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Abstract
The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This

work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means.

Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the

decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further

generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of

covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers

some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis.

The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative

example of a research and development (R&D) investment problem.

Keywords Variance � Covariance � Bonferroni means � OWA operator

1 Introduction

In decision-making problems, it is common to use statistics

and probabilistic measures to treat and analyze data and to

obtain valid information about the data. These tools allow one

to organize and condense the data set and to determine a

specific property of a population based on a population

sample. The use of these tools ensures that the measurement

and accounting data provide objective information. Among

the most used procedures and measures are the frequency

distribution; the average; measures of the central tendency,

dispersion and others related to the probability; and test

statistics with greater complexity. Nonetheless, statistics have

limitations when capturing and explaining meaning of the

information, as they include semantics, linguistic meanings,

approximate reasoning, intuition and attitudes. These limita-

tions occur because this sort of data does not support formal

patterns and has a broad relationship with human behavior

and subjectivity (Blanco-Mesa et al. 2017). Feasibly, mea-

suring these data with sufficient mathematical precision

involves a high degree of complexity, which represents a

challenge for their mathematical treatment. Hence, measuring

complex human reasoning using probability and statistics is

difficult since the complexity is negatively related to the

precision (Zadeh 1975; Blanco-Mesa et al. 2017).

Based on the above, the idea has arisen to establish

formal mathematical methods that address the complexity

and uncertainty. Consequently, hybrid models have been

proposed that have been applied in various fields such as

economics and administrative sciences. In this sense, these

methods use fuzzy subsets and the mathematics of uncer-

tainty and have been applied in economics (Kaufmann and

Gil Aluja 1986; Kaufmann and Gil-Aluja 1990; Blanco-

Mesa et al. 2019a). Likewise, another method has been

proposed that is called the ordered weighted averaging
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aggregation operator that aggregates information while

taking into account the attitudes of the decision maker

(Yager 1988). Furthermore, using this method, both theo-

retical mathematical proposals and business and economic

decision-making problems applications have been devel-

oped. Included in the theoretical mathematical proposals

are outlined heavy operators (Yager 2002), induced oper-

ators (Yager and Filev 1999; Yager 2003), prioritized

operators (Chen and Xu 2014), time series (Yager 2008),

Bonferroni means (Yager 2009), moving averages (Merigó

and Yager 2013), probabilistic measures (Yager et al.

1995; Merigó 2012), distances (Gil-Lafuente and Merigó

2007; Xu and Chen 2008), linguistics (Herrera and Marti-

nez 2000; Herrera and Herrera-Viedma 2000), Pythagorean

theory (Yager 2014; Gao 2018; Wei 2019; Tang and Wei

2019), geometric operators (Chiclana et al. 2002; Xu and

Da 2002), power (Yager 2001), variance (Yager 1996),

covariance (Merigó et al. 2015a) and variance measures

(Verma and Merigó 2019). Furthermore, notable business

and economic decision-making problems applications

include sales forecasting (Merigó et al. 2015b), forecasting

(León-Castro et al. 2016, 2018, 2019a), entrepreneurship

(Blanco-Mesa et al. 2016, 2018c), portfolio selection

(Laengle et al. 2017), stakeholder management (Blanco-

Mesa et al. 2018a, b), enterprise risk management (Blanco-

Mesa et al. 2018d, 2019c), transparency (Avilés-Ochoa

et al. 2018), competitiveness (Blanco-Mesa and Gil-La-

fuente 2017), social networks (Wu et al. 2017; Zhang et al.

2018) and e-services (Carrasco et al. 2017; Dong et al.

2018).

However, it should be noted that in several fields of

research it is extremely important to measure information

through the interpretation of test statistics. Especially in

social sciences such as economics and administration,

where the role and influence (attitude, subjectivity, emo-

tions, reasoning, among others) that people have in estab-

lishing the instruments and methods of data collection for

further processing is inevitable, which entails establishing

measures that offer levels of confidence to accept the

hypotheses formulated. In this sense, the efforts of this

research focused on three methods: the OWA operator,

Bonferroni means and covariance, which by their own

characteristics can provide a soft test statistic allowing the

measurement of subjective aspects such as the attitude of

the decision maker.

First, OWA operator allows to represent the maximum

and the minimum operators by adding a reordering step

(Yager 1988). On the basis of this operator, OWA variance

and Bonferroni OWA have been proposed. OWA variance

operator is highlighted by the better option which is with the

highest expected and lowest variance Yager (1996). Bon-

ferroni OWA operator allows comparing the interrelated

information simultaneously (Yager 2009). Thus, in both

works OWA operator features have been combined with

from methods of probity and statistics. Second, Yager

(1996) introduced the concept of variance into problems of

decision making in uncertainty, thus opening a new way for

the creation of soft statistical measures applied in uncertain

environments. Following this proposal, Merigó et al. (2015a)

have suggested the ordered weighted mean in combination

with variance and covariance including in the new type of

Pearson coefficient. Recently, Blanco-Mesa et al.

(2019a, b, c) have proposed a new type of variance that

combines the characteristics of the OWA operator and the

Bonferroni mean, which allows underestimating or overes-

timating the variance according to the attitudinal character

of the decision maker. Third, from the works of Bonferroni

and Yager there are multiple proposals that have been made

to solve the problems of decision making (Beliakov et al.

2010; Gou et al. 2017; Liu and Liu 2017). Likewise, new

extensions have been introduced using linguistic (Merigó

et al. 2014) and induced variables (Blanco-Mesa et al.

2018d, 2019b), distance measurements (Blanco-Mesa et al.

2016; Blanco-Mesa and Merigó 2017; Merigó et al. 2017;

Blanco-Mesa and Merigó 2020), algorithms (Alfaro-Garcı́a

et al. 2018) among others, which has allowed the creation of

new families of aggregation operators.

Hence, this paper proposes a new operator that combines

the characteristics of these three methods in a single for-

mulation that allows one to obtain a soft-measure to vali-

date subjective information. First, the OWA covariance

operator analyzes the strength of the correlation among two

or more sets of random variables in an optimistic or pes-

simistic scenario (Yager 1996; Merigó et al. 2015a). It is

worth mentioning that the covariance correlates two or

more sets of random variables, which reflects the degree of

joint variation with respect to their means. Second, the

Bonferroni OWA operator allows for the simultaneous

comparison and interrelation of information (Yager 2009).

