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A B S T R A C T

The formation of advanced glycation end-products (AGEs) is a key pathophysiological event linked not only to
the onset and progression of diabetic complications, but also to neurodegeneration, cardiovascular diseases,
cancer, and others important human diseases. AGEs contributions to pathophysiology are mainly through the
formation of cross-links and by engaging the receptor for advanced glycation end-products (RAGE).

Polyphenols are secondary metabolites found largely in fruits, vegetables, cereals, and beverages, and during
many years, important efforts have been made to elucidate their beneficial effects on human health, mainly
ascribed to their antioxidant activities.

In the present review, we highlighted the beneficial actions of polyphenols aimed to diminish the harmful
consequences of advanced glycation, mainly by the inhibition of ROS formation during glycation, the inhibition
of Schiff base, Amadori products, and subsequent dicarbonyls group formation, the activation of the glyoxalase
system, as well as by blocking either AGEs-RAGE interaction or cell signaling.

1. Introduction

Advanced glycation end products (AGEs) are a family of compounds
that are the products of non-enzymatic reactions between reducing
sugars and proteins, lipids, or nucleic acids by the so called Maillard
reaction. Although initially described in food browning during thermal
processing, its presence in living systems, and particularly their in-
volvement in various pathophysiological context associated to many
clinical entities has become AGEs in an intensive field of research.
These efforts have been focused on not only to unravel the AGEs for-
mation mechanisms as well as the cellular mechanisms responsible to
generate pathological consequences, but also for searching of AGEs
inhibitors. There is growing interest in the search of compounds of
natural origin that can inhibit glycation. In this context, different nat-
ural compounds found in human diet, such as polyphenols, have been
found to inhibit protein glycation, mainly from data coming from in
vitro approaches.

In the present review, literature searching was carried out to iden-
tify relevant peer-reviewed research publications devoted to explore the
effects of polyphenols on the harmful consequences of advanced gly-
cation, through searching over several online bibliographic electronic
databases such as Sciencedirect, PubMed, SciELO, Scopus, Google,
Google Scholar, Mendeley, ScienceOpen, SpringerLink and
Researchgate. Furthermore, the cross references of the selected

manuscript were also taken under consideration through electronic
search engines.

2. Ages formation and biological consequences.

The non-enzymatic glycation is a common post-translational mod-
ification of some biomolecules and involves the reaction of reducing
sugars, such as glucose, fructose, or ribose with the terminal amino
groups of proteins, nucleic acids, or phospholipids to form unstable
Schiff bases. These compounds evolve into more stable structures called
Amadori products, which by a series of rearrangements and/or frag-
mentation reactions yield the advanced glycation end-products (AGEs)
(Ahmed, Thorpe, & Baynes, 1986; Bettiga et al., 2019; Hunt, Bottoms, &
Mitchinson, 1993; Hayashi & Namiki, 1980).

Alternatively, reactive dicarbonyl compounds such as methyl-
glyoxal, glyoxal, and 3-deoxyglucosone, are also formed by different
pathways, including those derived from the fragmentation of Schiff
bases (Namiki pathway), the autoxidation of Amadori products (Hodge-
pathway), hexose autoxidation (Wolff pathway). (Thornalley, Yurek-
George, & Argirov, 2000; Wolff & Dean, 1987; Thornalley, Langborg, &
Minhas, 1999); as well as by-products of the either the glycolytic or
polyol pathways (Gugliucci, 2017) and from lipid oxidation (Vistoli
et al., 2013). All these dicarbonyl compounds can form isomers with the
arginine and lysine residues of proteins, and thus yielding AGEs (see
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Fig. 1).
Glycation is one of the most common types of protein modification.

This spontaneous and non-enzymatic reaction affects approximately
0.1–0.2% of the arginine and lysine residues in vivo (Thornalley et al.,
2003).

In addition to endogenous AGEs formation, dietary intake AGEs
could act synergistically to increase the systemic AGEs load.
Noteworthy, thermally processed foods and particularly those lipids-
and protein-rich foods represent a plentiful source of exogenous AGEs
(Vlassara et al., 2002; Uribarri et al., 2005). These dietary AGEs are
mainly formed during cooking, by the non-enzymatic browning, also
known as the Maillard reaction, which is responsible for the generation
of taste, color, and aroma (Hellwig & Henle, 2014).

It is estimated that about 10% of dietary AGEs intake is transported
into the circulation, two-thirds of which remained in the body and only
one-third of the absorbed AGEs are excreted into the urine within
3 days from ingestion. (Koschinsky et al., 1997; He, Sabol, Mitsuhashi,
& Vlassara, 1999).

Although glycation of biomolecules proceeds with a variable rate
and extent under physiological conditions, both parameters are mark-
edly affected in several diseases such as diabetes, atherosclerosis,
neurodegeneration, chronic kidney disease, cancer, and many other
non-infectious diseases, supporting the contributions of these reactions
to pathology onset and progression (Uribarri et al., 2015; Chaudhuri
et al., 2018; Bettiga et al., 2019).

