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Abstract

In traditional works on numerical schemes for solving stochastic differential equations (SDEs), the
globally Lipschitz assumption is often assumed to ensure different types of convergence. In practice,
this is often too strong a condition. Brownian motion driven SDEs used in applications sometimes
have coefficients which are only Lipschitz on compact sets, but the paths of the SDE solutions can be
arbitrarily large. In this paper, we prove convergence in probability and a weak convergence result under
a less restrictive assumption, that is, locally Lipschitz and with no finite time explosion. We prove if a
numerical scheme converges in probability uniformly on any compact time set (UCP) with a certain rate
under a global Lipschitz condition, then the UCP with the same rate holds when a globally Lipschitz
condition is replaced with a locally Lipschitz plus no finite explosion condition. For the Euler scheme,
weak convergence of the error process is also established. The main contribution of this paper is the
proof of

√
n weak convergence of the normalized error process and the limit process is also provided.

We further study the boundedness of the second moments of the weak limit process and its running
supremum under both global Lipschitz and locally Lipschitz conditions.
c⃝ 2019 Elsevier B.V. All rights reserved.

Keywords: Stochastic differential equation; Locally Lipschitz; Convergence in probability; Euler scheme; Normalized
error process; Weak convergence

∗ Corresponding author.
E-mail addresses: pep2117@columbia.edu (P. Protter), lq2141@columbia.edu (L. Qiu),

jsanmart@dim.uchile.cl (J.S. Martin).
1 Supported in part by NSF grants DMS-1612758.
2 Supported by BASAL project AFB170001.

https://doi.org/10.1016/j.spa.2019.07.003
0304-4149/ c⃝ 2019 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2019.07.003
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2019.07.003&domain=pdf
mailto:pep2117@columbia.edu
mailto:lq2141@columbia.edu
mailto:jsanmart@dim.uchile.cl
https://doi.org/10.1016/j.spa.2019.07.003


P. Protter, L. Qiu and J.S. Martin / Stochastic Processes and their Applications 130 (2020) 2296–2311 2297

1. Introduction

In this paper, we consider the numerical solution of a one-dimensional stochastic partial
differential equation (SDE) of the form

d X t = µ(X t )dt + σ (X t )dWt , 0 ≤ t ≤ T, X0 = x0. (1)

Here X t ∈ R for each t , µ, σ : R → R are coefficient functions, and W is a one dimensional
Brownian motion. We assume the initial value x0 ∈ R is nonrandom. For background
information about SDEs, we refer to Chapter 5 of Protter [20], Chapter 9 of Revuz and
Yor [22] and Chapter 5 of Karatzas and Shreve [12]. In applications, one often would like to
solve (1) numerically, as explicit solution is usually not obtainable. This is often done through
Monte Carlo technique which requires heavy computational complexity. Hence in practice,
it is advisable to solve (1) with the Euler scheme, rather than a complicated one. (See the
survey paper of Talay [25] for a discussion of this issue). Our primary objective is to study
uniform convergence in probability and weak convergence of normalized error process of Euler
scheme under local Lipschitz and no finite explosion assumption on (1). Noted that the result
on uniform convergence in probability in this paper is not restricted to the Euler scheme, but
applicable to all numerical schemes satisfying some mild assumptions.

There are vast studies concerning using the Euler scheme to solve Brownian motion driven
SDEs with various convergence criteria. A lot of existing works impose conditions on µ and σ

in (1), namely the globally Lipschitz condition or linear growth condition. We list some of the
works here. For convergence rate of the expectation of functionals, see Talay and Tubaro [27];
for convergence rate of the distribution function, see Bally and Talay [2]; for convergence
rate of the density, see Bally and Talay [3]; for error analysis, see Bally and Talay [1]; for
Euler scheme with irregular coefficients and Hölder continuous coefficients see Yan [28]; for
complete reviews, see Talay [26] and Kloeden and Platen [14]. There are also some works
on numerical scheme solving SDEs driven by semimartingales with jumps. The case of SDEs
driven by discontinuous semimartingales can be found in Kurtz and Protter [18], they studied
weak convergence of the normalized Euler scheme error. The L p estimates of the Euler scheme
error were given by Kohatsu-Higa and Protter [15]. Protter and Talay [21] also studied the Euler
scheme for SDE driven by Lévy processes. Protter and Jacod [9] obtained a celebrated result
about the asymptotic error distributions for the Euler scheme solving SDEs driven by a vector
of semimartingales.

More recent works focused on numerical schemes to solve SDEs with relaxed conditions,
namely the locally Lipschitz condition. Under the locally Lipschitz condition, the Euler scheme
may diverge strongly or weakly for approximating expectations of functionals. This issue was
studied in Hutzenthaler, Jentzen and Kloeden [8]. Convergence in probability for Euler-type
scheme in general still holds, see Hutzenthaler and Jentzen [7] and the citations therein. Strong
convergence of the Euler scheme requires additional assumptions besides the locally Lipschitz
condition, see Higham, Mao and Stuart [6], and Jentzen and Kloeden [11]. However, to our best
knowledge, there is barely work on the limit distribution for error process of Euler scheme with
locally Lipschitz condition. Under C1 and linear growth condition on µ, σ in (1), Kurtz and
Protter [18] obtained limit distribution for normalized error process of Euler scheme. It remains
an open question, whether similar result on error process of Euler scheme is achievable under
more general conditions. In this paper, we answer this question to the positive by providing
a weak convergence result with locally Lipschitz assumption plus no finite explosion and σ

in (1) being bounded away from 0. This paper is not only a mathematical extension but also
has wide applications in practice. A lot of SDEs used in finance or physics in form of (1)
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have coefficients which is not in C1 and linear growth or global Lipschitz, for example, the
constant elasticity model, Scalar stochastic Ginzburg–Landau equation and Stochastic Verhulst
equation, etc. By relaxing from C1 and linear growth to local Lipschitz, we are able to deal
with coefficients that may have super linear growth and their derivatives may have very poor
smoothness or may not even exist.

This paper consists of four sections. In Section 2 of this paper, we prove if a numerical
scheme converges uniformly in probability on compact time interval with a certain rate under
globally Lipschitz condition, then the same result holds when replacing globally Lipschitz to
local Lipschitz and no finite explosion condition. Euler and Milstein schemes are studied as
examples. In Section 3, we prove the normalized error process with normalizing coefficient as
√

n is relatively compact. Furthermore by proving uniqueness of limiting point, we prove the
normalized error process converges weakly. The limit error process is provided in form of SDE.
In Section 4, we study the properties of the limit error process under both global Lipschitz and
locally Lipschitz conditions.

