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Abstract
Shifts in species distributions are among the observed consequences of climate change, forcing species to follow suitable
environmental conditions. Using species distribution models (SDMs), we aimed at predicting trends in habitat shifts of two
seaweed species of commercial interest in the Subantarctic Patagonian region in response to ongoing environmental changes
across temperate South America and worldwide. We gathered occurrence data from direct, on-site visual, and taxonomic
identification (2009–2018) from global databases of species occurrence and from the scientific literature. We built the SDMs
selecting putative predictors of biological relevance to Lessonia flavicans and Gigartina skottsbergii. We calibrated the SDMs
using MaxEnt and GLMs for model evaluation, splitting our occurrence datasets into two parts: for model training and for model
testing. The models were projected to future climate change scenarios (Representative Concentration Pathway: RCP 2.6 and RCP
8.5) to examine trends in shifting habitat suitability for each species. Maximum sea surface temperature was the main predictor
variable, followed by minimum nitrate concentration, explaining both species’ distributional shift across Subantarctic shorelines
by the year 2050. Projection of the SDM for each species under altered environmental conditions to 30–40 years into the future
resulted in a south poleward shift with a reduction in habitat range for both species. Such responses would threaten their
persistence, local marine species richness, biodiversity, ecological function, and thereby, the commercial and ecosystem services
provided by L. flavicans and G. skottsbergii in Subantarctic South America.
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Introduction

As the planet warmed after the Last Glacial Maxima (23,000–
17,000 years ago), species distributions shifted to higher lati-
tudes or higher elevations (Davis and Shaw 2001). Under
current climate warming globally, these distributional trends
continue for many species (Parmesan et al. 1999; Parmesan
and Yohe 2003, VanDerWal et al. 2013; Fraser 2016). Marine
species, in particular, are shifting their latitudinal (e.g.,
Parmesan 2006) and/or depth ranges (Dulvy et al. 2008) as
climate change continues to alter their habitats (e.g., tempera-
ture, sea level, dissolved O2), and thereby, the organisms’
physiologies, phenologies, fitness, and species interactions
(Parmesan and Yohe 2003; VanDerWal et al. 2013; IPCC
2014; Franco et al. 2018). The shifting niches of marine spe-
cies in response to ocean warming may alter community com-
position and local richness patterns, leading to local extinc-
tions and/or invasions (Cheung et al. 2009) and thus change
marine trophic webs. Seaweeds, for instance, are paramount
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components of marine systems as primary producers and eco-
system engineers. In coastal environments, recent shifts in
seaweed distributions, and those of their associated organisms,
are reportedly linked to rising temperatures due to climate
change (Fraser et al. 2009, 2012; Nikula et al. 2010;
Wernberg et al. 2011; Martínez et al. 2018).

Altering seaweed richness and biodiversity can have neg-
ative effects on ecosystem function (e.g., CO2 sequestration;
Barbier et al. 2011) on local fisheries (Cheung et al. 2009;
Fraser et al. 2009; Nikula et al. 2010; Fraser et al. 2012) and
on marine resources of commercial interest (Ojeda et al.
2018). Seaweeds are vital to food webs in both shallow and
deep waters. They support shallow waters providing structural
habitat to biodiverse vertebrates and invertebrates (Wiencke
and Amsler 2012; Quartino et al. 2013) and provide nutrition-
al energy to higher trophic levels, supporting deep waters via
detrital export to benthic food chains (Wiencke and Amsler
2012). Seaweeds are also becoming increasingly important for
human societies as food sources, pharmaceutical aids, and for
medical purposes (Cardoso et al. 2014; Anis et al. 2017).
Especially in many subpolar regions, coastal communities
have been using seaweeds for multiple purposes for centuries
(Sudha 2017; Ojeda et al. 2018) and they are of crucial socio-
economic, cultural, and ecological importance there (Wiencke
and Amsler 2012). However, rising ocean temperatures and
coastal ice melt in subpolar latitudes are affecting seaweed
distributions, community composition, and the goods and ser-
vices they provide more than in other regions of the globe
(Turra et al. 2013).