The formation of advanced glycation end-products has two major
mechanisms by which they exerted the disruption of cellular home-
ostasis. The first one is based on the capacity to induce structural
changes on proteins, lipoproteins and DNA (Fournet, Bonté, &

Desmoulière, 2018). In this context, glycation of proteins represents the
greatest source of variability of modifications in biomolecules with
disturbing consequences in homeostasis. Noteworthy, glycation reac-
tions can modify in proteins its site of recognition for enzymes or re-
ceptors, and thus resulting in deregulation of recognition, degradation,
and turnover of the corresponding proteins (Brownlee, 1995; Taghavi,
Habibi-Rezaei, Amani, Saboury, & Moosavi-Movahedi, 2017).

Another event of extreme biological significance is the glycation of
extracellular matrix proteins. In this context, glycation reaction can
alter either the molecular recognition at specific protein binding sites or
the mechanical properties of load-bearing protein such as collagens,
mainly due to AGEs crosslinking and thus leading to stiffening of tissues
(Reigle et al., 2008; Humphrey, Dufresne, & Schwartz, 2014, Bonnans,
Chou, & Werb, 2014; Rojas, Añazco, González, & Araya, 2018).

Enzymes are also targets of the glycation reactions, and thus con-
formational changes may be induced in the active site, rendering a
dysfunctional or even inactive enzyme (Mastorikou, Mackness, Liu, &
Mackness, 2008; Morgan, Dean, & Davies, 2002).

Noteworthy, the glycation of enzymes can also have negative con-
sequences in the cellular antioxidant defenses, as reported for the
copper-zinc superoxide dismutase, a primary anti-oxidative enzyme
that scavenges superoxide anion radicals (Taniguchi, Arai, & Kinoshita,
1989). Glutathione reductase is responsible for maintaining the supply
of reduced glutathione as part of its roles in the cellular control of re-
active oxygen species. This enzyme is also a target of the glycation
reactions, rendering a dysfunctional enzyme and thus reducing in-
tracellular glutathione bioavailability (Banks & Andersen, 2019).

Another set of critical targets of glycation reaction are nucleic acids.
Glycation of DNA alters markedly the structure of this macromolecule,

Fig. 1. The formation of Advanced glycation end-products involves the reaction of reducing sugars, such as glucose, fructose, or ribose with the terminal amino
groups found in proteins, nucleic acids, or phospholipids to form unstable Schiff bases, which are then converted to more stable structures called Amadori products,
which by complex reactions yield advanced glycation end-products (AGEs). In the propagation phase, which is characterized by metal-ion-mediated catalysis and
oxygen-induced oxidation reactions, occur the formation of highly reactive dicarbonyls compounds, which in turn also generate a myriad of AGEs. In the advanced
stage, these compounds exert their pathophysiological consequences by two main mechanisms; either by inducing structural changes and dysfunction of biomo-
lecules or by interacting with the receptor for advanced glycation end-products (RAGE). Furthermore, AGEs are degraded by enzymatic systems such the Glyoxalases.
Polyphenols can interfere or promote reactions in every stage (denoted by asterisks).
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which in turn, leads to depurination, strand breaks and the occurrence
of mutational events (Murata-Kamiya, Kamiya, Kaji, & Kasai, 1997;
Ahmad et al., 2011).

More interestingly, histones are also targets of non-enzymatic gly-
cation. The role of histones in chromatin packaging is linked to the
transcriptional activity of genes (Fischle, Wang, & Allis, 2003) and,
therefore play important roles in the epigenetic regulation of gene ex-
pression (Jones, 2015).

Noteworthy, different research groups have independently reported
glycation of histones may compromise the veracity of chromatin
structures and functions (Ansari, Chaudhary, & Dash, 2018; Ashraf
et al., 2015; Mir, Uddin, Alam, & Ali, 2017; Gugliucci & Bendayan,
1995).

Furthermore, glycation of biomolecules sometimes may even
dampen the whole functioning of biological systems, as reported for the
immune system. In this context, glycation can restrict many im-
munological functions ranging from the impairments of Fc fragment
functions in glycated inmmunoglobulins (Dolhofer-Bliesener & Gerbitz,
1990) to a dysfunctional NLRP3 inflammasome-mediated innate im-
mune response (Son et al., 2017).

On the other hand, there are other cellular effects, which are not
related to the capacity of glycation reactions to induce structural
changes on macromolecules, but rather to the recognition of AGEs by
receptors.

3. RAGE/AGEs axis

Several AGEs-binding proteins have been described; most of them
are involved in the clearance mechanism of AGEs, mainly through en-
docytic uptake and degradation (Rojas, Gonzalez, & Añazco, 2018).

However, one of these AGEs-binding proteins, the receptor for ad-
vanced glycation products (RAGE), also known as AGER, once engaged;
it can generate a robust pro-inflammatory response in many cell types
(González, Romero, Rodríguez, Pérez-Castro, & Rojas, 2013; Rojas,
Morales, Araya, & Gonzalez, 2017).

Strikingly, ligation of RAGE not only causes an inflammatory gene
expression profile but also a positive feed-forward loop, in which in-
flammatory stimuli activate NF-κB, which induces RAGE expression,
followed by a sustained NF-κB activation (Bierhaus et al., 2005).

