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a b s t r a c t 

The problem studied in this paper is that of designing the optimal open pit haulage ramp that, for a given 

ramp width and a maximum ramp gradient, connects two points of the mine, minimising construction 

and operational costs. Because in-pit ramps require the removal of a considerable amount of non-valuable 

material (stripping), we discuss two different problems: high stripping (or in-pit) ramp design and low 

stripping (or ex-pit) road design. For the first situation, we present an integer programming model; in 

the second case, a shortest path approach is undertaken. In both cases, the models can be solved exactly, 

and include gradient and curvature constraints. The proposed formulations have been tested on real mine 

data, showing a significant reduction in cost compared to the previous mine design. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In broad terms, open pit mines are excavations created to ex-

ract valuable materials (ore) located below the surface. Ore is usu-

lly accompanied by a considerable amount of material with little

r no value (waste) which must be extracted before reaching the

re; this process is known as stripping. During the life of the mine

he ore is hauled to processing plants or stockpiles, while waste

aterial is transported to waste dumps. Thus an open pit mine re-

uires a road network which connects the extraction sectors inside

he pit to all possible destinations outside the pit ( Yarmuch et al.,

017 ). In-pit ramps are roads that connect the working faces to the

it exits; these require the removal of a great amount of material

or their construction. The total tonnage of ore and waste and the

it shape can change dramatically after the addition of the in-pit

amps. Ex-pit roads, on the other hand, connect pit exits to pro-

essing plants or dumps, and their construction usually requires

emoving much less material than in-pit ramps. 

The ramp design process begins with the determining the pit

xits, the ramp width and gradient. Pit exits are usually located

lose to the processing plants or waste dumps to reduce the to-

al haulage cost, while, the ramp width is defined by considering

perational factors, safety conditions and the stripping cost. Exam-

les of operational factors are the size of the haulage equipment,

he number of traffic lanes, the traffic density and safety elements
∗ Corresponding author. 
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centre line piles, road edge barriers and ditches). A comprehen-

ive description of these factors can be found in Atkinson (1992) .

s a rule of thumb, the minimum ramp width should be at least

 times the width of the hauling equipment. The ramp gradient is

onstrained by a maximum gradient determined by diverse factors

uch as the type of hauling trucks, the mining operation conditions

nd the road surface quality. Mining trucks work best when the

aximum ramp gradient is between 8% and 10% ( Thompson, 2011 ).

Once the design parameters have been defined, engineers must

ecide whether to use spiral ramps, switchbacks (180 ◦ turns) or a

ombination of both. Because ramps can be used as catch berms

o control local rock failures, a design that includes switchbacks

s generally more stable, in geotechnical terms, than spiral ramps.

owever, a significant number of switchbacks over the same wall

ncreases the amount of stripping of the pit, compromising the

rofitability of the mine. Also, switchbacks affect the cost and

afety of the haulage truck’s operation ( Thompson, 2011 ). For in-

tance, switchbacks reduce the truck speed and consequently the

ruck productivity, they require periodic maintenance increasing

he operational cost, and they generate visual problems for drivers

ncreasing the risk of collision. 

The problem considered in this paper is the design of the op-

imal open pit haulage ramp, for a given ramp width and a max-

mum ramp gradient, which connects two points of the pit, min-

mising construction and operational costs. Since the stripping cost

ssociated with in-pit ramps can be considerably larger than that

f ex-pit roads, we discuss the two different problems: high strip-

ing ramp design and low stripping road design. The first is com-

only associated with in-pit ramps, whereas the second is more

elevant to ex-pit roads. 

https://doi.org/10.1016/j.cor.2019.06.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.06.013&domain=pdf
mailto:jyarmuch@ing.uchile.cl
https://doi.org/10.1016/j.cor.2019.06.013


2 J.L. Yarmuch, M. Brazil and H. Rubinstein et al. / Computers and Operations Research 115 (2020) 104739 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

m  

i  

i  

e  

t

2

 

d  

K  

g  

t  

a  

o  

a

 

t  

D  

f  

a  

t  

t  

b  

m  

p  

a  

r  

o  

m

 

m  

a  

a  

a  

fi  

a

2

 

t  

n  

A  

t  

d  

l

 

e  

a  

c  

t  

t  

p  

o  

r

 

t  

p  

t  

d  

i  

a  

o  

a  
This paper is organised as follows. In Section 2 we discuss the

literature related to the ramp design problem in open pit mines.

We also discuss the contribution of this paper. In Section 3 we

present a shortest path formulation to solve the low stripping road

problem. In Section 4 , we give a binary linear programming model

for the high stripping ramp design problem. In Section 5 we intro-

duce a heuristic approach to solve the high stripping ramp design

problem. In Section 6 we present a case study for both formula-

tions, and in Section 7 present the conclusions. 

2. Literature survey and contribution 

In this section we review the state of the art of the open pit

ramp design problem. Although there are many articles about the

open pit ramp design problem, the majority of them focus on

practical guidelines instead of mathematical formulations or algo-

rithms. We are aware of only a few publications that analyse the

in-pit ramp design problem, and none on the ex-pit road design

problem. For that reason, we survey some useful literature on road

design in forest operations that can be applied to the ex-pit (low

stripping) road design problem. Interested readers can find a more

complete review of optimisation techniques in forest road network

problems in Akay et al. (2013) . 