Given their importance, the potential impacts of climate
change on subpolar, coastal seaweed ecosystems are a major
focus of concern (Harley et al. 2006), especially in high-
latitude ice-receding habitats. Data to predict the distribution
of species and habitat shifts are key to biodiversity analyses
and biocultural conservation. But identifying the set of factors
that may determine future species occurrence and spatiotem-
poral dynamics under variable habitat conditions is complex
(Brown and Knowles 2012), as it must consider covarying
abiotic and biotic factors and their interactions in the environ-
ment (Phillips et al. 2006; Franco et al. 2018). Furthermore,
the factors determining species occurrence and distribution are
scale-dependent (Austin and Van Niel 2011) and often linked
with ecosystem processes. Knowledge of both the realized
and potential distribution (niche) of seaweed species is essen-
tial to assess their vulnerability to potential global changes
(e.g., Turra et al. 2013).

Species distribution models (SDMs) have become increas-
ingly applicable in conservation, as well as in management of
natural resources (Evans et al. 2016; Franco et al. 2018; Sofaer
et al. 2018). For species of commercial interest, in particular,
combining current occurrence records and suitable habitat da-
ta has much potential to create models to predict the possible
changes in distribution under future conditions (Evans et al.

2016; Sofaer et al. 2018). As ocean temperatures rise, non-
migratory marine species unable to move to new suitable hab-
itats (e.g., higher latitude) may become locally or totally ex-
tinct, or significantly reduce their range distribution (Thomas
et al. 2004). Sedentary benthic species, such as seaweeds and
some invertebrates, may only colonize newly opened habitat
niches at spore stages of their life history (Muth et al. 2019).
But polar and subpolar environmental conditions may not be
favorable for many algal fragile stages to settle in newly
opened subtidal sites if disturbance from ice scour, ice-melt,
and reduced light penetration in the water column (turbidity,
sedimentation; Quartino et al. 2013) ensue rising tempera-
tures. Hence, phenology, recruitment physiology (Fraser
2016; Muth et al. 2019), and photosynthetic performance of
Subantarctic seaweeds might also limit their potential to fol-
low shifting habitat suitability due to warming climate and
related disturbances (Quartino et al. 2013). Alternately, recent
phylogeographic studies suggest long-distance rafting “migra-
tion” of seaweeds is indeed favored at high latitudes (50°–60°;
Tala et al. 2019), But these also depend on season (tempera-
ture, irradiance, nutrients) and species persistence, physiolog-
ical acclimation and morphological damage (e.g., proportion
of mature reproductive structures) during long drift times
(Batista et al. 2018; Tala et al. 2019). Local extinction or
shrunk range distribution of important Subantarctic seaweeds
would affect local marine trophic interactions and ecosystem
function. Modeling approaches, such as SDMs can help us
predict how keystone algae species may respond to subse-
quent global warming, and which species may be capable of
enduring novel environmental conditions under rising
temperatures.

Subantarctic Chile is one of the world’s fastest warming
regions according to oceanographic data (Cavan and Boyd
2018; Moore et al. 2018), glacier records, and tree-ring chro-
nologies (Lara et al. 2005; Iriarte 2018). Stronger research
efforts must be invested to document environmental alter-
ations in its coastal systems, to predict future changes and to
evaluate potential biotic responses to such predictions (e.g.,
Convey and Peck 2019). Coastal subpolar systems are transi-
tion zones where species may already live close to their phys-
iological thresholds and zones particularly sensitive to rapid
regional climate change (IPCC 2014; Iriarte 2018). Especially
in Subantarctic Chile, Lessonia flavicans Bory (Searles 1978)
and Gigartina skottsbergii Setchell et Gardner (Setchell and
Gardner 1936) are socio-economically and biologically key to
support the unique ecosystems of the Cape Horn Biosphere
Reserve (Miloslavich et al. 2011; Rozzi et al. 2012) and the
coastal communities of the Patagonian archipelago (e.g.,
Iriarte 2018; Ojeda et al. 2018). The growing importance of
marine seaweeds to support human societies globally and their
ancient significance in many Asian and developing countries
intensifies interest in creating models to predict the effects of
climate change on such vital organisms (Wernberg et al. 2011;

J Appl Phycol



Tyberghein et al. 2012; Verbruggen et al. 2013; Martínez et al.
2018). In the present study, our goal was to predict potential
distributional shifts of two commercially important species of
seaweeds in Chile’s Subantarctic Region, L. flavicans and
G. skottsbergii, in response to ongoing environmental chang-
es. Using SDM approaches, our specific objectives were to
project the models for each algae species to future (year 2050)
climate change scenarios (Representative Concentration
Pathway: RCP 2.6 and RCP 8.5) to identify their habitat suit-
ability shifting trends across shorelines of the subpolar tip of
South America.