It is also worth recalling that Bonferroni means are used to

make multiple comparisons when the null hypothesis is

rejected, which allows one to guarantee the significance

level a between each of the comparisons that are consid-

ered for the data set of the experiment. Thus, this new

proposition combines all these characteristics and is called

the Bonferroni OWA covariance. This novel methodolog-

ical proposal provides two new measurement methods: the

Bonferroni OWA covariance and the Bonferroni means

covariance. Additionally, from this proposition, other

extensions, such as the geometric Bonferroni covariance,

the quadratic Bonferroni covariance, the cubic Bonferroni

covariance and the harmonic Bonferroni covariance, are

proposed

Finally, to illustrate this method, it is applied to R&D

investment decision making where a decision maker ana-

lyzes correlation data. For that, the sales and R&D
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investment data from 10 random companies from the

National Association of Securities Dealers Automated

Quotation (NASDAQ) 100 from 2015 to 2018 are used.

These new approaches provide the decision maker with the

possibility to obtain a better representation of the potential

real scenarios when it is under- or overestimating the

covariance using the attitudes of the decision maker.

Likewise, this soft covariance can be useful when the

decision maker has soft data and needs a valid and reliable

measurement. In addition, the use of OWA operators and

other related methods are useful when the importance and

meaning of the data are not easily known.

The remainder of this paper is structured as follows:

Sect. 2 describes the preliminary concepts and formula-

tions related to the covariance, Bonferroni means, OWA

and IOWA operators and their existing combinations.

Section 3 presents new propositions for the covariance

using the Bonferroni means and OWA operators. Section 4

presents the generalized ordered weighted average covari-

ance and a numerical example. Section 5 develops the

application and presents the results for the R&D invest-

ment decision-making problems. Finally, Sect. 6 provides

the main implications and conclusions of the paper.

2 Preliminaries

In this section, the concepts and formulas of the OWA and

IOWA operators, the Bonferroni means and their exten-

sions are presented. Similarly, the formula for the covari-

ance measure and its integration with the OWA operator is

given.

2.1 Covariance

Covariance is a technique that measures how two random

variables will change together and is constantly used in

order to calculate the correlation between two arguments,

sets or variables. The formulation is as follows.

Definition 1 The covariance is calculated for two data

sets, X and Y, as

Cov x1; y1; . . .; xn; ynð Þ ¼
Xn

i¼1

vi xi � lð Þ yi � vð Þ; ð1Þ

where xi is the argument variable of the first set of elements

X ¼ x1; . . .; xnf g, yi is the argument variable of the second

set of elements Y ¼ y1; . . .; ynf g and l and v are the

averages of sets X and Y , respectively. Each argument

xi � lð Þ yi � vð Þ has an associated weight vi with
Pn

i¼1 vi ¼
1 and vi 2 0; 1½ �.

2.2 Bonferroni mean

An interesting aggregation operator that can assess the

relations of the argument variables is the Bonferroni means

(Bonferroni 1950). Since its development, extensions

include using distance techniques (Blanco-Mesa et al.

2016), heavy and induced aggregation operators (Blanco-

Mesa et al. 2018d, 2019b), intuitionistic fuzzy interactions

(He et al. 2015), multicriteria decision making (Gou et al.

2017) and so on.

Definition 2 The formulation of the Bonferroni mean is as

follows.

Br;q a1; a2; . . .; anð Þ ¼ 1

n

Xn

k¼1

ari
1

n� 1

Xn

j ¼ 1

j 6¼ i

a
q
j

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

1
rþq

;

ð2Þ

Some properties of the Bonferroni mean are the following

(Zhu and Xu 2013):

(a) Commutativity: Let a
0

1; a
0

2; . . .; a
0

n

� �
be any

permutation of a1; a2; . . .; anð Þ, then: Br;q a
0
1; a

0
2; . . .;

�

a
0
nÞ ¼ Bp;q a1; a2; . . .; anð Þ.

(b) Idempotency: Let aj ¼ a; j ¼ 1; 2; . . .; n; then

Br;q a; a; . . .; að Þ ¼ a:

(c) Monotonicity: Let ai i ¼ 1; 2; . . .; nð Þ and bi i ¼ 1; 2;ð
. . .; nÞ be two collections of crisp data:

Ifai � bifor all i; then B
r;q a1; a2; . . .; anð Þ�Br;q b1; b2;ð

. . .; bnÞ.
(d) Boundedness: The Br;q operator lies between

the max and min operators : min a1; a2; . . .; anð Þ�
Br;q a1; a2; . . .; anð Þ�max a1; a2; . . .; anð Þ.

Some specials case of the BM operator is shown as

follows:If r ¼ 1 and q ¼ 1, then Eq. (2) reduces to the

following:

B1;1 a1; a2; . . .; anð Þ ¼ 1

n

Xn

k¼1

ai
1

n� 1

Xn

j ¼ 1

j 6¼ i

aj

0

BBBB@

1

CCCCA

0

BBBB@

1

CCCCA

1
2

;

ð3Þ

If q ¼ 0, then Eq. (2) reduces to the following:
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Br;0 a1; a2; . . .; anð Þ ¼ 1

n

Xn

k¼1

ari
1

n� 1

Xn

j ¼ 1

j 6¼ i

a0j

0

BBBB@

1

CCCCA

0

BBBB@

1

CCCCA

1
rþ0

¼ 1

n

Xn

k¼1

ari

 !1
r

ð4Þ

If r ¼ 2 and q ¼ 0, then Eq. (2) reduces to the square

mean:

B2;0 a1; a2; . . .; anð Þ ¼ 1

n

Xn

k¼1

a2i

 !1
2

ð5Þ

If r ¼ 1 and q ¼ 0, then Eq. (2) reduces to the usual

average:

B1;0 a1; a2; . . .; anð Þ ¼ 1

n

Xn

k¼1

ai ð6Þ

If r ! þ1 and q ¼ 0, then Eq. (2) reduces to the max

operator:

lim
r!1

Br;0 a1; a2; . . .; anð Þ ¼ max aif g ð7Þ

If r ! 0 and q ¼ 0, then Eq. (2) reduces to the geometric

mean operator:

lim
r!0

Br;0 a1; a2; . . .; anð Þ ¼
Yn

i¼1

ai

 !1
n

ð8Þ

2.3 OWA and IOWA operator

The ordered weighted average (OWA) operator (Yager

1988) has as its main advantage the representation of the

maximum and the minimum operators by adding a

reordering step. Additionally, many applications and

frameworks have been developed (Kacprzyk and Zadro _zny

2009; Belles-Sampera et al. 2013; Pérez-Arellano et al.

2019). The definition is as follows.