2.1. Low stripping roads 

If the stripping associated with the construction of a road

is not significant, the problem can be reduced to the prob-

lem of finding the minimum cost curvature-constrained path be-

tween two directed points. Different approaches considering con-

tinuous or discrete optimisation have been studied. For instance,

Chang et al. (2012) introduces a continuous space formulation

to find a cost curvature-constrained path in a plane where the

cost function is anisotropic. However, this technique is only valid

when the construction cost is independent of the geographical lo-

cation. More recently, Casal et al. (2017) have presented a sequen-

tial quadratic programming method for the optimisation of hor-

izontal alignment roads (which are composed of circular curves

and tangent line segments joined by means of transition curves).

This model can be used in road reconstruction projects. Also,

Mondal et al. (2015) develops a bi-level programming model for

the optimisation of the horizontal alignment in a specified corri-

dor. The proposed method obtains locally optimal horizontal align-

ment and a vertical alignment that is globally optimal. 

On the other hand, discrete optimisation techniques have been

widely used to design roads in forest operations. One of the most

interesting approach consists in dividing the terrain into cells and

then associating with each cell a certain set of nodes to represent

the directions in which the cell can be accessed. Thus, the turning

radius constraint can be mathematically modelled and discrete op-

timisation techniques can be applied (for example, see Anderson

and Nelson, 2004; Epstein et al., 2001; Liu and Sessions, 1993;

Meignan et al., 2012; Najafi and Richards, 2013; Pushak et al.,

2016 ). 

Current digital elevation models allow the discretisation of the

terrain in cells of size of 10 by 10 m, and the number of cells se-

lected as neighbours to each cell is 8 or 24. A smaller cell size

and a higher number of neighbours increases the resolution of the

model, but makes it harder to solve ( Heinimann et al., 2003 ) and

Stückelberger (2008) . Because roads in forest operations are types

of low stripping roads, this approach can be implemented to find

the minimum cost ex-pit roads. 

Interestingly, Burdett et al. (2015) uses three-dimensional

blocks to compute a more accurate cost (compared to the method

of estimating the cost by the interpolation of 2D vertical sections)
or the Earth Allocation Problem. The partition of the problem do-

ain into 3D regular blocks, known as a block model, is often used

n mining optimisation problems (see Newman et al., 2010 ) and,

ndeed, is a standard tool in mine planning. This approach is rel-

vant to us since we use a block model structure as the basis for

he integer programming model introduced in Section 4 . 

.2. High stripping ramps 

A complete description of the in-pit (high stripping) ramp

esign problem can be found in Couzens (1979) . In addition,

aufman and Ault (1977) , Atkinson (1992) and Tannant and Re-

ensburg (2001) provide a good explanation of hauling opera-

ional issues and ramp design guidelines. Ramp parameters, such

s width, super-elevation, gradient and construction materials, and

perational considerations, such as safe distances between trucks

nd the use of traffic signals, are explained well in those articles. 

To our knowledge, there are only two papers in the literature

hat discuss algorithms to solve the in-pit ramp design problem.

owd and Onur (1992) presents a simple algorithm that starts

rom a specific block at the bottom of the pit and then gener-

tes one clockwise ramp and one anti-clockwise ramp from bot-

om to top. After these ramps are generated, the algorithm iterates

o another block in the bottom of the pit until no more blocks can

e evaluated. Finally, the algorithm selects the ramp with mini-

um loss in profit. Depending on the topography surrounding the

it, clockwise and anti-clockwise ramps can differ greatly in the

mount of stripping and the pit exit location. However, the algo-

ithm does not consider the addition of switchbacks to the ramp

r place a constraint on the pit exit, creating purely spiral maxi-

um gradient roads. 

Gill (1999) , on the other hand, presents a dynamic program-

ing algorithm to minimise the cost of the ramp construction for

 given open pit. Using a graph to represent the pit contour, the

lgorithm is capable of incorporating gradient constraints as well

s minimising the stripping cost. Gill claims that his algorithm can

nd the optimum ramp under some assumptions, but no details

re provided due to commercial confidentiality. 

.3. The open pit ramp design problem 

The problem studied in this article is to find a ramp design

hat minimises the associated construction, haulage and mainte-

ance costs when ramp width and maximum gradient are given.

s noted in the introduction, the problem has been divided into

wo independent sub-problems, the high stripping or in-pit ramp

esign problem and the low stripping or ex-pit road design prob-

em. 

In-pit ramps must connect the bottom of the pit to a given pit

xit at the top of the excavation (see Fig. 1 ). The model should

ccount for the fact that external conditions, such as rock quality,

ould disqualify some sectors of the pit for ramp construction and

hat material above the ramp must be extracted so as to satisfy

he maximum pit-wall slope conditions. Decision variables of the

roblem are the ramp starting and final points (from a given set

f candidate points), the direction and slope of each section of the

amp, and the number and locations of switchbacks. 

