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Context: Software performance may suffer regressions caused by source code changes. 
Measuring performance at each new software version is useful for early detection of 
performance regressions. However, systematically running benchmarks is often impractical 
(e.g., long running execution, prioritizing functional correctness over non-functional).
Objective: In this article, we propose Horizontal Profiling, a sampling technique to predict 
when a new revision may cause a regression by analyzing the source code and using run-
time information of a previous version. The goal of Horizontal Profiling is to reduce the 
performance testing overhead by benchmarking just software versions that contain costly 
source code changes.
Method: We present an evaluation in which we apply Horizontal Profiling to identify 
performance regressions of 17 software projects written in the Pharo programming 
language, totaling 1,288 software versions.
Results: Horizontal Profiling detects more than 80% of the regressions by benchmarking less 
than 20% of the versions. In addition, our experiments show that Horizontal Profiling has 
better precision and executes the benchmarks in less versions that the state of the art 
tools, under our benchmarks.
Conclusions: We conclude that by adequately characterizing the run-time information of 
a previous version, it is possible to determine if a new version is likely to introduce a 
performance regression or not. As a consequence, a significant fraction of the performance 
regressions are identified by benchmarking only a small fraction of the software versions.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Performance regressions are caused by source code changes made along the software development process. Identify 
which software version introduces a performance regression is important for addressing performance regressions. Measuring 
and comparing the performance of each software version under the same workload is a common technique to spot which 
version causes the performance regression. However, sometimes measuring the performance of each software version is 
impractical for different factors, including: i) the high-overhead of the benchmark execution [9], ii) difficulty in identifying 
multiple executions to achieve comparable performance measurements [8], and iii) the amount of software versions released 
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by day [9]. Furthermore, besides the performance testing activities, developers first need to test if the new version remains 
functional. Functional regression testing could also be a considerable time-consuming activity [12].

Understanding how and what source code changes affect software performance may help reduce the overhead associated 
to performance regression testing. For instance, given a particular source code change one may anticipate whether or not it 
could affect software performance. Diverse empirical studies analyze performance bug reports to better understand the roots 
of performance bugs [9,10,14]. However, these studies voluntarily ignore performance regressions that are not reported as a 
bug or bug-fix.

Previous work This paper is an extension of a paper presented in ICPE’16 [1]. In this previous work, we conducted an 
empirical study of real-world performance variations detected after analyzing the performance evolution of 17 open source 
projects along 1,288 software versions [1]. In particular, this study addressed two research questions:

• RQ1: Are performance variations mostly caused by modifications of the same methods? This question is particular critical to 
understand where performance variations stem from. Consider a method m that causes a performance regression when 
it is modified. It is likely that modifying m once more will impact the performance. Measuring the portion of “risky” 
methods may be relevant for statically predicting the impact a code revision may have.

• RQ2: What are the recurrent source code changes that affect performance along software evolution? More precisely, we are 
interested in determining which source code changes mostly affect program performance along software evolution and 
in which context. If performance variations actually do match identified source code changes, then it is posible to judge 
the impact of a given source code change on performance.

Our study reveals a number of facts for the source code changes that affect the performance of the 17 open source 
systems we analyzed:

• Most performance variations are caused by source code changes made in different methods. Therefore, keeping track of 
methods that participated in previous performance variations is not a good option to detect performance variations.

• Most source code changes that cause a performance variation are directly related to method call addition, deletion or 
swap.

Horizontal profiling Based on these findings, we also proposed Horizontal Profiling, a sampling technique to statically identify 
versions that may introduce a performance regression [1]. Horizontal Profiling collects run-time metrics periodically (e.g.,
every k versions) and uses these metrics to analyze the impact of each software version on performance. Horizontal Profiling
assigns a cost to each source code change based on the run-time history. The goal of Horizontal Profiling is to reduce the 
performance testing overhead by benchmarking just software versions that contain costly source code changes. Assessing 
the accuracy of Horizontal Profiling leads to the third research question:

• RQ3: How well can Horizontal Profiling prioritize the software versions and reduce the performance testing overhead? This ques-
tion is relevant since the goal of Horizontal Profiling is to reduce the performance regression testing overhead by only 
benchmarking designated versions. We are interested in measuring the balance between the overhead of exercising 
Horizontal Profiling and the accuracy of the prioritization.

We evaluated our technique over 1,125 software versions. By profiling the execution of only 17% of the versions, Hori-
zontal Profiling is able to identify 83% of the performance regressions greater than 5% and 100% of the regressions greater 
than 50%.

PerfScope Related to our approach, Huang et al. [9] propose a technique to measure the risk of introducing performance 
regressions of a source code change, together with a tool PerfScope. PerfScope uses a static approach to measure the risk of 
a software version based on the worst case analysis. PerfScope categorizes the source code change (i.e., extreme, high, and 
low) and assigns a risk score to each category. Both approaches rely on the fact that most performance regressions depend 
on 1) how expensive the involved source changes are and 2) how frequently these changes are executed.

Empirical comparison In this paper extension, we present an empirical comparison between Horizontal Profiling and a Pharo 
implementation of PerfScope. We argue that PerfScope may not accurately assess the risk of performance regression issues in 
dynamic languages, like the Pharo programming language. In order to support our hypothesis we address a fourth research 
question.

• RQ4: How well does Horizontal Profiling perform compared to the state-of-the-art risk analysis tools using a dynamically typed 
language? We are interested in comparing how well these approaches predict if a new software version introduces a 
performance regression or not, in terms of precision and recall.
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We found that Horizontal Profiling can more accurately estimate the expensiveness and frequency of source code changes. 
As a consequence, it has a better precision and executes the benchmarks in less versions than PerfScope, under our bench-
marks. By using a dedicated profiling technique, Horizontal Profiling does not require painful manual tuning, and it performs 
well, independently of the performance regression threshold.

Outline Section 2 motivates our work thought an empirical study about the roots of performance variations. Section 3
presents and evaluates the cost model based on the run-time history. Section 4 compares our proposed technique with the 
state-of-the-art risk analysis tools. Section 5 discusses threats to validity we face and how we are addressing them. Section 6
overviews related work. Section 7 concludes and presents an overview of our future work.

2. Understanding performance variations

To address our first two research questions. We conduct our study around the Pharo programming language.1 Our deci-
sion is motivated by a number of factors: First, Pharo offers an extended and flexible reflective API, which is essential for 
iteratively executing benchmarks over multiple application versions and executions. Second, application instrumentation and 
monitoring its execution are also cheap and with a low overhead. Third, the computational model of Pharo is uniform and 
very simple, which means that applications for which we have no knowledge are easy to download, compile and execute.

Pharo has a different syntax compared with C-like languages. Readers unfamiliar with the syntax of Pharo might need an 
introduction to the Pharo Syntax to better understand the examples presented in this paper. For this purpose, we provide 
equivalent expressions for common cases in Table A.11 in the Appendix section.

2.1. The Pharo programming language

Pharo is an emerging object-oriented programming language that is close to Python and Ruby. Pharo’s syntax follows the 
one of Smalltalk, and Pharo has a minimal core and few but strong principles. In Pharo, sending a message is the primitive 
syntactic construction from which all computations are expressed. Loops, object creations, and conditional branches are 
all realized via sending message. In addition, the virtual machine of Pharo is relatively simple, which greatly reduces the 
number of source of bias. The simplicity of both the language and executing environment greatly mitigate possible biases 
resulting from the technical challenges we have to address to run benchmark over multiple software revisions.

Although we conducted our experiment using Pharo, we have no indication that our results and claims are not applicable 
to other programming languages and environments.

2.2. Projects under study

We pick 1,288 release versions of 17 software projects from the Pharo ecosystem stored on the Pharo forges (Squeak-
Source,2 SqueakSource33 and SmalltakHub4). The set of considered projects has a broad range of application: user interface 
frameworks (Morphic and Spec), a source code highlighter (Shout), visualization engines (Roassal and Mondrian), an HTTP 
networking tool (Zinc), parsers (PetitParser, NeoCSV, XMLSupport, XPath, NeoJSON and Soup), a chart builder (GraphET), a 
regular expression checker (Regex), an object inspector (GTInspector) and code browsers and editors (Nautilus and Rubric). 
Table A.12 describes each of the considered projects.

Table 1 summarizes each one of these projects and gives the number of defined classes and methods along software 
evolution. It also shows the number of lines of code (LOC) per project.

We chose these applications for our study for a number of reasons: (i) they are actively supported and represent relevant 
assets for the Pharo community. (ii) The community is friendly and interested in collaborating with researchers. As a result, 
developers are accessible for us to ask questions about their projects.

2.3. Source code changes

Before reviewing variation of performance, we analyze how source code changes are distributed along all the methods 
of each software project. Such analysis is important to contrast performance evolution later on.

Let M be the number of times that a method is modified along software versions of each software project. Fig. 1 gives 
the distribution of variable M of all projects under study. The y-axis is the percentage of methods, and x-axis is the number 
of modifications. One method has been modified 14 times. In total, 83% of the methods are simply defined without being 
modified in subsequent versions of the application (M = 0).

There are 2, 846 methods (11%) modified only once (M = 1) in the analyzed versions. Only 6% of the methods are 
modified more than once (M > 1). Table 2 gives the number of methods that: i) are not modified (M = 0), ii) are modified 

1 http://pharo .org.
2 http://www.squeaksource .com/.
3 http://ss3 .gemstone .com/.
4 http://smalltalkhub .com/.

http://pharo.org
http://www.squeaksource.com/
http://ss3.gemstone.com/
http://smalltalkhub.com/
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Table 1
Projects under study.

