄(θ). It yields Rl0−1(θ̄|D) =

1−p(θ̄|D), that is, the corresponding Bayes estimator is the posterior mode, i.e. θ̂l0−1 = θ̂MAP .
For continuous-valued quantities the use of a quadratic loss l2(θ, θ̄) = ‖θ − θ̄‖2 is often
preferred, and its Bayes estimator is the posterior mean θ̂l2 =

∫
Θ
θp(dθ|D). In one dimensional

parameter space, the absolute loss l1(θ, θ̄) = |θ − θ̄| yields the posterior median estimator
[131].

Using general Bayes estimators on parametrised models enables for a richer choice of criteria
for model selection by integrating global information of the parameter space while providing a
measure of uncertainty through the Bayes risk value. However, this approach might also neglect
parametrisation related issues, such as overparametrisation of the model space (we say that
T overparametrisesM if mθ : Θ→M is not one-to-one). The latter might result in a multi-
modal posterior distribution over parameters. For example, take X = Θ = R, m0 = N (x;µ, 1)
and T (θ) = N (x|θ2, 1). If we choose a symmetric prior p(θ), e.g. p(θ) = N (θ|0, 1), then with
enough data, the posterior distribution is symmetric with modes near {µ,−µ}, so both l1 and
l2 estimators are close to 0.

1.3 Fréchet Means

To address the above issues, we propose using parameter-free selection criteria via loss
functions that compare directly distributions instead of their parameters. Since both L and
Πn operate directly on the model space, model learning according to the above equations does
not depend on geometric aspects of parameter spaces. Moreover, this point of view allows us
to define loss functions in terms of various metrics/divergences directly on the space P(X ),
and therefore to enhance the classical Bayesian estimation framework.

The next result, proved and extended in Chapter 5, illustrates the fact that many Bayesian
estimators, including the model average estimator, correspond to finding a so-called Fréchet
mean or barycenter [93] under a suitable metric/divergence on probability measures. Let
M = Pac(X ) and consider the L2 loss function L2(m, m̄) = 1

2

∫
X (m(x)− m̄(x))2 λ(dx), then
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the corresponding Bayes estimator coincides with the Bayesian model average:

m̄(x) := EΠn [m] =

∫

M
m(x)Πn(dm).
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Figure 1.1: Model average (left) and Wasserstein barycenter (right) of two Gaussian densities.

An inconvenient about model average is that it does not always preserve properties of
the original model space. E.g. if the posterior distribution is equally concentrated on two
different models m0 = N (µ0, 1) and m1 = N (µ1, 1) with µ0 6= µ1, i.e. both models are
unimodal (Gaussian) with unit variance, the Bayesian model average is in turn a bimodal
(non-Gaussian) distribution with variance strictly greater than 1. More generally, the model
average might yield intractable representations or be hardly interpretable in terms of the
prior and parameters.

An alternative is to consider different loss functions for eq. (1.3), e.g. the well-known
Wasserstein distance, arising in optimal transport theory (see [138, 139] for delve in this field).
In Chapter 5 of this work, we will develop the theory of the corresponding Bayes estimators,
which coincides with the Wasserstein barycenters (see [2, 96, 65, 74]). For now, for the reader’s
convenience, we illustrate this estimator applying a simple result to the above Gaussian
example: for m0 = N (µ0, 1) and m1 = N (µ1, 1), the so-called 2-Wasserstein barycenter
distribution is the Gaussian distribution with unitary variance given by m̂ = N (µ0+µ1

2
, 1).

In Fig. 1.1 we illustrate the Bayes estimators, and interpolations, between two Gaussian
densities using L2 and W2 loss functions, studied with more detail in Chapter 5.

In Chapter 2, we will introduce the model known as Gaussian process, to then delve into more
general models. Otherwise, if the reader wishes to delve directly into the theory of Bayesian
estimation of models, he can go directly to Chapter 5.
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Chapter 2

Gaussian Processes for Regression

“Experimentalists think that it is a mathematical theorem while the mathematicians
believe it to be an experimental fact.”

– Gabriel Lippmann to Henri Poincaré, about Gaussian distribution

The Gaussian distribution is one of the most studied mathematical objects in probabilities
and statistics, if not the most, where its application is universal and multidisciplinary, both in
natural and social sciences. The multivariate distribution of a jointly-Gaussian random vector
x ∈ Rn with mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n has a density function given by

Nn (x|µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2

(x−µ)>Σ−1(x−µ),

where |Σ| denotes the determinant of Σ. In Fig. 2.1 we show a bivariate example of this
density.

Figure 2.1: An example of a multivariate Gaussian density in R2.

Several models rely on the Gaussian distribution, even when the data are known to be
non-Gaussian but Gaussianity is assumed to avoid the computational complexity related to
more realistic models—see, e.g. the use of the Kalman filter in the Apollo missions [13].
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Two main reasons for the extensive use of the Gaussian distribution in science can be identified:
one is conjectural, and the other one is practical. The first reason obeys the simplifying
assumptions in mathematical modelling since observed data comprise multiple error-corrupted
phenomena, an exact description of these real-world data-generating engines is challenging—if
not impossible. Therefore, we partially model the data using first principles to then describe
the remaining components as several sources of uncertainty added together, i.e., the noise.
Then, based on the central limit theorem [9], we can define this so-called noise in statistical
terms by a Gaussian distribution.

The second reason is the appealing mathematical properties of the Gaussian distribution, in
particular, for Bayesian inference and learning [102]. Gaussian random variables (RVs) are
closed under conditioning and marginalisation, i.e., all marginal and conditional distributions
of a set of jointly-Gaussian RVs are Gaussian; this allows for tractable inference. Additionally,
Gaussian distributions are conjugate for themselves, meaning that a Gaussian prior and a
Gaussian likelihood result in a Gaussian posterior distribution. This closed-form posterior
allows for (i) efficient gradient-based learning via optimisation, and (ii) exact Bayesian
inference.

In next section we will introduce the regression problem, one of the main tasks in machine
learning, to then construct a Gaussian process, i.e. a model for infinitely-many jointly-Gaussian
random variables, under different viewpoints and interpretations.

2.1 The Regression Problem

In several fields, such as finance, physics and engineering, we can find settings where the
observations are indexed by time or space and convey some hidden dependence structure that
we aim to discover. This setting corresponds to a regression problem, previously introduced in
Section 1.1.1, that can be summarised as follow: given N ∈ N observations (t,x) = {(ti, xi)}Ni=1

where ti ∈ T ⊆ RT , T ∈ N and xi ∈ X ⊆ R for i = 1, . . . , n the regression problem aims to
estimate some predictor f : T → X , such that f(ti) is close to xi, where the terms best and
close are given by the chosen criterion of optimality. For solving this regression problem,
we desire a model to be able to interpolate and extrapolate, calculate point estimations,
error bars and generate plausible functions, as in Fig. 2.2. A widely used solution to this
regression problem is the Gaussian process [102], also know as kriging [129, 29], which is a
case of Bayesian nonparametric model. On following section we introduce a general Bayesian
nonparametric framework for regression.

2.2 Bayesian Nonparametric Models

An important aspect of Bayesian modelling is the useful concept of hierarchies. Given
a parametrised model space M = T (Θ), consider p(θ) ∈ P(Θ) a prior distribution over
parameters. If this prior is, in turn, parametrised by ω ∈ Ω, named hyperparameters, then we
can also set a hyperprior p(ω) ∈ P(Ω) over these. In principle, one can iterate this process: if

13



0 2 4 6 8 10

inputs

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

o
u
tp

u
ts

observed data

0 2 4 6 8 10

inputs

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

o
u
tp

u
ts

1) point estimate

0 2 4 6 8 10

inputs

4

3

2

1

0

1

o
u
tp

u
ts

2) error bars

0 2 4 6 8 10

inputs

4

3

2

1

0

1

o
u
tp

u
ts

3) draw solutions

Figure 2.2: Data, point estimations, error bars and draw solution from a regression problem.
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Figure 2.3: Left: The graphical representation of a Bayesian hierarchical model for regression,
with hyperparameters ω, parameters θ and input/output data x,y. Right: The graphical
representation of the same Bayesian hierarchical model, but where we integrate out the
parameter θ.

the hyperprior itself has parameters, these may be called hyper-hyperparameters, and so forth.
However, at some point, we must stop. A Bayesian hierarchical model is written in multiple
stages or levels, where all uncertainty is modelled in probabilistic terms and is allowed to use
the Bayes rule between stages.

In Fig. 2.3 (left), a regression scheme of 2-stages is presented, where D = (x,y) is input/output
data and the joint distribution is p (y,x, θ, ω) = p (y,x|θ, ω) p (θ|ω) p (ω). As we mentioned
earlier in Section 1.1.1, p (y,x|θ, ω) is the generative model, and since in the regression context
we often only need the discriminative model p (y|x, θ, ω), we set an uninformative prior over
x, i.e. p (x|θ, ω) ∝ 1. With this setting, the posterior distribution of parameters θ given
x,y, ω is

p (θ|y,x, ω) =
p (y|x, θ, ω) p (θ|ω)

p (y|x, ω)
,

where p (y|x, θ, ω) is the likelihood of θ, p (θ|ω) is the prior of θ and the marginal likelihood is

p (y|x, ω) =

∫
p (y|x, θ, ω) p (dθ|ω) .

For a fixed hyperparameter ω, we can train the θ-parametrised model with any Bayes
estimator, as maximum a posteriori θ̂MAP ∈ argmaxθ∈Θ p(θ|y,x, ω) or posterior mean θ̂l2 =∫
θp(dθ|y,x, ω). Additionally, in the Bayesian hierarchical models context we calculate the

so-called posterior predictive distribution of ȳ for new inputs x̄, that is given by

p (ȳ|x̄,y,x, ω) =

∫
p (ȳ|x̄, θ, ω) p (dθ|y,x, ω) ,
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that coincides with the Bayesian model average (on θ) of the discriminative model, i.e.

m̂(ȳ|x̄, ω) =

∫
mθ(ȳ|x̄, ω)p(dθ|x,y, ω) =

∫
p (ȳ|x̄, θ, ω) p(dθ|y,x, ω) = p (ȳ|x̄,y,x, ω) .

(2.1)

Note that the Bayesian model average m̂(ȳ|x̄, ω) depends only on ω, since we integrate out the
parameter θ, so we also must choose the hyperparameter ω. For this, following the Bayesian
paradigm illustrated in Figure 2.3 (right), we calculate the posterior distribution of ω given
x,y as

p (ω|y,x) =
p (y|x, ω) p (ω)

p (y|x)
,

where p (y|x, ω) is the likelihood of ω (matching with the marginal likelihood related to θ),
p (ω) the prior of ω and p (y|x) the marginal likelihood related to ω. Given p (ω|y,x), we also
can train the ω-parametrised model with any Bayes estimator. In hyperparameter stage, it is
usual to use a maximum a posteriori estimator ω̂MAP , denoted MAP-II to differentiate it from
the parameter MAP estimator θ̂MAP , which is denoted MAP-I. If we want a different Bayes
estimator, like a hyperparameter model average, usually the integrals with respect to p (ω|y,x)
are intractable, but can be approximated by sampling the distribution using Markov Chain
Monte Carlo (MCMC) methods [24].

The introduced framework is widely used to define nonparametric models, i.e. these models
without a fixed number of parameters that grow up with the data. We can highlight one
nonparametric model that has many mathematical properties that make it very versatile and
flexible, especially for regression tasks, which is based on the Gaussian distribution.

2.3 Constructing a Gaussian Process

Consider the following Gaussian-based Bayesian hierarchical linear model:

fθ(t) = 〈t, θ〉, for θ ∈ RT

ω = Σθ ∈ RT×T

p(θ|ω) = NT (0,Σθ)

p (x|t, ω, θ) = Nn
(
t>θ, σ2In

)
,

where we assume an uninformative prior over ω, i.e. p(ω) ∝ 1. Given n observations denoted
as (t,x) ∈ T n ×X n ⊂ RT×n × Rn, the posterior density of θ is the closed-form Gaussian

p(θ|t,x, ω) = Nn̄
(
Σt
θtx, σ

2Σt
θ

)

where Σt
θ :=

[
tt> + σ2Σ−1

θ

]−1. It is straightforward that, given new inputs t̄ ∈ T n̄, the
posterior predictive distribution of f̄ = t̄>θ ∈ X n̄ is also a closed-form Gaussian given by

p(f̄ |t̄, t,x, ω) = NT
(
t̄>Σt

θtx, σ
2t̄>Σt

θt̄
)
.
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Figure 2.4: Left: Posterior distribution of a Bayesian linear model. Right: Posterior distribu-
tion of a Bayesian quadratic model. Both posteriors are given the same observations

The above results show an interesting case of a hierarchical model with closed-form model
average. Although the model is linear, it is possible to extend it as a non-linear model. Given
a function φ : T → S ⊆ RS, where S is known as the feature space, consider the model

fθ(t) = 〈φ(t), θ〉, for θ ∈ RS

ω = Σθ ∈ RS×S

p(θ|ω) = NS (0,Σθ)

p (x|t, ω, θ) = Nn
(
φ(t)>θ, σ2In

)
.

Note the similarity of this model with the linear case, where we supersede t ∈ T n by φ(t) ∈ Sn,
so the posterior of θ and the respective posterior predictive of f̄ = φ(t̄)>θ are analogous:

p(θ|t,x, ω) = NS
(

Σ
φ(t)
θ φ(t)x, σ2Σ

φ(t)
θ

)

p(f̄ |t̄, t,x, ω) = Nn̄
(
φ(t̄)>Σ

φ(t)
θ φ(t)x, σ2φ(t̄)>Σ

φ(t)
θ φ(t̄)

)
,

where Σ
φ(t)
θ :=

[
φ(t)φ(t)> + σ2Σ−1

θ

]−1. In Fig. 2.4 we plot Bayesian linear and quadratic
models using the above framework, given the same observation. In each case we plot
observations, mean, 0.95 confidence interval for f̄ and x̄, also 10 samples of plausible functions.

To compute predictions using this model, it is necessary to calculate the matrix Σ
φ(t)
θ via

inverting an S × S dimensional matrix, so the complexity grows up with respect to the
dimension of the feature space, becoming intractable if S is very large. However, the model
can be rewritten in an equivalent way but with a nonparametric interpretation. If we denote
kω(t, s) = φ(t)>Σθφ(s), through the Woodbury matrix inversion lemma 1, we can write the
posterior predictive in terms of function kω as

p(f̄ |t̄, t,x, ω) = Nn̄
(
µ̄, Σ̄

)

µ̄ = kω(t̄, t)
[
kω(t, t) + σ2In

]−1
x

Σ̄ = kω(t̄, t̄)− kω(t̄, t)
[
kω(t, t) + σ2In

]−1
kω(t, t̄).

Unlike the previous formula, to compute predictions with this version it is necessary to
calculate and invert the n× n dimensional matrix [kω(t, t) + σ2In], so the complexity grows
up with respect to the number of observations, independent of the features space dimension.

1
[
Z + UWV >

]−1
= Z−1 − Z−1U>

(
W−1 + V >Z−1U

)−1
V Z−1
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Figure 2.5: Single-layer feedforward neural network: t is the input, x is the output, h(·) is the
activation function, b is the bias, uj=1:N are the input weights, vj=1:N are the output weights.

Kernel trick is the technique of writing the model only in terms of kernel kω avoiding the
computation of the map φ, allowing us to consider an implicit features space of high dimension,
even infinite.

2.4 From Neural Networks to Gaussian Processes

Among neural network practitioners, it is widely believed that the number of neurons should
be determined based on the amount of available data. However, as pointed out by C. Williams
in [142], this makes little sense from a Bayesian standpoint, where the complexity of the model
should be dictated by the complexity of the problem and not by the amount of available
data. In this regard, R. Neal demonstrated that the output of a single-layer neural network
with random weights converges to Gaussian process when the number of neurons approaches
infinity [86].

Following [102, 142, 86], let us consider a single-layer N -neuron neural network as shown in
Fig. 2.5. By modelling the bias and weights as independent random variables, the outputs
x1, x2, . . . , xN are also random for any choice of inputs t1, t2, . . . , tN , with a distribution that
is not necessarily tractable due to the nonlinear activation function h(·). Nevertheless, notice
that the network in Fig. 2.5 is defined by a sum of i.i.d. terms, therefore, by virtue of the
multidimensional central limit theorem (CLT [9]), taking the number of neurons N → ∞
results in the outputs x1, x2, . . . , xN being jointly Gaussian2. This construction can be further
extended to the case of an infinite number of outputs, thus yielding the Gaussian process
[102]. In the following section, we deepen the properties of this model as a stochastic process.

2.5 Stochastic Process Characterisation

We can interpret the model from a probabilistic point of view. A X -valued stochastic process
f = {ft}t∈T is a collection of random variables, indexed by T , that takes values in X . While the

2The motivation for taking the number of neurons to infinity follows [59], which states that the network
in Fig. 2.5 is a universal approximator. Furthermore, the CLT can in fact be applied since the bounded
activation function h results in finite variance for the outputs x1, x2, . . . , xN . Notice that scaling the output
weights variance ∝ 1/N is required for the CLT to hold.
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measure-theoretic approach to stochastic processes starts with a probability space, in machine
learning the starting point is a collection of finite-dimensional distributions. Given any finite
collection of points t1, ..., tn ∈ T , the distribution function of ft1 , ..., ftn is denoted as Ft1,...,tn .
The set F = {Ft1,...,tn|t1, ..., tn ∈ T , n ∈ N} correspond to their family of finite-dimensional
distributions, that satisfy the well-known Kolmogorov consistency conditions:

1. Permutation condition: Ft1,...,tn (x1, ..., xn) = Ftπ(1),...,tπ(n)

(
xπ(1), ..., xπ(n)

)
for all t1, ..., tn ∈

T , all x1, ..., xn ∈ X and any n-permutation π.

2. Marginalisation condition: Ft1,...,tn+m (x1, ..., xn,+∞, ...,+∞) = Ft1,...,tn (x1, ..., xn) for
all t1, ..., tn+m ∈ T and all x1, ..., xn ∈ X .

If a family of finite-dimensional distributions F satisfies the conditions of consistency, then the
Kolmogorov’s consistency theorem [134] allows us to construct a stochastic process f̂ =

{
f̂t

}
t∈T

in which the associated family of finite-dimensional distributions F̂ coincides with F . As
the law of a stochastic process is completely determined by the associated family of finite
dimensional distribution [110], for abuse of notation we refer to F as its law.

As we will show, the Gaussian distribution satisfies useful appealing properties for our purposes.
Let x ∈ X n, x̄ ∈ X n̄ be jointly Gaussian distributed random variables as

ηt,t̄ (x, x̄) = Nn+n̄

([
µx

µx̄

]
,

[
Σxx Σxx̄

Σx̄x Σx̄x̄

])
.

The marginalisation condition is satisfied due to
∫

Xn

ηt,t̄ (x, x̄) dx = Nn̄ (µx̄,Σx̄,x̄) = ηt̄ (x̄) ,

and the permutation condition is fulfilled because, given a n-permutation π, there is a
permutation matrix P , and since P−1 = P> it satisfies

ηπ(t)(π(x)) =
1

(2π)
n
2 |PΣP>|

1
2

e−
1
2

(x−µ)>P>(PΣP>)−1P (x−µ) = ηt(x).

Due to its consistency under both marginalisation and permutation, we can extend the
finite-dimensional multivariate Gaussian distribution to the infinite-dimensional case through
Kolmogorov’s consistency theorem. This construction is referred to as the Gaussian process
(GP) [102], a prior probability distribution over functions that defines non-linear nonparametric
regression models by assuming joint Gaussianity of the observed data.

Definition 2.5.1 A stochastic process f = {xt}t∈T is a Gaussian process (GP) with mean
function m(·) and covariance kernel3 k(·, ·), denoted by f ∼ GP (m, k), if, for any finite
collection of points in their domain t = [t1, . . . , tn]> ∈ T n, the distribution ηt of the vector4
x := f(t) = [xt1 , . . . , xtn ]> ∈ X n follows a multivariate Gaussian distribution with mean vector
µx = [m(t1), . . . ,m(tn)]> and covariance matrix [Σxx]ij = k(ti, tj), i.e. ηt = Nn(µx,Σxx).

3Common covariance functions are square exponential, rational quadratic, Matérn, and polynomial [102].
4By abuse of notation, we identify the random vector f(t) as x, which denote the observations on t.
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Figure 2.7: The posterior distribution of the GP. Left: Non-trained GP. Right: Trained GP.

A Gaussian process is completely determined by its mean m and covariance k functions and it
is used on machine learning as an a priori distribution over functions. The parameters of m
and k are referred to as hyperparameters of the GP. In Fig. 2.6 we plot an example of a GP
with the commonly used covariance function, named square exponential (SE) kernel given by

kSE (x, x̄) = σ2 exp

(
−(x− x̄)2

l2

)
,with σ2 > 0, l > 0 the hyperparameters of the GP.

Performing inference on new inputs5 t̄ rests on calculating the posterior distribution of x̄
given observations x, which is also Gaussian and has distribution

ηt̄|t (x̄|x) = N
(
x̄|µx̄|x,Σx̄|x

)
,

where µx̄|x = µx̄+Σx̄xΣ−1
xx (x− µx) and Σx̄|x = Σx̄x̄−Σx̄xΣ−1

xxΣxx̄ are referred to as conditional
mean and variance respectively; these statistics allow for computing point estimates, confidence
bands and sample functions directly. In Fig. 2.7 (Left) we show the posterior distribution of
a GP with SE kernel, given observations from sunset activity data.

The kernel is usually chosen heuristically based on expertise and the prior know-how of
modelled phenomenon. In Fig. 2.8 we consider perform inference with the over same 4
observations and three different kernels:

• Ornstein-Uhlenbeck: kOU (x, x̄) = σ2 exp
(
− |x−x̄|

2l2

)

5As long as there is no ambiguity in the choice of points t, we will denote x(t) as x, m(t) as µx and k(t, t)
as Σx. For a second collection of input points t̄ the notation is analogue: the process evaluation is x̄ = x(t̄),
the mean is µx̄ = m(t̄) and the cross-covariance between x and x̄ is Σxx̄ = k(t, t̄).

19



0 5 10 15 20 25 30 35
5

4

3

2

1

0

1

2

3

4 OU

0 5 10 15 20 25 30 35
4

3

2

1

0

1

2

3

4 RQ

0 5 10 15 20 25 30 35
4

3

2

1

0

1

2

3 periodic

Figure 2.8: The posterior distribution of GPs with different kernels and same observations.
Left: Ornstein-Uhlenbeck. Center: Rational Quadratic. Right: Locally Periodic.

• Rational Quadratic: kRQ (x, x̄) = σ2
(

1 + |x−x̄|2
2αl2

)−α

• Locally Periodic: kper (x, x̄) = σ2 exp
(
− |x−x̄|

2

2l2

)
exp

(
−2 sin2(π|x−x̄|/p)

l2

)

Learning, given observations (t,x), is equivalent to finding k(·, ·) and m(·), usually finitely-
parameterised by θ = (θk, θm) ∈ Rp, which is usually achieved through of minimisation of the
negative logarithm of their marginal likelihood (NLL) given by

− log ηt(x|θ) =
n

2
log(2π) +

1

2
(x− µx)>Σ−1

xx (x− µx) +
1

2
log |Σxx| , (2.2)

where µx and Σxx are the mean and covariance of x given parameters θ = (θk, θm). The
most used optimisation methods are the gradient-based quasi-Newton BFGS method and
free-derivative Powell’s method. In Fig. 2.7 we show a GP with SE kernel, given observations
from sunset activity data, where the left plot have default hyperparameters while the right
plot has NLL-based trained hyperparameters. In the trained case, the mean is closer to
the real (hidden) signal, and the confidence interval is tighter, so the prediction has less
uncertainty.
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Chapter 3

Compositionally-Warped Gaussian
Processes

“...all models are approximations. Essentially, all models are wrong, but some are
useful. However, the approximate nature of the model must always be borne in mind.”

– George Box

The results presented in this Chapter correspond to them in two published papers [107, 108]: 1) Gonzalo Rios and Felipe
Tobar. Learning non-Gaussian time series using the Box-Cox Gaussian process. In International Joint Conference on Neural
Networks, 2018, and 2) Gonzalo Rios and Felipe Tobar. Compositionally-warped Gaussian processes. Neural Networks,
118:235-246, 2019.

Despite the facts in favour of the Gaussian distribution presented in Chapter 2, the assumption
of joint Gaussianity is far from reality in several settings. In practice, one deals with
observations that are non-symmetric, heavy-tailed, or bounded by a physical or economic
restriction; all of these properties are contradictory with the Gaussian framework. For instance,
under the presence of strictly-positive observations, e.g. prices of a currency or the streamflow
of a river, assuming Gaussianity is a mistake; since the Gaussian distribution is supported
on the entirety of the real line. This fact motivates us to study models that have the appeal
properties that the Gaussian processes, but that are more flexible in the hypotheses over
modelled phenomena.

To model non-Gaussian data while still making use of the advantages of Gaussian models, one
can transform the observed data y ∈ YN via a non-linear differentiable bijection ϕ : Y → X ,

t GP warping

Gaussian
process

non-Gaussian
process

y

m, k
✓

x

Figure 3.1: General structure of warped Gaussian processes where a GP is nonlinearly
transformed to model non-Gaussian observations.

21



referred to as warping, such that x = Φ(y) = [ϕ(y1), ..., ϕ(yN)]> is more Gaussian and thus
can modelled as a GP–see Fig. 3.1. This approach is standard in statistics, where a common
choice for such a map is ϕ(y) = log(y), where the implicit assumption is that the observed
process has log-normal marginals, so the modelled phenomenon take positive values.

As the transform Φ is diagonal, i.e. in a coordinate-wise manner, the transformed distributions
satisfy the conditions of Kolmogorov’s consistency theorem [134] (introduced in Section 2.5),
such a generative model is a non-Gaussian process named warped Gaussian process [125].
In Section 4.3 we will prove this proposition in a more general approach, so we take it for
granted for the rest of this chapter.

We aim to construct a novel warping for Gaussian processes that inherits the expressiveness of
deep structures but at the same time require minimal numerical approximations for prediction;
this will be attained by constructing warpings with known closed-form inverse.

3.1 The Change of Variables Theorem

A standard approach to model non-Gaussian observations is to transform the data using, e.g.,
the logarithmic [17] or hyperbolic tangent [60] functions, so that the transformed data are
(closer to being) normally distributed. This transformation results in a change of probability
measure [134], where the distribution of the transformed variable is known explicitly given
the transformation. However, this result and its theoretical implications in the construction
of expressive non-Gaussian models are usually neglected. We will now formally present the
change of probability measure resulting from transforming a random variable via the following
theorem and then study the Gaussian case.

Theorem 3.1.1 (Probability change of variables [58]) Let x ∈ X ⊆ Rn be a random vector
with a probability density function given by px (x), and let y ∈ Y ⊆ Rn be a random vector
such that ϕ (y) = x, where the function ϕ : Y → X is bijective of class C1 and |∇ϕ (y)| > 0
∀y ∈ Y . Then, the probability density function py(·) induced in Y is given by

py (y) = px (ϕ (y)) |∇ϕ (y)| ,

where ∇ϕ (·) denotes the Jacobian of ϕ (·), and | · | denotes the determinant operator.

We refer to x = [x1, ..., xn]> as the base variables and to y = [y1, ..., yn]> as the transformed
variables. The change of variables theorem gives a principled methodology to express the
probability density function (pdf) of the transformed variables in terms of (i) the pdf of the
base variables and (ii) the applied transformation.

As our aim is to use the change of variables theorem to construct non-Gaussian tractable models,
let us consider a multivariate normal random vector x ∈ Rn with mean µx and covariance Σx,
denoted by x ∼ N (µx,Σx), and a coordinate-wise1 mapping from the transformed space to
the base space given by

y 7→ x = ϕ(y) = [ϕ(y1), ..., ϕ(yn)]>.

1To simplify the notation we refer to both the vector or scalar maps indistinctly as ϕ.
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Notice that the Jacobian of ϕ(y) is diagonal and therefore its determinant factorises as

|∇ϕ (y)| =
n∏

i=1

dϕ (yi)

dy
> 0.

In this setting, the pdf of y = [y1, . . . , yN ]> can be obtained explicitly through Theorem 3.1.1
and takes the form

p(y) =
n∏

i=1

dϕ (yi)

dy
N (ϕ(y)|µx,Σx) ,

where the function ϕ is affine if and only if the distribution p(y) is Gaussian. Crucially, the
distribution p(y) is not Gaussian in general, but it is parametrised by the base mean µx, the
base variance Σx and the transformation ϕ.

Theorem 3.1.1 can also be used to calculate conditional densities of transformed Gaussian
random vectors: For two jointly-Gaussian vectors x,x′ with conditional density p(x|x′) =
N
(
µx|x′ ,Σx|x′

)
, and a pair of vectors y,y′ such that x = ϕ(y) and x′ = ϕ(y′), the conditional

density p(y|y′) is given by

p (y|y′) =
n∏

i=1

dϕ (yi)

dy
N
(
ϕ (y) |µx|x′ ,Σx|x′

)

µx|x′ = µx + Σxx′Σ
−1
x′x′ (ϕ (y′)− µx′)

Σx|x′ = Σxx − Σxx′Σ
−1
x′x′Σx′x,

where recall that Σxx′ denotes the covariance between x and x′, and µx denotes the marginal
mean of x.

Observe that the posterior density of the transformed element p (y|y′) belongs to the same
family as the unconditional density p(y). This property of closure under conditioning is
inherited from the (base) Gaussian pdf, and it is preserved by the coordinate-wise transfor-
mation ϕ. Furthermore, the non-Gaussian multivariate distribution p(y) is also closed under
marginalisation and permutation, again since ϕ is defined coordinate-wise.

