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a b s t r a c t 

In this paper we address the problem of allocating extraction pumps to wells, when exploiting lithium 

rich brines, as part of the production of lithium salts. The problem of choosing the location of extrac- 

tion wells is defined using a transportation network structure. Based on the transportation network, the 

lithium rich brines are pumped out from each well and then mixed into evaporation pools. The quality of 

the blend will be based on the chemical concentrations of the different brines, originating from different 

wells. The objective of the problem is then to determine a pumping plan such that the final products 

have predefined concentrations, and the process is operated in the cheapest possible way. The problem 

is modelled as a combinatorial optimisation problem and a potential solution to it is sought using a ge- 

netic algorithm. The evaluation function of the genetic algorithm needs a method to determine feasible 

minimum cost flows for the proposed pumping allocation, thus requiring the formulation of a blending 

model in a flow network for which a new iterative non-convex local optimisation algorithm is proposed. 

The model was implemented and tested to measure the algorithm’s efficiency. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction and motivation 

New mobile technologies such as digital cameras, notebooks

nd mobile phones are essential components of modern life. How-

ver, regardless of which equipment is being used, its operational

apability is limited by the quality of the batteries used to power

t. Increasing battery life has motivated research of new technolo-

ies to store energy. Among several new options for energy storage,

abrication of lithium based batteries has become popular, this has

een mainly motivated by the properties of this element. Lithium

s one of the lightest elements of the periodic table and it is ca-

able of providing a high electric potential, properties that have

ransformed it into a highly consumed and demanded product. 

A good source of lithium can be found in salt flats. Some of

he most important deposits in the world are located in Bolivia

Uyuni), northern Argentina (Hombre Muerto), Israel (Dead Sea),

nited States (Great Salt Lake, Silver Peak, Searle Lake and north-

rn Chile (Salar de Atacama). 

The Atacama salt flats are the biggest in Chile with an approx-

mate extension of 300 square kilometres, it is located in a valley

etween the Andes Domeyko moutain ranges. This particular salt
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at is composed by big quantities of gypsum and salt rocks. The

alt rocks are continuously fed by brine with a 28–47 parts per

illion (ppm) concentration coming from the Salado and San Pe-

ro rivers Gonzalez (20 0 0) . 

The extraction process consists in pumping out brine from the

alt flat using shallow surface wells, it needs to be noted that

umping out brine from a well requires the use of a pump that

eeds to be placed on the well. The extracted brine, when available

rom the well, is saturated in salt and gypsum with high concen-

rations of Na + , K 

+ , Mg +2 
, Li + , Ca ++ 

, SO 4 
−2 y Cl 

−
among others

 Garrett, 2004 ). 

In the case of Salar de Atacama, there are more than 200

ells enabled and around 90 available pumps that can be oper-

ted simultaneously to perform the extraction process. The chemi-

al characteristics of each well are not constant and change accord-

ng to different properties such as depth or porosity of the soil, just

o mention a couple of them. The constant input of rivers, and the

ame extraction process, produce changes in the chemical proper-

ies of the wells, which makes regular measurement of the those

roperties essential for the operation of the extraction method. Fi-

ally, the extracted brine is sent (by means of pumping) into evap-

ration pools where different processes such as evaporation or de-

antation are used to obtain the final products following specific

hemical specifications. 

Given the disparity in the nature of the wells, chemical prop-

rties and pump capacities, it is possible that the mixture that is

https://doi.org/10.1016/j.cor.2019.05.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.05.029&domain=pdf
mailto:pbosch@udd.cl
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mailto:jmunizaga@ing.uchile.cl
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Fig. 1. Representative diagram of the network flow (sectional cut). 
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created in the evaporation pools (also called terminals or sinks),

fails to provide the desired chemical properties and concentrations

in the final products. To avoid the occurrence of this problem,

intermediate accumulation pools that sit between the extraction

wells (sources) and the evaporation pools (sinks) are used. These

intermediate pools enable mixtures that increase the chances to

obtain the required concentration in the sinks. The pumping of

brine requires the use of energy which translates into costs that

the companies using this extraction technique have to pay. Due to

different characteristics, different extraction wells will require dif-

ferent energy quantities used to transport the brines. It is desirable

for the company to obtain a final product, within specified specifi-

cations, with minimum production cost. 

Fig. 1 shows a schematic representation of a typical operation.

It can be observed that the different elements such as extraction

wells, connecting tubes, accumulation and evaporation pools con-

form a network of inter-operating elements that allow the flow of

brines from the salt flat to the final destination where the product

is produced. 

The general problem considered in this paper is to determine

the set of wells in which extraction pumps are going to be located,

to create an extraction network together with an extraction sched-

ule. This should be done in such a way as to obtain a flow satis-

fying chemical requirements in the final product and ideally at a

minimum cost of production. 

The problem thus formulated can be decomposed into two

main elements: feasibility and optimality. The first component, fea-

sibility tries to obtain an extraction schedule that is able to pro-

duce final product with the desired characteristics. The second
Fig. 2. Representative diagram of th
roblem looks at the cost component of the operation of the sys-

em. For the purposes of this study, the problem has been de-

omposed similarly into two components. One component uses

 non-convex optimisation algorithm to determine feasible flows

hen the location of the pumps has been determined. The fea-

ibility component is then called by an optimisation procedure,

hat tries to obtain the cheapest possible way to operate a feasible

ow, based on the current characteristics of the wells and available

umps. 