Project Versions LOC Classes Methods

Morphic 214 41,404 285 7,385
Spec 270 10,863 404 3,981
Nautilus 214 11,077 173 2012
Mondrian 145 12,149 245 2,103
Roassal 150 6,347 227 1,690
Rubric 83 10,043 173 2,896
Zinc 21 6,547 149 1,606
GraphET 82 1,094 51 464
NeoCSV 10 8,093 9 125
XMLSupport 22 3,273 118 1,699
Regex 13 4,060 39 309
Shout 16 2,276 18 320
PetitParser 7 2,011 63 578
XPath 10 1,367 93 813
GTInspector 17 665 17 128
Soup 6 1,606 26 280
NeoJSON 8 700 16 139

Total 1,288 130,386 2,106 26,528

Fig. 1. Source Code Changes histogram at method level.

Table 2
M = number of times that a method is modified.

Project Methods M = 0 M = 1 M > 14

Morphic 7,385 6,810 (92%) 474 ( 6%) 101 (1%)
Spec 3,981 2,888 (73%) 730 (18%) 363 (9%)
Rubric 2,896 2,413 (83%) 362 (13%) 121 (4%)
Mondrian 2,103 1,361 (65%) 146 (7%) 596 (28%)
Nautilus 2,012 1,646 (82%) 248 (12%) 118 (6%)
XMLSupport 1,699 1,293 (76%) 276 (16%) 130 (8%)
Roassal 1,690 1,379 (82%) 232 (14%) 79 (5%)
Zinc 1,606 1,431 (89%) 139 (9%) 36 (2%)
XPath 813 780 (96%) 33 (4%) 0 (0%)
PetitParser 578 505 (87%) 66 (11%) 7 (1%)
GraphET 464 354 (76%) 70 (15%) 40 (9%)
Shout 320 304 (95%) 12 (4%) 4 (1%)
Regex 309 303 (98%) 5 (2%) 1 (0%)
Soup 280 269 (96%) 11 (4%) 0 (0%)
NeoJSON 139 131 (94%) 7 (5%) 1 (1%)
GTInspector 128 119 (93%) 0 (0%) 9 (7%)
NeoCSV 125 84 (67%) 35 (28%) 6 (5%)

Total 26,528 22,070 (83%) 2,846 (11%) 1,612 (6%)

only once (M = 1), and iii) are modified more than once (M > 1) for each software project. We found that in all but one 
project, the number of methods modified more than once are relatively small compared to the number of methods that 
are modified only once. The Mondrian project is clearly an outlier since 28% of its methods are modified twice or more. A 
discussion with the authors of Mondrian reveals the application went through long and laborious maintenance phases on a 
reduced set of particular classes.

Similarly, we analyzed the occurrence of class modification: 59% of the classes remain unmodified after their creation, 
14% of the classes are modified once (i.e., at least one method has been modified), and 27% of the classes are modified more 
than once.
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2.4. Benchmarks

In order to get reliable and repeatable execution footprints, we select a number of benchmarks for each considered 
application. Each benchmark is a representative execution scenario that we will carefully measure. Several of the applications 
already come with a set of benchmarks. If no benchmarks were available, we directly contacted the authors and they kindly 
provided benchmarks for us. Since these benchmarks have been written by the authors, they are likely to cover part of the 
application for which its performance is crucial.

At that stage, some benchmarks have to be worked or adapted to make them runnable on a great portion of each 
application history. The benchmarks we considered are therefore generic and do not directly involve features that have 
been recently introduced. Identifying the set of benchmarks runnable over numerous software versions is particularly time 
consuming since we had to test each benchmark over a sequence of try-fix-repeat. We have 39 executable benchmarks 
runnable over a large portion of the versions.

All the application versions and the metrics associated with the benchmarks are available online.5

2.5. Execution time measurements

Having a good execution time estimation is challenging, because there are many factors that may affect the mea-
surements, for instance, the just-in-time compiler and no deterministic garbage collection. To reduce the bias in our 
measurements, we follow three actions:

• Warming-up. We execute the benchmarks a number of times before start our measurements.
• Compteur. We use the Compteur profiler, it uses the number of sent message for estimate the average execution time 

of a given benchmark [2]. In particular, since most of computation in Pharo is done by sending messages (even for 
the control structures and loops) the execution time has a very high correlation with the number of sent messages. 
Therefore, counting messages provides more deterministic and replicable results, which is crucial in an empirical study.

• Multiple executions. Besides the great advantages of message counting, it is necessary consider that the number of sent 
message have a small variation mainly due to the hash values (i.e., used on dictionaries), which are generated by the 
Pharo Virtual Machine in a non-deterministic fashion. Even do, it have been show that this variation is small, below 
1% [2]. To reduce such variation, we execute the benchmark 5 times (after the warming up session) and use the media 
for our experiments.

2.6. Performance variations of modified methods

A software commit may introduce a scattered source code change, spread over a number of methods and classes. We 
found 4,458 method modifications among 1,288 analyzed software versions. Each software version introduces 3.46 method 
modifications on average. As a consequence, a performance variation may be caused by multiple method source code 
changes within the same commit.

We carefully conducted a quantitative study about source code changes that directly affect method performance. Let V
be the number of times that a method is modified and becomes slower or faster after the modification. We consider that 
the execution time of a method varies if the absolute value of the variation of the accumulated execution time between two 
consecutive versions of the method is greater than a threshold. In our situation, we consider threshold = 5% over the total 
execution time of the benchmark. Below 5%, it appears that the variations may be due to technical consideration, such as 
inaccuracy of the profiler [2].

Fig. 2 gives the distribution of V for all methods of the projects under study. In total, we found 150 method modifications 
where the modified method becomes slower or faster. These modifications are made over 111 methods; 91 methods are 
modified only once (V = 1) and 20 more than once (V > 1). Table 3 gives the number of methods for each software project.

False positive However, not all these 150 modifications are related to the method performance variations because there are 
a number of false-positives. Consider the change made in the open method on the class ROMondrianViewBuilder. Example code 
with a leading “-” is from the previous version, while code with a leading “+” is in the current version. Unmarked code 
(without a leading “-” or “+”) is in both versions.

ROMondrianViewBuilder>>open
| whiteBox realView |
self applyLayout.
self populateMenuOn: viewStack.

− ^ stack open
+ ^ viewStack open

5 http://users .dcc .uchile .cl /~jsandova /hydra/.

http://users.dcc.uchile.cl/~jsandova/hydra/
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Fig. 2. Performance Variations of Modified Methods (threshold = 5%), 111 methods are here reported.

Table 3
V = number of times that a method is modified and becomes slower/faster after 
the modification. (threshold = 5%).

Project Methods V = 0 V = 1 V > 1

Morphic 7,385 7,382 (100%) 2 (0%) 1 (0%)
Spec 3,981 3,944 (99%) 24 (1%) 13 (0%)
Rubric 2,896 2,896 (100%) 0 (0%) 0 (0%)
Mondrian 2,103 2,091 (99%) 11 (1%) 1 (0%)
Nautilus 2,012 2,008 (100%) 4 (0%) 0 (0%)
XMLSupport 1,699 1,689 (99%) 10 (1%) 0 (0%)
Roassal 1,690 1,675 (99%) 14 (1%) 1 (0%)
Zinc 1,606 1,597 (99%) 7 (0%) 2 (0%)
XPath 813 813 (100%) 0 (0%) 0 (0%)
PetitParser 578 566 (98%) 12 (2%) 0 (0%)
GraphET 464 459 (99%) 3 (1%) 2 (0%)
Shout 320 320 (100%) 0 (0%) 0 (0%)
Regex 309 309 (100%) 0 (0%) 0 (0%)
Soup 280 280 (100%) 0 (0%) 0 (0%)
NeoJSON 139 138 (99%) 1 (1%) 0 (0%)
GTInspector 128 128 (100%) 0 (0%) 0 (0%)
NeoCSV 125 119 (95%) 5 (4%) 1 (1%)

Total 26,528 26,417(99.6%) 91(0.33%) 20(0.07%)

This modification is only a variable renaming: the variable stack has been renamed into viewStack. Our measurement indicates 
that this method is now slower, which is odd since a variable renaming should not be the culprit of a performance variation. 
A deeper look at the method called by open reveals that the method applyLayout is also slower. Therefore, we conclude that 
open is slower because of a slower dependent method, and not because of its modification. Such a method is a false positive 
and its code modification should not be considered as the cause of the performance variation.

Manually cleaning the data We manually revised the 150 method variations by comparing the call-graph (obtained during 
the execution) and the source code modification. We then manually revised the source code (as we just did with the method 
open). In total, we found 66 method modifications (44%) that are not related with the method performance variation. The 
remaining 84 method modifications (56%) cause a performance variation in the modified method. These modifications are 
distributed along 11 projects; Table 4 gives the distribution by project.

Summary We found that 84 method modifications that cause a performance variation (regression or improvement) were 
done over 67 methods, which means 1.25 modifications per method. Table 4 shows the ratio between method modifications 
and methods with performance regression is less than two in all projects. In addition, we found that the these methods 
were modified a number of times along source code evolution without causing a performance variation. Therefore, we 
answer our first research question as follows:
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Table 4
Method modifications that affect method performance (R = regression, I = im-
provement, R/I = regression in some benchmarks and Improvement in others).

