
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

ON THE EXPRESIVENESS OF LARA:
A UNIFIED LANGUAGE FOR LINEAR AND RELATIONAL ALGEBRA

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS,
MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERIO CIVIL EN COMPUTACIÓN

NELSON NICOLAS HIGUERA RUIZ

PROFESORES GUÍAS:
PABLO BARCELÓ BAEZA
JORGE PÉREZ ROJAS

MIEMBROS DE LA COMISIÓN:
CLAUDIO GUTIERREZ GALLARDO

FEDERICO OLMEDO BERON
CRISTIAN RIVEROS JAEGER

Este trabajo ha sido completamente financiado por el
Instituto Milenio Fundamentos de los Datos (IMFD).

SANTIAGO DE CHILE
2019

Resumen

Estudiamos el poder de expresividad del lenguaje Lara – un álgebra unificador recientemente
propuesto para expresar operaciones del álgebra relacional y lineal – ambos en términos de
lenguajes de consultas de bases de datos tradicionales y algunas tareas analíticas frecuente-
mente realizadas en tareas de machine learning.

El modelo de datos de Lara es la tabla asociativa, una estructura similar a una tabla que
tiene una cabecera y contiene datos en filas. Está dividida en dos: las llaves y los valores. La
tabla puede verse como una función, donde toda llave está asociada a sus valores respectivos.
El lenguaje tiene tres operaciones: join, union, and extension, las cuales están parametrizadas
por funciones. Las primeras dos son parametrizadas por funciones de agregación (suma,
promedio, desviación estándar, etc.) mientras que la última está parametrizada por una
función definida por el usuario, la cual puede permitir transformar filas en tablas.

Comenzamos mostrando como Lara es completamente expresivo con respecto a la lógica
de primer orden con agregación. Dado que Lara está parametrizado por un conjunto de
funciones definidas por el usuario, el poder expresivo exacto del lenguaje depende en cómo
estas funciones están definidas. Distinguimos dos casos principales dependiendo del nivel de
genericidad al que las consultas están impuestas a satisfacer.

Bajo suposiciones de genericidad fuerte el lenguaje no puede expresar la convolución de
matrices, una operación muy importante en las operaciones actuales de machine learning.
El lenguaje es también local, y por lo tanto no puede expresar operaciones que exhiben un
comportamiento recursivo, como la inversión de matrices.

Para expresar la convolución, podemos relajar el requerimiento de genericidad añadiendo
un orden lineal subyacente al dominio. Esto, sin embargo, destruye la localidad y convierte
el poder expresivo del lenguaje en algo mucho más difícil de entender. En particular, aunque
bajo supuestos de complejidad el lenguaje resultante aún no puede expresar la inversión de
matrices, una prueba de este hecho sin estos supuestos parece ser difícil de obtener.

ii

Abstract

We study the expressive power of the Lara language – a recently proposed unifying algebra
for expressing relational and linear algebra operations – both in terms of traditional database
query languages and some analytic tasks often performed in machine learning pipelines.

The data model of Lara is the associative table, a table-like structure which has a header
and contains rows that follows the header. It is divided in two: the keys and the values. The
table can be seen as a function, where each key is associated with their respective values. The
lenguage has three operations: join, union and extension, where each is parameterized by a
function. The first two are parameterized by aggregate functions (sum, average, standard
deviation, etc.) while the latter is parameterized by an user-defined function, which can allow
to transform rows into tables.

We start by showing Lara to be expressive complete with respect to first-order logic
with aggregation. Since Lara is parameterized by a set of user-defined functions, the exact
expressive power of the language depends on how these functions are defined. We distinguish
two main cases depending on the level of genericity queries are enforced to satisfy.

Under strong genericity assumptions the language cannot express matrix convolution, a
very important operation in current machine learning operations. This language is also local,
and thus cannot express operations such as matrix inverse that exhibit a recursive behavior.

For expressing convolution, one can relax the genericity requirement by adding an under-
lying linear order on the domain. This, however, destroys locality and turns the expressive
power of the language much more difficult to understand. In particular, although under
complexity assumptions the resulting language can still not express matrix inverse, a proof
of this fact without such assumptions seems challenging to obtain.

iii

A mi familia, por su perpetuo apoyo.
A mis amigos, por todos los buenos momentos.

Y a la matemática, por iluninar mi camino.

iv

Agradecimientos

El viaje que me ha traído hasta este momento está lleno de altos y bajos pero ya aquí,
agradezco las experiencias que me han formado. Ciertamente no podría haber terminado
esto de no ser por todas las personas que me han apoyado, enseñado y acompañado en el
camino.

Primeramente debo agradecer a mi familia, ya que ellos han sido mi mayor fuente de
motivación. A mi madre, que cuida de mi, a mi hermana y a mi abuelo, y que gracias a su
fortaleza y ternura me ha hecho ser duro sin perder la compasión. A mi padre, que gracias
a su sacrificio y constancia me ha demostrado que siempre es posible salir adelante, por mal
que estén las cosas. A mi hermana, que me complementa y hace todo lo que yo hago mal,
bien. Esto también aplica al revés. A mi tía y primos, que me han recibido en su hogar por
ya siete años nunca exigiendo nada a cambio. Y a mis dos gatos, que me acompañan en la
soledad de mi pieza mientras escribo esto.

Luego, debo agradecer a mis profesores de tesis, ambos personas excelentes. No espero
retribuir todo lo que me han enseñado en estas pocas líneas, pero al menos espero sientan
mi afecto. A Pablo, por su estilo retórico de enseñanza, que me ha hecho volver a tener
confianza en lo que escribo y digo. A Jorge, por los múltiples consejos acertados que en su
momento no comprendí. A retos y palos me quitaron el miedo y trajeron a mi una nueva
oportunidad de seguir haciendo lo que siempre me ha gustado, que es estudiar y aprender.
Espero nunca dejen de enseñar, sea donde se lleven a si mismos.

Finalmente, agradezco a mis amigos, quienes han alegrado mi vida incontables veces.
Debo partir por mis mś viejos amigos, aquellos que hice en Villarrica. A pesar de la distan-
cia, siempre se mantienen en mi recuerdo: Rayen, Fabian, Zepu, Robi, Coni, Felipe, Raul,
Nunivek, Hector, Moises, Renzo, Bastian y Daniel, gracias. Dos de ellos me han motivado
en particular a crecer como persona y admiro por su inteligencia, Joaquin y Cristian. Des-
graciadamente nuestros caminos han divergido pero espero poder volver a encontrarlos en
cualquier momento. Siempre me han tratado bien y recibido con mucho cariño en sus hoga-
res, a pesar de mi lejania. También agradezco a mis amigos de Santiago, quienes han formado
parte de mi vida desde que llegue. A mis amigos de plan común, por las intensas sesiones
de estudio y posteriores salidas, que hicieron mucho más llevaderos esos años. A aquellos
que conocí en la zona D del CEC, con los que jugamos mas de lo que deberíamos. A los que
conocí por mis tropiezos vocacionales, por quienes ahora se que uno puede encontrar amigos
en lugares insospechados. Y a los que conocí en la carrera de computación, con quienes
comparto a diario y me hacen sonreir. En particular destaco a Pablo, Tomas y Benjamin,

v

con los que he compartido muchas experiencias y lo sigo haciendo. Tambien agradezco a
los que compartieron su tiempo conmigo mientras estaba en el magister: Valentina, por su
timidez y alegría, y Bernardo, por el trabajo que hicimos y las interesantes conversaciones
que tuvimos. Finalmente, agradezco a Angélica, por brindarme su amor en tiempos difíciles.

A todas estas personas y mas, doy mi más sincero agradecimiento y les deseo lo mejor en
sus vidas.

vi

Contents

Introduction 1
Outline and Main Contributions . 4
Publications . 4

1 Context 5
1.1 Machine Learning and Databases . 5

1.1.1 Operations in Machine Learning and Relational Algebra 6
1.1.2 A Practical Example . 7

1.2 Database Families . 7
1.2.1 Relational Systems . 8
1.2.2 Array Systems . 8
1.2.3 Graph Systems . 9
1.2.4 Polystore Systems . 9

1.3 Languages of Relations and Arrays . 10
1.3.1 Relational Languages . 10
1.3.2 Array Languages . 10

1.4 Lara . 11
1.5 The Study of Expressiveness . 11

1.5.1 Descriptive Complexity . 12
1.5.2 First-order Logic . 12
1.5.3 Relational Algebra . 13
1.5.4 SQL . 13
1.5.5 Matlang . 14

2 Lara and FOAgg 16
2.1 Basic Notions . 16
2.2 Lara: Linear Algebra and Relational Algebra 17

2.2.1 Data model . 17
2.2.2 Syntax . 18
2.2.3 Semantics . 19

2.3 First Order Logic . 22
2.3.1 Syntax . 22
2.3.2 Semantics . 23

2.4 First Order Logic with Aggregation . 23
2.4.1 Syntax . 23
2.4.2 Semantics . 24

vii

3 Expressive Completeness of Lara with respect to FOAgg 26
3.1 From Lara to FOAgg . 26
3.2 From FOAgg to Lara . 28

4 Expressiveness of Lara in terms of ML Operators 33
4.1 Tame Lara . 33
4.2 Matrix Convolution . 35
4.3 Matrix inverse . 37
4.4 Einstein Sum . 38

5 Adding Built-in Predicates over Keys 39
5.1 Convolution in Lara with comparisons . 39
5.2 Can Lara with comparisons express the inverse? 42

Conclusion and Future Work 45

Bibliography 47

viii

Introduction

Most of the actual analytic systems require relational algebra and statistical operations to
handle the data. In particular, relational algebra is used for pre-processing the data (cleaning,
structuring, etc.), to then be used as input of statistical operations that allows us to reason
quantitatively about the data. A setting of much importance these days, and the one we will
be focusing, is the one of machine learning (ML). ML tasks also can be fitted in the schema
described above, as pre-processing of the data is required in many applications to then apply
the corresponding operations to train ML models. Since the data models of relational algebra
and ML tend to be different (relations and tensors), this creates an impedance mismatch
[22]. It is worth to say that several of the needed functionalities for ML applications, and
in particular, for tensor manipulation can be performed in languages such as SQL. But it is
not reasonable to force ML practitioners to adapt to already high-level formalisms python,
Matlab or R and migrate all their pipeline to a relational database. Because of this, the
database theory community is looking for some way to integrate these two [12]. To do this,
what we need is a common data model for relations and tensors and also a language capable
of expressing relational algebra and ML operations. Although the latter has received some
proposals and wide acceptance, there is an interest in redesigning the way in which tensors are
used in deep learning applications, due to problems [18, 32, 33] with the current abstractions.

Hutchinson et al. [20, 19] recently proposed a data model and a language that aims to
become the “universal connector” for solving this impedance mismatch. First, the data model
proposed corresponds to the associative tables, which generalize relational tables, tensors,
graphs, and others. Associative tables are two-sorted, consisting of keys and values, such
that a key maps to their corresponding values. Second, the language is called Lara, and
subsumes several known languages for the data models mentioned. Lara is algebra designed
in a minimalistic way by only including three operators; namely, join, union, and extend,
and all of them are parameterized by functions. Roughly, the first one corresponds to some
variation of the join from relational algebra, the second one to the operation of aggregation or
reduction, and the third one to the extension defined by a function as in a flatmap operation.
It has been shown that Lara subsumes all relational algebra operations and is capable of
expressing several interesting linear algebra operations used in graph algorithms [19].

Given that Lara is a unified language for relational and linear algebra, it is relevant to
study its expressive power, both in terms of the query languages traditionally studied in
database theory and some important and common ML operations. We start with the former
and show that Lara is expressive complete with respect to first-order logic with aggregation
(FOAgg), a language that has been deeply studied. This expressive completeness can be seen

1

as a sanity check for Lara. In fact, this language is specifically tailored to handle aggregation
in conjunction with relational algebra operations, and a classical result in database theory
establishes that the latter is expressive complete with respect to first-order logic (FO). Our
result is parameterized by the set of functions allowed to parameterize the extend operator.
For each such a set Ω we allow FOAgg to contain all built-in predicates that encode the
functions in Ω. To understand which ML operators Lara can express, one then needs to
bound the class Ω of extension functions allowed in the language, as these could be very
powerful. We start with a set that can still express several relevant functions. These are
the FO-definable functions that allow to compute arbitrary numerical predicates on values,
but can only compare keys with respect to equality or inequality. This restriction makes the
algebra quite amenable for theoretical exploration. In fact, it is easy to show that this version
of Lara which we call “tame” Lara satisfies a strong genericity property, which means that
the result of every query written in Lara does not depend on the database, and is also local,
in the sense that queries in the language can only see up to a fixed-radius neighborhood
from its free variables; cf., [25]. The first property implies that this tame version of Lara
cannot express operations as matrix convolution, and the second one that it cannot express
inherently recursive queries, such as matrix inverse. Both operations are very relevant for ML
applications; e.g., matrix convolution is routinely applied in dimension-reduction tasks, while
matrix inverse is used for learning the matrix of coefficient values in linear regression. We
also study the expressiveness of a sort of “mini language”, which is the Einstein summation
notation. This notation has multiple applications in ML, as it generalizes operations such as
the inner product of vectors, matrix trace, matrix multiplication, tensor product and tensor
contraction.

We then look more deeply at the case of matrix convolution, and show that this query can
be expressed if we relax the genericity properties of the language by assuming the presence
of a linear order on the domain of keys, which means that we now can compare the domain
keys and values by all sorts of inequalities. This relaxation implies that queries expressible
in the resulting version of Lara are no longer invariant with respect to key-permutations.
This language, however, is much harder to understand in terms of its expressive power. In
particular, it can express non-local queries, and hence we cannot apply locality techniques to
show that the matrix inversion query is not expressible in it. To prove this result, then, one
would have to apply techniques based on the Ehrenfeucht-Fraïssé games that characterize the
expressive power of the logic. Showing results based on such games in the presence of a linear
order, however, is often combinatorially difficult, and currently we do not know whether this
is possible. In turn, it is possible to obtain that matrix inversion is not expressible in a
natural restriction of our language under complexity-theoretic assumptions. This is because
the data complexity of queries expressible in such a restricted language is Logspace, while
matrix inversion is complete for a class that is believed to be a proper extension of the latter.

The main objective of our paper is connecting the study of the expressive power of tensor-
based query languages, in general, and of Lara, in particular, with traditional database
theory concepts and the arsenal of techniques that have been developed in this area to
study the expressiveness of query languages. We also aim at identifying potential lines for
future research that appear in connection with this problem. Our work is close in spirit to
the recent study of Matlang [6, 15], a matrix-manipulation language based on elementary
linear algebra operations. It is shown that this language is contained in the three-variable

2

fragment of relational algebra with summation and, thus, it is local. This implies that the
core of Matlang cannot check for the presence of a four-clique in a graph (represented as
a Boolean matrix), as this query requires at least four variables to be expressed, and neither
it can express the non-local matrix inversion query. We show that Matlang is strictly
contained in the tame version of Lara mentioned above, and thus some of our results can
be seen as generalizations of the ones for Matlang.

3

Outline and Main Contributions

Chapter 1: We introduce the context of ML and databases and the study of expressiveness.
For that we present the standard operations in ML and databases, numerous systems
arranged in families, relational and array languages, our study object, Lara, and a
brief introduction to the study of expressiveness presenting related work.

Chapter 2: We formally introduce associative tables and the language Lara by presenting
its syntax and semantics. We then present the base version of FO, to then expand it
to be two-sorted and be able to deal with aggregation, which we call FOAgg.

Chapter 3: We show that “tame” Lara is equally expressive to FOAgg when both languages
are restricted to the same functions that parameterize the extend operator. As a corol-
lary, when these functions are those FOAgg-definable, the version of Lara becomes
strongly generic and local, as FOAgg is.