The remainder of this paper is organised as follows: In

ection 2 we perform a literature review and analyse clas-

ical pooling problem formulations over a fixed network. In

ection 3 we develop a new model that considers specific require-

ents present in extraction of Lithium rich brines(represented in

ig. 2 as the Feasibility Problem box), and we establish an algo-

ithm for local optimisation for a given arrangement of extraction

umps, where the total cost of the operation is proportional to the

mount of brine moved trough the network. This optimisation al-

orithm uses the feasibility problem and approximates the final

oncentrations adding cost constraints (represented in Fig. 2 as

he Flow in fixed network box). In Section 4 the network topol-

gy problem is considered and approached using genetic algorithm

GA) utilising the feasible flow algorithm defined before. The GA

alls the algorithm presented on Section 3 to assess the feasibility

f a proposed arrangement of pumps being evaluated (see Fig. 2 ).

n Section 5 numerical tests run over a simulated instance with

0 extraction wells, 8 mixing pools, 6 evaporation pools and 10

omponents are presented. Finally, in Section 6 we conclude and

resent some possible extensions. 
e structure of the algorithm. 
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. Related literature 

Blending problems with cost minimization have been largely

tudied under the distinctive name of pooling problems . In

upte et al. (2015) pooling problems are described as a mix be-

ween blending problem and classical network flow problems.

hree types of resources are distinguished in the network: source

ontaining material with a known chemical specification, interme-

iate pools used for accumulation and mixing, and sinks where

aterial is blended into a specific quality specification. The usual

bjective in pooling problems is to determine a minimum cost plan

o flow material within the network such that final blend specifi-

ations are satisfied. The pooling problem is very important in the

etrochemical industry context. Nevertheless, its general formula-

ion can be adapted to other application areas such as waste-water

reatment, paint industry or emissions control. More details about

pplication areas for this problem can be found in Kallrath (20 0 0) .

n this paper, a novel application of pooling models has been pro-

osed for Lithium industry. 

The first mathematical nonlinear formulations were intro-

uced by Haverly (1978) , for this model which uses specifica-

ion variables, corresponds to the most intuitive model and its

now as p−formulation. Later, newer modelling options were

roposed, for example the q −formulation was proposed in Ben-

al et al. (1994) and Quesada and Grossmann (1995) replaced

he specification variables by proportion variables which denote

he fraction of incoming flow from sources to mixing pools. The

pq −formulation proposed in Tawarmalani and Sahinidis (2002) ,

ncorporates some extra and valid inequalities derived from a

eformulation-linearisation technique into the q −formulation. Also,

 hybrid formulation that combines specification and proportion

ariables can be find in Audet et al. (2004) , where the proposed

odel extends the q −formulation. The same author defines gen-

ralised pooling problems where connections between pools are

ermitted. In Meyer and Floudas (2006) , the model became more

eneral and included the topology of the decision network. Pooling

roblems are known to be NP-hard and all the models above are

quivalent, a complete survey about different models can be found

n Gupte et al. (2013) . Some points are common for all formula-

ions: classical flow constraint are used to model material trans-

ort trough the network, objective function is linear and represents

he cost of transporting material through the network, or can rep-

esent profit associated with the sale of products obtained in ter-

inal sinks. Upper bounds are used to limit incoming flow into

he network resources. Bilinear constraint are required to describe

hemical specifications in pools and final blends, those last ones

eing also involved in range constraints. 

Lithium applications requires some modifications with respect

o the classical formulations of the pooling problem. In particu-

ar, in this paper we consider demand constraints in final blends.

emand constraints force potential solutions to the problem to

ring flow in all the terminal sinks, and at the same time all the

hemical specification constraints in the problem must be satis-

ed. This represent a departure with respect to the more classi-

al pooling problem formulations, because in the standard pool-

ng problem a flow equals to zero is always a feasible solution for

hich specification constraint are trivially satisfied. As mentioned

n Ruiz et al. (2013) , using demand constraints to find a feasible so-

ution makes the problem harder, however, the feasibility domain

or the problem gets smaller and it might be easier find an optimal

olution using exact methods. 

Several approaches to solve pooling problems have been pro-

osed using local and global optimization techniques. Some local

ptimization techniques include successive linear programing (SLP)

 Baker and Lasdon, 1985; Sarker and Gunn, 1997 ), here bilinear

onstraints are linearised using Taylor’s expansion and a sequence
f strategic linear programs (LPs) are solved. In Audet et al. (2004) ,

 branch-and-cut quadratic algorithm is proposed, also new vari-

ble neighborhood search heuristics (VNS) are developed, and

hen a comparison of this method with the SLP method is pro-

ided. Methods that approximate bilinear constraints, such as the

ne found in Pham et al. (2009) are also found in the litera-

ure, in this work the author discretises quality variables, whilst

n Alfaki and Haugland (2011) the discretisation is done in the

omain of proportion variables. Global optimization effort s in-

lude: generalised Bender’s descomposition ( Floudas and Aggar-

al, 1990 ) and Lagrangian-based methods ( Adhya et al., 1999; Al-

utairi and Elhedhli, 2009 ). Applications of general methods like

lobal optimization algorithm (GOP) defined in Visweswaran and

loudast (1990) , approximate a global solution through a series

f primal and relaxed dual problems. Also, different branch-and-

ound or branch-and-cut procedures have been proposed, see for

xample Quesada and Grossmann (1995) , where a relaxed LP is

roposed and used in a spatial search. In Foulds et al. (1992) , con-

ex approximations of the bilinear terms are investigated. A more

etailed and complete survey about techniques to solve pooling

roblems can be found in Gupte et al. (2015) . 

. Flow in a fixed network 

The transport network is modelled as a directed graph G =
(V, A ) , defined by a set of nodes V = S ∪ I ∪ P, where S, I, P are dis-

oint sets which correspond to extraction wells, accumulation pools

nd evaporation terminals respectively. In the set A of edges for the

raph, the only pairs that are found are those that connect nodes

f S with nodes of I , and those that connect nodes in I with nodes

n P , no direct arcs between sources and terminals are permitted.

 = { (s, i ) : s ∈ S, i ∈ I} ∪ { (i, p) : i ∈ I, p ∈ P } (1)

or each accumulation pool it is considered that there is a min-

mum incoming flow ( ε > 0), otherwise the existence of the pool

ould not be justified. The variable f u, v denotes the flow being

oved from node u to node v . The condition f u, v ≥ 0 ∀ ( u, v ) ∈ A in-

icates that the flow is unidirectional. The following constraints are

ntroduced into the model: 

• (C1) Flow conservation: 
∑ 

s ∈ S 
f s,i −

∑ 

p∈ P 
f i,p = 0 ∀ i ∈ I

• (C2) Available capacity in sources: 
∑ 

i ∈ I 
f s,i ≤ F max 

s ∀ s ∈ S

• (C3) Minimum flow required in terminals: 
∑ 

i ∈ I 
f i,p ≥ F min 

p ∀ p ∈ P 

• (C4) Minimum flow required in accumulation pools: 
∑ 

s ∈ S 
f s,i ≥

ε ∀ i ∈ I

The set of feasible flows of the network is thus defined by the

atisfaction of these four constraints and parametrised by ε: 

ε = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

i ∈ I 
f s,i ≤ F max 

s ∀ s ∈ S ∑ 

s ∈ S 
f s,i −

∑ 

p∈ P 
f i,p = 0 ∀ i ∈ I 

f ∈ R 

| A | 
+ : ∑ 

i ∈ I 
f i,p ≥ F min 

p ∀ p ∈ P ∑ 

s ∈ S 
f s,i ≥ ε ∀ i ∈ I 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(2) 

.1. Feasibility flow 

The problem currently modelled in this first stage is a feasibility

roblem, i.e., our objective is to find a flow creating a mixture of
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chemical solutions in the evaporation nodes, where the expected

concentrations are obtained in those nodes. Some mathematical

transformations and operations are introduced in order to model

the feasibility problem as a conditioned least squares problem, and

then use classical non-linear optimization techniques to solve it. 