Project Method modifications Involved 
methods

Mod. by 
methodR I R/I Total

Spec 19 9 0 28 16 1.75
Roassal 7 5 0 12 11 1.09
Zinc 2 1 4 7 7 1.00
Mondrian 5 3 0 8 7 1.14
XMLSupport 6 0 0 6 6 1.00
GraphET 4 3 0 7 5 1.4
NeoCSV 0 5 0 5 5 1.00
PetitParser 5 0 0 5 5 1.00
Morphic 2 1 0 3 2 1.50
Nautilus 2 0 0 2 2 1.00
NeoJSON 0 1 0 1 1 1.00

Total 52 28 4 84 67 1.25

RQ1: Are performance variations mostly caused by modifications of the same methods? Most performance variations 
were caused by source code changes made in different methods. Therefore, keeping track of methods that participated 
in previous performance variations is not a good option to detect performance variations.

2.7. Negative performance variations: author feedback

Accurately identifying the root of a negative performance variation is difficult. We investigate this by surveying authors 
of method modifications causing a negative variation. From the 84 method modifications mentioned, we obtained author 
feedback for 21 of them. Each of 21 method modifications is the cause of a negative variation greater than 5%. We also pro-
vided the benchmarks to the authors since it may be that the authors causing a regression are not aware of the application 
benchmarks. These methods are spread over four projects (Roassal, Mondrian, GraphET, and PetitParser). Each author was 
contacted by email and we discussed the method modification causing the regression.

For 6 (29%) out of 21 modifications, the authors were aware of the variation at the time of the modification. The authors 
therefore consciously and intentionally made the method slower by adding or improving functionalities. We also asked 
them whether the regression could be avoided while preserving the functionalities. They answered that they could not 
immediately see an alternative to avoid or reduce the performance variation.

For 5 (24%) of the modifications, authors did not know that their new method revision caused a performance variation. 
However, authors acknowledged the variation and were able to propose an alternative method revision that partially or 
completely removes the negative performance variation.

For the 10 remaining modifications, the authors did not know that they caused a performance variation and no alterna-
tive could be proposed to improve the situation.

This small and informal survey of practitioners indicates that a significant number of performance negative variation are 
apparently inevitable. On the other hand, such incertitude expressed by the authors regarding the presence of a negative 
variation and providing change alternative highlights the relevance of our study and research effort.

2.8. Categorizing source code changes that affect method performance

This section analyzes the cause of all source code changes that affect method performance. We manually inspected the 
method source code changes and the corresponding performance variation. We then classify the source code changes into 
different categories based on the abstract syntax tree modifications and the context in which the change is used. In our 
study, we consider only code changes that are the culprits for performance variation (regression or improvement), ignoring 
the other non-related source code changes.

Subsequently, recurrent or significant source code changes are described. Each source code change has a title, a brief 
description, followed by one source code example taken from the examined projects.

Method call addition This source code change adds expensive method calls that directly affect the method performance. 
This situation occurs 24 times (29%) in our set of 84 method modifications, all these modifications cause performance 
regressions. Consider the following example:

GETDiagramBuilder>>openIn: aROView
self diagram displayIn: aROView.
+ self relocateView
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The performance of openIn: dropped after having inserted the call to relocateView.

Method call swap This source code change replaces a method call with another one. Such a new call may be either more 
or less expensive than the original call. This source change occurs 24 times (29%) in our set of 84 method modifications; 
where 15 of them cause a performance regression and 9 a performance improvement.

MOBoundedShape>>heightFor: anElement
^ anElement
− cachedNamed: #cacheheightFor:
− ifAbsentInitializeWith: [ self computeHeightFor: anElement ]
+ cacheNamed: #cacheheightFor:
+ of: self
+ ifAbsentInitializeWith: [ self computeHeightFor: anElement ]

The performance of heightFor: dropped after having swapped the call to cacheNamed:ifAbsentInitializeWith by
cacheNamed: of:ifAbsentInitializeWith.

Method call deletion This source code change deletes expensive method calls in the method definition. This pattern occurs 
14 times (17%) in our set of 84 method modifications - all these modifications cause performance improvements.

MOGraphElement>>resetMetricCaches
− self removeAttributesMatching: ''cache∗''
+ cache := nil.

This code change follows the intuition that removing a method call makes the application faster.

Complete method change This category groups the source code changes that cannot be categorized in one of these situations, 
because there are many changes in the method that contribute to the performance variation (i.e., a combination of method 
call additions and swaps). We have seen 9 complete method rewrites (11%) among the 84 considered method modifications.

Loop addition This source code change adds a loop (i.e., while, for) and a number of method calls that are frequently 
executed inside the loop. We have seen 5 occurrences of this pattern (6%) - all of them cause a performance regression.

ROMondrianViewBuilder>>buildEdgeFrom:to:for:
| edge |
edge := (ROEdge on: anObject from: fromNode to: toNode) + shape.

+ selfDefinedInteraction do: [:int | int value: edge ].
^ edge

Change object field value This source code change sets a new value in an object field causing performance variations in the 
methods that depend on that field. This pattern occurs 2 times in the whole set of method modifications we have analyzed.

GETVerticalBarDiagram>>getElementsFromModels
^ rawElements with: self models do: [ :ele :model |

+ ele height: (barHeight abs).
count := count + 1].

On this example, the method height: is a variable accessor for the variable height defined on the object ele.

Conditional block addition This source code change adds a condition and a set of instructions. These instructions are exe-
cuted upon the condition. This pattern occurs 2 times in the whole set of method modifications we analyzed. Both of them 
cause a performance improvement.

ZnHeaders>>normalizeHeaderKey:
+ (CommonHeaders includes: string) ifTrue: [ ^ string ].

^ (ZnUtils isCapitalizedString: string)
ifTrue: [ string ]
ifFalse: [ ZnUtils capitalizeString: string ]

Changing condition expression This source code change modifies the condition of a conditional statement. This change could 
introduce a variation by changing the method control flow and/or the evaluation of the new condition expression is faster/s-
lower. This pattern occurs 2 times in the whole set of method modifications we have analyzed.

NeoCSVWriter>>writeQuotedField:
| string |
string := object asString.
writeStream nextPut: $".
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Table 5
Source code changes that affect method performance (R= Regression, I= Improve-
ment, R/I = Regression in some benchmarks and Improvement in others).

Source code changes R I R/I Total

1 Method call additions 23 0 1 24 (29%)
2 Method call swaps 15 9 0 24 (29%)
3 Method call deletion 0 14 0 14 (17%)
4 Complete method change 6 0 3 9 (11%)
5 Loop Addition 5 0 0 5 (6%)
6 Change object field value 2 0 0 2 (2%)
7 Conditional block addition 0 2 0 2 (2%)
8 Changing condition expression 0 2 0 2 (2%)
9 Change method call scope 1 0 0 1 (1%)
10 Changing method parameter 0 1 0 1 (1%)

Total 52 28 4 84 (100%)

string do: [ :each |
− each = $"
+ each == $"

ifTrue: [ writeStream nextPut: $"; nextPut: $" ]
ifFalse: [ writeStream nextPut: each ] ].

writeStream nextPut: $"

The example above simply replaces the equal operation = by the identity comparison operator ==. The latter is signifi-
cantly faster.

Change method call scope This source code change moves a method call from one scope to another executed more or less 
frequently. We found 1 occurrence of this situation in the whole set of method modifications. Such a change resulted in a 
performance regression.

GETCompositeDiagram>>transElements
self elements do: [ :each | | trans actualX |

+ pixels := self getPixelsFromValue: each getValue.
(each isBig)

ifTrue: [ | pixels |
− pixels := self getPixelsFromValue: each getValue.
...

ifFalse: [ ^ self ].
...
]

Changing method parameter The following situation changes the parameter of a method call. We found only 1 occurrence 
of this situation in the whole set of method modifications.

ROMondrianViewBuilder>>buildEdgeFrom:to:for:
| edge |
edge := (ROEdge on: anObject from: fromNode to: toNode) + shape.

− selfDefinedInteraction do: [:int | int value: edge ].
+ selfDefinedInteraction do: [:int | int value: (Array with: edge) ].

^ edge'

Table 5 gives the frequency of each previously presented source code change.

Categorizing method calls Since most changes that cause a performance variation (patterns 1,2,3) involve a method call, we 
categorize the method call additions, deletions and swaps (totaling 62) in three different subcategories:

• Calls to external methods: 10% of the method calls correspond to method of external projects (i.e., dependent projects).
• Calls to recently defined methods: 39% of the method calls correspond to method that are defined in the same commit. 

For instance, a commit that defines a new method and adds method calls to this method.
• Calls to existing project methods: 51% of the method calls correspond to project methods that were defined in previous 

versions.

Summary In total, we found that 73% of the source code changes that cause a performance variation are directly related to 
method call addition, deletion or swap (patterns 1,2,3). This percentage varies between 60% and 100% in all projects, with 
the only exception of the Zinc project that has a 29%; most Zinc performance variations were caused by complete method 
changes. Therefore, we answer our second research question as follows:
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Table 6
Comparison of source code changes that cause a variation with the changes that 
do not cause a variation (R = regression, I = improvement, R/I = regression in some 
benchmarks and Improvement in others).

Source code changes Total Perf. variations

R I R/I Total

Method call additions 231 23 0 1 24(10.39%)
Method call deletions 119 0 14 0 14(11.76%)
Method call swap 321 15 9 0 24 (7.48%)
Loop additions 8 5 0 0 5(62.5%)

RQ2: What are the recurrent source code changes that affect performance along software evolution? Most source 
code changes that cause a performance variation are directly related to method call addition, deletion or swap.

2.9. Triggering a performance variation

To investigate whether a kind of change could impact the method performance we compare changes that caused a 
performance variation with those that do not. For this analysis, we consider the source code changes: loop addition, method 
call addition, method call deletion and method call swap.6

To fairly compare between changes that affect performance and changes that do not affect performance, we consider 
changes in methods that are executed by our benchmark set. Table 6 shows the number of times that a source code change 
was done along software versions of all projects (Total), and the number of times that a source code change caused a 
performance variation (Perf. Variation) greater than 5% over the total execution time of the benchmark.