Therefore, we can construct a non-Gaussian process by transforming (or warping) a GP
in the following manner: (i) choose a base GP x and a coordinate-wise transformation ϕ,
(ii) compute the finite-dimensional marginal densities of y s.t. x = ϕ(y) via the change of
variable theorem, and (iii) apply the Kolmogorov consistency theorem [134]. This construction
guarantees the existence of such non-Gaussian process with known hyperparameters: the
mean and covariance of the base GP and the transformation ϕ.

3.2 Warped Gaussian Processes

Warped Gaussian processes (WGP) [125] follow the rationale explained in the previous section.
WGP considers a GP with zero mean and square-exponential (SE) covariance function, as
well as a monotonic (and thus invertible) parametric coordinate-wise transformation.
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The transformation ϕ : R→ R considered by WGP [125] is given by

ϕ (y) = y +
d∑

j=1

aj tanh (bj (y + cj)) , (3.1)

where aj, bj ≥ 0, j = 1, . . . , d. The mixture of the identity and hyperbolic tangent functions
in eq. (3.1) acts as a parametric warping of the identity function, meaning that standard
transformations such as the logarithm are not allowed by WGP. Observe that since ϕ (y)
in eq. (3.1) is a sum of monotonic terms, its inverse does exists. However, as this inverse
is not known explicitly, computing the predictive posterior WGP requires approximating
ϕ−1 using, e.g., the Newton-Raphson method (NRM) [11]. This iterative procedure requires
several evaluations of ϕ and dϕ

dy
, thus increasing computational complexity, in addition to

being sensitive to the initial condition. In practice, the use of NRM is the computational
bottleneck of WGP: the original model proposed in [125] considered a naive NRM approach
that resulted in inference being one or two orders of magnitude more expensive than that
of standard GPs. For computational efficiency, the implementation of [125] considered a
bisection search to find appropriate initial conditions for NRM. We emphasise that although
the implementation of WGP can be made more efficient by using sophisticated numerical
tools for approximating inverse functions, e.g., to train a surrogate model for the inverse using
splines or neural networks, WGP always requires numerical approximations when performing
predictions due to the lack of the explicit inverse of a sum of hyperbolic tangents. In [144]
the authors propose the alternative warped function

ϕ (x) =
d∑

j=1

aj log [1 + exp[bj (x+ cj)]]

where aj, bj ≥ 0, j = 1, ...,d, however this warping inherit the same issues described above.
On the contrary, the model proposed in Sec. 3.3.1 does not suffer from this drawback.

3.2.1 Bayesian warped Gaussian processes

A non-parametric version of WGP is the Bayesian WGP [72], denoted BWGP, which models
the transformation itself as a GP with the identity function as mean. This transformation φ
in BWGP corresponds to the inverse of the transformation ϕ in WGP and can be expressed
as

y(t) = φ (x(t)) + εt,

where εt ∼ N (0, σ2) and both x and φ are GPs, that is,

x(t) ∼ GP (m(t), k (t, t̄)) (3.2)
φ (f) ∼ GP

(
f, c
(
f, f̄
))
, (3.3)

where f denotes the input (function) to the warping φ and c is its covariance kernel. Further-
more, [33] proposes a deep version of BWGP termed Deep GP (DGP), where the warping
function is a composition of multiple GPs.
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DGP, which has been proposed primarily as a hierarchical extension of the Bayesian Gaussian
process latent variable model (GP-LVM) [136], which, in turn, is a deep belief network based
on Gaussian process mappings, and it focuses initially on unsupervised problems (unobserved
hidden inputs) about discovering structure in high-dimensional data [71, 76, 34]. However,
by replacing the latent inputs with observed input, a one-hidden-layer model coincides with
BWGP, so DGP for regression is also a generalisation of BWGP [32]. DGP is one GP
feeding another GP, so it is a flexible model that can capture highly-nonlinear functions for
complex data sets. However, the network structure of a DGP makes inference computationally
expensive; even the inner layers has an identified pathology [40]. To use DGP in regression
scenarios, some authors propose making inference via variational approximations [25, 114]
or using sequential sampling approach [140]. Finally, DGP loses its interpretability, so, like
other deep models, it is difficult to understand the properties of each layer and component.

Training and inference are intractable both for BWGP and DGP; therefore, both methods
rely on a variational approach to perform inference using a sparse representation [135].
Due to their considerable computational complexity, comparisons of the proposed method
against BWGP and DGP are beyond the scope of this article, since we focus on expressive
warping functions that provide computationally-efficient closed-form formulas for training and
prediction. Therefore, the experimental validation of the proposed method will be performed
against WGP [125] only.

3.3 A Novel Warping for WGPs

Inspired by deep architectures, we propose a generative model for non-Gaussian processes by
transforming a latent GP through a composition of elementary functions ϕi with two main
objectives. The first objective is that the class of transformations has to be general enough to
replicate a broad class of data using few parameters to avoid overfitting, while the second
objective is that the approximations required for learning and inference should be minimal to
maintain high numerical precision and low computational complexity.

3.3.1 Model description

Let us consider a family of parametric functions {ϕi}d
i=1, d ∈ N , that are differentiable and

invertible with closed-form inverse, hereinafter referred to as elementary functions. Then, we
can construct warping functions ϕ(·) as a composition of such elementary functions, that is,

ϕ(·) = ϕd(ϕd−1(· · · (ϕ2(ϕ1(·))) · · · )). (3.4)

This construction is motivated by the fact that the inverse and derivatives of function
compositions are given by the inverses and derivatives of their component functions. For
instance, for a two-elementary-function composition ϕ(y) = ϕ2(ϕ1(y)) = x, the inverse and
the derivative are given respectively by

ϕ−1 (x) = ϕ−1
1 (ϕ−1

2 (x))
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dϕ (y)

dy
=

dϕ2 (ϕ1 (y))

dy

dϕ1 (y)

dy
.

Notice that this class of warping functions goes one step further compared to WGP: WGP
requires invertibility but then deals with finding the inverse numerically, whereas the compo-
sitional warping proposed here requires invertibility and closed-form inverses, meaning that
the evaluation of the inverse is straightforward.

We then propose the compositionally-warped Gaussian process (CWGP) given by y(t) s.t.

ϕ(y(t)) = x(t),

x(t) ∼ GP(m(t), k(t, t)),

ϕ(·) = ϕd(· · · (ϕ2(ϕ1(·))) · · · ),

where {ϕi}d
i=1 are elementary functions. Additionally, as the inverse of ϕ is known, CWGP can

also be interpreted as a generative model that transforms x(t) into y(t) using the transformation
ϕ−1. For notational clarity we emphasise that ϕ is defined from the non-Gaussian process y
to the Gaussian process x.

Finally, we also clarify that the model described above differs radically from the concept of
Normalising Flows (NF) [133, 132, 103]. NF focuses on approximating the posterior density
of an intractable model, whereas we construct a non-Gaussian generative model directly.

3.3.2 Learning: robust, interpretable and efficient

Learning under CWGP means finding the hyperparameters of the GP x (parameters of the
kernel and mean functions denoted by θx) in addition to the parameters of the compositional
transformation ϕ, denoted by θϕ. Thanks to the change of variables theorem, learning these
parameters is tractable and can be achieved via minimisation of the negative logarithm of the
marginal likelihood (NLL).

Robustness. Just as standard GPs, warped GPs are protected from overfitting, since they
directly parametrise a prior distribution over functions and not the specific trajectories of
the function. Additionally, recall that the warping considered is component-wise and given
by the same scalar-valued map for all the coordinates. Thus the warping can be understood
as a parametrisation of the marginal histogram. Therefore, the resulting generative model
has non-Gaussian marginals with Gaussian copulas, known as Gaussian copula process [144],
meaning that in the broad sense of modelling the law of stochastic process, the proposed
model is regularised by design.

Interpretability. The NLL is given by

NLL = − log p(y|θx, θϕ) (3.5)

=
n log(2π)

2︸ ︷︷ ︸
constant term

+
1

2
(ϕ(y)− µx)>Σ−1

xx (ϕ(y)− µx)
︸ ︷︷ ︸

data-fit term
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+
1

2
log |Σxx|

︸ ︷︷ ︸
kernel-complexity term

−
n∑

i=1

log

(
dϕ(yi)

dy

)

︸ ︷︷ ︸
warping-complexity term

,

where µx and Σxx are the mean and covariance of x = ϕ(y).

Akin to standard GPs, for which the NLL reveals automatic penalty of model complexity,
WGP features the warping-complexity term. Therefore, the NLL is minimised balancing the
Gaussianity of the base GP x via the first three terms in eq. (3.5) and the regularity of
the warping via the warping-complexity term. The first criterion prioritises solutions such
that ||ϕ(y) − µx|| is small wrt to the norm induced by Σ−1

xx , where the extreme solution is
given by ϕ(y) = µx = constant ∀y, t, since ϕ(y) : y 7→ x and µx : t 7→ x. However, notice
that the warping-complexity term

∑n
i=1 log

(
dϕ(yi)

dy

)
forces solutions ϕ(y) that have large

derivatives (i.e., which grow steeply), thus ruling out the constant case. These terms offer a
clear interpretation of the likelihood function of WGP: the warping-penalty term promotes
the preservation of the data variability by choosing warpings with large derivatives, while the
remaining terms ensure that this variability remains as Gaussian as possible.

Computational complexity. Notice that minimising the NLL does not require the inverse
of ϕ but only its log-derivatives, which are known in closed form, therefore, the cost of training
CWGP is only dominated by the matrix inversion: O(n3) for n observations. Recall that
this is the same order of complexity of training standard GPs. Intuitively, learning is then
achieved by transforming the non-Gaussian observations to then maximise the (Gaussian)
probability of the transformed samples wrt to the parameters of (i) the Gaussian distribution
and (ii) those of the transformation. Although the complexity of evaluating the NLL is the
same for CWGP and standard GPs, our model is more expressive so the NLL could have more
local minima due to having more parameters to train. For further details, we recommend
[107], where multiple local minima are explored with derivative-free and Monte Carlo based
optimisation.

3.3.3 Closed-form inference

Inference follows from a corollary of the change of variables theorem that states that the
probability (measure) of a set E under the density of y, is equal to the probability of the
image of E, ϕ(E), under the density of x. Conditioning on observed data y, we can express
the corollary as ∫

E

py (y|y) dy =

∫

ϕ(E)

px (x|y) dx =

∫

ϕ(E)

px (x|x) dx,

Inference follows from a corollary of the change of variables theorem that states that the
probability (measure) of a set E under the density of y is equal to the probability of the
image of E, ϕ(E), under the density of x. Conditioning on observed data y, we can express
the corollary as

median(y(t)) = ϕ−1 (median(x(t))) = ϕ−1 (m(t))
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Ipy(t) =
[
φ−1 (m(t)− zpσ(t)) , φ−1 (m(t) + zpσ(t))

]
,

where σ(t) =
√
k(t, t) is the base GP standard deviation, zp is the p-quantile of a standard

Gaussian (ex. z0.975 ≈ 1.96) and we used the fact that for a Gaussian median(x) = mean(x).

Sampling the non-Gaussian process is also direct: it is only required to simulate a realisation
of the GP and then apply the inverse of the transformation in a coordinate-wise way, that is,

x(t) ∼ GP(m(t), k(t, t))

y(t) = ϕ−1 (x(t)) .

3.3.4 Complexity analysis of inference

Relying on the change of variables theorem once again, the expectation of a measurable
function h : Y → R under the non-Gaussian law p(y) is given by

Ey [h (y)] = Ex

[
h
(
ϕ−1 (x)

)]
.

Additionally, since the distribution of x is Gaussian, we can efficiently compute the above
integral numerically using the Gauss-Hermite quadrature [1], for which k-point approximations
are exact when the integrand h (ϕ−1 (·)) is a polynomial of order 2k − 1. Choosing h(y) = y,
we have the approximation of the mean of y given by

Ey [y] =

∫
ϕ−1 (x) px (x) dx

≈ 1√
π

k∑

i=1

wiϕ
−1
(√

2σxxi +mx

)
, (3.6)

where the weights {wi}ki=1 and locations {xi}ki=1 are given by the Gauss-Hermite quadrature
method [1].

Finally, observe that evaluating ϕ−1 is required to compute expectations, the median and
confidence intervals of the non-Gaussian model. Since for CWGP ϕ−1 is known, the cost of
evaluating it is O(d), where d is the number of elementary components of ϕ. Therefore, the
cost of evaluating Ey [y] in eq. (3.6) using the k-point Gauss-Hermite quadrature is O(kd)
for CWGP. Conversely, WGP approximates ϕ−1 using the Newton-Raphson method (NRM)
[11] (with the bisection method to find the initial point), meaning that the cost of evaluating
Ey [y] for WGP is O(kdt), where t is the number of iterations of NRM (and bisection). In
practice, the explicit expression for ϕ−1 is key in computational terms: even using efficient
numerical methods, WGP always requires numerical approximations of ϕ−1, whereas CWGP
does not and can evaluate ϕ−1 directly.

3.4 Elementary Transformations

As a companion to the CWGP proposed in the previous section, we now present a set of
elementary transformations with explicit inverse and derivative to be used as building blocks
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Table 3.1: Elementary transformations: functional forms with derivatives and inverses

Function ϕ(y) dϕ(y)
dy

ϕ−1(x)

Affine a+ by b x−a
b

Logarithmic log(y) y−1 exp(x)
Arcsinh a+ b asinh

(
y−c

d

)
b√

d2+(y−c)2
c+ d sinh

(
x−a
b

)

Box-Cox sgn(y)|y|λ−1
λ

|y|λ−1 sgn (λx+ 1) |λx+ 1|
1
λ

Sinh-Arcsinh sinh (b asinh(y)− a) b cosh(b asinh(y)−a)√
1+y2

sinh
(

1
b

(asinh(x) + a)
)

0 50 100
Domain y

50

0

50

100

150

200

250

300

D
om

ai
n 

G
P

BoxCox Mapping

λ= 1.2
λ= 1.0
λ= 0.6

40 30 20 10 0 10 20 30 40
Domain y

0.00

0.02

0.04

0.06

0.08

0.10

0.12 BoxCox Density

λ= 1.2, µ= 0

λ= 1.0, µ= 0

λ= 0.6, µ= 0

λ= 1.2, µ= 10

λ= 1.0, µ= 10

λ= 0.6, µ= 10

0 50 100 150 200 250 300
Index

0

5

10

15

15 BoxCox Samples (λ= 0. 6, µ= 0)

0 50 100
Domain y

0

100

200

300

400

D
om

ai
n 

G
P

SinhArcsinh Mapping

b= 1.2
b= 1.0
b= 0.6

40 30 20 10 0 10 20 30 40
Domain y

0.01

0.02

0.03

0.04

0.05

0.06

SinhArcsinh Density

b= 1.2, µ= 0

b= 1.0, µ= 0

b= 0.6, µ= 0

b= 1.2, µ= 10

b= 1.0, µ= 10

b= 0.6, µ= 10

0 50 100 150 200 250 300
Index

30

20

10

0

10

15 SinhArcsinh Samples (b= 0. 6, µ= 0)

Figure 3.2: Proposed Box-Cox and SinhArcsinh elementary transformations. For all plots,
µ denotes the mean of the base GP x. Top: Box-Cox transformation in eq.(3.9). Bottom:
SinhArcsinh transformation in eq. (3.11). Left: transformations (or warpings). Middle:
induced marginal densities. Right: samples of the warped GP.

of CWGP’s compositional transformation. Furthermore, for consistency with Theorem 3.1.1,
we present the transformations from the non-Gaussian process y to the GP x. Table 3.1 gives
a summary of these transformations together with their inverses and derivatives, and Fig. 3.2
shows two different families of transformations together with their induced marginal densities
and sample trajectories.

3.4.1 Affine transformation

The affine transformation is given by

ϕaffine(y) = a+ by, a, b ∈ R, (3.7)

and is referred to as shift when b = 1 and as scale when a = 0. The affine transformation
does not provide enhanced modelling ability over standard GPs, since an affine-transformed
GP is still a GP with a shifted mean and scaled variance. However, the affine warping will be
composed with other elementary functions to produce expressive transformations.
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3.4.2 Box-Cox transformations

A standard strategy in Statistics to transform non-Gaussian positive observations into closer-
to-Gaussian ones is to apply the logarithmic function ϕlog(y) = log(y); this is the case
for positive-valued heavy-tailed stochastic processes [3]. Notice that with the logarithmic
transformation, both the mean mx and variance σ2

x of the original GP x affect all moments of
the transformed process y. Explicitly, the n-th moment of y is given by

Ey [yn] = exp
(
nmx + 1

2
n2σx

)
, (3.8)

meaning that a heavy-tailed distribution for y is obtained through only modifying the mean
and variance of the original process x.

A generalisation of the logarithmic transformation is the Box-Cox transformation [17, 113], a
single-parameter power function given by

ϕλ (y) =
sgn (y) |y|λ − 1

λ
, λ ∈ R+

0 , (3.9)

where ϕλ becomes a power function for λ > 0, an affine transformation for λ = 1, and the
logarithmic transformation for λ = 0 since lim

λ→0
ϕλ(y) = log(y).

The Box-Cox transformation has two useful properties: Firstly, its mode is known to be [46]

modey =

[
1

2

(
1 + λmx +

√
(1 + λmx)

2 + 4σ2
xλ (λ− 1)

)] 1
λ

,

where mx and σ2
x are the mean and variance of the GP x respectively. This formula is

particularly useful for skewed distributions where the mode is usually considered as a point
estimate instead of the mean or the median. Secondly, the computation of moments using
numerical methods, e.g., the Gauss-Hermite quadrature [1], can be performed with high
precision due to the polynomial nature of the Box-Cox transformation. Fig. 3.2 (top) shows
different Box-Cox transformations with their induced marginal densities.

3.4.3 Hyperbolic transformations

The distribution resulting from passing a N (0, 1)-distributed random variable through the
inverse hyperbolic sine transformation

ϕarcsinh (y) = a+ b arcsinh

(
y − c

d

)
, (3.10)

where a, c ∈ R and b, d ∈ R+, is known as the Johnson’s SU-distribution [60] and has
closed-form expressions for the mean and variance, given respectively by

µSU = c− d exp

(
b−2

2

)
sinh

(a
b

)
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σ2
SU =

d2

2

[
exp

(
b−2
)
− 1
] [

exp
(
b−2
)

cosh

(
2a

b

)
+ 1

]
,

and also for the skewness and kurtosis [60].

Another transformation based on hyperbolic functions is the Sinh-Arcsinh [61], where arcsinh,
affine and sinh are composed together, that is,

ϕSinhArcsinh (y) = sinh (b arcsinh(y)− a) , (3.11)

where a, b ∈ R. This distribution admits explicit expressions for all moments of y, using
the modified Bessel function, and it induces a distribution where the third and fourth
moments can be controlled via parameters a and b. This distribution is symmetric if a = 0;
positively-skewed (cf. negatively-skewed) if a > 0 (cf. a < 0); mesokurtic if b = 1; and
leptokurtic (cf. platykurtic) is b > 1 (cf. b < 1). Additionally, this distribution meets
0 < |mode(y)| < sinh(|a|/b) and sgn(mode(y)) = sgn(a).

Fig. 3.2 (bottom) shows the Sinh-Arcsinh transformations with the induced marginals and
samples for a skewness parameter set to a = 0 and different values of the kurtosis parameter
b. Observe that the mean of the base GP, µ, can also change the skewness of the induced
marginal distribution.

3.5 How to Choose the Elementary Transformations?

As in the vast majority of deep structures, the number of layers and the type of neurons are
defined by experts or by trial and error, where interpretability is a desired property [141].
This expertise is also needed in the case when choosing the kernel in support vector machines
or Gaussian processes (as studied in [39]). Recall that in standard mixture models (such
as WGP) the user only defines the number of components, whereas within the proposed
CWGP one also needs to choose the types and order of the elements (in our case, elementary
functions). This section guides the choice of the elementary transformations under two
scenarios, the first one being the case when expert knowledge about the data is available.
The second scenario, that is, when no prior information of the data is available, we show that
CWGP can be implemented by concatenating multiple instances of a particular sequence of
elementary transformations (referred to as the SinhArcsinh-Affine layer), and we show that
this construction has appealing experimental performance. This way, CWGP can be regarded
as a black-box where, akin to deep structures, the user only needs to choose the number
of layers. We illustrate this concept based on the NLL (Sec. 3.5.2) and via a toy example
(Sec. 3.5.3), as well as its robustness to overfitting and through a real-world data in Section
3.6.2.

3.5.1 When prior knowledge of the data is available

As mentioned in Sec. 3.4.2, when the data are strictly positive, standard practice is to
apply the logarithmic transformation. Critically, if the data is known to be lower-bounded
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by an unknown quantity, one can compose the logarithmic transformation with the shift
transformation in eq. (3.7) to find the shift parameter during training. An upper bound to the
data can be found analogously by replacing the shift by an affine transformation, thus allowing
for a negative scaling. In this sense, composing two affine-logarithmic transformations enables
us to find the upper and lower bounds simultaneously.

To further relax the strict (lower) bound condition of the logarithmic transformation to a more
permissive one, we can also replace the logarithm by the Box-Cox transformation in eq. (3.9),
where the permissiveness of the bound is controlled by the parameter λ. Additionally, if the
data is such that their range is not bounded but instead have a large dispersion, then the data
follows a heavy-tailed distribution. This phenomenon can be modelled using the Arcsinh or
Sinh-Arcsinh transformations in eqs. (3.10) and (3.11) respectively since such transformations
allow to control the mean and variance of the distribution, as well their asymmetry and
kurtosis. All these transformations can be composed with one another to construct more
complex distributions, as in the case of multimodal distributions.

3.5.2 Sparse compositional transformations

As in any model that involves choosing a finite order (such as layers, neurons, components), it is
required that the addition of more elementary functions in CWGP results in a monotonically-
increasing performance. In particular, if one considers an unnecessarily-large number of
elementary transformations, it is desired that some of these transformations revert to the
identity function (and thus can be removed). If, after training, some of the transformations
considered revert to the identity, we will say that the compositional transformation is sparse.

When insight into the statistical properties of the data is scarce, or even non-existent, a
recommended procedure is to sequentially add transformations that can revert to the identity
when needed. Notice that if a transformation is not able to improve performance and at the
same time can revert to the identity, it will indeed do this. This fact can be justified based on
the NLL in eq. (3.5): where the data-fit term remains invariant, and the warping-complexity
term contributes to a lower NLL. Additionally, one can always choose a prior distribution over
the warping parameters to promote further warpings that are close to the identity. Lastly,
recall that from the proposed transformations, the Box-Cox, the Sinh-Arcsinh and the affine
transformations can revert to the identity, therefore, under limited knowledge about the
underlying properties of the data, we recommend adding these components iteratively until
the performance of the model reaches a plateau. We next implement this concept based only
on the Sinh-Arcsinh and affine transformations on synthetic data and, in Section 3.6.2, on
real-world data.

3.5.3 Structure discovery via deep compositional transformations

For the cases when expert knowledge about the nature of the data is scarce, the proposed
CWGP can be implemented just concatenating multiple instances of the proposed elementary
transformations, this procedure is usual and widely accepted in general deep architectures
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Figure 3.3: Approximation of a WGP warping (sum of three hyperbolic tangents, blue) using
the proposed compositional method (three SAL layers, green).

[14, 55, 116]. To illustrate this, let us first define the composition of a Sinh-Arcsinh and Affine
transformations, in eqs. (3.10) and (3.7) respectively, as the SAL layer 2 given by

l(y) = a+ b sinh(c arcsinh(y)− d), (3.12)

where a, b, c, d ∈ R are the only four parameters of the so-defined layer. We next show that,
by only concatenating SAL layers, we can replicate the sum-of-hyperbolic-tangent warping
implemented by WGP [125], in eq. (3.1). The reason to assess the proposed model in the
approximation of the WGP is that the sum of hyperbolic tangents is known to be universal,
meaning that it can approximate continuous functions to any desired degree of accuracy in a
closed interval.

Intending to gain an intuitive understanding about the modelling ability of the compositional
approach, the first illustrative example is to train a three-SAL-layer compositional transforma-
tion, via least squares, to replicate a mixture of three hyperbolic tangents. Fig. 3.3 shows the
transformations, derivatives, densities and distributions of the ground truth (WGP, blue) and
the three-SAL-layer compositional approximation (CWGP, green). Observe the point-wise
similarity of the warpings and that the probability mass is concentrated around the three
common modes in the domain of y.

Regarding the expressiveness of the proposed compositional approach as a function of the
number of considered SAL layers, Fig. 3.4 shows the induced distributions for a five-hyperbolic-
tangent WGP warping (blue) and those of the compositional approximations using one to six
layers (green) fitted by least squares. Notice how the distributions learnt by the compositional
transformation becomes indistinguishable from the ground truth as the number of SAL layers
increases. Table 3.2 reports the approximation errors both for the transformation and the
resulting (warped) distribution, using the L1, L2 and L∞ norms given respectively by

e1 = ||fSoT − fCT||1 =

∫

R
|fSoT(x)− fCT(x)|dx

2The acronym SAL comes from SinhArcsinh and Affine, where the use of “L” stems from “linear”. This
terminology has been chosen to be consistent with the experimental part in the next section.
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Figure 3.4: CWGP approximation of the distribution of a WGP with five hyperbolic tangents:
Ground truth (blue) and CWGP approximations (green) using a variable number of SAL
layers in eq. (3.12).

e2 = ||fSoT − fCT||2 =

√∫

R
|fSoT(x)− fCT(x)|2dx

e∞ = ||fSoT − fCT||∞ = sup
x∈R
|fSoT(x)− fCT(x)|,

where fSoT denotes de transformation (or distribution) of WGP’s sum of hyperbolic tangents,
and fCT those of the proposed compositional transformation. Fig. 3.5 also shows the above
error measures normalised wrt the to the single-layer case—observe the monotonic performance
of the approximation as the number of SAL layers increases.

3.6 Experimental Validation

We evaluated CWGP experimentally in three real-world scenarios. The first one has an
illustrative purpose and demonstrates the robustness of CWGP wrt the number of chosen
elementary functions using an astronomical time series. The second experiment validates the
ability of the proposed CWGP to identify critical statistical properties of a real-world financial
time series. Lastly, the third experiment tests CWGP on the three datasets used initially in
[125, 72], where we aim to assess the proposed model in terms of predictive performance and
experimental, computational complexity.

We compared the proposed CWGP against GP and WGP only and left BWGP and DGP out
of this study due to several reasons. First, we aim to offer a computationally efficient method
with exact inference and minimal numerical approximations for prediction, BWGP and DGP
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Layers Trans L1 Trans L2 Trans L∞ Dist L1 Dist L2 Dist L∞

1 1878.2 243.11 60.57 3.342 0.464 0.147
2 1147.7 151.86 33.77 2.232 0.292 0.107
3 845.14 124.80 37.19 1.628 0.192 0.047
4 582.53 83.71 27.34 1.464 0.184 0.041
5 319.64 41.33 15.28 0.793 0.115 0.057
6 147.78 19.95 6.48 0.316 0.042 0.015
7 91.64 15.71 8.32 0.174 0.025 0.011

Table 3.2: Black-box approximation of a WGP warping with five hyperbolic tangents: L1, L2

and L∞ error measures for transformations and induced distributions for different number of
layers.
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Figure 3.5: Representation of error measures in Table 3.2 normalised wrt to the error of the
single-layer case.

fall well outside this aim due to their intractable inference. Second, both BWGP and DGP
rely on variational inference (VI) methods. Therefore, the performance of BWGP/DGP
depends on the considered approximation. Consequently, a comparison using off-the-shelf VI
methods might be misleading; in fact, notice that DGP [33] did not compare against BWGP.
Third, according to [72], the standard WGP performed better that BWGP in five out of
six performance indices for the same datasets; as we consider those datasets in Sec. 3.6.4,
we are also indirectly comparing against BWGP. Finally, we believe that the availability of
an invertible warping is vital for interpreting the relationship between the base GP and the
transformed (non-Gaussian) process, as this leads to discovering statistical properties of the
data; this is an advantage of the CWGP that neither BWGP nor DGP can provide.

We next define performance indices to be used in our experimental evaluation to then proceed
to the simulations.
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3.6.1 Performance indices

For consistency with the existing literature on warped GPs [125, 72] and to give a thorough
evaluation of the model proposed, we considered four performance indices: the negative
log-likelihood (NLL), the root mean squared error (RMSE), the mean absolute error (MAE),
and the negative log predictive distribution (NLPD). These indices are described below and
should be interpreted as the lower the better.

Firstly, the NLL in eq. (3.5) is a measure of the probability of the observed data under the
chosen model. Model selection and fitting will be achieved by minimising the NLL wrt to the
model parameters and hyperparameters.

Let us now denote a test set {yi}ni=1 and the reported predictive means {y∗i }ni=1, and define
the RMSE and the MAE respectively by

RMSE =

(
1

n

n∑

i=1

(yi − y∗i )2

) 1
2

(3.13)

MAE =
1

n

n∑

i=1

|yi − y∗i |. (3.14)

These two indices are representative of point prediction errors.

Lastly, the NLPD, a measure of the (not necessarily Gaussian) distribution prediction error is
defined by

NLPD = − 1

n

n∑

i=1

log(pi(yi)), (3.15)

where {pi(·)}ni=1 are the learnt predictive densities.

In addition to the above performance indices, the models considered are also evaluated in
terms of their training and evaluation times in the second set of experiments.

3.6.2 Testing for robustness with the Sunspots time series

This example aims to show that adding more elementary functions to the CWGP only improves
performance and does not overfit to the training set. Using the Sunspot time series [122]
corresponding to the yearly number of sunspots between 1700 and 2008 (309 data points), we
randomly selected half of the data between 1700 and 1961 (131 observations) as the training
set. The remaining data points were used for evaluation: the data between 1700 and 1961 not
used from training (131 test points) were used for a reconstruction experiment, whereas the
data after 1961 (47 test points) were used for a forescasting experiment.