In what follows, E denotes the set of chemical products present

in the mixture. On each node v ∈ V of the network, a variable z v, e 

is defined which denotes the concentration of the component e

present in that particular node. The initial concentrations in the

source nodes can be measured and they will be considered being

data for the problem and denoted by ˆ z s,e . A natural condition is

then imposed: 

z s,e = 

ˆ z s,e ∀ s ∈ S, e ∈ E (3)

The concentration of components in pools and terminals can be

determined uniquely from the flow and initial concentrations by

means of a mass balance (in absence of chemical reactions of the

components) 

z i,e = 

∑ 

s ∈ S 
z s,e f s,i ∑ 

s ∈ S 
f s,i 

∀ i ∈ I, e ∈ E ∧ z p,e = 

∑ 

i ∈ I 
z i,e f i,p ∑ 

i ∈ I 
f i,p 

∀ p ∈ P, e ∈ E (4)

Defining Z = (z v ,e ) as the matrix that contains all the concen-

tration variables, then the initial condition (3) and the Eq. (4) can

be written more concisely (in matrix form) as: 

L ( f ) Z = 

[ ̂ Z S 
0 (| V |−| S| ) ×| E| 

]
(5)

where L is an operator that associates to each flow a square matrix

(lower triangular) whose elements are 

l n,m 

( f ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 if m = n , n ≤ | S| ∑ 

u ∈ V 
f u,n if m = n , n > | S| 

− f m,n if m < n 

0 otherwsise 

(6)

Being L a lower triangular matrix, its determinant can easily be

computed as the product of the elements on its diagonal. Using

also constraints (C3) and (C4) we obtain the following expression

for the determinant: 

det (L ( f )) = 

∏ 

v ∈ V −S 

( ∑ 

u ∈ V 
f u, v 

) 

≥ ε | I| 
∏ 

p∈ P 
F min 

P > 0 

hence, the operator L is invertible ( det (L ( f )) 	 = 0 ) and the concen-

tration variables can be expressed uniquely in terms of flows and

initial concentrations 

Z( f ) = L ( f ) −1 

[ ̂ Z S 
0 (| V |−| S| ) ×| E| 

]
. (7)

On each terminal it is expected that a final product with a pre-

specified chemical composition can be obtained. If we denote by

ˆ z p,e the concentration of component e expected in terminal p , we

are then interested in those flows f such that 

z p,e ( f ) = 

ˆ z p,e ∀ p ∈ P e ∈ E (8)

The previous condition can be expressed in matrix form as 

Q P Z( f ) = 

ˆ Z P ( f ) (9)

where Q P = 

[
0 | P |×(| V |−| P | ) Id | P| 

]
, then Z P ( f ) := Q P Z ( f ) corresponds to

the concentration variables in the terminal nodes whilst ˆ Z P ( f ) is

the matrix | P | × | E | that groups the elements ˆ z p,e . 

It is proposed that the following non-linear optimisation prob-

lem is solved to find flows satisfying the condition expressed by
q. (9) 

in H( f ) := 

∥∥Z P ( f ) − ˆ Z P 
∥∥2 

F 
s.t. 

f ∈ �ε 

(10)

ere ‖ · ‖ F represents the Frobenius matrix norm, with the flows of

nterest being those such that H( f ) = 0 . The objective function, be-

ng non convex, could result in local solutions to the optimisation

roblem for which H ( f ) 	 = 0, in these cases only an approximation

o the desired concentrations is obtained. 

The function H ( f ) is differentiable for all f ∈ �ε and its partial

erivatives are given by the formula: 

∂H( f ) 

∂ f u, v 
= tr 

((̂ Z P − Z P ( f ) 
)� 

(
Q P L ( f ) −1 ∂L ( f ) 

∂ f u, v 
Z( f ) 

))
(11)

here tr(.) represents the trace of a matrix and 

∂L ( f ) 

∂ f u, v 
is the ma-

rix of the derivatives of the components of L ( f ), more precisely 

∂L ( f ) 

∂ f u, v 
= 

(
∂ l m,n 

f u, v 

)
N×N 

∧ 

∂ l m,n 

f u, v 
= 

{ 

1 , is n = v , m = v 
−1 , if m = u, n = v 
0 , otherwise 

(12)

The calculation of the gradient of the objective function al-

ows the use of classical non-linear optimisation techniques such

s Frank–Wolfe method, which is a method of directions f m +1 =
f m + αm 

( ̂  f m − f m ) where the vector ̂ f m is obtained as the solution

f the following linear problem: 

in ∇H( f m ) ′ f 
s.t. 

f ∈ �ε 

(13)

On each iteration, the size of the step αm 

can be chosen us-

ng an Armijo rule. Of course, different direction methods and

tep size rules can be used to solve the problem, see for example

ertsekas (1999) and Bazaraa et al. (2013) . 

.2. Incorporating cost 

The movement of flows through the network requires an impor-

ant expenditure of energy, which directly translates into economic

osts for the company exploiting the salt flat. This cost is a variable

ne because it depends on the flow being moved. We must point

ut that obtaining a flow that satisfies the demand constraint and

hemical specifications – in evaporation nodes – is important but

ot enough, because a solution having an excessive cost to it, is

ot deemed practical alternative. 