RAGE engagement induces multiple signaling pathways, including
the generation of reactive oxygen species (ROS), mainly due to the
activation of NADPH oxidase (NOX) pathway (Wautier et al., 1994;
Coughlan et al., 2009; Rojas et al., 2013).

Noteworthy, as the most membrane-proximal event, formin mole-
cule mDia1 binds to the cytoplasmic domain of RAGE, and this inter-
action is strictly required to activate RAGE-dependent cell signaling
responses. Formins such as mDia1 are actin-binding molecules that
contribute to signal transduction mechanisms, in part via Rho GTPase
signals (Young & Copeland, 2010), and particularly Rac1, which is a
key component in NADPH oxidase activation (Hordijk, 2006; Petry,
Weitnauer, & Görlach, 2010; Acevedo & González-Billault, 2018).

Far beyond the functional link between RAGE and the activation of
NADPH oxidase (NOX) pathway, plasma proteins are extremely sus-
ceptible targets for oxidants (Davies, 2016). AOPPs (advanced oxida-
tion protein products) are described as dityrosine-containing cross-
linked protein products, which can promote inflammation and thus
participate in many pathophysiological disease processes. At present,
(AOPPs) are linked to diabetes, chronic renal disease, obesity, immune-
mediated inflammatory diseases, neurodegenerative diseases, cancer,
metabolic syndrome and atherosclerosis (Cao, Hou, & Nie, 2014;
Cristani et al., 2016; Witko-Sarsat et al., 1996; Zhao et al., 2019).

Of note, RAGE is also a receptor of AOPPs and their interaction with
RAGE activates NADPH oxidase and thus increasing oxidative stress
(Yamamoto & Yamamoto, 2012; Zhou et al., 2012; Wu et al., 2016;
Rong et al., 2015).

Oxidative stress and inflammation are indissolubly linked to the

pathogenesis of many human diseases. A pivotal player of the in-
flammatory response is NF-kB, which is a redox-sensitive transcription
factor. By activating NF-κB, oxidative stress promotes the expression of
pro-inflammatory cytokines and chemokines, and thus promoting the
recruitment and activation of leukocytes and resident cells, thereby
fueling any inflammatory process (Gloire, Legrand-Poels, & Piette,
2006; Zhang, Wang, et al., 2016; Buelna-Chontal & Zazueta, 2013)

Additionally, it is important to highlight the contribution of ROS to
the production of AGEs. In this context, oxidant species derived from
both the phagocyte NADPH oxidase or the myeloperoxidase-H2O2-
chloride system, promote the formation of AGEs, particularly carbox-
ymethyl lysine (CML), and thus generating an important amplifying
loop at inflammation sites (Anderson, Requena, Crowley, Thorpe, &
Heinecke, 1999; Anderson & Heinecke, 2003).

Therefore, the searching of molecules able to block either the gly-
cation reaction or RAGE activation and signaling has been regarded as a
promising disease-modifying strategy to slow down human aging and
disease onset/progression. (Rojas, Morales, Gonzalez, & Araya, 2019;
Rowan, Bejarano, & Taylor, 2018; Wautier, Guillausseau , & Wautier,
2017).

In this context, polyphenols are emerging as a very attractive option
due not only to their antioxidant and anti-inflammation abilities but
also for their potential as antiglycation agents.

4. Polyphenols and RAGE/AGEs axis.

Polyphenols are secondary metabolites of plants and are generally
involved in defense against ultraviolet radiation or aggression by pa-
thogens (Beckman, 2000). They are found largely in fruits, vegetables,
cereals, and beverages. In food, polyphenols may contribute to the
bitterness, astringency, color, flavor, odor and oxidative stability
(McDougall, 2017).

This very heterogeneous family of compounds have attracted the
attention of the scientific community throughout the world due to their
possible beneficial effects on human health (Vauzour, Rodriguez-
Mateos, Corona, Oruna-Concha, & Spencer, 2010; Cory, Passarelli,
Szeto, Tamez, & Mattei, 2018; Putnik et al., 2018, Del Rio et al., 2013;
Li et al., 2018, Zhang, Tao, Wang, Chen, & Wang, 2015; Fraga, Croft,
Kennedy, & Tomás-Barberán, 2019; Xing, Zhang, Qi, Tsao, & Mine,
2019; Khan & Mukhtar, 2018; Ramírez-Garza et al., 2018; Yahfoufi,
Alsadi, Jambi, & Matar, 2018; Cianciosi et al., 2018; Serino & Salazar,
2018; Del Turco & Basta, 2017

Polyphenols are generally classified into five different groups, in-
cluding flavonoids, phenolic acids, phenolic alcohols, stilbenes and
lignans. Flavonoids are further divided into flavones, flavanones, fla-
vonols, flavanols, isoflavones, and phenolic acids can be subdivided
into hydroxybenzoic and hydroxycinnamic acid derivatives (D́Archivio
et al., 2007; Han, Shen, & Lou, 2007).