As the Sunspot series is positive valued and semiperiodic, we used the CWGP with a 2-
component spectral mixture (SM) kernel [143, 95] and different quantities of Box-Cox and
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Sinh-Arcsinh elementary functions. Each model was trained to minimise the NLL in eq. (3.5)
using both the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [90] and the derivative-
free global optimisation Powell [100]; this choice was due to the large number of local minima
that characterises the spectral-based kernels [137] and follows [107].

Fig. 3.6 shows the performance (NLL and NLPD) as a function of the number of elementary
functions of both models, where zero elementary functions mean standard GP. Notice how
these experiments confirm the robustness-to-overfitting ability of the CWGP, where despite the
unnecessary addition of elementary functions, the validation performance does not degrade—
even for forecasting. Also, Fig. 3.7 shows the trained models with zero elementary functions
(standard GP, top) and 6 elementary functions for the Sinh-ArcSinh (middle) and Box-Cox
(bottom) compositions.
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Figure 3.6: Training (left, NLL) and evaluation (right, NLPD) performance of Box-Cox
and Sinh-ArcSinh compositions as a function of the number of elementary transformations.
Evaluation is assessed over the reconstruction and forecasting experiments.

3.6.3 Learning a macroeconomic time series

We then implemented CWGP alongside a standard GP to learn the quarterly average 3-Month
Treasury Bill: Secondary Market Rate [42] between the first quarter of 1959 and the third
quarter of 2009, that is, 203 observations. We know beforehand that this macroeconomic
signal is the price of U.S. government risk-free bonds, which cannot take negative values
and can have large positive deviations. Therefore, we implemented CWGP with a warping
consisting of one affine and one Box-Cox elementary transformations in eqs. (3.7) and (3.9)
respectively. This experiment reveals the ability of CWGP to identify the complex statistical
properties of the data—where the standard GP fails.

Fig. 3.8 shows both GP (top) and CWGP (bottom) posterior distributions with only 40
observations for the time series, together with their means, error bars and sample trajectories,
while Table 3.3 shows the performance metrics. Notice the evident non-Gaussianity of the
posterior revealed by the asymmetry of the error bars. From this experiment, we identified
four key points that illustrate the superiority of the CWGP against GP: First, the proposed
CWGP performed better than GP under all metrics considered (see Section 3.6.1). Second,
the error bars and the noise variance are much tighter under CWGP, particularly around
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Figure 3.7: Posterior distribution over sunspots trajectories: GP (top), 6-component Sin-
hArcsinh (middle), and 6-component Box-Cox (bottom). Notice the tighter error bars of the
CWGP models and the skewed marginal posteriors that are concentrated on positive values.

quarters number 50 and 200. Third, the proposed CWGP was able to successfully identify
that the distribution of the signal cannot have negative support: even for ranges with missing
data (see between quarters 150 and 200) the error bars did not reach zero. Fourth, CWGP
was able to model positive deviations (see the peak around quarter 125) that fully contain
the true process.

MAE MSE NLPD NLL
GP 0.95 1.69 1.74 64.96
CWGP 0.88 1.75 1.42 57.36

Table 3.3: Macroeconomic data: Performance of GP and CWGP.

3.6.4 The Abalone, Ailerons and Creep datasets

In this experiment, we considered the three datasets used initially by WGP in [125] and
then by BWGP in [72] to validate CWGP. We regard the original WGP model with up to 3

38



0 50 100 150 200
Quarter

5

0

5

10

15

3­
M

on
th

 T
re

as
ur

y 
B

ill
S

ec
on

da
ry

 M
ar

ke
t R

at
e

Standard Gaussian Process (logp: ­64.962)

Mean 95% CI Hidden Process Observations 95% CI + Noise

0 50 100 150 200
Quarter

5

0

5

10

15

3­
M

on
th

 T
re

as
ur

y 
B

ill
S

ec
on

da
ry

 M
ar

ke
t R

at
e

Box­Cox Gaussian Process (logp: ­57.356)

Mean 95% CI Hidden Process Observations 95% CI + Noise

Figure 3.8: Posterior distribution of the Quarterly Average 3-Month Treasury Bill: Secondary
Market Rate between 1959 and 2009 using 40 observations (203 datapoints in total). Top:
Standard GP. Bottom: Proposed CWGP. Both models used a constant mean and a SE kernel.
The CWGP warping comprised an Affine and a Sinh-arcsinh transformation.

non-linear components, and the proposed CWGP model maximum of 2 nonlinear components
only. Notice that this follows the idea of compositional kernel search presented in [39].

Datasets and models considered

The regression problem associated with the Abalone dataset is to predict the age of an abalone
(a type of sea snail) from 8-dimensional physical features. The Ailerons dataset is a simulated
control problem designed to predict the control action on the ailerons of an F16 aircraft from
a 40-dimensional feature. In the Creep dataset, the objective is to predict creep rupture
stress (in MPa) for steel given the chemical composition and other 30-dimensional features.
Following [125, 72], the training set sizes were chosen to be 1000 out of 4177, 1000 out of 7154
and 800 out of 2066 for Abalone, Ailerons and Creep datasets respectively.

The models implemented were: (i) a standard GP, (ii) three variants of warped GP with
one, two and three tanh(·) components, and (iii) ten variants of the CWGP constructed
by composing the elementary transformations presented in Section 3.4. In total, 14 models
were trained and evaluated; all of these used automatic relevance determination squared-
exponential kernels [86] and a constant mean function for the base (latent) Gaussian process.
The motivation to implement ten variants of CWGP was to show the robustness of the
proposed model to the choice of warpings in terms of both predictive performance and
computational efficiency. All the experiments were implemented in Python using g3py [105],
an open-source library for stochastic process modelling.
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Abalone TimeT TimeE RMSE MAE NLPD
GP 19.927 1.362 2.158 1.543 2.287
WGP1 103.55 82.94 2.164 1.534 2.189
WGP2 124.57 72.48 2.174 1.526 2.079
WGP3 127.93 84.98 2.181 1.539 2.200
SA 15.112 1.374 2.191 1.516 2.190
BC-L 17.226 1.383 2.201 1.525 2.181
A-L 23.552 1.385 2.223 1.512 2.073
BC-S 10.811 1.382 2.211 1.530 2.225
BC-L-SA 16.456 1.395 2.465 1.561 5.272
BC-S-SA 11.354 1.380 3.980 1.525 2.295
A-L-BC-L 23.101 1.373 2.576 1.514 2.042
BC-L-A-L 16.236 1.396 2.295 1.547 2.263
A-L-BC-S 24.731 1.361 2.302 1.516 2.076
BC-S-A-L 19.215 1.375 2.490 1.517 2.115

Table 3.4: Performance of non-Gaussian models for the Abalone dataset: Training time
(TimeT), evaluation time (TimeE), RMSE, MAE and NLPD. The first model is a GP; WP1,
WGP2 and WGP3 are WGP models with one, two and three components respectively; and
the remaining models are different variants of the proposed CWGP composed by the following
elementary transformations: SA:SinhArcsinh, BC:Box-Cox, A:Arcsinh, L:affine, S:shifted.
Times are measured in seconds and recall that the lower the score, the better the model.

Ailerons TimeT TimeE RMSE MAE NLPD
GP 23.880 8.189 1.814 1.268 1.941
WGP1 151.571 239.947 1.800 1.264 1.935
WGP2 160.557 229.789 1.739 1.231 1.881
WGP3 179.417 245.485 1.765 1.247 1.903
SA 11.523 10.274 1.876 1.258 1.821
BC-L 22.708 7.948 1.741 1.228 1.810
A-L 24.892 9.447 1.959 1.385 1.919
BC-S 20.001 6.992 1.702 1.210 1.815
BC-L-SA 12.427 10.472 1.909 1.296 1.820
BC-S-SA 14.587 8.752 2.009 1.334 1.866
A-L-BC-L 19.113 8.266 1.733 1.224 1.793
BC-L-A-L 17.277 7.299 1.727 1.223 1.791
A-L-BC-S 18.417 7.023 1.707 1.212 1.791
BC-S-A-L 20.225 8.223 1.725 1.223 1.816

Table 3.5: Performance of non-Gaussian models for the Ailerons datasets. Notation follows
that of Table 3.4.

Learning the latent GPs and the transformations

For each model, training was as follows. We randomly split the training set in two: An
evaluation set and a validation set, both of the same size. We minimised the NLL in eq. (3.5)
concerning the evaluation set using the BFGS method starting from 6 initial values of the
(hyper)parameters: A default value independent of observations, a value calculated from the
observations, a prelearning value computed using the trained standard GP, and three random
values. We then selected the best model among the 6 trained models according to their RMSE
in eq. (3.13) over the validation set. This procedure was repeated 65 times for each model
and dataset to obtain an empirical distribution of the performance indices for each considered
model.
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Creep TimeT TimeE RMSE MAE NLPD
GP 12.711 1.312 3.163 2.123 2.462
WGP1 58.281 19.060 2.750 1.813 2.162
WGP2 73.323 29.419 2.758 1.808 2.166
WGP3 82.402 30.223 2.777 1.822 2.167
SA 14.325 0.918 2.813 1.826 2.148
BC-L 9.058 1.426 3.222 2.092 2.268
A-L 14.157 1.024 2.909 1.907 2.218
BC-S 8.139 1.582 3.076 2.055 2.325
BC-L-SA 10.401 0.828 3.592 2.374 2.378
BC-S-SA 6.759 1.269 3.879 2.416 2.434
A-L-BC-L 12.845 0.912 3.281 2.088 2.269
BC-L-A-L 11.161 1.002 3.252 2.103 2.296
A-L-BC-S 11.191 1.503 3.207 2.026 2.236
BC-S-A-L 8.117 0.917 4.231 2.447 2.399

Table 3.6: Performance of non-Gaussian models for the Creep datasets. Notation follows that
of Table 3.4.
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Figure 3.9: NLPD histograms (65 runs) for all models considered and the Abalone, Ailerons
and Creep datasets. The white points are the scores, the black marks are the average scores
per model, and the boxes denote the quantiles. The models with more white dots to the
left-hand side of the plot are the better ones.

Model evaluation

We evaluated each selected model using the NLL, RMSE, MAE and NLPD indices in Section
3.6.1 over the evaluation set. Tables 3.4-3.6 show the training and evaluation average times
(TimeT and TimeE respectively) and the average values of all the performance indices
considered for the 65 runs for all models and datasets. The proposed CWGP outperformed
all models according to the NLPD, a non-Gaussian performance indicator, whereas GP and
WGP performed better than CWGP in three cases according to RMSE/MAE. We attribute
this to the Gaussian nature of RMSE/MAE that neglects asymmetry or kurtosis.

Observe the appealing training and evaluation times of CWGP. Notice that CWGP’s training
time was in the same order as that of the standard GP and sometimes even lower, this is
because fitting a Gaussian model to non-Gaussian data might yield a flat NLL and therefore
minimisation requires several steps of BFGS. Fig. 3.9 shows a histogram of the 65 NLPD
scores for each model and dataset, where the white points are the scores, the black marks are
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the average score per model and the boxes denote the quantiles. All non-Gaussian models
outperform the standard GP in average, and we can see that WGP scores have two modes
(especially in the Abalone and Aileron datasets): one closer to the standard GP and another
one closer to the scores of the proposed CWGP. This result is due to the difficulty of training
WGP, wherein several cases the combination of the Newton-Raphson approximation and
the BFGS optimiser fail to find an appropriate nonlinear map. Therefore, the sum-of-tanh
warping reduces to the identity, and thus WGP collapses to the standard GP.
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Chapter 4

Transport Gaussian Processes

“In stochastic processes the future is not uniquely determined, but we have at least
probability relations enabling us to make predictions.”

– William Feller, in An Introduction To Probability Theory And Its Applications

Following the work developed in Chapter 3, our primary motivation is to extend the Gaussian
process methods to other stochastic processes that are more accurate in their assumptions
concerning the modelled data, maintaining the elegance and interpretability of its elements.
Some authors have defined other models much more expressive than GPs [145], providing
methods and approximation techniques, since their exact inference is intractable [70]. In
addition to the models discussed previously (WGP [125], BWGP [73] and DGP [33]), a
related model is the Student-t process [119] (SP), an extension of the GP with appealing
closed-form formulas for training and prediction. It is strictly more flexible due to heavier tails,
stability against outliers and stronger dependencies structures, thanks to its non-Gaussian
copula. In practice, it has better performance than GPs on Bayesian optimisation [120] and
state-space model regression [126]. However, SPs are viewed differently from the models
discussed previously, and to date, we do not know of any work that relates them in any way.

The main difficulty of generalising the idea of transform a reference stochastic process is that
the transformation must be evaluated over the paths of the process, and except for specific
cases such as coordinate transformations, it cannot be implemented as practical models. While
the measure-theoretic approach to stochastic processes starts with a probability space, in
machine learning the starting point is a collection of finite-dimensional distributions.

The well-know Kolmogorov’s consistency theorem [134] guarantees that a suitably consistent
collection of these distributions F = {ηt1,...,tn|t1, ..., tn ∈ T , n ∈ N} will define a stochastic
process f = {xt}t∈T , with finite-dimensional laws F . By abuse of notation, their law is
denoted as η. Denoting by Ft1,...,tn(x1, ..., xn) the cumulative distribution function of ηt1,...,tn ,
the consistency conditions over F are:

1. Permutation condition: Ft1,...,tn (x1, ..., xn) = Ftτ(1),...,tτ(n)

(
xτ(1), ..., xτ(n)

)
for all t1, ..., tn ∈

T , all x1, ..., xn ∈ X and any n-permutation τ .
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2. Marginalisation condition: Ft1,...,tn+m (x1, ..., xn,+∞, ...,+∞) = Ft1,...,tn (x1, ..., xn) for
all t1, ..., tn+m ∈ T and all x1, ..., xn ∈ X .

The main idea that we develop in this Chapter is, for a given and fixed reference stochastic
process f , push-forwarding1 each of its finite-dimensional laws ηt ∈ F by some measurable
maps2 Tt ∈ T , to generate a new set of finite-dimensional distributions F̂ and thus a stochastic
process. The main difficulty of this approach is that, in general, F̂ can be inconsistent, in the
sense that it can violate some consistency conditions; however, it is possible to choose the
maps that induce a consistent set of finite-dimensional laws and therefore a stochastic process.

The main idea is to construct stochastic processes, composed of different layers, following the
same guidelines as deep architectures, but where each layer has an interpretation defining a
feature of the process. In this Chapter we define four types of finite-dimensional transports,
that can be seen as elementary layers for our proposed regression model. Our approach
starts from a reference Gaussian process noise, since it is a well-know process with explicit
density and efficient sampling methods, to generate more expressive stochastic processes. The
proposed approach can model non-Gaussian copula and marginals, beyond the known WGP
[125, 107, 108] and SP [119], but including all of them from a unifying point of view. The
first layer determines the copula of the induced process, that can be elliptical or Archimedian
via elliptical or Archimedian transports. In the elliptical case, it is possible to compose it
with a covariance transport in order to determine the correlation on the induced stochastic
process. Finally, in any case, we can compose any number of marginal transports to define an
expressive marginal distribution over the induced stochastic process, as it is shown in the
previous work [108]. As we saw in the previous sections, these compositions are consistent and
expressive enough to include GPs, WGPs, SPs, Archimedean processes, elliptical processes,
and those that we could call warped Archimedean processes and warped elliptical processes.

Our main contribution is to understand the consistency in compositions, to derive general
analytic expressions for their posterior distributions and likelihoods functions, and to develop
practical methods for the inference and training of our model, given data. The remainder of
this Chapter is organised as follows. In Section 4.1, we introduce the notation and necessary
mathematical background to develop our work. Our main definition is in Section 4.2, where
we propose the transport process (TP) and the inference approach. On Section 4.3, we study
the marginal transport that isolates all properties over the univariate marginals of the TP.
Similarly, in Section 4.4, we develop the covariance transport, that determines the correlation
over the TP. Finally, the main contribution is in Section 4.5, where we introduce the radial
transports, that allow us to define the dependency structure (a.k.a copula) over the TP. On
Section 4.6, we deepen in details over the computational and algorithmic implementation,
and on Section 4.7 we validate our approach with real-world data.

1Given a measure η and a measurable map ϕ, the push-forward of η by ϕ is the measure defined as
[ϕ#η](·) = η(ϕ−1(·)).

2Since the set of all indexed measurable maps Tt contains information on all coordinates, by abuse of
notation it is denoted as T .
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4.1 Introduction

As we reviewed in Chapter 3, WGP define non-Gaussian models with appealing mathematical
properties akin to GPs, such as having closed-form expressions for inference and learning.
However, they inherit an unwanted Gaussian drawback: the dependence structure, known as
copula, remains purely Gaussian. To understand the implications of this issue, we need to
formalise the concept of dependence. Let us fix some notation and conventions.

Given a multivariate distribution η, we denote its cumulative distribution function by Fη(·).
As long as there is no ambiguity, the cumulative distribution function of their i-th marginal
distribution ηi is denoted as Fi(x) := Fηi

(x), as well as its right-continuous quantile function,
Qi(u) := F−1

i (u) = inf{x|Fi(x) ≥ u}. If a multivariate cumulative distribution function C has
uniform univariate marginals, that is, Ci(u) = max(0, u ∧ 1) for i = 1, ..., n, then we say that
C is a copula. The next result, known as Sklar’s theorem [123], shows that any distribution
has a related copula.

Theorem 4.1.1 Given a multivariate distribution η, there exists a copula C such that
Fη(x1, ..., xn) = C(F1(x1), ..., Fn(xn)). If the Fi are continuous, for i = 1, ..., n, then the copula
is unique and given by Cη(u1, ..., un) = Fη(F

−1
1 (u1), ..., F−1

n (un)).

If η is a Gaussian distribution, its unique copula has a density determined entirely by its
correlation matrix R, and it is given by cη(u) = det(R)−

1
2 exp

(
−1

2
x>[R−1 − I]x

)
, where

xi = F−1
s (ui) with Fs the standard normal cumulative distribution function. Note that if

their coordinates are uncorrelated, then Cη coincides with the independence copula. For
Gaussian models, correlation and dependence are equivalent; however, beyond the realm of
Gaussianity, this is not the case. Some variables can be uncorrelated but can show dependence
on unusually events, as exhibited in financial crises or natural disasters. Unfortunately, as
outlined below, the Gaussian copula is not suitable for these kinds of structural dependences.

Dependence between random variables is more complex than just correlation, highlighting an
extreme value theory concept: tail dependence [27]. The coefficients of lower and upper tail de-
pendence between two r.v. x1 and x2 are defined as λl = limq→0 P

(
x2 ≤ F−1

2 (q)|x1 ≤ F−1
1 (q)

)

and λu = limq→1 P
(
x2 > F−1

2 (q)|x1 > F−1
1 (q)

)
[117], where Fi denote the cumulative distri-

bution function of xi for i = 1, 2. These coefficients provide asymptotic measures of the
dependence in the tails (extreme values), which are isolates of their marginals distributions.
For independent continuous r.v. we have that λl = λu = 0, whereas for variables with
correlation ρ = 1 we have that λl = λu = 1. For Gaussian distributions, however, the result is
surprising: for ρ < 1 we have that λl = λu = 0.

The above result implies that Gaussian variables are asymptotically independent, meaning
that the Gaussian assumption does not allow for modelling extreme values dependence. This
inability, inherited by any diagonal transformation such as Φ aforementioned, can result in
misleading calculations of probabilities over extreme cases. This issue was observed mainly in
the 2008 subprime crisis, where the Gaussian dependence structure is pointed out as one of
the leading causes, thus evidencing that the devil is in the tails [38]. Constructing stochastic
processes that account for tail dependence is challenging since, in general, distributions
satisfying the consistency conditions are scarce.
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4.2 Transport Process

The following definition is one of our main contributions as it allows us to construct non-
Gaussian processes as non-parametric regression models.

Definition 4.2.1 Let T = {Tt : X n → Yn ⊆ Rn|t ∈ T n, n ∈ N} be a collection of measurable
maps and f = {xt}t∈T a stochastic process with law η. We say that T is a f -transport if the
push-forward finite-dimensional distributions F̂ = {πt := Tt#ηt|t ∈ T n, n ∈ N} are consistent
and define a stochastic process g = {yt}t∈T with law π. In this case we say that the maps
Tt are f -consistent, and that T (f) := g is a transport process (TP) with law denoted as
T#η := π.

The main idea of the previous definition is to start from a simple stochastic process, one that
is easy to simulate, and then to generate another stochastic process that is more complex and
more expressive. Since our purpose is to model data through their finite-dimensional laws,
our definition implies a correspondence between the laws of the reference process and those of
the objective process; for this reason, it is important that the mappings retain the size of the
distributions and the respective indexes.

It is straightforward that are many collection of measurable maps that are inconsistent,
even in some simple cases. For example, consider the swap maps given by T1(x1) = x1,
T12(x1, x2) = (x2, x1) and so on. If f is a heteroscedastic Gaussian process, then we have

F1(x1) = N1(x1|0, σ2
1) and F12(x1, x2) = N2

(
(x1, x2)|0,

[
σ2

1 σ12

σ12 σ2
2

])
. The push-forward

distributions are given by G1(y1) = N1(x1|0, σ2
1) and G12(y1, y2) = N2

(
(y1, y2)|0,

[
σ2

2 σ12

σ12 σ2
1

])
,

and since lim
y2→∞

G12(y1, y2) = N1(x1|0, σ2
2) 6= N1(x1|0, σ2

1) = G1(y1), so we have that T is

inconsistent for f . Note that if f is a trivial i.i.d. stochastic process, then T is f -consistent.

To be able to use transport processes as regression models, we must be able to define a
finitely-parameterised transport T θ with θ ∈ Θ ⊂ Rd, where the finite-dimensional maps
(T θ)t are consistent and invertible. For example, given θ ∈ Θ = X the shift transport is
T θ = {Tt(x) = x+ θ|t ∈ T n, n ∈ N}, or simply (T θ)t(x) = x+ θ. For simplicity, if there is no
ambiguity, we will denote (T θ)t as Tt. In the next sections, we will show more sophisticated
examples of finitely-parameterised transports T θ, so in what follows we concentrate on
explaining the general approach of using TP as regression models.

4.2.1 Learning transport process

As in the GP approach, given observations, the learning task corresponds to finding the best
transport T θ, determined by the parameters θ that minimises the negative logarithm of their
marginal likelihood (NLL), given below.

Proposition 4.2.2 Let g = T θ(f) be a transport process with law π = T θ#η, where η has
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finite-dimensional distributions with density denoted ηt. Given observations (t,y), if the map
Tt is invertible on y (for simplicity we denote T−1

t as St) and differentiable on x = St(y), its
NLL is given by

− log πt(y|θ) = − log ηt(St(y))− log |∇St(y)|
= − log ηt(St(y)) + log |∇Tt(St(y))|. (4.1)

The first equality is due to the change of variables formula [58]. For the second identity, via
the inverse function theorem [112] we have that ∇St(y) = ∇Tt(x)−1, and by the determinant
of the inverse property [99] we get |∇Tt(x)−1| = |∇Tt(x)|−1. To calculate eq. (4.1) we need
to be able to compute the log-density of ηt, the inverse St, and the gradient ∇Tt (or ∇St).

It is important to note that the reference process is fixed and the trainable object corresponds
to transport. In other words, following the principle known as reparametrisation trick [66], the
model is defined so that random sources have no parameters, so that optimization algorithms
can be applied over deterministic parametric functions. Akin to the GP approach, the NLL
for transport process (eq. (4.1)) follows an elegant interpretation of how to avoid overfitting:

• The first term − log ηt(St(y)) is the goodness of fit score between the model and the
data, privileging those θ that make St(y) to be close to the mode of ηt. E.g., if ηt is
a standard Gaussian, this term (omitting a constant) is 1

2
‖St(y)‖2

2, and with enough
observations it results in overfitting: St is the null function.

• On the other hand, the second term − log |∇(St(y)| is the model complexity penalty,
and it prioritises those θ that make |∇St(y)| to be large, i.e. St has large deviations
around y, thus avoiding the null function and, in turn, the overfitting. Note that a valid
map satisfies |∇St(y)| > 0.

4.2.2 Inference with transport process

Once the transport T θ is trained, via minimising the NLL, inference is performed via calculating
the posterior distribution of (t̄, ȳ) given observations (t,y) under the law π: for any inputs t̄
we compute the posterior distributions πt̄|t(·|y). As our goal is to generate stochastic processes
more expressive than GPs, the mean and variance are not sufficient to compute (e.g. we
need expectations associated with extreme values). For this reason, our approach is based on
generating efficiently independent samples from πt̄|t, to then perform calculations via Monte
Carlo methods [111].

Since we assume that we can easily obtain samples from ηt̄ (and ηt̄|t if necessary), we will
show how to use these samples and the transport T θ to efficiently generate samples from πt̄|t.
The principle behind this idea is that if πt̄|t = ϕ#ηt̄ and x ∼ ηt̄ then ϕ(x) ∼ πt̄|t. In cases
where this principle can not be applied, we can alternatively obtain samples using methods
based on MCMC, which need to be able to evaluate the density of the posterior distribution.
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4.3 Marginal Transport

In this section, we present a family of transports named marginal transports, given that they
can change the marginals distributions of a stochastic process, extending in this way the
mean function from GPs, as well as the warping function from WGPs, including the model
CWGP presented previously on Chapter 3. We prove their consistency, deliver the formulas
for training, and give a general method to sampling.

Definition 4.3.1 T = {Tt|t ∈ T n, n ∈ N} is a marginal transport if there exists a measurable
function h : T × X → X , so that [Tt(x)]i = h(ti, xi) for t ∈ T n,x ∈ X n, n ∈ N. Additionally,
if h(t, ·) : X → X is increasing (so differentiable a.e.) for all t ∈ T , then we said that T is a
increasing marginal transport.

A marginal transport is defined in a coordinate-wise manner via the function h. For example,
given a location function m : I → X , then h(t, x) = m(t) + x induces a marginal transport
T h such that if η = GP(0, k) then T h#η = GP(m, k). As T h determinates the mean on the
induced stochastic process, usual choices for m are elementary functions like polynomial,
exponential, trigonometric and additive/multiplicative combinations.

However, this family of transports is more expressive than just determining the mean, being
able to define higher moments such as variance, skewness and kurtosis. This expressiveness
can be achieved, beside the location function m, by considering a warping ϕ : Y → X to define
the transport T h induced by the composite function h(t, x) = ϕ−1 (m(t) + x), such that if
η = GP(0, k) then we have that T h#η =WGP(ϕ,m, k). The most common warping functions
are affine, logarithm, Box-Cox [107], and sinh-arcsinh [61], which can be composed to generate
more expressive warpings. This layers-based model, named compositionally WGP, has been
thoroughly studied in previous works [107, 108]. However, the expressiveness of marginal
transport is more general since the warping function can change across the coordinates.

4.3.1 Consistency of the marginal transport

Marginal transports are well-defined with a GP reference, in the sense that it always defines a
set of consistent finite-dimensional distributions, and thus it induces a stochastic process. The
following proposition shows that this family of transports is compatible with any stochastic
process, a property which we refer to as universally consistent.

Proposition 4.3.2 Given any stochastic process f = {xt}t∈T and any increasing marginal
transport T , then T is an f -transport.

Proof. Given ηt ∈ F a finite-dimensional distribution, the transported cumulative distribution
function is given by Fπt(y) = Fηt((h

−1(ti, yi))
n
i=1), where h−1(t, ·) denotes the inverse on the

X -coordinate of h, which is also increasing.
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The marginalisation condition is fulfilled since Fηt,tn+1
(x,∞) = Fηt(x), so we have

Fπt,tn+1
(y,∞) = Fηt,tn+1

((h−1(ti, yi))
n
i=1, h

−1(tn+1,∞)),

= Fηt,tn+1
((h−1(ti, yi))

n
i=1,∞) = Fηt((h

−1(ti, yi))
n
i=1) = Fπt(y).

Given an n-permutation τ , we denote τ(t) = tτ(1), ..., tτ(n) and τ(y) = yτ(1), ..., yτ(n). Since
Fητ(t)

(τ(x)) = Fηt(x) then Fπτ(t)
(τ(y)) = Fητ(t)

((h−1(tτ(i), yτ(i)))
n
i=1) = Fηt((h

−1(ti, yi))
n
i=1) =

Fπt(y), satisfying the conditions.

Remark 4.3.3. In general we will assume that marginal transports are increasing, due to for
any fixed stochastic process f and any marginal transport T , exist an increasing marginal
transport T h such that T#f and T h#f have the same distributions (i.e. all their finite-
dimensional distributions agree [121]). The increasing function h is defined via the unique
monotone transport maps from ηt to πt given by h(t, x) = F−1

πt (Fηt(x)) for each t ∈ T [30].

Marginal transports T h satisfy straightforwardly the consistency condition since there are
coordinate-wise maps. This diagonality is an appealing mathematical property, but it has a
high cost: the transport process inherits the same copula from the reference process. This
fact implies that independent marginals, such as white noise, remain independent with the
marginal transport. The following proposition shows the benefits and limitations of diagonality
[144].

Proposition 4.3.4 Let f = {xt}t∈T be a stochastic process with marginal cumulative
distribution functions Ft for t ∈ T , and copula process C. Given any sequence of cumulative
distribution functions {Gt}t∈I , the function h(t, x) = G−1

t (Ft(x)) induces a marginal transport
T h where g = T h#f is a transport process with marginals Gt and copula process C.

Proof. The copula of f is the stochastic process C = {Ct}t∈T where Ct := Ft(xt) follows a
uniform distribution. The transport process g = T h#f = {yt}t∈T satisfies yt = G−1

t (Ft(xt)) =
G−1
t (Ct), so its copula process D = {Dt}t∈T is given by Dt = Gt(yt) = Gt(G

−1
t (Ct)) = Ct.

Thus, f and g have the same copula.