Table 6 shows that these four source code changes are frequently done along source code evolution; however just a 
small number of instances of these changes cause a performance variation. After manually analyzing all changes that cause 
a variation, we conclude that there are mainly two factors that contribute to the performance variation:

• Method call executions. The number of times that a method call is executed plays an important role to determine if this 
change can cause a performance regression. We found that 92% of source code changes were made over a frequently 
executed source code section.

• Method call cost. The cost of a method call is important for determining the grade of performance variation. We found 
that 7 (8%) method calls additions/deletions were only executed once and cause a performance regression greater than 
5%. In the other 92% the performance varies depending on how many times the method call is executed and the cost of 
each method call execution.

We believe these factors are good indicators to decide when a source code change could introduce performance varia-
tion. We support this assumption by using this criteria to detect performance regressions, as we describe in the following 
sections.

3. Horizontal profiling

We define Horizontal Profiling as a technique to statically detect performance regressions based on benchmark execution 
history. The rationale behind Horizontal Profiling is that if a software execution becomes slow for a repeatedly identified 
situation (e.g., particular method modification), then the situation can be exploited to reduce the performance regression 
testing overhead.

3.1. LITO: a horizontal profiler

We built LITO to statically identify software versions that introduce a performance regression. LITO takes as input (i) 
the source code of a software version Vn and (ii) the profile (obtained from a traditional code execution profiler) of the 
benchmarks execution on a previous software version Vm . LITO identifies source code changes in the analyzed software 
version Vn , and determines if that version is likely to introduce a performance regression or not.

The provided execution profile is obtained from a dedicated code execution profiler and is used to infer component 
dependencies and loop invariants. As discussed later on, LITO is particularly accurate even if Vm is a version distant from 
Vn .

6 These changes correspond the top-4 most common changes, with the exception of “Complete method change” which we did not consider in the analysis 
since it is not straightforward in detecting this pattern automatically.
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Fig. 3. LITO cost model example.

Using our approach, practitioners prioritize the performance analysis in the selected versions by LITO, without the need 
to carry out costly benchmark executions for all versions. The gain here is significant since LITO helps identify software 
commits that may or may not introduce a performance variation.

Execution profile LITO runs the benchmarks each k versions to collect run-time information (e.g., each ten versions, k = 10). 
Based on the study presented in previous sections, LITO considers three aspects to collect run-time information in each 
sample:

• Control flow – LITO records sections of the source code and method calls that are executed. This allows LITO to ignore 
changes made in source code sections that are not executed by the benchmarks (e.g., a code block associated with an if

condition or a method that is never executed).
• Number of executions – As we presented in the previous sections, the method call cost itself is not enough to detect 

possible performance regressions. Therefore LITO records the number of times that methods and loops are executed.
• Method call cost – LITO estimates for each method m (i) the accumulated total execution cost and (ii) the average 

execution cost for calling m once during the benchmark executions. Note that LITO uses the notion of cost as a proxy of 
the execution time. We denote u as the unit of time we use in our cost model. We could have used a direct time unit 
as milliseconds, however it has been shown that counting the number of sent messages is significantly more accurate 
and this metric is more stable than estimating the execution time [2].

LITO cost model LITO abstracts all source code changes as a set of method call additions and/or deletions. To LITO, a method 
call swap is abstracted as a method call addition and deletion. Block additions such as loops and conditional blocks are 
abstracted as a set of method call additions.

The LITO cost model is illustrated in Fig. 3. Consider the modification made in the method parseOn: in the class 
PPSequenceParser. In this method revision, one line has been removed and two have been added: two method call addi-
tions (remember and restore:) and one deletion (position:). In order to determine whether the new version of parseOn: is slower or 
faster than the original version, we need to estimate how the two call additions compare with the call deletion in terms of 
execution time. This estimation is based on an execution profile.

The LITO cost model assesses whether a software version introduces a performance regression for a particular bench-
mark. The cost of each call addition and deletion depends therefore on the benchmark b when the execution profile is 
produced.

We consider an execution profile obtained from the execution of a benchmark on the version of the application that 
contains the original definition of parseOn:. LITO determines whether the revised version of parseOn: does or does not introduce 
a performance regression based on the execution profile of the original version of parseOn:.

The execution profile indicates the number of times that each block contained in the method parseOn: is executed. It 
further indicates the number of executions of the code block contained in the iteration (i.e., do: [ :index | ... ]). The profile also 
gives the number of times the code block contained in the ifTrue: statement is executed. In Fig. 3, the method parseOn: is 
executed 10 times, the iteration block is executed 100 times (i.e., 10 times per single execution of parseOn: on average) and 
the conditional block is executed 50 times (e.g., 0.5 times per single execution of parseOn: on average).

The execution profile also has the cost of each method call. On the example, the method parseOn: costs 1000u, and remember

100u, implying that remember is 10 times faster to execute than parseOn:. Where u refers to the number of times the send 
message bytecode is executed by the virtual machine [2].

The modification cost estimates the cost difference between the new version and original version of a method. On the 
example, the modification cost of method parseOn: is 8500u, meaning that the method parseOn: spends 8500u more than the 
previous version for a given benchmark b. For instance, if the benchmark b execution cost is 10,000u, then the new version 
of the method parseOn: results in a performance regression of 85%.
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The average cost of calling each method is obtained by dividing the total accumulated cost of a method m by the number 
of times m has been executed during a benchmark execution. In our example, calling remember has an average cost of 100u. 
The theoretical cost of a method call addition m is assessed by multiplying the cost of calling m and the number of times 
that it would be executed based on the execution profile (Fig. 3 right hand).

Let Ai be a method call addition of a given method modification and D j a method call deletion. Let costb be a function 
that returns the average cost of a method call when executing benchmark b, and execb a function that returns the number 
of times a method call is executed. Both functions lookup the respective information in the last execution sample gathered 
by LITO.

Let MCb(m) be the cost of modifying the method m for a benchmark b, na the number of method call additions and nd
the number of method call deletions. The method modification cost is the sum of the cost of all method call additions less 
the cost of all method call deletions.

MCb(m) =
na∑

i=1

costb(Ai) ∗ execb(Ai) −
nd∑

j=1

costb(D j) ∗ execb(D j).

Let C be the cost of all method modifications of a software version, and m the number of modified methods; we therefore 
have:

C[v,b] =
m∈v∑

MCb(m)

In case we have C[v, b] > 0 for a particular version v and a benchmark b, we then consider that version v introduces a 
performance regression.

New method, loop addition, and conditions Not all the methods may have a computed cost. For example, a new method 
for which no historical data is available may incur a regression. In such a case, we statically determine the cost for code 
modification with no historical profiling data.

We qualify as fast a method that is returning a constant value, an accessor / mutator, or doing arithmetic or logic 
operations. A fast method receives the lowest method cost obtained from the previous execution profile. All other methods 
receive a high cost, the maximal cost of all the methods in the execution profile.

In the case when a method is modified with a new loop addition or a conditional block, no cost has been associated 
with it. LITO hypothesizes that the conditional block will be executed and the loop will be executed the same number of 
times as the most executed loop in the execution profile.

The high cost we give to new methods, loop additions, and conditions is voluntarily conservative. It assumes that these 
additions may trigger a regression. As we show in Table 5, loop and conditional block additions represent 6% and 2%, 
respectively, of the source code changes that affect software performance.

Detecting method call additions and deletions Horizontal profiling also depends on accurately detecting method call additions 
and deletions. LITO uses a very simple strategy to detect these method call differences. LITO takes as input two software 
versions, it contrasts the versions method by method through their abstract syntax tree (AST). Consider two versions of 
the same method m and m′ , where m′ is the newer version of the method. The strategy is to find all the nodes of both 
trees that are equivalent. We consider that two nodes of the AST are equivalent if they have the same values (i.e., receiver, 
method name, and arguments) and the same path to the root. As consequence, the method call nodes of m that have not a 
equivalent in m′ are considered deleted, and the nodes that exist in m′ and does not in m are considered added. For instance, 
when a developer move a line in to a loop block, this line will have a different path to the root in the tree. Therefore, the 
algorithm will consider two changes a deletion and an addition. Our initially attempt, prior having the algorithm we just 
described, was to solely rely on methods names and method signature. However, this is very fragile when a method is 
renamed (history is then lost). In this naive initial approach, the method is considered new and it will be a worst case 
scenario as we describe in the previous paragraph. This is a common problem when contrasting source code in different 
versions. However, in next sections we show that this fact have few impact in our benchmark. Note also that other approach 
have the same limitation.

Mapping run-time information Once the method call additions and deletions are located. LITO maps each method call with 
its associated cost and the number of executions from the profiling history. We use the method signature to search the 
method call cost in the profiling history. For the number of executions, we search the closest block closure node in the 
Abstract Syntax Tree (i.e., the closest loop) from the method call to the root, then we search an equivalent node in the 
profiling history to determine how many times this block was executed in the past. Using the same definition of equivalence 
presented in previous paragraph. Note that in Smalltalk the loops and conditions are represented as a block closures node in 
the Abstract Syntax Tree. If the block closure node does not have an equivalent in the profiling history then as we mention 
before, we take the worst case scenario described in previous paragraphs.
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Table 7
Detecting performance regressions with LITO using a threshold = 5% and a sample rate of 20 (ver = versions, Perf. Reg. = Performance Regressions).

Project Ver. Selected 
versions

Perf. 
Reg.

Detected 
Perf. Reg.

Undetected 
Perf. Reg.