Noteworthy, polyphenols are able to diminish the harmful con-
sequences of advanced glycation by different mechanisms, mainly by
the inhibition of ROS formation during glycation, the inhibition of
Schiff base, Amadori products, and subsequent dicarbonyls group for-
mation, the activation of detoxification, particularly through the
glyoxalase system, as well as by blocking of AGEs-RAGE interaction (see
Table 1).

In the present review, literature searching was carried out to iden-
tify relevant peer-reviewed research publications devoted to explore the
effects of polyphenols on the harmful consequences of advanced gly-
cation, through searching over several online bibliographic electronic
databases such as Sciencedirect, PubMed, SciELO, Scopus, Google,
Google Scholar, Mendeley, ScienceOpen, SpringerLink and
Researchgate. Furthermore, the cross references of the selected manu-
script were also taken into consideration through electronic search
engines.
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Table 1
Antiglycation activities of polyphenols.

Compounds (Examples) Dietary Sources (Examples) Mechanisms of action References

Phenolic acids

-Gallic acid Coffee, pear, apple, basil, oregano -Radical scavenger
-Ion metal chelating
activity
-Trapping dicarbonyls
-Attenuate RAGE
expression

(Umadevi et al., 2014; Khangholi et al., 2016; Yeh, Hsia, Lee, & Wu,
2017; Gao, Hu, Hu, & Yang, 2019; Gu, Howell, Dunshea & Suleri,
2019)

-Caffeic acid Coffee, tea, wine, pear, apple, basil,
oregano, carrots, berries tomatoes, propolis.

-Radical scavenger
-Ion metal chelating
activity
-Trapping dicarbonyls
-Attenuate RAGE
expression

(Gugliucci et al., 2009; Genaro-Mattos et al., 2015; El-Seedi et al.,
2017; Yeh et al., 2017; Ghelani et al., 2018; Gu et al., 2019)

-Ferulic acid Whole grains, spinach, parsley, grapes,
cereal seeds.

-Radical scavenger
-Ion metal chelating
activity
-Suppression RAGE
signaling and expression.

(El-Seedi et al., 2017; Yeh et al., 2017; Zduńska, Dana,
Kolodziejczak, & Rotsztejn, 2018; Gu et al., 2019; Chaudhary et al.,
2019)

-Chlorogenic acid Coffee, tea, mate, many fruits, vegetables -Radical scavenger
-Ion metal chelating
activity

(El-Seedi et al., 2017; Yeh et al., 2017; Tajik, Tajik, Mack, & Enck,
2017; Justino et al., 2018; Bains & Gugliucci, 2017; Fernandez-
Gomez et al., 2018; Gu et al., 2019)

Coumaric acid- Peanuts, beans, tomatoes, carrots, basil,
garlic, red wine, vinegar, barley grain

-Radical scavenger
-Trapping dicarbonyls

(El-Seedi et al., 2017; Yeh et al., 2017; Gu et al., 2019; Shen et al.,
2019; Sabitha et al., 2019)

Phenolic alcohols

Hydroxytyrosol Olive, Olive oils, Olive leaf -Radical scavenger
-Ion metal chelating
activity.

(El-Seedi et al., 2017; Navarro, Morales, & Ramos, 2017; Yeh et al.,
2017 Gorzynik-Debicka et al., 2018; Serreli & Deiana, 2018; de Las
Hazas, Rubio, Macia, & Motilva, 2018; Gu et al., 2019)

Stilbenes

Resveratrol Grape skins and seeds, Berries, peanuts,
cocoa

-Radical scavenger.
-Trapping dicarbonyls
-Inhibit RAGE expression
-Activation SIRT-1.
-Inhibit activation of NF-
κB.

(Khazaei et al., 2016; Sarubbo, Esteban, Miralles, & Moranta, 2018;
Yeh et al., 2017; Crascì et al., 2018; Salehi et al, 2018; Yılmaz et al.,
2018; Wang et al., 2019; Yu, Tao, Zhao, Hu, & Wang, 2018)

Lignans

Pinoresinol, Sesamin. Flax, sunflower, sesame, and pumpkin seeds -Radical scavenger. (Pilar et al., 2017; Yeh et al., 2017; Liu et al., 2018; Rodríguez-
García, Sánchez-Quesada, Toledo, Delgado-Rodríguez, & Gaforio,
2019; Das & Devi, 2019)

Flavonoids

Isoflavones: Genistein, 
daidzein

Soyabeans and other leguminous -Radical scavenger
-Trapping dicarbonyls.

(Yeh et al., 2017; Zihao & Qingrong, 2017; Crascì et al., 2018; Lutz,
Fuentes, Ávila, Alarcón, & Palomo, 2019; Wang et al., 2019, Gu
et al., 2019)

Celery, parsley, red peppers, chamomile,
mint, capsicum, citrus fruits, honey,
propolis.

-Radical scavenger
-Trapping dicarbonyls.

(Panche, Diwan, & Chandra, 2016; Yeh et al., 2017; Hwang et al.,
2018; Gu et al., 2019; Karak, 2019)

(continued on next page)
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4.1. Inhibition of ROS formation during glycation.