The ex-pit road design problem consists of finding the path

hat connects the pit exit to the mine facilities such as processing

lants, stockpiles, dumps and maintenance bays. For this problem,

he starting and ending points are given, as well as any forbid-

en areas. Because the stripping associated with the ex-pit roads

s usually not significant, the topography can be considered invari-

nt. Thus, for simplicity, the stripping associated to each segment

f the road can be considered as a pre-calculated cost. Even though

 change in direction in the path does not have a significant impact
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Fig. 1. Open pit ramp. 
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Fig. 2. Representation of a simple 4 choice of directions graph G. 1, 2, 3 and 4 rep- 

resent North, East, South and West directions, respectively. Vertices in white rep- 

resent incoming directions, while vertices in grey colour outgoing directions. Solid 

arcs connect all possible incoming directions to all possible outgoing directions at 

the same cell. Dashed arcs represent the feasible connections from a cell to a neigh- 

bouring cell. 
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n stripping cost, it does increase the road construction and main-

enance cost. Therefore, the changes of direction along the road

hould be taken into account in this problem. 

Our first contribution is to adapt the ex-pit road design problem

s a minimum distance problem that can be efficiently solved. The

econd contribution is to develop a new mathematical model to

olve the in-pit ramp design problem. In order to be able to solve

ealistically sized problems within a reasonable time scale, we also

evelop an heuristic approach to solve the high stripping ramp de-

ign problem. Additionally, we present computational results based

n real mine data. 

. Optimisation of low stripping roads 

Techniques used in the forest industry can be applied to define

he optimum ramp in open pit mines. One of the problems that

eeds to be solved in the planning stage for the forest problem

s to determine the layout of the roads that connect the forested

production) areas to the timber mills (processing plants). Road

ystems of several kilometres in length and at least 10m wide are

esigned as part of the planning stage. Similarly, the ex-pit haulage

oads in the open pit mining problem need to connect the pit exit

o the processing plant. The layout selected will define the amount

f stripping and the haulage cost, which is proportional to the ex-

it road length. 

.1. Shortest path formulation 

The problem of finding the minimum path over a weighted

raph has been widely studied and efficient algorithms have been

eveloped to find the optimum in polynomial time. According to

ertsimas and Tsitsiklis (1997) , Dijkstra’s algorithm is the most ef-

cient for solving the shortest path problem in dense graphs. How-

ver, different implementations of the Dijkstra algorithm improve

heoretical computational bounds or empirical running times for

pecial classes of graphs (see Ahuja et al., 1993 for further details).

As mentioned in Section 2 , low stripping roads can be approx-

mated as a road location problem. First, the topography must be

rojected onto a 2D horizontal plane and divided in regular cells.

or each cell we associate a group of nodes that represent the di-

ections in which that cell can be entered and left. The nodes of

ach cell are then connected to the nodes in the neighbourhood

ells, creating a graph that represents possible paths on the topog-

aphy. Thus, costs for changes in direction and gradient constraints,
s well as operational costs depending on the geographical loca-

ion or characteristics of the ramp can be incorporated into the

roblem as weights on the arcs between nodes. Note that the rep-

esentation of directions as nodes in which a cell can be accessed

as briefly introduced by Epstein et al. (2001) and more described

n Epstein et al. (2007) . The following section explains in detail the

onstruction of the graph for the ex-pit road case. 

.1.1. Construction of the graph 

First, it is necessary to subdivide the given topography, where

he road will be defined, into a set of cells ( C). Our approach is

o use a regular 2D lattice of cells, where each cell, c ∈ C, repre-

ents a rectangular area of the terrain. For each cell c , we define

he set of neighbours cells ˆ c ∈ 

ˆ C c to generate the number of direc-

ions in which the cells will be accessed. For example, in Fig. 2 , the

 neighbours of the central cell correspond to 4 rectilinear direc-

ions. More generally, neighbourhoods of 8 or 24 cells correspond

o more directions. 

The vertices V of the graph G(V, A ) represent the possible in-

oming and outgoing directions of the ramp at each cell. Let D 

′ and

 

′′ represent a discretised set of incoming and outgoing directions

espectively. Then, the vertex of an outgoing direction d ′′ ∈ D 

′′ at

ell c is represented as v d ′′ ,c . Similarly, v d ′ , ̂ c is the vertex of an

ncoming direction d ′ ∈ D 

′ at cell ˆ c . Therefore, an arc denoted as

(v d ′′ ,c , v d ′ , ̂ c ) represents the connection of the outgoing direction d ′′ 
t cell c to the incoming direction d ′ at cell ˆ c . In Fig. 2 , vertices of

ncoming directions are illustrated as white nodes, while the ver-

ices of outgoing directions are represented as grey nodes. 

Two types of connections are needed to build the graph. To

larify the construction of the graph, we define the disjoint sets

f arcs A d and A c , where A = A d ∪ A c . The set A d connects

ll possible incoming directions to all possible outgoing direc-

ions at the same cell (solid arcs inside cells in Fig. 2 ). Thus,

 d = { (v d ′ ,c , v d ′′ ,c ) , d ′ ∈ D 

′ , d ′′ ∈ D 

′′ , c ∈ C} . The set A c repre-

ents the set of permitted connections from a cell to a neighbour-
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Fig. 3. Illustration of the wall slope precedences. Blocks in grey need to be mined before the block in black to ensure slope constraint represented by the two inclined lines 

that start at the black block. 