2. Convergence in probability

Under the globally Lipschitz condition, most of the proposed numerical schemes including
the Euler and Milstein schemes have been proved to converge uniformly in probability at a
finite time point. Fortunately, the same result can be extended to the locally Lipschitz case
if one also adds a no finite time explosion condition. To prove this, we need a localization
technique. Let us start with some notation.

We assume (Ω ,F ,P) is a complete probability space endowed with a filtration F = (Ft )t ,
that satisfies the usual hypothesis. We also assume that W is an adapted Brownian Motion
defined in Ω .

Notation 2.1. Given an adapted and right continuous process Z, we denote by

Tm(Z ) = inf{t ≥ 0 : |Z t | > m}.

Also, given a stopping time T, we denote by ZT the stopped process.
On the other hand, we denote by Z∗ the process of its running absolute maximum, that is

Z∗
t = sup0≤s≤t |Zs |.

In what follows, we denote by X = X (x0, µ, σ, W ) the unique solution of the SDE (1),
where the coefficients µ, σ are assumed regular enough to have a unique strong solution (for
example locally Lipschitz).

For every m ≥ 1 consider µ(m) a continuous modification of µ such that µ(m)(x) = µ(x)
for |x | ≤ m, µ(m)(x) = µ(m + 1) for x ≥ m + 1 and µ(m)(x) = µ(−m − 1) for x ≤ −m − 1.
In case the numerical procedure assumes that µ is Ck (or Lipschitz) we interpolate µ(m) on
(−m−1, −m)∪(m, m+1) in such a way that µ(m) is also Ck (respectively Lipschitz). Similarly,
we denote by σ (m) a modification of σ .

Given a numerical procedure φ, we denote by (Xφ,n)n = (Xφ,n(x0, µ, σ, W ))n the associated
sequence of approximations. This approximations could be discrete or continuous. Here n
controls the degree of approximation and typically represents the step size in the procedure.
Note that we use the same Brownian motion for every n. When there is no possible confusion
we remove the dependence on φ in Xφ,n .
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We assume that for each n the approximation Xφ,n is adapted. This numerical procedure is
assumed local in the following sense. Assume that µ = µ̃, σ = σ̃ on the interval [−m, m],
where |x0| < m. Then for all n and for U = Tm(Xφ,n(x0, µ, σ, W )) it holds

(Xφ,n(x0, µ, σ, W ))U = (Xφ,n(x0, µ̃, σ̃ , W ))U

almost surely. In particular Tm(Xφ,n(x0, µ, σ, W )) = Tm(Xφ,n(x0, µ̃, σ̃ , W )) a.s.
This hypothesis is satisfied, for example, by the Euler and Milstein schemes. On the other

hand, if (µ, σ ) and (µ̃, σ̃ ) are regular, the associated solutions satisfy

(X (x0, µ, σ, W ))T = (X (x0, µ̃, σ̃ , W ))T

almost surely for T = Tm(X (x0, µ, σ, W )). Again, we have a.s.

Tm(X (x0, µ, σ, W )) = Tm(X (x0, µ̃, σ̃ , W )).

In what follows a function f : R → R is said to be locally Lipschitz, if it is Lipschitz when
restricted to any compact set of R. We emphasize that f (x) =

√
|x | is not locally Lipschitz on

R, but it is locally Lipschitz on (0, ∞).

Theorem 1. Assume the numerical scheme φ is local and that (Xφ,n(x0, µ, σ, W ))n converges
in probability uniformly on [0, T ], with order α ≥ 0, to the solution X (x0, µ, σ, W ), that is,
for all C > 0

P
(

nα sup
0≤t≤T

⏐⏐⏐Xφ,n
t − X t

⏐⏐⏐ > C
)

→ 0, as n → +∞, (2)

whenever µ, σ are global Lipschitz. Then (2) also holds when global Lipschitz condition is
replaced with locally Lipschitz and no finite time explosion condition

lim
m→∞

P
(
Tm(X (x0, µ, σ, W )) ≤ T

)
= 0. (3)

Proof. We assume that µ, σ are locally Lipschitz. In what follows, to avoid overly burdensome
notation, we denote by

X = X (x0, µ, σ, W ), Xn
= Xφ,n(x0, µ, σ, W ),

Y (m)
= X (x0, µ

(m), σ (m), W ), Y n,(m)
= Xφ,n(x0, µ

(m), σ (m), W ) .

We now fix 0 < C . Without loss of generality we assume that C ≤ 1 and we define

Xn =

{
ω : nα sup

0≤t≤T
|Xn

t − X t | ≤ C
}

, (4)

Yn,(m) =

{
ω : nα sup

0≤t≤T
|Y n,(m)

t − Y (m)
t | ≤ C

}
. (5)

We also consider T = Tm(X ),S = Tm−1(X ). It is clear that XS
= (Y (m))S (actually they are

equal up to time T), since they have continuous paths. The numerical procedure is assumed to
be local, so for m > x0 we have U = Tm(Xn) = Tm(Y n,(m)) and

(Xn)U = (Y n,(m))U .

Consider m large enough such that |x0| < m − 1. Notice that for all n ≥ 1, we have
C/nα < 1. For these values of n, m, we show that a.s.

Yn,(m)

⋂
{S > T } ⊂ Xn .
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Indeed, on the set {S > T } the two processes X, Y (m) agree on [0, T ] a.s. In particular, we have
that sup0≤t≤T |Y (m)

t | = sup0≤t≤T |X t | ≤ m−1 a.s. On the other hand on the set Yn,(m)
⋂

{S > T }

we have a.s.

sup
0≤t≤T

|Y n,(m)
t | ≤ m − 1 +

C
nα

< m .

That is Tm(Y n,(m)) > T a.s. Since φ is local, we deduce that on [0, T ] the processes Xn and
Y n,(m) agree a.s. and therefore on Yn,(m)

⋂
{S > T }

sup
0≤t≤T

|Xn
− X t | = sup

0≤t≤T
|Y n,(m)

− Y (m)
t | ≤

C
nα

holds also a.s., proving the desired inclusion. This shows the inequality

P
(

nα sup
0≤t≤T

|Xn
t − X t | > C

)
≤ P

(
nα sup

0≤t≤T
|Y n,(m)

t − Y (m)
t | > C

)
+ P(Tm−1(X ) ≤ T ) .

Now, given ϵ > 0 the non explosion condition ensures that for large m we have

P(Tm−1(X ) ≤ T ) ≤ ϵ/2.