It is widely recognized that the early stage of the Maillard reaction is
accompanied by the production of a large amount of free radicals
(Rizzi, 2003). In addition, the intermediate Schiff bases are also prone
to oxidation and then to produce free radicals and reactive carbonyl
groups. Therefore, at the early stage of glycation, capturing free radicals
and decreasing the production of reactive carbonyl and dicarbonyl
groups can inhibit the glycation function (Yeh et al., 2017).

A compelling body of evidence suggests that the inhibition of

protein glycation by polyphenols is based on their antioxidant proper-
ties, since the pioneering works of (Jiang, Woollard, & Wolff, 1990;
Sadowska-Bartosz and Bartosz, 2015). In fact, the antiglycation activity
strongly correlates with the free radical scavenging activity and poly-
phenols contents (Ramkissoon, Mahomoodally, Ahmed, & Subratty,
2013; Harris et al., 2014)

Polyphenols are strong antioxidants that can not only neutralize free
radicals but also suppress the generation of free radicals, thus reducing
the rate of oxidation by inhibiting the formation of or deactivating the
active species and precursors of free radicals. More frequently, they act

Table 1 (continued)

Compounds (Examples) Dietary Sources (Examples) Mechanisms of action References

Flavones: Luteolin, 
crysin 

Flavanones:
Hesperitin, naringenin 

oranges, lemons and grapes -Radical scavenger
-Trapping dicarbonyls.

(Panche et al., 2016; Yeh et al., 2017; Gu et al., 2019; Karak, 2019)

Flavonols: quercetin, 
rutin kaempferol, 

onion, leek, broccoli, berries, cocoa,
cranberries, kale, celery, lettuce, ripe
tomatoes, carrots, tea and red wine

-Radical scavenger
-Trapping dicarbonyls
-Ion metal chelating
activity
-Increasing Glo 1 activity

(Panche et al., 2016; Frandsen & Narayanasamy, 2017; Bhuiyan
et al., 2017; Nazrul, Bhuiyan, Mitsuhash, Sigetomi, & Ubukata,
2017; Yeh et al., 2017; Crascì et al., 2018; Frandsen &
Narayanasamy, 2018; Gu et al., 2019)

Flavanols: catechins, 
gallocatechins

grapes, wine, cocoa, beans green tea, pears,
apricots, bananas, apples, blueberries,
peaches

-Radical scavenger.
-Trapping dicarbonyls.
-Interfering RAGE
signaling.
-Suppressing RAGE
expression.

Panche et al., 2016; Julius & Hopper, 2017; Yeh et al., 2017; Crascì
et al., 2018; Kanlaya & Thongboonkerd, 2019; Gu et al., 2019)

Anthocyanins:
Delphinidin, cyanidin, 
malvidin. 

cranberries, black currants, red grapes,
merlot grapes, berries, red wine

-Trapping dicarbonyls. (Yoon & Shim, 2015; Panche et al., 2016; Yeh et al., 2017; Zihao &
Qingrong, 2017; Crascì et al., 2018; Gu et al., 2019)

Chalcons: phloridzin, 
arbutin, 

Apple, tomatoes, pears, berries, and certain
wheat products

-Trapping dicarbonyls. (Panche et al., 2016; Yeh et al., 2017; Gu et al., 2019; Zhou et al.,
2019)

Tannins

Procyanidins cocoa, chocolate, apples, grapes berries,
unripened fruits, red wine, tea,
pomegranate peel

-Trapping dicarbonyls.
- Radical scavenging.
-Ion metal chelating
activity.
-Suppressing RAGE
signaling
-Inhibiting NF-κB
activation

(Jovanovic et al., 2017; Kato et al., 2017; Yeh et al., 2017; Zihao &
Qingrong, 2017; Gourlay & Constabel, 2019, Rauf et al., 2019)
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as direct radical scavengers of the lipid peroxidation chain reactions
(chain breakers). Chain-breakers donate an electron to the free radical,
neutralizing the radicals and themselves becoming stable (less reactive)
radicals, thus stopping the chain reactions (Wolff, Jiang, & Hunt, 1991;
Tsao, 2010; Pietta, 2000; Guo, Hsieh, & Hu, 2009)

Many polyphenols, such as catechins, proanthocyanidins, antho-
cyanin, stilbenoids, and flavonols have been reported to inhibit AGEs
formation (Tagliazucchi, Martini & Conte, 2019; Sun, Shen, Zhou &
Wang, 2019; Yılmaz et al., 2018; Yeh et al., 2017; Crascì, Lauro, Puglisi,
& Panico, 2018; Perron & Brumaghim, 2009; Hou, Wang, Liu, Song, &
Liu, 2014; Nagasawa et al., 2003; Liu et al., 2013; Seo, Seo, Han, Ki, &
Shin, 2014; Dearlove, Greespam, Hartle, Swanson, & Hargrove, 2008;
Ho, Wu, Lin, & Tang, 2010; Lavelli, Corey, Kerr, & Vantaggi, 2011;
Harsha, Lavelli, & Scarafoni, 2014; Kazeem, Akanji, Hafizur, &
Choundhary, 2012; Sadowska-Bartosz, Galiniak, & Bartosz, 2014, Wu &
Yen, 2005).