Perf. evolution 
by benchmark

Spec 267 43 (16%) 11 8 (73%) 3

Nautilus 199 64 (32%) 5 5 (100%) 0

Mondrian 144 9 (6%) 2 2 (100%) 0

Roassal 141 26 (18%) 3 3 (100%) 0

Morphic 135 8 (6%) 2 1 (50%) 1

GraphET 68 20 (29%) 5 4 (80%) 1

Rubric 64 2 (3%) 0 0 (100%) 0

XMLSupport 18 8 (44%) 4 4 (100%) 0

Zinc 18 2 (11%) 0 0 (100%) 0

GTInspector 16 1 (6%) 1 1 (100%) 0

Shout 15 0 (0%) 1 0 (0%) 1

Regex 12 1 (8%) 1 1 (100%) 0

NeoCSV 9 3 (33%) 0 0 (100%) 0

NeoJSON 7 0 (0%) 0 0 (100%) 0

PetitParser 6 1 (17%) 1 1 (100%) 0

Soup 4 0 (0%) 0 0 (100%) 0

XPath 2 0 (0%) 0 0 (100%) 0

Total 1125 188 (16.7%) 36 30 (83.3%) 6 (16.7%)

Project dependencies An application may depend on externally provided libraries or frameworks. As previously discussed 
(Section 2), a performance regression perceived by using an application may be in fact located in a dependent and external 
application. LITO takes such analyses into account when profiling benchmark executions. The generated profile execution 
contains runtime information not only of the profiled application but also of all the dependent code.

During our experiment, we had to ignore some dependencies when analyzing the Nautilus project. Nautilus depends on 
two external libraries: ClassOrganizer and RPackage. LITO uses these two libraries. We exclude these two dependencies in 
order to simplify our analysis and avoid unwanted hard-to-trace recursions. In the case of our experiment, any method call 
toward ClassOrganizer or RPackage is considered costly.

3.2. Evaluation

To answer our third research questionwe evaluate LITO using project versions where at least one benchmark can be 
executed. We use the following 3-step methodology to evaluate LITO:

S1. We run our benchmarks for all 1,125 software versions and measure performance regressions.
S2. We pick a sample of the benchmark executions, every k version, and apply our cost model on all the 1,125 software 

versions. Our cost model identifies software versions that introduce a performance regression.
S3. Contrasting the regressions found in S1 and S2. We measure the accuracy of our cost model.

Step S1 - Exhaustive benchmark execution Consider two successive versions, vi and vi−1 of a software project P and a bench-
mark b. Let μ[vi, b] be the mean execution time cost to execute benchmark b multiple times on version vi . The execution 
time cost is measured in terms of sent messages (u unit, as presented earlier). Since this metric has a great stability [2], 
we executed each benchmark only 5 times and took the average number of sent messages. It is known that the number of 
sent messages is linear to the execution time in Pharo [2] and have reproducible over multiple executions. fD We define the 
time difference between versions vi and vi−1 for a given benchmark b as:

D[vi,b] = μ[vi,b] − μ[vi−1,b] (1)

Consequently, the time variation is defined as:

�D[vi,b] = D[vi,b]
(2)
μ[vi−1,b]
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Fig. 4. The effect of the threshold on the percentage of detected performance regressions and the percentage of selected versions by LITO (> threshold).

For a given threshold, we say vi introduces a performance regression if exists a benchmark b j such that �D[vi, b j] ≥
threshold.

Step S2 - Applying the cost model Let C[vi, b] be the cost of all modifications made in version vi from vi−1; using the 
run-time history of benchmark b.

�C[vi,b] = C[vi,b]
μ[v j,b] (3)

We have j, the closest inferior version number that has been sampled at an interval k. If �C[vi , b] ≥ threshold in at least 
one benchmark, then LITO considers that version vi may introduce a performance regression.

Step S3 - Contrasting �C[vi, b] with �D[vi, b] The cost model previously described (Section 3.1) is designed to favor the 
identification of performance regression. Such design is reflected in the high cost given to new methods, loop additions, and 
conditions. We therefore do not consider performance optimizations in our evaluation.

Results We initially analyze the software versions with LITO and collect the run-time information each k = 20 versions, and 
a threshold of 5%. LITO is therefore looking for all the versions that introduce a performance regression of at least 5% in one 
of the benchmarks. These benchmarks are executed every 20 software versions to produce execution profiles that are used 
for all the software versions. LITO uses the cost model described previously to assess whether a software version introduces 
a regression or not.

Table 7 gives the results of each software project. During this process LITO selected 189 costly versions that represent 
16.7% of the total analyzed versions. These selected versions contain 83.3% of the versions that effectively introduce a 
performance regression greater than 5%. In other words, based on the applications we have analyzed, practitioners could 
detect 83.3% of the performance regressions by running the benchmarks on just 16.8% of all versions, picked at a regular 
interval from the total software source code history.

We further analyze the performance regression that LITO was not able to detect and we found two main reasons. First, 
a number of performance regressions were cause by changes in the project dependencies that we were not able to collect 
runtime information. Second, in some cases the run-time information was outdated. For instance, a method that was cheap 
to execute when LITO took the sample become expensive the run-time information was not updated until the next sam-
ple. Therefore, a number of performance regressions were not detected due the sampling strategy for collecting run-time 
information.

Threshold To understand the impact of the threshold in our cost model, we carry out the experiment described above, but 
using different thresholds (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50). Fig. 4 shows the percentage of selected versions 
and detected performance regressions by LITO. Fig. 4 shows that LITO detects all regressions greater than 50% (total-
ing 10). The figure also shows that the number of selected versions decreases as the threshold increases, meaning that 
LITO safely discards more versions because their cost is not high enough to cause a regression with a greater thresh-
old.
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Fig. 5. Evaluating LITO with sample rates of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. (threshold = 5, 10, 20, 30 and 50).

Therefore, we answer our third research question as follows:

RQ3: How well can Horizontal Profiling prioritize the software versions and reduce the performance testing over-
head? By profiling the execution of only 17% of the versions, our model is able to identify 83% of the performance 
regressions greater than 5% and 100% of the regressions greater than 50%. Such versions are picked at a regular 
interval from the software source code history.

Sample rate To understand the effect of the sample rate, we repeated the experiment using multiple sample rates (10, 
20, 30, 40, 50, 60, 70, 80, 90 and 100). Fig. 5 shows the percentage of performance regressions detected by LITO with 
the different sample rates. As expected, the accuracy of LITO increased when we take a sample of the execution every 
10 versions (sample rate = 10). Consequently the accuracy gets worse when we take a greater sample rate (i.e., >= 50). 
Fig. 5 shows that sampling a software source code history each 100 versions allows LITO to detect a great portion of the 
performance regression, for any threshold lower than 50%. Independent of the sample rate, LITO detects a considerable 
fraction of performance regressions. For instance, by taking only one sample LITO is able to detect between the 72 and 80% 
of the performance regressions depending of the performance regression threshold. Independent of the sample rate and the 
threshold, our results also show that LITO selects less than the 20% of the software versions.

Note that with a sample rate of 60 the recall is 100%. This is because the samples were taken close to the versions that 
introduce the performance regressions.

Overhead The time to statically analyze a software version depends on the number of methods, classes and lines of code. 
However, it is considerably cheaper than executing the benchmarks in a software version. For instance, LITO takes 12 sec-
onds (on average) to analyze each software version. On the other hand, each time that LITO collects the run-time information 
is seven times (on average) more expensive than executing the benchmarks. Because LITO instruments all method projects, 
and executes the benchmarks twice, the first one to collect the average time of each method and the second one to collect 
the number of executions of each source code section. Even with this, the complete process of prioritizing the versions and 
executing a performance testing over the prioritized versions is far less expensive than executing the benchmarks over all 
application versions.

For instance, in our experiment, the process of conducting exhaustive performance testing in all software versions takes 
218 hours; on the other hand, the process of prioritizing the versions and executing the benchmarks only in the prioritized 
versions takes 54 hours (25%).

4. Empirical comparison

Related to our approach, Huang et al. [9] proposed PerfScope, a technique to measure the risk of introducing performance 
regressions for a code commit. Both approaches, PerfScope and LITO’s Horizontal Profiling, rely on the fact that performance 
variations largely depend on 1) how expensive the involved source code changes are and 2) how frequently these changes 
are executed. As we discussed in previous sections, these two factors are good indicators to detect a large number of 
performance regressions.

To answer our fourth research question we carefully compare LITO against PerfScope, using applications written in Pharo, 
a dynamically typed object-oriented programming language. We therefore have implemented PerfScope in Pharo and run 
the experiment as described below.
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Table 8
Risk matrix of a change’s expensiveness and frequency [9].

Expensiveness Frequency

Frequent Normal Rare

Expensive Extreme High Moderate
Normal High Moderate Low
Minor Moderate Low Low

4.1. PerfScope

PerfScope categorizes each source code added in the newer version using a scale of risk levels: extreme, high, moderate
and low. This categorization is based on the expensiveness of the operation and the execution frequency, using Table 8. As 
presented in the original paper describing PerfScope [9], once the risk level distribution is measured, the total risk score of 
a new version is measured with the following formula:

risk_score = Nextreme ∗ 100 + Nhigh ∗ 10 + Nmoderate ∗ 1

100
+ Nlow ∗ 1

1000
(4)

Where Nx is the number of operations in the category x. If the risk_score is greater than a risk_score_threshold then Perf-
Scope considers the new version as risky, for instance, using a risk_score_threshold = 100 means that all new versions with 
a risk_score >= 100 are going to be considered risky. Therefore, the precision and recall depend on the risk_score_threshold
that needs to be manually set. Establishing a good risk_score_threshold requires some initial tuning, depending on the 
performance regression threshold.