Fix a large m, then according to the hypothesis of the Theorem, there exists n0 = n0(m, ϵ),
such that for all n ≥ n0

P
(

nα sup
0≤t≤T

|Y n,(m)
t − Y (m)

t | > C
)

≤
ϵ

2
,

giving the result. □

Remark 1. Recall that the hypothesis of no explosion can be checked through the Feller
test for explosions, in terms of the behavior of σ and µ for large values of x . This is a one
dimensional property, and in multiple dimensions one would have to resort to a Khasminskii
type test, which provides sufficient conditions for no explosion (see for example [13,19,23]).
Theorem 1, and its proof, can be extended directly to the multidimensional case.

Taking α = 0 in Theorem 1, we immediately have if a numerical scheme converges in
probability uniformly on compact time interval for SDE with globally Lipschitz coefficients,
then the same convergence also holds with locally Lipschitz coefficients and no finite time
explosion.

We illustrate the application of Theorem 1 through two most widely used numerical
schemes, the Euler scheme and the Milstein scheme. For a discretization of time interval with
size as T

n , let n(t) = [ nt
T ] T

n , the nearest left time grid point for t . For a function g : [0, T ] → R,
define g(n)

t = gt − gn(t). Then the continuous Euler scheme is defined by

X E,n
t = X E,n

n(t) + σ (X E,n
n(t) )W (n)

t + µ(X E,n
n(t) )t (n), X E,n

0 = x0, (6)

and the continuous Milstein scheme is defined by

X M,n
t = X M,n

n(t) + σ (Xn
n(t))W

(n)
t + µ(Xn

n(t))t
(n)

+
1
2
σ (X M,n

n(t) )σ ′(X M,n
n(t) )[(W (n)

t )2
− t (n)]

+
1
2
µ(X M,n

n(t) )µ′(X M,n
n(t) )(t (n))2, X M,n

0 = x0.
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Under the globally Lipschitz condition, it is well known that the continuous Euler and Milstein
schemes converge in probability uniformly on compact time interval with any order between
[0, 1

2 ) and [0, 1), respectively. Interested readers can refer to [24] and [28] for details. Then,
applying Theorem 1 leads to the following corollary.

Corollary 1. If µ, σ are locally Lipschitz, and the solution X of the SDE (1) has no finite
time explosion, then the continuous Euler scheme X E,n and continuous Milstein scheme X M,n ,
converge in probability to the unique solution X. Moreover, for all γ ∈ (0, 1

2 ]

P
(

n
1
2 −γ sup

0≤t≤T

⏐⏐X E,n
− X t

⏐⏐ > C
)

→ 0, as n → +∞,

P
(

n1−γ sup
0≤t≤T

⏐⏐X M,n
− X t

⏐⏐ > C
)

→ 0, as n → +∞.

3. Asymptotic error distribution for the Euler scheme

In this section, we are interested in studying the normalized error processes from the Euler
scheme under a locally Lipschitz condition combined with an assumption of no finite time
explosion. In the previous section, localization techniques as used in the proof of Theorem 1
transfer the problem of convergence in probability under the locally Lipschitz case into the
globally Lipschitz case. The localization technique will be used in this section as well, and we
present Lemma 1 to make future proofs concise when applying this technique.

Lemma 1. Assume that µ and σ are locally Lipschitz and X = X (x0, µ, σ, W ), the
solution to the SDE (1) with coefficients µ, σ , has no finite explosion time. Consider Y (m)

=

X (x0, µ
(m), σ (m), W ) the solution to the SDE (1) with coefficients µ(m), σ (m). If (Xn)n , (Y n,(m))n

are their respective approximations from the continuous Euler scheme, then for all T > 0

lim
m→∞

lim sup
n

P
(

X ̸= Y (m) or Xn
̸= Y n,(m), on [0, T ]

)
= 0.

Proof. Consider as before Tm
= Tm(X ), Un,m

= Tm(Xn). We assume that m is large enough
that |x0| < m. Since SDE (1) has a unique solution and the Euler scheme is local we have{

Tm > T and Un,m > T
}

⊂
{

X = Y (m) and Xn
= Y n,(m), on [0, T ]

}
.

Therefore,

P
(

X ̸= Y (m) or Xn
̸= Y n,(m), on [0, T ]

)
≤ P

(
Tm

≤ T or Un,m
≤ T

)
. (7)

Since X has no finite time explosion, for all ϵ > 0 there exists m > 0 such that

P(Tm
≤ T ) <

1
3
ϵ,

and a fortiori P(Tm−1
≤ T ) < 1

3ϵ. By the uniform convergence in probability of (Xn)n on
[0, T ] (see Corollary 1) there exists n′

= n′(ϵ) such that for all n > n′, we have

P
(

sup
0≤s≤T

⏐⏐Xn
s − Xs

⏐⏐ ≥ 1
)

<
1
3
ϵ.
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Again we have {Tm−1 > T } ∩

{
sup

0≤s≤T

⏐⏐Xn
s − Xs

⏐⏐ < 1
}

⊂ {Un,m > T } and therefore

P(Un,m
≤ T ) ≤ P(Tm−1

≤ T ) + P
(

sup
0≤s≤T

⏐⏐Xn
s − Xs

⏐⏐ ≥ 1
)

<
2
3
ϵ,

from which the result follows. □

Lemma 2. Consider SDE (1) and assume that µ, σ are both Lipschitz and bounded. Let (Xn)n

be the sequence of numerical solutions of (1), on [0, T ], from the continuous Euler scheme with
step size T

n . Then, the sequence of normalized error processes Un =
√

n(Xn
− X ) is relatively

compact for weak convergence under the uniform topology on compact time sets.

Proof. Define Zn as follows

Zn11
t =

∫ t

0

√
ns(n)ds, Zn12

t =

∫ t

0

√
ns(n)dWs,

Zn21
t =

∫ t

0

√
nW (n)

s ds, Zn22
t =

∫ t

0

√
nW (n)

s dWs .

It has been proved that
√

nZn are good sequences (see [17] for definition of good sequences,
see also [10] for a result on the weak functional convergence of stochastic integrals. Note that
the relationship between the results of [17] and [10] is explained in [16]), and Zn

⇒ Z , which
means weak convergence under the uniform topology on compact time sets. Z is independent of
W and Z1,1

= Z1,2
= Z2,1

= 0, Z2,2 is a mean zero Brownian motion with E(Z2,2(t)) =
t
2 . By

Corollary 1, we also have (Xn, Zn) ⇒ (X, Z ). By the definition of continuous Euler scheme,
Xn can also be represented as

Xn
t =

∫ t

0
µ(Xn

n(s))ds +

∫ t

0
σ (Xn

n(s))dWs .