Additionally, chlorogenic acids, a related polyphenol family of es-
ters, including hydroxycinnamic acids (caffeic acid, ferulic acid, and p-
coumaric acid), which represent an abundant group of plant poly-
phenols presented in the human diet, are also potent inhibitors of
protein glycation (Kim et al., 2011; Bains & Gugliucci, 2017; Justino
et al., 2018)).

4.2. Chelation of transition metal ions

The role of oxidation reactions in glucose-induced modifications of
proteins has been suggested since the late '80s (Wolff & Dean, 1987).

Noteworthy, in hyperglycemic conditions, transition metals in the
presence of oxygen catalyze autoxidation of glucose or lipid peroxida-
tion (Hayase et al., 1996). Alterations in iron and copper homeostasis
are hallmarks in diabetes, evidenced by deposition of iron and copper in
heart, kidney, and other tissues (Backe, Moen, Ellervik, Hansen, &
Mandrup-Poulsen, 2016; Qiu, Zhang, Zhu, Wu, & Liang, 2017; Lowe,
Taveira-da-Silva, & Hilário-Souzam, 2017; Zheng, Li, Wang, & Cai,
2008; Urui-Adams & Keen, 2005; Fumitaka, Takeshi, Junichi, &amp;
Masatomo, 1996).

Of note, polyphenols-enriched extract from Guava leaves inhibited
Amadori product formation in a dose-dependent manner through che-
lating activity mechanism (Wu, Hsieh, Wang, & Chen, 2009). Chloro-
genic acids represent an abundant group of plant polyphenols widely
present in the human diet also inhibit AGEs formation by metal che-
lation (Gugliucci, Bastos, Schulze, & Souza, 2009)

Rutin, a citrus flavonoid, also possesses chelating properties and
decreases the Fenton reaction as a source of free radical formation
(Kostyuk, Potapovich, Kostyuk, & Cherian, 2007). Caffeic acid is re-
ported to bind to iron ions and prevent the oxidative consequences of
the Fenton reaction, including lipid peroxidation, DMPO hydroxylation
and 2-deoxyribose oxidative degradation (Genaro-Mattos, Maurício,
Rettori, Alonso, & Hermes-Lima, 2015). These findings deserves parti-
cular attention considering that glycation of heme proteins effectively
released free iron from the heme moiety, which in turn can catalyze the
Haber-Weiss reaction producing free radicals, particularly hydroxyl
(OH) radicals, and thus increasing oxidative stress (Ghelani,
Razmovski-Naumovski, Pragada, & Nammi, 2018),

Although many polyphenols are reported as metal ion chelators, it is
in this particular biological activity where they exhibit the most sig-
nificant differences concerning their molecular structure (Amić et al.,
2007). In one recent study comparing the chelating capacity of 10
polyphenols, the cathecol moiety, which is present in many other
polyphenolic structures, seems to be an essential functional group for
metal chelation (Bhuiyan, Mitsuhashi, Sigetomi, & Ubukata, 2017).

4.3. Trapping dicarbonyls

As already mentioned, either the fragmentation of Schiff bases
(Namiki pathway), the autoxidation of Amadori products (Hodge-

pathway), the hexose autoxidation (Wolff pathway), or by-products
from the glycolytic or polyol pathways, can render new reactive di-
carbonyl intermediates, such as methylglyoxal (MGO) and glyoxal
(GO). These dicarbonyls can then modify proteins to form AGEs of
various chemical structures (Singh, Barden, Mori, & Beilin, 2001; Jakus
& Rietbrock, 2004; Thornalley et al., 2000).

The increase in reactive dicarbonyl intermediates, also known as
“carbonyl stress“, is a consequence of hyperglycemia in diabetes
(Brownlee, 2001; Dalle-Donne, Rossi, Giustarini, Milzani, & Colombo,
2003; Rabbani & Thornalley, 2015).

In this context, the trapping capacity of dicarbonyls compounds has
been reported for some polyphenols. That is the case for (−)-epi-
gallocatechin-3-gallate (EGCG), the major bioactive green tea poly-
phenol, which can efficiently trap reactive dicarbonyl compounds
(MGO or GO) (Sang et al., 2007). Additionally, both phloretin and its
glucoside, phloridzin, the major bioactive apple polyphenols can effi-
ciently trap reactive MGO or GO (Shao et al., 2008; Zhou, Gong, &
Wang, 2019).

The same activities have been also reported for resveratrol, quer-
cetin, (+)-catechin, (−)-epicatechin, chlorogenic acid and [6]-gingerol
(Sampath, Zhu, Sang, & Ahmedna, 2016; Bhuiyan et al., 2017; Kahn-
gholi et al., 2016; Kim, Zhuo, Wang, Lee, & Lim, 2018; Yılmaz et al.,
2018). Genistein, a naturally occurring isoflavone derived from soy
products, also shows significant trapping effects of MGO (Lv, Shao,
Chen, Ho, & Sang, 2011).

Furthermore, procyanidins widely present in various species of
berries (blueberries, blackberries, strawberries, raspberries, cranber-
ries) as well as in flowers of the ancient Magnolia genus, prevented
AGEs formation by trapping α-dicarbonyl compounds (Wang, Yagiz,
Buran, Nunes, & Gu, 2011; Kato et al., 2017).