Fig. 4. Example of a simple 2D case of G 3 . The vertices in grey illustrate the blocks that can be selected as ramp, the edges in solid black represent the possible connections 

of the path. The initial ( S ) and final ( T ) vertices are represented in black and the edges from and to those vertices are illustrated with dashed lines. 
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ing cell (dashed arcs in Fig. 2 ). Formally, A c = { (v d ′′ ,c , v d ′ , ̂ c ) , ˆ c ∈
ˆ C c , c ∈ C} . 

Curvature constraints can be modelled within this graph defini-

tion. Changes of direction constraints can be included by weighting

or cutting off some arcs in A d . Likewise, topographical (or gradi-

ent) constraints can be incorporated by adding weights to arcs in

A c . 

The weights associated with the elements of A d are calculated

as the costs of changing the direction d ′ to d ′′ at each cell c . These

costs may vary depending on the angle of the turn, the super-

elevation and the maintenance costs. Likewise, weights related to

arcs in A c are designed to reflect the cost of building a section of

road from c to ˆ c ; usually this cost is proportional to the Euclidean

distance that separates the nodes, adjusted to account for any dif-

ference in height. 

Once the weights have been calculated and the start and end

cells defined, the problem of finding a minimum cost path can be

solved using Dijkstra’s algorithm for the weighted graph G (or any

other shortest path algorithm that suits graph G). This approach

does not take into account a physical modification in topography

as we are dealing with the low stripping case. Note that the graph

G can be also used to solve the problem of finding the minimum

cost network when more than two terminals need to be connected

through a road network. In this case the problem reduces to the

Steiner Tree problem in a graph ( Anderson and Nelson, 2004 ), a

well-studied problem, for which good exact and heuristic algo-

rithms exist. 

4. Optimisation of high stripping ramps 

In this section, we present a binary linear programming (BLP)

formulation to find a minimum cost ramp with vertical and hori-
ontal alignment constraints for a given pit, a given set of initial

nd final points, and a given ramp width. This formulation takes

nto account the stripping associated with the ramp excavation and

he construction and haulage cost. 

.1. Minimum cost ramp formulation 

Here a binary linear model to find the minimum cost ramp

s formulated. The inputs for the model are divided into two

ypes: the geological inputs, which will include the geological

lock model, the topography, the contour of the pit, and the de-

endencies between blocks based on the required pit slopes; and

perational inputs, which include various costs, the ramp width,

nd the set of possible starting and final points for the ramp.

he geological model is assumed to be represented as a regularly

paced set of blocks (equal dimensions in coordinates x and y ),

nd must include the contour of the pit shape we are aiming to

chieve. To reduce the size of the problem, blocks that are too far

rom the contour of the pit can be discarded. We assume the ramp

idth is equal to the block size in x ( dx ) or y ( dy ) and the dimen-

ion in z ( dz ) represents the maximum ramp gradient (max. slope
dz 
dx 

or dz 
dy 

). For a standard block model this may necessitate first

ividing every block into several horizontal slices (dotted lines in

igs. 3 and 4 ). 

To consider the stripping associated with the ramp, we define

 set of vertical precedences (upward), or blocks above the ramp,

hat need to be extracted to ensure a minimum wall slope (see

ig. 3 ). Similarly, to avoid the construction of the ramp above ex-

avated blocks, we consider a set of vertical precedences (down-

ard) to ensure that no block corresponding to the floor of a ramp

s extracted. 

Formally, the precedence relationships are represented in terms

f the digraph G = (V , A ) where V is the set of blocks and
1 1 1 1 
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(u, v ) ∈ A 1 only if the block v must be extracted before the block u .

e assume that digraph A 1 contains only immediate precedence

elationships. That is, if u, v and w ∈ V 1 are such that (u, v ) ∈ A 1 

nd (v , w ) ∈ A 1 , then (u, w ) / ∈ A 1 . Similarly, the condition that the

amp cannot be built above excavated blocks is represented by a

igraph G 2 = (V 2 , A 2 ) where (u, v ) ∈ A 2 represents the constraint

hat if the block u is selected as ramp, then the block v must not

e extracted. 

To build G 1 we add a vertex to V 1 for each block in the sliced

lock model, and we add an arc ( u, v ) to A 1 from each vertex

 ∈ V 1 to all vertices v ∈ V 1 such that the minimum wall slope

s ensured for the block that is represented by vertex u . This is

 standard method in pit design problems as it can be seen in

ewman et al. (2010) . The graph G 2 = (V 2 , A 2 ) has a similar struc-

ure to G 1 , but in this case for each vertex u there is a unique arc

 u, v ) in A 2 such that the block represented by v is immediately

elow the block represented by u . 