Chapter 4: We study the expressiveness of common ML operations in “tame” Lara. These
are the matrix convolution, the matrix inverse, and the Einstein summation notation.

Chapter 5: We allow keys and values by inequalities in Lara and study the expressiveness
of this language, which is more powerful than the “tame” version as it can express
non-local queries as the transitive closure.

Conclusion and Future Work: We draw our conclusions and further lines of research that
could be explored based on the results obtained in this work.

Publications

Preliminary parts of this work were accepted in the 3rd Workshop on Data Management
for End-to-End Machine Learning (DEEM 2019), the 13th Alberto Mendelzon International
Workshop on Foundations of Data Management (AMW 2019) and the 23rd International
Conference on Database Theory (ICDT 2020).

4

Chapter 1

Context

The goal of this chapter is to provide the necessary background to understand why studying
and comprehending the expressiveness of algebras is useful for databases and in our particular
case, machine learning. We start by presenting the current relation of machine learning and
databases, and by that showing the impedance mismatch described in the previous chapter.
We then go deeper into the database families to reach a new kind, which is the polystore
system. After seeing all the practical aspects, we move on to our main interest, which are the
languages that allow us to manage data. Concluding this section we briefly present the Lara
language we are studying. Finally, we introduce the reader to the study of expressiveness
and reference related work that is in the same vein as our own.

1.1 Machine Learning and Databases

Machine Learning (ML) struck the world with new kinds of intense data use applications in
image analysis [23], advertising [35], voice recognition [30, 7], natural language processing
[41, 40] and much more [3, 26, 42, 43]. There are many ML models, but they all share
one truth: you need data to make them work. For industrial applications, the volume of
data is so big that it is natural for databases to appear in the picture. The relationship
between databases and ML is not something new, as data mining tools like clustering and
support vector machines have been part of the database stack for a decade or more. As
things escalate, the industry is pushing to marry statistical analytic frameworks like R and
Python with almost every data processing engines like Cloudera’s Impala or SparkSQL [31].
One approach is to look at the operations done by machine learning tasks and the operations
available in database systems, and think about how we can satisfy both through some unifying
mechanism.

5

1.1.1 Operations in Machine Learning and Relational Algebra

Suppose we have unstructured data that we want to store. The first step is to choose a
structure to save our data in the computer, which is the data model. There are many data
models, which include relations, arrays, graphs, etc. We also need operations to do something
with the stored data. Some common ones could be the multiplication of matrices or the join
of two tables. When a data model has operations associated to them, we say that they
constitute a language.

For the data handling of ML applications, a good choice is to use tensors as the data model
[11]. Let us think of two simple tensors: one-dimensional and two-dimensional ones, more
commonly called, arrays and matrices. Common neural network architectures use arrays and
matrices; the former for the biases of neurons and the latter for the weights. These structures
come with their own operations, which are grouped under the name of matrix operations and
linear algebra operations. The distinction between matrix operations and linear algebra is
blurry, and because of that, we refer to both as the latter, which is more general. Here we
present two of the most commonly used linear algebra operations in ML applications:

• In Deep Learning, a convolution between a matrix A and a kernel K is a sort of 2-
dimensional dot product. It works by adding each element of A to its local neighbors,
weighted by K, the kernel.


1x-1 0x0 0x1 0
1x0 1x1 0x0 0
1x1 1x0 1x1 0
1 1 0 0

 ∗
 -1 0 1

0 1 0
1 0 1

 =

(
2 1
1 1

)

• In mathematics, especially in applications of linear algebra to physics and recently in
ML, the Einstein summation is a notational convention that implies summation over a
set of indexed terms in a formula, thus achieving brevity. Next is the general formula
for the Einstein Summation:

einsum((α, β → γ),A,B)

Here we show two simple applications of this notation. The first serves to calculate the
dot product of vectors and the second to calculate the matrix multiplication:

einsum((i, i→ ∅), a, b) = a · b
einsum((ij, jk → ik),A,B) = A ∗ B

For multidimensional arrays, the Einstein summation has many more applications. In
ML tasks, we are doing operations that are related to the indices of our array. Using
the Einstein summation eases the writing of algorithms and operations.

6

Now lets look at the other side of things. Databases have a long history in computer
science and with further research, old models get obsolte as new models appear all the time.
Regarding inflection in database history, Codd proposed the relational model as the candidate
for "large shared data banks" [8]. Although alternatives to the relational models have been
proposed under the names of NoSQL and NewSQL, the relational model has dominated the
database since 1980. Considering this, we concentrate on relational algebra as it constitutes
the basis of the relational model [38].

1.1.2 A Practical Example

Let us think about a common situation in an industrial ML application pipeline: from various
"factories", you gather and clean data to then train a ML model and finalize by saving the
results.

Fetch Calculate Store

If we analyze this task, we can see that the operations needed to complete it can be classi-
fied in the two algebras previously seen: relational and linear. The white boxes correspond to
relational algebra operations as ρ, σ,Π, ./,∪,×, etc., while the black box contains ML oper-
ations as matrix transpose, matrix multiplication, convolution, tensor contraction, etc. This
tells us something: if we could unify linear and relational algebra models, we could use this to
have a "mono-color" pipeline. This would solve the aforementioned impedance mismatch, as
changing the data model would no longer be necessary. The benefits from this are immediate,
as changing from one language to another is a cost not only for the computer, but also for
the user. Discovering ways to execute computation among this segmented pipeline and also
finding an optimal execution plan is challenging given semantic differences between disparate
languages, so another benefit from unifying this pipeline would be to discover optimizations
for the whole process.

1.2 Database Families

A database is a collection of data, generally stored and accessed from a computer. The
database management system (DBMS) is the software that interacts with end users, appli-
cations, and the database itself to do all operations on the data. The functionality provided
by a DBMS can vary enormously. Codd proposed the following functions and services a
fully-fledged general purpose DBMS should provide [8]: data storage, retrieval and update,
user accessible catalog or data dictionary describing the metadata, support for transactions
and concurrency, ease of recovering the database should it become damaged, support for au-
thorization of access and update of data, access support from remote locations and enforcing

7

constraints to ensure data in the database abides by certain rules.

Most database management systems include their own application programming interface
(API) that allows the user to interact with their engine without going through the user
interface of the DBMS. Interact how? Writing queries. A query is a request for data or infor-
mation from a database. Query languages are computer languages used to make queries in
databases. The query languages implement what we referred as the API. API’s as being only
an interface, can be implemented in various ways, which yields us various query languages.
The core part of the DBMS interacting between the database and the application interface
is sometimes referred to as the database engine, which is the underlying software component
that a DBMS uses to create, read, update and delete (CRUD) data from a database. The
total sum of the database, the DBMS and the query languages or APIs can be referred to
as the database system. A database model determines the logical structure of a database and
fundamentally determines in which manner data can be stored, organized and manipulated.
This is very similar to what we referred as the data model, but in this case we refer to
databases.

Computer scientists may classify database systems according to the database models that
they support. Database systems span several families, as the relational, array, graph and file
systems [20]. Before continuing, we must make a distinction between a logical and physical
representation. Users relate to data logically by name, however, the actual data is physically
located in sectors on a disk. Each family has a unifying logical representation, but particular
systems within a family may implement a distinct physical representation of its family’s
logical representation. Our focus will be the former. Now we give a short review on some of
the database families.

1.2.1 Relational Systems

The logical data representation of relational systems are relations. Computation takes the
form of relational algebra, invoking methods such as selection, projection, Cartesian product,
union, etc. PostgreSQL, Myria, and many other systems are members of the relational family,
each having their own physical data representation following the relation pattern, and each
having their own API supporting relational algebra calls.

1.2.2 Array Systems

The logical data representation of array systems is, as the name suggests, multidimensional
arrays. Computation takes the form of linear algebra operations, invoking methods such as
matrix multiply, reduce, element-wise function applications, and index reference. ScaLA-
PACK is an array system with a physical data representation following the matrix pattern.
After placing data into the physical format required by ScaLAPACK, one can make BLAS
API calls that perform linear algebra optimizations. SciDB is another member of the array
systems family: a column-oriented DBMS designed for multidimensional data management
and analytics common to scientific, geospatial, financial, and industrial applications.

8

1.2.3 Graph Systems

The logical data representation of graph systems can be relations or arrays. Many graph
systems like AllegroGraph or Neo4J have physical data formats following the graph pattern,
some in the case of adjacency lists, others as incidence matrices, etc. Graph databases
are part of the NoSQL databases created to address the limitations of the existing relational
databases. While the graph model explicitly lays out the dependencies between nodes of data,
the relational model and other NoSQL database models link the data by implicit connections.
The graph systems support APIs of vertex and edge processing with their APIs. They also
commonly support sending messages through the nodes of a graph. For a survey on graph
database systems see [2].

1.2.4 Polystore Systems

Many of the natural algorithms a family has can also be implemented in the other families.
Of course, computations appearing concise and natural in one family may require gymnas-
tics in another. Said another way, each family is similar in expressiveness. Computation
efficiency, on the other hand, depends heavily on choice of family and even particular sys-
tems. MapReduce systems execute best for computations that truly fit the pattern of a map
and reduce, such as counting words. Other systems tend to execute problems that don not fit
the map-reduce pattern faster, such as array systems for matrix inversion and convolution.
All-to-all shortest paths may execute best on graph systems, though many relational and
array systems are strong contenders.

Therefore, there is motivation to use a variety of system families for execution, not because
any one family can express computations that the others cannot, but because we gain perfor-
mance by leveraging systems from different families for computations they perform best. We
call such a hybrid, federated system a polystore system. A polystore system is any DBMS
that is built on top of multiple, heterogeneous, integrated engines. The motto of polystore
systems is simple: "Use the right system for the right job." Many tasks can be decomposed
into a set of jobs that execute most efficiently when run on different systems.

Here we give a brief polystore terminology review:

• Island: An abstraction of database engines having a similar data model and query
language.

• Shim: A query transformation operation written in one language, but intended for
a separate Island. Handles the intended operation on the target system in terms of
another language.

• Cast: A data transformation operation from one data model to another.

BigDAWG is an open source project from researchers within the Intel Science and Tech-
nology Center for Big Data and is a reference implementation of a polystore database. The
current release includes support for 3 database engines: PostgreSQL, SciDB and Accumulo.
For more information about federated systems and polystores, look at this short article by

9

Stonebreaker [39].

1.3 Languages of Relations and Arrays

To operate the DBMS, we have the languages. When we said that the expressiveness of the
families described was similar, we were actually saying that the expressiveness of the query
languages that implements the API of a database family are similar. As mentioned in the
first section, data scientists mostly choose between using arrays to represent their data, or
using the relational data model and use relations. For that the scope of this section considers
only languages from the relational or array family. Here we give a brief overview of the
representing languages of each family.

1.3.1 Relational Languages

Structured Query Language (SQL) is a programming language used to communicate with
data stored in a relational database management system or RDBMS. SQL syntax is similar
to the English language, which makes it relatively easy to write, read, and interpret. SQL
offers two main advantages: first, it introduces the concept of accessing many records with
one single command, and second, it eliminates the need to specify how to reach a record.
SQL was one of the first commercial languages for Codd’s relational model. Despite not
entirely adhering to the relational model as described by Codd, it became the most widely
used database language. There are many classes of SQL. For example, SQLite is a relational
database management system that contains a minimal set of SQL commands. A distinction
should be made between alternatives to SQL as a language, and alternatives to the relational
model itself.

Next are proposed relational alternatives to the SQL language:

• Datalog: this language has two advantages over SQL: it has cleaner semantics, which
facilitates program understanding and maintenance, and it is more expressive, in par-
ticular for recursive queries.

• IBM Business System 12: one of the first fully relational database management systems,
introduced in 1982.

There are more, but SQL remains being the dominant till this day.

1.3.2 Array Languages

In computer science, array programming refers to solutions which allow the application of
operations to an entire set of values at once. Modern programming languages that support ar-
ray programming (also known as vector or multidimensional languages) have been engineered
specifically to generalize operations on scalars to apply transparently to vectors, matrices,

10

and higher-dimensional arrays. These include Fortran 90, MATLAB, Analytica, Octave, R,
Julia, Wolfram Language, and the NumPy extension to Python. Array programming prim-
itives concisely express broad ideas about data manipulation. The level of concision can be
dramatic in certain cases: it is not uncommon to find array programming language one-liners
that require more than a couple of pages of SQL code. Providing database support for ma-
trices and multidimensional arrays has been a long-standing research topic [34], originally
geared towards applications in scientific data management, and more recently motivated by
machine learning over big data [4, 36, 27].

1.4 Lara

Polystores connect back-end systems with front-end languages through a unifying narrow
API, using each system where it performs best. With all that has been said, we want a
query language that can implement all the algorithms in all the families API’s. Discovering
ways to execute computation among multiple available systems, let alone discovering an
optimal execution plan, is challenging given semantic differences between disparate families
of systems. A key step to building a polystore is to devise a common data representation
which facilitates translation between the languages and systems composing it: revealing joint
optimization opportunities, promoting more efficient data transfer, and reducing the semantic
gap that programmers face when writing code across families. So, which language should we
choose? The answer: No choice necessary: Use Lara. In short, Lara proposes the following
scheme:

• Write algorithms in any/all algebras.
• Translate to/from Lara common algebra.
• Use any/all execution engines.

It is conjectured that translating computation through Lara leads to better performance,
gained from running parts of algorithms on different systems. The common abstraction of
Lara enables multi-system optimizations difficult to capture otherwise. Lara underlies and
unifies algebras representing the families above in order to facilitate translation between
systems, for which is a candidate for the proposed BigDAWG polystore system. In particular,
Lara unifies relational and array algebras.

1.5 The Study of Expressiveness

In logic and computer science, the expressive power (also called expressiveness or expressiv-
ity) of a logic, language or algebra is the breadth of ideas that can be represented in such
abstraction. It is proposed that the expressiveness has two common meanings [14]: The
theoretical expressivity, which is the measure of what ideas can be expressed without regard
to how the ideas are expressed, and the practical expressivity, which is the measure of how
readily ideas can be expressed. The former sense dominates in areas of mathematics and

11

logic that deal with the formal description of languages and their meaning, such as formal
language theory, mathematical logic and process algebra, so it is the one that attains to us.
The more expressive a language is, the greater the variety and quantity of ideas it can be
used to represent. For example, take a language that has natural numbers and only the sum.
Is there an expression for the square of a number x? The answer is negative, as expressing
a square with only sum give us an expression that depends on the number x, or said in the
other way, there is no fixed formula for calculating the square of x. Instead, if we include the
multiplication operator, the square of a number x is easily expressible as x × x. If we label
the names of these languages as A and B respectively, we say that the expressive power of
B is greater than the one of A. More over, as we can express everything of A in B, we say
that B captures the expressive power of A.

1.5.1 Descriptive Complexity

Descriptive complexity is a branch of computational complexity theory and of finite model
theory that characterizes complexity classes by the type of logic needed to express the lan-
guages in them. In the beginning, there were two measures of computational complexity: time
and space. From an engineering standpoint, these were very natural measures, quantifying
the amount of physical resources needed to perform a computation. From a mathematical
viewpoint, time and space were somewhat less satisfying, since neither appeared to be tied
to the inherent mathematical complexity of the computational problem.

In 1974, Ronald Fagin changed this. Fagin’s theorem is the oldest result of descriptive
complexity theory. It states that the set of all expressible properties in existential second-
order logic is exactly the complexity class NP. The connection between complexity and the
logic of finite structures allows results to be transferred from one area to the other, enabling
new proof methods [21]. The queries, when restricted to finite structures, correspond to
the computational problems of finite model theory [24]. Using first-order languages, this
approach demonstrated that almost all measures of complexity can be explained in logic.
Descriptive complexity has a myriad of applications to database theory. Many questions
about the expressibility of query languages and the efficiency of their evaluation have been
resolved using it.