Definition 3 An OWA operator of dimension n is a

mapping OWA : Rn ! R that has an associated weighing

vector W of dimension n with wj 2 0; 1½ � and
Pn

j¼1 wj ¼ 1

and is represented as follows:

OWA a1; a2; . . .; anð Þ ¼
Xn

j¼1

wjbj; ð9Þ

where bi is the jth largest ai.

Among the criteria that can be used for the reordering

step is the following.

An extension of the OWA operator that further analyzes

the reordering characteristic is the induced OWA (IOWA)

operator (Yager and Filev 1999; Yager 2003). In this

operator, the reordering step is based on the decision maker

(or decision makers) using an induced vector that is asso-

ciated with the arguments. The formulation is as follows.

Definition 4 An IOWA operator of dimension n is an

application IOWA : Rn � Rn ! R that has an associated

weighting vector W of dimension n, where the sum of the

weights is 1 and wj 2 0; 1½ �, and an induced set of ordering

variables is included uið Þ. The formula is as follows:

IOWA u1; a1; u2; a2; . . .; un; anð Þ ¼
Xn

j¼1

wjbj; ð10Þ

where bj is the ai value of the OWA pair ui; aih i having the

jth largest ui. ui is the order-inducing variable and ai is the

argument variable.

2.4 Bonferroni IOWA

Authors have developed extensions to the Bonferroni

means by using different aggregation operators. Among

them are the ones using the OWA and IOWA operators

(Blanco-Mesa et al. 2019b). These operators are useful for

integrating the relationship between the arguments,

obtaining the minimum and maximum operators or using

an induced reordering step. Taking into account these

characteristics, the operators that can be devolved are the

following.

Definition 5 The Bonferroni IOWA (BON-IOWA) is a

mean type continuous aggregation operator that can be

defined as follows:

BON-IOWA u1; a1; . . .; un; anð Þ

¼ 1

n

X

i

bri IOWAW Vi
� �

 ! 1
rþq

; ð11Þ

where bi is the ai value of the BON-IOWA pair ui; aih i
having the jth largest ui, IOWAW Við Þ ¼

1
n�1

Pn

j ¼ 1

j 6¼ i

b
q
j

0
B@

1
CA with Við Þ is the vector of all bj s except

bi and w is an n� 1 vector Wi that is associated with ai
whose components wij are the OWA weights. Let W be an

OWA weighing vector of dimension n� 1 with the com-

ponents wi 2 0; 1½ � when
P

i wi ¼ 1, where the weights are

associated according to the largest value of ui, and ui is the

order-inducing variable.

Definition 6 The Bon-OWA operator can be defined as

follows (Yager 2009).

F. Blanco-Mesa et al.
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BON-OWA a1; . . .; anð Þ ¼ 1

n

X

i

ariOWAW Vi
� �

 ! 1
rþq

;

ð12Þ

where OWAW Við Þ ¼ 1
n�1

Pn

j ¼ 1

j 6¼ i

a
q
j

0
B@

1
CA with Við Þ is the

vector of all aj s except ai and w is an n� 1 vector Wi that

is associated with ai whose components wij are the OWA

weights. Let W be an OWA weighing vector of dimension

n� 1 with the components wi 2 0; 1½ � when
P

i wi ¼ 1.

Then, we can define this aggregation as

OWAW Við Þ ¼
Pn�1

j¼1 wiapk jð Þ

� �
, where apk jð Þ is the largest

element in the tuple Vi and wi ¼ 1
n�1

for all is.

2.5 Covariance with OWA and IOWA operators

2.5.1 General case

As seen in Definition 1, the covariance, as a measure of

variability, includes a weighting vector W ¼ 1=n and two

averages in its formulations: one for the X sets and one for

the Y sets. In this sense, it is possible to combine the OWA

operator with the covariance, such as has been done by

(Merigó et al. 2015a). The formulation is as follows.

Definition 7 In the case of the OWACov, the definition is

as follows:

OWACov X; Yð Þ ¼
Xn

j¼1

wjKj; ð13Þ

where Kj is the jth largest xi � lð Þ yi � vð Þ; xi is the argu-

ment variable of the first set of elements X ¼ x1; . . .; xnf g;
yi is the argument variable of the second set of elements

Y ¼ y1; . . .; ynf g; l and v are the averages (or the OWA

operator) of the sets X and Y, respectively; wj 0; 1½ � andPn
j¼1 wj ¼ 1.

Finally, is also possible to formulate the IOWACov if an

induced vector is used to associate the weights.

Definition 8 The IOWACov operator formula is as fol-

lows (Merigó et al. 2015a).

IOWACov U;X; Yð Þ ¼
Xn

j¼1

wjKj; ð14Þ

where Kj is the xi � lð Þ yi � vð Þ value of the IOWACov

triplet ui; xi; yi with the jth smallest ui, and ui is the order-

inducing variable of the set of elements U ¼ u1; . . .; unf g.
It is important to note that the main properties of the

OWA operator are applied to the IOWACov and OWACov

operators. These are the following:

(a) It is monotonic because if ai � di, for all i, then

IOWACov a1; . . .; anð Þ� IOWACov d1; . . .; dnð Þ;
(b) It is commutative because any permutation of the

argument has the same evaluation; and

(c) It is bounded because the weighting vector is equal

to 1.

2.5.2 Special cases

Some special cases that are not presented by (Merigó et al.

2015a) include that where the OWA operator can be

applied to l and v. The main idea is to aggregate the

information in the averages to account for this case, and the

averages become the lOWA and the vOWA. The formulas are

as follows.

Definition 9 The lOWA is defined as

lOWA x1; x2; . . .; xnð Þ ¼
Xn

j¼1

wjmj; ð15Þ

where mi is the jth largest xi.

Definition 10 The vOWA is defined as

vOWA y1; y2; . . .; ynð Þ ¼
Xn

j¼1

wjnj; ð16Þ

where ni is the jth largest ai.

Using this idea, it is possible to generate the total

CovOWA, and the formula is as follows.

Definition 11 The total OWACov can be defined as

total OWACov X; Yð Þ ¼
Xn

j¼1

wjOj ð17Þ

where Oj is the largest xi � lOWAcovð Þ yi � vOWAcovð Þ, xi is
the argument variable of the first set of elements

X ¼ x1; . . .; xnf g, and yi is the argument variable of the

second set of elements Y ¼ y1; . . .; ynf g.

Finally, is important to note that, based on Definition 11,

it is possible to generate different cases of the formula

based on whether the OWA operator is used in all the

elements of the formula or not. These formulations are

presented as follows (Table 1).