It has been natural to model the cost function components for

he problem as linear ones ( Gupte et al., 2013 ). Under this mod-

lling paradigm, the total cost of the operation will be proportional

o the amount of brine moved trough each element of the net-

ork. There are elements that are costlier than others (depending

n distances, altitude with respect to the sea level, etc.). Let us de-

ote c u, v > 0 as the cost coefficients that indicate the cost of mov-

ng one flow unit using the arc ( u, v ) ∈ A in the network, hence the

otal cost is given and noted as 

 

′ f = 

∑ 

(u, v ) ∈ A 
c u, v f u, v (14)
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1 It is important to mention here that GAs do not provide a certificate of opti- 

mality but they are generally used as an alternative in the context of difficult com- 
n an ideal situation, the problem that we would like to solve is: 

in C ′ f 
s.t. 

f ∈ �ε 

H( f ) = 0 

(15) 

hich is simply cost minimisation subject to flow feasibility con-

traints. However, constraint H( f ) = 0 is a difficult one to achieve

ue to the non-convex nature of the function H . To search for solu-

ions that approximate product requirements and have a minimal

ost, we propose a method that exploits the linearity of the objec-

ive function and use the idea developed in the previous section to

btain feasible flows. The proposed method is iterative and works

n the following way: 

1. On iteration k = 0 a minimum cost flow is obtained f (0) that

solves the following linear problem LP 

min C ′ f 
s.t. 

f ∈ �ε 

, (16) 

let σ ∗ denotes the value of the minimum cost C ′ f (0) . 

2. For iteration k , the flow f (k −1) of the previous iteration is used

as a starting point for the Frank–Wolfe algorithm to solve the

problem 

min H( f ) 
s.t. 

f ∈ �ε 

C ′ f ≤ (1 + αk ) σ
∗

(17) 

3. If C ′ f (k ) < σ ∗(1 + αk ) or H ( f ( k ) ) is small enough, then the

method finishes providing f ( k ) as a solution. Otherwise, we re-

turn to point 2 for iteration k + 1 . 

The sequence of positive parameters αk is chosen to be increas-

ng, in a way such that lim k →∞ 

αk = + ∞ , however the growth rate

or the parameter should decrease from one step to the other. One

ossible option is to build the parameters as 

k = 

k ∑ 

j=1 

a j (18) 

here (a j ) j∈ N is a sequence converging to zero but whose series

iverge, for example a j = 1 / j. 

The intuitive idea of the method is to approximate the final

oncentrations on sets for which the cost is bounded. On each it-

ration the cost increases allowing obtaining a better approxima-

ion of the required concentrations on the final product. Also, the

rowth of the cost bound is smaller on each step allowing for a

ner search. The method stops when an acceptable approximation

s obtained, this is when H ( f ( k ) ) is small, or when the cost bound

s not active in problem given by Eq. (17) . In this last case, we are

n presence of a local minimum for the problem and there are no

irections for which the search process could continue. The previ-

us statement and some properties are justified in the following

heorem. 

heorem 1. Let { f ( k ) } the sequence generated by the iterative method,

hen 

i. If f ( k ) does not activates the cost constraint C ′ f ≤ (1 + αk ) σ
∗, then

it is a local minimum of H over whole space �ε . 

ii. The iterative algorithm finishes. Also, if k is the first value for

which H ( f ( k ) ) ≤ H tol , then the cost of f ( k ) is at most (αk − αk −1 ) σ
∗

units bigger than the cost of a local optima for the problem 

Minimise C ′ f 
subject to 

H( f ) ≤ H tol 
(19) 
f ∈ �ε b
roof. 

i. This part is clear since φε is convex and constraint C ′ f ≤ (1 +
αk ) σ

∗ is a cut. If f ( k ) is a local minimum of problem (17) and

the constraint is not active, then no feasible descend directions

of H over φε can be found, and therefore is a local minimum of

H over whole space �ε . 

ii. For the second item, we know �ε is compact due to the ca-

pacity constraints in the wells, then max { C ′ f : f ∈ �ε} exists. As

αk → ∞ , at some point the cost constraint is irrelevant and it

wont be activate, which is one of our stopping criteria. 

Finally, if k is the first non-negative integer for which

H ( f ( k ) ) ≤ H tol we have C ′ f (k −1) = (1 + αk −1 ) σ
∗ because the algo-

rithm does not stop in k − 1 , and C ′ f (k −1) < C ′ f (k ) because f ( k ) 

is not attainable at iteration k − 1 . Denote by f ∗ a local optimum

of (19) , then clearly H( f ∗) ≤ H tol < H( f (k −1) ) , and 

C ′ f (k −1) < C ′ f ∗ ≤ C ′ f (k ) (20)

because f ∗ is not attainable at iteration k − 1 . Join the results

we have 

(1 + αk −1 ) σ
∗ ≤ C ′ f ∗ ≤ C ′ f (k ) ≤ (1 + αk ) σ

∗

from where it is easily obtained that 

C ′ f (k ) ≤ C ′ f ∗ + (αk − αk −1 ) σ
∗

�

. Choosing the network: genetic algorithms 

The problem of choosing the extraction wells consists in deter-

ining which wells (out of all the possible set of wells) will be

elected to build the definitive network flow. Given that there are

ore wells than pumps available to operate simultaneously, the

roblem is of a combinatorial nature and we will use heuristic

echniques to solve it. 

Between two different wells the main two differences are: ex-

raction cost and chemical properties of the brine that can be ex-

racted from them. In the previous section, a method was proposed

o determine flows that provide final products satisfying chemical

equirements at minimum cost. In this section, we will combine

he method described previously with a genetic algorithm (GA) to

valuate different network flow configurations and approximate an

ptimal selection of the network configuration. 1 

Let S be the set of all the available wells with |S| = N and the

hole network G = (S ∪ I ∪ P, A ) . Let M be the quantity of extrac-

ion pumps that can be operated simultaneously, we want to de-

ermine a subset S of S such that | S| = M and the network G (S) =
(S ∪ I ∪ P, A | S ) , which is the sub-network using only the wells pro-

ided in S , be capable of providing a feasible flow at minimum

ost. 

Each time a subset S from S is fixed, a sub-network is obtained

or which a minimum cost flow can be sought that approximate

he desired requirements for the final product using the iterative

ethod presented in Section 3.2 . This mechanism provides an eval-

ation system for any choice of wells and potentially allows the

se of other heuristic optimisation methods. 