4.1.1. Expensiveness
To estimate the expensiveness of a source code change PerfScope uses a static cost model. By using this cost model 

PerfScope determines if a change is expensive or not.

Code addition The cost model is focused only in code added in the new version. For instance, the expensiveness of added 
statements. The cost model emphasizes on relative cost rather than an absolute cost. PerfScope expresses the cost of an 
expression using an abstract unit, denoted as δ, instead of actual CPU cycles. The cost is measured depending on the 
expression.

This cost model is applied only to source code added in the new version.

• Method calls. A call instruction cost is equal to calling convention overhead plus the callee’s cost.
• Blocks. A block is a section of code which is grouped together. A block consists of one or more declarations and state-

ments. A block’s cost is a sum of the cost of those statements that live inside the basic block.
• Loops. We consider a loop as a code block that is continually repeated until a certain condition is reached. The cost 

of a loop is the cost of the code block multiplied by the number of times that this block will be executed. For loops, 
PerfScope tries to statically infer the trip count (maximum number of iterations). If its trip count can be statically inferred, 
then PerfScope multiplies the code block cost by the trip count. Otherwise, the loop is considered to be frequently 
executed and therefore categorized as expensive.

• Control flow. For control flows, PerfScope adopts the worst case, taking the maximum cost among the possible paths. 
For instance, consider the method parse MessagePattern of the class S H Parser ST 80 in the Shout project:

SHParserST80>>parseMessagePattern
self isName

ifTrue: [self parseUnaryMessagePattern]
ifFalse: [self isBinary

ifTrue: [self parseBinaryMessagePattern]
ifFalse: [self failUnless: self isKeyword.

self parseKeywordMessagePattern]]

It has three possible paths, where one path should be executed depending on the results of the boolean expressions 
self isName and self isBinary. PerfScope measures the cost of all possible paths, and takes the most costly.

• Operations. An operation has an arbitrary and manually set cost which could vary depending on the operands. For 
instance, + instruction has a cost of 1δ, ∗ has cost of 4δ.

Code deletion The model described above deals only with code addition. However, code changes can also be replaced or 
deleted statements (method calls in the case of Pharo). For PerfScope the cost of a deleted change is zero and the cost of 
replacing is only the cost of the new program elements. Because the code deletion cost can offset the total cost, and miss 
performance regressions. For instance, an inaccurate estimation of the method call deletion can lead to miss costly versions.
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Expensiveness thresholds Once the cost of the expression is measured, then PerfScope categorizes this expression as extreme, 
high, moderate or low. This categorization is done using thresholds (in terms of δ). Such thresholds may be computed by 
running the cost model on the whole program to obtain a cost distribution for functions and basic blocks.

4.1.2. Frequency
PerfScope analyzes the intra-procedural scope that a change lies in. If the change is enclosed in any loop and the trip 

count (maximum number of iterations) of this loop including all its parent loops is statically determined, the execution 
frequency of this change instruction is estimated by the product of these trip counts. If any enclosing loop has a non-
determined trip count, it is considered a frequently executed loop. If a code change lies in recursive functions, it is also 
considered to be a frequently executed loop.

Frequency thresholds Similarly to the instruction cost, PerfScope categorizes the context that may be executed: frequently, 
normal or rarely executed. This categorization is also done using a thresholds. Such thresholds may be automatically com-
puted by running the frequencies of the whole program [9].

4.2. PerfScope for Pharo

To compare PerfScope with LITO in the context of dynamic languages (which is the case of Pharo) and under the same 
benchmark, we implement PerfScope in the Pharo programming language. This subsection describes a number of consider-
ations we take to implement PerfScope in Pharo.

Method call expensiveness Since Pharo is a dynamically typed language, it is difficult to measure the cost of a method 
call. More precisely, it is difficult to statically detect which method is invoked by just knowing the method name and the 
arguments. For this reason, if a method call has more than one implementor, we first try to statically infer the possible 
types of the receiver by checking if the receiver is created in the same method by directly instantiating a class, or in the 
constructor of the class. If it is not possible and there are multiple possible types for the receiver, then we take the method 
with the maximum cost. For instance, consider the method nodes:using: of the class MOViewRenderer.

MOViewRenderer>>nodes: aCollection using: aShape
| nodes newNode |
...
nodes := aCollection collect:

[ :anEntity |
newNode := MONode new.
newNode model: anEntity.
...].

^ nodes

There are three method calls (collect:, new and model:). The cost of calling the method collect: is one (the overhead of the 
call) plus the cost to execute the method collect:. However, there are 22 possible method candidates of collect: and it is not 
possible to statically detect which of these 22 methods will be called. The method invoked during the execution depends on 
the class of the object aCollection, typically a subclass of the class Collection. In this case, we take the worst case and assume that 
the more expensive method will be called. On the other hand, we have the method call model:, the receiver of this method 
call is the variable newNode. The type of the variable newNode can be statically inferred, because it has been initialized in 
the same method. In the same fashion, the receiver of the method call new can be statically inferred, because the receiver 
is the same class and new is a class method. Note that this is the same criteria that LITO uses to look up the information 
of a method call in the profile history. If there are multiple implementors for a method call, LITO takes the worst case.

Operation expensiveness Since operations (i.e., +, −, ∗, /) are methods implemented in Pharo with primitives calls, we con-
sider that operations have a constant cost of 1δ, because there is only one message involved to call the primitive. Note that 
LITO uses a similar criteria.

Loop frequency PerfScope determines the trip count only if the loop has a constant bound limit. In the case of Pharo, most 
if not all loops are associated with object collections, and it is necessary to statically infer the size of the collection to 
determine the loop boundaries or the trip count.

Statically determining the size of a collection is a difficult task because it can grow and decrease over time. There are 
a number of expressions where the collection size and therefore the loop boundary can be statically determined. It usually 
occurs when the collection is created and used in the same method. For instance:

($a to: $z) do:[ :char | ... ].
(0 to: 256) do:[ :number |...].
#($a $e $i $o $u) do:[ :vocal | ...].
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Similarly to PerfScope we consider particular cases for the static analysis. For our implementation, we consider collec-
tions that are created in the same method than the loop, and their size can be statically inferred. We also considered the 
particular case of the method timesRepeat:

10 timesRepeat:[ ... ].

If it is not possible to statically infer the size, we consider that the loop could be executed frequently. Note that if PerfScope 
can not estimate the expensiveness or frequency of a code change, it assumes the worst case. Therefore, the change is 
considered expensive and frequently executed. This is because we cannot afford to miss potential risky versions. However, 
these situation could trigger a great number of false positives.

Detecting loops Another particular problem is that the loops are normally done by sending messages to the collections, 
where the loop body is passed as parameter. Therefore, it is difficult to determine if a message could be considered a loop. 
For instance, consider the following two expressions:

elements select: [ :each | ... ].
elements at: key ifAbsentPut:[ ... ].

Both expressions sent a code block as parameter, however just the first one executes the block a number of times, de-
pending on the size of the collection. For this reason, we need to evaluate if a code block could be executed multiple times. 
For our implementation, if the method name is registered in the standard protocol “enumerating” of the class Collection 
(i.e., do:, reject:), we consider that this message is a loop, and their arguments could be executed multiple times.

4.3. Methodology

For the experiments, we detect performance regression greater than 5%. We run PerfScope and the Naive approach under 
the same software versions that we use to evaluate LITO. We compare the different approaches in terms of precision, recall, 
and reduction:

• Precision, the percentage of selected versions that introduce a performance regression. For instance, a precision of 50% 
means that one out of two selected versions introduces a performance regression.

• Recall, the percentage of detected performance regressions. To measure this metric, we initially run the benchmarks in 
all versions and detect which versions introduce a performance regression. This metric measures how many of these 
versions are selected.

• Reduction, the percentage of versions that have not been selected, and therefore the benchmarks were not executed 
on them. This metric was introduced by Huang et al. [9]. The goal of the performance prediction tools is to run the 
benchmarks in the least amount of versions possible. The reduction represents the percentage of versions where no 
benchmarks is executed. For instance, we could have a reduction of 100% if we do not run the benchmark in any 
version, but we will not be able to detect any performance regression.

4.4. Baseline for comparison

We compare our approach with 2 performance prediction approaches: a naive approach, and PerfScope4Pharo.

• Naive Approach. It considers that a version is risky if at least one method call was added in the newer version. This 
naive approach ignores the source code changes done in test methods. In other words, this approach considers any new 
piece of code as expensive and frequently executed. This approach gives us a baseline to understand the importance of 
estimating the expensiveness and frequency of source code changes.

• PerfScope4Pharo. A PerfScope implementation in Pharo, as described in the previous sections.

PerfScope thresholds As we describe in Section 4.1, PerfScope uses three thresholds to perform its analysis. For the experi-
ment, we use the following thresholds.

• Expensiveness thresholds. Following the line of the PerfScope evaluation [9], we automatically computed these thresholds 
by running the cost model on the whole program to obtain a cost distribution for functions and basic blocks.

• Frequency thresholds. Similar to the previous point, we automatically computed these thresholds by running the frequen-
cies of the whole program [9].

• Risk_score_threshold. PerfScope measures the risk_score of each software version and uses a risk_score_threshold to mark 
the version as risky or not. Therefore, the precision, recall and reduction of PerfScope can vary depending on the 
chosen risk_score_threshold. To compare PerfScope with the other approaches, we evaluate PerfScope using different 
risk_score_threshold and pick the risk_score_threshold that has the better trade-off between reduction and recall.
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Fig. 6. PerfScope – Risk score tuning.

Fig. 7. LITO – sample rate effect on the precision, recall and reduction.