1.5.2 First-order Logic

Mathematical logic seeks to formalize the process of mathematical reasoning and turn this
process itself into a subject of mathematical inquiry. First-order logic is very successful at this
purpose. Many natural mathematical theories can be expressed as first-order theories. These
include set theory, fundamental to the foundations of mathematics. Godel’s completeness
theorem guarantees that the consequences of these theories can be effectively obtained.

In descriptive complexity, FO is a complexity class of structures that can be recognized by
formulas of first-order logic, and also equals the complexity class AC0. Restricting predicates
to be from a set X yields a smaller class FO[X]. For instance, FO[<] is the set of star-free

12

languages. It turns out that first-order logic is lacking in expressive power: it cannot express
certain queries, as queries involving transitive closure. However, adding expressive power
must be done with care: it must still remain possible to evaluate queries with reasonable
efficiency, which is not the case, for second-order logic.

1.5.3 Relational Algebra

The relational algebra used by the relational model directly inherits from first-order logic as
Edgar Codd used the latter to formulate operations in the former. For instance, one of the
primitive relational operators, the Cartesian Product can be written in logic like this:

X × Y = {(x, y) ‖ x ∈ X ∧ y ∈ Y }

The other four operators were also formulated using FO. There are other more complex
operators based on the five primitive operators, they also use FO.

In a relational database, the information is described by a number of relations. An answer
to a question is represented by a new relation, that can be calculated from the relations of
the data base, using the relational algebra. Codd’s theorem states that relational algebra
and the domain-independent relational calculus queries, two well-known foundational query
languages for the relational model, are precisely equivalent in expressive power. That is, a
database query can be formulated in one language if and only if it can be expressed in the
other. Codd’s theorem is notable since it establishes the equivalence of two syntactically quite
dissimilar languages: relational algebra is a variable-free language, while relational calculus is
a logical language with variables and quantification. Query languages that are equivalent in
expressive power to relational algebra were called relationally complete by Codd. Relational
completeness clearly does not imply that any interesting database query can be expressed
in relationally complete languages. Well-known examples of inexpressible queries include
simple aggregations (counting tuples, or summing up values occurring in tuples, which are
operations expressible in SQL but not in relational algebra, and computing the transitive
closure of a graph given its adjacency matrix relation. Nevertheless, relational completeness
constitutes an important yardstick by which the expressive power of query languages can be
compared.

1.5.4 SQL

Libkin studies the expressive power of SQL [24]. We note that SQL is based on relational
algebra, but they are not the same. Libkin states that the SQL langugage can not express
reachability queries. An example of this is computing the transitive closure of a graph. Before
formal proofs, it was a folk result that first-order logic, relational algebra and calculus, and
SQL could not express recursive queries such as reachability, and for this SQL3 introduced a
recursion operator. But Libkin points out that SQL has more expresiveness that relational
algebra and calculus, as this language can express queries than compare the cardinalities of

13

relations. He says that relational algebra is distinct from SQL because the latter possess
aggregate functions, grouping and arithmetic. In the first section of his paper he does a
survey of work related to the expressive power of SQL, which ends in a proof given here [17].
In the second section, he gives a new proof of why SQL cannot express the transitive closure.
It follows roughly like this:

• He presents relational algebra with aggregates. This consists of relational algebra op-
erations: permutation, boolean operations, cartesian product, projection and selection,
arithmetic operations: numerical selection and function application, and aggregation
and grouping operations.

• He then introduces the concept of locality of queries. He says that the general idea is
that a query can only look at a small portion of its input, and by small we mean a
neighborhood of a fixed radius.

• He introduces a logic Lagg into which he translates Algaggr.
• Then he translates Lagg into LC, which is a logic that contains infinite conjunction and

disjunction, but does not have aggregation.
• Finally he shows that LC is not local, finishing the proof.

For the complete and original proof, refer to the paper [24].

1.5.5 Matlang

Matlang [5] is a language for matrices based in common matrix operations and linear
algebra that serves as "an analog for matrices of the relational algebra for relations". Quoting
the paper where it first appeared: "Indeed, given their popularity, we believe the expressive
power of matrix sublanguages also deserves to be understood in its own right".

The five operations at disposal are the one-vector; turning a vector in a diagonal ma-
trix; matrix multiplication; matrix transposition; and pointwise function application. This
seemingly simple language is capable of expressing the minimum element of some vector v
and the Google matrix of any directed graph G, having its adjacency matrix. It is also
proven that the expressive power of Matlang is bounded by the one of relational algebra
with aggregations (only sumation) and also is subsumed by aggregate logic with only three
nonnumerical variables and thus, Matlang can express all queries from graph databases to
binary relations expressible in first-order logic with three variables. This also means that
asking if a graph contains a four-clique is not expressible, as this demands the use of at least
four nonnumerical variables.

Matlang is then extended with and operation for inverting matrices and named Mat-
lang + inv, which increases its expressive power. A prove of this is that the transitive
closure of binary relations can be expressed. That this can not be expressed without inver-
sion, follows from the locality of relational algebra with aggregation [24]. One final extension
is made adding an operation that can return the eigenvectors and eigenvalues of a matrix,
which is called Matlang + eigen. This version of Matlang can express the inversion. An
open question is posed: are there boolean queries about matrices, or generic queries about

14

graphs, expressible in Matlang + eigen but not in Matlang + inv?

15

Chapter 2

Lara and FOAgg

Here we give a formal introduction to the study object, Lara, and the logic we use as a
yardstick, first order logic with aggregation (FOAgg).
For this we express the basic notions of the relational model such as schema, sort and relation.
Then, we present the data model of Lara, the associative table, and the operations in the
language, namely, join, union, and extend. Finally we present the syntax and semantics of
first order logic and from there we expand it to deal with aggregation.
For integers m ≤ n, we write [m,n] for {m, . . . , n} and [n] for {1, . . . , n}. If v̄ = (v1, . . . , vn)
is a tuple of elements, we write v̄[i] for vi. We denote multisets as {{a, b, . . . }}.

2.1 Basic Notions

First, we need a universe from where the elements that will populate our database come.
Let that universe be U . Next, we will need two things to compose a relation, which are a
relation name (A,B,C, . . .) and a set of attributes names of that relation, i.e., the name of
each column of the relation (ID, employee, salary, etc.). Formally speaking, we assume two
sets: a set of names, Names, and a set of attributes, Attributes. These sets are infinite, and
although in finite model theory we deal with finite sets, most database systems do not have
problems with the number of names available, so it is safe to assume this. Each relation name
is associated with a finite set of attributes. We model this by means of a function sort from
Names to Attributes, that assigns such a set of attributes to a relation name. Let Pfin(X) be
the finite power set of a set X. Then sort : Names→ Pfin(Attributes). If R is a relation name
and A a finite set of attribute names, we write R[A] when sort(R) = A. For example, we
write R[city, name, country] when the attributes associated with relation name R are city,
name, and country. A relational schema is a finite set σ = {R1, . . . , Rn} of relation names.
A tuple of sort A is a function t : A→ U |A|. Finally, a database D over schema σ is a mapping
that assigns a finite set RD of tuples of sort A to each relation symbol R[A] ∈ σ.

16

2.2 Lara: Linear Algebra and Relational Algebra

We expand upon the definition of relations to make them two-sorted. This means that now a
relation name is associated with two different sets of attributes names. We assume two set of
attribute names: K and V . A two-sorted relational schema is a finite collection σ of two-sorted
relation symbols. We say that the first sort consists of key-attributes and the second one of
value-attributes. So in this context, sort : Names→ Pfin(K)×Pfin(V). Each relation symbol
R ∈ σ is then associated with a pair (K̄, V̄), where K̄ and V̄ are (possibly empty) tuples of
different key- and value- attributes, respectively. We write R[K̄, V̄] to denote that (K̄, V̄) is
the sort of R. We do not distinguish between K̄, resp., V̄ , and the set of attributes mentioned
in it. There are two countably infinite sets of objects over which databases are populated: A
domain of keys, which interpret key-attributes and is denoted Keys, and a domain of values,
which interpret value-attributes and is denoted Values. A tuple of sort (K̄, V̄) is a function
t : K̄ ∪ V̄ → Keys ∪ Values such that t(A) ∈ Keys if A ∈ K̄ and t(A) ∈ Values if A ∈ V̄ . A
database D over schema σ is a mapping that assigns with each relation symbol R[K̄, V̄] ∈ σ
a finite set RD of tuples of sort (K̄, V̄). We often see D as a set of facts, i.e., as the set of
expressions R(t) such that t ∈ RD. For ease of presentation, we write R(k̄, v̄) ∈ D if R(t) ∈ D
for some tuple t with t(K̄) = k̄ and t(V̄) = v̄ (where k̄ ∈ Keys|K̄| and v̄ ∈ Values|V̄ |).

2.2.1 Data model

For a database D to be a Lara database we need D to satisfy an extra restriction: Key
attributes define a key constraint over the corresponding relation symbols. That is,

R(k̄, v̄), R(k̄, v̄′) ∈ D =⇒ v̄ = v̄′,

for each R[K̄, V̄] ∈ σ, k̄ ∈ Keys|K̄|, and v̄, v̄′ ∈ Values|V̄ |. Relations of the form RD are called
associative tables [20].

Employee PhD Salary Hobby
Ringo Philosophy 2000 Tennis
Jhon Linguistics 1500 Guitar
Paul Biology 2350 Bonsai

An Associative Table.

Yet, we call associative table to any set of tuples A of the same sort (K̄, V̄) such that
v̄ = v̄′ for each (k̄, v̄), (k̄, v̄′) ∈ A. In such a case, A is of sort (K̄, V̄). Notice that for a tuple
(k̄, v̄) in A, we can safely denote v̄ = A(k̄). From this perspective, we can see an associative
table as a function.

17

2.2.2 Syntax

First we present the grammar of the language.

e := T

| T1 ./⊕ T2

| T1 ./⊗ T2

| extfT

Only three expressions are available in the Lara language, which are the join, union and
ext. The first is parameterized by a binary function, as can be the sum of two numbers or
the division of them. The second is parameterized by an aggregate operator which we define
next. The final one is parameterized by an user-defined function which we will see, can be
very powerful.

An aggregate operator over domain U is a family ⊕ = {⊕0,⊕1, . . . ,⊕ω} of functions,
where each ⊕k takes a multiset of k elements from U and returns a single element in U . If
u is a collection of k elements in U , we write ⊕(u) for ⊕k(u). We only deal with aggregate
operators that in their binary form, i.e. when there is an aggregation between two elements,
the aggregate operator is associative, commutative and has an identity element. This is a
standard restriction which encompasses most aggregate operators used in practical query
languages; e.g., SUM, AVG, MIN, MAX, and COUNT.

The syntax of Lara is parameterized by a set of extension functions. This is a collection
Ω of user-defined functions f that map each tuple t of sort (K̄, V̄) to a finite associative table
of sort (K̄ ′, V̄ ′), for K̄ ∩ K̄ ′ = ∅ and V̄ ∩ V̄ ′ = ∅. We say that f is of sort (K̄, V̄) 7→ (K̄ ′, V̄ ′).
From the definition of the extension functions we see that they can be used to add new keys
and values to a table, and also can convert rows of a table to a new table. This is the reason
we had to parameterize them.

Now, we inductively define the set of expressions in Lara(Ω) over schema σ as follows.

• Empty associative table. ∅ is an expression of sort (∅, ∅).
• Atomic expressions. If R[K̄, V̄] is in σ, then R is an expression of sort (K̄, V̄).
• Join. If e1 and e2 are expressions of sort (K̄1, V̄1) and (K̄2, V̄2), respectively, and ⊕ is
an binary function over Values, then e1 ./⊕ e2 is an expression of sort (K̄1∪K̄2, V̄1∪ V̄2).

• Union. For e1, e2, and ⊗ is an aggregate operator, it is the case that e1 ./⊗ e2 is an
expression of sort (K̄1 ∩ K̄2, V̄1 ∪ V̄2).

• Extend. For e an expression of sort (K̄, V̄) and f a function in Ω of sort (K̄, V̄) 7→
(K̄ ′, V̄ ′), it is the case that Extf e is an expression of sort (K̄ ∪ K̄ ′, V̄ ′).

We write e[K̄, V̄] to denote that expression e is of sort (K̄, V̄).

Before going through the semantics of Lara, we shall give examples of what these op-
erations do to ease their understanding. We will assume the existence of three associative

18

tables: A, B and T.

Example 2.1 We begin by presenting the join operator. We assume we have multiplication
between two numbers, ×.

i j v
0 0 1
0 1 2

A

./×

j k v
0 0 1
0 1 1

B

=

i j k v
0 0 0 1
0 0 1 1

A ./× B

This is very similar to the join of relational algebra. The resulting table contains the key
and value attributes of both original tables.

Example 2.2 We now present an example of the union operator. We will assume an aggre-
gate operator +, which returns the sum of its arguments.

i j v
0 0 1
0 1 2

A

./+

j k v
0 0 1
0 1 1

B

=

j v
0 3
1 2

A ./+ B

This operation can be seen as a vertical concatenation of tables. It maintains the common
key attributes and has all the value attributes of the original tables.

Example 2.3 The most interesting example is for the extend operator. We will assume the
existence of a function wrdcnt, which counts the words of a given text.

id text
1 “La Lo La Lo”
2 “Some random phrase”

T

id wrd count
1 “La” 2
1 “Lo” 2
2 “Some” 1
2 “random” 1
2 “phrase” 1

extwrdcntT

We see that the operator added a new key value to the original table and changed the
value text to a new one count.

2.2.3 Semantics

We assume that for every aggregate operator ⊕ over domain U there is a neutral value 0⊕ such
that u⊕0⊕ = u, for every u ∈ U . Given an aggregate operator ⊕ and tuples ū = (u1, . . . , un)

19

and v̄ = (v1, . . . , vn) in Valuesn, we define ū⊕ v̄ := (u1⊕v1, . . . , un⊕vn). An important notion
is padding. Let V̄1 and V̄2 be tuples of value-attributes, and v̄ a tuple over Values of sort V̄1.
Then padV̄2⊕ (v̄) is a new tuple v̄′ over Values of sort V̄1 ∪ V̄2 such that for each V ∈ V̄1 ∪ V̄2 we
have that v′(V) = v(V), if V ∈ V̄1, and v′(V) = 0⊕, otherwise.

Consider tuples k̄1 and k̄2 over key-attributes K̄1 and K̄2, respectively. We say that k̄1

and k̄2 are compatible, if k̄1(K) = k̄2(K) for every K ∈ K̄1∩ K̄2. If k̄1 and k̄2 are compatible,
one can define the extended tuple k̄1 ∪ k̄2 over key-attributes K̄1 ∪ K̄2. Also, given a tuple
k̄ of sort K̄, and a set K̄ ′ ⊆ K̄, the restriction k̄↓K̄′ of k̄ to attributes K̄ ′ is the only tuple
of sort K̄ ′ that is compatible with k̄. Another way to see the restriction of a tuple is as a
shorter version of that tuple restricted to the attributes in K̄ ′. Finally, given an aggregate
operator ⊕ (which we also allow to be a binary operator) and a multiset T of elements of
the same type that ⊕ takes, we define Solve⊕(T) as

Solve⊕(T) := {(k̄, v̄) | there exists ū such that (k̄, ū) ∈ T and v̄ =
⊕
{{ū | (k̄, ū) ∈ T}}}.

The intuition behind the name is that it allows us to “solve” conflicts between tuples.
These conflicts arise because key values can only appear once per table.

The evaluation of a Lara(Ω) expression e over schema σ on a Lara database D, denoted
eD, is inductively defined as follows.