The cases presented in Table 1 represent the degree of

information that want to be added to the OWACov for-

mulation. The covariance is compounded by two different

averages l and v that is based on the average of set X and

set Y, respectively. Because of that it is possible to remain

the averages without any change and only use the

weighting vector and reordering step in the results obtained

by xi � lð Þ yi � vð Þ, such is case 3, or use the OWA oper-

ator or any other extension of the same instead of the

Covariances with OWA operators and Bonferroni means
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traditional average in l and v. By doing this, it is possible

to add more information of the decision maker obtained

through the weighting vector and reordering step or also,

only applied it to one determined set (X or Y) if the case

needs it. Finally, one of the main reasons to use the OWA

operator instead of the usual average in l and v will be

based on the complexity of the problem and if the average

of the data is not the best option because some arguments

are more important than others, or if the sets have outliers

that want to be weighted less or more (depending on the

attitude of the decision maker). As seen, these ideas are

important because, depending on the complexity of the

problem that we want to analyze, it is possible to generate

both the maximum or the minimum in the general formu-

lation, as has been presented by Merigó et al. (2015a), and

include different aggregations in the sets of X and Y; this

approach would increase the potential to generate new

scenarios that usually cannot be assessed using the tradi-

tional covariance.

3 Covariance with Bonferroni means
and OWA operators

To understand better the correlation between two variables,

the covariance has become a common technique. In addi-

tion, as was explained previously, it is possible to aggre-

gate information using methodologies such as the OWA

operator and the Bonferroni means. The reason that these

methods have been selected is because they integrate the

relationships among the arguments (Bonferroni means) and

include the expertise of the decision maker (OWA opera-

tor). This new formulation is called the Bonferroni ordered

weighted average covariance (BONOWACov) operator,

which is defined as follows:

Definition 12 For the Bonferroni ordered weighted aver-

age covariance (BONOWACov) operator, the formulation

is as follows.

BONOWACov X; Yð Þ ¼ 1

n

X

i

ariOWACovW Ei
� �

 ! 1
rþq

;

ð18Þ

where OWACovW Eið Þ ¼ 1
n�1

Pn

j ¼ 1

j 6¼ i

a
q
j

0
B@

1
CA with Eið Þ

being the vector of all xi � lOWACovð Þ yi � vOWACovð Þ

except xj � lOWACov

� �
yj � vOWACov

� �
, xi is the argument

variable of the first set of elements X ¼ x1; . . .; xnf g, yi is
the argument variable of the second set of elements Y ¼
y1; . . .; ynf g and w is an n� 1 vector Wi that is associated

with ai whose components wij are the OWACov weights.

LetW be an OWACov weighing vector of dimension n� 1

with components wi 2 0; 1½ � when
P

i wi ¼ 1. Then, we

can define this aggregation as OWACovW Lið Þ ¼
Pn�1

j¼1 wiapk jð Þ

� �
, where apk jð Þ is the largest element in Li

and wi ¼ 1
n�1

for all i. This definition also has the total, case

1, case 2 and case 3 operators as extensions, as presented in

Table 1.

Additionally, there is the case of W ¼ 1=n, in which the

BONOWACov becomes the covariance Bonferroni mean

(BMCov), and it is defined as follows.

Definition 13 The BMCov operator can be defined as

BMCov X; Yð Þ ¼ 1

n

X

i

ari Ei
� �

 ! 1
rþq

; ð19Þ

where Eið Þ ¼ 1
n�1

Pn

j ¼ 1

j 6¼ i

a
q
j

0

B@

1

CA with Eið Þ being the vec-

tor of all xi � lð Þ yi � vð Þ except xj � l
� �

yj � v
� �

, xi is the

argument variable of the first set of elements

X ¼ x1; . . .; xnf g, and yi is the argument variable of the

second set of elements Y ¼ y1; . . .; ynf g.

Finally, if a reordering step based on induced values is

added (such as the IOWA operator), it is possible to gen-

erate the induced Bonferroni ordered weighted average

covariance (BONIOWACov) operator, and it is defined as

follows.

Definition 14 The definition of the BONIOWACov

operator is as follows.

BONIOWACov U;X; Yð Þ ¼ 1

n

X

i

bri IOWACovW Ei
� �

 ! 1
rþq

;

ð20Þ

where bi is the ai value of the BONIOWACov pair ui; aih i
having the jth largest ui, IOWACovW Eið Þ ¼

1
n�1

Pn

j ¼ 1

j 6¼ i

b
q
j

0
B@

1
CA with Eið Þ is the vector of all

Table 1 OWACov operator and

its cases
Operator Total Case 1 Case 2 Case 3

OWACov Uses: lOWA and vOWA Uses: lOWA and v Uses: l and vOWA Uses: l and v
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xi � lIOWAcovð Þ yi � vIOWAcovð Þ except xj � lIOWAcov

� �
yj�
�

vIOWAcovÞ, xi is the argument variable of the first set of

elements X ¼ x1; . . .; xnf g, yi is the argument variable of

the second set of elements Y ¼ y1; . . .; ynf g, and w is an

n� 1 vector Wi that is associated with ai whose compo-

nents wij are the IOWACov weights. Let W be an

IOWACov weighing vector of dimension n� 1 with the

components wi 2 0; 1½ � when
P

i wi ¼ 1, where the weights

are associated according to the largest value of ui, and ui is

the order-inducing variable. This definition also has the

total, case 1, case 2 and case 3 operators as extensions, as

presented in Table 1. Table 2 summarizes these cases and

those of Definitions 12 and 13 as follows:

It is important to note that all operators in this section

have the same main properties as the OWA operator (the

explanation was provided with the BONIOWACov oper-

ator, but the same idea follows for Definitions 12, 13),

which are as follows:

(a) Commutativity Assume f is the BONIOWACov

operator; then, f ui; ai; . . .; un; anð Þ ¼ f ui; bi; . . .;ð
un; bnÞ.

(b) Monotonicity Assume f is the BONIOWACov

operator; if ui; aij j � ui; bij j for all ii, then

f ui; ai; . . .; un; anð Þ� f ui; bi; . . .; un; bnð Þ.
(c) Bounded Assume f is the BONIOWACov operator;

then, min aif g� f ui; ai; . . .; un; anð Þ�max aif g.
(d) Idempotency Assume f is the BONIOWACov oper-

ator; if ui; aij j ¼ a for all i, then

f ui; ai; . . .; un; anð Þ ¼ a.