Risk score threshold computing We evaluate PerfScope using multiple thresholds. Fig. 6 gives the precision, recall and reduc-
tion of PerfScope for the different risk_score_threshold we used. Fig. 6 shows that a greater risk_score_threshold leads to a 
higher reduction, but a lower recall.

In the past PerfScope was evaluated using a risk_score _threshold = 200 which has multiple implications. For instance, 
a new version will be categorized as risky if it contains two or more source code changes categorized as extreme or 20 
changes flagged as high, among other possible combinations. In our case, if we use such threshold PerfScope detect less 
than the 60% of the performance regressions (Fig. 6). Since the goal is to execute the benchmarks in the least number of 
software versions and detect the greater amount of performance regressions, we pick a risk_score_threshold = 600 because 
this risk_score_threshold has the better trade-off between reduction and recall.

Note that to get a good risk_score_threshold for each project, we had to know in advance which versions introduce a 
regression or not. In practice, it means that we may need to execute the benchmarks in all versions, which is the problem 
we are trying to address. In addition, the goal of our comparison is to show that LITO does not need a previous threshold 
configuration and provide comparable results.

LITO sample rate Contrary to PerfScope, LITO does not depend on thresholds, but on the number of samples collected during 
the evolution. Fig. 7 shows the effect of the sample rate on the precision, recall and reduction. As we showed in previous 
sections, a sample rate of k = 20 (collecting run-time information each 20 versions) has a good trade off between reduction 
and recall (Fig. 7).

However, we argue that even with a “large” sample rate LITO can lead to good results. For this reason, we also compare 
LITO with a sample rate of k = 50. Using a sample rate of k = 50 means that we will take between 1 − 5 samples depending 
on the project, having 1.3 samples per project on average. Note that LITO needs at least one sample to do the analysis.

4.5. Comparison results

We evaluate PerfScope and the Naive approach under the same 1,125 software versions than LITO. Fig. 8 summarizes 
the results of LITO, PerfScope, and the Naive approach. It shows that PerfScope has better precision and reduction than 
the Naive approach, and LITO has better precision and reduction than PerfScope, even with a sample-rate of k = 50. Al-
though the difference of precision and recall is small between LITO and PerfScope, we have to consider that we compare 
LITO with the best configuration setup of PerfScope (risk_score_threshold = 600). Note that in practice, finding the optimal 
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Fig. 8. Comparison between different approaches, t = sample-rate.

Table 9
Precision, Recall and Reduction Comparison of PerfScope (PS) and LITO (LT) using k = 20.

Project Precision (%) Recall (%) Reduction (%)

PS LT PS LT PS LT

Spec 11 19 73 73 72 84
Nautilus 6 8 100 100 58 68
Mondrian 5 22 100 100 71 94
Roassal 7 12 100 100 67 82
Morphic 3 13 50 50 77 94
GraphET 13 20 20 80 88 71
Rubric 0 0 – – 98 97
XMLSupport 36 50 100 00 39 50
Zinc 0 0 – – 78 89
GTInspector – 100 0 100 100 100
Shout 0 – 0 0 87 100
Regex 50 100 100 100 83 92
NeoCSV 0 0 – – 56 67
NeoJSON 0 – – – 86 100
PetitParser 33 100 100 100 50 83
Soup – – – – 100 100
XPath 0 – – – 50 100

risk_score_threshold for PerfScope without executing the benchmarks in all versions is a difficult task and it needs to be 
done manually.

We found that the Naive approach discards 33% of software versions and finds 97% of software versions that introduce 
a performance regression. This means that just focusing the analysis in versions that contain method call additions we 
are able to reduce the analysis by benchmarking only the 67% of the software versions, and found almost all performance 
regressions. Note that not all performance regressions are caused by method call additions. As we discussed in the previous 
sections, a performance regression could be caused by multiple source code changes in the same version. Therefore, any 
approach that just considers method call additions is not able to detect the 100% of performance regressions. Besides this 
fact, the Naive approach has a better recall than LITO and PerfScope. However, it has the worst precision and reduction.

Results by project We also compare the results of LITO and PerfScope at project level. Table 9 gives the results by project. It 
shows that LITO has better precision and reduction in almost all the projects. The exceptions are the projects GraphET and 
Rubric. In the case of GraphET, PerfScope has better reduction, but it has lower recall than LITO. In the case of Rubric, the 
difference between reductions is minimal (only 1%).

Fig. 9 summarizes the precision, reduction and recall of the different approaches per project. It confirms that LITO has 
better precision and reduction even with a sample rate of k = 50. Note that there are a number of metrics that can not 
be computed depending on the project. For instance, the project GTInspector has one performance regression, but PerfScope 
does not select any versions (because the risk_score of all versions was smaller than the risk_score_threshold) and the 
precision of PerfScope can not be computed. On the other hand, LITO only selects the version that causes the performance 
regression and its precision is 100%. Fig. 9 compares only the metrics that can be computed by all approaches.

Therefore, we answer our fourth research question as follows:
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Fig. 9. Precision, reduction and recall between different approaches.

RQ4: How well does Horizontal Profiling perform compared to the state-of-the-art risk analysis tools using a dy-
namically typed language? LITO estimates with a greater accuracy the expensiveness and frequency of source code 
changes. As consequence, it has a higher precision and reduction than PerfScope under our benchmarks.

Table 10
Evaluation of PerfScope4Pharo and LITO over two additional projects (prec = precision, red = reduction, 
Run. = runnable).

Project Versions Reg. LITO (%) PerfScope4Pharo (%)

Total Run. Prec. Recall Red. Prec. Recall Red.

Roassal2 100 95 2 22 100 90,53 8 100 72,63
Artefact 100 52 1 9 100 78,84 6 100 65,38

4.6. Evaluation over new projects and versions

In the previous subsection we compare PerfScope4Pharo and LITO over the same versions that we used in the empirical 
study. Since we designed LITO based on the result of the empirical study, then LITO may be biased in favor of the perfor-
mance regressions that we manually analyzed. To address this threat to validity, we analyze 200 software versions obtained 
from two software systems. In this case, we are agnostic about roots of the performance variations. We use the same config-
uration setups of both tools (risk_score_threshold = 600 and sample-rate = 20). The results (Table 10) shows similar results 
to our previous experiments. Both tools have a recall of 100%, but LITO has better precision and reduction.

4.7. Discussion

Although, in previous section, we show that LITO has similar results than PerfScope, but without any preliminar config-
uration. We believe that our experiment also helped us to identify the advantages and disadvantages of each tool in the 
context of dynamic languages, which we discuss in this section.

LITO Advantages:

• LITO uses run-time information of benchmarks past executions. This allows LITO to estimate the expensiveness and 
frequency of source code changes more accurately.

• LITO does not need an initial manual tuning. Regardless of the sample rate, LITO performs better than PerfScope.
• In comparison to PerfScope, LITO considers method call deletions in the cost model. As a result, LITO has better reduction 

than PerfScope. LITO can consider method call deletions in the cost model because it uses the number of sent messages 
to estimate the average execution time. This metric has a small error margin. As a consequence, LITO can estimate the 
trade-off between deletions and additions accurately.

LITO disadvantages:

• LITO does not accurately estimate the frequency and expensiveness of new methods and loops, because new source 
code does not have an execution history. In these cases, LITO considers these changes expensive.

• Since Horizontal Profiling is a sampling technique, the accuracy of the analysis could change depending on the way that 
we take samples along software evolution.
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PerfScope disadvantages:

• Loop Boundaries. We perform a small experiment with PerfScope, when we use run-time information to categorize the 
method calls in three categories: expensive, normal, and minor. The results are similar, therefore we conclude that one 
of the main challenges of PerfScope is to statically detect loop boundaries, which is crucial in this kind of analysis. In 
fact, PerfScope original implementation is for C/C++, when it is possible to infer loop boundaries in many cases.

• Method Call Expensiveness. PerfScope relies on a good categorization of the expensiveness of a new method call. However, 
in a dynamic language, statically categorize the expensiveness is a difficult activity because the lack of a static type 
system. As a consequence, it is difficult to categorize a method call as “expensive”,“normal”, or “minor”. As such, if it is 
not possible to determine the implementor of a method call, the algorithm takes a worst case marking these method 
calls normally as “expensive”.

• Risk Score. Reflecting on the PerfScope cost model, the threshold may be abstracted as how many high, low, moderate 
and extreme changes should a new version have in order to consider it risky. For instance, a threshold of 200 may 
be reached with two extreme changes, or with one extreme and two high changes (see section Section 4.1). Therefore, 
setting an adequate threshold is not an easy task. For instance, only one method call addition may cause a major regres-
sion, and many method call additions may not cause a performance difference. In other words, the risk categorization 
(i.e., method call expensiveness and loop boundaries) plays an important role, but as we discuss in previous points it is 
not accurate. Another potential issue with the risk score are method call deletions. Essentially, a method call addition 
may cause a regression and a deletion may cause a speed up. Therefore, since the risk score do not consider method 
call deletions, it may trigger a number of false positives.

Baseline for comparison As we describe previously both approaches have a number disadvantages. We implement the Perf-
Scope risk model in Pharo in order to understand how these disadvantages affect the analysis in practice. Our results show 
that both approaches are applicable to Pharo and have comparables results. However, we show that the risk model highly 
depends of the risk threshold. In our experiment, we choose the optimal threshold for all projects. Although it is possible 
also pick an optimal threshold for each individual project, it would mean that the risk threshold is not generalizable across 
projects. Moreover, choosing the optimal threshold may involve running all versions, which is not practical.