The ramp is represented as a connected path of adjacent blocks

rom S to T (two artificial blocks that represent the starting and

nding points of the ramp). Formally, the possible adjacencies be-

ween blocks is represented in terms of the digraph G 3 = (V 3 , A 3 ) ,

here there is one vertex v ∈ V 3 for each block that can be se-

ected as part of a ramp, plus the initial vertex S and the final ver-

ex T . The set of arcs (u, v ) ∈ A 3 consists of all pairs of vertices that

an be selected as adjacent blocks in any feasible ramp. Addition-

lly, we add one edge from S to every node that can be selected

o begin the ramp, and one edge per vertex that can end the ramp

o T . Fig. 4 illustrates an example of the graph of connections for a

implified case. 

We now present a formal integer programming model for find-

ng the minimum cost in-pit ramp. 

.1.1. Indices, sets and parameters 

In addition to the block model and sets V 1 , V 2 , V 3 and A 1 , A 2 ,

 3 described above, we have the following sets and given param-

ters. 

d ∈ D : types of change of direction (e.g. slight left turn, right

sharp turn, switchbacks, etc.). 

A 

′ 
3 : Set of arcs in A 3 other than the arcs that end at vertex T ,

A 

′ 
3 

= A 3 − { (i, j) such that j = T } . 
A 

′′ 
3 

: Set of arcs in A 3 other than the arcs that

start at vertex S or end at vertex T , A 

′′ 
3 

= A 3 −
{ (i, j) such that i = S or j = T } . 

F : a mapping function F : { (i, j, k ) | (i, j) , ( j, k ) ∈ A 

′′ 
3 
} → D. 

C i : extraction cost of block i . 

H i,j : haulage cost associated with arc (i, j) ∈ A 

′′ 
3 . Note that the

haulage cost H i,j of any arc ( i, j ) should account for the total

tonnage that will traverse that arc over the life of the mine.

P d 
i 

: change of direction cost at block i , where d ∈ D is the type

of change of direction. 

.1.2. Variables 

r i : binary, equal to 1 if the block i is selected as a ramp, 0 other-

wise. 

x i : binary, equal to 1 if the block i is extracted, 0 otherwise. 

v d 
i 

: binary, equal to 1 if the ramp undergoes a change in direction

of type d at block i , 0 otherwise. 

 i,j : binary, equal to 1 if the arc (i, j) ∈ A 3 is selected as a segment

of the ramp, 0 otherwise. 

.1.3. Objective function 

The objective function is defined as follows, subject to a num-

er of constraints: 

in: 
∑ 

i ∈V 1 
C i · x i + 

∑ 

(i, j) ∈A ′′ 
3 

H i, j · a i, j + 

∑ 

i ∈V 3 

∑ 

d∈D 
P d i · v d i 
he objective function minimises the cost of the blocks extracted

ue to the ramp construction together with the haulage cost and

hose costs associated with changes of direction of the ramp. 

.1.4. Geotechnical constraints 

x i ≤ x j (i, j) ∈ A 1 (1) 

r i ≤ x i i ∈ V 1 (2) 

r i ≤ 1 − x j (i, j) ∈ A 2 (3) 

Constraint (1) ensures the vertical precedences are honoured

n the extraction of any block. Constraint (2) ensures that ev-

ry block flagged as part of the ramp must be extracted. Con-

traint (3) avoids building a ramp in the air. 

.1.5. Ramp constraints 

∑ 

i, j) ∈A ′ 
3 

a i, j ≤ r j (4) 

 i + r j ≤ 1 + a i, j (i, j) ∈ A 

′′ 
3 (5) 

∑ 

i, j) ∈A 3 
a i, j −

∑ 

( j,k ) ∈A 3 
a j,k = 

{ −1 , if j = S 
1 , if j = T 
0 , if j 
 = S and j 
 = T 

(6) 

Constraints (4) to (5) flags the block j as belonging to the ramp

f and only if the block i belongs to the ramp and the arc a i,j has

een selected. Note that Constraint (4) could be also expressed as

 i,j ≤ r j , ∀ (i, j) ∈ A 

′ 
3 , but Constraint (4) gives a stronger formulation.

onstraint (6) ensures the connectivity of the ramp. 

.1.6. Change of direction constraints 

 i, j + a j,k ≤ v d j + 1 (i, j) , ( j, k ) ∈ A 

′′ 
3 , d = F(i, j, k ) (7) 

Constraint (7) identifies the change of direction at each segment

f the ramp. 

.1.7. Scope of the variables 

 i , r i , a u, v , v d j ∈ { 0 , 1 } i ∈ V 1 , d ∈ D, (u, v ) ∈ A 3 , j ∈ V 3 
(8) 

Finally, Constraint (8) defines the scope of the variables, all of

hich are binary. 

. Solution method 

With the mathematical formulation presented in Section 4.1 ,

he high stripping ramp model can be implemented and solved

irectly with a commercial MIP-solver. In this section we intro-

uce much faster heuristic solution approach based on backtrack-

ng algorithms. A new algorithm to find feasible paths with mu-

ually exclusive ramp segments is introduced in Section 5.1 . In

ection 5.2 we describe a local search method to improve the so-

ution found by the algorithm presented in Section 5.1 . Throughout

his section we use the same notation as in Section 4.1 . 
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5.1. Mutually exclusive greedy adaptive path (MEGAP) algorithm 

This new algorithm is an adaptation of the depth-first search

algorithm presented in Tarjan (1972) . The idea of the MEGAP al-

gorithm is to traverse the graph G 3 from the source node S to the

sink node T following a greedy procedure. The way in which G 3 is

traversed ensures that the nodes in the solution ramp p satisfy the

constraints introduced in Section 4.1 . In other words, the resultant

path will be a feasible solution for the In-pit ramp problem. 