Then

U n
t =

√
n(Xn

t − X t )

=

∫ t

0

√
n{µ(Xn

n(s)) − µ(Xs)}ds +

∫ t

0

√
n{σ (Xn

n(s)) − σ (Xs)}dWs .

For x ̸= y, define functions g, h : R2
→ R as

g(x, y) =
µ(x) − µ(y)

x − y
, h(x, y) =

σ (x) − σ (y)
x − y

.

Since µ, σ are Lipschitz, g(x, y), h(x, y) are bounded. Now we separate the error process into
two terms U n

= U 1,n
+ U 2,n , where

U 1,n
t =

∫ t

0

√
n{µ(Xn

n(s)) − µ(Xs)}ds

=

∫ t

0

√
n{µ(Xn

s ) − µ(Xs)}ds −

∫ t

0

√
n{µ(Xn

s ) − µ(Xn
n(s))}ds

=

∫ t

0
g(Xn

s , Xs)U n
t ds −

∫ t

0

µ(Xn
s ) − µ(Xn

n(s))

Xs − Xn
n(s)

(Xn
s − Xn

n(s))
√

nds.
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Notice that Xn
s − Xn

n(s) = µ(Xn
n(s))s

(n)
+ σ (Xn

n(s))W
(n)
s , then

U 1,n
t =

∫ t

0
g(Xn

n(s), Xs)U n
t − g(Xn

s , Xn
n(s))

{
µ(Xn

n(s))
√

ns(n)
+ σ (Xn

n(s))
√

nW (n)
s

}
ds.

Similarly,

U 2,n
t =

∫ t

0
h(Xn

n(s), Xs)U n
t − h(Xn

s , Xn
n(s))

{
µ(Xn

n(s))
√

ns(n)
+ σ (Xn

n(s))
√

nW (n)
s

}
dWs .

For notational convenience, define f̃ n as

f̃ n
=

[
g(Xn

s , Xs), g(Xn
s , Xn

n(s)), h(Xn
s , Xs), h(Xn

s , Xn
n(s))

]
.

If µ, σ are also assumed to be continuously differentiable as in Protter and Kurtz [18], then
f̃ n converges weakly uniformly to [µ′(X ), µ′(X ), σ ′(X ), σ ′(X )] on [0, T ]. By results on weak
convergence of stochastic integrals in Protter and Kurtz [17], U n converges weakly uniformly
on [0, T ] as well. However, here σ, µ are only assumed to be Lipschitz and bounded, hence
their derivatives might be with poor smoothness or not even exist. This would cause f̃ n fail to
converge weakly. Fortunately, by the boundedness of f̃ n , applying weak convergence technique
in [17] would give relative compactness of U n under uniform topology, which is shown in the
following steps. By Prokhorov’s Theorem which states that tightness is equivalent to relative
compactness in our case, f̃ n is also relatively compact. Then for every subsequence of f̃ n ,
there exists a further subsubsequence n′ such that f̃ n′

converges weakly uniformly on [0, T ].
It is also known that (Xn′

n′(.), Xn′

,
√

n′ Zn′

) ⇒ (X, X, Z ), and the sequence is a good sequence,
see [18] for details. Then we can assume on [0, T ],[

f̃ n′

, Xn′

n′(.), Xn′

,
√

n′ Zn′,1,
√

n′ Zn′,2,
√

n′ Zn′,3,
√

n′ Zn′,4]
⇒ [G, G̃, H, H̃ , X, X, 0, 0, 0,

√
2

2
B].

Since Zn is a good sequence and µ, σ bounded then by the proof of Theorem 3.5 in Kurtz
and Protter [18], U n′

⇒ R on [0, T ], where

Rt =

∫ t

0
G t Rt ds +

∫ t

0
Ht Rt dWs +

√
2

2

∫ t

0
σ (X t )H̃t d Bs . (8)

Thus every subsequence of U n
=

√
n(Xn

− X ) has a subsubsequence that converges weakly
uniformly on [0, T ], which implies that U n being relatively compact. □

In what follows, we consider µ, σ to be locally Lipschitz. In particular they are differentiable
almost everywhere. We denote by µ′, σ ′ their derivatives and we take µ′(x) = 0 at those points
x where µ is not differentiable. Similarly, we take σ ′(x) = 0 when σ is not differentiable at x .

Theorem 2. Consider the SDE (1), where we assume µ, σ are locally Lipschitz, σ is
nonnegative and σ−2 is locally integrable. We also assume that the unique solution X =

X (x0, µ, σ, W ) has no finite time explosion. Let (Xn)n be the sequence of approximations from
the continuous Euler scheme, and Un =

√
n(Xn

− X ) be the normalized error process.
Then, the sequence (Un)n converges weakly uniformly on [0, T ], for all finite T , to the

process U, the unique solution of the linear SDE

Ut =

∫ t

0
µ′(Xs)Usds +

∫ t

0
σ ′(Xs)UsdWs +

√
2

2

∫ t

0
σ (Xs)σ ′(Xs)d Bs, U0 = 0. (9)
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Proof. With Lemma 1, applying the localization technique, we can assume without loss of
generality that |µ| , |σ | are bounded, globally Lipschitz and σ−2 is locally integrable. Notice
that we can localize σ in such a way that it is eventually constant and positive.

Define g(x, y), h(x, y), Zn in the same way as in Lemma 2. It is known that on [0, T ]

(Zn11, Zn12, Zn21, Zn22) ⇒ Z = (0, 0, 0,

√
2

2
B). (10)

B is a standard Brownian motion and it is independent of W . Lemma 2 shows (U n)n is
relatively compact, thus for any subsequence n′, there exists a subsubsequence n′

k of n′ and
a process R in C[0, T ], such that U n′

k ⇒ R. It is well known that the SDE (9) has unique a
weak solution.

To prove (U n)n converges to U , it is sufficient to prove that R is a weak solution to
SDE (9). Because (U n′

k , X, W, Zn′
k ) ⇒ (R, X, W, Z ), by the almost sure representation

theorem, which is Theorem 1.10.4 on page 59 of van der Vaart and Wellner [4], there exists
a probability space (Ω̄ , F̄ , P̄), a sequence of processes (Ỹk)k and a process Y that satisfy
L(Y k) = L(U n′

k , X, W, Zn′
k ), for all k, L(Y ) = L(R, X, W, Z ), and Y k a.s.