Materials and methods

We gathered occurrence data for Lessonia flavicans and
Gigartina skottsbergii from a total of 216 sites in coastal
Subantarctic Patagonia (Chile-Argentina) by combined direct
and virtual approaches. Direct, on-site visual and taxonomic
identification (2009–2018) were used to evaluate the presence
of both macroalgae species. We used 10 transects per site,
perpendicular to the coastline (0–10 m depth) and each tran-
sect was about 25 m apart from the next. Two observers
walked along each transect recording the species present.
Additionally, to build the SDMs, we gathered data of
species-occurrence by performing searches on “L. flavicans”
and “G. skottsbergii” in the scientific literature (e.g.,
AlgaeBase, Web of Science, Web of Knowledge,
ScienceDirect), as well as the Global Biodiversity
Information Facility (GBIF) and local sources (e.g., books,
atlas, dissertations, and theses). Data were checked to remove
duplicate and incorrect records (e.g., terrestrial occurrences).
After this correction, we used the software Occurrence
Thinner (Verbruggen et al. 2013) to reduce the effect of sam-
pling bias in our data (Phillips et al. 2009).

We used environmental layers from Bio-Oracle 2 (BO;
Assis et al. 2017), which is a set of geophysical, biotic, and
climate data (e.g., current velocity, nitrate, temperature) for the
world’s oceans in a 5 arcmin spatial resolution. We cropped
our rasters to the Subantarctic study province (Spalding et al.
2007; BO’s “equal-area projection”; Assis et al. 2018) to a
depth of 50 m, representing the geographical area
encompassing the distribution of our focal species. This was
used to estimate the niche requirements of the modeled spe-
cies. We followed Rissler and Apodaca (2007) to avoid over-
parameterization and multi-collinearity of environmental var-
iables. A correlation matrix was built considering all variables
selected a priori following relevant criteria to seaweed eco-
physiology (Austin 2002). Relevant predictors representing
water motion, salinity, light, nutrients, and temperature were
maximum current velocity, minimum cloud cover, mean ni-
trate, and mean phosphate, concentrations, minimum salinity,
and maximum and minimum sea surface temperatures. We

modeled species living from the intertidal zone down to a
50-m depth, thus we used all “surface” variables. We then
identified highly correlated ones (r > 0.9) and excluded one
of them according to their biological relevance. We built an-
other correlation matrix and repeated the procedure until all
variables kept in the model had correlations < 0.9. The set of
predictor variables were then current velocity (m s-1), mini-
mum surface nitrate concentration μmol m-3, minimum sur-
face salinity (PSS) and maximum surface temperature (°C).
We performed data manipulation in raster package (Hijmans
2019) and correlation analysis on R version 3.5.1 (R Core
Team 2018).

We usedMaxEnt to generate the SDMs for L. flavicans and
G. skottsbergii. MaxEnt offers a good predictive performance
for presence-only data (Elith et al. 2006; Merow et al. 2013).
Models were built using linear, quadratic, product, and hinge
features inMaxEnt according to the number of unique records
for each species (Phillips and Dudík 2008). Initially, MaxEnt
models were fitted for each species using their full occurrence
data and all available predictors. We then excluded variables
that were not selected by MaxEnt (i.e., < 5% contribution) to
select the variables to fit the final model for each species.
Through this procedure, we used the most parsimonious
models according to the biology of the modeled species
(Austin 2002; Austin and Van Niel 2011). Model validation
was performed based on 100 replicated runs of partitioned
occurrence data using 80% for training the model and 20%
for testing it. Accuracy was evaluated based on one threshold-
independent measure, the area under the (receiver operating
characteristic) curve (AUC; Fielding and Bell 1997) and one
threshold-dependent measure. We calculated the true skill sta-
tistics (TSS; Allouche et al. 2006) using the equal training
sensitivity and specificityMaxEnt threshold (i.e., same chance
of correctly predicting positive and negative observations).
Values above the threshold are presences and those below
are absences. An AUC value of ≤ 0.5 indicates a model no
better than random and a value of 1 indicates a model present-
ing perfect discrimination (Fielding and Bell 1997). TSS
values varied from − 1 to 1. The values below 0 represent
predictions no better than random and 1 represents perfect
predictions (Allouche et al. 2006). Final models were pro-
duced for each species using 100% of the occurrences to build
the predictions.