Before introducing the MEGAP algorithm, define G tc = (V tc , A tc )

as the transitive closure of G 1 ∪ G 2 . Also, the stripping associated

with each node u ∈ V 3 is calculated as the out-degree of u ∈ G tc . 

The MEGAP algorithm works as follow. Lines 2–6 initialise the

variables p (ramp), cN (nodes in conflict with the ramp seg-

ments already selected), and the node attributes visited and

predecessor for all nodes in G 3 . Line 7 begins the exploration

of G 3 from node S . Lines 10–12 store the solution ramp in the vari-

able p . Line 13 returns the solution ramp p . 
The function MEGAPvisit (Lines 14–22) consists of a greedy re-

cursive exploration of G 3 from node u taking into account the

current list of conflicted nodes cN . Lines 14–15 update the con-

flicted node list cN . Line 16 marks node v as visited. Lines 17–

21 explore the non-visited and non-conflicted nodes v such that

(u, v ) ∈ A 3 , following a recursive greedy type procedure until the

node T is reached. 

The computational complexity of MEGAP is bounded by O (2 ·
|V 3 | + �(G tc ) · |A 3 | ) , where �(G tc ) is the maximum degree of G tc . 

5.2. Local search 

The local search ( LS ) procedure consists of a partial explo-

ration of all possible paths from S to T that prunes the paths that

“promise” poor values for the optimisation problem. At each stage

of the LS algorithm, the best feasible solution (incumbent) is stored

and used to prune the exploration of the paths. More specifically,

the LS procedure prunes all paths that have a value less than an

incumbent value plus a given tolerance function ( tol ( i )) which de-

creases proportionally with the number of iterations ( i = 0 , 1 , . . . , I)

of LS . 

The LS procedure relies on a sub-routine called allComb2( u )
which finds all feasible combinations of length 2 from node u

(denoted by C 2 u ) in the graph G 3 . For each combination c u ∈ C 2 u a
G  
ath from S to T is calculated using Algorithm 1 , with the con-

ition that the nodes in c u are in the resultant ramp. The LS

rocedure begins by running Algorithm 1 , the resultant ramp ( R 0 )

s stored as the incumbent and the cutoff value is calculated as

utoff0 = cost (R 0 ) · (1 + tol(0)) . Then, a limited branching from

ode S is calculated using the procedure allComb2( S ) , which

ives at most |C 2 s | feasible ramps ( R s ). All the paths which give

 cost greater than cutoff0 are pruned. The procedure repeats

he branching at all nodes in the feasible paths at distance 2 · i

pdating cutoffi at each iteration and updating the incumbent if a

etter value is found, until the maximum number of iterations I is

eached. 

. A case study 

Data from a copper mine was used to test our mathematical

odels. The mine is located in the Antofagasta province, Chile. The

ining reserves within the pit are composed of 84.2 million tonnes

f ore and 52.6 million tonnes of waste. For planning purposes, the

nal pit is subdivided in 4 operational pushbacks, or inner phases.

or simplicity, the first pushback was selected to test the perfor-

ance of the high stripping model. 

Two ramp location problems, ex-pit and in-pit, were studied to

est our low and high stripping models respectively. For the ex-

it road case, we compared the low stripping to the high stripping

odel for a given topography. On the other hand, for the in-pit

amp case, we compared the high stripping model to a ramp de-

igned by an experienced mining engineer. 

Additionally, we compared the roads obtained by imposing a

orbidden region to those with no such region. The model intro-

uced in Section 3 was implemented in Matlab R2016a. The model

roposed in Section 4.1 was implemented in Python 2.7 and solved

sing Gurobi 7.5 MIP-solver. All the pre-processing routines, such

s the definition of the sets and variables, as well as the Local

earch method introduced in Section 5.2 were coded in Python.

xecution of the code was done on an Intel Xeon machine with

2GB running Windows 10. This machine has eight processors that

un at 2.40 GHz. 

.1. Ex-pit road 

Two models, a low stripping and a high stripping formulation,

nd two scenarios, one with no obstacles and the second avoid-

ng the grey area showed in Fig. 5 , were considered to test our

pproaches on real mine data. The task is to find minimum cost

aths from the pit exit A to four possible locations for a processing

lant ( L 1 − L 4 ). 

In the first case, a nearly flat surface with an extension of 570 m

y 600 m and a regular grid of 30 m was used to test the low

tripping formulation. Eight incoming and eight outgoing direc-

ions were considered for each cell of the grid. The order of the

raph G is 20 × 21 × 16 = 6720 . We defined a vertical gradient con-

traint of 10% and a horizontal change of direction cost propor-

ional to the degree of the change. The horizontal change of di-

ection was divided into three categories: slight turns (changes up

o 45 ◦), right angle turns (changes of 90 ◦) and pronounced turns

changes from 90 − 180 ◦). The costs considered for each category

ere US$14,580, US$21,870 and US$29,160, which correspond to a

actor of 2, 3 and 4 times the mining cost for a ramp segment,

espectively. Additionally, we assumed a ramp construction cost of

S$340.2 per linear meter. 