4.3.2 Learning of the marginal transport

For learning we have to calculate the NLL given by eq. (4.1). The inverse map is given by
St(y)i = h−1(ti, yi) = xi and the model complexity penalty is given by

log |∇St(y)| =
∑

i

log
∂h−1

∂y
(ti, yi) = −

∑

i

log
∂h

∂y
(ti, xi). (4.2)

E.g., if h(t, x) = ϕ−1 (m(t) + σ(t)x), then h(t, y)−1 = ϕ(y)−m(t)
σ(t)

and log |∇St(y)| =
∑

i log ϕ′(yi)
σ(ti)

.
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4.3.3 Inference with marginal transport

For inference on new inputs t̄, the posterior distribution πt̄|t(·|y) is the push-forward of
ηt̄|t(·|St(y)) by Tt̄, so if x̄ ∼ ηt̄|t(·|St(y)) then ȳ = Tt̄(x̄) ∼ πt̄|t(ȳ|y). Note that the
probability of a set E under the density of πt is equal to the probability of the image h−1

t (E)
under the density of ηt, where ht(·) := hθ(t, ·). Thus, if we can compute marginals quantiles
under ηt, such as the median and confidence intervals, we can do the same under πt. Even
more, the expectation of any measurable function v : Y → R under the law πt(y) is given by
Eπt [v (y)] = Eηt [v (ht (x))].

4.4 Covariance Transport

From the results of the previous section, the only way to induce a different copula under our
transport-based approach is to consider non-diagonal maps. The problem with these maps is
that we lose the property of universally consistent, but it is possible to find conditions over
the reference stochastic processes so that the transport is consistent.

In this section, we present a family of transports named covariance transports, that allows us
to change the covariance, and therefore the correlation, over the induced stochastic process.
These transports are based on covariance kernels, e.g. the squared exponential given by
k(t, s) = σ2 exp(−r|t− s|2) with parameters θ = (σ, r).

Definition 4.4.1 T k = {Tt|t ∈ T n, n ∈ N} is a covariance transport if there exists a
covariance kernel k : T × T → R, so that Tt(x) = Ltx, where Lt is a square root of
Σtt = k(t, t), i.e. LtL

>
t = Σtt.

Since Σtt is a definite positive matrix, always exist an unique definite positive square root
denoted Σ

1/2
tt and named the principal square root of Σtt. Additionally, always exist an unique

lower triangular square root denoted chol(Σ) and named as the lower Cholesky decomposition
of Σtt, where later we will show his importance to getting practical transports.

If T k is a covariance transport induced by k and f ∼ GP(0, δ(t, t̄)) is a Gaussian white
noise process, then we have that T k is a f -transport where T k(f) ∼ GP(0, k), i.e. T k fully
defines the covariance over the transport process. This fact is true due to the maps Tt(x)
being linear (given by Tt(x)i =

∑n
j=1 lijxj where [Lt]ij = lij), so given a finite-dimensional

law ηt =∼ Nn(0, I), by the linear closure of Gaussian distributions we have that Tt#ηt =
Nn(0,Σtt) where LtL

>
t = Σtt = kθ(t, t). We assume for now the consistency of the covariance

transport, but we will study it at the end of this section, once we have revised the concept of
triangularity.
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4.4.1 Learning of the covariance transport

We say that a finite-dimensional map Tt : Rn → Rn is triangular if it structure is triangular,
in the sense Tt(x)i = Ti(x1, ..., xi) for i = 1, ..., n. If Tt is differentiable, then it is triangular
if and only if its Jacobian ∇Tt is a lower triangular matrix. We say that a transport T is
triangular if its finite-dimensional maps are triangular. While a marginal transport is diagonal,
a covariance transport with lower Cholesky decomposition is triangular. Note that diagonal
maps are also triangular maps, and the composition of triangular maps remains triangular.
Triangularity is an appealing property for maps, since it allows us to perform calculations
more efficiently that in the general case. The following result shows the similarity between
triangular and diagonal maps for the learning task.

Proposition 4.4.2 Let Tt be an invertible and differentiable triangular map on x. If we
denote Tt(x) = y then:

• the inverse map St is also triangular that fulfills that St(y) = x,
• the model complexity penalty is given by

log |∇St(y)| =
∑

i

log
∂Si

∂yi

(y1, ..., yi) = −
∑

i

log
∂Ti

∂xi

(x1, ..., xi).

Proof. The first coordinate satisfies T1(x1) = y1 so S1(y1) = x1. By induction, we have
Sk(y1, ..., yk) = xk, and since Tk+1(x1, ..., xk+1) = yk+1, then we have the equation

Tk+1(S1(y1), ..., Sk(y1, ..., yk), xk+1) = yk+1,

so we can express xk+1 in function of y1, ..., yk+1, i.e. Sk+1(y1, ..., yk+1) = xk+1 so St is
triangular. With this we have that ∇St(y) is a lower triangular matrix, so its determinant is
equal to the product of all the elements on the diagonal. The complexity penalty, then, is
analogous to the diagonal case.

For triangular covariance transports we have that St(y) = L−1
t y, which can be computed

straightforwardly via forward substitution [36], and log |∇St(y)| = −
∑

i log lii, where lii are
the diagonal values of Lt.

4.4.2 Inference with the covariance transport

Triangular maps allow efficient inference since posterior distributions can be calculated as a
push-forward from the reference.

Proposition 4.4.3 Given observations y ∼ πt, denote x = T−1
t (y) and by ηt̄|t(x̄|x) the

posterior distribution of η. Assume that the transports Tt are triangular, then the posterior
distribution of π is given by

πt̄|t(ȳ|y) =
[
Pt̄ ◦ T x

t,t̄

]
#ηt̄|t(·|x), (4.3)

where T x
t,t̄(·) = Tt,t̄(x, ·), and Pt̄(·) is the projection on t̄, i.e. Pt̄(x, x̄) = x̄.
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Proof. Since the maps are triangular, their inverses also are triangular:

T−1
t,t̄

(y, ȳ) = [T−1
t (y), T−1

t̄|t (ȳ|T−1
t (y))],

and as its gradient it is also triangular, then their determinants satisfy

|∇T−1
t,t̄

(y, ȳ)| = |∇T−1
t (y)||∇ȳT

−1
t̄|t (ȳ|T−1

t (y))|.

With these identities, the posterior density of πt̄|t(ȳ|y) is given by

πt̄|t(ȳ|y) =
πt,t̄(y, ȳ)

πt(y)
=
ηt,t̄(T

−1
t,t̄

(y, ȳ))|∇T−1
t,t̄

(y, ȳ)|
ηt(T

−1
t (y))|∇T−1

t (y)|
,

=
ηt,t̄(T

−1
t (y), T−1

t̄|t (ȳ|T−1
t (y)))

ηt(T
−1
t (y))

|∇T−1
t (y)||∇ȳT

−1
t̄|t (ȳ|T−1

t (y))|
|∇T−1

t (y)|
,

=ηt̄|t(T
−1
t̄|t (ȳ|T−1

t (y))|T−1
t (y))|∇ȳT

−1
t̄|t (ȳ|T−1

t (y))|,
=Tt,t̄(T

−1
t (y), ·)|t̄#ηt̄|t(·|T−1

t (y)) =
[
Pt̄ ◦ T x

t,t̄

]
#ηt̄|t(·|x).

For the covariance transport, and given new inputs t̄, the posterior distribution πt̄|t(ȳ|y)
is the push-forward of ηt̄|t(·|L−1

t y) by the affine map T (u) = AtL
−1
t y + At̄u, where Lt,t̄ =[

Lt 0
At At̄

]
. Note that AtL

−1
t = Σt̄tΣ

−1
tt and At̄A

>
t̄ = Σt̄t̄ − Σt̄tΣ

−1
tt Σt̄t, so the map agrees

with T (u) = Σt̄tΣ
−1
tt y + Lt̄|tu, where Lt̄|t = chol(Σt̄|t) with Σt̄|t = Σt̄t̄ − Σt̄tΣ

−1
tt Σt̄t.

4.4.3 Consistency of the covariance transport

Going back to the issue of consistency, the following proposition gives us a condition over
triangular maps that imply consistency under marginalisation.

Proposition 4.4.4 Let T = {Tt : X n → X n|t ∈ T n, n ∈ N} be a collection of triangular
measurable maps that satisfy Pt ◦ Tt,tn+1(y, yn+1) = Tt(y), with Pt the projection on t. Then
T is universally consistent under marginalisation.

Proof. The push-forward finite-dimensional distribution function is Fπt(y) = Fηt(St(y)).
Since a valid map satisfies ∂Si

∂yi
(y1, ..., yi) > 0 for all i ≥ 1, then Stn+1 is increasing on

yn+1 so Stn+1(y,∞) = ∞. With this, if Pt ◦ Tt,tn+1(y, yn+1) = Tt(y) then the inverse also
satisfies this. Finally, the marginalisation condition is fulfilled becauses Fπt,tn+1

(y,∞) =
Fηt,tn+1

(St,tn+1(y,∞)) = Fηt,tn+1
(St(y), Stn+1(y,∞)) = Fηt,tn+1

(St(y),∞) = Fηt(St(y)) =
Fπt(y).

Note that diagonal and covariance transports satisfy the above condition, that can be
interpreted like an order between their finite-dimensional triangular maps. The consistency
under permutations means that, given any n-permutation τ , it satisfies Fπτ(t)

(τ(y)) = Fπt(y),
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or equivalently, Fητ(t)
(Sτ(t)(τ(y))) = Fηt(St(y)). Since η is consistent under permutations, we

have the following condition over ηt and St:

Fηt(τ
−1(Sτ(t)(τ(y)))) = Fηt(St(y)). (4.4)

The above equality can be written in terms of the density function as

ηt(τ
−1(Sτ(t)(τ(y))))

∣∣∇(τ−1(Sτ(t)(τ(y))))
∣∣ = ηt(St(y)) |∇St(y)| . (4.5)

Note that if T is universally consistent under permutations, then it has to satisfy τ(St(y)) =
Sτ(t)(τ(y))), so T must be diagonal. This mean that strictly triangular transports can be
consistent only for some families of distributions. The following proposition shows one
condition over η for consistency of covariance transports.

Proposition 4.4.5 Let f = {xt}t∈T be a stochastic process where its finite-dimensional laws
have densities with the form ηt(x) = βn(‖x‖2), for some functions βn with n = |t|. Then any
triangular covariance transport T k is an f -transport.

Proof. We just need to check consistency under permutations. We have that St(y) =
L−1
t y, so |∇St(y)| = |Lt|−1 =

∏
i l
−1
ii , where lii are the diagonal values of Lt. Note that

this calculation is independent of y and it only depends on the values of the diagonal, so∣∣∇(τ−1(Sτ(t)(τ(y))))
∣∣ = |Lτ(t)|−1 =

∏
i d−1

ii , where dii are the diagonal values of Lτ(t). Since
|Σtt| = |Lt|2 and |Στ(t)τ(t)| = |PτΣttPτ | = |Σtt| then we have that |Lτ(t)| = |Lt|. With this
identity, we need that ηt(τ−1(L−1

τ(t)τ(y))) = ηt(L
−1
t y), but this is fulfilled under the hypothesis

over ηt, since

ηt(τ
−1(Sτ(t)(τ(y)))) = βn

(∥∥∥τ−1(L−1
τ(t)τ(y))

∥∥∥
2

)
= βn

(
τ(y)>Σ−1

τ(t)τ(t)τ(y))
)

= βn
(
yΣ−1

tt y
)

= ηt(L
−1
t y).

Note that the standard Gaussian distribution satisfies the hypothesis with βn(r) = cn exp(−r2/2)
where cn = (2π)−n/2. This family of distributions is known in the literature as spherical
distributions, and their generalisation with covariance is known as elliptical distributions [91].
In the next section, we will study these distributions via a new type of transports.

4.5 Radial Transports

While covariance and marginal transports can model correlation and marginals, they inherit
the base copula from the reference. For example, if the reference process is a GP, through
covariance and marginal transports we can only generate WGP with Gaussian copulas. Our
proposal to construct other copulas relies on radial transformations that are capable of
modifying the norm of a random vector, changing its copula in this way.
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Definition 4.5.1 T = {Tt|t ∈ T n, n ∈ N} is a radial transport if there exists a radial
function φ(r) = α(r)

r
, with α : R+ → R+ monotonically non-decreasing, and ‖·‖ a norm over

X n so that Tt(x) = φ(‖x‖)x.

According to the chosen norm ‖·‖, the copula family generated by our approach is different.
The Euclidean `2 norm, ‖·‖2, allows us to define elliptical processes; the Manhattan `1 norm,
‖·‖1, allows us to define Archimedean processes. In the following sections we will study these
respective elliptical transports and Archimedean transports.

4.5.1 Elliptical processes

In the previous section, we introduced a particular family of distributions known as spherical
distributions that are consistent with covariance transport. We now introduce a generalisation
called elliptical distributions [91].

Definition 4.5.2 x ∈ Rn is elliptically distributed iff there exists a vector µ ∈ Rn, a
(symmetric) full rank scale matrix A ∈ Rn×n, a uniform random variable U (n) on the unit
sphere in Rn, i.e.

∥∥U (n)
∥∥

2
= 1, and a real non-negative random variable R ∈ R+, independent

of U (n), such that x d
= µ+RAU (n), where d

= denotes equality in distribution.
Remark 4.5.3. If x is elliptically distributed and has density η(x), then for some positive
function βn, it has the form η(x) = |Σ|−1/2 βn((x− µ)>Σ−1(x− µ)), where Σ = A>A and R
has density pR(r) = 2πn/2

Γ(n/2)
rn−1βn(r2) [91].

Gaussian distributions are members of elliptical distributions: if x ∼ Nn(0,Σxx) then x
d
=

RnLtU
(n) with Rn ∼

√
χ2(n) (i.e. follow a Rayleigh distribution) and Σxx = L>t Lt. However

elliptical distributions include other distributions like the Student-t [35], a widely-used
alternative due to its heavy-tail behaviour. Elliptical processes have a useful characterisation
as follows:

Theorem 4.5.4 (Kelker’s theorem [62]) f is an elliptical process where the finite-dimensional
marginals x have density if and only if there exists a positive random variable R such that
x|R ∼ Nn(µx, RΣxx).

The above result can be summarised in that elliptic processes are mixtures of Gaussian
processes. This characterisation gives us a direction to achieve our goal through radial
transports.

Elliptical transport

Our goal is to define stochastic processes via our transport approach where their copula is
elliptical, beyond the Gaussian case. Let us set some notation. Given a r.v. R, its cumulative
distribution function is denoted FR. The square-root of a chi-squared (a.k.a. Rayleigh)
distributed r.v. will be denoted Rn ∼

√
χ2(n). Our idea to transport a Gaussian copula to
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another elliptical copula is based on the following optimal transport result [30, 50].

Proposition 4.5.5 Let x d
= RAU (n) be an elliptically distributed r.v. Given a positive r.v.

S, consider the radial map Tα(x) = φ(‖x‖2)x = α(‖A−1x‖2)
‖A−1x‖2 x where α(r) = F−1

S (FR(r)). Then

we have that Tα(x)
d
= SAU (n).

A useful property of this type of transports is that we can generate distributions with different
elliptical copulas by changing the norm without altering the correlation.

Lemma 4.5.6 The radial transport Tα does not modify the correlation.

Proof. Let x
d
= RAU (n). Then, Cov(x) = E(R2)

rank(A)
A>A = cΣ. As y =: Tt(x)

d
= α(R)AU (n)

then Cov(y) = E(α(R)2)
rank(A)

A>A = dΣ. As Cov(y) = d
c
Cov(x), we have Corr(y) = Corr(x).

Note that if x d
= RU (n) then Tα(x) = φ(‖x‖2)Ax

d
= α(R)AU (n) . Since we can decompose

Tα(x) = A(φ(‖x‖2)x) in a covariance transport, we merely consider the elliptical transport
as Tt(x) = φ(‖x‖2)x. The next result characterises a family of transports based on radial
functions that generate elliptical processes from Gaussian white noise processes.

Theorem 4.5.7 Let pθ be a density function supported on positive real line. Define
FRn,θ(r) :=

∫∞
0
pθ(s)FRn(r/s)ds and αn,θ(r) = F−1

Rn,θ
◦ FRn(r). Then the elliptical radial

transport defined by Tt(x) :=
αn,θ(‖x‖2)

‖x‖2 x is an f -transport with f ∼ GP(0, δ(t, t̄)), where the
transport process g := T (f) has finite-dimensional elliptical distributions.

Proof. Let Rθ be a positive r.v. with density function pθ. Since Rn ∼
√
χ2(n) is also a

positive r.v., by the product distribution formula [109] we have that the r.v. Rn,θ := RθRn

has a cumulative distribution function given by FRn,θ(r) :=
∫∞

0
pθ(s)FRn(r/s)ds. Given that

the finite-dimensional laws of f are ηt = Nn(0, I), if x ∼ ηt, then ‖x‖2
d
= Rn, so αn,θ(‖x‖2)

d
=

Rn,θ
d
= RθRn and x

‖x‖2
d
= U (n) are independent, having thus that Tt(x)

d
= RθRnU

(n) is
elliptically distributed. Since Tt(x)|Rθ ∼ Nn(0, R2

θI) and Rθ is independent of x, by Kelker’s
theorem the push-forward finite-dimensional distributions F̂ = {Tt#ηt|t ∈ T n, n ∈ N} are
consistent and define an elliptical process.

Learning of the elliptical transport

The following proposition allow us to calculate the determinant of the gradient of this radial
transport.

Proposition 4.5.8 Let Tt(x) = φ(‖x‖2)x = α(‖x‖2)
‖x‖2 x. Then |∇Tt(x)| = φ(‖x‖2)n−1α′(‖x‖2).
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Proof.

∂Tt(x)i

∂xi

= φ(‖x‖2) + φ′(‖x‖2)
x2

i

‖x‖2

,

∂Tt(x)i

∂xj
= φ′(‖x‖2)

xixj
‖x‖2

, if i 6= j,

∇Tt(x) =
φ′(‖x‖2)

‖x‖2

[
xx> + I

φ(‖x‖2) ‖x‖2

φ′(‖x‖2)

]
, and,

|∇Tt(x)| =
(
φ′(‖x‖2)

‖x‖2

)n ∣∣∣∣xx> + I
φ(‖x‖2) ‖x‖2

φ′(‖x‖2)

∣∣∣∣ .

By Sylvester’s determinant theorem we have
∣∣∣∣xx> + I

φ(‖x‖2) ‖x‖2

φ′(‖x‖2)

∣∣∣∣ =

(
1 +

φ′(‖x‖2)

φ(‖x‖2) ‖x‖2

‖x‖2
2

)(
φ(‖x‖2) ‖x‖2

φ′(‖x‖2)

)n

|∇Tt(x)| = φ(‖x‖2)n−1 (φ(‖x‖2) + φ′(‖x‖2)‖x‖2)

and since α(r) = φ(r)r and α′(r) = φ(r)+φ′(r)r, we have |∇Tt(x)| = φ(‖x‖2)n−1α′(‖x‖2).

For the learning task, since |∇Tt(x)| = φn,θ(‖x‖2)n−1α′n,θ(‖x‖2) and T−1
t (y) = ψn,θ(‖y‖2)y =

α−1
n,θ(‖y‖2)

‖y‖2 y, we have that the complexity term is given by

log|∇St(y)| = (n− 1) log(α−1
n,θ(‖y‖2))− log

(
α′n,θ(α

−1
n,θ(‖y‖2))

)
.

Inference on elliptical transport

Since the reference distribution ηt is spherical, then ηt(x) = βn(x>x) for some positive
function βn. The transported distribution is also spherical with density πt(y) = hn(y>y) :=
βn(ψ2

n,θ(‖y‖2)y>y)ψn,θ(‖y‖2)(n−1)(α−1
n,θ)
′(‖y‖2).

Given observations (t,y), for inference on new inputs t̄ we have that the posterior distribution
is also a spherical distribution, with density given by πt̄|t(ȳ|y) =

hn+n̄(ȳ>ȳ+‖y‖22)

hn(‖y‖22)
.

Since x̄ ∼ ηt̄ is spherical then x̄
‖x̄‖2

d
= U (n̄), so if β ∼ p(‖ȳ‖2|‖y‖2) is independent of x̄

‖x̄‖2 then
we have

ȳ|y d
=

β

‖x̄‖2

x̄,

where β is the positive r.v. of the norm of ȳ|y, that has density

p(‖ȳ‖2|‖y‖2) =
2πn̄/2

Γ(n̄/2)
‖ȳ‖n̄−1

2

hn+n̄(‖ȳ‖2
2 + ‖y‖2

2)

h2,n(‖y‖2
2)

,

where h2,n is the marginal distribution of y from (y, ȳ). We can generate samples efficiently:
sampling x̄ is straightforward from η, and β is an independent one dimensional positive
random variable with explicit density. Note that h2,n(‖y‖2

2) is the normalisation constant,
so we can avoid its computation via MCMC methods like slice sampling or emcee sampling
[24, 87, 45].
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Student-t case

The approach above includes the special case of the Student-t3 process as follows: Consider
Rθ ∼

√
Γ−1( θ

2
, θ

2
) with Γ−1 the inverse-gamma. Then Rn,θ := RnRθ ∼

√
nFn,θ, where Fn,θ

denote the Fisher–Snedecor distribution, and we have that πt = Tn(θ, 0, In) is a uncorrelated
Student-t distribution with θ > 2 degrees of freedom. Given observations y, the distribution

has closed-form posteriors: Rθ|y ∼
√

Γ−1( θ+n
2
,
θ+‖y‖22

2
) and Rn̄,θ|y ∼

√
n̄(θ+‖y‖22)

θ+n
Fn̄,θ+n. Also,

for a bivariate Student-t distribution with correlation ρ and degrees of freedom θ, its copula
has coefficients of tail dependence given by λu = λl = 2tθ+1

(
−
√
θ+1
√

1−ρ√
1+ρ

)
> 0, strictly heavier

that the Gaussian case.

As an illustrative example, in Fig. 4.1 we can see the mean (solid line), the 95% confidence
interval (dashed line) and 1000 samples (blurred lines) from 4 TGPs. All of them use a
Brownian kernel k(t, s) = min(t, s) for covariance transport, beside the second and fourth
have an affine margin transport and the third and fourth have a Student-t elliptical transport.
On the left column we plot the priors and on the right column we plot the posterior. The
given observations are denoted with black dots. In this example we can see the difference
between the Gaussian and Student-t copulas, although the priors look similar, the posteriors
are quite different, where the Student-t copulas have more mass at the extrema.

Figure 4.1: Samples from 4 TGP: the first and second examples have Gaussian copula, while
third and fourth examples have Student-t copula.

4.5.2 Archimedean processes

From a Gaussian reference, the previous transport allows the generation of any elliptical
copula. However, our approach is more general, and it is possible to obtain non-elliptical

3The Student-t distribution, and Gaussian as its limit, is the unique elliptical distribution with positive
density over all Rn that is closed under conditioning [130].
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copulas, specifically the so-called Archimedean copulas.

Definition 4.5.9 A copula C(u) is called Archimedean if it can be written in the form
C(u) = ψ (

∑n
i=1 ψ

−1(ui)) where ψ : R+ → [0, 1] is continuous, with ψ(0) = 1, ψ(∞) = 0 and
its generalized inverse ψ−1(x) = inf{u : ψ(u) ≤ x}.

Archimedean copulas have explicit form for tail dependency: λl = 2 lim
x→0+

ψ′(x)−ψ′(2x)
ψ′(x)

and

λu = 2 lim
x→∞

ψ′(2x)
ψ′(x)

.

For example, if we consider the generator ψ(u) = exp(−u) then their Archimedean copula
coincides with the independence copula C(u) =

∏n
i=1 ui and λl = λu = 0. Some Archimedean

copulas, like the independent one, can be extended as stochastic processes, which are charac-
terised by the following proposition.

Proposition 4.5.10 Let ψ : R+ → [0, 1] completely monotone, i.e. ψ ∈ C∞(R+, [0, 1])
and (−1)kψ(k)(x) ≥ 0 for k ≥ 1. Then there exists a stochastic process where there finite-
dimensional laws are Cn(u) = ψ (

∑n
i=1 ψ

−1(ui)).

Proof. By Kimberling’s Theorem[80] ψ generates an Archimedean copula in any dimension
iff ψ is completely monotone. Note that Archimedean copulas are exchangeable, i.e. for
any n-permutation τ we have that u

d
= τ(u), so in particular they are consistent under

permutation, so we have that Fητ(t)
(τ(u)) = Cn(τ(u)) = Cn(u) = Fηt(u). The consistency

under marginalisation is straightforward since Cn+1(u, 1) = ψ (
∑n

i=1 ψ
−1(ui) + ψ−1(1)) =

Cn(u), and we conclude.

Any Archimedean copula process has a completely monotone generator ψ associated that, by
Bernstein’s Theorem[80], is the Laplace transform 4 of a positive distribution F , i.e. ψ = L[F ]
and F = L−1[ψ]. The following proposition shows the relation between Archimedean copulas
and simplicial contoured distributions [50, 81]..

Proposition 4.5.11 Let Sn ∼ Γ(n, 1), W a real positive r.v. and U [n] a uniform r.v. on
the unit simplex in Rn (i.e.

∥∥U [n]
∥∥

1
= 1), where Sn, W and U [n] are independent. Then

x = (Sn/W )U [n] follows a simplicial contoured distribution with an Archimedean survival
copula generated by ψ = L[FW ], and each xi has marginal distribution Fxi

(x) = 1− ψ(x).

Proof. We have that SnU [n] d
= (E1, ..., En) where Ei ∼ Exp(1) are independent. By Marshall

and Olkin algorithm [80], if W ∼ L−1[ψ] then v ∼ C(v) = ψ (
∑n

i=1 ψ
−1(vi)) where vi = ψ(xi).

Since the transport from x to v is diagonal, they share the same copula, so x also has copula
C(v). Finally, since ψ(xi) = vi

d
= 1− vi ∼ U[0, 1] then 1− ψ(xi) is the marginal distribution

of each xi for i = 1, ..., n.

Simplicial distributions x
d
= RU [n], also know as `1-norm symmetric distributions, satisfy

4The Laplace transform of a random variable Z > 0 is defined as L(Z)(s) = E(exp(−sZ)) =
∫∞

0
e−szdFZ(z)

for s ∈ [0,∞].
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‖x‖1 =
∑n

i=1 xi
d
= R and x

‖x‖1
d
= U [n]. If R has density pR then x has density px(x) =

Γ(n)‖x‖1−n
1 pR(‖x‖1). For example, if the independence copula has generator ψ(x) = exp(−x)

then W is degenerate on 1, so R d
= Sn/W ∼ Γ(n, 1) and marginals distribute as xi ∼ Exp(1).

In another example, ifW ∼ Γ(1
θ
, 1) then ψθ(s) = (1+s)−1/θ and C(u) = (

∑n
i=1 u

−θ
i −n+1)−1/θ,

the so-called Clayton copula. We have that R d
= Sn/W ∼ θnF (2n, 2/θ) and marginals

distribute as F (xi) = 1− (1 + xi)
−1/θ, a shifted Pareto distribution.

Archimedean transport

Note the similitude between spherical and simplicial distributions, changing the role of the
`2-norm by the `1-norm. If y d

= SU [n] for another real non-negative r.v. S ∈ R+, then the
radial map Tα(x) =

F−1
S (FR(‖x‖1))

‖x‖1 x
d
= S

R
x

d
= SU [n] d

= y is a transport map from x to y. The
next proposition shows how to transport a normal distribution into a simplicial distribution.

Proposition 4.5.12 Let x ∼ Nn(0, In). Denote Φ the distribution function of standard
normal and consider the marginal transport T h defined by h(t, x) = − log Φ(x), i.e. T h(x)i =

− log(Φ(xi)). Given Sn
d
= Rn/W for a positive r.v. W independent of Rn ∼ Γ(n, 1), then the

Archimedean transport Tαn (y) = φ(‖y‖1)y =
F−1
Sn

(FRn (‖y‖1))

‖y‖1 y satisfies that Tαn ◦ T h(x) has an
Archimedean copula with generator ψ = L−1(W ).

Proof. If xi ∼ N (0, 1) then yi = − log(Φ(xi)) ∼ Exp(1), so the sum satisfies that ‖y‖1 =∑n
i=1 yi ∼ Γ(n, 1) so ‖y‖1

d
= Rn. It is know that

(
y1

‖y‖1 , ...,
yn
‖y‖1

)
d
= U [n] is independent from

‖y‖1, so T h(x) = y = ‖y‖1
y
‖y‖1

d
= RnU

[n]. As Tαn is a radial transport, then Tαn ◦T h transports
x into a simplicial distribution, and by the prop. 4.5.11, we conclude.

The last proposition implies that the transport T = {Tt|t ∈ T n, n ∈ N}, where Tt(x) =
Tαn ◦ T h(x), is an f -transport with f ∼ GP(0, δ(t, t̄)), where the transport process g := T (f)
has a finite-dimensional Archimedean copula.

Learning an Archimedean transport

As the marginal transport was studied previously, we only need the model complexity penalty
for this radial map.

Proposition 4.5.13 Given the map T (y) = φ(‖y‖1)y =
F−1
S (FR(‖y‖1))

‖y‖1 y, then |∇Tt(x)| =

φ(‖x‖1)n−1α′(‖x‖1).

Proof. Note that

∂Tt(x)i

∂xi

= φ(‖x‖1) + φ′(‖x‖1)xi,
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∂Tt(x)i

∂xj
= φ′(‖x‖1)xi, if i 6= j,

∇Tt(x) = φ(‖x‖1)I + φ′(‖x‖1)x1> = φ′(‖x‖1)

[
φ(‖x‖1)

φ′(‖x‖1)
I + x1>

]
.

By Sylvester’s determinant theorem we have

|∇Tt(x)| = φ′(‖x‖1)n
(
φ(‖x‖1)

φ′(‖x‖1)

)n(
1 + 1>

(
φ′(‖x‖1)

φ(‖x‖1)
I

)
x

)
,

= φ(‖x‖1)n−1 (φ(‖x‖1) + φ′(‖x‖1)‖x‖1) ,

= φ(‖x‖1)n−1α′(‖x‖1).

thus concluding the proposed.