We projected our final models on to future environmental
conditions, obtained from the 5th Coupled Model
Intercomparison Project (CMIP5) of the Intergovernmental
Panel on Climate Change (IPCC), to predict likely distribu-
tional shifts of L. flavicans and G. skottsbergii by 2050. Such
climate change conditions follow a scenario of representative
concentration pathway (RCP) 2.6 and a scenario of RCP 8.5
(IPCC 2014). The RCP 2.6 scenario is more optimistic, with
the increase in atmospheric CO2 concentration reaching ~
490 ppm before 2100 (van Vuuren et al. 2011) and decreasing
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withmean temperature increases of 0.3 to 1.7 °C (Collins et al.
2013). The RCP 8.5 predicts an increase in atmospheric CO2

concentration reaching ~ 1370 ppm (van Vuuren et al. 2011)
and continuing to increase with mean temperature increases of
2.6 to 4.8 °C (Collins et al. 2013) by 2100. Both scenarios’
predictions were obtained from Bio-ORACLE2 (Assis et al.
2017). They were produced by averaging data from three dis-
tinct CMIP5 models: the CCSM4—Community Climate
System Model 4, the HadGEM2-ES—Hadley Centre Global
Environmental Model 2 (Earth System), and MIROC5—
Model for Interdisciplinary Research on Climate 5 (Assis
et al. 2017).

We transformed our models into binary rasters of presence-
absence based on habitat suitability using the equal training
sensitivity and specificityMaxEnt threshold.We estimated the
projected habitat loss for L. flavicans and G. skottsbergii, as
the displacement or shift, measured in degrees latitude, based
on their current distributions and those under RCP 2.6 and
RCP 8.5 along the coast of Subantarctic South America.

Results

Our onsite, literature, and database searches, followed by
cleaning of gathered data to remove sampling bias, yielded a
dataset of 91 unique localities with L. flavicans present and a
dataset of 168 unique localities with G. skottsbergii present in
the Subantarctic tip of South America. These records yielded
models with fair performance for both species, L. flavicans
(AUC = 0.93 ± 0.01, TSS = 0.68 ± 0.05) and G. skottsbergii
(AUC = 0.84 ± 0.01, TSS = 0.44 ± 0.06). Regardless of the
geographical distribution of the modeled species, maximum
sea surface temperature was the main predictor variable,
followed by minimum nitrate concentration, presenting the
highest gain contribution and being selected for both species’
models of their projected distribution by the year 2050
(Table 1). Current velocity and minimum PSS showed no gain
contribution to either L. flavicans’ or G. skottsbergii’s
projected distribution models.

The projected habitat suitability presented a fair agreement
with the known current distribution of both seaweed species
across the Subantarctic shorelines of South America (Fig. 1).
Model projections under future climate conditions (RCP 8.5
and RCP 2.6) show notable shifts in distribution, with higher
habitat suitability “scores” (yellow, orange in Fig. 1) shifting
south poleward for both species, and slightly eastward
(L. flavicans). Important range reductions are predicted for
these commercially important species by 2050 (Figs. 1 and 2).

Binary presence-absence maps for L. flavicans and
G. skottsbergii, based on the equal training sensitivity and
specificity threshold, show a decrease in the overall distribu-
tional area for both species upon contrasting current versus
projected range distribution (Fig. 2). At RCP 2.6, the reduc-
tion in occurrence and persistence probabilities was similar for
L. flavicans (presence reduced by 56% of its present-day
range) and for G. skottsbergii (presence reduced by 53% of
its present range). But at RCP 8.5, lower occurrence and per-
sistence probabilities were forecasted for G. skottsbergii than
for L. flavicans, with their presence reduced by 53% and 46%
of their present-day range, respectively (Fig. 2). The latitudi-
nal, south poleward habitat displacement pattern under both
RCP scenarios shows L. flavicans’ range distribution reduced
by a latitude shift of > 1° south (RCP 2.6 and 8.5) and
G. skottsbergii’s range distribution reduced by a latitude shift
of > 1° south at RCP 2.6 and of ~ 2° south at RCP 8.5 from
their current occupation (Fig. 3) to the year 2050.