Genetic Algorithms, originally proposed by Holland (1975) , are

ethods that are able adapt to different problems in search and

ptimisation. They are inspired in the Darwinian evolutionary pro-

ess for live organisms, in particular, natural selection and survival

f the fittest. 

GAs use the natural selection process as the key driver for an

daptive search of good solutions to a given problem. It starts with
inatorial problems, which motivates our choice. 
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a selection of a representation of potential solutions to a problem

( encoding ) and from there an initial population is generated (where

each individual is a potential solution to a given problem), those

individuals are evaluated by means of a fitness function (or objec-

tive function) and submitted to a selection process that will define

whose individuals will pair to produce descendants ( crossover and

mutation ). 

4.1. Proposed encoding 

Encoding is a fundamental block in GAs. Each possible solution

to the problem needs to be encoded as an array of genes (data)

and, ideally, each chain of genes should correspond to a possible

solution. For the wells selection problem the feasible solutions are

subsets of S with M elements, so we need an encoding that repre-

sents such subsets. Lam (1996) , proposed an encoding with pigeon-

hole coding scheme for solving sequencing problems which is suit-

able for being applied in our context of pump allocation. 

Let S = { s i 1 , . . . , s i M } a subset of S = { s 1 , . . . , s N } with M ele-

ments ( M < N ). To represent the subset of selected wells S through

the pigeon-hole encoding we use an array of M entries. The ar-

ray components [ p 1 , . . . , p M 

] are chosen according to the following

rule: 

p 1 = i 1 

p k = i k −
k −1 ∑ 

j=1 

ϕ k (i j ) k > 1 (21)

where ϕk is such that 

ϕ k (i j ) = 

{
1 , if i j < i k 
0 , otherwise 

(22)

In order to clarify the meaning of this coding scheme, let us

give a toy example. Suppose we want to codify the selection S =
{ s 2 , s 3 , s 6 , s 8 } , i.e. the wells 2, 3, 6 and 8 are selected from a total

of N = 9 possible allocations for pump installation. We start with a

complete list 

s 1 − s 2 − s 3 − s 4 − s 5 − s 6 − s 7 − s 8 − s 9 

The first element in the set S is s 2 , which is in the second posi-

tion in the list. We set p 1 = 2 and we eliminate s 2 from the list:

s 1 −�s 2 − s 3 − s 4 − s 5 − s 6 − s 7 − s 8 − s 9 The second element in S is

s 3 , which is the second element in the remaining list, then we set

p 2 = 2 and we eliminate s 3 from the list: s 1 −�s 2 −�s 3 − s 4 − s 5 −
s 6 − s 7 − s 8 − s 9 The process continues with s 6 that is in position

4, and then with s 8 that is in position 5 after the elimination of s 6 .

The resulting chromosome is [2,2,4,5]. 

This encoding rule allows to obtain chromosomic representa-

tions for which each entry k = 1 , . . . , M of the array can take val-

ues in a fixed range [1 , M − k + 1] . This encoding allows the con-

struction of feasibility preserving operators as they eliminate the

possibility of creating infeasible solutions after crossover and mu-

tation operators are applied to the individuals. This means that all

chromosomes obtained represent subsets with exactly M wells se-

lected. This is an advantage of the pigeon-hole coding with respect

to others, more details and examples of this encoding can be found

in Lam (1996) , where a similar idea is used in permutation prob-

lems. This same work it shows that the phenotype expression of

these solutions can be obtained in O ( M log M ) time. 

4.2. Proposed fitness function 

The fitness function will be defined mainly as the cost. How-

ever, combinations of wells for which there is no feasible flow

can exist. In the literature many techniques to deal with con-

straints in genetic algorithms have been proposed, see for example
 Coello, 2002; Michalewicz and Janikow, 1991; Richardson et al.,

989 ). In this paper infeasible networks are penalised to avoid

hem propagating into future generations. The form of the fitness

unction is given by Eq. (23) . 

 (S) = C ′ S f ∗S max 

{
1 , 1 + 

H( f ∗S ) − H tol 

H tol 

}
(23)

ere, H tol is the maximum error that should exist between the de-

ired and obtained concentrations, f ∗
S 

is the flow vector obtained

n Section 2 for the network formed by the wells in S , whilst C ′ S f ∗S 
epresents the cost of this flow in the same network. 

This fitness function takes the cost value if there is a feasible

ow. In the opposite case, the term (H( f ∗S ) − H tol ) /H tol is positive

nd consequently the value of the objective function will increase

n relation to the cost. The last expression is a relative error, the

igger the difference between H( f ∗S ) and H tol the bigger will be the

enalty and thus there will be an incentive to descend to combi-

ations that provide feasible flows ( Richardson et al., 1989 ). 

.3. Proposed crossover and mutation 

Crossover consists in the combination of genetic material from

t least two individuals (parents) in order to produce offspring.

his is usually done by splitting the chromosomic representation

t a chosen point and exchanging material from both genes in or-

er to produce two individuals (offspring). Alternatively, there have

een more complex crossover operations that have been defined,

or example multi-point crossover proposed by Frantz (1972) . We

sed a variant of a multi-point crossover which allows to preserve

easible individuals after the application of the operator and not

osing information in the process. In this crossover variant, the

hromosomes of the parents are reordered by using a permutation

chosen at random, the permuted chromosomes are then split

n a randomly selected point to then exchange the genetic mate-

ial based on this point following the classical crossover operator

echanism. Finally, the two new chromosomes representing the

ffspring are reordered using the inverse permutation π−1 . This

ariant was tried in Lam (1996) showing being more effective than

egular multi-point crossover functions. 

The mutation process is very important to avoid the accelerated

onvergence and provide chances of completely exploring the fea-

ible space. In our case, the mutation operator works by selecting

n individual gene from a chromosomic representation for an in-

ividual. The selected gene is changed for other gene feasible for

he current encoding, i.e., if the gene k is selected then the value

t position k (denoted by p k ) is changed to any value in the range

1 , M − k + 1] which is the set of feasible values for the gene in

osition k . 

It also important to say that crossover and mutation are ap-

lied only to a fraction of the individuals in the current population,

hat fraction is a parameter of the GA and is usually defined before

he algorithm is executed. There are possible ways of creating an

volving mutation pressure ( Eiben et al., 1999 ), but that is out of

he scope of the present work. 