With the above result, we have that the model complexity penalty is given by

log |∇St(y)| = − log |∇Tt(St(y))| ,

= −(n− 1) log

(
‖y‖2

α−1(‖y‖2)

)
− log

(
α′(α−1(‖y‖2))

)
,

= −(n− 1) log

(
‖y‖2

α−1(‖y‖2)

)
+ log

(
α−1(‖y‖2)′

)
.

Inference with Archimedean transport

For an Archimedean copula, the conditional distribution given k observations o1, ..., ok is given

by C(u|o1, ...., ok) =
ψ(k)(

∑n
i=1 ψ

−1(ui)+a)
ψ(k)(a)

where a =
∑k

j=1 ψ
−1(oj) and ψ(k) is the k-th derivative

of the generator ψ. We can then use methods for sampling the conditional Archimedean u,to
then apply the diagonal push-forward via F−1(ui) where F (x) = 1− ψ(x).

4.6 Deep Transport Process

Both the generality and the feasible calculation of the presented transport-based approach to
non-parametric regression motivate us to define complex models inspired on recent advances
from the deep learning community. Via the composition of elementary transports (or layers)
we can generate more expressive (or deep) transports. In this section, we will explain how to
build such an architecture, describe the properties that are inherited through the composition,
to finally propose families of transports that can be composed together and study their
properties in the regression problem.

4.6.1 Learning deep transport process

Assume T#η = π, where T is the composition of k transports, i.e. T = T (k) ◦ ... ◦ T (1).
Denote η(0) = η and assume that each η(j) = T (j)#η(j−1) is a transport process with finite-
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dimensional transports {T (j)
t }kj=1. Note that η(k) = T#η = π, where Tt = T

(k)
t ◦ ... ◦ T (1)

t are
finite-dimensional transports with St = S

(1)
t ◦ ... ◦ S

(k)
t . As a consequence, the composition of

transport processes is a transport process. Consequently, the NLL can be calculated as

− log πt(y|θ) = − log ηt(St(y))−
∑k

j=1
log |∇S(j)

t (S
[(j+1):k]
t (y))|, (4.6)

where S[j:k]
t (y) = S

(j)
t ◦ ... ◦ S

(k)
t (y), with the convention S[(k+1):k]

t (y) = y. The formula above
is based on calculating each F (j)

t (z) = log |∇S(j)
t (z)|, which can be computed alternatively as

F
(j)
t (z) = − log |∇T (j)

t (S
(j)
t (z))|, or, for the triangular case, as F (j)

t (z) =
∑

i log ∂(St)i

∂yi
(z). The

following algorithm computes the NLL, subject to being able to evaluate each function F (j)
t

and S(j)
t .

Algorithm 1 Calculate the NLL of a deep transport process

Require: Data (t,y), inverse transports T−1
t (z) = S

(1)
t ◦ ... ◦ S(k)

t (z) and F
(j)
t (z) =

log |∇S(j)
t (z)|.

Ensure: L = − log πt(y|θ)
z← y, L ← 0
for j ∈ k, ..., 1 do
L ← L− F (j)

t (z)

z← S
(j)
t (z)

end for
L ← L− log ηt(z)
return L

Remark 4.6.1. Algorithm 1 is based in applying the chain rule and the inverse function
theorem over the composited inverse St = S

(1)
t ◦ ... ◦ S

(k)
t , so

∇St(y) = ∇S(1)
t (S

(2)
t ◦ ... ◦ S

(k)
t )∇S(2)

t (S
(3)
t ◦ ... ◦ S

(k)
t )....∇S(k−1)

t (S
(k)
t (y))∇S(k)

t (y), (4.7)

= ∇T (1)
t (S

(1)
t ◦ ... ◦ S

(k)
t )−1∇T (2)

t (S
(2)
t ◦ ... ◦ S

(k)
t )−1....∇T (k)

t (S
(k)
t (y))−1. (4.8)

Algorithm 1 is computationally efficient in terms of minimal use of memory (even the variable
z can use the same memory as y), and it can be executed in the shortest possible time by
calling each function F (j)

t and S(j)
t only once. By implementing the calculations of NLL in any

modern tensor framework, such as PyTorch, it is possible to apply automatic differentiation
[97] to calculating the derivative of NLL with respect to parameters. Additionally, this
algorithm is parallelizable in θ, thus allowing an efficient evaluation of NLL for multiple
values for θ simultaneously in architectures such as GPUs. This is a desired property for
derivative-free optimization methods such as particle swarm optimization [63], or MCMC
ensemble samplers [56]. In stochastic gradient descent methods [22], given that in each step
we use a subsampling from the data, we can take advantage of the GPU-based architectures
running in parallel multiple executions, in order to better navigate the space of models.
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4.6.2 Inference deep transport process

As the composition operation preserves triangularity, we assume T (j) are triangular for j > l,
in addition to being able to calculate the posterior of η(l), i.e. compute η(l)

t̄|t(·|x) for any input
t̄. Without loss of generality, it can be assumed that l = 1, since it is possible to collapse by
composition the l transports in only one. The following algorithm generates samples from the
posterior distribution πt̄|t(ȳ|y) under the above assumptions.

Algorithm 2 Generate samples from the posterior

Require: Observations y ∼ πt, new inputs t̄ ∈ Id, d ∈ N, number of samples N ∈ N.
Ensure: ȳi ∼ πt̄|t(ȳ|y) for i = 1, ..., N

x← S
[l+1:k]
t (y)

R(·)← Pt̄ ◦ T
[l+1:k]

t,t̄
(x, ·)

for i ∈ 1, ..., N do
x̄i ∼ η

(l)

t̄|t(·|x)

ȳi ← R(x̄i)
end for
return {ȳ1, ..., ȳN}

Algorithm 2 is parallelisable in N , since the function R(·) is the same for all samples, and
thus allows us to obtain multiple samples simultaneously in an efficient manner. This can be
used in turn to calculate moments, quantiles or other statistics in an empirical way through
Monte Carlo.

4.6.3 Noise layer

Under the presence of noisy observations, following the same rationale as GPs, warped GPs
[125] and Student-t processes [119], we consider that the covariance transport has a special
behavior. Let k(t, s) = r(t, s) + σ0δt,s, where δ is Kronecker delta, σ0 is the parameter that
controls the intensity of noise and r(t, s) is the noise-free covariance function. We consider that
the observations have uncorrelated noise. While for training we use k(t, s) in the formula for
NLL, in inference we use k(t, s) on the backward-step (i.e. for the inverse map x = T−1

t (y)),
and on the forward-step (i.e. for push-forward the reference distribution) we use r(t, s),
instead of k(t, s), to perform a free-noise prediction.

4.6.4 Sparse layer

While marginal and copula transports can be evaluated efficiently without needing training
data, the covariance transports needs all the data y to performance inference. The computa-
tional complexity of evaluation is O(n2) in memory and O(n3) in time, where n = |y|. Sparse
approximations are widely used to solve this issue on GPs [101, 124, 135], and it is natural
to define a sparse transport as Tt̄(u) = Σt̄sΣ

−1
ss z + chol(Σt̄t̄ − Σt̄sΣ

−1
ss Σt̄s)u, where (s, z) are
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Sunspots Heart Economic
WGP TGP WGP TGP WGP TGP

MAE 25.266 ± 4.607 24.710 ± 4.271 2.965 ± 0.827 2.907 ± 0.715 1.132 ± 0.260 1.111 ± 0.215
EAE 30.166 ± 4.374 29.649 ± 4.168 3.431 ± 0.732 3.388 ± 0.660 1.392 ± 0.235 1.380 ± 0.206
MSE 1,306.253 ± 560.496 1,223.257 ± 421.385 16.405 ± 8.809 15.740 ± 7.619 3.002 ± 1.643 2.860 ± 1.311
ESE 1,889.318 ± 633.325 1,796.989 ± 514.193 21.963 ± 8.524 21.554 ± 8.213 4.376 ± 1.725 4.272 ± 1.424

Table 4.1: WGP and TGP results over Sunspots, Heart and Economic datasets.

trainable pseudo-data with |s| = m < n. The training of pseudo-data follows the same ideas
that sparse GPs, like SoD and SoR approximations [101], where the computational cost drops
to O(nm) in space and O(nm2) in time.

4.7 Experimental validation

We validate our approach with three real-world time series, described as follows:

1. Sunspots Data: The Sunspot time series [122] corresponds to the yearly number of
sunspots between 1700 and 2008, resulting in 309 data points, one per year. These
measures are positive and semi-periodic, with a cycle period of around 11-years.

2. Heart Data: This is a heart-rate time series from the MIT-BIH Database (ecg.mit.edu)
[54]. This series contains 1800 evenly-spaced positive measurements of instantaneous
heart rate (in units of beats per minute) from a single subject, happening at 0.5 second
intervals, and showing a semi-periodic pattern. For performance issues, we take a
subsample of 450 measures at 2.0 seconds intervals.

3. Economic Data: This time series corresponds to the quarterly average 3-Month
Treasury Bill: Secondary Market Rate [42] between the first quarter of 1959 and the
third quarter of 2009, that is, 203 observations, one per quarter. We know beforehand
that this macroeconomic signal is the price of U.S. government risk-free bonds, which
cannot take negative values and can have large positive deviations.

Due to the semi-periodic nature of the time series, we consider a noisy spectral mixture with
two components kernel kSM [143] for the covariance transport. Since the time series are
positive, we use a shifted Box-Cox warping φBC [107] for marginal transport. We compare
two models: a warped GP, with kSM kernel and φBC warping; and a TGP with a Student-t
copula transport, besides the above-described covariance and marginal transports.

We leave the standard GPs out of the experiment since the assumption of Gaussianity violates
the nature of the datasets, having a lower predictive power than the WGP, as shown in
[107, 108]. To illustrate this fact, in Fig. 4.2 we show the posterior of three trained models:
GP in blue, WGP in green and TGP in purple. We plot the observations (black dots), the
mean (solid line), the 95% confidence interval (dashed line) and 25 samples (blurred lines).
Notice how the GP fails to model the positivity and the correct amplitude of the phenomena.

The experiment was implemented in a Python-based library named tpy: Transport processes
in Python[106], with a PyTorch backend for GPU-support and automatic differentiation
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Figure 4.2: GP (blue), WGP (green) and TGP (purple) over Sunspots data.

[97]. The training was performed by minimising the NLL from eq. (4.6), via a stochastic
mini-batches rprop method [104], to then end with non-stochastic iterations.

In each experiment, we randomly (uniformly) select 15% of the data for training and the
remaining 85% for validation. Given the validation data points {yi}ni=1, for each model
we generate S samples {y(k)

i }ni=1 for k = 1, ..., S, and then we calculate four performance

indices: the mean square error as MSE = 1
n

n∑
i=1

(
yi − 1

S

∑S
k=1 y

(k)
i

)2

, the mean absolute error

as MAE = 1
n

n∑
i=1

|yi− 1
S

∑S
k=1 y

(k)
i |, the expected square error as ESE = 1

n

n∑
i=1

1
S

∑S
k=1(yi−y(k)

i )2,

and the expected absolute error as EAE = 1
n

n∑
i=1

1
S

∑S
k=1 |yi− y(k)

i |. We repeat each experiment

100 times. The results for all of these experiments are summarized in Table 1, showing each
mean and standard deviation. Consistently, the proposed TGP has better performance that
the warped GP alternative, for each dataset and evaluation index.

64



Chapter 5

Bayesian Learning with Wasserstein
Barycenters

“...optimal transport is a simple, meaningful, natural and therefore universal concept.”

– Cédric Villani, in Optimal transport, old and new

The main results presented in this Chapter are included in the preprint paper [12]: Julio Backhoff-Veraguas, Joaquin Fontbona,
Gonzalo Rios, and Felipe Tobar. Bayesian learning with Wasserstein barycenters. arXiv preprint arXiv:1805.10833, 2018.

Going back to the general framework for Bayesian estimation based on loss functions over
probability measures consider in Chapter 1, our motivation in this chapter is to find an
alternative, non-parametric learning strategy which can cope with some of the drawbacks
of standard approaches such as Bayesian model average (BMA). The main conceptual
contribution of this chapter is the introduction of the Bayesian Wasserstein barycenter
estimator (BWB) as a novel model-selection criterion based on optimal transport theory.
In a nutshell, given a prior on models Π and observations D = {x1, . . . , xn} ⊂ X , a BWB
estimator is any minimizer m̂n

p ∈M of the loss function

M3 m̄ 7→
∫
P(X )

Wp(m, m̄)pΠn(dm), (5.1)

where P(X ) denotes the set of probability measures on X , Πn is the posterior distribution
on models given the data D, and Wp is the celebrated p-Wasserstein distance ([138, 139]).
The minimization of functionals akin to (5.1) is an active field of current research in machine
learning [31, 69]. For instance, if the model spaceM equals the set of all probability measures
on X , then our estimator m̂n

p coincides with the (population) Wasserstein barycenter of Πn.
The study of Wasserstein barycenters was introduced by [2], but see also [74, 18] for more
recent developments and references to the literature, or our own. In Section 5.2, we recall
the notions of Wasserstein distances and, relying on the previously developed framework,
we rigorously introduce the Bayesian Wasserstein barycenter estimator in Section 5.3. We
explore its existence, uniqueness, absolute continuity and illustrate the advantage of this
estimator by comparing it to the Bayesian model average: it turns out that our estimator is
less dispersed, and in particular, it has less variance than the model average. In Section 5.4
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we state conditions for the statistical consistency of our estimator, which is a basic desirable
property: briefly put, this means that as more data becomes available, the estimator converges
to the true model. The main result in this regard is Theorem 5.4.10.

We remark that the use of Wasserstein barycenters in Bayesian statistics was initiated, to
the best of our knowledge, by the works [127, 75, 82, 128]. There the authors consider the
problem of how to stitch together posteriors computed on different data sets; their answer is
to do it by calculating the barycenter between the posteriors. In contrast to this, we take the
availability of a posterior for granted and instead compute the barycenter of the posterior.

Let us fix some notation and conventions. As we mentioned in Chapter 1, we assume
throughout thatM ⊆ Pac(X ) ⊆ P(X ), where P(X ) is the set of probability measures on
X , and Pac(X ) is the subset of absolutely continuous measures with respect to a common
reference σ-finite measure λ on X . As a convention, we use the same notation for an element
m(dx) ∈ M and its density m(x) w.r.t. λ. Given a measurable map T : Y → Z and a
measure ν on Y we denote by T (ν) the image measure (push-forward), which is the measure
on Z given by T (ν)(·) = ν(T−1(·)). We denote by supp(ν) the support of a measure ν and
by |supp(ν)| its cardinality. Moreover, we assume that the true model m0 ∈ Pac(X ) —such
that x1, ....xn are i.i.d. according to m0— does exist, although in general m0 may not be an
element ofM.

5.1 Bayesian Posterior Averages Estimators

The next result illustrates the fact that many Bayesian estimators, including the model average
estimator, correspond to finding a so-called Fréchet mean or barycenter [93] under a suitable
metric/divergence on probability measures.

Proposition 5.1.1 LetM = Pac(X ) and consider the loss functions:

i) The L2-distance: L2(m, m̄) = 1
2

∫
X (m(x)− m̄(x))2 λ(dx),

ii) The reverse KL divergence: DKL(m||m̄) =
∫
X m(x) ln m(x)

m̄(x)
λ(dx),

iii) The forward KL divergence DKL(m̄||m) =
∫
X m̄(x) ln m̄(x)

m(x)
λ(dx),

iv) The squared Hellinger distance H2(m, m̄) = 1
2

∫
X

(√
m(x)−

√
m̄(x)

)2

λ(dx).

Then, in cases i) and ii) the corresponding Bayes estimators of Equation (1.3) coincide with
the Bayesian model average:

m̄(x) := EΠn [m] =
∫
Mm(x)Πn(dm).

Furthermore, with Zexp and Z2 denoting normalizing constants, the Bayes estimators corre-
sponding to the cases iii) and iv) are given by the exponential model average and the square
model average, respectively:

m̂exp(x) = 1
Zexp

exp
∫
M lnm(x)Πn(dm) , m̂2(x) = 1

Z2

(∫
M

√
m(x)Πn(dm)

)2

.
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Proof of Proposition 5.1.1. Consider the squared L2-distance between densities L2(m, m̄) =
1
2

∫
X (m(x)− m̄(x))2 λ(dx). By Fubini we have

RL(m̄|D) = 1
2

∫
X

∫
M (m(x)− m̄(x))2 Π(dm|D)λ(dx).

By the fundamental lemma of calculus of variations, denoting

L (x, m̄, m̄′) = 1
2

∫
M (m(x)− m̄(x))2 Π(dm|D)

the extrema of RL(m̄|D) are weak solutions of the Euler-Lagrange equation

∂L(x,m̄,m̄′)
∂m̄

= d
dx

∂L(x,m̄,m̄′)
∂m̄′∫

M (m(x)− m̄(x)) Π(dm|D) = 0,

so we have that the optimal is reached on the Bayesian model average
∫
Mm(x)Π(dm|D).

If we take the loss function as the reverse Kullback-Leibler divergence

DKL(m||m̄) =
∫
X m(x) ln m(x)

m̄(x)
λ(dx),

we have that the associate Bayes risk can be written as

RDRKL(m̄|D)

=
∫
M

∫
X m(x) ln m(x)

m̄(x)
λ(dx)Π(dm|D)

=
∫
X

∫
Mm(x) lnm(x)Π(dm|D)λ(dx)−

∫
X

∫
Mm(x)Π(dm|D) ln m̄(x)λ(dx)

=C −
∫
X E[m](x) ln m̄(x)λ(dx)

and changing the constant C by the entropy of E[m] we have that

RDRKL(m̄|D)

=C ′ +
∫
X E[m](x) lnE[m](x)λ(dx)−

∫
X E[m](x) ln m̄(x)λ(dx)

=C ′ +DRKL(E[m], m̄),

so the extremum of RDRKL(m̄|D) is given by the Bayesian model average. Instead if we take
the forward Kullback-Leibler divergence as loss function

DKL(m̄||m) =
∫
X m̄(x) ln m̄(x)

m(x)
λ(dx),

we have

RDKL(m̄|D)

=
∫
M

∫
X m̄(x) ln m̄(x)

m(x)
λ(dx)Π(dm|x1, . . . , xn)

=
∫
X m̄(x) ln m̄(x)λ(dx)−

∫
X m̄(x)

∫
M lnm(x)Π(dm|x1, . . . , xn)λ(dx)

=
∫
X m̄(x) ln m̄(x)λ(dx)−

∫
X m̄(x) ln expE[lnm]λ(dx)

=
∫
X m̄(x) ln m̄(x)

expE[lnm]
λ(dx).
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Denoting by Z the normalization constant, we have

RDKL(m̄|D) + lnZ =
∫
X m̄(x) ln m̄(x)

expE[lnm]
λ(dx) +

∫
X m̄(x) lnZλ(dx)

=
∫
X m̄(x) ln m̄(x)

1
Z

expE[lnm]
λ(dx)

= DKL

(
1
Z

expE[lnm], m̄
)
.

So the extremum of RDKL(m̄|D) is the Bayesian exponential model average given by

m̂(x) = 1
Z

exp
∫
M lnm(x)Π(dm).

Finally, if we take the squared Hellinger distance as loss function

H2(m, m̄) = 1
2

∫
X

(√
m(x)−

√
m̄(x)

)2

λ(dx) = 1−
∫
X

√
m(x)m̄(x)λ(dx),

we easily check that the extremum of RH2(m̄|D) is the Bayesian square model average:

m̂(x) = 1
Z

(∫
M

√
m(x)Π(dm|x1, . . . , xn)

)2

.
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Figure 5.1: Model average (left) and Wasserstein barycenter (right) of two Gaussian densities.

The Bayesian estimators m̄, m̂exp, m̂2 share a common feature: their values at each point
x ∈ X are computed in terms of some posterior average of the values of certain functions
evaluated at x. This is due to the fact that all the above distances are vertical [115], in
the sense that computing the distance between m and m̄ involves the integral of vertical
displacements between the graphs of these two densities. An undesirable fact about vertical
averages is that they do not preserve properties of the original model space. E.g. if the
posterior distribution is equally concentrated on two different models m0 = N (µ0, 1) and
m1 = N (µ1, 1) with µ0 6= µ1, i.e. both models are unimodal (Gaussian) with unit variance,
the model average is in turn a bimodal (non-Gaussian) distribution with variance strictly
greater than 1. More generally, model averages might yield intractable representations or be
hardly interpretable in terms of the prior and parameters.

We shall next introduce the analogous objects in the case of Wasserstein distances, which are
horizontal distances [115], in the sense that they involve integrating horizontal displacements
between the graphs of the densities. We will further develop the theory of the corresponding
Bayes estimators, which will correspond toWasserstein barycenters arising in optimal transport
theory (see [2, 96, 65, 74]). Going back to the Gaussian example, say for two models given by
the univariate Gaussian distributions m0 = N (µ0, σ

2
0) and m1 = N (µ1, σ

2
1), it turns out that

the so-called 2-Wasserstein barycenter distribution is given by m̂ = m 1
2

= N (µ0+µ1

2
, (σ0+σ1

2
)2).

In Fig. 5.1 we illustrate a vertical (with L2) and a horizontal (with W2) Fréchet mean, and
interpolations, between two Gaussian densities.
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5.2 Wasserstein Space

We propose a novel Bayesian estimator obtained by using the Wasserstein distance as loss
function. This estimator is thus a Fréchet mean in the Wasserstein metric and is usually
referred to as Wasserstein barycenter [2].

From now until the end of this work, unless otherwise stated, we assume:

Assumption 5.2.1 (X , d) is a separable locally-compact geodesic space and p ≥ 1.

In this context, geodesic means complete and that any pair of points admit a mid-point with
respect to d. The reader can think of X as a Euclidean space with d the Euclidean distance.
On the other hand, dp controls the tails of the models to be considered. We now recall some
elements of optimal transport.

5.2.1 Wasserstein distance

A thorough introduction of optimal transport and some of its applications can be found
in the books by Villani [138, 139]. It is difficult to overstate the impact that the field has
had in mathematics as a whole. In particular, regarding statistical applications, we refer
to the recent survey [92] and the many references therein. In parallel, optimal transport
has become increasingly popular within the machine learning community [69], though most
of the published works have focused on the discrete setting (e.g., comparing histograms in
[31], classification in [47] and images in [28, 10], among others). Let us briefly review the
definitions and results needed to present our approach.

Given measures µ, υ over X we denote by Γ(µ, υ) the set of couplings with marginals µ and
υ, i.e. γ ∈ Γ(µ, υ) if γ ∈ P(X × X ) and γ(dx,X ) = µ(dx) and γ(X , dy) = υ(dy). Given a
real number p ≥ 1 we define the p-Wasserstein space Wp(X ) by

Wp(X ) :=
{
η ∈ P(X ) :

∫
X d(x0, x)pη(dx) <∞, some x0

}
.

The p-Wasserstein between measures µ and υ is given by

Wp(µ, υ) =
(

infγ∈Γ(µ,υ)

∫
X×X d(x, y)pγ(dx, dy)

) 1
p
. (5.2)

An optimizer of the r.h.s. of (5.2) is called an optimal transport. The quantity Wp defines a
distance turning Wp(X ) into a complete metric space. In the Euclidean case, there often exist
explicit formulae for optimal transports and the Wasserstein distance, e.g. for the generic
one-dimensional case, and the multivariate Gaussian case (p = 2); see [30]. If in (5.2) we
assume p = 2, X is Euclidean space, and µ is absolutely continuous, then Brenier’s theorem
[138, Theorem 2.12(ii)] establishes the uniqueness of a minimizer. Furthermore, this optimiser
is supported on the graph of the gradient of a convex function.
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5.2.2 Wasserstein barycenter

We start with the definition of Wasserstein population barycenter:

Definition 5.2.2 Given Γ ∈ P(P(X )), the p-Wasserstein risk of m̄ ∈ P(X ) is

Vp(m̄) :=
∫
P(X )

Wp(m, m̄)pΓ(dm).

Any measure m̂p ∈M which is a minimizer of the problem

inf
m̄∈M

Vp(m̄),

is called a p-Wasserstein population barycenter of Γ overM.

In the caseM =Wp(X ), the above is nothing but the p-Wasserstein population barycenter of
Γ introduced in [18]. The term population emphasizes that the support of Γ might be infinite.

Let us introduce some required notation. For Γ ∈ P(P(X )) we write Γ ∈ P(Wp(X )) if Γ is
concentrated on a set of measures with finite moments of order p. We can now considerWp(X )
with the complete metric Wp as a base Polish space, and define Wp(Wp(X )) analogously, with
an associated Wasserstein distance of order p which for simplicity we still call Wp. We have
that Γ ∈ Wp(Wp(X )) if Γ ∈ P(Wp(X )), and for some (and then all) m̃ ∈ Wp(X ) it satisfies

∫
P(X )

Wp(m, m̃)pΓ(dm) <∞.

If Γ is concentrated on measures with finite moments of order p and with density with respect
to λ, then we rather write Γ ∈ P(Wp,ac(X )), with the notation Γ ∈ Wp(Wp,ac(X )) if as before∫
P(X )

Wp(m, m̃)pΓ(dm) <∞ for some m̃.

Let Γ ∈ Wp(Wp(X )). By definition its model average belongs to Wp(X), since

∞ >
∫
Wp(m, δx)

pΓ(dm) =
∫ ∫

d(x, y)pm(dy)Γ(dm) =
∫

d(x, y)p
∫
m(dy)Γ(dm).

We state an existence result of p-Wasserstein barycenter, first obtained in [74, Theorem 2];
our argument here seems more elementary.

Lemma 5.2.3 If Γ ∈ Wp(Wp(X)), there exists a p-Wasserstein barycenter, i.e. exist a
minimizer for the positive functional

V (Γ) := inf

{∫

Wp(X )

Wp(ν,m)pΓ(dm) : ν ∈ Wp(X )

}
.

Proof. Taking ν = δx we get that V (Γ) is finite. Now, let {νn} ⊂ Wp(X ) such that
∫
Wp(X )

Wp(νn,m)pΓ(dm)↘ V (Γ).

For n large enough we have

Wp

(
νn ,

∫
Wp(X )

mΓ(dm)
)p
≤
∫
Wp(X )

Wp(νn , m)pΓ(dm) ≤ V (Γ) + 1 =: K,
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by convexity of optimal transport costs. From this we derive that (for every x)

supn
∫
X d(x, y)pνn(dy) <∞.

By Markov inequality this shows, for each ε > 0, that there is ` large enough such that
supn νn({y ∈ X : d(x, y) > `}) ≤ ε. As explained in [74], the assumptions made on X imply
that {y ∈ X : d(x, y) ≤ `} is compact (Hopf-Rinow theorem), and so we deduce the tightness
of {νn}. By Prokhorov theorem, up to selection of a subsequence, there exists ν ∈ Wp(X )
which is its weak limit. We can conclude by Fatou’s lemma:

V (Γ) = lim
∫
Wp(νn,m)pΓ(dm) ≥

∫
Wp(ν,m)pΓ(dm).

It is plain from the above proof that ifM⊂Wp(X ) is weakly closed, then there also exists a
minimizer inM of

inf
{∫
Wp(X )

W p
p (ν,m)Γ(dm) : ν ∈M

}
.

Let us now consider the relevant case of p = 2, X = Rq and d = Euclidean distance. We take
Γ ∈ W2(W2(Rq)), observing that in such situation the previous lemma applies. We recall now
the uniqueness result stated in [74, Proposition 6]:

Lemma 5.2.4 Assume that there exists a set A ⊂ W2(Rq) of measures with

µ ∈ A, B ∈ B(Rq), dim(B) ≤ q − 1 =⇒ µ(B) = 0 ,

and Π(A) > 0. Then Π admits a unique 2-Wasserstein population barycenter.

Note that Lebesgue measure λ satisfy above condition, so all measures absolutely continuous
with respect to λ also fulfil it, in particular distributions with density.

5.3 Bayesian Wasserstein Barycenter Estimator

We come to the most important definition (and conceptual contribution) of the chapter.
A Bayesian Wasserstein barycenter estimator is nothing but a p-Wasserstein population
barycenter of the posteriors Πn over the model spaceM:

Definition 5.3.1 Given Π ∈ P(M) ⊂ P(P(X )) and data D = {x1, . . . , xn} determining Πn

as in (1.1), the p-Wasserstein Bayes risk of m̄ ∈ Wp,ac(X ), and a Bayes Wasserstein barycenter
estimator m̂n

p over the model spaceM, are defined respectively by:

V n
p (m̄|D) :=

∫
P(X )

Wp(m, m̄)pΠn(dm), (5.3)

m̂n
p ∈ argmin

m̄∈M
V n
p (m̄|D). (5.4)

Remark 5.3.2. Under the standing assumption that X is a locally compact separable geodesic
space, the existence of a population barycenter is granted if Γ ∈ Wp(Wp(X )), see [74, Theorem
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2] or Lemma 5.2.3 for our own argument. The latter condition is equivalent to the model
average m̄(dx) := EP [m] (dx) having a finite p-moment, since

∫
Wp(X )

Wp(δy,m)pΓ(dm) =
∫
Wp(X )

∫
X d(y, x)pm(dx)Γ(dm) (5.5)

=
∫
X d(y, x)p

∫
Wp(X )

m(dx)Γ(dm), (5.6)

for any y ∈ X . IfM is weakly closed the same reasoning gives the existence of a p-Wasserstein
population barycenter of Γ overM.

We summarize this discussion, for the case Γ = Πn, in a simple statement:

Lemma 5.3.3 If X is a locally compact separable geodesic space,M is weakly closed, and
the model average m̄n(dx) = EΠn [m] (dx) has a.s. finite p-moment, then a.s. a p-Wasserstein
barycenter estimator m̂n

p overM exists.