Discussion

Climate-induced distributional shifts of key, habitat-forming
species of commercial importance can have severe socio-
economic and socio-ecological impacts at local and regional
scales. We present the first quantitative projection of the ef-
fects of climate change on the natural range distribution of
seaweed species of significant biological and marketable in-
terest in the subpolar tip of South America. In the unique
ecoregion of the Cape Horn Biosphere Reserve and Chile-

Table 1 Mean and standard deviation of the predictor variable’s
contribution to model projections on climate-induced shifts in range
distribution of two biologically and commercially important seaweed
species in Subantarctic South America: Lessonia flavicans and
Gigartina skottsbergii. Shown are the number of samples for training/

testing and the evaluation scores: the area under the curve (AUC) and
the true skill statistics (TSS) for the models’ validation (splitting data in
80% for training and 20% for testing) and the evaluation scores for the
final models (using 100% of data)

Validation
models

Final models

Min surface
nitrate

Max surface
temperature

Training
samples

Testing
samples

Training
AUC

Testing AUC TSS Training
AUC

TSS

Gigartina skottsbergii 12.5
(± 1.0)

87.5
(± 1.0)

133 33 0.84
(± 0.01)

0.82
(± 0.03)

0.44
(± 0.07)

0.84 0.49

Lessonia flavicans 24.5
(± 4.9)

75.5
(± 4.9)

72 18 0.94
(± 0.00)

0.93
(± 0.02)

0.70
(± 0.05)

0.93 0.68

J Appl Phycol



Argentina’s Subantarctic archipelago, L. flavicans and
G. skottsbergii play crucial socio-economic, cultural, and biolog-
ical roles similar to those of many Laminariales and Fucales in
temperate regions (Wiencke and Amsler 2012; Ojeda et al.
2018). But global climate change and its environmental conse-
quences (e.g., rising ocean temperature, ice melt, sea level rise)
threaten their persistence and the goods and services they pro-
vide. Our projection of the SDMs for L. flavicans and
G. skottsbergii to the Subantarctic archipelago’s environmental
conditions as early as 30–35 years into the (near) future displays
a significant south poleward shift in the predicted and realized
northern range limits, and consequently reduced niche size for
both algae species. The poleward retraction of the species range
seems to be driven mainly by temperature, but nutrient availabil-
ity in these subpolar waters is also key to the seaweeds’ physio-
logical performance (Fraser 2016; Franco et al. 2018;
Williamson et al. 2019). Maximum sea surface temperature
was a direct range-limiting factor for L. flavicans and
G. skottsbergii, as was minimum nitrate concentrations. This
may suggest that these two species could be more sensitive
and/or have lower physio-evolutionary adaptation means to in-
creasing seawater temperatures, and accordingly reduced nutrient
levels, than other marine taxa in subpolar habitats.

Both L. flavicans and G. skottsbergii in the Subantarctic
western Atlantic and Eastern Pacific occur along the shoreline

environments where seawater temperature and nitrate concen-
trations are tightly correlated (Ayers and Strutton 2013). In
general, population persistence and recruitment success of
cold-adapted marine algae decrease with rising water temper-
atures, together with low nutrients (Muth et al. 2019). This
makes seaweed populations worldwide vulnerable to immi-
nent global warming (Fraser 2016; Muth et al. 2019), espe-
cially the cold-adapted subpolar and polar species. In our
models, for instance, the main predictor variables selected
were maximum sea surface temperature and minimum nitrate
concentrations (e.g., Franco et al. 2018; Muth et al. 2019;
Table 1). Together, these variables showed the highest gain
contribution explaining L. flavicans and G. skottsbergii eco-
logical and biogeographic responses to climate changes (next
30–35 years) along the littoral Subantarctic tip of South
America. The potential effects of rising temperatures on the
stratification of the oceans’ upper mixed layer (e.g., upwelling
events) have been postulated for many coastal regions given
its consequent changes to the dynamics and availability of
nutrients, such as iron and nitrogen for foundation species
(primary producers; Flukes et al. 2015; Franco et al. 2018;
Moore et al. 2018; Oyarzún and Brierley 2019; Williamson
et al. 2019). Indeed, in some systems, upwelling regimes
(which generally promote cooling) are weakening due to ris-
ing sea-surface temperature (e.g., European marine systems),