• Empty associative table. if e = ∅ then eD := ∅.
• Atomic expressions. If e = R[K̄, V̄], for R ∈ σ, then eD := RD.
• Join. If e[K̄1 ∪ K̄2, V̄1 ∪ V̄2] = e1[K̄1, V̄1] ./⊕ e2[K̄2, V̄2], then

eD := {(k̄1 ∪ k̄2, v̄1 ⊕ v̄2) | k̄1 and k̄2 are compatible tuples such that

v̄1 = padV̄2⊕ (eD1 (k̄1)) and v̄2 = padV̄1⊕ (eD2 (k̄2))}.

• Union. If e[K̄1 ∩ K̄2, V̄1 ∪ V̄2] = e1[K̄1, V̄1] ./⊕ e2[K̄2, V̄2], then

eD := Solve⊕{{(k̄, v̄) | k̄ = k̄1↓K̄1∩K̄2
and v̄ = padV̄2⊕ (eD1 (k̄1)) for some k̄1 ∈ eD1 ,

or k̄ = k̄2↓K̄1∩K̄2
and v̄ = padV̄1⊕ (eD2 (k̄2)) for some k̄2 ∈ eD2 }}.

• Extend. If e[K̄ ∪ K̄ ′, V̄ ′] = Extf e1[K̄, V̄] and f is of sort (K̄, V̄) 7→ (K̄ ′, V̄ ′), then

eD := {(k̄ ∪ k̄′, v̄′) | (k̄, v̄) ∈ eD1 , and (k̄′, v̄′) ∈ f(k̄, v̄)}.

Notice that in this case k̄ ∪ k̄′ always exists as K̄ ∩ K̄ ′ = ∅.

Several useful operators, as described below, can be derived from the previous ones.

• Map operation. An important particular case of Extf occurs when f is of sort (K̄, V̄) 7→
(∅, V̄ ′), i.e., when f does not extend the keys in the associative table but only modifies
the values. Following [20], we write this operation as Mapf .

20

• Aggregation. This corresponds to an aggregation over some of the key-attributes of
an associative table. Consider a Lara expression e1[K̄1, V̄1], an aggregate operator ⊕
over Values, and a K̄ ⊆ K̄1, then e = ./

K̄
⊕ e1 is an expression of sort (K̄, V̄1) such that

eD := Solve⊕{{(k̄, v̄) | k̄ = k̄1↓K̄ and v̄ = eD1 (k̄1)}}. We note that ./

K̄
⊕ e1 is equivalent to

the expression e1 ./⊕ Extf (∅), where f is the function that associates an empty table of
sort (K̄, ∅) with every possible tuple.

• Reduction. The reduction operator, denoted by ¯ ./, is just a syntactic variation of
aggregation defined as ¯ ./

L̄
⊕ e1 ≡ ./

K̄\L̄
⊕ e1.

Next we provide an example that applies several of these operators.

Example 2.4 Consider the schema Seqs[(time, batch, features), (val)], which represents a
typical tensor obtained as the output of a recurrent neural network that processes input se-
quences. The structure stores a set of features obtained when processing input symbols from
a sequence, one symbol at a time. For efficiency the network can simultaneously process a
batch of examples and provide a single tensor as output.

Assume that, in order to make a prediction one wants to first obtain, for every example,
the maximum value of every feature over the time steps, and then apply a softmax function.
One can specify all this process in Lara as follows.

Max = ¯ ./

(time)
max(·) Seqs (2.1)

Exp = Mapexp(·)Max (2.2)

SumExp = ¯ ./

(features)
sum(·) Exp (2.3)

Softmax = Exp ./÷ SumExp (2.4)

Expression (2.1) performs an aggregation over the time attribute to obtain the new tensor
Max[(batch, features), (val)] such that Max(b, f) = maxu=Seqs(t,b,f) u. That is, Max stores the
maximum value over all time steps (for every feature of every example). Expression (2.2)
applies a point-wise exponential function to obtain the tensor Exp[(batch, features), (val)] such
that Exp(b, f) = exp(Max(b, f)). In expression (2.3) we apply another aggregation to com-
pute the sum of the exponentials of all the (maximum) features. Thus we obtain the tensor
SumExp[(batch), (val)] such that

SumExp(b) =
∑
f

Exp(b, f) =
∑
f

exp(Max(b, f)).

Finally, expression (2.4) applies point-wise division over the tensors Exp[(batch, features), (val)]
and SumExp[(batch), (val)]. This defines a tensor Softmax[(batch, features), (val)] such that

Softmax(b, f) =
Exp(b, f)

SumExp(b)
=

exp(Max(b, f))∑
f ′ exp(Max(b, f ′))

.

Thus, we effectively compute the softmax of the vector of maximum features over time for
every example in the batch.

It is easy to see that for each Lara expression e and Lara database D, the result e(D)
is always an associative table. Moreover, although the elements in the evaluation e(D) of an

21

expression e over D are not necessarily in D (due to the applications of the operator Solve⊕
and the extension functions in Ω), all Lara expressions are safe, i.e., |eD| is finite.

Proposition 2.1 Let e be a Lara(Ω) expression. Then eD is a finite associative table, for
every Lara database D.

2.3 First Order Logic

A vocabulary σ is a collection of constant symbols (c0, . . .), relation symbols (R0, . . .) and
function symbols (f0, . . .). Each relation and function symbol has an associated arity. A
structure or model

A = {A, {cAi }, {RAi }, {fAi }}

consists of an universe A along with an interpretation of every symbol of the vocabulary σ.

• each constant symbol ci ∈ σ is interpreted as an element of A, i.e., cAi ∈ A
• each relation symbol Ri ∈ σ of arity k is interpreted as a relation RAi ∈ Ak.
• each constant symbol fi ∈ σ of arity k is interpreted as a function fAi such that
fAi : Ak → A.

For example, if σ has constant symbols 0, 1, a binary relation symbol <, and two bi-
nary function symbols × and +, then one possible structure for σ is the natural field
N = {N, 0N, 1N, <N,+N,×N}. Naturally, 0N, 1N, <N,+N,×N, have their expected inter-
pretations, so when this is clear we will omit the superscript leaving our structure simply as
N = {N, 0, 1, <,+,×}.

2.3.1 Syntax

We assume a countable infinite set of variables (x, y, z, . . .). We inductively define the terms
and formulae of FO as follows:

• Each variable x is a term.
• Each constant symbol c is a term.
• If t1, . . . , tk are terms and f is a k-ary function symbol, then f(t1, . . . , tk) is a term.
• If t1 and t2 are terms, then t1 = t2 is a formula.
• If t1 . . . , tk are terms and R is a k-ary relation symbol, then R(t1, . . . , tk) is a formula.
• If ϕ1, ϕ2 are formulae, then ϕ1 ∨ ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ1 are formulae.
• If ϕ is a formula and x a variable, then ∃xϕ and ∀xϕ are formulae.

We also introduce the concept of free variables of a term or formula as follows:

• The only free variable of term x is x.
• Constant terms c do not have free variables.

22

• The free variables of the formula t1 = t2 are the free variables of t1 and t2.
• The free variables of R(t1, . . . , tk) or f(t1, . . . , tk) are the free variables of t1, . . . , tk.
• The free variables of a negated formula are the same of the non-negated one.
• The free variables of ϕ1 ∨ ϕ2 and ϕ1 ∨ ϕ2 are the free variables of ϕ1 and ϕ2.
• The free variables of ∃xϕ and ∀xϕ are the free variables of ϕ except x.

Variables that are not free are called bound. If x̄ is the tuple of all the free variables of ϕ,
we write ϕ(x̄).

2.3.2 Semantics

Given a model A, we inductively define for each term t with free variables (x1, . . . , xn) the
value tA(ā), where ā ∈ An, and for each formula ϕ(x1, . . . , xn), the notion of A |= ϕ(ā),
which means that the formula ϕ(ā) is true in A.

• If t is a constant symbol c, then the value of t in A is tA.
• If t is a variable xi, then the value of tA(ā) is ai.
• If t is f(x1 . . . , xk), then the value of tA(ā) is fA(tA1 (ā), . . . , tAk (ā)).
• If ϕ is t1 = t2, then A |= ϕ(ā) if and only if tA1 (ā) equals tA2 (ā).
• If ϕ is R(x1, . . . , xk), then A |= ϕ(ā) if and only if (tA1 , . . . , t

A
k) ∈ RA.

• A |= ¬ϕ(ā) if and only if ϕ(ā) is false in A.
• A |= ϕ1 ∨ ϕ2 if and only if A |= ϕ1(ā) or A |= ϕ2(ā).
• A |= ϕ1 ∧ ϕ2 if and only if A |= ϕ1(ā) and A |= ϕ2(ā).
• If ψ(x̄) is ∃yϕ(y, x̄), A |= ψ(ā) if and only if A |= ϕ(a′, ā) for some a′ ∈ A.
• If ψ(x̄) is ∀yϕ(y, x̄), A |= ψ(ā) if and only if A |= ϕ(a′, ā) for all a′ ∈ A.

2.4 First Order Logic with Aggregation

We build upon the first order logic definition a two-sorted version with aggregation. We
thus assume the existence of two disjoint and countably infinite sets of key-variables and
value-variables. The former are denoted x, y, z, . . . and the latter i, j, k, In order to cope
with the demands of the extension functions used by Lara, we allow the language to be
parameterized by a collection Ψ of user-defined relations R of some sort (K̄, V̄). For each R ∈
Ψ we blur the distinction between the symbol R and its interpretation over Keys|K̄|×Values|V̄ |.

2.4.1 Syntax

The language contains terms of two sorts.

• Key-terms: Composed exclusively by the key-variables x, y, z

23

• Value-terms: Composed by the constants of the form 0⊕, for each aggregate operator
⊕, the value-variables i, j, . . . , and the aggregation terms defined next. Let τ(x̄, ȳ, ī, j̄)
be a value-term mentioning only key-variables among those in (x̄, ȳ) and value-variables
among those in (̄i, j̄), and φ(x̄, ȳ, ī, j̄) a formula whose free key- and value-variables are
those in (x̄, ȳ) and (̄i, j̄), respectively (i.e., the variables that do not appear under the
scope of a quantifier). Then for each aggregate operator ⊕ we have that

τ ′(x̄, ī) := Agg⊕ȳ, j̄
(
τ(x̄, ȳ, ī, j̄), φ(x̄, ȳ, ī, j̄)

)
(2.5)

is a value-term whose free variables are those in x̄ and ī.

Let Ψ be a set of relations R as defined above. The set of formulas in the language
FOAgg(Ψ) over schema σ is inductively defined as follows:

• Atoms ⊥, x = y, and ι = κ are formulas, for x, y key-variables and ι, κ value-terms.
• If R[K̄, V̄] ∈ σ ∪Ψ, then R(x̄, ῑ) is a formula, where x̄ is a tuple of key-variables of the

same arity as K̄ and ῑ is a tuple of value-terms of the same arity as V̄ .
• If φ, ψ are formulas, then (¬φ), (φ ∨ ψ), (φ ∧ ψ), ∃xφ, and ∃iφ are formulas, where x

and i are key- and value-variables, respectively.

Before getting into the semantics, we present a example which illustrates what this exten-
sion can achieve.

Example 2.5 Lets say we have a ternary FO relation U whose tuples are (n, s, g), where
n stands for the name of a student, s for a subject, and g for their grade in that subject.
Suppose we want to have the average grade of each student. This is given by the following
FOAgg formula ϕ(n, a):(

∃s∃g U(n, s, g)
)
∧ (a = AggAVG(s, g)

(
g, U(n, s, g)

)
)

2.4.2 Semantics

We now define the semantics of FOAgg(Ψ). Let D be a Lara database and η an assignment
that interprets each key-variable x as an element η(x) ∈ Keys and value-variable i as an
element η(i) ∈ Values. If τ(x̄, ī) is a value-term only mentioning variables in (x̄, ī), we write
τD(η(x̄, ī)) for the interpretation of τ over D when variables are interpreted according to η.
Also, if φ(x̄, ī) is a formula of the logic whose free key- and value-variables are those in (x̄, ī),
we write D |= φ(η(x̄, ī)) if D satisfies φ when x̄, ī is interpreted according to η, and φD for
the set of tuples η(x̄, ī) such that D |= φ(η(x̄, ī)) for some assignment η..

The notion of satisfaction is inherited from the semantics of two-sorted FO. The notion
of interpretation, on the other hand, requires explanation for the case of value-terms. Let η
be an assignment as defined above. Constants 0⊕ are interpreted as themselves and value-
variables are interpreted over Values according to η. Consider now an aggregate term of
the form (2.5). Let D be a Lara database and assume that η(x̄) = k̄, for k̄ ∈ Keys|x̄|,
and η(̄i) = v̄, for v̄ ∈ Values|̄i|. Let (k̄′1, v̄

′
1), (k̄′2, v̄

′
2), . . . , be an enumeration of all tuples

24

(k̄′, v̄′) ∈ Keys|ȳ| × Values|j̄| such that D |= φ(k̄, k̄′, v̄, v̄′), i.e. there is an assignment η′ that
coincides with η over all variables in (x̄, ī) and satisfies η′(ȳ, j̄) = (k̄′, v̄′). Then

τ ′(η(x̄, ī)) = τ ′(k̄, v̄) :=
⊕
{{τ(k̄, k̄′1, v̄, v̄

′
1), τ(k̄, k̄′2, v̄, v̄

′
2), . . . }} ∈ Values.

Notice that the aggregation of FOAgg in essence does the same that the Solve operator.

25

Chapter 3

Expressive Completeness of Lara with
respect to FOAgg

Having our language and tool defined, we proceed to measure the expressiveness of Lara. In
order to do this we first have to notice that the user-defined functions can be very powerful,
as the counting words example showed. For this, we parameterize Lara by a set of user-
defined functions available to parameterize the extend operator. After this, we proceed to
capture the expressiveness of Lara by the one of FOAgg, which means that every expression
of Laracan be translated to a FOAgg formula and vice versa.

3.1 From Lara to FOAgg

We prove that Lara(Ω) has the same expressive power as a suitable restriction of FOAgg(ΨΩ),
where ΨΩ is a set that contains relations that represent the extension functions in Ω. In order
to achieve this, we have that for every extension function f ∈ Ω of sort (K̄, V̄) 7→ (K̄ ′, V̄ ′),
there is a relation Rf ⊆ Keys|K̄|+|K̄

′| × Values|V̄ |+|V̄
′| in ΨΩ such that for every (k̄, v̄) ∈

Keys|K̄| × Values|V̄ |:
f(k̄, v̄) = {(k̄′, v̄′) | (k̄, k̄′, v̄, v̄′) ∈ Rf}.

We show first that the expressive power of Lara(Ω) is bounded by that of FOAgg(ΨΩ).

Theorem 3.1 For every expression e[K̄, V̄] of Lara(Ω), there is a formula φe(x̄, ī) of
FOAgg(ΨΩ) such that eD = φDe , for every Lara database D.

Proof. By induction on e.

• If e = ∅, then φe = ⊥.
• If e = R[K̄, V̄], for R ∈ σ, then φe(x̄, ī) = R(x̄, ī), where x̄ and ī are tuples of distinct

key- and value-variables of the same arity as K̄ and V̄ , respectively.

