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MODELAMIENTO HIDRODINÁMICO DEL TRANSPORTE DE
PORTADORES DE CARGA FUERA DE EQUILIBRIO TÉRMICO EN UNA

CELDA SOLAR COMPUESTA POR UNA JUNTA PN

Se espera que la tercera generación de celdas solares mantenga los bajos costos de produc-
ción alcanzados actualmente, al mismo tiempo de mejorar considerablemente los niveles de
eficiencia. A medida que se desarrollan nuevos materiales y configuraciones, mejoras en el
manejo térmico son requeridas, tanto para el diseño como para operación. El presente trabajo
estudia el efecto de portadores de carga altamente energéticos, y fuera de equilibrio térmico,
en una celda solar de GaAs compuesta por una junta PN.

En primer lugar, se aplica una aproximación asintótica al modelo hidrodinámico obteniendo
simplificaciones válidas para la implementación numérica. Se obtiene la solución unidimensio-
nal en estado estacionario mediante la resolución iterativa del método de diferencias finitas.
Utilizando dicho modelo, el efecto de las condiciones de borde térmicas en el rendimiento
de la celda es estudiado. Mayores valores de potencia son alcanzados para bajas tempera-
turas de lattice y altas para los portadores de carga. Se obtiene una dependencia térmica
lineal entre el voltaje de circuito abierto y la temperatura de electrones en los bordes de
dVoc/dTn = 3,2 mV/K. Lo anterior es una consecuencia directa de la extracción de hot-
carriers, dado que el exceso de energía no es transformado en calor hacia la lattice.

Para mejorar la consistencia del modelo para trabajos futuros, los supuestos térmicos para los
hoyos son analizados mediante la comparación de la condición de equilibrio térmico con los
electrones y con la lattice. Se observa que, a menos que el balance térmico sea resuelto para
los hoyos, lo más razonable es considerarlos en equilibrio térmico con la lattice dado que, en
caso contrario, la mayor temperatura alcanzada por los electrones, junto con la mayor masa
efectiva de los hoyos, genera una distorsión en el campo eléctrico al mismo tiempo que una
alta recombinación en las cercanías de la junta, lo que no es esperado en estos dispositivos.

Finalmente, diferentes modelos de saturación de velocidad fueron comparados para obtener
la mejor representación del comportamiento de las bandas individuales. Se propone el uso del
modelo de Baccarani y Wordeman junto con un balance poblacional entre bandas de conduc-
ción para la densidad de electrones, para ser utilizado junto con el modelo hidrodinámico.
Los resultados de tiempos de relajación para momentum y energía, masa efectiva y velocidad
de drift son comparados con resultados de un estudio mediante el método de Monte Carlo.
Se obtiene un buen nivel de ajuste para la velocidad de drift, mientras que el resto de los
parámetros de transporte presenta mayores divergencias, especialmente en el rango medio de
campo eléctrico, donde la transferencia de electrones comienza. La modificación de la función
de distribución de población entre las bandas central y satélite podría llevar a resultados más
precisos y una mejor representación de los fenómenos térmicos al interior de la celda.
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HYDRODYNAMIC MODELING OF CHARGE CARRIERS TRANSPORT
OUT OF THERMAL EQUILIBRIUM ON A PN JUNCTION SOLAR CELL

Third generation solar cells are expected to maintain currently achieved low production costs
while greatly improving efficiency values. As new materials and configurations are developed,
a better thermal management of the devices is needed, both in design and operation. In the
present work, a study is performed on the effect of highly energetic, out of thermal equilibrium
charge carriers on a PN junction GaAs solar cell.

On the first place, an asymptotic approximation is performed on the full hydrodynamic
model, allowing to recognize valid simplifications for the numerical implementation. The
steady state, one-dimensional solution of a GaAs single junction solar cell is obtained itera-
tively through a finite difference scheme. Using this model, the effect of thermal boundary
conditions on the performance of the cell is studied. Higher values of power output are
obtained with low lattice temperature and high temperature for carriers. A positive value
of dVoc/dTn = 3.2 mV/K was obtained for the open circuit linear thermal dependence fac-
tor for electron temperature at the boundaries. This is a direct consequence of hot carrier
extraction, given that the excess of energy is not transformed into lattice heating.

In order to improve the consistency of the model for future works, the thermal assumption for
holes is analyzed comparing the condition of thermal equilibrium with electrons and lattice.
It is found that, unless energy balance is solved separately for holes, the most reasonable
assumption is to consider thermal equilibrium with the lattice, given that the higher temper-
atures reached by electrons, along with higher effective masses for holes, generate a distortion
in the electric field leading also to high recombination rates near the junction, which are not
expected for these devices.

Finally, different velocity saturation models were compared in order to obtain the best rep-
resentation for the behavior of individual bands. With this, the use of the Baccarani and
Wordeman model for velocity saturation, combined with a population balance between en-
ergy bands for electron density is proposed for its use with the hydrodynamic model. The
results for momentum and energy relaxation times, effective mass and drift velocity are com-
pared with results from a Monte Carlo study. A good fit is obtained for drift velocity, while
transport parameters show more divergence, especially in the mid-field range, where electron
transfer begins. The use of a different population distribution function between central and
satellite bands could lead to more accurate results and a better representation of the thermal
phenomena within solar cells.
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Chapter 1

Introduction

In recent years, solar photovoltaic (SPV) energy has become one of the major contributors
to the energy generation world wide, showing an increase in added capacity which not only
is expected to be sustained but even to accelerate in subsequent years. Figure 1.1, obtained
from a study by Bloomberg New Energy Finance [1], shows the new power generation capacity
additions worldwide divided by energy source and classified by renewable or fossil sources.
This chart shows how 2013 was a turning point where more renewable energies were used for
new power generation instead of fossil fuels. The trend of an increase in the addition of low
carbon emission energy sources along with a decrease in the use of fossil fuels is projected to
become even more significant.