Fig. 1 Predicted habitat suitability shifts under current (a, d) and future
climate trends: at RCP 2.6 (b, e) and RCP 8.5 (c, f) for two seaweed
species of significant socio-economic and socio-ecological importance

along the coastlines of the Subantarctic tip of South America: Lessonia
flavicans (a–c) and Gigartina skottsbergii (d–f) by the year 2050
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affecting seaweed eco-physiology (Franco et al. 2018 and
references therein). Rising temperatures are also reducing
the thickness and duration of snow and ice cover, which leads
to increased exposure of seaweeds to solar UV radiation
(Williamson et al. 2019). The Subantarctic South American
marine system is mainly stratified by salinity near the surface,
but unwanted thermal stratification could be introduced to the
system under globally altered climate regimes, affecting hy-
drographic features and biological productivity (e.g., Harley
et al. 2006; Franco et al. 2018; Moore et al. 2018; Iriarte
2018). This will change nitrate/nutrient–rich water dynamics
and availability for L. flavicans and G. skottsbergii’s physiol-
ogy, productivity, and distribution.

The knowledge gained in recent years on the interactive ef-
fects of climate change factors (e.g., temperature) and ozone
depletion on marine ecosystems ratifies the importance of re-
search considering synergies between environmental factors
(Williamson et al. 2019). Such interactive climate change effects
might limit the seaweeds’ most sensitive life phases: spore re-
cruitment and normal development of embryos (e.g., Nielsen
et al. 2014; Muth et al. 2019), as well as growth, reproduction,
physiology, and survival (Flukes et al. 2015; Piñeiro et al. 2017;
Franco et al. 2018;Muth et al. 2019; Oyarzún and Brierley 2019;
Williamson et al. 2019). Substantial declines of habitat-forming
seaweeds similar to our study species (e.g., giant kelp

Macrocystis pyrifera,Phyllospora comosa) in other littoral zones
of the Southern Hemisphere were also attributed to above-
average seawater temperatures and its associated influx of
nutrient-poor waters (e.g., Eastern Australia; Wernberg et al.
2011; Flukes et al. 2015). Not only biomass but also seaweeds’
quality is affected when protective compounds produced by al-
gae increase with solar exposure (Harley et al. 2006; Williamson
et al. 2019). This lowers the quality of commercial seaweeds
(e.g., L. flavicans, G. skottsbergii) and that of their dependent
fish and invertebrates of high marketable value as well (e.g.,
sea urchins Pseudechinus magellanicus or king crab Lithodes
santolla). We therefore advise that future seaweed SDMs in
sub-polar regions integrate data from multi-factor experiments
(e.g., recruitment), from multiple environmental conditions
(e.g., temperature, solar radiation, upwelling current regimes),
and from algal physiology (e.g., photosynthesis). This is central
to aid estimates of mechanistic and/or correlative climate-
induced shifting in habitat distribution of bio- and socio-
economically key species and its plausible aftermath.

Climate-induced environmental changes cascade across
different trophic levels. Changes to herbivory, for instance,
have been linked to worldwide ocean warming, showing a
poleward range shift of tropical herbivores and consequent
deforestation of temperate algal forests of vital, habitat-
forming species (Steneck et al. 2002; Franco et al. 2015,
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Fig. 2 Registered and predicted shifts in presence/absence of two
seaweed species of significant socio-economic and socio-ecological
importance along the coastlines of the Subantarctic tip of South

America: Lessonia flavicans (a–c) and Gigartina skottsbergii (d–f),
under current (a, d) and future climate trend scenarios (IPCC 2014):
RCP 2.6 (b, e) and RCP 8.5 (c, f) by the year 2050
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2018, Vergés et al. 2016). Such top-down seaweed deforesta-
tion from herbivory is not common in Subantarctic Chile
(Santelices and Ojeda 1984) and Argentina (Dayton 1985;
Steneck et al. 2002). But this may be only a matter of time,
as climate-driven “tropicalization” of temperate marine com-
munities is occurring globally and it has significant socio-
economic and management repercussions (Vergés et al.
2016; Oyarzún and Brierley 2019). Our results suggest that
these climate-driven shifting of habitat types can have major
consequences for habitat-forming primary producers such as
L. flavicans and G. skottsbergii (rising temperature, CO2