26

• Consider the expression e[K̄1 ∪ K̄2, V̄1 ∪ V̄2] = e1[K̄1, V̄1] ./⊕ e2[K̄2, V̄2], and assume
that φe1(x̄1, ī1) and φe2(x̄2, ī2) are the formulas obtained for e1[K̄1, V̄1] and e2[K̄2, V̄2],
respectively, by induction hypothesis. Let us first define

αe(x̄, ī) := ∃x̄1, x̄2∃̄i1, ī2
(
φe1(x̄1, ī1) ∧ φe2(x̄2, ī2) ∧ χK̄1∩K̄2

(x̄, x̄1, x̄2) ∧ µV̄1∪V̄2 (̄i, ī1, ī2)
)
,

assuming that x̄1 and x̄2 share no variables, the same holds for ī1 and ī2, the formula
χK̄1∩K̄2

expresses that x̄ is the result of “joining” x̄1 and x̄2 with respect to positions
that represent same key-attributes K ∈ K̄1 ∩ K̄2, and µV̄1∪V̄2 (̄i, ī1, ī2) expresses that ī is
any tuple that satisfies one of two following statements:
– ī = (padV̄2⊕ (̄i1), 0), i.e., ī[|̄i|] = 0, and for every j ∈ [|̄i| − 1] it is the case that

ī[j] = ī1[j], if the jth position of ī represents a value-attribute V in V̄1, and
ī[j] = 0⊕ otherwise; or

– ī = (padV̄1⊕ (̄i2), 1), i.e., ī[|̄i|] = 1, and for every j ∈ [|̄i| − 1] it is the case that
ī[j] = ī2[j], if the jth position of ī represents a value-attribute V in V̄2, and
ī[j] = 0⊕ otherwise.

The tuple ī contains a 0 or a 1 at the end to simply distinguish whether we are padding
ī1 or ī2, respectively. Notice that both 0 and 1 are constants in the language of FOAgg,
as they correspond to the neutral values for the aggregate operations of addition and
multiplication, respectively.
The evaluation of αe on eD1 and eD2 , for D a Lara database, thus contains all tuples
(k̄1 ∪ k̄2, v̄1, 0) and (k̄1 ∪ k̄2, v̄2, 1) such that k̄1 and k̄2 are compatible tuples in eD1 and
eD2 , respectively, and it is the case that v̄1 = padV̄2⊕ (eD1 (k̄1)) and v̄2 = padV̄1⊕ (eD2 (k̄2)). We
then define the formula

φe(x̄, ī) := ∃j̄αe(x̄, j̄) ∧
∧

`∈[|j̄|−1]

ī[`] = Agg⊕j̄ (j̄[`], αe(x̄, j̄)).

Clearly, the evaluation of φe on eD1 and eD2 , for D a Lara database, contains all tuples
(k̄1 ∪ k̄2, v̄1 ⊕ v̄2) such that k̄1 and k̄2 are compatible tuples in eD1 and eD2 , respectively,
and it is the case that v̄1 = padV̄2⊕ (eD1 (k̄1)) and v̄2 = padV̄1⊕ (eD2 (k̄2)).

• Consider the expression e[K̄1 ∩ K̄2, V̄1 ∪ V̄2] = e1[K̄1, V̄1] ./⊕ e2[K̄2, V̄2], and assume
that φe1(x̄1, ī1) and φe2(x̄2, ī2) are the formulas obtained for e1[K̄1, V̄1] and e2[K̄2, V̄2],
respectively, by induction hypothesis. Let us define the formula

α1(x̄, ī) := ∃ȳ∃j̄ φe1(x̄, ȳ, j̄) ∧ i[j′ + 1] = 0∧
`∈[|j̄′|]

i[`] = Agg⊕ȳ, j̄
′ (j̄[`], ∃j̄(φe1(x̄, ȳ, j̄) ∧ j′ = padV2⊕ (j̄))

)
,

where we assume that x̄ is positioned over the attributes representing K̄1 ∩ K̄2 in φe1 .
It is easy to see that when evaluated over eD1 , for D a Lara database, the result of α1

corresponds to the set of tuples (k̄, v̄, 0) such that (k̄, v̄) belongs to the multiset

Solve⊕{{(k̄′, v̄′) | k̄′ = k̄1↓K̄1∩K̄2
and v̄′ = padV2⊕ (eD1 (k̄1)) for some k̄1 ∈ eD1 ,

or k̄′ = k̄2↓K̄1∩K̄2
and v̄′ = padV1⊕ (eD2 (k̄2)) for some k̄2 ∈ eD2 }}.

27

Analogously, we can then define a formula

α2(x̄, ī) := ∃ȳ∃j̄ φe2(x̄, ȳ, j̄) ∧ i[j′ + 1] = 1∧
`∈[|j̄′|]

i[`] = Agg⊕ȳ, j̄
′ (j̄[`], ∃j̄(φe2(x̄, ȳ, j̄) ∧ j′ = padV1⊕ (j̄))

)
,

with a similar interpretation over eD2 (notice, however, that tuples in the interpretation
of α2 are of the form (k̄, v̄, 1)).
Finally, we define

φe(x̄, ī) := ∃j̄
(
α1(x̄, j̄) ∨ α2(x̄, j̄)

)
∧

∧
`∈[|j̄|−1]

ī[`] = Agg⊕j̄
(
j̄[`], α1(x̄, j̄) ∨ α2(x̄, j̄)

)
.

• Consider the expression e[K̄ ∪ K̄ ′, V̄ ′] = Extf e1[K̄, V̄], where f is of sort (K̄, V̄) 7→
(K̄ ′, V̄ ′), and assume that φe1(x̄1, ī1) is the formula obtained for e1[K̄1, V̄1] by induction
hypothesis. Then

φe(x̄1, x̄, ī) := ∃̄i1
(
φe1(x̄1, ī1) ∧ Rf (x̄1, x̄, ī1, ī)

)
.

This finishes the proof of the theorem.

3.2 From FOAgg to Lara

We now prove the converse, which is a that all FOAgg formulas have a translation to a
Lara expression. To do this, however, we need the following two restrictions on FOAgg

formulas, which ensure that the semantics of the formulas considered matches that of Lara.
In particular, we need to ensure that the evaluation of FOAgg formulas is safe and that they
only output associative tables.

• Safety. Formulas of FOAgg(ΨΩ) are not necessarily safe, i.e., their evaluation can have
infinitely many tuples (think, e.g., of the formula i = j, for i, j value-variables, or
Rf (x̄, x̄

′, ī, ī′), for Rf ∈ ΨΩ). While safety issues relating to the expressive completeness
of relational algebra with respect to first order logic are often resolved by relativizing
all operations to the active domain of databases (i.e., the set of elements mentioned
in relations in databases), such a restriction only makes sense for keys in our context,
but not for values. In fact, several useful formulas compute a new value for a variable
based on some aggregation terms over precomputed data (see, e.g., the translations of
the join and union operator of Lara into FOAgg provided in the proof of Theorem 3.1).
To overcome this issue we develop a suitable syntactic restriction of the logic that can
only express safe queries. This is achieved by “guarding” the application of value-term
equalities, relations encoding extension functions, and Boolean connectives as follows.
– We only allow equality of value-terms to appear in formulas of the form

φ(x̄, x̄′, ī, ī′) ∧ j = τ(x̄, ī),

28

where j is a value-variable that does not necessarily appear in ī and τ is an
arbitrary value-term whose value only depends on (x̄, ī). This formula computes
the value of the aggregated term τ over the precomputed evaluation of φ, and then
output it as the value of j. In the same vein, atomic formulas of the form R(x̄, ῑ)
must satisfy that every element in ῑ is a value-variable.

– Relations Rf ∈ ΨΩ can only appear in formulas of the form

φ(x̄, ȳ, ī, j̄) ∧Rf (x̄, x̄
′, ī, ī′),

i.e., we only allow to compute the set f(x̄, ī) for specific precomputed values of
(x̄, ī).

– Also, negation is only allowed in the restricted form φ(x̄, ī)∧¬ψ(x̄, ī) and disjunc-
tion in the form φ(x̄, ī) ∨ ψ(x̄, ī), i.e., when formulas have exactly the same free
variables. Although we did not use the negation in the translation from Lara to
FOAgg, we have to take this restriction in order to translate all formulas from this
fragment of FOAgg to Lara. The reason we did not use negation, was because
this is implicitly encoded in the extension functions.

We denote the resulting language as FOsafe
Agg(ΨΩ). These restrictions are meaningful, as

the translation from Lara(Ω) to FOAgg(ΩΨ) given in the proof of Theorem 3.1 always
builds a formula in FOsafe

Agg(ΨΩ).
• Key constraints. We also need a restriction on the semantics of FOsafe

Agg(ΨΩ) formulas
that ensures that the evaluation of any such formula on a Lara database is an asso-
ciative table. For doing this, we assume that every formula φ of FOsafe

Agg(ΨΩ) is given in
conjunction with an aggregate operator ⊕ over Values. We denote this as op(φ) = ⊕.
The operator ⊕ is used to “solve” the key violations introduced by the evaluation of
φ. In particular, then, we are interested in capturing the semantics of Solve⊕(φD) over
every Lara database D. This is the typical key restriction of databases, where we
allow a particular set of keys to only appear once per relation. What we are doing here
is recovering this restriction using ⊕ as an aggregate operator when some keys appear
more than once in a relation. For a formula φ of FOAgg and its operator op(φ), we say
that Solve⊕(φ) is the formula with the key restriction applied.

In addition, we need one natural assumption about the extension functions that Lara
can use. In particular, we need these functions to be able to express traditional relational
algebra operations that are not included in the core of Lara; namely, copying attributes,
selecting rows based on (in)equality, and projecting over value-attributes (the projection over
key-attributes, in turn, can be expressed with the union operator). Formally, we assume that
Ω contains the following families of extension functions.

• copyK̄,K̄′ and copyV̄ ,V̄ ′ , for K̄, K̄ ′ tuples of key-attributes of the same arity and V̄ , V̄ ′

tuples of value-attributes of the same arity. Function copyK̄,K̄′ takes as input a tuple
t = (k̄, v̄) of sort (K̄1, V̄), where K̄ ⊆ K̄1 and K̄ ′ ∩ K̄1 = ∅, and produces a tuple
t′ = (k̄, k̄′, v̄) of sort (K̄1, K̄

′, V̄) such that t′(K̄ ′) = t(K̄), i.e., copyK̄,K̄′ copies the value
of attributes K̄ in the new attributes K̄ ′. Analogously, we define the function copyV̄ ,V̄ ′ .

• addV,0⊕ , for V an attribute-value and ⊕ an aggregate operator. Function addV,0⊕ takes
as input a tuple t = (k̄, v̄′) of sort (K̄, V̄ ′), where V 6∈ V̄ ′, and produces a tuple
t′ = (k̄, v̄′, 0⊕) of sort (K̄, V̄ ′, V), i.e., addV,0⊕ adds a new value-attribute V that always
takes value 0⊕.

29

• eqK̄,K̄′ and eqV̄ ,V̄ ′ , for K̄, K̄ ′ tuples of key-attributes of the same arity and V̄ , V̄ ′ tuples of
value-attributes of the same arity. The function eqK̄,K̄′ takes as input a tuple t = (k̄, v̄)
of sort (K̄1, V̄), where K̄, K̄ ′ ⊆ K̄1, and produces as output the tuple t′ = (k̄, v̄) of
sort (K̄1, V̄), if t(K̄) = t(K̄ ′), and the empty associative table otherwise. Hence, this
function acts as a filter over an associative table of sort (K̄1, V̄), extending only those
tuples t such that t(K̄) = t(K̄ ′). Analogously, we define the function eqV̄ ,V̄ ′ .

• In the same vein, extension functions neqK̄,K̄′ and neqV̄ ,V̄ ′ , for K̄, K̄ ′ tuples of key-
attributes of the same arity and V̄ , V̄ ′ tuples of value-attributes of the same arity.
These are defined exactly as eqK̄,K̄′ and eqV̄ ,V̄ ′ , only that we now extend only those
tuples t such that t(K̄) 6= t(K̄ ′) and t(V̄) 6= t(V̄ ′), respectively.

• The projection πV̄ , for V̄ a tuple of value-attributes, takes as input a tuple (k̄, v̄′) of sort
(K̄, V̄ ′), where V̄ ⊆ V̄ ′, and outputs the tuple (k̄, v̄) of sort (K̄, V̄) such that v̄ = v̄′↓V̄ .

Finally we need a lemma to aid our results.

Lemma 3.2 For every formula α(x̄, ī) with op(α) = ⊕α and value-term λ(x̄, ī) of FOsafe
Agg(ΨΩ),

there is an expression eα,λ[K̄, V̄ , V1] of Lara(Ω) such that for every Lara database D it holds
that (k̄, v̄, v1) ∈ eDα,λ iff (k̄, v̄) ∈ Solve⊕α(α(D)) and λ(k̄, v̄) = v1.

Proof. We prove this by induction on λ.

• Consider the base case when λ = `, for some variable ` ∈ ī. Then eα,λ[K̄, V̄ , V1] :=
copyV,V1eα,⊕α [K̄, V̄], where V is the value-attribute corresponding to variable ` in V̄
and V1 is a fresh value-attribute.

• Consider now the base case when λ = 0⊕. Then eα,λ[K̄, V̄ , V1] := addV1,0⊕αeα,⊕α [K̄, V̄],
where V1 is a value-attribute not in V̄ .

• For the induction hypothesis, assume that

λ(x̄, ī) = Agg⊕x̄
′, ī′
(
λ′(x̄, x̄′, ī, ī′), α′(x̄, x̄′, ī, ī′)

)
,

for a formula α′ and a value-term λ′ of FOsafe
Agg(ΨΩ). In addition, assume that

eα′,λ′ [K̄, K̄
′, V̄ , V̄ ′, V1]

is the formula that is obtained for α′ and λ′ by induction hypothesis. Then

eα,λ[K̄, V̄ , V1] := π⊕
K̄
πV̄1
(

eα′,λ′ [K̄, K̄
′, V̄ , V̄ ′, V1]

)
./ eα[K̄, V̄],

where ./ does not need to specify which aggregate operator we are using.

We now establish our result.

Theorem 3.3 Let us assume that Ω contains all extension functions specified above. For
every formula φ(x̄, ī) of FOsafe

Agg(ΨΩ) with op(φ) = ⊕ there is a Lara(Ω) expression eφ,⊕[K̄, V̄]
such that eDφ,⊕ = φD, for each Lara database D.

30

Proof. When f is one of the distinguished extension functions f defined above, we abuse
notation and write simply f instead of Extf . We first define several useful operations and
expressions.

• The projection π⊕
K̄

e over keys with respect to aggregate operator ⊕, defined as ¯ ./

K̄
⊕ e.

Notice that this removes key-, but not value-attributes from e, i.e., if e is of sort [K̄ ′, V̄]
then π⊕

K̄
e is of sort [K̄, V̄].

• The rename operator ρK̄→K̄′ e as πK̄ (copyK̄,K̄′ e), where π has no superscript ⊕ as no
aggregation is necessary in this case. This operation simply renames the key-attributes
K̄ to a fresh set of key-attributes K̄ ′. Analogously, we define ρV̄→V̄ ′ e.

• The active domain expression eActDom, which takes as input a Lara database D and
returns all elements k ∈ Keys that appear in some fact of D. It is defined as follows.
First choose a key attribute not present in any table of D; say it is Z. For each
R[K̄, V̄] ∈ σ we define an expression RKeys := π∅R, which removes all attribute-values
in V̄ from R. For each K ∈ K̄ we then define RKeys

K := πK R
Keys as the set of keys that

appear in the position of attribute K in R[K̄, V̄] (no need to specify superscript ⊕ on π
in this case). Finally, we define eRActDom := ./K∈K̄ ρK→ZR

Keys
K and eActDom := ./R∈σ eRActDom.

We now prove the theorem by induction on a formula φ of FOAgg.

• If φ = ⊥ then eφ,⊕ = ∅ for every aggregate operator ⊕.
• If φ = (x = y), for x, y key-variables, then eφ,⊕[K,K ′] := eqK,K′

(
eActDom[K] ./ ρK→K′eActDom[K]

)
for every aggregate operator ⊕.

• Consider now φ = R(x̄, ī), for R ∈ σ. We assume all variables in x̄ and ī, respectively, to
be pairwise distinct, as repetition of variables can always be simulated with equalities.
Then eφ,⊕[K̄, V̄] := R[K̄, V̄].