4 The generalized ordered weighted
average covariance

4.1 Generalized covariance operators

To generate new cases that can be used in different cases,

such as ones where the problem is complex or there is a

need for different ways to aggregate the operator in order to

generate new scenarios, generalized or quasi-arithmetic

means can be used (Yager 2004; Merigó and Gil-Lafuente

2009). Most of the study presents the formulation of the

quasi-arithmetic means as a special generalized case

(Merigó et al. 2018). The quasi-arithmetic formulations for

the new definitions that are proposed in this paper are as

follows.

Definition 15 The quasi-BMCov operator can be defined

as

Quasi-BMCov X; Yð Þ ¼ g�1 1

n

X

i

ari g Ei
� �

 ! 1
rþq

2
4

3
5; ð21Þ

where ari g Eið Þ ¼ 1
n�1

Pn

j ¼ 1

j 6¼ i

a
q
j

0
B@

1
CA with Eið Þ being the

vector of all xi � lð Þ yi � vð Þ except xj � l
� �

yj � v
� �

, xi is

the argument variable of the first set of elements

X ¼ x1; . . .; xnf g, yi is the argument variable of the second

set of elements Y ¼ y1; . . .; ynf g, and g Eið Þ is a strictly

continuous monotonic function. This definition also has the

total, case 1, case 2 and case 3 operators as extensions, as

presented in Table 1.

Definition 16 For the quasi-BONOWACov operator, the

formulation is as follows.

Quasi-BonOWACov X;Yð Þ ¼ g�1 1

n

X

i

ariOWACovWg Ei
� �

 ! 1
rþq

2
4

3
5;

ð22Þ

where OWACovWg Eið Þ ¼ 1
n�1

Pn

j ¼ 1

j 6¼ i

a
q
j

0

B@

1

CA with Eið Þ

being the vector of all xi � lOWAcovð Þ yi � vOWAcovð Þ except
xj � lOWAcov

� �
yj � vOWAcov

� �
, xi is the argument variable

of the first set of elements X ¼ x1; . . .; xnf g, yi is the

argument variable of the second set of elements

Y ¼ y1; . . .; ynf g, and w is an n� 1 vector Wi that is

associated with ai whose components wij are the OWA

weights. Let W be an OWACov weighing vector of

dimension n� 1 with the components wi 2 0; 1½ � whenP
i wi ¼ 1. Then, we can define this aggregation as

OWACovWg Lið Þ ¼
Pn�1

j¼1 wiapk jð Þ

� �
, where apk jð Þ is the

largest element in Li, wi ¼ 1
n�1

for all i and g Eið Þ is a

strictly continuous monotonic function. This definition also

has the total, case 1, case 2 and case 3 operators as

extensions and is presented in Table 1.

Definition 17 The definition of the quasi-BonIOWACov

operator is as follows.

Quasi-BonIOWACov U;X; Yð Þ

¼ g�1 1

n

X

i

bri IOWACovWg Ei
� �

 ! 1
rþq

2
4

3
5; ð23Þ

where bi is the ai value of the BONIOWACov pair ui; aih i
having the jth largest ui, IOWACovWg Eið Þ ¼

1
n�1

Pn

j ¼ 1

j 6¼ i

b
q
j

0
B@

1
CA with Eið Þ is the vector of all

xi � lIOWAcovð Þ yi � vIOWAcovð Þ except

xj � lIOWAcov

� �
yj � vIOWAcov

� �
, xi is the argument variable

Covariances with OWA operators and Bonferroni means

123



of the first set of elements X ¼ x1; . . .; xnf g, yi is the

argument variable of the second set of elements

Y ¼ y1; . . .; ynf g, and w is an n� 1 vector Wi associated

with ai whose components wij are the OWACov weights.

LetW be an OWACov weighing vector of dimension n� 1

with the components wi 2 0; 1½ � when
P

i wi ¼ 1, where

the weights are associated according to the largest value of

ui; ui is the order-inducing variable; and g Eið Þ is a strictly

continuous monotonic function. This definition also has the

total, case 1, case 2 and case 3 operators as extensions,

presented in Table 1.

4.2 Particular cases

In this section, the main particular cases for each formu-

lation are presented (see Table 3). It is important to note

that the most complex formula that is presented is the

quasi-BonIOWACov operator, but the idea can be applied

to Definitions 15 and 16.

To understand these new formulas, a numerical example

is provided that is based on the sales and numbers of clients

in the first quarter of 2017 for a Mexican enterprise (see

Table 4).

Now, we apply the traditional covariance, OWACov,

IOWACov, BMCov BONOWACov and BONIOWACov

operators. The results are as follows.

(a) Covariance (Table 5)

(b) OWACov case 3 (Table 6)

Consider the following information in order to use this

operator:

1. The weighting vector W ¼ 0:20; 0:30; 0:50ð Þ, and
2. A maximum criterion has been used.

(c) IOWACov case 3 (Table 7)

Consider the following information in order to use this

operator:

1. The weighting vector W ¼ 0:20; 0:30; 0:50ð Þ, and
2. The induced vector U ¼ 10; 5; 15ð Þ.

(d) BMCov case 3 (Table 8)

Consider the following information in order to use this

operator:

1. The weighting vector W ¼ 0:20; 0:30; 0:50ð Þ,
2. A maximum criterion has been used, and

3. r and q are equal to 1.

Table 2 BONOWACov,

BMCov and BONIOWACov

operators and their cases

Operator Total Case 1 Case 2 Case 3

BONOWACov lOWA and vOWA lOWA and v l and vOWA l and v

BMCov l and v l and v l and v l and v

BONIOWACov lOWA and vIOWA lOWA and v l and vIOWA l and v

Table 3 Families of the generalized VarBONIOWA and CovBO-

NIOWA operators

Particular case Quasi-CovBONIOWA

ui ¼ 1
n
; for all i Quasi-arithmetic covariance Bonferroni

ordered weighted average (Quasi-

CovBONOWA)

g bð Þ ¼ bk Generalized CovBONIOWA

g bð Þ ¼ b CovBONIOWA

g bð Þ ¼ b2 Covariance Bonferroni ordered weighted

quadratic average (CovBONOWQA)

g bð Þ ! bk; for k ! 0 Covariance Bonferroni ordered weighted

geometric average (CovBONOWGA)

g bð Þ ¼ b�1 Covariance Bonferroni ordered weighted

harmonic average (CovBONOWHA)

g bð Þ ¼ b3 Covariance Bonferroni ordered weighted

cubic average (CovBONOWCA)

g bð Þ ! bk; for k ! 1 Maximum operator

g bð Þ ! bk; for k ! 1 Minimum operator

V1 ¼ �1:92� 0:33ð Þ þ 61:08� 0:33ð Þ ¼ 19:52

V2 ¼ 61:08� 0:33ð Þ þ 100:71� 0:33ð Þ ¼ 53:59

V3 ¼ 100:71� 0:33ð Þ þ �1:92� 0:33ð Þ ¼ 32:60

BMCov ¼ 19:52� 0:33ð Þ � 100:71ð Þ þ 53:59� 0:33ð Þ � �1:92ð Þ þ 32:60� 0:33ð Þ � 61:08ð Þ
3

� � 1
1þ1

¼ 20:59
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(e) BONOWACov case 3 (Table 9)

1. The weighting vector W ¼ 0:20; 0:30; 0:50ð Þ,
2. A maximum criterion has been used, and

3. p and q are equal to 1.