We remark that even if Π ∈ Wp(Wp(X )), it may still happen that Πn /∈ Wp(Wp(X )). We
provide a general condition on the prior prior Π ensuring that

a.s. : Πn ∈ Wp(Wp(X )) for all n,

and therefore the existence of a barycenter estimator.

Definition 5.3.4 We say that Π ∈ P(P(X )) is integrable after updates if it satisfies the
conditions

1. For all x ∈ X , ` > 1: ∫
Mm(x)`Π(dm) <∞.

2. For some y ∈ X , ε > 0:
∫
M

(∫
X d(y, z)pm(dz)

)1+ε
Π(dm) <∞.

Condition (2) above could be intuitively summarized with the notation Π ∈ Wp+(Wp(X )).
Remark 5.3.5. If Π ∈ P(Wp,ac(X )) has finite support, then Conditions (1) and (2) are satisfied.
On the other hand, if Π is supported on a scatter-location family (see Section 6.3.4) containing
one element with a bounded density and a finite p-moment, then Conditions (1) and (2) are
fulfilled if for example supp(Π) is tight.

Lemma 5.3.6 Suppose that Π is integrable after updates. Then, for each x ∈ X , the measure

Π̃(dm) := m(x)Π(dm)∫
M m̄(x)Π(dm̄)

,

is also integrable after updates.

Proof. We verify Property (1) first. Let ` > 1 and x̄ ∈ X given. Then

∫
Mm(x̄)`m(x)Π(dm) ≤

(∫
Mm(x)sΠ(dm)

)1/s (∫
Mm(x̄)t`Π(dm)

)1/t
,
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with s, t conjugate Hölder exponents. This is finite since Π fulfils Property (1).
We now establish Property (2). Let y ∈ X , ε > 0. Then

∫
M

(∫
X d(y, z)pm(dz)

)1+ε
m(x)Π(dm)

≤
(∫
Mm(x)sΠ(dm)

)1/s
(∫
M

(∫
X d(y, z)pm(dz)

)(1+ε)t
Π(dm)

)1/t

.

The first term in the r.h.s. is finite by Property (1). The second term in the r.h.s. is finite by
Property (2), if we take ε small enough and t close enough to 1. We conclude.

Lemma 5.3.7 Suppose that Π is integrable after updates. Then for all n ∈ N and
{x1, . . . , xn} ∈ X n, the posterior Πn is also integrable after updates.

Proof. By Lemma 5.3.6, we obtain that Π1 is integrable after updates. By induction, suppose
Πn−1 has this property. Then as

Πn(dm) = m(xn)Πn−1(dm)∫
M m̄(xn)Πn−1(dm̄)

,

we likewise conclude that Πn is integrable after updates.

We now make a set of simplifying assumptions which are supposed to hold from now:

Assumption 5.3.8 M =Wp,ac(X ), Π ∈ Wp(Wp,ac(X )), Πn ∈ Wp(Wp(X )) (∀n, a.s.).

5.3.1 On uniqueness of 2-Wasserstein barycenter

We now briefly consider the special case ofM =W2,ac(Rq), Π ∈ W2(W2,ac(Rq)), λ = Lebesgue,
and d = Euclidean distance until the end of this section. By Lemma 5.2.4 it is straightforward
that the barycenter of Πn is unique. We make an important observation regarding the absolute
continuity of the barycenter, which is relevant since the model spaceM =W2,ac(X ) is not
weakly closed. The next remark states that in spite of Lemma 5.3.3 not being applicable, the
existence of a barycenter belonging to the model space can still be guaranteed.

Remark 5.3.9. If p = 2, X = Rq, d = Euclidean distance, λ =Lebesgue measure, and

Π
({
m :

∥∥dm
dλ

∥∥
∞ <∞

})
> 0, (5.7)

then the population barycenter of Πn exists, is unique, and is absolutely continuous. The only
delicate point is the absolute continuity. This was proven in [65, Theorem 6.2] for compact
finite-dimensional manifolds with lower-bounded Ricci curvature equipped with the volume
measure, but one can read-off the non-compact but flat Euclidean case X = Rq from the proof
therein. If |supp(Π)| <∞ then (5.7) can be dropped, as shown in [2] or [65, Theorem 5.1].

We provide a useful characterization of barycenters, which is a generalization of the corre-
sponding result in [6] where only the case |supp(Π)| <∞ is covered.
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Lemma 5.3.10 Assume p = 2, X = Rq, d = Euclidean distance, λ =Lebesgue measure.
Let m̂ be the unique barycenter of Π. Then there exists a jointly measurable function
(m,x) 7→ Tm(x) which is λ(dx)Π(dm)-a.s. equal to the unique optimal transport map from
m̂ to m ∈ W2(X ). Furthermore we have x =

∫
Tm(x)Π(dm), m̂(dx)-a.s.

Proof of Lemma 5.3.10. The existence of a jointly measurable version of the unique optimal
maps is proved in [44]. Now assume that the last assertion is not true, so in particular

0 <
∫ (

x−
∫
Tm(x)Π(dm)

)2
m̂(dx)

=
∫
|x|2m̂(dx)− 2

∫ ∫
xTm(x)Π(dm)m̂(dx) +

∫ (∫
Tm(x)Π(dm)

)2
m̂(dx).

On the other hand, we have
∫
W2

((∫
TmΠ(dm)

)
(m̂) , m̄

)2
Π(dm̄)

≤
∫ ∫ [

T m̄(x)−
∫
Tm(x)Π(dm)

]2
m̂(dx)Π(dm̄)

=
∫ ∫

[Tm(x)]2 m̂(dx)Π(dm)−
∫ (∫

Tm(x)Π(dm)
)2
m̂(dx),

after a few computations. But, by Brenier’s theorem [138, Theorem 2.12(ii)] we know that
∫ ∫

(x− Tm(x))2m̂(dx)Π(dm) =
∫
W2(m̂,m)2Π(dm).

Bringing together these three observations, we deduce
∫
W2

((∫
TmΠ(dm)

)
(m̂) , m̄

)2
Π(dm̄) <

∫
W2(m̂,m)2Π(dm),

and in particular m̂ cannot be the barycenter.

5.3.2 Comparation with Bayesian model average

Let m̂ be its unique population barycenter, and denote by (m,x) 7→ Tm(x) a measurable
function equal λ(dx)Π(dm) a.e. to the unique optimal transport map from m̂ to m ∈ W2(X ).
As a consequence of Lemma 5.3.10 we have m̂ = (

∫
TmΠ(dm))(m̂). Thanks to this fixed-point

property, for all convex functions φ with at most quadratic growth, we have

Em̂[φ(x)] =
∫
X φ(x)m̂(dx) =

∫
X φ
(∫
M Tm(x)Π(dm)

)
m̂(dx)

≤
∫
X

∫
M φ(Tm(x))Π(dm)m̂(dx) =

∫
M

∫
X φ(Tm(x))m̂(dx)Π(dm)

=
∫
M

∫
X φ(x)m(dx)Π(dm) =

∫
X φ(x)

∫
Mm(dx)Π(dm)

= Em̄[φ(x)],

where m̄ = EΠ[m] is the Bayesian model average. We have used here Jensen’s inequality
and Fubini. Since we can replace Π by Πn in this discussion, we have established that the
2-Wasserstein barycenter estimator is less dispersed than the Bayesian model average: namely,
in the convex-order sense. In particular, we have established:

Lemma 5.3.11 Let m̄n be the Bayesian model average and m̂n the 2-Wasserstein barycenter
of the posterior Πn. Then Em̄n [x] = Em̂n [x] and Em̄n [‖x‖2] ≥ Em̂n [‖x‖2], so the 2-Wasserstein
barycenter estimator has less variance than the model average estimator.
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5.4 Statistical Consistency

A natural question is whether our estimator is consistent in the statistical sense (see [118, 37,
51, 52], and references therein, for a detailed treatment on consistency). In short, consistency
corresponds to the convergence of our estimator m̂n

p towards the true model m0, as we observe
more i.i.d. data distributed like m0. In Bayesian language this is a desirable convergence of
opinions phenomenon [52].

Here and in the sequel m(∞)
0 denotes the product probability measure corresponding to the

infinite sample {xn}n of i.i.d. data distributed according to m0. In the setting that concerns
us, the correct notion of consistency at the level of the prior is given by:

Definition 5.4.1 A prior Π is said to be strongly consistent at m0 for some topology T ,
denoted T -strongly consistent, if for each T open neighbourhood U of m0 ofM, we have

Πn(U c)→ 0 , m
(∞)
0 − a.s.

We are interested in the important question, of whether our Wasserstein barycenter estimator
converges to the model m0, i.e. we are after conditions which guarantee that

Wp(m̂
n
p ,m0)→ 0, m

(∞)
0 a.s.

This is evidently linked to the question of strong consistency of the prior. The definition of
Wasserstein consistent is a bit redundant, but we leave it explicitly given the importance for
whole Section 5.4.

Definition 5.4.2 A prior Π is said to be p-Wasserstein strongly consistent at m0 if for each
open p-Wasserstein neighbourhood U of m0, we have Πn(U c)→ 0 , m

(∞)
0 − a.s.

We useWp to denote throughout the Wasserstein distance both onWp(Wp(X )) and onWp(X ),
not to make the notation heavier. It is straightforward that p-Wasserstein convergence implies
p-Wasserstein strongly consistency.

Proposition 5.4.3 IfWp(Πn, δm0)→ 0,m
(∞)
0 -a.s. then Π is p-Wasserstein strongly consistent

at m0.

Proof. Since p-Wasserstein convergence implies weak convergence, we have Πn → δm0 weakly,
so for any neighbourhood U of m0 by Portmanteau’s Theorem [52, Thm. A.2] the closed set
U c satisfies lim sup Πn(U c) ≤ δm0(U c) = 0.

Indeed, p-Wasserstein convergence implies that the Wasserstein barycenter estimator converges.

Proposition 5.4.4 Wp(Πn, δm0)→ 0 (m(∞)
0 -a.s.) ⇒ Wp(m̂

n
p ,m0)→ 0 (m(∞)

0 -a.s.).

Proof of Proposition 5.4.4. We have, by minimality of the barycenter

Wp(Πn, δm0)p =
∫
MWp(m,m0)p Πn(dm) ≥

∫
MWp(m, m̂

n
p )p Πn(dm).
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On the other hand,

Wp(m0, m̂
n
p )p ≤ cWp(m, m̂

n
p )p + cWp(m,m0)p , ∀m,

where the constant c only depends on p. We conclude by

Wp(m0, m̂
n
p )p ≤ c

∫
MWp(m, m̂

n
p )p Πn(dm) + c

∫
MWp(m,m0)p Πn(dm)

= c
∫
MWp(m, m̂

n
p )p Πn(dm) + cWp(Πn, δm0)p

≤ 2cWp(Πn, δm0)p.

The celebrated Schwartz’s theorem [118] provides sufficient conditions for strong consistency.
See [52, Proposition 6.16] for a more modern treatment. A key ingredient in Schwartz’
approach is the notion of Kullback-Leibler support:

Definition 5.4.5 A measure m0 belongs to the Kullback-Leibler support of Π, denoted m0 ∈
KL (Π), if Π (m : DKL (m0||m) < ε) > 0 for every ε > 0, where DKL (m0||m) =

∫
log m0

m
dm0.

Schwartz’s theorem is the basic result on posterior consistency for dominated models: the
true density m0 should belong to the Kullback-Leibler support of the prior and the hypothesis
m = m0 should be testable against complements of neighborhoods of m0.

Theorem 5.4.6 A test φn is a measurable function φn : X n → [0, 1] and for a density m
we denote Mnφn: = EM [φn (X1, ...., Xn)] =

∫
φn(x1, . . . , xn)

∏n
i=1 m(xi)λ(dx1) . . . λ(dxn). If

m0 ∈ KL (Π) and for every T -neighborhood U ofm0, there exist tests φn such thatMn
0 φn → 0

and supM∈UcM
n (1− φn)→ 0, then the prior Π is T -strongly consistent at m0.

If the model spaceM is smoothly parameterised by a finite-dimensional compact parameter
space Θ and the parametrization map T is injective and continuous, then consistency tests
exist for m0 ∈ KL(Π) (see [52]). We desire to specialize in the consistency for p-Wasserstein
spaces. The following proposition show a a hierarchy within consistency on p-Wasserstein,
and also that are stronger that consistency on weak topology.

Proposition 5.4.7 If Π is p-Wasserstein strongly consistent at m0 with p ≥ 1, then Π is
q-Wasserstein strongly consistent at m0 with q < p. Besides, Π is strongly consistent at m0

for the weak topology.

Proof. If q < p by Hölder’s inequality we have that Wq ≤ Wp, so Uq = {m : Wq(m,m0) <

ε} ⊇ {m : Wp(m,m0) < ε} = Up so Πn

(
U c
q

)
≤ Πn

(
U c
p

)
→ 0, m

(∞)
0 − a.s. Also, as the

Prokhorov metric dW metrizes weak convergence and d2
W ≤ W1 [see [53]], then we conclude

that Π is strongly consistent at m0 under the weak topology.

Remark 5.4.8. As mentioned in [52, Proposition 6.2], strong consistency with respect to the
weak topology is equivalent to the m(∞)

0 -almost sure weak convergence of Πn to δm0 .
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Remark 5.4.9. As can be derived from [52, Example 6.20], in our particular setting, we have

Π is strongly consistent at m0 w.r.t. the weak topology ⇐⇒ m0 ∈ KL(Π).

We assume throughout Section 5.4 that

m0 ∈ KL(Π) and m0 ∈M.

This implies that the model is correct or well-specified as discussed in [16, 57, 67, 68]. This
setting could be slightly relaxed in the misspecified framework dealt with in those works by
considering the reverse Kullback–Leibler projection onM instead of the true model m0, i.e.
the unique model m̂0 ∈M that minimizes DKL (m0||m̂0) overM.

We can now state our main result concerning consistency of the barycenter estimator:

Theorem 5.4.10 Suppose that Π fulfils the following condition:

(A) There exist λ0 > 0, x0 ∈ X such that sup
m∈supp(Π)

∫
X eλ0dp(x,x0)dm(x) < +∞.

Then under our standing assumptions (in particular, m0 ∈ KL(Π)) we have that Π is p-
Wasserstein strongly consistent at m0, Wp(Πn, δm0) → 0 (m(∞)

0 -a.s.), and the barycenter
estimator is consistent in the sense that

Wp(m̂
n
p ,m0)→ 0, m

(∞)
0 − a.s.

Remark 5.4.11. Notice that Assumption (A) implies that diam(Π) := sup{Wp(m, m̄) :
m, m̄ ∈ supp(Π)} < ∞. A typical example where this holds is in the finitely parametrized
case, when the parameter space is compact and the parametrization function continuous. We
stress that X may be unbounded but diam(Π) still be finite.

The proof of Theorem 5.4.10 is given at the end of this part. Towards this goal, we start with
a direct sufficient condition for the convergence of m̂n

p to m0.

By Remark 5.4.8, if Π is p-Wasserstein strongly consistent at m0, then m
(∞)
0 -a.s. weak con-

vergence of Πn to δm0 . It is known that if their p-moments also converge then Wp(Πn, δm0)→
0,m

(∞)
0 -a.s. The following proposition gives conditions for the convergence of their moments.

Proposition 5.4.12 If Π is p-Wasserstein strongly consistent at m0 and diam(Π) <∞, then
Wp(Πn, δm0)→ 0 and in particular Wp(m̂

n
p ,m0)→ 0 (m

(∞)
0 − a.s.).

Proof of Proposition 5.4.12. Let B = {m : Wp(m,m0) < ε} and ε arbitrary, then

Wp(Πn, δm0)p =
∫
MWp(m,m0)p Πn(dm)

≤
∫
B
Wp(m,m0)p Πn(dm) +

∫
Bc
Wp(m,m0)p Πn(dm)

≤ εp +
∫
Bc
Wp(m,m0)p Πn(dm).
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Since ε is arbitrary, we only need to check that the second term goes to zero. Strong consistency
implies Πn(Bc)→ 0 (m

(∞)
0 − a.s.), and since supp(Πn) ⊂ supp(Π), we have

∫
Bc
Wp(m,m0)p Πn(dm) ≤ diam(Π)pΠn(Bc)→ 0 (m

(∞)
0 − a.s.).

We now provide the proof of Theorem 5.4.10. If the Wasserstein metric was bounded, the
argument would be as in [52, Example 6.20], where the main tool is Hoeffding’s inequality. In
general Wasserstein metrics are unbounded if X is itself unbounded, and this forces us to
assume Condition (A) in Theorem 5.4.10. The argument still rests on the concentration of
measure phenomenon:

Proof of Theorem 5.4.10. We will apply Proposition 5.4.12. First we show that if U is any
Wp(X )-neighbourhood of m0 then lim infn Πn(U) ≥ 1 (m(∞)

0 -a.s.). According to Schwartz
Theorem (see [52, Theorem 6.17]), under the assumption that m0 ∈ KL(Π), it suffices to find
for each such U a sequence of measurable functions φn : X n → [0, 1] s.t.

1. φn(x1, . . . , xn)→ 0, m
(∞)
0 − a.s, and

2. lim supn
1
n

log
(∫

Uc
mn(1− φn)Π(dm)

)
< 0.

For this purpose, first we will construct tests {φn}n that satisfy the above conditions (Point 1
and Point 2) over an appropriate subbase of neighbourhood, to finally extend it to general
neighborhoods. It is known that µk → µ on Wp iff for all continuous functions ψ with
|ψ(x)| ≤ K(1 + dp(x, x0)), K ∈ R it holds that

∫
X ψ(x)dµn(x) →

∫
X ψ(x)dµ(x); see [139].

Given such ψ and ε > 0 we define the open set

Uψ,ε :=
{
m :

∫
X ψ(x)dm(x) <

∫
X ψ(x)dm0(x) + ε

}
.

These sets form a subbase for the p-Wasserstein neighborhood system at the distribution m0,
and w.l.o.g. we can assume that K = 1 by otherwise considering Uψ/K,ε/K instead. Given a
neighborhood U := Uψ,ε as above, we define the test functions

φn(x1, . . . , xn) =

{
1 1

n

∑n
i=1 ψ(xi) >

∫
X ψ(x)dm0(x) + ε

2
,

0 otherwise.

By law of large numbers, m(∞)
0 -a.s: φn(x1, . . . , xn) → 0, so Point 1 is verified. Point 2 is

trivial if r := Π(U c) = 0, so assume from now on that r > 0. Finite p-exponential moments
of m ∈ supp(Π) imply that the random variable Z = 1 + dp(X, x0) with X ∼ m has a
moment-generating function Lm(t) which is finite for all λ0 ≥ t ≥ 0, namely

Lm(t) := Em
[
etZ
]

= et
∫
X etd

p(x,x0)dm(x) < +∞.

Since all the moments of Z are non-negative, we can bound all the k-moments by

Em
[
Zk
]
≤ k!Lm(t)t−k, ∀λ0 ≥ t > 0.

Thanks to the above bound, we have
∫
X |ψ(x)|kdm(x) ≤

∫
X (1 + dp(x, x0))kdm(x) ≤ k!Lm(t)t−k.
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We may apply Bernstein’s inequality in the form of [79, Corollary 2.10] to the random variables
{−ψ(xi)}i under the measure m(∞) on X N, obtaining for any α < 0 that

m(∞)
(∑n

i=1

[
ψ(xi)−

∫
X ψ(x)dm(x)

]
≤ α

)
≤ e−

α2

2(v−cα) ,

where v := 2nLm(t)t−2, c := t−1, and 0 < t ≤ λ0. Using the definition of U c we deduce
∫
Uc
mn(1− φn)Π(dm) =

∫
Uc
mn
(

1
n

∑n
i=1 ψ(xi) ≤

∫
X ψ(x)dm0(x) + ε

2

)
Π(dm)

≤
∫
Uc
mn
(

1
n

∑n
i=1 ψ(xi) ≤

∫
X ψ(x)dm(x)− ε

2

)
Π(dm)

=
∫
Uc
mn
(∑n

i=1

[
ψ(xi)−

∫
X ψ(x)dm(x)

]
≤ −nε

2

)
Π(dm)

≤
∫
Uc

exp
{
−nε2

2
t2

8Lm(t)+tε

}
Π(dm)

≤r exp
{
−nε2

2
t2

8 supm∈Uc∩supp(Π) Lm(t)+tε

}
.

Under our assumption (A) we conclude as desired that

lim supn
1
n

log
(∫

Uc
mn(1− φn)Π(dm)

)
≤ − t2ε2

16 supm∈Uc∩supp(Π) Lm(t)+2tε
< 0.

Now, a general neighborhood U contains a finite intersection of N ∈ N neighborhoods from
the subbase, i.e.

⋂N
i=1 Uψi,εi ⊂ U , so
∫
Uc
mn(1− φn)Π(dm) ≤

∑N
i=1

∫
Ucψi,εi

mn(1− φn)Π(dm),

and therefore we may conclude as in the subbase case that Point 2 is verified. All in all
we have established that Π is p-Wasserstein strongly consistent at m0, so we conclude by
Proposition 5.4.12 thanks to our Assumption (A).

Remark 5.4.13. The above is a self-contained proof for consistency in Wasserstein topologies.
An alternative argument could be as follows: Under Assumption (A), and if p ≥ 2, the
measures in the support of Π enjoy the Talagrand T1 inequality (cf. [139, Theorem 22.10])
from which the Wasserstein distance is controlled by a relative entropy. By [146, Theorem 5]
it is possible, under additional integrability assumptions on the densities in the support of Π,
to control relative entropies by Hellinger distances. Hence one may leverage existing results
on consistency (plausibly with convergence rates) for the Hellinger distance in order to obtain
respective results for Wasserstein distances.

The next result states that if the prior is consistent in the p-Wasserstein sense, then under
some alternative conditions we have the p-Wasserstein convergence of the posterior Πn to δm0

for models in the Kullback-Leibler support KL(Π) of Π, thus our p-Wasserstein barycenter
estimator m̂n

p converge to the true model m0.

Proposition 5.4.14 If Π is p-Wasserstein strongly consistent at m0 ∈ KL(Π) then

Wp(Πn, δm0)→ 0(m
(∞)
0 -a.s.)

if any of the following conditions is fulfilled:

1. supp(Π) is bounded,
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2.
∫
W q
p (m,m0)Πn(dm) < C for some q > p and C > 0,

3. the likelihood function Λn(m) converge m(∞)
0 -a.s. to 0 with L∞Π -norm as n→∞, on the

sets Bc(m0, ε) = {ν|Wp(ν,m0) > ε} for every ε > 0.

In either case, the barycenter is consistent at m0 in the sense that

Wp(m̂
n
p ,m0)→ 0 m

(∞)
0 − a.s.

Proof. For condition (1) it was proved on 5.4.12. Under condition (2) and applying Hölder
inequality choosing 1

s
+ 1

r
= 1 with q

p
= r we have

∫

Bc
Wp(m,m0)p Πn(dm) =

∫

M
1BcWp(m,m0)p Πn(dm)

≤
[∫

M
Wp(m,m0)pr Πn(dm)

] 1
r

Πn(Bc)
1
s

≤ C
1
rΠn(Bc)

1
s → 0 , m

(∞)
0 − a.s.

Finally, under condition (3) over Λn we have that
∫

Bc
Wp(m,m0)p Πn(dm) =

∫

M
1BcWp(m,m0)pΛn(m)Π(dm)

≤
[∫

M
Wp(m,m0)pΠ(dm)

]
‖Λn(m)1Bc‖∞

≤ C‖Λn(m)1Bc‖∞ → 0 , m
(∞)
0 − a.s.

By Prop. 5.4.4 the barycenter is consistent at m0.

The last result about consistency of Wasserstein barycenter estimator show that, if the
Bayesian model converges in Wp to the true model m0, then our estimator converges too.
Recall that the model average is given by m̄n(dx) = EΠn [m] (dx).

Lemma 5.4.15 If m(∞)
0 -a.s. the p-moments of the model average converge to those of

m0 ∈ KL (Π), then Wp(Πn, δm0)→ 0 (m(∞)
0 -a.s.). Also Wp(m̂

n
p ,m0)→ 0 (m(∞)

0 -a.s.).

Proof of Lemma 5.4.15. By [52, Example 6.20] we already know that the prior is strongly
consistent at m0 with respect to the weak topology (rather than the p-Wasserstein topology).
Notice that

∫
Wp(m, δx)

pΠn(dm) =
∫ ∫

d(x, z)pm(dz)Πn(dm) =
∫

d(x, z)pm̄n(dz),

so a.s. Πn → δm0 not only weakly but in Wp. Conclude by Proposition 5.4.4.

Remark 5.4.16. Since by Remark 5.4.9, the prior is strongly consistent at m0 ∈ KL(Π) with
respect to the weak topology, [52, Theorem 6.8] and the discussion thereafter imply that the
model average is consistent at m0 too.
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5.5 Examples of Bayesian Wasserstein Barycenter

In this section we present two examples in order to show and validate our proposal. The
first case is a didactic example where it is possible to calculate the estimators explicitly, to
understand the similarities and differences of each selection criterion. The second case is an
example with real data, to show evidence of the utility of this estimator vs classical estimators.

5.5.1 The conjugate prior over Gaussian distributions

In this example we show that the conjugate prior for Gaussian distributions is a consistent con-
tinuous prior which allows us to calculate the model average and the 2-Wassestein barycenter
in closed form.

Consider the observations D = {x1, ..., xn} generated by the true model m0 = N (µ̄, σ̄2) ∈
M, where M = {N (µ, σ2)|µ ∈ R, σ2 ∈ R+}. Let us also choose the prior over mod-
els by placing a Normal-inverse-gamma distribution (NIG) over the parameters (µ, σ2),
given by NIG(µ, σ2|µ0, λ0, α0, β0) = N (µ|µ0, σ

2/λ0)IG(σ2|α0, β0), µ0 ∈ R and λ0, α0, β0 ∈
R+, which induces a prior Π over models M. As the NIG distribution is conjugate to
the Gaussian likelihood, the posterior distribution of the model parameters is given by
(µ, σ2|x1, ..., xn) ∼ NIG(µn, λn, αn, βn) with µn = λ0µ0+nx̄n

λ0+n
, λn = λ0 + n, αn = α0 + n

2
and

βn = β0 + 1
2

(
ns̄n + nλ0(x̄n−µ0)2

λ0+n

)
, where x̄n = 1

n

∑n
i=1 xi and s̄n = 1

n

∑n
i=1(xi − x̄n)2. See more

details in [84].

We will show that the above prior is strongly consistent at m0. The mean of the posterior is
(µn,

βn
αn−1/2

), which converges to (x̄, s̄) = limn→∞(x̄n, s̄n) and are respectively the mean and
variance of m0, due to the strong law of large numbers. Since the variance of the posterior is
O( 1

n
) in both variables (µ, σ2), the posterior converges a.s. in the weak topology to the point

mass at (µ̄, σ̄2), therefore, NIG prior is strongly consistent at m0 in the weak topology.

Additionally, we know [85] that the MAP estimator is N (x|µn, βn
αn+ 3

2

), while the model average

is the Student’s t−distribution t2αn(x|µn, βn(1+λn)
αnλn

) with variance is βn(1+λn)
(αn−1)λn

. This reveals the
non-Gaussianity of the model average, despite the prior (and all posteriors) being Gaussian.

The second moment of the model average is given by µ2
n + βn(1+λn)

(αn−1)λn
= µ2

n + s̄n
1+O( 1

n
)

+O( 1
n
),

which converges to the second moment of m0. By Lemma 5.4.15 the 2-Wasserstein barycenter
of the posterior (which exists) converges a.s. to m0 and is given by N (x|µn, σ̂2). From [7,
Thm. 3.10], denoting σ2

m the variance for a model m ∈M, the barycenter variance σ̂2 satisfies

σ̂2 =
∫

(σ̂σ2
mσ̂)

1/2
Πn(dm) = σ̂

∫
σmΠn(dm).

Furthermore, using the variance posterior IG(σ2|αn, βn) and the change of variable z = σ2

we have

σ̂ =
∫
σmΠn(dm) =

∫
z1/2IG(z|αn, βn)dz =

β
1/2
n Γ(αn− 1

2
)

Γ(αn)
.
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Figure 5.2: Variance of the selected model under three criterion.
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Figure 5.3: Barycenter (first) of two covariance matrices (second, third).

Thus, the MAP, average and barycenter models have the same mean µn but different variance.
Fig. 5.2 (left) compares the variances in a numerical example with a0 = 2, λ0 = 1 and βn = 1.
Note that the Wasserstein barycenter estimator has higher variance than MAP, but less than
the model average.

5.5.2 Bayesian Wasserstein learning for Gaussian processes using a
real-world data

In this examples, we train a Gaussian process (see Chapter 2) using the proposed Bayesian
Wasserstein barycenter estimator. Although we have not explained how to calculate barycenter
in practice, all this is detailed in Chapter 6, so now we will make a simple description. Given
the posterior distribution over hyperparameters (see Section 2.2), using MCMC, we generated
k independent mean vectors and covariance matrices. We then found the barycenter GP by
averaging the mean vectors and applying a fixed-point algorithm for Gaussian case [5, 6].
According to Prop. 6.1.3, the number of sampled models k is data-dependent, thus we searched
for k based on empirical convergence of the barycenter. In Fig. 5.3 shows the covariance
matrix of the 2-Wasserstein barycenter between two Gaussians distribution with cosine-based
covariance matrices of dimension 200× 200.
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Figure 5.4: A Gaussian process with a cosine kernel, learned with Wasserstein barycenter.

Score MAE RMSE
Model / Dataset Obs Test Total Obs Test Total
MAP 29.380 29.067 29.223 37.515 36.483 37.001
Model Average 27.631 25.057 26.340 35.460 31.648 33.602
Wasserstein 23.143 22.552 22.846 30.874 28.977 29.937

Table 5.1: Result of model selection with Sunspots dataset.