Other source code changes In this experiment, we only consider method call additions and deletions. In previous sections, 
we show that there are different changes that could affect software performance. For instance, changing an object field, an 
argument or a condition expression. Huang et al. [9] propose an extension of PerfScope that implements slicing techniques 
to detect these kind of changes. This analysis is done after using the analysis with their model, and in independent fashion. 
We believe that using a slicing technique is still a good option even with LITO. We exclude from the comparison the slicing 
techniques, because if we use the same slicing infrastructure in both approaches, the comparison results should be similar.

Dynamic and reflective features of programming languages Dynamic and statically typed programming languages offer a num-
ber of dynamic and reflective features, such as reflection. In the particular case of Smalltalk, everything is done by sending 
messages, therefore LITO model will consider these cases as a normal method call. However, this may not be the case of 
other programming languages, such Java o C++. Therefore, there is not evidence how the cost model of LITO or PerfScope 
will behave with this languages. Our hypothesis is that these features should not affect too much the analysis, because 
Callau et al. shows that dynamic features are not use often in software projects [5]. In addition, they show that these 
features are mostly used in core libraries, such us programming tools and testing.

Sample rate We show that with different sample rates LITO has a good precision and recall. However, it is not clear what 
is the best strategy to select which version of the codebase to run the benchmarks. There are different alternatives to pick 
samples along the evolution. For instance, random sampling or a rule-based sample strategies. We plan to explore these 
different sampling strategies as future work.

Continuous performance monitoring This paper does a post mortem analysis of a number of project and software versions 
to show the effectiveness of our approach. It is relevant to highlight that horizontal profiling may be used together with 
a continuous integration setup. In this case, we should first collect run-time information on the first commit and then 
using this information for detect performance regression in the incoming versions. Then this run-time information may also 
update with different strategies. For instance, after 20 versions as we show in our experiment.

5. Threats to validity

To structure the threats to validity, we follow the Wohlin et al. [23] validity system.

Construct validity The method modifications we have manually identified may not be exhaustive. We analyzed method 
modifications that cause performance variations greater than 5%, over the total execution time of the benchmark. Analyzing 
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small performance variations, such as the one close to 5%, is important since it may sum up over multiple software revi-
sions. Detecting and analyzing smaller variations is difficult, because many factors may distort variance to the observable 
performance, such as inaccuracy of the profiler [2].

External validity This paper voluntarily focuses on the Pharo ecosystem. We believe this study provides relevant findings 
about the performance variation in the studied projects. We cannot be sure of how much the results generalize to other 
software projects beyond the specific scope this study was conducted. As future work, we will replicate our experiments for 
the JavaScript and Java ecosystem. In addition, we will analyze LITO’s performance with multi-thread applications.

Internal validity We cover diverse categories of software projects and representative software systems. To minimize the 
potential selection bias, we collect all possible release versions of each software project, without favoring or ignoring any 
particular version. We manually analyze each method modification twice: the first time to understand the root-cause of the 
performance variation and the second time to confirm the analysis.

Conclusion validity Having a fair comparison between Horizontal Profiling and Perfscope is challenging. We show that Hor-
izontal Profiling has comparable results with PerfScope under our benchmarks, but this difference is not significant. Our 
experiment reveals a high dependency of PerfScope to the risk_score_threshold. Although it is possible to find an optimal 
threshold configuration to achieve high precision and recall, it may require to execute all benchmarks in all versions which 
is what we trying to avoid at the beginning. However, our empirical comparison help us to illustrate the advantages of 
Horizontal Profiling regarding PerfScope in the context of dynamic languages, which is the case of the Pharo programming 
language.

6. Related work

Performance bug empirical studies Empirical studies over performance bug reports [10,18] provide a better understanding of 
the common root causes and patterns of performance bugs. These studies help practitioners save manual effort in perfor-
mance diagnosis and bug fixing. These performance bug reports are mainly collected from the tracking system or mailing 
list of the analyzed projects.

Zaman et al. [24] study the bug reports for performance and non-performance bugs in Firefox and Chrome. They studied 
how users perceive the bugs, how bugs are reported, what developers discuss about the bug causes and the bug patches. 
Their study is similar to that of Nistor et al. [17] but they go further by analyzing additional information for the bug reports. 
Nguyen et al. [16] interviewed the performance engineers responsible for an industrial software system, to understand these 
regression-causes.

Sandoval et al. [20] have studied performance evolution against software modifications and have identified a number of 
patterns from a semantic point of view. They describe a number of scenarios that affect performance over time from the 
intention of a software modification (vs the actual change as studied in this paper).

We focus our research on performance variations. In this sense we consider performance drops and improvements that 
are not reported as a bug or a bug-fix. We contrast the performance variations with the source code changes at method 
granularity. In addition, we analyze what kind of source code changes cause performance variations in a large variety of 
applications.

Performance bug detection and root-cause analysis Great advances have been made to automate the performance bug detec-
tion and root-cause analysis [7,15,21]. Jin et al. [10] propose a rule-based performance-bug detection using rules implied 
by patches to found unknown performance problems. Nguyen et al. [16] propose the mining of a regression-causes repos-
itory (where the results of performance tests and causes of past regressions are stored) to assist the performance team in 
identifying the regression-cause of a newly-identified regression. Bezemer et al. [3] propose an approach to guide perfor-
mance optimization processes and to help developers find performance bottlenecks via execution profile comparison. Heger 
et al. [8] propose an approach based on bisection and call context tree analysis to isolate the root cause of a performance 
regression caused by multiple software versions.

We improve the performance regression overhead by prioritizing the software versions. We believe that our work com-
plements these techniques in order to help developers address performance related issues. We do not attempt to detect 
performance regression bugs or provide root-cause diagnosis.

Performance regression testing prioritization Different strategies have been proposed in order to reduce the functional regres-
sion testing overhead, such as test case prioritization [6,19] and test suite reduction [4,11,13,25]. However, few projects have 
been able to reduce the performance regression testing overhead.

Huang et al. [9] propose a technique to measure the risk given to a code commit in introducing performance regressions. 
Their technique uses a full static approach to measure the risk of a software version based on worst case analysis. They 
automatically categorize the source code change (i.e., extreme, high, and low) and assign a risk score to each category; 
these scores may require an initial tuning. However, a fully static analysis may not accurately assess the risk of performance 
regression issues in dynamic languages. For instance, statically determining the loop boundaries may not be possible without 
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special annotations [22]. Dynamic features of programming languages such as dynamic dispatching, recursion and reflexion 
make this task more difficult.

In this paper we propose a hybrid (dynamic and static) technique to automatically prioritize the performance testing; it 
uses the run-time history to track the control flow and the loop boundaries. Our technique reduces a number of limitations 
of a fully static approach and does not need an initial tuning. We believe that these techniques can complement each other 
to provide a good support for developers and reduce the overhead of performance regression testing.

7. Conclusion

This paper studies the source code changes that affect software performance of 17 software projects along 1,288 software 
versions. We have identified 10 source code changes leading to a performance variation (improvement or regression). Based 
on our study, we propose a new approach, Horizontal Profiling, to reduce the performance testing overhead based on the 
run-time history. We showed that LITO performs better than the state-of-the-art tools.

As future work, we will extend our model to prioritize benchmarks and generalize Horizontal Profiling to identify memory 
and energy performance regressions.
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Appendix A. Pharo syntax

The Pharo model is very close to the one of Python and Ruby. The most relevant syntactic elements of Pharo are: a 
space between an object and a message name indicates a message send: object messageName; the dot separates statements: 
statement1. statement2; square brackets denotes code blocks or anonymous functions: [ statements ]; and single quotes delimit 
strings: ‘a string’. (See Table A.11.)

Table A.11
Pharo and Java syntax comparison.

Pharo Java

element height. element.height();
element width: defaultWidth. element.width(defaultWidth);
element width: defaultWidth height: defaultHeight element widthheight(defaultWidth,defaultHeight);
c := Color new Color c = new Color();
self this
super super
^object return object
array := #(1 2 3) Object[] array = {1,2,3};
(1 to:100) do:[ :each | ... ] for ( int each:= 1; each<=100; each++){ ... }
elements do:[ :each | ... ] for ( Object each: elements){ ... }

Table A.12
Project under study description.

Project Description

Morphic It is the Pharo’s graphical user interface. It is fully portable between operating systems. It works with graphical objects called Morphs.

Spec It is a framework in Pharo for defining user interfaces, allowing users to construct a variety of user interfaces. The goal of Spec is to 
reuse the logic and the visual composition of the widgets.

Rubric It is a deep refactoring of the Pharo text editor tool. Rubric has improve the performance to edit big texts and facilitates extensions.

Mondrian It is a library to describe and render graphs.

Nautilus It is the standard advanced development environment for developing smalltalk programs. Similar to Eclipse or IntelliJ but for Smalltalk.

XMLSupport It is the standard XML Parser in Pharo.

Roasssal It is a script based system for creating advanced interactive visualizations. Similar tu d3 in javascript.

Zinc It is a Smalltalk Framework to deal with HTTP networking protocols.

XPath It is a XPath Library in Smalltalk.

PetitParser It is a framework to build parsers in Smalltalk. It allow to dynamically reuse, compose, transform and extend grammars.

GraphET It is a library for Pharo which provides a builder to create interactive charts.

http://www.esug.org
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Table A.12 (continued)

Project Description

Shout It is the default source code highlighting mechanism of Pharo.

Regex It is a regex library.

Soup It is a Pharo library for scrapping HTML.

NeoJSON It is the Pharo standard library for parsing and creating JSON.

GTInspector It is a moldable domain-aware object inspector.

NeoCSV It is the Pharo standard library for parsing and creating CSV files

Artefact It is the Pharo standard library for creating PDF documents.
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