. Numerical results 

To evaluate the efficiency of the proposed methods, an instance

f the problem with 90 extraction wells, 8 mixing pools, 6 evapo-

ation pools and 10 components was simulated. The chemical qual-

ties of the brine on each well were simulated using a normal dis-

ribution with mean μe and variance σ 2 
e specific for each compo-

ent, these distributions were taken from a real-life dataset which

annot be revealed due to confidentiality restrictions. In Table 1

he values for each one of the nine components of the brine are

hown, also explicit on the table are three ranges of variability for
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Table 1 

Values used to generate concentrations. 

K + Na + Mg ++ Ca ++ SO −−
4 

Li + Cs + Rb + Cl −

μe 4 6 1.5 0.05 1.6 0.2 0.002 0.002 15 

σ e (Low) 1.2 1.8 0.45 0.015 0.48 0.06 0.0006 0.0006 4.5 

σ e (Medium) 1.6 2.4 0.6 0.02 0.64 0.08 0.0008 0.0008 6 

σ e (High) 2 3 0.75 0.025 0.8 0.1 0.001 0.001 7.5 

Table 2 

Range of values to generate capacities and demands. 

F max 
s F min 

p c i,p c s,i (Low) c s,i (Medium) c s,i (High) 

Uniform[ a, b ] [100,500] [500,1500] [50,300] [50,250] [250,750] [750,1000] 

Table 3 

Cost level and deviation associated to 

each well of the instance. 

Wells Cost Deviation σ e 

1–10 Low Low 

11–20 Medium Low 

21–30 High Low 

31–40 Low Medium 

41–50 Medium Medium 

51–60 High Medium 

61–70 Low High 

71–80 Medium High 

81–90 High High 
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ach component (Low, Medium and High). Let us recall here that

he tenth component of the brine is water, and that this compo-

ent is fixed after the remaining nine components are determined

n order to accomplish the desired chemical balance for the brine.

ollowing a similar technique, the concentrations required for the

roduct were simulated at the evaporation pools. 

The maximum flows in the wells, minimum flows in the sinks

nd costs for every arc of the system were obtained from uni-

orm distributions that were defined based on real-life examples.

n Table 2 , the bounds for each uniform distribution used later in

umerical simulations are shown. 

Finally, the 90 extraction wells were grouped in 9 categories de-

ending on the range of variation of the cost of their connections

nd the variability σ e with which they were simulated, see Table 3 .

The rationale for this categorisation was to try the efficiency of

he GA to determine the low cost wells over the rest. Also, different

eviations allow for heterogeneous wells and thus provide more

hances to obtain feasible flows. 

Once a set of parameters were fixed, a representative instance

f a real operation was simulated, this instance being used for all

he subsequent numerical experiments. The all numerical experi-
Table 4 

Detail of the first 10 iterations of the algorithm. 

Iteration k Cost C ′ f ( k ) 10 6 ×
Chemical feasibility 

Error H ( f ( k ) ) 

Number of

Problems s

0 1.28006 0.0387624 1 

1 1.33824 0.0249418 5 

2 1.3939 0.0202474 8 

3 1.44723 0.0171903 3 

4 1.49843 0.014379 8 

5 1.54767 0.0122924 5 

6 1.59508 0.0103324 4 

7 1.64079 0.00868291 4 

8 1.68493 0.00770056 13 

9 1.7276 0.00593553 12 

10 1.76889 0.00484909 14 
ents were implemented in Matlab 2015b® and run over two-

ores Intel® Xeon® 2.10 GHz processor with 120 GB RAM. 

.1. Results of the algorithm on a fixed network 

In this subsection the results for the iterative algorithm pro-

osed in Section 3.2 are shown. In the first experiment the al-

orithm was run in a network formed by the first 30 wells, the

rst 6 mixing pools and the first 4 terminals. The ε parameter was

et to 150 on each pool and the bound for the flow was set at

 tol = 0 . 005 . 

Table 4 shows the detail associated with the execution of the al-

orithm on each iteration. It can be seen that the cost increments

n each iteration in exchange for an improvement in the error H .

lso, on each iteration the upper bound for cost is activated by

ow, this indicates that the algorithm hasn’t yet reached a local

inimum for the error function H . The algorithm finally stops be-

ause the feasibility condition is satisfied on the tenth iteration be-

ause H( f (10) ) ≈ 0 . 0048 < H tol = 0 . 005 , which corresponds to the

olerance for the tolerance parameter used. 

The relationship between the required concentrations and the

nes obtained by the algorithm solution can be observed in

able 5 . 

The next experiment performed was designed to answer the

ollowing question: What would happen if we change the 30 wells

nitially chosen?, i.e., if we chose a different set of 30 wells leaving

ll the other parameters equal. On the first column of Table 6 the

ells chosen are individualised (out of a list of 90 wells of our pre-

iously simulated instance), the second column is the cost for the

ow that is obtained in the step k = 0 of the algorithm, i.e., when

he flow is minimised without considering the chemical feasibility

onstraint (see problem (16) ). The third column of the table just

hown the chemical feasibility error of the initial (unconstrained)

olution. The remaining columns are concerned with the applica-

ion of the iterative algorithm and show the cost, the error, number
 linear 

olved Time (s) Step Size αk 

Upper bound for 

cost (1 + αk ) σ
∗

0.06792 

0.33961 0.0454545 1.33824 

0.54338 0.0889328 1.3939 

0.20377 0.130599 1.44723 

0.54336 0.170599 1.49843 

0.33958 0.209061 1.54767 

0.27168 0.246098 1.59508 

0.27172 0.281812 1.64079 

0.88299 0.316295 1.68493 

0.81506 0.349628 1.7276 

0.95091 0.381886 1.76889 
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Table 5 

Comparison between concentrations obtained and expected in for ten com- 

pounds. 