Given the recent technological advances, in the year 2015 more than 50 GW were added of
SPV, surpassing 1% of the world’s electricity capacity. SPV is expected to become the largest
source of new electricity even under conservative considerations, assuming lower growth rate
than what it is currently experiencing. Higher participation of solar energy is something that
has been expected since the introduction of modern solar cells, given that it is considered to
be the only energy source that is available in large enough quantity to sustainably supply the
increasing energy demand in long term; but its penetration has occurred much more rapidly
than what was predicted. As can be seen in Fig.1.1, wind power is also currently experiencing
a similar expansion but it is expected to slow down because of its lower relative abundance.
Therefore, it is crucial to investigate in modern solar technologies. In this context, the present
thesis work aims to clarify some important concepts regarding solar cells. In particular we
focus on studying how hot-carriers affect solar cells. Understanding the physics of these
high-energy charge carriers could lead to the development of new technologies, as well as to
improve the management of current technologies under operating conditions.

According to the Global Status Report on renewable energies of 2016 by the Renewable En-
ergy Policy Network for the 21st Century, REN21 [2], this market expansion in most of the
world is due largely to the increasing competitiveness of solar PV, as well as to new govern-
ment programmes, rising demand for electricity and improving awareness of the potential of
SPV as countries seek to lessen pollution and CO2 emissions. Until recently, solar energy
demand was concentrated in wealthy countries, but the decreasing cost to efficiency ratio has
made possible that emerging countries in the developing world contribute significantly to the
global growth of SPV. This is the case of Chile, which ranked among the top 15 countries in
SPV capacity addition in 2015.
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1. INTRODUCTION

Figure 1.1: Power generation capacity additions in GW. Source: Bloomberg New
Energy Finance.

Chilean energy matrix is composed by many independent systems, being the most important
the Sistema Interconectado del Norte Grande (SING) and Sistema Interconectado Central
(SIC), which comprise 21.98% and 77.24% of the total installed capacity, respectively. The
installed capacity of electric power generation in both systems reaches 22.1 GW of which
15.4% corresponds to non-conventional renewable energies (NCRE) and 11.8% only to solar
and wind power1. In the year 2015, Chile installed over 0.4 GW of SPV energy, mostly in
very large-scale projects, with a year-end total exceeding 0.8 GW. This trend will persist
in the following years, given that during the last public tender for power generation, which
had a record average price of 47.6 USD/MWh, 60% of the awarded projects corresponded to
renewable energies.

An overall problem in countries with rapidly growing renewable energy supply has been the
grid saturation because of insufficient transmission capacity. This has been an issue the
previous years in Chile, where some renewable energy centrals have had to throw away up to
40% of their energy production. Nonetheless, a recent study led by the Ministry of Energy [3]
has shown that NCRE could comprise more than 40% of the grid capacity in an efficient way,
considering the fact that the SIC and SING systems will soon be interconnected. Concerning
SPV and WP, the study indicates that at least 20% can be incorporated annually without
making any adjustments to the current status of the system. Making some improvements 30%
could be reached while maintaining the economical optimum of the system. This agrees with
the report by REN21 which states that electricity market design is increasingly important,
and there is a need for new business models. The study itself claims to be conservative, which
means that there is still plenty of space for NCRE, and specifically SPV, to be integrated
into the grid.

While some countries have already occupied much of their available installation space, Chile
could benefit from the next generation technologies as they develop. Most of the SPV tech-
nologies in use nowadays are considered to be first generation. The leading technology among

1Data from the National Commission of Energy (CNE) corresponding to the month of August 2016.
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1. INTRODUCTION

them until now has been by far single-junction Silicon solar cells. These have the advantage
of being made from an abundant raw material which, however, needs to be processed into its
pure crystalline form, increasing the costs. Nevertheless, the price of developing this tech-
nology has decreased steadily in recent years given the progress in the know-how, advances
in technology and larger volumes of production, caused mainly by an increase in the demand
of clean energies. Although the efficiency of these cells has increased substantially, they have
a well known theoretical ceiling, which is known as the Schockley–Queisser limit. In 1961
Schockley and Queisser calculated a theoretical limit of 33.7% for a single junction solar cell,
using the detailed balance method[4]. The most important assumptions of this method were
that electrons and holes suffered no collisions. Therefore, any generated carrier would be
collected instantly, and that there is complete absorption for photons with energies above
the bandgap energy (Eg). Within these assumptions, an optimal bandgap separation can be
found which maximizes the theoretical efficiency. This optimum arises from a trade-off be-
tween more photons being captured and the decrease of open circuit voltage (Voc) along with
Eg. The record efficiency for a mono-crystalline Silicon solar cell under non-concentrated
light at 2016 is of 25%.

The second generation of photovoltaics arise from the premise that any mature solar cell
technology seems likely to evolve to the stage where costs are dominated by those of the
constituent materials [5]. In this sense, second generation PV consists mainly in thin-film
solar cells, which benefit from light trapping techniques, but have the same limitations as
the first generation in terms of maximum achievable efficiency. Among these technologies
are Copper Indium Gallium Selenide (CIGS) and Cadmium Teluride (CdTe) solar cells, with
record efficiencies of 22.3% and 22.1% respectively.

Third generation photovoltaic technologies aim to reduce one of the most important inef-
ficiencies in photovoltaic conversion which is the loss of energy due to an excess (or lack)
of energy from the photons with respect to Eg, while maintaining a low price per module.
Although the goal is the same, there are different approaches for its achievement. Figure 1.2
graphically presents the relationship between power conversion efficiency, module areal costs
and cost per peak Watt of energy production for different technologies, showing how next
generation technologies aim to surpass the SQ limit at lower costs.