• Assume that op(φ) = ⊕ and that φ = φ′(x̄′, ī′) ∧ ¬φ′′(x̄′, ī′), for formulas φ′, φ′′ of
FOsafe

Agg(ΨΩ) such that op(φ′) = ⊕′ and op(φ′′) = ⊕′′, respectively. Let eφ′,⊕′ [K̄
′, V̄ ′]

and eφ′′,⊕′′ [K̄
′, V̄ ′] be the expressions obtained for (φ′,⊕′) and (φ′′,⊕′′), respectively, by

induction hypothesis. Then

eφ,⊕[K̄, V̄] := Solve⊕(ρK̄′→K̄ ρV̄ ′→V̄ πV̄ ′ neqV̄ ′,V̄ ′′
(
eφ′,⊕′ [K̄

′, V̄ ′] ./ ρV̄ ′→V̄ ′′(eφ′′,⊕′′ [K̄
′, V̄ ′])

)
).

We leave the join ./ without subscript ⊕, as no aggregation is needed.
• Assume now that op(φ) = ⊕ and that φ = φ′(x̄′, ī′) ∧ φ′′(x̄′′, ī′′), for formulas φ′, φ′′ of

FOsafe
Agg(ΨΩ) such that op(φ′) = ⊕′ and op(φ′′) = ⊕′′, respectively. Let eφ′,⊕′ [K̄

′, V̄ ′] and
eφ′′,⊕′′ [K̄

′′, V̄ ′′] be the expressions obtained for (φ′,⊕′) and (φ′′,⊕′′), respectively, by
induction hypothesis. Then

eφ,⊕[K̄, V̄] := Solve⊕(ρK̄′∪K̄′′→K̄ ρV̄ ′∪V̄ ′′→V̄ πV̄ ∗ eqV̄ ′∩V ′′,V̄ ∗ α),

where α is defined as

eφ′,⊕′ [K̄
′, V̄ ′] ./ ρV̄ ′∩V̄ ′′→V̄ ∗(eφ′′,⊕′′ [K̄

′′, V̄ ′′]).

As before we leave the join ./ without subscript ⊕, as no aggregation is needed.

31

• Assume that op(φ) = ⊕ and that φ = φ′(x̄, ī) ∧ k = τ(x̄, ī), for a formula φ′ and a
value-term τ of FOsafe

Agg(ΨΩ) such that op(φ′) = ⊕′ and k a value-variable not necessarily
present in ī. We only consider the case when k is not in ī. The other case is similar.
We now show how to construct eφ,⊕ for φ = φ′(x̄, ī)∧k = τ(x̄, ī). Assume eφ′,⊕′ [K̄, V̄] is
the expression obtained for (φ′,⊕′) by induction hypothesis, and eφ′,τ [K̄, V̄ , V1] is the
expression constructed for φ′ and τ , as described above. Then

eφ,⊕[K̄, V̄ , V1] := Solve⊕(πV̄ eqV̄ ,V̄ ′
(
eφ′,⊕′ [K̄, V̄] ./ ρV̄→V̄ ′(eφ′,τ)[K̄, V̄ , V1]

)
),

where there is no need to specify the aggregate operator on ./.
• The cases φ = ∃xφ′(x, x̄, ī) and φ = ∃iφ′(x̄, ī, i), when op(φ) = ⊕, can be translated as
π⊕K eφ′,⊕′ [K, K̄, V̄] and πV eφ′,⊕′ [K̄, V̄ , V], respectively, assuming that op(φ′) = ⊕′ and
eφ′,⊕′ is the expression obtained for (φ′,⊕′) by induction hypothesis.

This finishes the proof of the theorem.

Although this result characterizes the expressive power of Lara as the one of FOAgg, the
proof is heavily dependant on the extension functions allowed. As these are user-defined, the
proof does not shed light on the real expressive power of Lara, which is still dependant on
the election of these functions.

32

Chapter 4

Expressiveness of Lara in terms of ML
Operators

In the previous chapter we showed that Lara and FOAgg have the same expressive power
when the user-defined functions allowed to parameterize the extend operator are encoded via
built-ins in the logic. Taking restrictions on the set Ω of functions allows us to completely
capture the expressivity of Lara in terms of FOAgg. FOAgg has very useful properties that
we use to prove results about the expressiveness of ML operators in Lara.

4.1 Tame Lara

We assume from now on that Values = Q. Since extension functions in Ω can a priori be
arbitrary, to understand what Lara can express we first need to specify which classes of
functions are allowed in Ω. In rough terms, this is determined by the operations that one
can perform when comparing keys and values, respectively. We explain this below.

• Extensions of two-sorted logics with aggregate operators over a numerical sort N often
permit to perform arbitrary numerical comparisons over N (in our case N = Values =
Q). It has been noted that this extends the expressive power of the language, while
at the same time preserving some properties of the logic that allow to carry out an
analysis of its expressiveness based on well-established techniques (see, e.g., [25]).

• In some cases in which the expressive power of the language needs to be further ex-
tended, one can also define a linear order on the non-numerical sort (which in our case
is the set Keys) and then perform suitable arithmetic comparisons in terms of such a
linear order. A well-known application of this technique is in the area of descriptive
complexity [21].

In this section we consider only the first possibility only. That is, we allow comparing
elements of Values = Q in terms of arbitrary numerical relations. Elements of Keys, in turn,
can only be compared with respect to equality. This yields a logic that is amenable for
theoretical exploration – in particular, in terms of its expressive power – and that at the

33

same time is able to express many extension functions of practical interest (e.g., several of
the functions used in examples in [19, 20]).

We design a simple logic FO(=,All) for expressing extension functions. Intuitively, the
name of this logic states that it can only compare keys with respect to equality but it can
compare values in terms of arbitrary numerical predicates. The formulas in the logic are
standard FO formulas where the only atomic expressions allowed are of the following form:

• x = y, for x, y key-variables;
• P (i1, . . . , ik), for P ⊆ Qk a numerical relation of arity k and i1, . . . , ik value-variables or

constants of the form 0⊕.

The semantics of this logic is standard. In particular, an assignment η from value-variables
to Q satisfies a formula of the form P (i1, . . . , ik), for P ⊆ Qk, whenever η(i1, . . . , ik) ∈ P .

Let φ(x̄, ȳ, ī, j̄) be a formula of FO(=,All). For a tuple t = (k̄, k̄′, v̄, v̄′) ∈ Keys|k̄|+|k̄
′| ×

Values|v̄|+|v̄
′| we abuse terminology and say that φ(k̄, k̄′, v̄, v̄′) holds if Dt |= φ(k̄, k̄′, v̄, v̄′),

where Dt is the database composed exclusively by tuple t. In addition, an extension function
f of sort (K̄, V̄) 7→ (K̄ ′, V̄ ′) is definable in FO(=,All), if there is a formula φf (x̄, ȳ, ī, j̄) of
FO(=,All), for |x̄| = |K̄|, |ȳ| = |K̄ ′|, |̄i| = |V̄ |, and |j̄| = |V̄ ′|, such that for every tuple (k̄, v̄)
of sort (K̄, V̄) it is the case

f(k̄, v̄) = {(k̄′, v̄′) | φ(k̄, k̄′, v̄, v̄′) holds}.

This gives rise to the definition of the following class of extension functions:

Ω(=,All) = {f | f is an extension function that is definable in FO(=,All)}.

Recall that extension functions only produce finite associative tables by definition, and hence
only some formulas in FO(=,All) define extension functions.

The extension functions copyK̄,K̄′ , copyV̄ ,V̄ ′ , addV,0⊕ , eqK̄,K̄′ , eqV̄ ,V̄ ′ , neqK̄,K̄′ , neqV̄ ,V̄ ′ , and
πV̄ , as defined in the previous section, are in Ω(=,All). Next we provide more examples.

Example 4.1 We use i+j = k and ij = k as a shorthand notation for the ternary numerical
predicates of addition and multiplication, respectively. Consider first a function f that takes a
tuple t of sort (K1, K2, V) and computes a tuple t′ of sort (K ′1, K

′
2, V

′) such that t(K1, K2) =
t′(K ′1, K

′
2) and t′(V ′) = 1 − t(V). Then f is definable in FO(=,All) as φf (x, y, x′, y′, i, j) :=(

x = x′ ∧ y = y′ ∧ i + j = 1
)
. This function can be used, e.g., to interchange 0s and 1s in

a Boolean matrix.

Consider now a function g that takes a tuple t of sort (K,V1, V2) and computes a tuple t′ of
sort (K ′, V ′) such that t(K) = t′(K ′) and t′(V) is the average between t(V1) and t(V2). Then
g is definable in FO(=,All) as φg(x, y, i1, i2, j) :=

(
x = y ∧ ∃i (i1 + i2 = i ∧ 2j = i)

)
.

As an immediate corollary to Theorem 3.1 we obtain the following result, which formalizes
the fact that – in the case when Values = Q – for translating Lara(Ω(=,All)) expressions it is
not necessary to extend the expressive power of FOAgg with the relations in ΨΩ(=,All)

as long
as one has access to all numerical predicates over Q. Formally, let us denote by FOAgg(All)

34

the extension of FOAgg with all formulas of the form P (ι1, . . . , ιk), for P ⊆ Qk and ι1, . . . , ιk
value-terms, with the expected semantics. Then one can prove the following result.

Corollary 4.1 For every expression e[K̄, V̄] of Lara(Ω(=,All)) there is a formula φe(x̄, ī) of
FOAgg(All) such that eD = φDe , for every Lara database D.

Formulas definable in FOAgg(All) satisfy two important properties, namely, genericity and
locality, which allow us to prove that neither convolution of matrices nor matrix inversion
can be defined in the language. From Corollary 4.1 we obtain then that none of these queries
is expressible in Lara(Ω(=,All)). We explain this next.

4.2 Matrix Convolution

Let A be an arbitrary matrix and K a square matrix. For simplicity we assume that K is of
odd size (2n+ 1)× (2n+ 1). The convolution of A and K, denoted by A ∗K, is a matrix of
the same size as A whose entries are defined as

(A ∗K)k` =
2n+1∑
s=1

2n+1∑
t=1

Ak−n+s,`−n+t ·Kst. (4.1)

Notice that k− n+ s and `− n+ t could be invalid indices for matrix A. The standard way
of dealing with this issue, and the one that we use here, is zero padding. This simply assumes
those entries outside A to be 0. In the context of the convolution operator, one usually calls
K a kernel.

We represent A and K over the schema σ = {EntryA[K1, K2, V],EntryK [K1, K2, V]}. As-
sume that Keys = {k1, k2, k3, . . .} and Values = Q. If A is a matrix of values in Q of
dimension m × p, and K is a matrix of values in Q of dimensions (2n + 1) × (2n + 1) with
m, p, n ≥ 1, we represent the pair (A,K) as the Lara database DA,K over σ that contains all
facts EntryA(ki, kj, Aij), for i ∈ [m], j ∈ [p], and all facts EntryK(ki, kj, Kij), for i ∈ [2n + 1],
j ∈ [2n + 1]. The query Convolution over schema σ takes as input a Lara database of the
form DA,K and returns as output an associative table of sort [K1, K2, V] that contains exactly
the tuples (ki, kj, (A ∗K)ij). We can then prove the following result:

Proposition 4.2 Convolution is not expressible in Lara(Ω(=,All)).

The proof is based on a simple genericity property for the language that is not preserved
by convolution. This property intuitively expresses that, when Lara(Ω(=,All)) expressions
are interpreted as expressions over matrices, they are invariant under reordering of rows
and columns of those matrices. More formally, we make use of key-permutations and key-
generic queries. A key-permutation is an injective function π : Keys → Keys. We extend
a key-permutation π to be a function over Keys ∪ Values by letting π be the identity over
Values. A formula φ(x̄, ī) is key-generic if for every Lara database D, key-permutation π,
and assignment ν, we have that D |= φ(ν(x̄, ī)) iff π(D) |= φ(π(ν(x̄, ī)). The following lemma
expresses the self-evident property that formulas in FOAgg(All) are key-generic.

35

EntryA =

K1 K2 V
k1 k1 1
k1 k2 0
...

...
...

k2 k1 0
k2 k2 1
k2 k3 0
...

...
...

k4 k3 0
k4 k4 1

EntryK =

K1 K2 V
k1 k1 1
k1 k2 1
...

...
...

k3 k2 1
k3 k3 1

EntryA′ =

K1 K2 V
k1 k1 1
k1 k2 0
...

...
...

k3 k2 0
k3 k3 1
k3 k4 0
...

...
...

k4 k3 0
k4 k4 1

Figure 4.1: Lara representations for matrices A and K in the proof of Proposition 4.2

Lemma 4.3 Every formula φ(x̄, ī) of FOAgg(All) is key-generic.

With the aid of Lemma 4.3 we can now prove Proposition 4.2, as it is easy to show that
Convolution is not key-generic (even when the kernel K is fixed).

Proof of Proposition 4.2. We show next that Convolution is not expressible in FOAgg(All).
To obtain a contradiction assume that there exists a formula ϕ(x, y, i) in FOAgg(All) such
that for every Lara database DA,K we have that DA,K |= ϕ(ki, kj, v) iff (A ∗K)ij = v. Let
A, K, and A′ be the following matrices

A =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 K =

1 1 1
1 1 1
1 1 1

 A′ =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


The Lara representations for these matrices are depicted in Figure 4.1. Consider now the
key-permutation π such that π(k2) = k3, π(k3) = k2, and π is the identity for every other
value in Keys. It is not difficult to see that π(DA,K) = DA′,K . Now, the convolutions (A ∗K)
and (A′ ∗K) are given by the matrices

(A ∗K) =


2 2 1 0
2 2 1 0
1 1 2 1
0 0 1 1

 (A′ ∗K) =


1 1 0 0
1 2 1 1
0 1 2 2
0 1 2 2


We know that DA,K |= ϕ(k1, k1, 2) (since (A∗K)11 = 2), then, since ϕ is generic, we have that
π(DA,K) |= ϕ(π(k1, k1, 2)). Thus, since π(DA,K) = DA′,K , π(k1) = k1, and π is the identity
over Values, we obtain that DA′,K |= ϕ(k1, k1, 2) which is a contradiction since (A′ ∗K)11 =
1 6= 2. This proves that Convolution is not expressible in FOAgg(All). Hence from Corollary
4.1 we obtain that Lara(ΩAgg) cannot express Convolution.

36

4.3 Matrix inverse

It has been shown by Brijder et al. [6] that matrix inversion is not expressible in Matlang
by applying techniques based on locality. The basic idea is that Matlang is subsumed by
FOAgg(∅) = FOAgg, and the latter logic can only define local properties. Intuitively, this means
that formulas in FOAgg can only distinguish up to a fixed-radius neighborhood from its free
variables (see, e.g., [25] for a formal definition). On the other hand, as shown in [6], if matrix
inversion were expressible in Matlang there would also be a FOAgg formula that defines the
transitive closure of a binary relation (represented by its adjacency Boolean matrix). This is
a contradiction as transitive closure is the prime example of a non-local property. We use the
same kind of techniques to show that matrix inversion is not expressible in Lara(Ω(=,All)).
For this, we use the fact that FOAgg(All) is also local.

We represent Boolean matrices as databases over the schema σ = {Entry[K1, K2, V]}. As-
sume that Keys = N and Values = Q. The Boolean matrixM of dimension n×m, for n,m ≥ 1,
is represented as the Lara database DM over σ that contains all facts Entry(ki, kj, bij), for
i ∈ [n], j ∈ [m], and bij ∈ {0, 1}, such that Mij = bij. Consider the query Inv over schema
σ that takes as input a Lara database of the form DM and returns as output the Lara
database DM−1 , for M−1 the inverse of M . Then:

Proposition 4.4 Lara(Ω(=,All)) cannot express Inv over Boolean matrices. That is, there is
no Lara(Ω(=,All)) expression eInv[K1, K2, V]over σ such that eInv(DM) = Inv(DM), for every
Lara database of the form DM that represents a Boolean matrix M .