V1 ¼ �1:92� 0:20ð Þ þ 61:08� 0:30ð Þ ¼ 17:94

V2 ¼ 61:08� 0:30ð Þ þ 100:71� 0:50ð Þ ¼ 68:68

V3 ¼ 100:71� 0:50ð Þ þ �1:92� 0:20ð Þ ¼ 49:97

BONOWACov

¼

17:94� 0:50ð Þ � 100:71ð Þþ
68:68� 0:20ð Þ � �1:92ð Þ þ ð 49:97� 0:30Þ � 61:08ð Þ

3

0
BB@

1
CCA

1
1þ1

¼ 24:24

(f) BONIOWACov case 3 (Table 10)

1. Weighting vector W ¼ 0:20; 0:30; 0:50ð Þ,
2. A maximum criterion has been used, and

3. r and q are equal to 1.

Finally, by analyzing the results using different opera-

tors, it can be seen that there is a positive relation between

the sales and numbers of clients in all the operators. In this

sense, if a company or seller wants to increase its sales by a

certain number, they can assume that increasing the num-

ber of clients will help to achieve that goal. The main

difference between the operators is when the correlation

between the variables is to be calculated. Taking into

account that the formula for the lineal correlation is

qxy ¼
Covxy

rxry
, where qxy is the lineal correlation and

rxand ry are the standard deviations for x and y, respec-

tively, it is interesting to see how much the correlation can

change if the covariance ranges from 20.59 to 68.29. In this

sense, the generation of new covariance scenarios is

important because of the utility and importance that this

calculation has in other areas, such as econometrics,

engineering, finance and other management fields.

To visualize and better explain the lineal correlation,

taking into account that rx ¼ 142:66 and ry ¼ 56:33, then

the different linear correlation coefficients (LCCs) are

presented in Table 11 and represented in Fig. 1.

It is noteworthy that there are two segments of results:

the first one includes the Cov, OWACov and IOWACov

operators (traditional information analysis), and the second

one includes the BMCov, BONOWACov and BONIO-

WACov operators (Bonferroni information analysis). The

main difference between each segment is that when the

Table 4 Sales and numbers of clients for the first quarter of 2017

Date Sales (in thousands) Number of clients

Jan-17 85.4 145

Feb-17 65.9 138

Mar-17 63.7 130

Table 6 OWACov calculations

Date X (sales) x� l Y (clients) y� v x� lð Þ � y� vð Þ Max ordered w [Max ordered x� lð Þ � y� vð Þ]*w

Jan-17 85.40 13.73 145.00 7.33 100.71 0.50 50.36

Feb-17 65.90 - 5.77 138.00 0.33 - 1.92 0.20 - 0.38

Mar-17 63.70 - 7.97 130.00 - 7.67 61.08 0.30 18.32

l 71.67 v 137.67 OWACov 68.30

V1 ¼ �1:92� 0:20ð Þ þ 61:08� 0:50ð Þ ¼ 30:15

V2 ¼ 61:08� 0:50ð Þ þ 100:71� 0:30ð Þ ¼ 60:75

V3 ¼ 100:71� 0:03ð Þ þ �1:92� 0:20ð Þ ¼ 29:83

BONIOWACov ¼ 30:15� 0:30ð Þ � 100:71ð Þ þ 60:75� 0:20ð Þ � �1:92ð Þ þ 29:83� 0:50ð Þ � 61:08ð Þ
3

� � 1
1þ1

¼ 24:48

Table 5 Covariance

calculations
Date X (sales) x� l Y (clients) y� v x� lð Þ � y� vð Þ w x� lð Þ � y� vð Þ*w

Jan-17 85.40 13.73 145.00 7.33 100.71 0.33 33.57

Feb-17 65.90 - 5.77 138.00 0.33 - 1.92 0.33 - 0.64

Mar-17 63.70 - 7.97 130.00 - 7.67 61.08 0.33 20.36

l 71.67 v 137.67 Covariance 53.29
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Bonferroni mean is used, it smooths the results, which is

why the minimum is 0.0026 and the maximum is 0.0030 (a

variation of 15%) instead of the differences in the first

stage that range from 0.0066 to 0.0085 (a variation of

28%). With this information, it is possible to appreciate

how much the inclusion of the interrelation of the argu-

ments through the Bonferroni means helps to provide a

whole new range of possible scenarios with a higher degree

of information included.

In the previous example, it used as values for the indices

r and q the value of 1. Now, it is showed how the results

change when these values change. You can observe how

and when the r and q values change (see Table 12); on the

one hand, if the r values increase, the results of the

BONIOWACov operator are of minimum value; on the

other hand, if the q values decrease, the results of the

BONIOWACov operator are of maximum value. Likewise,

taking the data from the example for linear regression

(LR), it is observed that they have the same change

behavior. With these results, we can observe the sensitivity

of the results when changing the values of these indices.

5 Application in R&D Investment

Among the main ideas of innovation is that when enter-

prises invest more in R&D, it has important impacts on the

company that are usually translated into more sales. In this

application, 10 random companies from the NASDAQ 100

were used to analyze the covariance and correlation

between sales and R&D investment from 2015 to 2018.