Of note, it has been suggested that dicarbonyls trapping functions is
supported by the presence of many hydroxyl groups found on the basic
structure of the phenolic acid (Yeh et al., 2017; Khangholi, Majid,
Berwary, Ahmad, & Aziz, 2016; Cai et al., 2011)

4.4. Activation of detoxification: The glyoxalase system

The glyoxalase pathway facilitates the neutralization of highly re-
active dicarbonyls, being the methylglyoxal (MG) the principal target,
which is converted to d-lactate (Allaman, Belanger, & Magistretti,
2015). Therefore, increasing the expression of Glo1 seems to an effec-
tive strategy to counter dicarbonyl stress (Xue et al., 2012).

Flavonoids have shown effectiveness in the modulation of the
glyoxalase pathway and MG detoxification. The flavonoids morin and
quercetin increased Glo 1 activity and glutathione (GSH) concentration
while reducing the concentration of MG (Frandsen & Narayanasamy,
2017; Frandsen & Narayanasamy, 2018).

Noteworthy, in a clinical trial conducted in obese subjects, phar-
maceutical doses of trans-resveratrol (tRES) and hesperetin (HESP) co-
formulation produced a 22% increase in Glo1 activity of peripheral
blood mononuclear cells (Xue et al., 2016).

These results have open a new perspective to the use of polyphenols
as small-molecule inducers of Glo1, by exploiting the ARE/Nrf2-de-
pendent GLO1 gene. transcription (Rabbani & Thornalley, 2019).

However, the action of polyphenols on glyoxalase pathways seems
to be controversial, because curcumin, baicalein, luteolin, and iso-
lupalbigenin have been reported to inhibit in vitro the glyoxalase system
(Santel et al., 2011; Takasawa et al., 2008; Zhang, Zhai, et al., 2016).

Noteworthy, structure-activity relationship analysis suggests that
the hydroxy groups at the B ring in the basic structure of flavonoids
seem to contribute to glyoxalase inhibitory activity (Takasawa et al.,
2008).

4.5. Interfering RAGE expression and signaling.

(−)-Epigallocatechin gallate exhibits protective effects against
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AGEs-induced injury not only through its antioxidative properties but
also by interfering with AGEs-RAGE interaction mediated pathways
(Lee & Lee, 2007; Burckhardt et al., 2008; Kanlaya & Thongboonkerd,
2019).

A polyphenols-enriched preparation from Hibiscus sabdariffa, mainly
composed by protocatechuic acid, catechin, epigallocatechin, caffeic
acid, and epigallocatechin gallate was able to suppress RAGE expres-
sion in both in vitro and in vivo models (Huang et al., 2009; Peng et al.,
2011).

Additionally, gallic acid a hydroxybenzoic acid occurring mostly in
certain red fruits, black radish, and onion can attenuate RAGE expres-
sion (Umadevi, Gopi, & Elangovan, 2014).

The case of resveratrol is particularly interesting because it can in-
hibit not only RAGE expression (Khazaei et al., 2016; Moridi et al.,
2015) by a mechanism involving the activation of peroxisome pro-
liferator-activated receptor (PPAR)-gamma (Zhang et al., 2010), but
also by interfering RAGE signaling cascade (Buttari et al., 2013).

The inhibition of RAGE expression by elevating PPAR-gamma ac-
tivity seems to be quite interesting, considering another member of the
polyphenols family; curcumin can suppress RAGE expression by the
same mechanism (Lin, Tang, Kang, Feng, & Chen, 2012).

Of note, interesting efforts have been recently made in the field of
molecular docking, to model the interaction between a small molecule
and a protein at the atomic level. Recently, it has been reported that
curcumin can bind to RAGE with a strong binding affinity (Sriramoju &
Goetz, 2019), and thus blocking the interaction with ligands.

Finally, it is worth to be mentioned the effects of polyphenols to
SIRT1, a member of the sirtuin family. SIRT1 can inhibit the NF-κB
signaling pathway by deacetylating lysine 310 of RelA/p65 subunit of
NF-kB (Rahman & Islam, 2011).

Activation of NF-kB is linked to transcription of RAGE gene itself. In
this context, it is important to highlight that many polyphenols, in-
cluding quercetin, silibinin, daidzein, curcumin phloridzin, resveratrol
and even the S17834, a synthetic polyphenol, can activate NAD-de-
pendent deacetylase sirtuin-1 (SIRT1) (Ayissi, Ebrahimi, &
Schluesenner, 2014; Sarubbo, Esteban, Miralles, & Moranta, 2018), and
as consequence, inhibit the transcription of RAGE.