The first and most renowned of these technologies are multi-junction or tandem solar cells,
which consist of using different bandgap materials, allowing for a larger portion of solar
light to be absorbed more efficiently. This is equivalent to stacking solar cells of different
bandgaps on top of each other, therefore a larger number of junctions means more efficient
light conversion. However, many difficulties arise at the bonding of materials, which need to
be lattice matched, increasing the costs of production. Current efficiency record for a tandem
solar cell is 46%, achieved at 2015 by a four junction cell under light concentration; the limit
according to a detailed balance for an infinite layer cell is of 86%[7]. Although this type of
cells are more expensive than single junctions, they have been expected to be competitive
with other technologies through the use of optics and light concentration.

A more recent concept are intermediate-band solar cells (IBSC), which use only one junction,
but with multiple narrow density of states within the bandgap forming an intermediate band.
Fermi level must be located within the IB in order for this concept to to be effective. This
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Figure 1.2: Relationship between power conversion efficiency, module areal costs
and cost per peak Watt (in $/Wp). [6].

additional states allow for sub-band absorption without the decrease in Voc associated to
a lower Eg. The latest approach in this context is the use of quantum dots (QD) for the
formation of these intermediate bands, which are placed between the P and N sides of the
junction. Quantum dot solar cells (QDSC) that show sub-bandgap absorption have been
successfully fabricated but present lower Voc. This decrease is attributed to non-radiative
recombination caused by imperfections originated from the growth techniques. An efficiency
of 11.3% has been achieved for this type of cells at this date.

Hot carrier solar cells (HCSC) are also a very recent concept that, in turn, pretend to trans-
form the energy of carriers generated from photons with energies above Eg (hot-carriers)
directly into electricity, before they are thermalized as heat to the lattice through phonons.
This process is normally very fast, in the order of less than a picosecond, hence the difficulty
of extracting these carriers. The excess of energy transported by hot-carriers can be exploited
in two forms: by being collected in energy selective contacts, or by generating new carriers
through impact ionization, also called multiple exciton generation (MEG). A detailed balance
limit of 86% has been calculated for this type of solar cells[8]. To this date, no successful
HCSC has been produced, and much research is being done for an appropriate energy se-
lective contact. Nevertheless, evidence of a hot-carrier photocurrent from an InGaAs single
quantum well solar cell has already been achieved [9].

Many efforts are also being made towards obtaining cells with very low costs of production.
Until recently, organic solar cells were the main research focus in this aspect, but the newly
developed perovskite solar cells have had many advances, being the fastest advancing solar
technology to date. Current record efficiency for organic solar cells is 11.8%, and 22.1% for
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perovskite cells.

Another option is to convert the solar spectrum into a narrower distribution of photons suited
to the bandgap of the solar cell. In this way, several sub-bandgap photons can be absorbed in
order to extract a photon with an energy above the bandgap in a process called up-conversion
(UC) or above-bandgap photons can reduced to multiple lower energy photons in a process
called down-conversion (DC). This method has shown few advances, but has the advantage
of being able to be used with any photovoltaic technology.

Whatever method is used for optimizing the transformation of solar light into electricity, it is
evident that high energy phenomena such as hot-carriers need to be studied in further detail
in order to improve the design of these technologies.

Macroscopic transport models have been widely used in semiconductor-device simulation in
general and in solar cells in particular. However, most of the modeling has been achieved
through drift-diffusion models or more simplified approaches as the depletion region approxi-
mation (DRA)[10]. In order to successfully represent higher energy phenomena, models with
higher orders of accuracy are needed. Among these, the most used are Energy Transfer
(ET) and Hydrodynamic (HD) models. These have been used since many years to simulate
high-energy phenomena such as velocity overshoot [11], electron shock waves [12], impact
ionization in PN junctions [13], electron vortices [14] or modeling heat generation in semi-
conductor devices [15, 16, 17].

Nevertheless, not much research has been done using these models in order to understand
the effects of high energy phenomena in the ambit of solar cells, which would help improve
the design of these new technologies. This could also lead to a better comprehension of the
relationship between carrier transport and heat generation, improving the thermal control of
solar cells under operating conditions or preventing damaging effects such as hot spots.

In this line of research, this thesis continues the work by Calderón and Osses [18] which
studied electron and hole transport in a solar cell based on a Gallium Arsenide (GaAs)
PN junction and its dependency with electron and lattice temperatures. A lattice tem-
perature distribution throughout the device was obtained considering the change of kinetic
energy of electrons due to interactions with the lattice and heat absorbed from sunlight.
It was obtained that in terms of performance, higher values of power output are obtained
with low lattice temperature and hot energy carriers. This analysis was performed using a
one-dimensional hydrodynamic model considering charge carriers and lattice out of thermal
equilibrium, which was solved through the perturbation method in asymptotic expansions.
However, electrons and holes were considered to have an equal constant temperature through
the device, therefore, an energy balance equation was solved for lattice temperature only.

In this research, a one-dimensional two-temperature hydrodynamic model is used to simulate
the steady-state operating conditions of a GaAs single PN junction solar cell used under
illumination. The dependency of charge carrier and lattice temperature boundary conditions
with power output is discussed.The main objectives of the present work are described ahead.
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Objectives

General Objective

• To study the relation between performance and thermal behavior on a GaAs solar cell,
under the consideration of charge carriers out of thermal equilibrium with lattice.