Final concentrations obtained by the solution 

p i K + Na + Mg ++ Ca ++ SO −−
4 

1 4.21571 6.95081 0.985001 0.278726 1.68288 

2 3.90522 5.78063 1.48044 0.0824016 1.59547 

3 3.70371 5.59635 1.48876 0.0439441 1.55669 

4 3.59542 6.24282 1.49284 0.0656936 1.5741 

Li + Cs + Rb + Cl − H 2 O 

1 0.1935 0.00958781 0.0100856 17.6296 68.0441 

2 0.243044 0.0039782 0.00737257 16.9589 69.9426 

3 0.214274 0.00273388 0.00321942 15.8596 71.5307 

4 0.215697 0.00280991 0.00258133 14.2589 72.5492 

Expected concentrations in terminals 

p i K + Na + Mg ++ Ca ++ SO −−
4 

1 4.16501 7.23714 0.908952 0.345733 1.70645 

2 3.93163 5.75791 1.46414 0.0658964 1.62662 

3 3.63805 5.57221 1.57454 0.0503128 1.64443 

4 3.52376 6.33129 1.68021 0.0522424 1.56423 

Li + Cs + Rb + Cl − H 2 O 

1 0.184971 0.0069297 0.00826535 17.7987 67.6378 

2 0.240016 0.0049896 0.00553624 16.7229 70.1803 

3 0.180214 0.00210902 0.00167513 15.4334 71.9031 

4 0.203566 0.00196312 0.00227591 12.867 73.7735 
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of iterations and time respectively of the application of the itera-

tive algorithm. 

It is important to note the great behavioural difference that ex-

ists between problems of the same size, but for whom the only dif-

ference are the initial chemical compositions for the brines on the

extraction wells. In particular, it can be seen that for the second

set (wells from 11 to 40), it was not possible to attain a feasible

solution, the algorithm stopped on the third iteration without find-

ing a chemically feasible flow, i.e., the algorithm stopped because

 

′ f (3) < C f (0) (1 + α3 ) (see step 3 of the algorithm in Section 3.2 ).

The fact that there are some sets of wells for which there is no

chemically feasible flow justifies the choice of fitness function for

the genetic algorithm (see (23) ). Also, it can be seen that the to-

tal cost associated to the feasible flow changes greatly depending

on which 30 wells are used in the brines extraction operation; in
Table 6 

Variation of the thirty extraction wells. 

Selected Minimum cost, Problem (16) It

wells C ′ f (0) (10 6 × ) H ( f (0) ) C ′

1–30 1.2801 0.0388 1.

11–40 1.3885 0.0727 1.

21–50 1.1606 0.1056 1.

31–60 1.1606 0.1056 1.

41–70 1.0314 0.2386 1.

51–80 1.0157 0.2192 1.

61–90 1.0157 0.2192 1.

Table 7 

Comparison between minimum cost flow, iterative a

Minimum cost 

(CPLEX) 

Cost C ′ f ∗ (multiplied by 10 6 ) 1.11068 

Chemical feasibility error H ( f ∗) 0.1545 

Solver iterations 1 

Computational time (s) 0.48 
erative algorithm 

 f ∗ (10 6 × ) H ( f ∗) Iter. time (s) 

7689 0.0048 11 5.23 

3339 0.0674 3 0.38 

2639 0.0050 3 8.30 

3120 0.0033 4 8.14 

2074 0.0048 5 35.47 

1483 0.0036 4 24.87 

1483 0.0038 5 25.23 

lgorithm, MINOS and Baron. 

Iterative algorithm MINOS BARON 

1.3081 2.127 2.048 

0.0042 0.005 0.005 

6 1413 1874 

17.87 268.24 > 300 

he next section the numerical results relating to finding which 30

ells to use by means of a genetic algorithm will be discussed. 

Table 7 compares the performance of the proposed algorithm

n relation to other established algorithms. The summary of the

verage obtained for the 6 problems that were run previously for

hich there was a chemically feasible solution is reported. For the

nalysis, the problem instance for which there was not chemically

easible flow, according to the tolerance parameter H tol = 0 . 005 ,

as excluded from the reported results. 

In Table 7 , the first column corresponds to the solution of min-

mum cost without chemical specification constraints (16) . The

ast three columns present a comparison between the solution

btained by the iterative algorithm developed in this work and

he solutions obtained by commercial software such as MINOS

 Murtagh and Saunders, 1983 ) and BARON ( Sahinidis, 1996 ). In all

ases, the problem that was solved was (19) with prefixed toler-

nce of H tol = 0 . 005 , none of the two software shown results in

easonable time for the second case where the wells used were

rom 11 to 40. 

It can be observed that the minimum cost solution is far from

he other solutions from a chemical concentration of the final

roduct point of view, thus not representing a real solution to the

roblem. It also needs to be highlighted that each iteration of the

roposed algorithm requires solving a non-linear problem, which

s solved using the Frank–Wolfe method which in turn performs

everal iterations (see problem (10) . This helps to explain the big

ifference that exists between the number of iterations and the

omputational time required to solve the problem. We are specially

oncerned about computational times due to the need of using the

olution method as a subroutine in the genetic algorithm, the iter-

tive algorithm is shown to be better than commercial software in

oth aspects, time and quality of solution. 

The last experiment was performed on the same instance cre-

ted artificially and consisted on incrementing the network size.

or this purpose, six evaporation pools and eight mixing pools

ere used and the number of extraction wells were incremented

y 10 on each problem. The results of this experiment are shown

n Table 8 . 

The results shown in Table 8 should not be surprising as they

rove that increasing the number of evaporation pools (from 4

o 6), and hence increasing the number of chemical constraints,

akes it more difficult for the algorithm to find a solution. With

ew wells it becomes harder to satisfy all the chemical constraints
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Table 8 

Sensitivity to size for the proposed algorithm. 

Amount Minimum cost, Problem (16) Iterative algorithm 

of wells C ′ f (0) (10 6 × ) H ( f (0) ) C ′ f ∗ (10 6 × ) H ( f ∗) Iter. time (s) 

30 1.6194 0.1334 2.7764 0.0386 25 31.93 

40 1.0833 0.1392 1.7678 0.0350 21 35.83 

50 1.0833 0.1392 1.6995 0.0188 19 109.39 

60 1.0833 0.1392 1.7896 0.0160 22 184.06 

70 0.1000 0.2485 1.5631 0.0083 19 205.19 

80 0.1000 0.2485 1.5586 0.0081 19 229.57 

90 0.1000 0.2485 1.4418 0.0046 13 212.56 

Table 9 

Crossover and mutation probabilities. 