Additionally, different aggregation operators were used to

Table 7 IOWACov calculations

Date X (sales) x� l Y (clients) y� v x� lð Þ � y� vð Þ u Induced ordered w [Induced ordered x� lð Þ � y� vð Þ]*w

Jan-17 85.40 13.73 145.00 7.33 100.71 10 0.30 30.21

Feb-17 65.90 - 5.77 138.00 0.33 - 1.92 5 0.20 - 0.38

Mar-17 63.70 - 7.97 130.00 - 7.67 61.08 15 0.50 30.54

l 71.67 v 137.67 IOWACov 60.37

Table 8 BMCov calculations
Date X (sales) x� l Y (clients) y� v x� lð Þ � y� vð Þ w

Jan-17 85.40 13.73 145.00 7.33 100.71 0.33

Feb-17 65.90 - 5.77 138.00 0.33 - 1.92 0.33

Mar-17 63.70 - 7.97 130.00 - 7.67 61.08 0.33

l 71.67 v 137.67

Table 9 BONOWACov

calculations
Date X (sales) x� l Y (clients) y� v x� lð Þ � y� vð Þ Max ordered w

Jan-17 85.40 13.73 145.00 7.33 100.71 0.50

Feb-17 65.90 - 5.77 138.00 0.33 - 1.92 0.20

Mar-17 63.70 - 7.97 130.00 - 7.67 61.08 0.30

l 71.67 v 137.67

Table 10 BONIOWACov

calculations
Date X (sales) x� l Y (clients) y� v x� lð Þ � y� vð Þ u w

Jan-17 85.40 13.73 145.00 7.33 100.71 10 0.30

Feb-17 65.90 - 5.77 138.00 0.33 - 1.92 5 0.20

Mar-17 63.70 - 7.97 130.00 - 7.67 61.08 15 0.50

l 71.67 v 137.67
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analyze the information. The information is presented in

Table 13.

Using information obtained from their financial state-

ments, specifically, their income statements,1 different

covariances and correlations will be calculated. To do that,

the weighting vector will be assigned for the companies,

and the weights will be divided by 4 in order to determine

the weight for each data. The same idea will be used for the

induced variables. The weights and induced variables that

will be used are as follows (see Table 14).

In addition, the values of index p and q ¼ 1.

The results for each special case (explained in

Sect. 2.5.2) are presented in Tables 15, 16, 17 and 18.

To visualize better all the results, they are presented in

Figs. 2 and 3. As seen in Tables 15, 16, 17 and 18 and in

Figs. 2 and 3, there are similar movements between the

covariance and the correlation (this is kind of obvious due

to the way that the correlation formula works); however,

the most important result that we can obtain from this

analysis is that, even in the worst scenarios, the correlation

is always higher than 0.6000, thus indicating that there is a

positive and strong relationship between the sales of the

companies and their R&D investment. It is important to

note that this conclusion has limitations, as it is primarily

Table 11 Linear correlation

coefficients (Case 3)
Covariance OWACov IOWACov BMCov BONOWACov BONIOWACov

Results 0.0066 0.0085 0.0075 0.0026 0.0030 0.0030

0.0066 

0.0085 

0.0075 

0.0026 
0.0030 0.0030 

Covariance OWACov IOWACov BmCov BonOWACov BonIOWACov

Fig. 1 Linear correlation coefficients (Case 3)

Table 12 Results of the

BONIOWACov operator by

changing r and q

r q BONIOWACov LR r q BONIOWACov LR r q BONIOWACov LR

1 0 599.53 0.0746 1 2 8.43 0.0010 1 4 3.59 0.0004

2 0 24.49 0.0030 2 2 4.95 0.0006 2 4 2.9 0.0004

3 0 8.43 0.0010 3 2 3.59 0.0004 3 4 2.49 0.0003

4 0 4.95 0.0006 4 2 2.9 0.0004 4 4 2.22 0.0003

5 0 3.59 0.0004 5 2 2.49 0.0003 5 4 2.04 0.0003

1 1 24.49 0.0030 1 3 4.95 0.0006 1 5 2.9 0.0004

2 1 8.43 0.0010 2 3 3 0.0004 2 5 2.49 0.0003

3 1 4.95 0.0006 3 3 2.9 0.0004 3 5 2.22 0.0003

4 1 3.59 0.0004 4 3 2.49 0.0003 4 5 2.04 0.0003

5 1 2.9 0.0004 5 3 2.22 0.0003 5 5 1.9 0.0002

1 The information was obtained through the webpage www.investing.

com.
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Table 13 Sales and R&D

investment in NASDAQ

companies

Company Year Total revenues Research and development

Apple 2018 265,595 14,236

2017 229,234 11,581

2016 215,639 10,045

2015 233,715 8067

Microsoft 2018 110,360 14,726

2017 96,571 12,292

2016 91,154 11,988

2015 93,580 12,046

Activision Blizzard 2018 7500 1101

2017 7017 1069

2016 6608 958

2015 4664 646

Alphabet 2018 136,819 21,419

2017 110,855 16,625

2016 90,272 13,948

2015 74,989 12,282

Amazon 2018 72,383 7669

2017 56,576 7162

2016 52,886 7247

2015 51,042 6759

Netflix 2018 15,794 1222

2017 11,693 1053

2016 8831 852

2015 6780 651

Qualcomm 2018 22,732 5619

2017 22,291 5465

2016 23,554 5141

2015 25,281 5476

Pepsi 2018 64,661 680

2017 63,525 737

2016 62,799 760

2015 63,056 754

Tesla 2018 21,461 1460

2017 11,759 1378

2016 7000 834

2015 4046 718

PayPal 2018 15,451 1071

2017 13,094 953

2016 10,842 834

2015 9248 792

Table 14 Induced variables for

each company
Apple Microsoft Activision

Blizzard

Alphabet Amazon Netflix Qualcomm Pepsi Tesla PayPal

W 0.12 0.12 0.08 0.10 0.10 0.08 0.08 0.08 0.12 0.12

U 5 45 50 35 25 10 15 20 30 40
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applicable to the companies that are used in this paper;

these companies are all members of the NASDAQ 100, and

it is possible that this correlation could be weaker or

stronger for a specific sector or SMEs.

Additionally, with the use of different aggregation

operators, it was possible to acquire results other than those

obtained by the traditional method, producing values of

270,167,400 for the covariance and 0.6823 for the corre-

lation. With this new information, it is possible to evaluate

if the correlation increases or decreases as we examine a

specific sector or similar industries. This consideration

assumes a difference between exists between the traditional

correlation and the correlation obtained via the IOWACov

operator; the use of the IOWACov operator revealed a

correlation increase of nearly 10%. Finally, this informa-

tion can provide a new visualization tool for the future of

the companies and shows that R&D investment is a must if

companies want to increase sales and stay in the market.

6 Conclusions

This work presents the combination of the Bonferroni

mean, the OWA operator and the covariance to develop a

new aggregated operator within probability and statistics.