→ Y uniformly
on [0, T ]. If we could prove that the first element of Y is a weak solution to SDE (9), we
immediately have R is also a weak solution to SDE (9). Thus, without loss of generality, we
assume (U n, X, W, Zn)(ω) → (R, X, W, Z )(ω), as n → ∞, uniformly on [0, T ], except on a
set A of P measure 0. Now, we try to prove R is a weak solution to (9).

We first present one known result for the continuous Euler scheme under the condition of
µ, σ being Lipschitz, stated here as (11). The proof of (11) can be found in the book of Kloeden
and Platen [14] page 343, from the proof of Theorem 10.2.2 in chapter 10.

sup
n

E
(

sup
0<s≤T

⏐⏐U n
s

⏐⏐2
)

< ∞. (11)

Since U n a.s.
→ R on [0, T ], by Fatou’s lemma, we also have

E
(

sup
0<s≤T

|Rs |
2
)

< ∞. (12)

From the definition of U n , we have U n
=

√
n(Xn

− X ) = U 1,n
+ U 2,n , where U 1,n, U 2,n

are the same as in proof of Lemma 2. Since the Lipschitz condition implies differentiability
almost everywhere, we can find a set A ⊂ R with Lebesgue measure 0 and both µ and σ being
differentiable on Ac. Define I1 = I{s:Xs∈Ac} and I2 = I{s:Xs∈A}, we analyze the following terms,
i = 1, 2.

Gni1
t =

∫ t

0
Ii {g(Xn

n(s), Xs)U n
t − µ′(X t )Rt }ds,

Gni2
t =

∫ t

0
Ii g(Xn

s , Xn
n(s))µ(Xn

n(s))
√

ns(n)ds

Gni3
t =

∫ t

0
Ii g(Xn

s , Xn
n(s))σ (Xn

n(s))
√

nW (n)
s ds

Fni1
t =

∫ t

0
Ii {h(Xn

n(s), Xs)U n
t − σ ′(X t )Rt }dWs,

Fni2
t =

∫ t

0
Ii h(Xn

s , Xn
n(s))µ(Xn

n(s))
√

ns(n)dWs
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Fni3
t =

∫ t

0
Ii h(Xn

s , Xn
n(s))σ (Xn

n(s))
√

nW (n)
s dWs −

√
2

2

∫ t

0
Iiσ (X t )σ ′(X t )d Bs

Notice that
2∑

i=1

3∑
j=1

(Gni j
+ Fni j )

= U n
−

{∫ t

0
µ′(X t )Rt ds +

∫ t

0
σ ′(Xs)RsdWs +

√
2

2

∫ t

0
σ (Xs)σ ′(Xs)d Bs

}
.

(13)

Our goal is to show each term of Gni j , Fni j converges to the 0 process on [0, T ] in a proper
sense. Consider term Gn11, because (Xn, Xn

n(.), U n)(ω) → (X, X, R)(ω), uniformly on [0, T ]
for all ω /∈ A and µ differentiable on Ac, we have

I{X t ∈Ac}g(Xn
n(t), X t )U n

t →I{X t ∈Ac}µ
′(X t )Rt , pointwise in t .

Since U n is a continuous process, its limit R will be continuous as well on A c, which leads
to R∗

T = sup
0≤s≤T

|Rs | being finite on A c. We also conclude that sup
0<s≤T

⏐⏐U n
s

⏐⏐ is finite in A c. By

the Lipschitz condition on µ,⏐⏐g(Xn
n(t), X t )U n

t − µ′(X t )Rt
⏐⏐ ≤ K ( sup

0<s≤T

⏐⏐U n
s

⏐⏐ + sup
0<s≤T

|Rs |).

Applying the dominated convergence theorem, Gn11 converges to 0 uniformly almost surely
on [0, T ].

Consider term Gn21, which is clearly bounded by

E
(

sup
0≤t≤T

|Gn21
t |

)
≤ E

[∫ T

0
I{s:Xs∈A}

⏐⏐g(Xn
n(s), Xs)U n

s − µ′(Xs)Rs
⏐⏐ ds

]
.

We shall prove that E
[∫ T

0 I{s:Xs∈A}ds
]

= 0, which implies E
(

sup0≤t≤T |Gn21
t |

)
= 0 and a

fortiori sup0≤t≤T |Gn21
t | = 0 P-a.s.

By Corollary 3.8 in Chap 7 of Revuz and Yor [22], let Ta
= Ta(X ),Tb

= Tb(X ) be the
hitting times of X at a < x0 < b, then

E
[∫ Ta

∧Tb

0
I{s:Xs∈A}ds

]
=

∫ b

a
G I (x0, y)I{y∈A}m(dy),

where, for c ∈ R fixed, we have

G I (x, y) =
(s(x ∧ y) − s(a))(s(b) − s(x ∨ y))

s(b) − s(a)
a ≤ x ∧ y ≤ x ∨ y ≤ b,

m(dx) =
2

s ′(x)σ 2(x)
dx, and

s(x) =

∫ x

c
exp

(
−

∫ y

c
2µ(z)σ−2(z)dz

)
dy.

By the boundedness of µ and the local integrability of σ−2, we have G I (x0, y) is locally
bounded and 2

s′(x)σ 2(x)
is locally integrable. Since A has Lebesgue measure 0,

E
[∫ T ∧Ta

∧Tb

0
I{s:Xs∈A}ds

]
= 0.
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Let a → −∞, b → ∞, applying Fatou’s lemma,

E
[∫ T

0
I2 ds

]
= E

[∫ T

0
I{s:Xs∈A}ds

]
= 0, (14)

as we claimed.
So, in a similar way it is proven that sup0≤t≤T |Gn2 j

t | = 0 P-a.s., for j = 2, 3. To prove that
sup0≤t≤T |Fn2 j

t | = 0 P-a.s., for j = 1, 2, 3, we first apply Burkholder–Davis–Gundy inequality
and then we use the same argument as above.