We considered the Sunspots time series (available from [98]) between 1700 and 2008 and used
half of the data (154 points) for training and the rest for testing. Setting a non-informative
prior [49] over the hyperparameters, we define a GP with constant mean function and cosine
covariance kernel. We remind the reader that in this case,M is the space of all Gaussian
processes [77] and that the true model m0 is unknown.

Fig. 5.4 shows the posterior predictive mean and the 95%-confidence interval of the Wasserstein
barycenter model. Note that our model was able to recover a varying-waveform, close-to-
periodic, signal using a prior with support only for perfectly-periodic time series. This result
validates the proposed methodology to handle model mismatch, and in this case, recover the
signal frequency. Table 5.1 shows that the model selected with Wasserstein barycenter has a
better performance than MAP and model average in mean absolute error (MAE) and square
root mean error (RMSE) on observed and test data.
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Chapter 6

Computing the Wasserstein Barycenter

“The most important part of learning is actually forgetting.”

– Naftali Tishby

The main results presented in this Chapter are included in the preprint paper [12]: Julio Backhoff-Veraguas, Joaquin Fontbona,
Gonzalo Rios, and Felipe Tobar. Bayesian learning with Wasserstein barycenters. arXiv preprint arXiv:1805.10833, 2018.

In this chapter, we discuss possible ways to compute and approximate the population
Wasserstein barycenter. This calculation is a crucial step in constructing our Bayesian
Wasserstein barycenter estimator, eq. (5.4). We begin this development in Section 6.1 with a
straightforward Monte-Carlo method to approximate our estimator with an empiric version.
This method motivates us to summarise in Section 6.1.1 the essentials of the gradient descent
method in Wasserstein space, developed in [93, 6], where we can fix necessary notation
and ideas for our main contribution. We introduce a novel algorithm for computation of
barycenters in Section 6.2, which can be seen as a stochastic gradient descent method on
Wasserstein space. This algorithm is the last main contribution of this work, followed by
Section 6.2.1, where we present a generalisation of this method, named batch stochastic
gradient descent, which it is a mixed idea between empirical and stochastic estimators.

To illustrate the applicability of our proposed approach, and several methods, in Section 6.3,
we give explicit formulas for the proposed method for several useful families of distributions.
To close this chapter, in Section 6.4 we provide a comprehensive numerical experiment to
illustrate the advantages of the Bayesian Wasserstein barycenter over the Bayesian model
average, besides to show that the stochastic gradient descent method is a superior alternative
for their computation versus a Monte Carlo approximation.

For our results, we assume we are capable of generating independent models mi from the
posteriors Πn and the prior Π for i = 1, ..., k. In the parametric setting, we can use efficient
Markov Chain Monte Carlo (MCMC) techniques [56] or transport-based sampling procedures
[41, 94, 64, 78] to generate samples of parameters θi, for then via the parametrisation function
get the models mi = mθi for i = 1, ..., k.
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6.1 Empirical Wasserstein barycenter

In general, we cannot calculate integrals over the model spaceM, so we must approximate
such integrals by, e.g. Monte Carlo methods. For this reason, we discuss the empirical
Wasserstein barycenter. When |supp(Π)| <∞ this is related to [20, Theorem 3.1].

Definition 6.1.1 Given mi
iid∼ Πn for i ≤ k, the empirical measure Π

(k)
n over models is

Π
(k)
n := 1

k

∑k
i=1 δmi

∈ P(M) .

Note that if a.s. Πn ∈ Wp(Wp,ac(X )) then a.s. Π
(k)
n ∈ Wp(Wp,ac(X )), so all hypothesis about

Πn stand on Π
(k)
n . Using Π

(k)
n instead of Πn, we define the p-Wasserstein empirical Bayes risk

V
(n,k)
p (m̄|D), as well as a corresponding empirical Bayes estimator m̂(n,k)

p . IfM =Wp then
m̂

(n,k)
p is referred to as a p-Wasserstein empirical barycenter of Πn ([18]).

Remark 6.1.2. It is known that a.s. Π
(k)
n converges weakly to Πn as k →∞. If Πn has finite

p-th moments, by strong law of large numbers we have p-th moments convergence:

∫
Wp(m,m0)pΠ

(k)
n (dm) = 1

k

∑k
i=1 Wp(mi,m0)p →

∫
Wp(m,m0)pΠn(dm) a.s.

Thus a.s. Π
(k)
n → Πn in Wp. By [74, Theorem 3], any sequence of empirical barycenters

(m̂k
n)k≥1 of (Πk

n)k≥1 converges (up to subsequence) in p-Wasserstein distance to a (population)
barycenter m̂n of Πn. Combining these facts, the following is immediate:

Lemma 6.1.3 If Wp(Πn, δm0)→ 0, m(∞)
0 -a.s., there exists a data-dependent sequence kn :=

kn(x1, . . . , xn) such that (m̂kn
n )n≥1 satisfy Wp(m̂

kn
n ,m0)→ 0, m(∞)

0 -a.s.

Proof of Lemma 6.1.3. Since Wp is a metric we have that Wp(m̂
k
n,m0) ≤ Wp(m̂

k
n, m̂n) +

Wp(m̂n,m0) for all k, n ≥ 0, and thanks to Proposition 5.4.4 the last term tends to zero
m

(∞)
0 -a.s. as n → ∞. Using a diagonal argument, for each m̂n exists kn (determined by

the data-dependent Πn) s.t. the empirical barycenter m̂k
n satisfies Wp(m̂

kn
n , m̂n) ≤ 1

n
, thus

obtaining the convergence.

6.1.1 Gradient descent on Wasserstein space

We first survey the gradient descent method for the computation of 2-Wasserstein empirical
barycenters. This method will serve as a motivation for the subsequent development of the
stochastic gradient descent in Sections 6.2 and 6.2.1.

From now until the end of the article we strengthen Assumption 5.3.8 by further assuming
(cf. Remark 5.3.9) that

Assumption 6.1.4 p = 2, X = Rq, d = Euclidean metric, λ = Lebesgue measure.
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Let us consider m1, . . . ,mk ∈ W2,ac(Rq), weights λ1, . . . , λk ∈ R+ with
∑k

i=1 λi = 1 and the
respective discrete measure1 Π(k) =

∑k
i=1 λiδmi

. Given some measure m ∈ W2,ac(Rq), we
denote the optimal transport map from m to mi as Tmi

m for i = 1, . . . , k. The uniqueness and
existence of this map is guaranteed by Brenier’s Theorem. With this notation one can define
the operator Gk :W2,ac(Rq)→W2,ac(Rq) as

Gk(m) :=
(∑k

i=1 λiT
mi
m

)
(m). (6.1)

Owing to [6] the operator Gk is continuous for the W2 distance. Also, if at least one of the
mi has a bounded density, then the unique Wasserstein barycenter m̂ of Π(k) has a bounded
density and satisfies Gk(m̂) = m̂. Thanks to this, starting from µ0 ∈ W2,ac(Rq) one can define
the sequence

µn+1 := Gk(µn), for n ≥ 0. (6.2)

The next result was proven by Álvarez-Esteban, Barrio, Cuesta-Albertos, Matrán in [6,
Theorem 3.6] and independently by Zemel and Panaretos in [93, Theorem 3,Corollary 2]:

Proposition 6.1.5 The sequence {µn}n≥0 defined in (eq. 6.2) is tight and every weakly
convergent subsequence of {µn}n≥0 must converge in W2 distance to a measure in W2,ac(Rq)
which is a fixed point of Gk. If some mi has a bounded density, and if Gk has a unique fixed
point m̂, then m̂ is the Wasserstein barycenter of Π(k) and we have that W2(µn, m̂)→ 0.

The previous result allows one to estimate the barycenter of any discrete measure (i.e. any
prior/posterior with finite support), as long as one is able to construct the optimal transports
Tmi
m . Thanks to the Riemannian-like geometry of W2(Rq) (see [8, Chapter 8]) one can

reinterpret the iterations in (eq. 6.2) as a gradient descent step. This was discovered by
Panaretos and Zemel in [93, 92]. In fact, in [93, Theorem 1] the authors prove the following:
Letting Π(k) =

∑k
i=1 λiδmi

as above, then the (half) Wasserstein Bayes risk of m ∈ W2,ac(Rq)
and its Fréchet derivative are given respectively by

Fk(m) :=1
2

∑k
i=1 λiW

2
2 (mi,m), (6.3)

F ′k(m) =−
∑k

i=1 λi(T
mi
m − I) = I −

∑k
i=1 λiT

mi
m , (6.4)

where I is the identity map on Rq. It follows by Brenier’s theorem [138, Theorem 2.12(ii)]
that m̂ is a fixed point of Gk defined in (eq. 6.1) if and only if F ′k(m̂) = 0 (one says that
m̂ is a Karcher mean of Π(k)). The gradient descent sequence with step γ starting from
µ0 ∈ W2,ac(Rq) is defined as

µn+1 := Gk,γ(µn), for n ≥ 0, (6.5)

where Gk,γ(m) := [I + γF ′k(m)] (m) =
[
(1− γ)I + γ

∑k
i=1 λiT

mi
m

]
(m). These ideas serve us

as inspiration for the stochastic gradient descent iteration in the next part. We finally remark
that if γ = 1 the aforementioned gradient descent sequence equals the sequence in (eq. 6.2),
i.e. Gk,1 = Gk. In fact in [93] the authors prove that the choice γ = 1 is optimal.

1One can think of Π(k) as an empirical approximation of the posterior Πn or the prior Π.
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6.2 Stochastic Gradient Descent on Wasserstein Space

The method in Section 6.1.1 works perfectly well for calculating the empirical barycenter. For
the estimation of a population barycenter (i.e. when the prior does not have finite support)
we would need to construct a convergent sequence of empirical barycenters, as in Section
6.1, and then apply the method in Section 6.1.1. Altogether this can be computationally
expensive. To remedy this, we follow the ideas in [23] and define a stochastic version of the
gradient descent sequence for the barycenter of Π ∈ W2(W2,ac(Rq)). Needless to say that Π
could represent the posterior or prior distribution.

Definition 6.2.1 Let µ0 ∈ W2,ac(Rq), mk
iid∼ Π, and γk > 0 for k ≥ 0. Then we define the

stochastic gradient descent (SGD) sequence as

µk+1 :=
[
(1− γk)I + γkT

mk
µk

]
(µk) , for k ≥ 0. (6.6)

By Remark 5.3.9 and an induction argument, we clearly have

{µk}k ⊂ W2,ac(Rq), a.s. (6.7)

The key ingredients for the convergence analysis of the stochastic gradient iterations are:

F (µ) :=1
2

∫
W2,ac(X )

W 2
2 (µ,m)Π(dm) (6.8)

F ′(µ) :=−
∫
W2,ac(X )

(Tmµ − I))Π(dm). (6.9)

Observe that the population barycenter µ̂ is the minimizer of F and that by Lemma 5.3.10 also
‖F ′(µ̂)‖L2(µ̂) = 0. The next proposition (cf. [93, Lemma 2]) indicates us that, in expectation,
the sequence {F (µk)}k is essentially decreasing for a sufficiently small step γk. This is a first
indication of the behaviour of the sequence {µk}k. We denote by {Fk}k the filtration of the
i.i.d. sample mk ∼ Π, namely F−1 is the trivial sigma-algebra and Fk+1 is the sigma-algebra
generated by m0, . . . ,mk. In this way µk is Fk-measurable.

Proposition 6.2.2 For the stochastic gradient descent sequence in (6.6), we have

E [F (µk+1)− F (µk)|Fk] ≤ γ2
kF (µk)− γk‖F ′(µk)‖2

L2(µk). (6.10)

If we set γ0 = γ
‖F ′(µ0)‖2

L2(µ0)

F (µ0)
, then for k = 0 the inequality (6.10) becomes

E [F (µ1)− F (µ0)] ≤ −
‖F ′(µ0)‖4

L2(µ0)

F (µ0)

(
γ − γ2

)

which is optimal with γ = 1
2
.

Proof of Proposition 6.2.2. Let ν ∈ supp(Π). By (6.7) we know that
([

(1− γk)I + γkT
mk
µk

]
, T νµk

)
(µk),
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is a feasible (not necessarily optimal) coupling with first and second marginals µk+1 and ν
respectively. Denoting Om := Tmµk − I, we have

W 2
2 (µk+1, ν) ≤ ‖(1− γk)I + γkT

mk
µk
− T νµk‖

2
L2(µk)

= ‖−Oν + γkOmk‖2
L2(µk)

= ‖Oν‖2
L2(µk) − 2γk〈Oν , Omk〉L2(µk) + γ2

k‖Omk‖2
L2(µk).

Evaluating µk+1 on the functional F and thanks to the previous inequality, we have

F (µk+1) =1
2

∫
W 2

2 (µk+1, ν)Π(dν)

≤1
2

∫
‖Oν‖2

L2(µk)Π(dν)− γk
〈∫

OνΠ(dν), Omk

〉
L2(µk)

+
γ2
k

2
‖Omk‖2

L2(µk)

=F (µk) + γk 〈F ′(µk), Omk〉L2(µk) +
γ2
k

2
‖Omk‖2

L2(µk).

Taking conditional expectation with respect to Fk, and as mk is independently sampled from
this sigma-algebra, we conclude

E [F (µk+1)|Fk]

≤F (µk) + γk
〈
F ′(µk),

∫
OmΠ(dm)

〉
L2(µk)

+
γ2
k

2

∫
‖Om‖2

L2(µk)Π(dm)

=(1 + γ2
k)F (µk)− γk‖F ′(µk)‖2

L2(µk).

Now we show that under reasonable assumptions the sequence {F (µk)}k converges a.s. to the
unique minimizer of F . As mentioned above, this minimiser is the 2-Wasserstein population
barycenter of Π, denoted µ̂. We will need the following convergence result recalled in [21]:

Theorem 6.2.3 (Quasi-martingale convergence theorem) Given a random sequence {ht}t≥0

adapted to the filtration {Ft}, define δt := 1 if E [ht+1 − ht|Ft] > 0 and δt := 0 otherwise.
If ht ≥ 0 for all t ≥ 0, and the infinite sum of the positive expected variations is finite, i.e.∑∞

t=1 E [δt(ht+1 − ht)] <∞, then the sequence {ht} converges almost surely to some h∞ ≥ 0.

We will assume the following conditions on the steps γt appearing in eq. (6.6):
∑∞

t=1 γ
2
t <∞ (6.11)∑∞

t=1 γt =∞. (6.12)

For example, the above conditions are satisfy straightforward with γt = 1/t. Additionally the
following conditions will be useful to finish the arguments:

W2,ac(X ) 3 µ 7→ ‖F ′(µ)‖2
L2(µ) is lower semicontinuous w.r.t. Wq some q < 2, (6.13)

W2,ac(X ) 3 µ 7→ ‖F ′(µ)‖2
L2(µ) has a unique zero. (6.14)

We examine these conditions in Remark 6.2.5. We can state the main result of this part:

Theorem 6.2.4 Under conditions (6.11) and (6.12) the stochastic gradient descent sequence
{µt}t is a.s. relatively compact in Wq for all q < 2 (in particular it is tight). If furthermore
(6.13) and (6.14) hold, then a.s. {µt}t≥0 converges to the W2-population barycenter µ̂ of Π in
the Wq topology (in particular it weakly converges).

88



Proof. Denote F̂ := F (µ̂) and introduce the sequences

ht := F (µt)− F̂ , αt :=
∏t−1

i=1
1

1+γ2
i
.

Observe that ht ≥ 0 for all t. Thanks to condition (6.11) the sequence αt converges to some
α∞ > 0, as can be checked by taking logarithm. By Proposition 6.2.2 we have

E [ht+1 − (1 + γ2
t )ht|Ft] ≤ γ2

t F̂ − γt‖F ′(µt)‖2
L2(µt)

≤ γ2
t F̂ , (6.15)

so after multiplying by αt+1 we derive the bound

E [αt+1ht+1 − αtht|Ft] ≤ αt+1γ
2
t F̂ − αt+1γt‖F ′(µt)‖2

L2(µt)
≤ αt+1γ

2
t F̂ . (6.16)

We define δt := 1 if E [αt+1ht+1 − αtht|Ft] > 0 and δt := 0 otherwise. Then
∑∞

t=1 E [δt(αt+1ht+1 − αtht)] =
∑∞

t=1 E [δtE [αt+1ht+1 − αtht|Ft]]
≤ F̂

∑∞
t=1 αt+1γ

2
t ≤ F̂

∑∞
t=1 γ

2
t <∞.

Since αtht ≥ 0, by quasi-martingale convergence theorem {αtht}t is a.s. convergent, but as
αt converges to α∞ > 0, then ht also converges almost surely to some h∞ ≥ 0. Taking
expectations is (6.16), summing in t so that a telescopic sum forms, we have

E[αt+1ht+1] ≤ α0h0 + F̂
∑t

s=1 αs+1γ
2
s ≤ C.

Taking limit inferior, applying Fatou’s lemma, and since α∞ > 0, we conclude E[h∞] <∞. In
particular h∞ is a.s. finite. This means that F (µt) has a finite a.s. limit, which we call L. By
convexity of transport costs ([139, Theorem 4.8]) we have

1
2
W 2

2

(
µt,
∫
mΠ(dm)

)
≤ F (µt) ≤ L+ 1,

for t eventually large enough. Since Π ∈ W2(W2(Rq)) we have
∫
mΠ(dm) ∈ W2(Rq), so the

second moments of {µt}t are a.s. bounded by a finite (random) constant M . By Markov’s
inequality the sequence {µt}t is a.s. tight, since closed balls in Rq are compact. Further, for
q < 2, by Hölder and Chebyshev inequalities we have that

∫
‖x‖>R‖x‖

qdµt ≤ 1
R1−q/2

∫
‖x‖2dµt ≤ M

R1−q/2 ,

so {µt}t≥0 is a.s. relatively compact in Wq thanks to [138, Theorem 7.12] and

lim
R→∞

lim supt→∞
∫
‖x‖>R‖x‖

qdµt ≤ lim
R→∞

lim supt→∞
M

R1−q/2 = 0.

Back to (6.16), taking expectations, summing in t to obtain a telescopic sum, we get

E[αt+1ht+1]− h0α0 ≤ F̂
∑t

s=1 αs+1γ
2
s −

∑t
s=1 αs+1γs‖F ′(µs)‖2

L2(µs)
.

Taking liminf, by Fatou on the l.h.s. and monotone convergence on the r.h.s. we get

−∞ < E[α∞h∞]− h0α0 ≤ C − E
[∑∞

s=1 αs+1γs‖F ′(µs)‖2
L2(µs)

]
.

In particular, we have
∑∞

t=1 γt‖F ′(µt)‖2
L2(µt)

<∞, a.s. (6.17)
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Observe that lim inf‖F ′(µt)‖2
L2(µt)

> 0 would be at odds with (6.17) and (6.12), so further

lim inf‖F ′(µt)‖2
L2(µt)

= 0, a.s.

Assume conditions (6.13) and (6.14). If a subsequence of {µt}t Wq-converges to some µ 6= µ̂,
then along this subsequence we have lim inf‖F ′(µt)‖2

L2(µt)
> 0: indeed, otherwise by (6.13) we

would get ‖F ′(µ)‖2
L2(µ) = 0, contradicting (6.14) since already ‖F ′(µ̂)‖2

L2(µ̂) = 0. Since we do
know that lim inf‖F ′(µt)‖2

L2(µt)
= 0 a.s., it follows that realizations where {µt}t accumulates

into a limit different than µ̂ have zero measure. Thus a.s. the only possible accumulation
point of {µt}t is µ̂. In particular, by a.s. relative compactness of {µt}t, this sequence must
Wq-converge a.s. to the population barycenter µ̂, concluding the proof.

Remark 6.2.5. The validity of eq. (6.14) is equivalent to the uniqueness of an (absolutely
continuous) fixed point for the functional

m̄ 7→
(∫

Tmm̄Π(dm)
)

(m̄), (6.18)

which is in general unsettled. In the finite-support case [2, Remark 3.9] and specially
[93, Theorem 2] provide reasonable sufficient conditions. For the infinite-support case the
uniqueness of fixed-points, as far as we know, has only been explored in [18, Theorem 5.1]
under strong assumptions. It is imaginable that the arguments in [93] can be generalized to
the infinite-support case, but we do not explore this in the present work.

On the other hand it seems plausible that (6.13) holds in full generality. In this direction we
refer to [93, Proposition 3] for a continuity statement when, again, Π has finite support. We
give next a sufficient/alternative condition for (6.13) of our own, which does work for the
infinite-support case.

Proposition 6.2.6 Assumption (6.13) is fulfilled if

(i) X = R.

Alternatively, assume that

(ii) µ0 ∈ supp(Π) ⊂ H ⊂ W2,ac(Rq), where H is geodesically closed and closed under
composition of optimal maps, meaning respectively2

∀m, m̃ ∈ H,∀α ∈ [0, 1] : ([1− α]I + αT m̃m )(m) ∈ H, (6.19)

∀µ,m, m̃ ∈ H : T m̄m = T m̄µ ◦
(
Tmµ
)−1

. (6.20)

Then for the stochastic gradient descent sequence we have a.s. {µk}k≥1 ⊂ H. Further the
functional H 3 µ 7→ ‖F ′(µ)‖2

L2(µ) is W2-continuous and weakly lower semicontinuous, and the
conclusions of Theorem 6.2.4 remain valid if Condition (6.13) is dropped.

Proof of Proposition 6.2.6. We first settle the case of Condition (ii). It is immediate from
(6.19) that µ1 ∈ H, and by induction it follows similarly that a.s. {µk}k≥1 ⊂ H. We now

2Since µ,m are absolutely continuous, we have by [138, Theorem 2.12(iv)]
(
Tmµ
)−1

= Tµm, (m− a.s.)
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establish the continuity statement, decomposing the functional as follows

‖F ′(µ)‖2
L2(µ) =

∫
X

∣∣∫ Tmµ (y)Π(dm)− y
∣∣2 µ(dy)

=
∫
X

∣∣∫ Tmµ (y)Π(dm)
∣∣2 µ(dy)− 2

∫ ∫
X y · T

m
µ (y)µ(dy)Π(dm) +

∫
X‖y‖

2µ(dy).

The term µ 7→
∫
X‖y‖

2µ(dy) is continuous inW2 and weakly lower semicontinuous. As Brenier
maps are optimal, we have

∫
X y · T

m
µ (y)µ(dy) = sup

y∼µ, z∼m
E [y · z] := ρ(µ,m).

Thus ρ(·,m) is continuous in W2 and weakly upper semicontinuous, so under the standing
assumption that Π ∈ W2(W2,ac) the term

∫
ρ(µ,m)Π(dm) is continuous in W2 and weakly

upper semicontinuous too. Finally we only have to check that the first term is continuous:
∫
X

∣∣∫ Tmµ (y)Π(dm)
∣∣2 µ(dy) =

∫
X

[∫
Tmµ (y)Π(dm)

]
·
[∫
T m̃µ (y)Π(dm̃)

]
µ(dy)

=
∫ ∫ [∫

X T
m
µ (y) · T m̃µ (y)µ(dy)

]
Π(dm̃)Π(dm)

=
∫ ∫

G(µ,m, m̃)Π(dm̃)Π(dm)

where G(µ,m, m̃) =
∫
X T

m
µ (y) · T m̃µ (y)µ(dy). For µ,m, m̃ ∈ H we have that

G(µ,m, m̃) =
∫
X T

m
µ (y) · T m̃µ (y)µ(dy)

=
∫
X T

m
µ (y) ·

[
T m̃µ ◦

(
Tmµ
)−1 ◦ Tmµ (y)

]
µ(dy)

=
∫
X z ·

[
T m̃µ ◦

(
Tmµ
)−1

(z)
]
m(dz)

=
∫
X z · T

m̃
m (z)m(dz),

thanks to the Condition (6.20). Since G(µ,m, m̃) is independent of µ, we conclude that
the functional µ 7→ ‖F ′(µ)‖2

L2(µ) is W2-continuous and weakly lower semicontinuous on H
as desired. With this at hand we can go back to the arguments in the proof of Theorem
6.2.4, checking their validity without Condition (6.13). Finally let us consider Condition
(i). In this case (6.20) is true for all µ,m, m̃ absolutely continuous, since the composition
of increasing functions on the line is increasing. The above arguments verbatim prove the
validity of (6.13).

See [20, Proposition 4.1] for examples where eq. (6.20) is fulfilled, including the case of radial
or component-wise transformations of a base measure. Eq. (6.20) is rather restrictive, since
the composition of gradients of convex functions need not be of the same kind.

6.2.1 Batch Stochastic gradient descent on Wasserstein space

To generate the sequence (6.6) in the k-step, we sampled mk
iid∼ Π, chose γk > 0 and updated

µk via the map Tk := I + γk(T
mk
µk
− I). The expected transport map is

E [Tk] = I + γk
∫

(Tmkµk
− I)Π(dmk) = I − γkF ′(µk).
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Notice that −(Tmkµ − I) is an unbiased estimator for F ′(µ), but in many cases it can have a
high variance so the learning rates γ must be very small for convergence. This motivates us
to propose alternative estimators for F ′(µ) with less variance:

Definition 6.2.7 Let µ0 ∈ W2,ac(Rq), mi
k
iid∼ Π, and γk > 0 for k ≥ 0 and i = 1, . . . , Sk. The

batch stochastic gradient descent (BSGD) sequence is given by

µk+1 :=
[
(1− γk)I + γk

1
Sk

∑Sk
i=1 T

mi
k

µk

]
(µk). (6.21)

Denote this time Fk+1 the sigma-algebra generated by {mi
` : ` ≤ k, i ≤ Sk}. Notice that

D := 1
Sk

∑Sk
i=1 T

mi
k

µk − I is an unbiased estimator of −F ′(µk). Then, much as in Proposition
6.2.2, we have

E [F (µk+1)|Fk] =F (µk) + γk〈F ′(µk),
∫
DΠ(dm1

k · · · dm
Sk
k )〉L2(µk)

+
γ2
k

2

∫
‖D‖2

L2(µk)Π(dm1
k · · · dm

Sk
k )

=F (µk)− γk‖F ′(µk)‖2
L2(µk) +

γ2
k

2

∫
‖ 1
Sk

∑Sk
i=1 T

mi
k

µk − I‖2
L2(µk)Π(dm1

k · · · dm
Sk
k )

≤F (µk)− γk‖F ′(µk)‖2
L2(µk) +

γ2
k

2
1
Sk

∑Sk
i=1

∫
‖Tm

i
k

µk − I‖2
L2(µk)Π(dmi

k)

=(1 + γ2
k)F (µk)− γk‖F ′(µk)‖2

L2(µk).

From here on it is routine to follow the arguments in the proof of Theorem 6.2.4, obtaining
the following result, whose proof we omit:

Proposition 6.2.8 Under conditions (6.11) and (6.12) the BSGD sequence {µt}t≥0 defined
in (6.21) is a.s. relatively compact in Wq for all q < 2. If also (6.13) and (6.14) hold, then a.s.
{µt}t≥0 converges to the W2-population barycenter µ̂ of Π in the Wq-topology.

The main idea of using mini-batch is noise reduction for the estimator of F ′(µ).

Proposition 6.2.9 The variance of the mini batch estimator for F ′(µ), given namely by
− 1
S

∑S
i=1(Tmi

µ − I), decreases linearly in the sample size, ie.

V[− 1
S

∑S
i=1(Tmi

µ − I)] = O( 1
S

).

Proof of Proposition 6.2.9. The variance of the estimator where m ∼ Π is

V[−(Tmµ − I)] = E
[
‖−(Tmµ − I)‖2

L2(µ)

]
−
∥∥E
[
−(Tmµ − I)

]∥∥2

L2(µ)

= E
[
W 2

2 (µ,m)
]
− ‖F ′(µ)‖2

L2(µ) = 2F (µ)− ‖F ′(µ)‖2
L2(µ).

On the other hand, the variance of the mini-batch estimator where mi ∼ Π for i ≤ S is

V
[
− 1
S

∑S
i=1(Tmi

µ − I)
]

=E
[∥∥∥− 1

S

∑S
i=1(Tmi

µ − I)
∥∥∥

2

L2(µ)

]
−
∥∥∥E
[
− 1
S

∑S
i=1(Tmi

µ − I)
]∥∥∥

2

L2(µ)
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=E
[∥∥∥− 1

S

∑S
i=1(Tmi

µ − I)
∥∥∥

2

L2(µ)

]
− ‖F ′(µ)‖2

L2(µ) .

For the first term we can expand it as
∥∥∥− 1

S

∑S
i=1(Tmi

µ − I)
∥∥∥

2

L2(µ)

= 1
S2 〈
∑S

i=1(Tmi
µ − I),

∑S
j=1(T

mj
µ − I)〉L2(µ)

= 1
S2

∑S
i=1

∑S
j=1〈Tmi

µ − I, T
mj
µ − I〉L2(µ)

= 1
S2

∑S
i=1‖−(Tmi

µ − I)‖2
L2(µ) + 1

S2

∑S
j 6=i〈Tmi

µ − I, T
mj
µ − I〉L2(µ),

so if we take expectation, as the samples mi ∼ Π are independent, we have

E
[
‖− 1

S

∑S
i=1(Tmi

µ − I)‖2
L2(µ)

]

= 1
S2

∑S
i=1 E [W 2

2 (µ,mi)] + 1
S2

∑S
j 6=i〈E

[
Tmi
µ − I

]
,E
[
T
mj
µ − I

]
〉L2(µ)

= 2
S2

∑S
i=1 F (µ) + 1

S2

∑S
j 6=i〈F ′(µ), F ′(µ)〉L2(µ) = 2

S
F (µ) + S−1

S
‖F ′(µ)‖2

L2(µ).

Finally the variance of the mini-bath estimator is given by

V
[
− 1
S

∑S
i=1(Tmi

µ − I)
]

= 1
S

[
2F (µ)− ‖F ′(µ)‖2

L2(µ)

]
.