Proof of Proposition 4.4. Assume for the sake of contradiction that eInv exists. From The-
orem 3.1 there is a FO+,×

Agg formula φ(x1, x2, i) that expresses Inv over Boolean matrices, i.e.,
eInv(DM) = φ(DM) = DM−1 , for every Lara database of the form DM that represents a
Boolean matrix M . For reasons similar to those observed in [6, Example 12], this implies
that there is an FO+,×

Agg formula α(x1, x2, i) over σ that expresses the transitive closure query
over the class of binary relations represented as Boolean matrices.1 That is, for every Lara
database of the form DM that represents a Boolean matrix M of m×n, it is the case φ(DM)
is the set of tuples (u, v, buv) such that u ∈ [m], v ∈ [n], and buv ∈ {0, 1} satisfies that buv = 1
iff (u, v) belongs to the transitive closure of the binary relation represented by M .

It is well known, on the other hand, that FO+,×
Agg can only express local queries (cf., [25]).

In particular, this implies that there is no FO+,×
Agg formula β(x, y) such that for each finite

binary relation R over N represented as a database DR = {Rel(u, v) | (u, v) ∈ R}, and each
pair (u, v) ∈ N×N, it is the case that β(DR) is the set of pairs (u, v) in the transitive closure
of R. But this is a contradiction, as from α(x, y, i) we can construct a formula β(x, y) of
FO+,×

Agg that satisfies this condition. In fact, we can define β(x, y) as α′(x, y, 1), where α′ is
obtained by

• first replacing each subformula of the form ∃i′ψ(x̄, i′, ī) in α with ψ(x̄, 0, ī) ∨ ψ(x̄, 1, ī),
where 0 is a shorthand for Zero(i′) := ¬∃j(j+i′ 6= j) and 1 for One(i′) := ¬∃j(j · i′ 6= j);
and then

1A Boolean matrix M represents binary relation R iff R = {(u, v) | M(u, v) = 1}.

37

• replacing each atomic formula of the form Entry(x′, y′, 1) with Rel(x′, y′), and each of
the form Entry(x′, y′, 0) with ¬Rel(x′, y′).

This finishes the proof of the proposition.

4.4 Einstein Sum

Einstein summation notation is another popular operator on tensors that generalizes opera-
tions such as the inner product of vectors, matrix trace, and tensor product and contraction.
It is based on implicitly specifying summation over indexes in a formula. For instance, let
A and B be two matrices and consider the expression AijBjk. When viewed as an Einstein
summation, it is interpreted as a tensor T with two indexes (that is, a matrix), such that
Tik =

∑
j Aij ·Bjk, and thus, defines matrix product. In general, every repeated index in the

expression implies a summation over such an index, while indexes that are not repeated are
consider free and thus part of the output.

In modern tensor libraries [28, 29], Einstein summation is implemented as an even more
general function einsum that gives a specific indexing to every input tensor, and specifies
also the indexes expected in the output tensor. For simplicity, we focus on the case when
einsum receives only two input tensors. It also receives a specification of the form (α, β → γ)
such that α and β are the indexing of the input tensors A and B, respectively, and γ ⊆ α∪β
is the indexing of the output. Every index in α ∪ β that is not in γ is summed in the
output. For instance, einsum((ij, jk → ik), A,B) is the multiplication of matrices A and
B. As a more general example, consider tensors A and B of rank 3 and 4 respectively.
Then the expression einsum((ijk, k`js→ `i), A,B) produces a tensor T of rank 2 such that
T`i =

∑
j

∑
k

∑
sAijk · Bk`js. Notice that γ can be the empty set, in which case the output

is a scalar. For example, einsum((i, i→ ∅), a, b) is the inner product of a and b.

LARA can easily express a named version of einsum in which α and β are renamings of
the key attributes of the input tensors. In fact, it can be shown that LARA can express a
renaming operator ρ such that ραA is a tensor with exactly the same data as A but with its
key attributes renamed according to α. This is done via the extend operator and the union
operator. Thus einsum((α, β → γ), A,B) can be expressed simply as

./

γ
+ (ραA ./· ρβB)

.

Proposition 4.5 Lara(Ω(=,All)) can express the general Einstein summation.

Given that we are dealing with named tensors, a special (and more natural) case is when
we use the original attribute names without renaming and, instead of specifying the key
attributes in the output, we specify the attributes δ over which we want to sum. In such a case
we obtain the expression ¯ ./

δ
+ (A on· B), which resembles the named tensor contraction [32, 33].

38

Chapter 5

Adding Built-in Predicates over Keys

We proceed to relax the restriction of only comparing keys and values by equality to arbitrary
comparisons between them. We will see that this increases the expressiveness of Lara to the
point that we can now express recursive queries. This comes at the cost of losing the nice
properties we had, which are strong genericity and locality.

5.1 Convolution in Lara with comparisons

Previously we have seen that there are important linear algebra operations, such as matrix in-
verse and convolution, that Lara(Ω(=,All)) cannot express. The following result, on the other
hand, shows that a clean extension of Lara(Ω(=,All)) can express matrix convolution. This
extension corresponds to the language Lara(Ω(<,All)), i.e., the extension of Lara(Ω(=,All))
in which we assume the existence of a asymmetric linear-order < on Keys and extension
functions are definable in the logic FO(<,All) that extends FO(=,All) by allowing atomic
formulas of the form x < y, for x, y key-variables. Even more, the only numerical predicates
from All we need are + and ×. We denote the resulting logic as Lara(Ω(<,{+,×})).

Proposition 5.1 Convolution is expressible in Lara(Ω(<,{+,×})).

Proof of Proposition 5.1. The important observation is that once we have a linear order
over Keys, we can define a bijection among elements of the two sorts, which allows us to
compare keys with the numerical predicates + and ×. Assume for simplicity that Keys = N
and Values = Q. Consider first the extension function f : (K,K ′, ∅) 7→ (∅, V) defined as the
following FO(<, {+,×}) formula:

φf (x, y, i) := (x < y)→ i = 0 ∧ ¬(x < y)→ i = 1.

Now consider a relation EntryA of sort [K,K ′, V] that represents a square matrix of dimension
n×n. By our definition of f we have that Mapf EntryA has sort [K,K ′, V] and its evaluation
consists of all triples (x, y, i) ∈ [n]3 such that i = 1 if x ≥ y and i = 0 otherwise. Consider

39

now the expression
IndK,V := ./

K
+ Mapf EntryA

that aggregates Mapf EntryA by summing over V by grouping over K. The evaluation of
IndK,V contains all pairs (x, i) ∈ [n] × [n] such that i is the natural number that represents
the position of x in the linear order over Keys. Hence, we have that IndK,V contains all pairs
(x, i) ∈ [n] × [n] such that x is a key, i is a value, and x = i. This simple fact allows us to
express extension functions using arbitrary properties in FO(<, {+,×}) over key- and value-
attributes together, without actually mixing sorts. For example, consider an associative table
R of sort [K,V1] with [n] as set of keys, and assume that we want to construct a new table
R′ of sort [K,V2] such that, for every tuple (x, v) ∈ R, relation R′ contains the tuple (x, j)
with j = 2x + v. We make use of the extension function g : (K,V, V1) 7→ (∅, V2) defined by
the formula φg(x, i, v, j) := (j = 2i+v). Notice that φg only mentions variables of the second
sort. We can construct R′ as

R′ := Mapg(IndK,V ./+ R)

To see that this works, notice first that IndK,V and R has the same set of keys (the set [n]).
Moreover, given that IndK,V and R has no value attribute in common, IndK,V ./+ R is just
performing a natural join. Thus the result of IndK,V ./+ R is a table of sort [K,V, V1] that
contains all tuples (x, i, v) such that (x, i) ∈ IndK,V and (x, v) ∈ R, or equivalently, all tuples
(x, i, v) such that (x, v) ∈ R and x = i. Then with Mapg(IndK,V ./+ R) we generate all tuples
(x, j) such that (x, v) ∈ R, x = i, and (j = 2i + v), or equivalently, all tuples (x, j) such that
(x, v) ∈ R, and (j = 2x+v), which is what we wanted to obtain. Given the above discussion,
we assume in the following that extension functions are defined by expressions over Keys and
Values, and then we can write the above expression simply as

R′ := Map(j=2x+v)R.

To complete the example we need to introduce some additional notions. Let e1[K̄1, V̄1] and
e2[K̄2, V̄2] be expressions such that K̄1 ∩ K̄2 = V̄1 ∩ V̄2 = ∅. The cartesian product is a new
expression e[K̄1, K̄2, V̄1, V̄2] such that for every tuple (k̄1, v̄1) ∈ eD1 and (k̄2, v̄2) ∈ eD2 we have
that (k̄1, k̄2, v̄1, v̄2) ∈ eD for every database D. It is not difficult to prove that the cartesian
product, denoted by × is expressible in Lara. Another operator that we need is the Filter
operator. Given an expression e1[K,V] and a logical expression ϕ(x̄, ȳ), filtering e1 with ϕ,
is a new expression e2 = Filterϕ(e1) that has sort [K,V] and such that for every database D
it holds that (k̄, v̄) is in eD2 if and only if (k̄, v̄) ∈ eD1 and ϕ(k̄, v̄) holds. It is not difficult to
prove that the filter operator is also expressible in Lara. Moreover, by the discussion above,
for expressions in Lara(Ω(<,{+,×})) we can use filter expressions as arbitrary FO(<, {+,×})
formulas over keys and values. Finally, the renaming operator ρα(A) is a simple operator
that just changes the name of attributes of A according to the assignment α. Both, filtering
and renaming can be defined as a special case of Ext.

We now have all the ingredients to express the convolution. We first write the convolution
definition in a more suitable way so we can easily express the sums required with FO(<
, {+,×}) formulas. LetK be a kernel of dimensionsm×m withm an odd number. First define
mid as m−1

2
. Consider now a matrix A of dimension n1 × n2. Now for every (i, j) ∈ [n1]× [n2]

40

one can write the following expression for (A ∗K)ij

(A∗K)ij = sum {{ Ast ·Kkl | s ∈ [n1], t ∈ [n2], k, l ∈ [m] and i−mid ≤ s ≤ i+mid and
j−mid ≤ t ≤ j + mid and k = s− i + mid + 1 and l = t− j + mid + 1 }} (5.1)

Now, in order to implement the above definition we use the following extension functions:

diag(k, `,m) := (k = `)→ m = 1 ∧ ¬(k = `)→ m = 0

neighbors(i, j, s, t,m) := ∃mid
(
2×mid = m− 1 ∧

i−mid ≤ s ∧ s ≤ i + mid ∧ j −mid ≤ t ∧ t ≤ j + mid
)

kernel(i, j, k, `, s, t,m) := ∃mid
(
2×mid = m− 1 ∧

k = s− i + mid + 1 ∧ ` = t− j + mid + 1
)

In what follows and for simplicity we will use lowercase letters for key and value attributes
in associative tables, to facilitate correspondence between attributes and variables in the
extension functions. Let EntryA[(i, j), (v)] and EntryK [(k, `), (u)] be two associative tables
that represents a matrix A and the convolution kernel K, respectively. We first construct an
expression that computes the dimension of the kernel:

M = ./

∅
+ MapdiagEntryK .

By the definition of diag, we have thatM [∅, (m)] has no key attributes and a has single value
attribute m that contains one tuple storing the dimension of K. Now we proceed to make
the cartesian product of EntryA with itself, EntryK and M . For that we need to make a copy
of EntryA with renamed attributes. The cartesian product is

C = EntryA × EntryK × (ρi:s,j:t,v:wEntryA)×M.

This produces an associative table of sort C[(i, j, k, `, s, t), (v, u, w,m)]. We then compute the
following filters over C.

F = Filterkernel(Filterneighbors(C)).

We note that F has sort F [(i, j, k, `, s, t), (v, u, w,m)] (just like C). We also note that for every
(i, j) the tuple (i, j, k, l, s, t) is a key in F if and only if it satisfies the conditions defining the
multiset in Equation (5.1). Thus to compute what we need, there only remains multiplying
and adding, which is done in the following expression

R = ./

ij
+ (Mapv?=w·uF).

Thus R is of sort [(i, j), (v?)] and is such that (i, j, v) is in R if and only if v = (A ∗K)ij.

It is worth remarking that Hutchison et al. [19] showed that for every fixed kernel K, the
query (A∗K) is expressible in Lara. However, the Lara expression they construct depends
on the values of K, and hence their construction does not show that in general convolution
is expressible in Lara. Our construction is stronger, as we show that there exists a fixed
Lara(Ω(<,{+,×})) expression that takes A and K as input and produces (A ∗K) as output.

41

5.2 Can Lara with comparisons express the inverse?

We believe that Lara(Ω(<,{+,×})) cannot express Inv. However, this seems quite challenging
to prove. First, the tool we used for showing that Inv is not expressible in Lara(Ω(=,All),
namely, locality, is no longer valid in this setting. In fact, queries expressible in Lara(Ω(<,{+,×}))
are not necessarily local.

Proposition 5.2 Lara(Ω(<,{+,×})) can express non-local queries.

By the discussion in the proof of Proposition 5.1, we can use arbitrary predicates + and
× over Keys to define extension functions. With this observation we can prove that, given a
relation A[K] that contains all values in [n], one can construct a Lara(Ω(<,{+,×})) expression
that defines a relation BIT[K,V] that contains all pairs (x, i) such that x ∈ [n] and the i-th
bit of the binary expansion of x is 1. With BIT we can mimic the proof of Proposition 8.22
in [25] to show that Lara(Ω(<,{+,×})) can express a non-local query. In particular, we can
express the transitive closure of a “small portion” of an input graph.

Proof of Proposition 5.2. We explain how to use Lara(Ω(<,{+,×})) expressions to mimic the
proof of Proposition 8.22 in [25]. Assume a schema {A[K1, ∅], E[K1, K2, ∅], P [K1, ∅]} and
consider the family F of Lara databases defined as follows. D ∈ F if and only if all the
following holds.

• All keys in ED and PD are also in AD.
• ED is a disjoint union of a chain and zero or more cycles, that is

ED = {(a0
0, a

0
1), . . . , (a0

k0−1, a
0
k0

)} ∪
K⋃

i=1

{(ai
0, a

i
1), . . . , (ai

ki−1, a
i
ki

), (ai
ki
, ai

0)}

with K ≥ 1 and all the aji s different elements in Keys.
• PD contains an initial segment of the chain in ED and may contain some of the cycles

in ED, that is, there exists a K < k0 and a set L ⊆ [`] such that

PD = {(a0
0, a

0
1), . . . , (a0

K−1, a
0
K)} ∪

⋃
j∈L

{(aj0, a
j
1), . . . , (ajkj−1, a

j
ki

), (ai
kj
, aj0)}

• |PD| ≤ log |AD|.
• For every a ∈ PD and b ∈ AD r PD it holds that a < b.

We prove that there exists a Lara(Ω(<,{+,×})) expression e[K1, K2, V1, V2] such that for every
D ∈ F it holds that (a, b) is a key eD if and only if (a, b) is in the transitive closure of ED

restricted to elements in PD.

We will also make use of the following property of FO(<, {+,×}). It is known [25] that
there exists an FO(<, {+,×}) formula BIT(x, y) such that BIT(a, b) holds if and only if the
bth bit in the binary expansion of a is 1. Similarly as in the proof of Proposition 5.1 and by
using BIT(x, y) we can produce an extension function bit : [K1, ∅] 7→ [K2, ∅] such that bit(k)

42

is a table containing all the keys i such that the ith bit of the binary expansion of k is 1. Let
BIT[K1, K2, ∅] be defined by the expression BIT = ExtbitA.