Run 1 Run 2 Run 3 

Crossover probability 0.8 0.8 0.9 

Mutation probability 0.1 0.1 0.2 
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Fig. 3. Average (segmented) and Best Fitness (continuous) for the 3 runs of the GA. 
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n the evaporation pools. The reader can note that as more wells

re added, there are more degrees of freedom on the mixing pools

nd the values for the chemical error H ( f ∗) diminishes. This ob-

erved behaviour allows to justify the operational design consider-

tions in the mining of Lithium rich brines. 

.2. Results of the genetic algorithm 

In this subsection the results obtained after implementing the

enetic algorithm are shown. Three different tests were run it-

rating 20 generations with 100 individuals. In the experiments

ome parameters such as crossover and mutation probabilities

ere changed, also the number of extraction pumps and the ini-

ial population chosen. On the first execution of the GA, M = 20

ells was considered to be the size of the wells subset and a ran-

om initial population. In the second run, the number of extraction

umps was increased to M = 30 and the initial population is cho-

en at random again. On the third run 30 pumps were considered

ut the initial population was built using only wells with high and

edium cost, the rationale behind this choice was to see the ca-

abilities of the GA to eliminate costly wells and obtain individuals

ith good cost. Table 9 shows the probabilities used on each case. 

The graph of Fig. 3 shows the evolution of the fitness function

hrough 20 iterations. The dashed line represents the average fit-

ess of all generations while the solid line shows the fitness evo-

ution for the best individual. The horizontal line corresponds to

n estimate of the best fitness, this value has been calculated eval-

ating the fitness of the individual possessing the 30 lowest cost
imulated wells. r

Table 10 

Obtained solutions and their classifications. 

Solution Low cost 

for run wells 

Run 0 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 31, 32 

33, 34, 35, 36, 37, 38, 39, 40, 61, 62, 63 

64, 65, 66, 67, 68, 69, 70 

Run 1 3, 4, 8, 31, 32, 34, 35, 36, 40, 

61, 62, 63, 64, 67, 68, 70 

Run 2 2, 3, 4, 6, 7, 31, 33, 34, 35, 36, 37, 

38, 40, 60, 61, 62, 63, 64, 65, 66, 67, 68 

Run 3 3, 4, 6, 31, 32, 34, 35, 36, 

40, 61, 62, 63, 64, 65, 67, 68, 69 
In Table 10 the wells that are used on the GA solution for each

un are presented. On each case, the solution given by the GA cor-

esponds to the individual with better fitness found in 20 genera-

ions. Additionally, the wells in the solution are classified accord-

ng to their costs (see Table 3 ). The row corresponding to Run 0,

epresents the best fitness approximation. 

It can be observed in Table 10 that the solutions are composed,

ostly, by the use of low cost sources. This points out to a good

erformance of the genetic algorithm. Also, the fitness value for

he best individual on each run are all of them relatively close to

he referential cost, with the exception of the third run that ob-

ained a higher cost. The increase in the number of wells from the

rst to the second run does not translates into a growth in cost,

his is because the costs considered are a unit cost and the flows
emain the same. 

Medium cost High cost Individual’s 

wells wells fitness × 10 5 

8.7358 

11, 79 59, 60 8.7771 

47, 73, 74, 80 21, 29, 86, 88 8.7464 

15, 41, 75, 76 22, 23, 26 8.8533 

77, 79, 80 59, 81, 84 
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On Fig. 3 it can be seen that the average curve for Run 1 starts

over its analogue of Run 2. The increase of the average is due to

the penalty factor used in the fitness function, because by using

20 wells instead of 30 it becomes more difficult to achieve the de-

sired concentrations and several individuals end up being infeasi-

ble ones. The average curve for Run 3 falls too quickly when com-

pared to the other two runs, this indicates the quick elimination of

the high/medium cost wells from the solution and the impact this

has on the fitness function. It needs to be noted that in this last

run the average curve also starts below the curve of the first run,

this due to the higher number of wells and absence of penalty for

the fitness. This last shows that the penalty scheme used is good

enough to differentiate from the expensive solutions to the prob-

lem. 

Finally, a comparison between the fitness results of runs two

and three with the results shown in the fourth column of Table 6 ,

show the need to find a strategy that allows the planner to ap-

propriately select the 30 wells to be used in the extraction of the

brines. For example, in run two where the initial population was

taken at random, the cost was 8.7464 × 10 5 , whilst the best com-

bination of wells in Table 6 was combination 51–80 with a cost of

1.1483 × 10 6 . 

6. Conclusions 

This paper studied a problem which is associated to the loca-

tion of extraction pumps for the mining of Lithium, product that is

more utilised nowadays. To approximate the solution for the gen-

eral problem, the work was divided into two stages. On the first

stage the feasibility problem with minimum cost for a fixed net-

work was solved by using an iterative scheme based on non-linear

optimisation techniques, this stage provides a solution that is able

to provide a final product within specification of its chemical prop-

erties. On the second stage, the location of the best places to ex-

tract brine as to produce a product within specification require-

ments and minimum cost was sought, this stage utilises the meth-

ods of the first stage to evaluate the appropriateness of a given

candidate solution and uses this information in the search of an

optimal solution to the general problem. 

The problem over a fixed network seeks a solution over

bounded sections of the feasibility set. The pump location prob-

lem was modelled as a combinatorial problem and solved using

a genetic algorithm to find approximate solutions to the problem.

Both problems were solved on a simulated instance to show the

correctness of the proposed approach and due to confidentiality

issues with the real world data. It needs to be said that all prob-

lems obtained from the simulated instance are representative of a

real operation. 

The iterative method proposed in this work has shown better

feasible solutions to the problem than the one that can be obtained

by commercial software such as MINOS and BARON. In addition,

the computational required by the iterative method also showed

a better behaviour, which allowed us to use this method to define

the fitness function of the Genetic Algorithm, even though a chem-

ically feasible flow could not be found for some configurations of

fixed networks. The Genetic Algorithm has shown to be useful in

finding solutions that use wells that provide flows with the ex-

pected quality and with a good cost. On the Table 10 , it can be

seen that the GA is able to identify and maintain in the population

pool those solutions the low cost sources included in the instance

which suggests a correct implementation and performance. The

difficulty of this method lie on the higher computational require-

ment as for each individual of population (network) the fitness

function requires the resolution of a problem over a fixed network.

Despite this increase in computational time, the proposed GA is
ppropriate to solve the extraction planning problem for Lithium

eposits as this problem does not need to be solved too frequently.
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