Let us now analyze Fn11. From the Burkholder–Davis–Gundy inequality,

E
[

sup
0<s≤T

⏐⏐Fn11
t

⏐⏐] ≤ C E
[(∫ T

0
I1

(
h(Xn

n(s), Xs)U n
s − σ ′(Xs)Rs

)2ds
) 1

2
]

≤ C E
[(∫ T

0
I1

{
h(Xn

n(s), Xs)(U n
s − Rs)

}2ds
) 1

2
]

+ C E
[(∫ T

0
I1

{
Rs(h(Xn

n(s), Xs) − σ ′(Xs))
}2ds

) 1
2
] (15)

Consider the first term of the right side of (15), since |h| ≤ K , then

E
[(∫ T

0
I1

{
h(Xn

n(s), Xs)(U n
s − Rs)

}2ds
) 1

2
]

≤ K
√

T E
[

sup
0<s≤T

⏐⏐U n
s − Rs

⏐⏐].
The right side of this inequality converges to 0, because the uniform convergence of (U n)n to
R on [0, T ], P-a.s., and (11), (12). Thus the first term of right side of (15) converges to 0.

For the second term, from Hölder’s inequality

E
[(∫ T

0
I1

{
Rs(h(Xn

n(s), Xs) − σ ′(Xs))
}2ds

) 1
2 ]

≤ E
[(

sup
0<s≤T

|Rs |
2
∫ T

0
I1

{
h(Xn

n(s), Xs) − σ ′(Xs)
}2ds

) 1
2
]

≤

(
E

[
sup

0<s≤T
|Rs |

2
]) 1

2
(
E

[∫ T

0
I1

{
h(Xn

n(s), Xs) − µ′(Xs)
}2ds

]) 1
2

.

For each ω ∈ A , we have I{t :X t ∈Ac}h(Xn
n(t), X t ) → I{t :X t ∈Ac}σ

′(X t ) pointwise in t ,
and

⏐⏐h(Xn
n(s), Xs)

⏐⏐ , ⏐⏐µ′(Xs)
⏐⏐ are uniformly bounded by K . From the dominated convergence

theorem,

lim
n→∞

E
(∫ T

0
I{s:Xs∈Ac}

{
h(Xn

n(s), Xs) − σ ′(Xs)
}2ds

)
= 0

With (12), we have the second term of right side of (15) also converges to 0. Thus

lim
n→∞

E sup
0<s≤t

⏐⏐Fn11
t

⏐⏐ = 0.

Consider terms Gn12, Gn13, Fn12, Fn22, they all converge to the constant process 0 almost
surely uniformly on [0, T ], because g, h, µ, σ are bounded, and (Zn11, Zn12, Zn21)

a.s.
→ (0, 0, 0)

uniformly on [0, T ].
For dealing with the last term Fn13, we first define F̃n13 as

F̃n13
t =

∫ t

0
I1

{
h(Xn

s , Xn
n(s))σ (Xn

n(s)) − σ ′(Xs)σ (Xs)
}√

nW (n)
s dWs .
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Define hn(s) = h(Xn
s , Xn

n(s)) and σn(s) = σ (Xn
n(s)). From the Burkholder–Davis–Gundy

inequality there exists C3 > 0

E
(

sup
0<s≤T

⏐⏐⏐F̃n13
s

⏐⏐⏐) ≤ C3 E
[(∫ T

0
I1

(
hn(s)σn(s) − σ ′(Xs)σ (Xs)

)2(
√

nW (n)
s )2ds

) 1
2
]

.

Applying the Cauchy–Schwarz inequality to the right side, there exists C4 > 0, such that

E
(

sup
0<s≤T

⏐⏐⏐F̃n13
s

⏐⏐⏐) ≤ E
[(∫ T

0
I1

(
hn(s)σn(s) − σ ′(Xs)σ (Xs)

)4ds
) 1

4
(∫ T

0

(√
nW (n)

s

)4ds
) 1

4
]

≤

[
E

(∫ T

0

(√
nW (n)

s

)4ds
) 1

2
] 1

2
[
E

(∫ T

0
I1

(
hn(s)σn(s) − σ ′(Xs)σ (Xs)

)4ds
) 1

2
] 1

2

≤ C4

[
E

(∫ T

0
I1

(
hn(s)σn(s) − σ ′(Xs)σ (Xs)

)4ds
) 1

2
] 1

2
.

Since h, σ, σ ′ are bounded, by the dominated convergence theorem,

lim
n→∞

E
(

sup
0<s≤t

⏐⏐⏐F̃n13
t

⏐⏐⏐) = lim
n→∞

E
(∫ T

0
I1

(
hn(s)σn(s) − σ ′(Xs)σ (Xs)

)4ds
) 1

2
= 0.

Thus F̃n13 L1
→ 0 uniformly on [0, T ]. We define F̄n13 as,

F̄n13
t =

∫ T

0
I1 σ ′(Xs)σ (Xs)d Zn22

−

∫ T

0
I1 σ ′(Xs)σ (Xs)d Bs . (16)

Since Zn22 a.s.
→ Bs uniformly on [0, T ], Zn22 is a good sequence, applying results on

convergence in probability of stochastic integrals in Kurtz and Protter [17] leads to F̄n13 P
→ 0

uniformly on [0, T ]. Since Fn13
= F̃n13

+ F̄n13, we have Fn13 P
→ 0, uniformly on [0, T ].

Combining all the G and F terms, each of them converges to 0 uniformly on [0, T ] in a
sense that would lead to convergence in probability. Then by (13), we have U n P

→ R̃ uniformly
on [0, T ], where

R̃t =

∫ t

0
µ′(Xs)Rsds +

∫ t

0
σ ′(Xs)RsdWs +

√
2

2

∫ t

0
σ (Xs)σ ′(Xs)d Bs .

Since we also have U n a.s
→ R on [0, T ], the two limits must be equal to each other, and R

follows

Rt =

∫ t

0
µ′(X t )Rt ds +

∫ t

0
σ ′(Xs)RsdWs +

√
2

2

∫ t

0
σ (Xs)σ ′(Xs)d Bs . (17)

This concludes the proof. □

Remark 2. We have stated and proved Theorem 2 in the one dimensional case. The theorem
and the previous proof can be extended to include the multidimensional case, analogous to
the way it is done in Jacod and Protter [9]. In particular we would obtain tightness and then
mimic our proof to get the convergence

√
n(Xn

− X ) → U , where U is the unique solution of
the multidimensional version of (9). In order to do so, the key ingredients are that X does not
explode and that for all T > 0 and all A ⊂ Rn , Lebesgue measurable sets of measure 0, one
has ∫ T

0
E(X t ∈ A)dt = 0.
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Here A is the set where σ is not differentiable. In the multidimensional case, these two facts are
not so simple to characterize in terms of the coefficients σ, µ, but there are still some tractable
sufficient conditions, which we do not go into here (see Remark 1).