Specific Objectives

• Apply valid simplifications on the hydrodynamic model in order to reduce non-linearities
for a simpler numerical implementation.
• Obtain a solution of the model through the finite difference method, for a single junction

GaAs solar cell.
• Analyze the performance effect of charge carrier temperature at the boundaries.
• Analyze the model assumptions, and propose possible improvements for future imple-

mentations.
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Chapter 2

Literature Review

Just as solar cells themselves, the work done on this thesis involves concepts regarding both
electrical and mechanical engineering that need to be addressed before depicting and dis-
cussing the results. As a broad definition, a solar cell is any device which converts the energy
from a source of light into electrical current in a direct way. The most basic requirements
in order to do this are a density of states (DOS) bottleneck in the material and selective
contacts. Since this research is focused on PN junction solar cells, the DOS bottleneck is
achieved using a semiconductor material and the selective the contacts through the forma-
tion of the PN junction. These conditions determine the effectiveness of the solar cell for
generating charge carriers from incoming photons, and carrying them through the device into
the contacts.

Besides the kind of material, many external factors affect the behavior of solid state devices
in general and solar cells in particular. Therefore, the most important concepts will also be
explained ahead like the interactions between incoming light and the material, and the effect
of different thermal scenarios affecting the device. The latter is of special interest in this
thesis work, since thermal behavior of the lattice and charge carriers are studied using a two
temperature model.

The following literature review briefly describes these basic concepts needed for a complete
understanding of the research and its results.

2.1 Semiconductor Material Basics

Semiconductors used in solid state devices are crystalline materials composed by elements
in group IV of the periodic table; a combination of groups III and V; or groups II and VI.
Most commonly used materials are Silicon (Si) or Germanium (Ge) from group IV, Gallium
Arsenide (GaAs) or Indium Arsenide (InAs) from groups III+V and Cadmium Telluride
from groups II+VI among many others. The fact that many combinations of elements can
be used, allows to achieve a great variety of properties like different electrical conductivities,
light absorption or generation, and even mechanical properties. Moreover, all these properties
also depend on the direction that the crystalline cell is oriented; defects existence, like doping
or free bonds on the surface (both explained ahead); lattice missmatch between different
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materials and any other crystalline property. The following subsections describe important
concepts for the understanding of the role of semiconductor materials in electronic devices,
focusing mainly in GaAs which is the material used through this study.

2.1.1 Structure

The fact that semiconductor materials have a crystalline structure provides important ben-
efits in terms of electromagnetic properties. However, imperfections in the consolidation of
the material have repercussions with positive or negative effect depending on the context of
the device, so they need to be taken in careful consideration. In this aspect, typical material
defects usually studied from the mechanical point of view such as impurities, dislocations or
lattice mismatch have consequences in the electrical behaviour of the device. The amount of
unlinked bonds changes the way light is absorbed and charge carriers are generated; selecting
the type and quantity of a certain impurity allows the tuning of the amount of charge carri-
ers in the device, and lattice mismatches limit the compatibility between materials, among
many other important issues regarding the crystalline structure, making semiconductors very
dynamic materials. This is why nowadays the theoretical basis of many novel devices are
designed but their construction is limited by challenges regarding the material.

Crystalline materials are periodic structures made up of identical building blocks. In order
to define these structures two concepts are used: lattice and basis. The concept of lattice
refers to a mathematical abstraction representing a set of spatial points forming a periodic
structure, meaning the location of these basic building blocks, whereas the basis refers to an
atom or group of atoms defining the periodically repeated structure [19]. A full representation
of the material is then achieved by placing the basis to each position of the lattice, this is
schematically represented in Fig. 2.1. Nevertheless, the concept of lattice is used in this
thesis to express the temperature of the material as a solid (TL).

b

b

b b

b

b b

b

Lattice

b

b

b b

b

b b

b

Basis Crystal

Figure 2.1: 2D Representation of lattice and basis concepts.

Being a periodic three-dimensional structure, any lattice point R′ can be obtained from other
point R using three vectors defined as a1, a2 and a3 by the translation

R′ = R +m1a1 +m2a2 +m3a3, (2.1)

where m1, m2 and m3 are integers; this called a Bravais lattice. There are 14 basic lattices
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that are able to represent every crystalline material, these are defined by the primitive vectors
shown in Eq.(2.1) and the angles αii between them. All these 3D lattice structures are shown
in Fig.2.2, however all semiconductor materials have only cubic and hexagonal structures
[20].

Figure 2.2: Basic Bravais lattices.

For the specific case of electronics and optoelectronics most semiconductors have a face
centered cubic (fcc) lattice with two atoms per basis in the positions (0, 0, 0) and

(
a
4 ,

a
4 ,

a
4

)
.

When both atoms are identical it is called a diamond structure. Semiconductors such as Si, Ge
or C have this crystal structure and are often referred to as elemental semiconductors. If the
two atoms are of a different kind it is called a Zinc Blende structure, which is the one present
in GaAs, AlAs and CdS among others; they are often called compound semiconductors.
Figure 2.3 shows the crystal structure of GaAs. The rest of semiconductors with two-atom
basis form the hexagonal closed pack (hcp) structure which is characteristic of BN, AlN, GaN
and SiC, among others.
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Figure 2.3: Conventional unit cube for GaAs [21].

2.1.2 Band Structure in Semiconductors

Crystalline structure gives semiconductor materials particular electrical properties. In order
to understand them, it is necessary to analyze the behavior of electrons within the material.
Given that a simple representation of the problem is a vast collection of particles travelling
through a continuum media, it seems logical to describe it through classical physics (Newton’s
second law in particular), using a relation between particle’s momentum, velocity and external
perturbations. However, this approach fails given that at the scale of electronic interactions,
quantum mechanics is needed for an accurate description. This is because in semiconductor
devices electrons manifest their wave nature, which is actually the main reason for which
these specific kinds of materials are useful for solar cells. The understanding of the relation
between electronic energy levels of the material and incoming light energies is basic for design
improvements and developing new technologies.

As in any physics problem, the level of simplification allowed depends on the particular
context. For semiconductor physics there are many approaches that use quantum mechanics
to describe electronic behaviour in a very detailed manner, sometimes even solving equations
for every particle. However, for the scope of this research, effective descriptions can be made
using macroscopic models and classical physics.