6.3 On Closed-Form Wasserstein Barycenters

In Chapter 6 we presented some methods to compute the population Wasserstein barycenter,
which assume that we are capable of getting samples from the distributions Π and Πn, and
that we can calculate the optimal transports between measures. While sampling is solved by
MCMC techniques [56] or transport-based sampling procedures [41, 94, 64, 78], computing
optimal transports is not achievable in a general way. For this reason, we exhibit in this section
some families of distributions for which it is possible to calculate these optimal transports
[30]. Furthermore, we will examine their barycenter, establishing some properties which are
conserved under the operation of taking barycenter.

6.3.1 Univariate distributions

For a continuous distribution m in R we denote its cumulative distribution function by Fm(x)
and its right-continuous quantile function by Qm(·) = F−1

m (·). The p-Wasserstein optimal
transport map from some continuous m0 to m is independent of p and given by the monotone
rearrangement (see [138, Remark 2.19(iv)]):

Tm0 (x) = Qm(Fm0(x)).
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Note that this class of functions is closed under composition, convex combination, and contains
the identity. Given Π the barycenter m̂ is also independent of p and characterized by the
averaged quantile function, i.e.

Qm̂(·) =
∫
Qm(·)Π(dm).

A stochastic gradient descent iteration, starting from a distribution function Fµ(x), sampling
some m ∼ Π, and with step γ, produces the measure

ν = ((1− γ)I + γTmµ )(µ),

which is characterized by its quantile function

Qν(·) = (1− γ)Qµ(·) + γQm(·).

The batch stochastic gradient descent iteration is given by Qν(·) = (1−γ)Qµ(·)+ γ
S

∑S
i=1 Qmi(·).

Interestingly the model average m̄ is characterized by the averaged cumulative distribution
function, i.e. Fm̄(·) =

∫
Fm(·)Π(dm). As we mentioned earlier, the model average does not

preserve intrinsic shape properties from the distributions such as symmetry or unimodality.
For example if Π = 0.3 ∗ δm1 + 0.7 ∗ δm2 with m1 = N (1, 1) and m2 = N (3, 1), the model
average is an asymmetric bimodal distribution with modes on 1 and 3, while the Wasserstein
barycenter is the Gaussian distribution m̂ = N (2, 1). The following reasoning formalises the
fact that Wasserstein barycenters preserve some geometric properties.

A continuous distribution m on R is called unimodal with a mode on x̃ ∈ R if its cumulative
distribution function F (x) is convex for x < x̃ and concave for x > x̃. One says that m is
symmetric around xm ∈ R if F (xm +x) = 1−F (xm−x) for x ∈ R. One can also characterize
unimodality and symmetry by quantile function. A continuous distributionm on R is unimodal
with a mode on x̃ if its quantile function Q(y) is concave for y < ỹ and convex for y > ỹ,
where Q(ỹ) = x̃. Likewise, m is symmetric around xm ∈ R if Q(1

2
+ y) = 2xm − Q(1

2
− y)

for y ∈ [0, 1
2
]. Thanks to this characterization we conclude that the barycenter preserves

unimodality/symmetry:

Proposition 6.3.1 If Π ∈ Wp(Pac(R)) is concentrated on symmetric (resp. symmetric
unimodal) univariate distributions, then the barycenter m̂ is symmetric (resp. symmetric
unimodal).

Proof of Proposition 6.3.1. Using the quantile function characterization, we have that

Qm̂

(
1
2

+ y
)

=
∫
Qm

(
1
2

+ y
)

Π(dm) = 2xm̂ −Qm̂

(
1
2
− y
)
,

where xm̂ :=
∫
xmΠ(dm) is the symmetric point, that coincides with the median and the

mean of the barycenter. If some symmetric distribution is unimodal, then its mode coincides
with the median and mean, i.e Qm(1

2
) = xm. Since the average of convex (concave) functions

is convex (concave), it is clear that the barycenter of symmetric unimodal distributions is
also symmetric unimodal.
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Although the unimodality is not preserved in general non-symmetric cases, there are still
many families of distributions in which the unimodality is maintained after taking barycenter,
as we show in the next result.

Proposition 6.3.2 If Π ∈ Wp(Pac(R)) is concentrated on log-concave univariate distributions,
then the barycenter m̂ is unimodal.

Proof of Proposition 6.3.2. Let f(x) be a log-concave density, then − log(f(x)) is convex
so exp(− log(f(x)) = 1

f(x)
is convex. Necessarily f must be unimodal for some x̃ ∈ R, so

quantile function Q(y) is concave for y < ỹ and convex for y > ỹ where Q(ỹ) = x̃. Since 1
f(x)

is convex decreasing for x < x̃ and convex increasing for x > x̃, then 1
f(Q(y))

is convex. Hence
dQ
dy

(y) = 1
f(Q(y))

is convex positive with minima on ỹ. Given Π, its barycenter m̂ satisfies

dQm̂
dy

=
∫

dQm
dy

Π(dm),

so if all dQm
dy

are convex, then dQm̂
dy

is convex positive with minima on some ŷ so Qm̂(y) is
concave for y < ŷ and convex for y > ŷ and m̂ is unimodal with a mode on x̂ = Qm̂(ŷ).

There are many useful typical log-concave distribution families like the normal one, the
exponential, logistic, Gumbel, chi-squared, chi and Laplace. Other examples include the
Weibull, power, gamma and beta families when the shape parameters are equal or greater
than 1. It is interesting to note that some of these families are closed under taking barycenter.
For example, the barycenter of normal distributions is normal, and this remains true for the
exponential, logistic, Gumbel and Laplace families.

6.3.2 Distributions sharing a common copula

If two multivariate distributions P and Q over Rq share the same copula, then their Wp(Rq)
distance to the p-th power is the sum of the Wp(R) distances between their marginals raised
to the p-power. Furthermore, if the marginals of P are continuous, then an optimal map
is given by the coordinate-wise transformation T (x) = (T 1(x1), . . . , T

q(xq)) where T i(xi) is
the monotone rearrangement between the marginals P i and Qi for i = 1, . . . , q. Note that
these kinds of transports are closed under composition, convex combination, and contain the
identity. This setting allows us to easily extend the results from the univariate case to the
multidimensional case.

Lemma 6.3.3 If Π ∈ Wp(Pac(Rq)) is concentrated on a set of measures sharing the same
copula C, then the p-Wasserstein barycenter m̂ of Π has copula C as well, and its i-th marginal
m̂i is the barycenter of the i-th marginal measures of Π. In particular the barycenter does not
depend on p.

Proof of Lemma 6.3.3. It is know [30, 4] that for two distributionsm and µ with i-th marginals
mi and µi for i = 1, ..., q respectively, the p-Wasserstein metric satisfies

W p
p (m,µ) ≥

∑n
i=1 W

p
p (mi, µi),
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where equality is reached if m and µ share the same copula C. (We abuse notation denoting
Wp the p-Wasserstein distance on Rq as well as on R.) Thus

∫
W p
p (m,µ)Π(dm) ≥

∫ ∑q
i=1 W

p
p (mi, µi)Π(dm) =

∑q
i=1

∫
W p
p (ν, µi)Πi(dν),

where Πi is defined via the identity
∫
P(R)

f(ν)Πi(dν) =
∫
P(Rq) f(mi)Π(dm). The infimum for

the lower bound is reached on the univariate measures m̂1, ..., m̂q where m̂i is the p-barycenter
of Πi, which means that m̂i = argmin

∫
W p
p (ν, µi)Πi(dν). It is plain that the infimum is

reached on the distribution m̂ with copula C and i-th marginal m̂i for i = 1, ..., q, which then
has to be the barycenter of Π and is independent of p.

A Wasserstein SGD iteration, starting from a distribution µ, sampling m ∼ Π, and with
step γ, both µ and m having copula C, produces the measure ν = ((1 − γ)I + γTmµ )(µ)
characterized by having copula C and the i-th marginal quantile functions

Qνi(·) = (1− γ)Qµi(·) + γQmi(·),

for i = 1, . . . , q. The batch stochastic gradient descent iteration works analogously. Alterna-
tively, one can perform (batch) stochastic gradient descent component-wise (with respect to
the marginals Πi of Π) and then make use of the copula C.

6.3.3 Spherically equivalent distributions

Following [30], another multidimensional case is constructed as follows: Given a fixed measure
m̃ ∈ W2,ac(Rq), its associated family of spherically equivalent distributions is

S0 := S(m̃) =
{
L
(
α(‖x̃‖2)
‖x̃‖2 x̃

)
|α ∈ ND(R), x̃ ∼ m̃

}
,

where ‖ ‖2 is the Euclidean norm and ND(R) is the set of non-decreasing non-negative
functions of R+. These type of distributions include the simplicially contoured distributions,
and also elliptical distributions with the same correlation structure. We denote by L(·) the
law of a random vector, so m = L(x) and x ∼ m are synonyms.

If y ∼ m ∈ S0, then we have that α(r) = Q‖y‖2(F‖x̃‖2(r)), where Q‖y‖2 is the quantile
function of the norm of y, F‖x̃‖2 is the distribution function of the norm of x̃, and y ∼
α(‖x̃‖2)
‖x̃‖2 x̃. More generally, if m1 = L

(
α1(‖x̃‖2)
‖x̃‖2 x̃

)
and m2 = L

(
α2(‖x̃‖2)
‖x̃‖2 x̃

)
, then the optimal

transport from m1 to m2 is given by Tm2
m1

(x) = α(‖x‖2)
‖x‖2 x where α(r) = Q‖x2‖2(F‖x1‖2(r)).

Since F‖x1‖2(r) = F‖x̃‖2(α
−1
1 (r)) and Q‖x2‖2(r) = α2(Q‖x̃‖2(r)), we can conclude that α(r) =

α2(Q‖x̃‖2(F‖x̃‖2(α−1
1 (r)))) = α2(α−1

1 (r)), so finally

Tm2
m1

(x) =
α2(α−1

1 (‖x‖2))

‖x‖2 x.

Note that these kind of transports are closed under composition, convex combination, and
contain the identity.
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A stochastic gradient descent iteration, starting from a distribution µ = L
(
α0(‖x̃‖2)
‖x̃‖2 x̃

)
,

sampling m = L
(
α(‖x̃‖2)
‖x̃‖2 x̃

)
∼ Π, with step γ, produces m1 = T γ,m0 (µ) := ((1− γ)I + γTmµ )(µ).

Since T γ,m0 (x) =
(γα+(1−γ)α0)(α−1

0 (‖x‖2))

‖x‖2 x, we have that m1 = L
(
α1(‖x̃‖2)
‖x̃‖2 x̃

)
with α1 = γα+ (1−

γ)α0. Analogously, the batch stochastic gradient iteration produces

α1 = (1− γ)α0 + γ
S

∑S
i=1 αmi .

Note that these iterations live in S0, thus, so does the barycenter m̂ ∈ S0.

For the barycenter m̂ = L
(
α̂(‖x̃‖2)
‖x̃‖2 x̃

)
, the equation

∫
Tmm̂ (x)Π(dm) = x can be expressed as

α̂(r) =
∫
αm(r)Π(dm), or equiv. Qm̂

‖ŷ‖2(p) =
∫
Qm
‖y‖2(p)Π(dm), where Qm

‖y‖2 is the quantile
function of the norm of y ∼ m. This is similar to univariate case.

6.3.4 Scatter-location family

We borrow here the setting of [7], where another useful multidimensional case is defined as
follows: Given a fixed distribution m̃ ∈ W2,ac(Rq), referred to as generator, the generated
scatter-location family is given by

F0 := F(m̃) = {L(Ax̃+ b)|A ∈Mq×q
+ , b ∈ Rq, x̃ ∼ m̃},

whereMq×q
+ is the set of symmetric positive definite matrices of size q × q. Without loss of

generality we can assume that m̃ has zero mean and identity covariance. If m̃ is the standard
multivariate normal distribution, then F(m̃) is the multivariate normal distribution family.

The optimal map between two members of F0 is explicit. If m1 = L(A1x̃ + b1) and m2 =
L(A2x̃+ b2) then the optimal map from m1 to m2 is given by Tm2

m1
(x) = A(x− b1) + b2 where

A = A−1
1 (A1A

2
2A1)

1/2A−1
1 ∈ M

q×q
+ . Observe that this family of optimal transports contains

the identity map and is closed under convex combination.

If Π is supported on F0, then its 2-Wasserstein barycenter m̂ belongs to F0. Call its mean b̂ and
its covariance matrix Σ̂. Since the optimal map from m̂ to m is Tmm̂ (x) = Amm̂(x− b̂)+bm where
Amm̂ = Σ̂−1/2(Σ̂1/2ΣmΣ̂1/2)1/2Σ̂−1/2 and we know that m̂-almost surely

∫
Tmm̂ (x)Π(dm) = x.

Then we must have that
∫
Amm̂Π(dm) = I, since clearly b̂ =

∫
bmΠ(dm), and as a consequence

Σ̂ =
∫

(Σ̂1/2ΣmΣ̂1/2)1/2Π(dm).

A stochastic gradient descent iteration, starting from a distribution µ = L(A0x̃+b0), sampling
some m = L(Amx̃ + bm) ∼ Π, and with step γ, produces the measure ν = T γ,m0 (µ) :=
((1 − γ)I + γTmµ )(µ). If x̃ has a multivariate distribution F̃ (x), then µ has distribution
F0(x) = F̃ (A−1

0 (x − b0)) with mean b0 and covariance Σ0 = A2
0. We have that T γ,m0 (x) =

((1 − γ)I + γAmµ )(x − b0) + γbm + (1 − γ)b0 with Amµ := A−1
0 (A0A

2
mA0)

1/2A−1
0 . Then ν has

distribution

F1(x) = F0([T γ.m0 ]−1(x)) = F̃ ([(1− γ)A0 + γAmµ A0]−1(x− γbm − (1− γ)b0)),
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with mean b1 = (1− γ)b0 + γbm and covariance

Σ1 = A2
1 = [(1− γ)A0 + γA−1

0 (A0A
2
mA0)1/2][(1− γ)A0 + γ(A0A

2
mA0)1/2A−1

0 ]

= A−1
0 [(1− γ)A2

0 + γ(A0A
2
mA0)1/2][(1− γ)A2

0 + γ(A0A
2
mA0)1/2]A−1

0

= A−1
0 [(1− γ)A2

0 + γ(A0A
2
mA0)1/2]2A−1

0

The batch stochastic gradient descent iteration is characterized by

b1 = (1− γ)b0 + γ
S

∑S
i=1 bmi

A2
1 = A−1

0 [(1− γ)A2
0 + γ

S

∑S
i=1(A0A

2
miA0)1/2]2A−1

0 .

6.4 Numerical Experiments

We next present experimental validation for our theoretical contribution. This simulation
experiment aims to provide practical evidence for the implementation of the proposed approach
to Wasserstein Bayesian learning and its relationship to the true model. Precisely, the following
experiment consists in: i) defining a true model, ii) sampling from such model to yield a
set of data points, iii) sampling from the posterior measures, iv) computing the proposed
Bayesian 2-Wasserstein barycenter via empirical approximation, v) analysing our estimator
with respect to both the true model and the standard Bayesian model average, and lastly,
vi) comparing the empirical estimate versus the proposed stochastic gradient methods for
computing population barycenters.

6.4.1 Choice of the true model, prior and posterior samples

Following the discussion in Sec. 6.3.4, we considered models within the location-scatter family
(LS), since optimal transports between them can be computed in closed form but are not
reduced to the well-known univariate case. We chose the generator of the LS family, denoted
m̃, as a distribution on R15 with independent coordinates, where:

• coordinates 1 to 5 are standard Normal distributions
• coordinates 6 to 10 are standard Laplace distributions, and
• coordinates 11 to 15 are standard Student’s t-distributions (3 degrees of freedom).

Fig. 6.1 shows uni- and bi-variate marginals for 6 coordinates of m̃.

Within the LS family constructed upon m̃, we chose the true model m0 to be generated by the
location vector b ∈ R15 defined as bi = i− 1 for i = 1, . . . , 15, and the scatter matrix A = Σ1/2.
The covariance matrix Σ was defined as Σi,j = K

((
i−1
14

)1.1
,
(
j−1
14

)1.1
)
for i, j = 1, . . . , 15 3,

with the kernel function K(i, j) = εδij + σ cos (ω(i− j)). Given the parameters ε, σ and
ω, the constructed covariance matrix is denoted Σε,σ,ω. We chose parameters ε = 0.01,

3We chose
(
j−1
14

)1.1
for j = 1, . . . , 15 because this defines a non-uniform grid over [0, 1].
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Figure 6.1: Univariate (diagonal) and bivariate (off-diagonal) marginals for 6 coordinates
from the generator distribution m̃. The diagonal and lower triangular plots are smoothed
histograms, whereas the upper-diagonal ones are collections of samples.
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Figure 6.2: True model m0: covariance matrix (left), and univariate and bivariate marginals
for dimensions 1, 8 and 15 (right). Notice that some coordinates are positively or negatively
correlated, and some are even close to be uncorrelated.

σ = 1 and ω = 5.652 ≈ 1.8π for m0. Thus under the true model m0 the coordinates can
be negatively/positively correlated due to the cosine term and there is also a coordinate-
independent noise component due to the Kronecker delta δij. Fig. 6.2 shows the covariance
matrix and three coordinates of the true model m0.

The model prior Π is the push-forward induced by the chosen prior over the mean vector b
and the parameters of the covariance Σε,σ,ω. We chose all these priors to be independent and
given by

p(b,Σε,σ,ω) = N (b|0, I)Exp(ε|20)Exp(σ|1)Exp(ω−1|15), (6.22)

where Exp(·|λ) is a exponential distribution with rate λ. Given n samples from the true
model m0 (also referred to as observations or data points), we generated k samples from the
posterior measure Πn using Markov chain Monte Carlo (MCMC), all to obtain the empirical
measure Π

(k)
n . The remaining part of our numerical analysis focuses on the behavior of the

Bayesian Wasserstein barycenter as a function of both the number of samples k and the
number of data points n.

6.4.2 Numerical consistency of the empirical posterior under the
Wasserstein distance

We first validated the empirical measure Π
(k)
n , as a consistent sample version of the true poste-

rior under theW2 distance, that is, we would like to confirm thatW2(Π
(k)
n , δm0)→ W2(Πn, δm0)

100



1.0 5.0 10.0 20.0 50.0 100.0 200.0 500.0 1000.0
k

6

4

2

0

2

lo
g_

w2

n
10.0
20.0
50.0
100.0
200.0
500.0
1000.0
2000.0
5000.0
10000.0

Figure 6.3: Wasserstein distance between the empirical measure Π
(k)
n and δm0 in logarithmic

scale for different number of observations n (color coded) and samples k (x-axis). For each
pair (n, k), 10 estimates of W2(Π

(k)
n , δm0) are shown.

n / k 1 5 10 20 50 100 200 500 1000
10 1.2506 0.8681 0.5880 0.9690 0.2354 0.3440 0.1253 0.1330 0.0972
20 1.5168 0.5691 0.3524 0.3182 0.1850 0.1841 0.1049 0.0811 0.0509
50 0.3479 0.0948 0.1275 0.0572 0.0623 0.0229 0.0157 0.0085 0.0092
100 0.2003 0.1092 0.0712 0.0469 0.0431 0.0254 0.0087 0.0079 0.0084
200 0.0749 0.1249 0.0717 0.0533 0.0393 0.0101 0.0092 0.0109 0.0072
500 0.0478 0.0285 0.0093 0.0086 0.0053 0.0056 0.0045 0.0023 0.0022
1000 0.0299 0.0113 0.0113 0.0064 0.0067 0.0036 0.0016 0.0012 0.0007
2000 0.0145 0.0071 0.0040 0.0031 0.0027 0.0019 0.0014 0.0011 0.0006
5000 0.0072 0.0031 0.0015 0.0018 0.0010 0.0007 0.0004 0.0005 0.0002
10000 0.0038 0.0020 0.0005 0.0005 0.0004 0.0004 0.0002 0.0002 0.0001

Table 6.1: Standard deviation of W 2
2 (Π

(k)
n , δm0), using 10 simulations, for different values of

observations n and samples k.
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n / k 10 20 50 100 200 500 1000 2000
10 2.1294 2.0139 2.0384 1.9396 1.9608 1.9411 1.9699 1.9548
20 1.4382 1.4498 1.4826 1.4973 1.4785 1.4953 1.4955 1.4914
50 0.2455 0.2759 0.2639 0.2468 0.2499 0.2483 0.2443 0.2454
100 0.1211 0.1387 0.1509 0.1458 0.1379 0.1328 0.1318 0.1349
200 0.1116 0.0922 0.0859 0.0817 0.0777 0.0824 0.0820 0.0819
500 0.0094 0.0077 0.0043 0.0047 0.0041 0.0038 0.0037 0.0039
1000 0.0068 0.0039 0.0031 0.0025 0.0023 0.0022 0.0021 0.0021
2000 0.0072 0.0066 0.0063 0.0062 0.0063 0.0060 0.0062 0.0062
5000 0.0037 0.0037 0.0028 0.0029 0.0031 0.0031 0.0028 0.0030
10000 0.0023 0.0017 0.0017 0.0015 0.0016 0.0017 0.0016 0.0017

Table 6.2: Sample average of W 2
2 (m̂

(k)
n ,m0), using 10 simulations, for different values of

observations n and samples k.

for large k. In this sense, we estimatedW2(Π
(k)
n , δm0) 10 times for each combination of (number

of) observations n and samples k in the following sets

• k ∈ {1, 5, 10, 20, 50, 100, 200, 500, 1000}
• n ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}

Fig. 6.3 shows the 10 estimates of W2(Π
(k)
n , δm0) for different values of k (in the x-axis) and

of n (color coded). Notice how the estimates become more concentrated for larger k and
that the Wasserstein distance between the empirical measure Π

(k)
n and the true model m0

decreases for larger n. Additionally, Table 6.1 shows that the standard deviation of the 10
estimates of W2(Π

(k)
n , δm0) decreases as either n or k increases.

6.4.3 Distance between empirical barycenter and the true model

For each empirical posterior Π
(k)
n we intend to compute their Wasserstein barycenter m̂(k)

n as
suggested in Section 6.1. We call m̂(k)

n the empirical barycenter. For this purpose, we use the
iterative procedure defined in (6.2), namely the (deterministic) gradient descent method, and
repeated this calculation 10 times. As a stopping criterion for the gradient descent method, we
considered the relative variation of the W2 cost, terminating the computation if this quantity
was less than 10−4. Fig. 6.4 shows all the W2 distances between the so computed barycenters
and the true model, while Table 6.2 shows the average across all these distances for each pair
(n, k). Notice that, in general, both the average and standard deviation of the barycenters
decrease as either n or k increases, yet for large values (e.g., n = 2000, 5000) numerical issues
appear.

6.4.4 Distance between the empirical barycenter and the Bayesian
model average

Our aim was then to compare the computed empirical Wasserstein barycenters m̂(k)
n to the

standard Bayesian model averages m̄(k)
n , in terms of their distance to the true model m0, for
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Figure 6.4: W2 distance between the empirical barycenters m̂(k)
n and the true model m0 in

logarithmic scale for different number of observations n (color coded) and samples k (x-axis).
For each pair (n, k), 10 estimates of W2(m̂

(k)
n ,m0) are shown.
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Figure 6.5: Averages (bars) and standard deviations (vertical lines) of W 2
2 (m̂

(k)
n ,m0) denoted

as WB in orange, and W 2
2 (m̄

(k)
n ,m0) denoted as MA in blue, for n = 1000 and different

numbers of samples k. We considered 10 simulations for each k.
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n / s 1 2 5 10 15 20 empirical
10 2.0421 2.0091 1.9549 1.9721 1.9732 1.9712 1.9532
20 1.4819 1.4868 1.5100 1.4852 1.4840 1.4891 1.4916
50 0.2406 0.2512 0.2465 0.2427 0.2444 0.2460 0.2469
100 0.1340 0.1392 0.1340 0.1349 0.1334 0.1338 0.1366
200 0.0843 0.0811 0.0819 0.0807 0.0820 0.0819 0.0811
500 0.0044 0.0042 0.0039 0.0039 0.0041 0.0040 0.0041

Table 6.3: Means of W 2
2 of the stochastic gradient estimations (using the sequences with

t ≥ 100) and that of the empirical estimator (using the simulations with k ≥ 100), across
different combinations of observations n and batch size s.

n / s 1 2 5 10 15 20 empirical
10 0.1836 0.1071 0.0526 0.0474 0.0397 0.0232 0.0916
20 0.0751 0.0565 0.0553 0.0189 0.0253 0.0186 0.0790
50 0.0210 0.0174 0.0072 0.0084 0.0050 0.0039 0.0138
100 0.0102 0.0076 0.0049 0.0048 0.0035 0.0023 0.0112
200 0.0074 0.0045 0.0021 0.0035 0.0013 0.0017 0.0047
500 0.0016 0.0007 0.0005 0.0004 0.0004 0.0004 0.0009
1000 0.0005 0.0006 0.0004 0.0004 0.0003 0.0003 0.0005

Table 6.4: Std. deviations of W 2
2 of the stochastic gradient estimations (using the sequences

with t ≥ 100) and that of empirical estimator (using the simulations with k ≥ 100), across
different combinations of observations n and batch size s.

n = 1000 observations. To do so, we estimated the W2 distances via empirical approximations
with 1000 samples for each model based on [43]. We simulated this procedure 10 times for
k ∈ {10, 20, 50, 100, 200, 500, 1000}. Fig. 6.5 shows the sample average and variance of the W2

distances of the Wasserstein barycenters and Bayesian model averages, where it can be seen
that the empirical barycenter is closer to the true model than the model average regardless of
the number of MCMC samples k.

6.4.5 Computation of the barycenter using batches

Lastly, we compared the empirical barycenters m̂(k)
n against the barycenter obtained by

batch stochastic gradient descent method m̂n,s. Fig. 6.6 shows the evolution of the W 2
2

distance between the stochastic gradient descent sequences and the true model m0 for
n ∈ {10, 20, 50, 100, 200, 500, 1000} observations and batches of sizes s ∈ {1, 15}, with step-
size γt = 1

t
for t = 1, . . . , 200. Hence, for batch size s and n number of observations, we carry

out 200 iterations of the batch stochastic gradient method (6.21) with these explicit step-sizes
{γt}t: the resulting estimator is m̂n,s. Notice from Fig. 6.6 that the larger the batch, the more
concentrated the trajectories of m̂n,s become, and that the estimates exhibit fluctuations when
the batch size is small. Table 6.3 summarizes the means of the distance W 2

2 to the true model
m0, using the sequences after t = 100 against the empirical estimator using all the simulations
with k ≥ 100. Table 6.4 shows the standard deviation of the distance W 2

2 to the true model
m0, where we notice that the standard deviation decreases as the batch size grows. Observe
that for batch sizes s ≥ 5 the stochastic estimation is better than its empirical counterpart,
i.e. it has lower variance with similar (or less) bias. This is noteworthy given the fact that
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Figure 6.6: Evolution of the W 2
2 cost for 10 realizations of the stochastic barycen-

ter and their mean (blue) versus an empirical barycenter estimator (red), for n =
10, 20, 50, 100, 200, 500, 1000 and batches sizes s = 1, 15.
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computing our Wasserstein barycenter estimator via the batch stochastic gradient descent
method is computationally less demanding than computing it via the empirical method.

Based on this illustrative numerical example, we can conclude that:

• the empirical posterior constructed using MCMC sampling is consistent under the W2

distance and therefore can be relied upon to compute Wasserstein barycenters,
• the empirical Wasserstein barycenter estimator tends to converge faster (and with lower
variance) to the true model than the empirical Bayesian model average,
• computing the population Wasserstein barycenter estimator via batch stochastic gradient

descent seems to be a superior alternative to calculating the empirical barycenter (i.e.,
to applying the deterministic gradient descent method to a finitely sampled posterior).
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Conclusion

In Chapter 3 we have provided a theoretically-grounded presentation of non-Gaussian processes
resulting from nonlinear transformations of GPs using the change of variables theorem, thus
complementing existing approaches such as WGP [125], Bayesian WGP [72] and deep GP
[33]. Although the warping functions considered by the models mentioned above can be
arbitrarily complex, their inverse and derivative require expensive numerical approximations.
This fact motivated us to propose the compositionally-warped GP (CWGP), a variant of
WGP that uses transformations given by compositions of multiple analytically-invertible and
differentiable functions. Due to the expressiveness of the deep composition of elementary
functions, the proposed CWGP model represents an improvement in terms of modelling ability
with minimal numerical approximations, thus being a competitive alternative to existing
methods.

Modelling with copulas [144] is an excellent approach to construct non-Gaussian dependency
structures, like heavier-tail Student-t Process introduced in [119] as the most-general elliptical
processes with a closed-form density. In Chapter 4 we have proposed a regression model from
a unifying point of view with other approaches found in literature, like GP, WGP, Student-t
processes, copula processes and a generalised model denoted Warped Student-t Processes. We
deliver the standard methods of training, inference, and additionally we prove our approach’s
consistency. We hope to extend the proposed methodology in the future with more expressive
models.

In Chapter 5 we have proposed an unifying framework for the Bayesian model selection,
covering standard selection criteria, to then introduce the novel Bayesian Wasserstein barycen-
ter estimator. We have also illustrated the appealing statistical properties of the proposed
estimator, and shown implementation examples in parametric and nonparametric cases, where
the desired performance of the proposed method was validated experimentally.

Finally, in Chapter 6 we develop different ways to compute Wasserstein barycenters, where our
main contribution is a stochastic gradient descent method on the Wasserstein space, showing
the convergence under mild conditions. Based on numerical examples, we can conclude
that computing the population Wasserstein barycenter estimator via a batch version of the
stochastic gradient descent seems to be a superior alternative to calculating the empirical
barycenter. This topic has a lot of potential for further development; for example, extending
the method, studying its convergence properties and generalizing the kind of problems to
which we can apply it.
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