Now assume that PD = {n1, n2, . . . , n`} with ` = |PD|. By the properties of D, we
can assume that n1 is the minimum value in <, and that ni+1 is the successor of ni in <.
Moreover, we also know that ` ≤ log |AD|. All this implies that every set S such that
S ⊆ PD can be represented as an element code(S) ∈ AD as follows. Let IS ⊆ [`] be such that
S = {ni | i ∈ IS}. Then code(S) is the element in AD such that its binary expansion has a 1
exactly at positions IS, and has a 0 in every other position. Thus, to check that an element
x ∈ AD is in a set S ⊆ PD, it is enough to check that BIT(code(S), x) holds or similarly,
that (code(S), x) ∈ BITD.

The above observations allow us to simulate an existential second order quantification over
subsets of P as a (first order) quantification over elements in A as follows. Let ψ := ∃Sϕ be
a second order formula with ϕ an FO formula that can also mention atoms of the form S(x).
We then can rewrite ψ as ψ′ := ∃sϕ′ such that every atom S(x) in ϕ is replaced by BIT(s, x).
It is not difficult to use this property and the special form of E in the family F to construct
a first order formula reach(x, y) of the form ∃s ϕ(x, y, s) over vocabulary {BIT, E} that is
true for a tuple (a, b) if and only if b is reachable from a by following a path in E restricted
to the set P (see Proposition 8.22 in [25]).

Now, from reach(x, y) one can produce a new FO formula reach′(x, y) over {BIT, E,A},
replacing every occurrence of BIT(x, y) by BIT(x, y), and adding a conjunction with A(x) for
every variable x mentioned, ensuring that the resulting formula is a safe formula.

We note that the obtained formula reach′(x, y) is a standard FO formula (over {BIT, E,A}).
Then by Theorem 3.3 we know that there exists a Lara expression e[(K1, K2)] such that
for every database D′ over schema {BIT, E,A} it holds that (x, y) ∈ eD

′ if and only if
D′ |= reach′(x, y). Finally, given that BIT can be defined in Lara(Ω(<,{+,×})) we find that
the transitive closure of E restricted to P can also be defined in Lara(Ω(<,{+,×})).

This implies that one would have to apply techniques more specifically tailored for the
logic, such as Ehrenfeucht-Fraïssé games, to show that Inv is not expressible in Lara(Ω(<,{+,×})).
Unfortunately, it is often combinatorially difficult to apply such techniques in the presence
of built-in predicates, e.g., a linear order, on the domain; cf., [13, 37, 16]. So far, we have not
managed to succeed in this regard.

On the other hand, we can show that Inv is not expressible in a natural restriction of
Lara(Ω(<,{+,×})) under complexity-theoretic assumptions. To start with, Inv is complete
for the complexity class Det, which contains all those problems that are logspace reducible
to computing the determinant of a matrix. It is known that Logspace ⊆ Det, where
Logspace is the class of functions computable in logarithmic space, and this inclusion is
believed to be proper [10].

In turn, most of the aggregate operators used in practical applications, including stan-
dard ones such as SUM, AVG, MIN, MAX, and COUNT, can be computed in Logspace
(see, e.g., [9]). Combining this with well-known results on the complexity of computing re-
lational algebra and arithmetic operations, we obtain that the fragment Larast(Ω(<,{+,×}))

43

of Lara(Ω(<,{+,×})) that only mentions the standard aggregate operators above, and whose
formulas defining extension functions are safe, can be evaluated in Logspace in data com-
plexity, i.e., assuming formulas to be fixed.

Proposition 5.3 Let e[K̄, V̄] be a fixed expression of Larast(Ω(<,{+,×})). There is a Logspace
procedure that takes as input a Lara database D and computes eD.

Proof of Proposition 5.3. We first explain when an extension function of sort (K̄, V̄) 7→
(K̄ ′, V̄ ′) is definable by a safe formula in FO(<, {+,×, }). Recall that f is definable in
FO(<, {+,×, }) when there is a FO formula φ(x̄, x̄′, ī, ī′) that only mentions atomic formulas
of the form x = y and x < y, for x, y key-variables, and i + j = k and ij = k, for i, j, k
value-variables or constants of the form 0⊕, such that for each tuple (k̄, v̄) ∈ A we have that
f(k̄, v̄) is precisely the set of tuples (k̄′, v̄′) such that φ(k̄, v̄, k̄′, v̄′) holds. The safe fragment
of this logic is obtained by restricting all negated formulas to be guarded by x̄ and ī, i.e.,
forcing them to be of the form ¬ψ(x̄, ī), and all formulas of the form x = y, x < y, i + j = k,
and ij = k to have at most one variable that is not guarded by x̄ and ī, i.e., at most one
variable that does not appear in (x̄, ī). It is easy to see that if φ is safe, then it defines an
extension function; this is because for each tuple (k̄, v̄) we have that the set of tuples (k̄′, v̄′)
such that φ(k̄, v̄, k̄′, v̄′) holds is finite.

We now prove the proposition. Since the expression is fixed we only need to show that
each operation used in the expression can be computed in Logspace. The relational algebra
operations of join and union can be computed in Logspace; see, e.g., [1]. Since, in addition,
aggregate operators included in Larast(<; +) can be computed in Logspace, we obtain
that, given associative tables A and B, the results of A ./⊕ B and A ./⊕ B can be computed
in Logspace.

Let us consider now the case of Extf A, for f an extension function of sort (K̄, V̄) 7→
(K̄ ′, V̄ ′) definable in the safe fragment of FO(<, {+,half}). Then f is expressible as a safe
FO formula φ(x̄, x̄′, ī, ī′) that only allow atomic formulas of the form x = y and x < y, for
x, y key-variables, and i+ j = k and half(i) = j, for i, j, k value-variables or constants of the
form 0⊕. We need to show that for each tuple (k̄, v̄) ∈ A we can compute the set of tuples
(k̄′, v̄′) such that φ(k̄, v̄, k̄′, v̄′) holds in Logspace. But this is easy to see, due to the safety
condition and the fact that relational algebra operations and the arithmetic computations of
the form x = y, x < y, i + j = k, and half(i) = j can be computed in Logspace when at
most one of the variables in the expression is not guarded.

Hence, proving Inv to be expressible in the language Larast(Ω(<,{+,×})) would imply the
surprising result that Logspace = Det.

44

Conclusion and Future Work

We believe that the work on query languages for analytics systems that integrate relational
and statistical functionalities provides interesting perspectives for database theory. In this
paper we focused on the Lara language, which has been designed to become the core alge-
braic language for such systems, and carried out a systematic study of its expressive power
in terms of logics and concepts traditionally studied in the database theory literature.

As we have observed, expressing interesting ML operators in Lara requires the addition of
complex features, such as arithmetic predicates on the numerical sort and built-in predicates
on the domain. The presence of such features complicates the study of the expressive power
of the languages, as some known techniques no longer hold, e.g., genericity and locality,
while others become combinatorially difficult to apply, e.g., Ehrenfeucht-Fraïssé games. In
addition, the presence of a built-in linear order might turn the logic capable of characterizing
some parallel complexity classes, and thus inexpressibility results could be as hard to prove
as some longstanding conjectures in complexity theory.

A possible way to overcome these problems might be to not look at languages in their
full generality, but only at extensions of the tame fragment Lara(Ω(=,All)) with some of the
most sophisticated operators. For instance, what if we extend Lara(Ω(=,All)) directly with
an operator that computes Convolution? Is it possible to prove that the resulting language
(Lara(Ω(=,All)) + Convolution) cannot express matrix inverse Inv? Proving that Einstein
summation can be expressed in Lara and even in the key-generic fragment Lara(Ω(=,All))
provides additional evidence in favor of Lara as a good language for tensor-based reasoning.

Another interesting line of work corresponds to identifying which kind of operations need
to be added to Lara in order to be able to express in a natural way recursive operations
such as matrix inverse. One would like to do this in a general yet minimalistic way, as
adding too much recursive expressive power to the language might render it impractical. It
would be useful to start then by identifying the most important recursive operations one
needs to perform on associative tables, and then abstract from them the minimal primitives
that the language needs to possess for expressing such operations. We are also interested in
studying the expressiveness of Lara when strings as a data type are allowed in the language,
as most database systems must rely not only on numerical calculations, but also on string
manipulation.

There is a commendable trend in contemporary database research to leverage, and con-
siderably extend, techniques from database query processing and optimization, to support
large-scale linear algebra computations. In principle, data scientists could then work directly

45

in SQL or related languages. Still, some users will prefer to continue using the matrix sub
languages they are more familiar with. Supporting these languages is also important so that
existing code need not be rewritten. From the perspective of database theory, it then becomes
relevant to understand the expressive power of these languages as well as possible.

Also, we have not covered all standard constructs from linear algebra. For instance, it
may be worthwhile to extend our framework with the operation of putting matrices in upper
triangular form, with the Gram-Schmidt procedure (which is now partly hidden in the eigen
operation), and with the singular value decomposition. When moving to more and more
powerful and complicated languages, however, it becomes less clear at what point we should
simply move all the way to full SQL, or extensions of SQL with recursion.

46

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput.
Surv., 40(1):1:1–1:39, February 2008.

[3] Sercan Ömer Arik, Mike Chrzanowski, Adam Coates, Greg Diamos, Andrew Gibiansky,
Yongguo Kang, Xian Li, John Miller, Jonathan Raiman, Shubho Sengupta, and Mo-
hammad Shoeybi. Deep voice: Real-time neural text-to-speech. CoRR, abs/1702.07825,
2017.

[4] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Evfimievski,
Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick R. Reiss,
Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. Systemml: Declarative ma-
chine learning on spark. Proc. VLDB Endow., 9(13):1425–1436, September 2016.

[5] Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag. On the
expressive power of query languages for matrices. CoRR, abs/1709.08359, 2017.

[6] Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag. On the
expressive power of query languages for matrices. In ICDT, pages 10:1–10:17, 2018.

[7] Mücahit Büyükyılmaz and Ali Çıbıkdiken. Voice gender recognition using deep learning.
12 2016.

[8] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, June 1970.

[9] Mariano P. Consens and Alberto O. Mendelzon. Low complexity aggregation in graphlog
and datalog. Theor. Comput. Sci., 116(1):95–116, 1993.

[10] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information
and Control, 64(1-3):2–21, 1985.

[11] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[12] Serge Abiteboul et al. Research directions for principles of data management (dagstuhl

47

perspectives workshop 16151). Dagstuhl Manifestos, 7(1):1–29, 2018.

[13] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On monadic NP vs. monadic
co-np. Inf. Comput., 120(1):78–92, 1995.

[14] William M. Farmer. Chiron: A multi-paradigm logic. 2007.

[15] Floris Geerts. On the expressive power of linear algebra on graphs. In 22nd International
Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal,
pages 7:1–7:19, 2019.

[16] Martin Grohe and Thomas Schwentick. Locality of order-invariant first-order formulas.
In MFCS, pages 437–445, 1998.

[17] Lauri Hella, Leonid Libkin, Juha Nurmonen, and Limsoon Wong. Logics with aggregate
operators. J. ACM, 48(4):880–907, July 2001.

[18] Stephan Hoyer, Joe Hamman, and xarray developers. xarray development roadmap.
Technical report, 2018. Available at http://xarray.pydata.org/en/stable/roadmap.
html, retrieved on March 2019.

[19] Dylan Hutchison, Bill Howe, and Dan Suciu. Lara: A key-value algebra underlying
arrays and relations. CoRR, abs/1604.03607, 2016.

[20] Dylan Hutchison, Bill Howe, and Dan Suciu. Laradb: A minimalist kernel for linear and
relational algebra computation. In Proceedings of BeyondMR@SIGMOD 2017, pages
2:1–2:10, 2017.

[21] Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer,
1999.

[22] Andreas Kunft, Alexander Alexandrov, Asterios Katsifodimos, and Volker Markl. Bridg-
ing the gap: towards optimization across linear and relational algebra. In Proceedings
of BeyondMR@SIGMOD 2016, page 1, 2016.

[23] Olivier Lezoray, Christophe Charrier, Hubert Cardot, and Sébastien Lefèvre. Machine
learning in image processing - special issue editorial. EURASIP J. Adv. Sig. Proc., 2008,
01 2008.

[24] Leonid Libkin. Expressive power of SQL. Theor. Comput. Sci., 296(3):379–404, 2003.

[25] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learn-
ing. CoRR, abs/1312.5602, 2013.

[27] Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. In-database

48

http://xarray.pydata.org/en/stable/roadmap.html
http://xarray.pydata.org/en/stable/roadmap.html

factorized learning. In AMW, 2017.

[28] Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing, 2006–.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NIPS-W, 2017.

[30] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-Yiin Chang, and Tara N.
Sainath. Deep learning for audio signal processing. CoRR, abs/1905.00078, 2019.

[31] Christopher Ré, Divy Agrawal, Magdalena Balazinska, Michael Cafarella, Michael Jor-
dan, Tim Kraska, and Raghu Ramakrishnan. Machine learning and databases: The
sound of things to come or a cacophony of hype? In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’15, pages 283–284,
New York, NY, USA, 2015. ACM.

[32] Alexander M. Rush. Tensor considered harmful. Technical report, Harvard NLP Blog,
2019. Available at http://nlp.seas.harvard.edu/NamedTensor, retrieved on March
2019.

[33] Alexander M. Rush. Tensor considered harmful pt. 2. Technical report, Harvard NLP
Blog, 2019. Available at http://nlp.seas.harvard.edu/NamedTensor2, retrieved on
March 2019.

[34] Florin Rusu and Yu Cheng. A survey on array storage, query languages, and systems.
CoRR, abs/1302.0103, 2013.

[35] Abdollah Safari, Rachel MacKay Altman, and Thomas M. Loughin. Display advertising:
Estimating conversion probability efficiently. arXiv e-prints, page arXiv:1710.08583, Oct
2017.

[36] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear regression models
over factorized joins. In Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD ’16, pages 3–18, New York, NY, USA, 2016. ACM.

[37] Thomas Schwentick. On winning Ehrenfeucht games and monadic NP. Ann. Pure Appl.
Logic, 79(1):61–92, 1996.

[38] Tomer Shay. Most popular databases in 2018 according to stackoverflow survey. 2018.

[39] Michael Stonebraker. The Case for Polystores, 2015.

[40] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Recurrently controlled recurrent networks.
CoRR, abs/1811.09786, 2018.

[41] Yi Tay, Luu Anh Tuan, Siu Cheung Hui, and Jian Su. Densely connected attention
propagation for reading comprehension. CoRR, abs/1811.04210, 2018.

49

http://nlp.seas.harvard.edu/NamedTensor
http://nlp.seas.harvard.edu/NamedTensor2

[42] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. CoRR, abs/1609.03499, 2016.

[43] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. CoRR,
abs/1603.08511, 2016.

50

	Introduction
	Outline and Main Contributions
	Publications

	Context
	Machine Learning and Databases
	Operations in Machine Learning and Relational Algebra
	A Practical Example

	Database Families
	Relational Systems
	Array Systems
	Graph Systems
	Polystore Systems

	Languages of Relations and Arrays
	Relational Languages
	Array Languages

	Lara
	The Study of Expressiveness
	Descriptive Complexity
	First-order Logic
	Relational Algebra
	SQL
	Matlang

	Lara and FOAgg
	Basic Notions
	Lara: Linear Algebra and Relational Algebra
	Data model
	Syntax
	Semantics

	First Order Logic
	Syntax
	Semantics

	First Order Logic with Aggregation
	Syntax
	Semantics

	Expressive Completeness of Lara with respect to FOAgg
	From Lara to FOAgg
	From FOAgg to Lara

	Expressiveness of Lara in terms of ML Operators
	Tame Lara
	Matrix Convolution
	Matrix inverse
	Einstein Sum

	Adding Built-in Predicates over Keys
	Convolution in Lara with comparisons
	Can Lara with comparisons express the inverse?

	Conclusion and Future Work
	Bibliography