4. Study of normalized limit error process

With the weak limit of the normalized error process for the Euler scheme being derived, we
are interested in further analyzing its properties. Though in Kurtz and Protter and [18], they
derived the form of the normalized error process of Euler scheme under C1 and a bounded
coefficient condition, its properties have barely been studied in the existing literature. In this
section, we focus on the mean, variance and martingale nature of the limit error process under
a globally Lipschitz condition. The locally Lipschitz case is more complicated, and it is studied
through examples in this section as well.

4.1. Globally Lipschitz case

Theorem 3. When µ and σ are globally Lipschitz, for the normalized error process Un =
√

n(Xn
− X ) from the continuous Euler scheme, there exists 0 < Ct < ∞ increasing with t

such that

E[U 2
t ] ≤ E[U ∗2

t ] ≤ Ct ,

where U ∗
t = sup

0≤s≤t
|Us |. Moreover, the process V = (e−

∫ t
0 µ′(Xs ) ds Ut )t is a mean 0 square

integrable martingale. In particular, we have E(Ut ) = 0 if µ′ is constant.

Proof (Suggested by the Referee). In the globally Lipschitz case the process U satisfies Eq. (9),
that is,

Ut =

∫ t

0
µ′(Xs)Usds +

∫ t

0
σ ′(Xs)UsdWs +

√
2

2

∫ t

0
σ (Xs)σ ′(Xs)d Bs, U0 = 0,

where B, W are independent B.M. This equation has a unique solution given by

Ut =

√
2

2
Yt

∫ t

0

σσ ′(Xs)
Ys

d Bs, with Yt = exp
(∫ t

0
µ′(Xs) ds

)
E

(∫
•

0
σ ′(Xs)dWs

)
.

Here E
(∫

•

0 σ ′(Xs)dWs
)

and
∫

•

0
σσ ′(Xs )

Ys
d Bs are orthogonal local martingales and L p integrable,

because σ ′ is bounded by hypothesis, σσ ′ has linear growth and X∗
t is in L p for all p ≥ 1.

This finishes the proof of the result. □

4.2. Locally Lipschitz case and examples

When f is Lipschitz locally but not globally, Theorem 3 may not hold even with no finite
time explosion condition. One example is the inverse Bessel process which is a solution to the
SDE

d X t = X2
t dWt , X0 > 0.

The coefficient σ (x) = x2 is locally Lipschitz and X has no finite explosion. From Theorem 2,
we have the error process U n

t =
√

n(Xn
t − X t ) converges weakly uniformly to Ut on [0, T ].

Ut is solution to

dUt = 2X tUt dWt +
√

2X3
t d Bt,
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where B is a Brownian motion independent of W . It has been proved in Hutzenthaler, Jentzen
and Kloeden [8] that E[(Xn

t )p] diverges to infinity as n → ∞ for all p ≥ 1. Thus E
⏐⏐U n

t

⏐⏐2 will
diverge to infinity as well. The expected quadratic variation is as

E(⟨U, U ⟩t ) = E
∫ t

0

{
X2

s U 2
s + 2X6

s

}
dt ≥ 2E

∫ t

0
X6

s dt.

Since the inverse Bessel process can also be represented as inverse of the norm of a three
dimensional Brownian motion starting from X0(1, 0, 0), its explicit distribution can be obtained,
for example in [5]. Calculation shows if X0 > 0, then for all t > 0, EX6

t = ∞. This leads to
E(⟨U, U ⟩t ) = ∞. Applying the Burkholder–Davis–Gundy inequality, we have E{U ∗2

t } = ∞.
This indicates that under the locally Lipschitz condition, the asymptotic distribution for the
normalized error process might have a heavier tail than the globally Lipschitz case. In order to
preserve the same properties in Theorem 3, besides locally Lipschitz and no finite explosion
assumption, we need extra conditions on µ, σ and moments condition on X t and Xn

t . This is
shown in the following theorem.

Theorem 4. Consider SDE (1), assume that µ and σ are locally Lipschitz and of at most
polynomial growth. We also assume that σ ′ has at most polynomial growth. Further assume
its discrete Euler scheme solution X̄n and continuous Euler scheme solution Xn satisfy that
for all p ≥ 1 and all T

E[(X∗

T )p] < ∞, E[(Xn∗

T )p] < ∞, E[(X̄n∗

T )p] < ∞. (18)

Then for the normalized error process Un =
√

n(Xn
− X ), we have ∃ Ct > 0 increasing with

t, s.t.

E[U 2
t ] ≤ E[U ∗2

t ] ≤ Ct . (19)

where U ∗
t = sups≤t |Us |. Furthermore, when µ′

= 0, U is a uniformly integrable martingale.

Proof. With the assumptions in Theorem 4, it is known that there exists Ct > 0 increasing
with t such that

sup
n

E[(U n∗

t )2] < Ct .

For details of the proof, check Theorem 4.4 in H. Desmond and X.Mao [6]. Then by the same
argument as in Theorem 3, we have

E[U 2
t ] ≤ E[U ∗2

t ] ≤ Ct .

Using the Burkholder–Davis–Gundy inequality with 1 ≤ p < 2, we get

E(U ∗p
T ) ≤ C pE(⟨U, U ⟩

p/2
T ) = C p E

[(∫ T

0
{(σ ′(Xs))2U 2

s + (σ ′(Xs))2σ 2(Xs)}ds
)p/2]

≤ C p E
[(∫ T

0
(σ ′(Xs))2U 2

s ds
)p/2

+

(∫ T

0
(σ ′(Xs))2σ 2(Xs)ds

)p/2]
≤ C pT p/2 E

[
(σ ′(X ))∗p

T U ∗p
T + (σ ′(X ))∗p

T (σ (X ))∗p
T

]
.

Now, we use Hölder’s inequality with exponents 2/p and its conjugated r =
2

2−p , to deduce
that

E[(σ ′(X ))∗p
T U ∗p

T ] ≤ (E[(σ ′(X ))∗pr
T ])1/r (E[U ∗2

T ])p/2 < ∞,
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because the growth condition on σ ′, hypothesis (18) and the inequality (19). Similarly, we
prove that E

[
(σ ′(X ))∗p

T (σ (X ))∗p
T

]
< ∞, and the result is shown. □

Remark 3. There is a classic example that Theorems 2 and 4 leave undressed. The function
x ↦→

√
x is not far from being locally Lipschitz, but of course it fails at the point x = 0.