The objective is to provide better tools for the analysis of

the strength of the correlation among two or more sets of

random variables. By using the OWA operators, the deci-

sion maker can under- or overestimate the covariance

according to their attitudes. Likewise, by using the Bon-

ferroni mean, it compensates for the possible error when

making several comparisons. This compensation comes

from parameters r and q, since they correct the errors when

making multiple comparisons guaranteeing a significant

adjustment of the analyzed data set (Blanco-Mesa et al.

2019d). This behavior is observed in the example shown in

Fig. 1, which shows the significant difference between the

methods between the maximum and minimum values in

relation to the established correlations. In such way, the

results are smoothed showing variations of the 15% (the

minimum is 0.0026 and the maximum is 0.0030) and 28%

(range from 0.0066 to 0.0085). Likewise, in the results

shown in the R&D problem they have the same behavior.

Thus, decision makers should consider using attitude and

corrections to compare correlated data in the aggregation

problem. Hence, decision makers can consider the joint

variation of the data according to weights, and the inter-

relations and results could be higher or lower than when

using the classical covariance. This paper presents some

simple numerical examples to numerically illustrate the

new approach.

Furthermore, the paper proposes some extensions and

generalizations to provide a more robust and general

Table 15 Results for covariance and correlation with the total

operator

Operator Result of covariance Correlation

Covariance 270,167,400 0.685

OWACov 291,726,392 0.736

IOWACov 298,884,458 0.754

BMCov 243,150,660 0.617

BonOWACov 259,640,483 0.655

BonIOWACov 269,228,156 0.679

Table 16 Results for covariance and correlation with the case 1

operator

Operator Result of covariance Correlation

Covariance 270,167,400 0.682

OWACov 291,922,473 0.736

IOWACov 298,673,232 0.753

BMCov 243,150,660 0.613

BonOWACov 259,652,809 0.655

BonIOWACov 269,135,071 0.679

Table 17 Results for covariance and correlation with the case 2

operator

Operator Result of covariance Correlation

Covariance 270,167,400 0.682

OWACov 291,771,139 0.736

IOWACov 298,358,394 0.753

BMCov 243,150,660 0.613

BonOWACov 259,547,968 0.655

BonIOWACov 268,639,773 0.678

Table 18 Results for covariance and correlation with the case 3

operator

Operator Result of covariance Correlation

Covariance 270,167,400 0.682

OWACov 293,512,859 0.740

IOWACov 299,692,808 0.756

BMCov 243,150,660 0.613

BonOWACov 260,946,424 0.658

BonIOWACov 269,937,145 0.681
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framework. To this end, induced and generalized aggre-

gation operators are used. With induced aggregation

operations, the correlation among two or more sets of

random variables can reflect a complex under- or overes-

timation of the covariance according to the complex factors

that affect the attitudes of decision makers. The formula

that is proposed is more general for generalized and quasi-

arithmetic means, as these aggregations consider a wide

range of particular cases, such as the geometric Bonferroni

covariance, the quadratic Bonferroni covariance, the cubic

Bonferroni covariance and the harmonic Bonferroni

covariance.

The work ends with an application of the new approach

to R&D investment decision making, in which a decision

maker analyzes correlation data. The aim is to analyze the

covariance and correlation between sales and R&D

investment for 10 random companies from the NASDAQ

100 from 2015 to 2018. These new approaches allow the

decision makers the ability to obtain a better representation

of the potential real scenarios when it is under- or over-

estimating the covariance. Recall that the classic covari-

ance correlates two or more sets of random variables and

reflects the degree of joint variation with respect to their

means. Thus, the result that is obtained is a representative

value of the set of joint variations for which the best result
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Fig. 2 Covariance results for all operators
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is close to 1 or –1. However, in general terms, the corre-

lation of the whole set could move from positive depen-

dence to negative dependence or no dependence according

to the real importance that each data have for the result. In

addition, the use of OWA operators and other related

methods are useful when the importance and meaning of

the data are not obvious. Future work in this direction

should consider further covariance extensions using other

types of aggregation systems, including orthopair fuzzy

numbers (Liu and Wang 2019), heavy, probability and

prioritized operators and moving averages (Kacprzyk et al.

2019; León-Castro et al. 2019b). Furthermore, to comple-

ment this new proposition, it would also be interesting to

develop applications in several fields within which these

new covariance measures could be implemented. Thus,

based on this perspective, the potential applicability is very

broad because a many study in several fields that use

covariance measures could be extended to find cases that

require the use of this approach.
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Blanco-Mesa F, Merigó JM, Gil-Lafuente AM (2017) Fuzzy decision

making: a bibliometric-based review. J Intell Fuzzy Syst

32:2033–2050

Blanco-Mesa F, Gil-Lafuente AM, Merigo JM (2018a) Dynamics of

stakeholder relations with multi-person aggregation. Kybernetes

47:1801–1820

Blanco-Mesa F, Gil-Lafuente AM, Merigó JM (2018b) Subjective
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Gil-Lafuente AM, Merigó JM (2007) The ordered weighted averaging

distance operator. Lect Model Simul 8:84–95

Gou X, Xu Z, Liao H (2017) Multiple criteria decision making based

on Bonferroni means with hesitant fuzzy linguistic information.

Soft Comput 21:6515–6529

He Y, He Z, Chen H (2015) Intuitionistic fuzzy interaction Bonferroni

means and its application to multiple attribute decision making.

IEEE Trans Cybern 45:116–128

Herrera F, Herrera-Viedma E (2000) Linguistic decision analysis:

steps for solving decision problems under linguistic information.

Fuzzy Sets Syst 115:67–82

Herrera F, Martinez L (2000) A 2-tuple fuzzy linguistic representation

model for computing with words. IEEE Trans Fuzzy Syst

8:746–752

Kacprzyk J, Zadro _zny S (2009) Towards a general and unified

characterization of individual and collective choice functions

under fuzzy and nonfuzzy preferences and majority via the

ordered weighted average operators. Int J Intell Syst 24:4–26

Covariances with OWA operators and Bonferroni means

123



Kacprzyk J, Yager RR, Merigó JM (2019) Towards human centric

aggregation via the ordered weighted aggregation operators and

linguistic data summaries: a new perspective on Zadeh’s

inspirations. IEEE Comput Intell Mag 14:16–30

Kaufmann A, Gil Aluja J (1986) Introducción de la teorı́a de los

subconjuntos borrosos a la gestión de las empresas, 2nd edn.

Milladoiro, Santiago de Compostela

Kaufmann A, Gil-Aluja J (1990) Las matemáticas del azar y de la
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