5. Concluding remarks and future challenges

At present, a compelling body of evidence demonstrates the bene-
ficial effects of polyphenols on human health. Most of the published
work supporting that conclusion suggest that the putative beneficial
effects of polyphenols are frequently ascribed to their antioxidant ac-
tivity (Tresserra-Rimbau, Lamuela-Raventos, & Moreno, 2018). How-
ever, recent data suggest that polyphenols can exert their beneficial
effects by a compendium of mechanisms, other than their antioxidant
activities, such the activation of transcription factors involved in anti-
oxidant responsive capacity, metal chelating, and their capacity to bind
to several proteins and thus impacting cellular homeostasis. In this
context, the capacity of polyphenols to modulate the RAGE/AGEs axis
deserves particular attention considering that the searching of mole-
cules able to block either the glycation reaction or RAGE activation and
signaling has been regarded as a promising disease-modifying strategy
to slow down human aging and disease onset/progression. Most data
concerning the activity of polyphenols on modulating RAGE/AGEs axis
activation have been mainly derived from both in vitro and in vivo
models. At this point, it is necessary to go a step further and more re-
search is needed, particularly on subjects affected by pathologies where
the RAGE/AGEs axis is markedly activated.

Finally, to face up this new challenge, researchers must keep in
mind some aspects to assess any beneficial effects of polyphenols, in-
cluding the anti-glycation activity (Mena & Del Rio, 2018).

Extrapolation of results of in vitro studies on the in vivo situation
should viewed with caution, because of many crucial elements have not
been considered in a plethora of data obtained from in vitro assays.

Among these factors are, mechanisms of glycation, selected dosages,
experimental designs reflecting a physiological approach, as well as
bioavailability problems. Although glucose is the bodýs most prevalent
reducing sugars, it is important to highlight that aldehyde isoform of
glucose is only the 0, 2% of whole pool, therefore glucose is one of the
least active sugars in relation to glycation (Krautwald & Münch, 2010).
In fact, there is a consensus for their reactivity in the glycation reaction,
being the sequence ribose > fructose > glucose (Aragno &
Mastrocola, 2017). However, glucose is still the main sugar used in the
vast majority of in vitro assays.

Quite interesting are the data showing that the inhibition of gly-
cation by polyphenols only resulted when the protein target (BSA) was
pre-incubated with phenolic acids, under glycoxidative conditions at
low glucose concentrations (glucose 5 or 10 mM plus H2O2 10 nM),
and thus suggesting that oxidative stress plays an important role in
glycation in normoglycaemia (Vlassopoulos, Lean, & Combet, 2014). In
this context, it is important to highlight that although AGEs formation is
markedly accelerated in diabetes because of the increased availability
of glucose; the reaction occurs at a constant but slow rate in the normal
body, starting in early embryonic development, and accumulate with
time, being relevant in the pathophysiology of ageing.

Another important factor to be considered is the relative con-
centrations of both the reactants and inhibitors. In a classical glycation
reaction protocol, glucose is used up to 500 mM, compared with the
7 mM or higher on two separate tests for diabetes diagnosis and the
5,5mM reported as the global mean fasting blood level (Danaei et al.,
2011).

Similar situations are observed for the concentrations of poly-
phenols tested in vitro, when important differences are observed be-
tween the tested concentrations and the blood levels reported after a
long-term feeding intervention (Vassopoulos, Lean & Combet 2014)

Marked differences in bioavailability have been reported for dif-
ferent members of the family; mainly defined by the facts that most
polyphenols are present in food as glycosides, some of them are even
hydrolyzed in the intestine, and gut microbiota is a key factor in de-
termining the metabolic fate of polyphenols (Manach, Scalbert,
Morand, Remesy, & Jimenez, 2004; Duda-Chodak, Tarko, Satora, &
Sroka, 2015; Williamson & Clifford, 2017; Bento-Silva et al., 2019;
Kawabata, Yoshioka, & Terao, 2019).

Furthermore, polyphenols can, selectively modulate the intestinal
microbiome, therefore, stratification in clinical trials according to me-
tabotypes is necessary to fully assess the biological activity of poly-
phenols (Espín, González-Sarrías, & Tomás-Barberán, 2017; Milenkovic
et al., 2017; Yuan et al., 2018; Pavlidou, Giaginis, Fasoulas, & Petridis,
2018; Rowland et al., 2018; Shortt et al., 2018). Therefore, and con-
sidering the growing body of revealing evidences, the effects of the
microbiota should be considered when discussing the health effects of
polyphenols. In addition, caution is needed in interpreting results de-
rived from animal models, because of the marked differences in mi-
crobiota between rodent and humans.

In summary, evidence-based well-designed placebo-controlled,
double-blind preclinical/clinical trials on large samples, considering
different ethnicities, varying age groups, genders, socioeconomic status,
well-accepted testing biomarkers, as well as the of significant and as-
tringent intervention methods, are required to validate the health ef-
fects of polyphenols. In this context, and although different trials have
provided evidences that polyphenols can prevent protein glycation in
vivo (Palma-Duran, Vlassopoulos, Lean, Govan, & Combet, 2017; Del
Turco & Basta, 2016), some discrepancies still remains, probably due to
very short intervention periods as well as not using any biomarker in-
dicating that an increase of serum/urine polyphenol levels has been
achieved during the intervention.

Nevertheless, and being conscious of the limitations already men-
tioned, these results have open up a new challenge for healthy food
formulation based on polyphenolic-enriched foods in order to prevent
the deleterious effects of AGEs on human health.
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