Additionally, if one were to simulate a sequence of numerical approximations one would
inevitably be taking the square roots of negative numbers. To handle situations like this,
consider the following SDE

d X t =

√
X t d Bt + m(X t ) dt, X0 > 0 (20)

where B is a standard Brownian motion and m is locally Lipschitz.
We define Yt = log(X t ), using the well known fact that the unique solution X of (20) is

strictly positive for all t > 0. Using Itô’s formula we have

dYt = exp(−Yt/2) d Bt + (m(exp(Yt )) − 1) exp(−Yt ) dt (21)

The coefficients of (21) are locally Lipschitz in R, and we can apply our results for Y and then
deduce the results for X from that, by transforming back.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We wish to thank Jean Jacod and Denis Talay for helpful discussions during our work on
this paper. We also thank an anonymous referee for his/her useful comments that improve the
presentation of this work, specially Theorem 3. The results in this paper constitute part of the
PhD thesis of Lisha Qiu, in the Statistics Department of Columbia University. The third author
is very grateful for the hospitality of the Statistical Department of Columbia University.

References
[1] V. Bally, D. Talay, The Euler scheme for stochastic differential equations: error analysis with malliavin

calculus, Math. Comput. Simulation 38 (1995) 35–41.
[2] V.V. Bally, D. Talay, The law of the Euler scheme for stochastic differential equations I. Convergence rate

of the distribution function, Probab. Theory Related Fields 104 (1) (1996) 43–60.
[3] V. Bally, D. Talay, The law of the Euler scheme for stochastic differential equations: II. Convergence rate of

the density, Monte Carlo Methods Appl. 2 (2) (1996) 93–128.
[4] A.W. van Der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes, Springer-Verlag, New York,

1996.
[5] H. Föllmer, P. Protter, Local martingales and filtration shrinkage, ESAIM Probab. Stat. 15 (2011) 25–38.
[6] D. Higham, X. Mao, A. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential

equations, SIAM J. Numer. Anal. 40 (3) (2002) 1041–1063.
[7] M. Hutzenthaler, A. Jentzen, Numerical approximations of stochastic differential equations with non-globally

Lipschitz continuous coefficients, Mem. Amer. Math. Soc. 236 (1112) (2015).
[8] M. Hutzenthaler, A. Jentzen, P.E. Kloeden, Strong and weak divergence in finite time of Euler’s method for

stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci. 467 (2011) 1563–1576.

[9] J. Jacod, P. Protter, Asymptotic error distributions for the Euler method for stochastic differential equations,
Ann. Probab. 26 (1) (1998) 267–307.

http://refhub.elsevier.com/S0304-4149(19)30413-2/sb1
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb1
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb1
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb2
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb2
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb2
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb3
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb3
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb3
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb4
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb4
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb4
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb5
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb6
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb6
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb6
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb7
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb7
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb7
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb8
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb8
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb8
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb8
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb8
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb9
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb9
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb9


P. Protter, L. Qiu and J.S. Martin / Stochastic Processes and their Applications 130 (2020) 2296–2311 2311

[10] A. Jakubowski, J. Memin, G. Pages, Convergence en loi des suites d’integrals stochastiques sur l’espace D1
de Skorokhod, Probab. Theory Related Fields 81 (1) (1989) 111–137.

[11] A. Jentzen, P. Kloeden, The numerical approximation of stochastic partial differential equations, Milan J.
Math. 77 (2009) 205–244.

[12] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, in: Graduate Texts in Mathematics, vol.
113, Springer-Verlag, New York, 1988.

[13] R. Khasminskii, Stochastic Stability of Differential Equations, Springer Verlag Berlin Heidelberg, 2012.
[14] P. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer Berlin Heidelberg,

1992.
[15] A. Kohatsu-Higa, P. Protter, The Euler scheme for SDE’s driven by semimartingales. Stochastic analysis on

infinite-dimensional spaces, Pitman Res. Notes Math. Ser. 310 (1994) 141–151.
[16] T.G. Kurtz, P. Protter, Characterizing the weak convergence of stochastic integrals, in: M. Barlow, N. Bingham

(Eds.), Stochastic Analysis, 1991, pp. 255–259.
[17] T.G. Kurtz, P. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann.

Probab. 19 (1991) 1035–1070.
[18] T.G. Kurtz, P. Protter, Wong–Zakai corrections, random evolutions and numerical schemes for SDEs, in:

Stochastic Analysis, 1991, pp. 331–346.
[19] R. Narita, Remarks on non-explosion theorem for stochastic differential equations, Kodai Math. J. 5 (1982)

395–401.
[20] P. Protter, Stochastic integration and differential equations. A new approach, in: Applications of Mathematics,

Vol. 21, Springer-Verlag, Berlin, 1990.
[21] P. Protter, D. Talay, The Euler scheme for Lévy driven stochastic differential equations, Ann. Probab. 25 (1)

(1997) 393–423.
[22] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, in: Fundamental Principles of Mathematical

Sciences, vol. 293, Springer-Verlag, Berlin, 2013.
[23] D. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer, 2006.
[24] D. Talay, Résolution trajectorielle et analyse numérique des équations différentielles stochastiques, Stochastics

9 (4) (1983) 275–306.
[25] D. Talay, Efficient numerical schemes for the approximation of expectations of functionals of the solution of

a SDE, and applications, in: Filtering and Control of Random Processes, in: Lect. Notes Control Inf. Sci.,
vol. 61, Springer Berlin, 1984, pp. 294–313.

[26] D. Talay, Simulation and numerical analysis of stochastic differential systems: a review. Diss. INRIA (1990).
[27] D. Talay, L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential

equations, Stoch. Anal. Appl. 8 (4) (1990) 483–509.
[28] L. Yan, The Euler scheme with irregular coefficients, Ann. Probab. 30 (3) (2002) 1172–1194.

http://refhub.elsevier.com/S0304-4149(19)30413-2/sb10
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb10
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb10
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb11
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb11
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb11
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb12
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb12
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb12
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb13
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb14
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb14
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb14
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb15
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb15
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb15
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb16
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb16
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb16
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb17
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb17
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb17
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb18
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb18
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb18
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb19
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb19
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb19
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb20
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb20
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb20
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb21
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb21
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb21
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb22
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb22
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb22
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb23
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb24
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb24
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb24
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb25
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb25
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb25
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb25
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb25
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb27
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb27
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb27
http://refhub.elsevier.com/S0304-4149(19)30413-2/sb28

	Asymptotic error distribution for the Euler scheme with locally Lipschitz coefficients
	Introduction
	Convergence in probability
	Asymptotic error distribution for the Euler scheme
	Study of normalized limit error process
	Globally Lipschitz case
	Locally Lipschitz case and examples

	Declaration of competing interest
	Acknowledgments
	References