For simplicity, the minimum cost path was solved using a Mat-

ab implementation of the Dijkstra shortest path algorithm. How-

ver, other algorithms might be faster than Dijkstra for the graph

. According to Ahuja et al. (1993) Dial’s implementation of the
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Fig. 5. Illustration of Scenario 1 (a) and Scenario 2 (b). The grey zone in Figure (b) represents a forbidden area for the roads. Roads in red represent paths obtained with the 

high stripping model, while roads in blue show paths obtained with the low stripping model. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 1 

Minimal paths for scenario 1. 

Case/Path Length[m] Cost[US$] S.T. R.T. Solv t[s] 

LS/A-L1 573.10 231,421 1 1 0.05 

LS/A-L2 685.15 262,250 2 0 0.05 

LS/A-L3 399.82 157,890 0 1 0.07 

LS/A-L4 512.58 188,960 1 0 0.06 

HS/A-L1 572.94 231,365 1 1 200.81 

HS/A-L2 685.01 254,910 1 0 175.69 

HS/A-L3 382.04 137,263 0 0 89.51 

HS/A-L4 512.58 188,960 1 0 147.64 

Table 2 

Minimal paths for scenario 2. 

Case/Path Length[m] Cost[US$] S.T. R.T. Solv t[s] 

LS/A-L1 573.10 231,421 1 1 0.05 

LS/A-L2 878.67 342,663 3 0 0.06 

LS/A-L3 770.49 327,732 3 1 0.05 

LS/A-L4 964.99 379,321 2 1 0.07 

HS/A-L1 572.94 231,365 1 1 102.57 

HS/A-L2 878.53 342,618 3 0 126.28 

HS/A-L3 770.21 327,637 3 1 132.98 

HS/A-L4 964.83 379,267 2 1 146.09 
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ijkstra algorithm has excellent empirical results (see Ahuja et al.,

993 pages 113–114 for Dial’s implementation details). 

The first scenario involved finding four minimum cost

aths from point A = (1035 , 1215 , 298) to locations L 1 =
(1545 , 1305 , 280) , L 2 = (1545 , 795 , 271) , L 3 = (1305 , 945 , 292)

nd L 4 = (1185 , 765 , 289) independently, and the second scenario

nvolved finding minimum cost paths between the same points

ut avoiding the grey zone in Fig. 5 . Since we are asked to find the

aths from A to L 1 − L 4 independently, the shortest path approach

ives optimal results. However, if the task was to find the shortest

etwork that connects all terminals A, L 1, L 2, L 3 and L 4, then a

teiner tree in graph algorithm should be used, as mentioned in

ection 3 . An initial North–South incoming direction at point A

as specified to represent the ending of an in-pit ramp. 

In the second case, a grid of 5600 regular blocks of

0m × 30m × 3m and the same economic parameters as in the first

ase were used. Also, a mining cost of $1 per ton was added to ac-

ount for the stripping cost, and an overall maximum wall slope

f 45 ◦ was stipulated. Fig. 5 illustrates the graphic results of both

ases and scenarios, and Tables 1 and 2 summarize the results for

he first and the second scenario respectively. The red path repre-

ents the high stripping solution while blue is used to represent

he low stripping path (in most cases both solutions overlap and

nly one colour is visible). 

Small differences in length are explained by the different repre-

entation of the topography of the formulations, a 3D set of blocks
n the case of the high stripping model and a surface in the case

f the low stripping formulation. The cost function is composed

f the construction cost associated with the length of the road

lus the changes of direction cost, where the latter depends on

he number of slight (S.T.), right angle (R.T) and pronounced turns

P.T.). The high stripping formulation also includes the stripping

ost associated with the modification of the topography. 

For scenario 1, the high stripping model (HS) shows better re-

ults for routes from point A to Location 2 (A-L2) and from point

 to location L3 (A-L3). In both cases, one block was extracted

7290 tonnes), reducing the length of the path and saving a change

f direction. The short-cut (in red) shown in route A-L3 in Fig. 5 is

ot an option in the low stripping formulation due to the gradi-

nt constraint and the impossibility of modifying the topography.

n improvement of 2.7% and 13% were obtained in path A-L2 and

-L3 using the HS model (see Table 1 ). 

For paths A-L1 and A-L4 of scenario 1 and all paths of scenario

, the HS and the LS formulations gave the same results. The av-

rage computation time for the LS model is 0.06 s versus 140.19

 for the HS model. Finally, the pronounced turns (P.T.) column is

ot shown in Tables 1 nor 2 since none of the paths contained a

ronounced turn. 

.2. In-pit ramp 

As mentioned in the previous section, the low stripping formu-

ation is not suitable for finding the minimum cost ramp in steep

errain. Therefore, we compare the performance of the high strip-

ing formulation to a ramp previously designed by a mining en-

ineer. We used the same initial geological and topographical data

hat was used by the engineer for his design. 