The Hydrogen Atom Problem

In order to take into account the duality of particles, Schrödinger derived an equation (1925)
which describes the temporal evolution of a particle, in an analogue way to what Newton’s
second law would be for classical particles. For electrons, Schrödinger’s equation can be
written as [

− ~2

2m0
∇2 + V (r, t)

]
Ψ (r, t) = EΨ (r, t) , (2.2)
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where m0 is the mass of the electron, ~ is the reduced Planck’s constant, E the energy
value, V (r, t) is the potential energy and Ψ(r, t) the wave functions which are solutions to
the equation. A posterior interpretation of the solution of this differential equation would
interpret Ψ(r, t)∗Ψ(r, t) as a probability density function for the particle. Another important
result is that only certain energy states are allowed for a particle, while others are forbid-
den. Understanding where these energy levels are located is key for every semiconductor
application.

Under specific conditions, an analytical solution for Eq.(2.2) can be obtained. This is the
case of the very well studied hydrogen atom problem which consists of an electron and a
proton under Coulombic interaction. Through separation of variables the wavefunction is
described as a function of three quantum numbers n, l,m (not accounting for spin). The
solution implies that the principal quantum number n defines the energy of the electronic
levels, whose eigenvalues are

En = − µe4

2 (4πε0)2 ~2n2
, (2.3)

where µ is the reduced mass, in this case approximated by the electron mass m0 due to the
much larger mass of the nucleus compared to the electron, e is the elementary charge and
ε0 is the vacuum permittivity. The principal quantum number n must not be mistaken with
electron density expressed with the same letter through this document. This result shows
that bounded electrons in an atom can take only discrete energy levels.

Density of States

As stated previously, an analysis of electron behavior within the material through a quantum
mechanical description, allows to obtain an effective description through the use of classical
mechanics. One step forward in this direction is to assume electrons as free particles moving
in space, but having effective properties. Assuming the background potential for the solid as
V0, then the time independent Schrödinger equation is

−~2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
ψ(r) = (E − V0)ψ(r). (2.4)

A solution to this equation is

ψ(r) = 1√
V
e±ik·r. (2.5)

The particle’s position is represented through the spatial vector r, while k is the wave-vector
for the particle representing the state’s periodicity. For a free particle, the relation between
the momentum and the wave vector is given by

p = ~k, (2.6)
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which will help to build an effective description of the particle within the crystal. The
corresponding energy when Eq.(2.5) is a solution for Eq.(2.4) is

E = ~2k2

2m + V0. (2.7)

Note that 1√
V

in Eq.(2.5) is a normalization factor that allows to define as a unity the
probability of finding the particle in a volume V , in other words∫

V
d3r | ψ(r) |2= 1. (2.8)

However, the really interesting result is the macroscopic properties independent of the chosen
volume V . For this purpose, two boundary conditions are assumed for the wave function over
a volume that is considered as a cube of side L. First, it is assumed that the wave function
goes to zero at the boundaries of the volume and second, periodicity is assumed as if the
shape of the wave repeated identically across L sided cubes that make up the material. This
allows to obtain the permitted values of k through the volume. It is rather simple then to
use a control volume technique to calculate the number of electronic states available in the
k-space region between k and k + dk, given the relation in Eq.(2.7). Finally, the possibility
that the electrons have spin, multiplies by 2 the quantity of allowed states. This calculations
result in the number of available electronic states per unit volume per unit energy for a given
energy E. This is what is called the density of states (DOS) of the system which for free
electrons in a 3D space, considering effective properties, is equal to

g(E) =
√

2m∗3/2 (E − V0)1/2

π2~3 . (2.9)

Analogue calculations can be made for 2 and 1 dimensional systems, which are of great
importance in the study of quantum wells, wires or dots.

Particles in a Periodic Potential

A similar analysis to what is done for electrons in free space delivers the most important
concept for semiconductor theory, the band structure. Given the periodic characteristic of
crystals described in section 2.1.1 the material is represented as a periodic potential, hence,
Schrödinger’s equation becomes

[
− ~2

2m0
∇2 + U (r)

]
ψ (r) = Eψ (r) (2.10)

where U(r) is the background potential acting over the electrons. It is then considered that
the potential has the same periodicity as the crystal and the wave function is spread through
the material with an equal probability ψ∗ψ in every cell of the crystal, considering that each
cell is identical. In this case, Bloch’s theorem states that the eigenfunctions of Schrödinger
equation for a periodic potential are the product of a plane wave eik·r and a function uk(r),
which has the same periodicity as the periodic potential [22]. Therefore the solution for

12



2. LITERATURE REVIEW 2.1. SEMICONDUCTOR MATERIAL BASICS

Eq.(2.10) takes the form

ψk (r) = eik·ruk(r), (2.11)

with uk (r) having the same periodicity as the crystal. This is represented in Fig.2.4.

PERIODIC  POTENTIAL

U(r)

Wavefuntions |ψ|2 have the same periodicity as the potential

ψ(r) = u(r)eik•r

r

r

|ψ(r)|2

Figure 2.4: Periodic potential with the same periodicity as | ψ |2 [22].

The fact of considering a periodic potential implies a difference in the allowed energies for
electrons. By considering the potential for a single particle as a potential well given by
Eq.(2.3), there are only discrete states allowed. If the same analysis is made for two potential
wells the solution is two possible energies for the same quantum number. When the distance
between them is made very large the solution is the same energy for both (degeneracy). This
is the principle for understanding the formation of energy bands.