levels, UV radiation; Bischof et al. 1998; Steneck et al.
2002; Harley et al. 2006; Williamson et al. 2019) reducing
their latitudinal and depth ranges (Figs. 2 and 3). Other, less
climate-sensitive primary producers and seaweed species
could replace L. flavicans and G. skottsbergii in Chile’s and
Argentina’s Subantarctic shorelines, but this can be detrimen-
tal to the benthic habitats (e.g., Harley et al. 2006), to their
associated organisms of economic importance (e.g., king crab
Lithodes santolla), and to the coastal communities dependent
on them (e.g., Wiencke and Amsler 2012; Sudha 2017; Anis
et al. 2017; Iriarte 2018; Ojeda et al. 2018).

Despite the great utility of SDMs to identify influential vari-
ables restricting suitable habitat for bio-commercially important

seaweed populations, uncertainties are part of any predictive
modeling approach (Cheung et al. 2009, Austin and Van Niel
2011). Reliable absence data for instance, are difficult to gather
and may be overestimated for species with cryptic life phases,
such as seaweeds’ spore stages (e.g., Ranc et al. 2017). We com-
bined occurrence records and suitable habitat data to model
L. flavicans’ and G. skottsbergii’s future range, using GBIF data
to fit and apply the SDMs (Anderson et al. 2016). The informa-
tion from global datasets, used to calibrate the SDMs, include
data collected using different sampling, taxonomic, and observa-
tional methods, which can generate sampling bias (Anderson
et al. 2016; Ranc et al. 2017). Also, the predictive power of
SDMs may be biased when solar radiation measures and/or
physiology data—determining range boundaries (Franco et al.
2018)—are excluded from model parameters, or it may lose
power when extrapolated to new environments (Evans et al.
2016). It was beyond the scope of this study to include data on
L. flavicans’ orG. skottsbergii’s physiology (e.g., photosynthetic
parameters, such as chlorophyll fluorescence or electron transport
rate, light) from the 216 study sites to model their future range
distributions in the Subantarctic tip of South America. However,
we included the environmental parameters bio-physiologically
relevant to each species. We are currently gathering photosyn-
thetic and physiological data for both, and additional, endemic
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Fig. 3 Projected latitude shifts in degrees South polewards of two seaweed
species of significant socio-economic and socio-ecological importance
along the coastlines of the Subantarctic tip of South America: Lessonia

flavicans (a) and Gigartina skottsbergii (b) under current and future
climate trends, RCP 2.6 and RCP 8.5 (IPCC 2014) by the year 2050.
Black lines show the mean latitude shifts and 95% confidence intervals
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seaweed species in the region using interdisciplinary and com-
plementary approaches (e.g., genomic analyses, PAM-fluorome-
try, pigment concentrations; i.e., FONDECYT Grant #1180433
to AM). These data will be incorporated into our model param-
eterization in upcomingworks to strengthen their predictive pow-
er (Evans et al. 2016), their applicability to marine resource
management–conservation (Evans et al. 2016; Sofae et al.
2018) and to account for combined biotic and abiotic effects on
range distribution of marine organisms.

Among the most difficult challenges facing ecologists and
policy makers today is to understand how marine
ecosystems—and the commercial goods and services they
offer—will respond to novel environmental conditions caused
by climate changes (Harley et al. 2006). It is difficult to precisely
predict future temperatures, nutrients, solar radiation levels, CO2

concentrations, and other marine habitat conditions in the Chile-
Argentina Subantarctic archipelago. Future action recommenda-
tions could aim at increasing the resilience of marine communi-
ties to climate stressors, and at improved monitoring of abiotic
changes (e.g., Strain et al. 2015). These may include the use of
management tools of climate-driven environmental changes at
local and regional scales, and/or the use of remote sensing tools
tomonitor spatiotemporal variability in environmental conditions
(e.g., temperature, ice-cover, CO2) across local to global scales
(Cheung et al. 2009; Muth et al. 2019; Williamson et al. 2019).
Our results provide baseline information on the socio-ecological
fragility of commercially important and habitat-forming seaweed
species in Subantarctic marine habitats in response to upcoming
(30–35 years) environmental changes. These are vital data for
conservation and management of key natural resources in a bio-
logically, socio-ecologically, and ethno-culturally unique region
of the world.
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