The pushback contains a total of 22.2 million tonnes of ore and

2.4 million tonnes of waste that need to be hauled to the top level

f the pit. An average haulage cost of 8 . 046 · 10 −4 [US$/ton/m] was

sed for the optimisation model. The binary linear programming

odel (BLP) was solved using the commercial software Gurobi. The

esulting BLP has 218,826 constraints, 65,568 binary variables and

02,991 non-zero coefficients. The solver default optimisation pa-

ameters remained unchanged except for the time limit, which was

et to 24 h (86,500 [s]). 

The best solution of the BLP found by the solver within the time

imit was US$4,628,154 with an optimality gap, measured against

inear relaxation, of 31.7%. However, despite the significant gap this

olution is 43% more economical than the engineer’s design which

as a cost of US$8,101,162. 

We ran the local search procedure described in Section 5.2 to

nd a good solution in a more reasonable time (a few hours). The

olerance function tol ( i ) was defined as tol(i ) = 0 . 2 · e −0 . 4 ·i . The re-

ulting ramp found by our procedure has a value of US$5,430,055,
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Fig. 6. Comparison of the performance (cost and time) of the binary linear programming (BLP) model and the proposed local search method (Local Search). 

Fig. 7. Illustration of the in-pit ramps. Figures (a), (b) and (c) represent the engineer design, the ramp obtained with the local search method and the ramp obtained solving 

the BLP model, respectively. Ramps are represented in blue lines, while the stripping associated with the ramps is represented with blue dots. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

In-pit ramp cost comparison between the BLP model, the local search model and the engineer’s design. 

Length [m] Total cost [US$] Stripping [US$] Hauling [US$] Direction [US$] Solv t. [s] 

BLP 2047.4 4,628,154 3,455,460 1,085,215 87,480 86,500 

LS 2146.5 5,430,055 4,196,870 1,087,385 145,800 1145 

Eng. 2289.3 8,101,162 6,714,090 1,124,632 262,440 N/A 
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which is 33% better than the engineer’s solution. Our solution

method took only 1145 [s] (approximately 19 min). 

Fig. 6 illustrates the evolution in time of the solutions found

using the BLP model and the one found with our local search

method. Note that the Local search procedure was entirely coded

in native Python which is, in general, much slower than lower level

programming languages such as C or C++. Therefore, a considerable

speed up in our results can be expected by implementing our pro-

posed algorithms in lower level programming languages. 

Fig. 7 shows the engineer’s design (a), the ramp obtained with

the local search method (b) and the ramp found using the high
tripping formulation. Ramps are drawn with blue lines, and the

tripping associated with the construction of the ramp is repre-

ented with blue dots. 

The cost of the high stripping ramp is 43% less than the cost

f the engineer’s design ramp (see Table 3 ). Although this result

hows a great improvement in cost, it is not entirely surprising be-

ause the traditional ramp design process is done manually, so it

elies on the engineer’s experience. It is worth noting that some of

he value gained in the optimisation might be lost in the smooth-

ng process of generating the engineering CAD designs. However,

he loss in value due to the smoothing process can be controlled by
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hoosing a suitable block discretisation as well as a proper mod-

lling of the curvature constraints. 

. Conclusion 

This article has presented a solution for the open pit ramp de-

ign problem. Two situations were studied: the low stripping and

he high stripping cases. For the first case, an adaptation of the

hortest path method was undertaken. In the second case, a binary

inear programming approach was developed. In both cases, our

ethods give an exact solution to the problem within the model

onstraints. Additionally, both models allow gradient and curvature

onstraints to be handled within the given discretisation. They can

ncorporate construction and haulage costs and the formulations

re flexible enough to find an optimal ramp that avoids any given

orbidden region. 

The low stripping road model can be solved in polynomial time

 O (| A | + | V | · log (| V | )) for a graph G ( V, A )). However, this formula-

ion assumes that the road respects the existing topography, with-

ut the need for excavation. On the other hand, the high strip-

ing ramp formulation can handle complex and steep terrains

here extensive excavation may be required to satisfy the gra-

ient constraint on the road. However, the high stripping model

s much less efficient than the low stripping one, and does not

cale well for large problems. To account for this we introduced

 new algorithm that produces feasible solutions to the high strip-

ing model (MEGAP algorithm) in linear time. We then developed

 local search heuristic based on the MEGAP algorithm that rapidly

nds good solutions for the high stripping model (typically within

0 min). 

Finally, computational experiments were performed for ex-pit

oads and in-pit ramps. When no stripping was required, the low

tripping model shows the same results as the high stripping

odel, but running, on average, 20 0 0 times faster. For the in-pit

amp case, the high stripping model gave a ramp with 43% less

ost than the cost of the ramp previously designed by an experi-

nced mining engineer. 

Some limitations are worth noting. Our in-pit model assumes

hat the optimal ramp occurs on the boundary of a precomputed

ushback, which might be suboptimal compared to the problem

f finding a ramp and a pushback simultaneously. Currently, we

re working on a new mathematical model that incorporates the

amp design into the pushback optimisation problem. Also, a com-

ined in-pit ramp design and scheduling optimisation problem,

hat takes into account the ways in which the properties of the

aulage network interact with the mining schedule, would be an-

ther worthwhile avenue for future work. 
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