Using Bloch’s theorem for a large number of particles affecting each other gives a continuum
number of states (bands) separated by a gap which depends on the inter-atomic distance
between particles. Figure 2.5 shows the variation of allowed energy levels considering a
Silicon (diamond) crystalline structure. It can be observed that allowed energy states become
discrete when the distance is large, and separated bands form for lower inter-atomic distances.
The actual energy gap for Silicon at 200 K, meaning a lattice constant of 2.35 Å, is shown.

Electron Energy [eV ]

:Allowed energies

E1

E2

Eg = 1.1[eV ] at 200[K]

Conduction
Band

Valence
Band

EV

EC

Interatomic distance d2.35[Å]

Figure 2.5: Formation of energy bands for electrons in a silicon crystal with a
diamond-type lattice structure.
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Energy Band Diagrams

A reciprocal lattice is an abstract construction made by vectors normal to a set of planes
in the crystalline lattice. For any crystalline structure these vectors define primitive cells
whose volume is inversely proportional to the one of the lattice. Using this inverse relation,
they allow to visualize energy in k-space (given that k = 2π/λ). These primitive cells are
called the Wigner-Seitz cells and are of great importance given that the wave’s behaviour
can be completely characterized within a single Wigner-Seitz cell, namely the first Brillouin
zone. Any state for a given k of the particle will be a repetition of a point defined within
this reciprocal space. The first Brillouin zone for fcc, diamond and zinc-blende structures is
shown in Fig.2.6. The characteristics for this k-space lattice are defined by Γ for the origin
and a capital letter for symmetry points depending on the crystal lattice; in the case of
zinc-blende X,K,W,L. The vectors for reaching these points are defined by Λ,∆ and Σ.

Figure 2.6: Brillouin zones for fcc diamond and zincblende lattices [23].

Considering the lattice structure as a series of periodic potentials, Bloch’s theorem, Eq.(2.11)
is used to find solutions for the energy levels, this is Kronig-Penney’s model. Numerical
methods are used to obtain the solutions of this model and the results are the allowed energy
levels as a function of the k-vector. This means the energy states are allowed only above and
below this forbidden region defined as the energy gap (Eg). Bands above the Eg are called
conduction bands and the ones below valence bands. The bottom of the conduction band is
designated as EC while the top of the valence band EV , hence

Eg = EC − EV . (2.12)

The band structures of GaAs and Si are shown in Fig.2.7 as calculated by Chelikowsky and
Cohen[24]. As it was previously stated, the product of reduced Planck’s constant ~ and the
k-vector is the effective momentum of the particle. When the top of the valence band and
the lowest point of the conduction band are located at the same value of k, we refer to it
as a direct gap semiconductor, an example of this is GaAs (left on Fig.2.7). Otherwise, an
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indirect gap semiconductor has its maximum value of EV and its minimum value of EC at
different values of k, for instance Silicon (right on Fig.2.7).

Figure 2.7: Calculated band structure of GaAs (left) and Silicon (right) [21].

The energy levels depend strongly on the distance between particles, which is in turn affected
by the random motion of these, i.e. the temperature of the lattice. Several models describe
the dependency of the bandgap energy in elemental or compound semiconductors and even
for alloy materials. The most common model was established by Varshni [25], and is given
by

Eg (TL) = Eg,0 −
αT 2

L

β + TL
, (2.13)

where Eg,0 is the material bandgap at 0 K, α and β are coefficients dependent of the material
and TL is the lattice temperature. This model is considered to be valid for any peak-valley
difference in semiconductors. In particular for GaAs it is important to know the level of the
L-valley relative to that of the Γ-valley, given that electrons may be transferred from one
valley to the other. These parameters are shown in Table 2.1 for GaAs and Si along with the
value of the energy gap at room temperature Eg,300.

Table 2.1: Parameters for modeling bandgap energies [26].

Material Valley Eg,0[eV ] α[eV/K] β[K] Eg,300[eV ]
Si Γ 1.1695 4.73 · 10−4 636 1.124

GaAs Γ 1.521 5.58 · 10−4 220 1.424
GaAs L 1.815 6.05 · 10−4 204 1.699
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Electrons and Holes in the Semiconductor

The concepts of conduction and valence bands arise from the difference between having an
electron located at the energy levels above or below the energy gap. In the hypothetical case
of a semiconductor at 0 K, the valence band is full and the conduction band is empty. This
is because considering the crystal as a perfect structure, every electron forms a bond with its
surrounding valence electrons and they cannot travel through the material, therefore there is
no electrical conductivity. When the temperature increases there is sufficient energy for the
bonds to be split and some electrons are free to carry charge, existing now in the conduction
band. The fact that an electron is missing in the bond means there are unoccupied states in
the valence band. If an electric field is applied to the material, electrons in the valence band
will tend to move in the opposite direction to it and the only way they can achieve this is
by forming and breaking bonds. This is equivalent to a positively charged pseudo-particle
moving in the opposite direction and is defined as a hole. It is then considered that holes
inhabit the valence band. Figure 2.8 shows the concept and displacement principle of holes.
Both holes and electrons contribute to the conductivity in a separate way. This means they
have to be treated as separated particles of opposite charge and if an effective description is
made, it is also different for both.

EC

EV

E

Hole

Electron

Electric Field

CONDUCTION BAND

VALENCE BAND

FORBIDDEN
GAP

Figure 2.8: Schematic representation of electrons and holes.

Any energetic excitation that surpasses Eg will therefore liberate an electron into the conduc-
tion band leaving a hole in the valence band, this is why it is referred to as an electron-hole
pair creation. The term charge carrier is used for electrons or holes indistinctly.

2.1.3 Effective Masses

In order to evaluate how charge carriers move, and considering the particle’s duality, it is
assumed they travel as a wave packet with a group velocity given by

vg = dω
dk , (2.14)
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where ω is the angular frequency of the wavefunction of electrons which is related to their
energy according to quantum mechanic’s relation

E = hν = ~ω, (2.15)

where ν is the frequency of the wavefunction. The group velocity can be expressed in terms
of energy by

vg = 1
~
∇kE (k) . (2.16)

This means that the equation of motion assuming the carrier as a free particle can be written
as

~
dk
dt = F,

where F represents external forces acting over the particle. The value ~k represents the
momentum of the particle, which is called the crystal momentum. Since crystal momentum
accounts for internal potential effects within the material, it is used as an effective momentum
and Newton’s equation of motion may be used. Using the classical definition of momentum,
we obtain the expression for a particle’s effective mass,

m∗ =
[

d2E

dp2

]−1

=
[

1
~2

d2E

dk2

]−1

. (2.17)

From Fig.2.7 it can be observed that the value for effective mass changes considerably as k
varies and can also have multiple values. Given the curvature of the valence band, Eq.(2.17)
results in a negative value for holes. However, since their electrical charge is opposite to that
of electrons, they can also be assumed to have positive effective mass. Near the Brillouin
zone’s symmetry points, electronic bands generally have a parabolic shape, this can also
be appreciated in Fig.2.7. According to Eq.(2.17) this means the effective mass will have
different but constant values for a neighbourhood around each symmetry point (mΓ, mL,
mX , etc.), given by

E (k) = p2

2m∗ = ~2|k|2

2m∗ . (2.18)

This implies that one needs to use a combination of different masses depending on what
it is used for. For the calculation of the DOS in the valence band the effective mass is
characterized by three masses at the center of the Brillouin zone: light holes mpl, heavy holes
mph and the split-off sub band which is generally neglected. Anisotropy is another important
effect to take into account. For the effective mass value for electrons there is contribution of
transverse electron mass, mnt, and longitude electron mass, mnl.

These masses are generally expressed as a value scaled by the free electron mass m0. The
value used in semiconductor simulations is generally the same as for the DOS calculations,
which is obtained through a combination of the masses described above, depending whether it
is a direct or indirect semiconductor. The expressions for the DOS effective mass of electrons

17



2. LITERATURE REVIEW 2.1. SEMICONDUCTOR MATERIAL BASICS

are [23]

m0,n =


mΓ for GaAs, InAs and InP.
mX =

(
m2
ntmnl

)1/3 for Si, AlAs and GaP.
mL =

(
m2
ntmnl

)1/3 for Ge, GaAs.
(2.19)

where the sub-indexes in m0,n imply that temperature dependency is not being considered.
On the other hand, the effective mass for holes is calculated for all materials using

m0,p =
(
m

3/2
pl +m

3/2
ph

)2/3
. (2.20)

The parameters used for the calculation of the effective masses of Si and GaAs are shown in
table 2.2 together with the calculated m0,n and m0,p. Every given value is a scale factor of
m0.

Table 2.2: Parameters for modeling effective masses [27, 28].

Material mnt mnl mph mpl m0,n m0,p
Si 0.19 0.98 0.49 0.16 0.328 0.55

GaAs 0.229 1.987 0.49 0.08 0.067 0.49

Just as the energy gap and any variable depending on the energy bands, effective masses de-
pend on temperature. The most common approach is to use a linear temperature dependency
for all materials [29], the only exception is Silicon, in which the temperature dependence is
better studied [27] and a parabolic approach is introduced for relative hole masses. The
resulting effective mass m∗ will be written as mn and mp for electrons and holes respectively
(superscript ∗ is omitted). The relations for obtaining the relative effective masses are

mn = m0,n +m1,n

(
TL
300

)
, (2.21)

mp = m0,p +m1,p

(
TL
300

)
+m2,p

(
TL
300

)2
, (2.22)

where TL is expressed in [K]. Parameters m0,n,m1,n,m0,p,m1,p and m2,p are detailed in Table
2.3 for Si and GaAs.

Table 2.3: Parameters for modeling temperature dependence of effective masses
[27, 28].

Material m0,n m1,n m0,p m1,p m2,p
Si 0.321 0.009 0.55 0.6 -0.1

GaAs 0.067 -0.0036 0.49 0 0
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2.1.4 Statistics at Equilibrium

According to the definitions for charge carriers previously described, they need to be treated
as independent particles contributing separately to current conduction. We described how
electrons occupy the conduction band and holes the valence band, however statistical proper-
ties for each carrier are required to define conduction properties, in order to perform semicon-
ductor modeling. One of the most important results in device simulations is the population
of each carrier whether it is under steady or unsteady conditions. In order to achieve this, the
properties under equilibrium are established first. Using the effective masses, it is possible to
obtain a statistical description of the occupation of the bands, as presented in this section.

Electron and Hole Density of States

In a similar way to what was done in section 2.1.2, Schrödinger’s equation (SE) is used to
obtain expressions for the density of states for each carrier. As was previously mentioned, an
effective carrier mass is used for a given semiconductor, this greatly simplifies the analysis and
permits to obtain a general expression using directlymn andmp. In this context, SE, Eq.(2.2)
is solved for a pseudo-potential well where electrons can roam freely, generally described as a
three dimensional box. As usual, the solutions to SE depend on vectors in the k-space, which
means there is a discrete number of solutions in proportion to k. The most usual procedure
to obtain the DOS is to represent every solution in the k-space, where only one octant would
gather every linearly independent solution. Since the number of possible solutions is large,
a good approximation of the number of states can be achieved through integration of the
volume in k-space. For the density of number of states the relation between wave vector and
energy is used and the number of states between E and E + dE can be obtained. Taking in
consideration the spin of the particle, the number of states are doubled. This procedure is
very well described in [30]. The resulting expressions are very similar to Eq.(2.9),

gC(E) =
√

2m∗n3/2 (E − EC)1/2

π2~3 , (2.23)

gV (E) =
√

2m∗p3/2 (EV − E)1/2

π2~3 , (2.24)

where gC and gV are the density of states for electrons in the conduction band and holes in
the valence band respectively.

Fermi Distribution

Knowing the density of states alone is not enough to determine the population of each carrier,
since this only provides the amount of available states, not considering if they are occupied or
not. To calculate the actual populations we need to know the ratio of filled to total allowed
states for each given energy E. When thermal equilibrium is considered this ratio is expressed
by the Fermi-Dirac distribution function f(E) (often simply referred to as Fermi function),
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given by

f (E) = 1
1 + e(E−EF )/kBTL

, (2.25)

where kB is Boltzmann’s constant and EF is the Fermi energy level. Figure 2.9 shows the
Fermi distribution for different temperature values. The Fermi level EF , or electrochemi-
cal potential, can be thought of a hypothetical energy level such that at thermodynamic
equilibrium EF would have 1/2 probability of being occupied. This is true for the Fermi
distribution regardless the temperature of evaluation, as can be seen in Fig.2.9. For semi-
conductors, EF will usually be located within the energy gap, and very near the middle for
intrinsic semiconductors.
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Figure 2.9: Value of Fermi function versus energy for different temperatures.

From Fig.2.9 it can be noticed that for 0 K the function is approximately a step function,
which agrees with the idea that at absolute zero there are no electrons at the conduction
band, nor holes in the valence band. Fermi distribution arises in a statistical manner from
arranging a fixed number of particles into a system with constant energy where Pauli’s
exclusion principle is considered. This is why, relative to where EF is located with respect
to EC and EV , the distribution function will provide non zero values even if the E value is
located within the energy gap (hence, there are no states available).

Doping

When a semiconductor material contains a negligible amount of impurity atoms it is said
to be an intrinsic semiconductor. In an intrinsic material the population of electrons in the
conduction band is equal to that of holes in the valence band. A very successful technique for
manipulating electronic properties of semiconductors is by doping the material. This consists

20



2. LITERATURE REVIEW 2.1. SEMICONDUCTOR MATERIAL BASICS

in adding a controlled amount of specific impurities distributed in the sample which changes
the total amount of electrons and/or holes population.

In the case of an intrinsic crystal of Silicon, electron and hole populations depend exclusively
on temperature, since this is the only excitation mechanism provoking a rupture of the bonds.
If an atom with an extra valence electron is added within the crystal, e.g. Antimony (Sb), all
surrounding Si atoms will bond to it leaving an un-bonded electron that aids in conduction.
Antimony is then said to be a donor atom. An analogue situation occurs when an atom with
one valence electron less than those of the crystal, e.g. B from group III, is added. One bond
will then be left un-linked and an extra hole is formed in the crystal. This impurity is then
said to be an acceptor. Both processes are shown schematically in Fig.2.10.

Figure 2.10: Schematic representation of doping process in Si.

When donors are added to a semiconductor it becomes an n-type semiconductor and the
total density of impurities is denoted by ND. If on the other hand acceptors are added in the
material, a p-type semiconductor is formed and the total density of acceptors is NA. If both
kinds of impurities are added the type of the material will depend on which one of them is in
major quantity. Even though the amount of electrons or holes is increased, charge neutrality
is still maintained through the ionization (or charging) of the fixed donors or acceptors.
Regardless the conservation of charge neutrality, the band structure of the material will shift
because of the extra carriers in the corresponding bands, though Eg is maintained. Fermi
level of intrinsic semiconductors is often referred to as Ei and used as a reference in doped
materials where EF moves. In n-type materials EF will move closer to the conduction band,
while in p-type materials EF gets closer to the valence band edge. Relations for the energy
displacements due to doping are specified in the following subsections.

Carrier Concentration at Equilibrium

Having Fermi’s distribution function, it is evident that the calculation of each carrier’s con-
centration at equilibrium can be achieved by means of the integration through the conduction
and valence bands for electrons and holes respectively,

n0 =
∫ ∞
EC

gC(E)f(E)dE = 2NC√
π
F1/2 ((EF − EC) /kBTL) , (2.26a)
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p0 =
∫ EV

−∞
gV (E) [1− f(E)] dE = 2NV√

π
F1/2 ((EV − EF ) /kBTL) , (2.26b)

where Eqs.(2.23) and (2.24), and the Fermi function in Eq.(2.25) were replaced obtaining the
effective density of states for each band given by

NC = 2
(2πm∗nkBTL

h2

)3/2
, (2.27a)

NV = 2
(

2πm∗pkBTL
h2

)3/2

. (2.27b)

The factor F1/2 (η) is the Fermi-Dirac integral of order 1/2 defined by

F1/2 (η) =
∫ ∞

0

ξ1/2dξ
1 + eξ−η . (2.28)

An important approximation is made by using the fact that

2√
π
F1/2 (η) ≈ eη for η ≤ −3, (2.29)

which yields to replacing Fermi-Dirac’s distribution by the simpler Maxwell-Boltzmann’s
distribution. With this a simple expression for equilibrium carrier concentration is achieved
when the Fermi energy EF is far from the band edges, more precisely at a distance > 3kBTL
within the gap. When this is the case, the semiconductor is said to be non-degenerate. If,
on the other hand, EF lies within 3kBTL from any band edge the semiconductor is referred
to as degenerate. From Eq.(2.26), for electrons and holes respectively we get expressions for
non-degenerate semiconductors

n0 = NCe(EF−EC)/kBTL , (2.30a)

p0 = NV e(EV −EF )/kBTL . (2.30b)

Intrinsic Carrier Concentration

Relations presented in the previous section are valid for every nondegenerate semiconductor
and specifically for an intrinsic one, where the population of electrons n is equal to that of
holes p. This means n = p = ni, which is defined as the intrinsic carrier concentration, and
the level of Fermi energy satisfies EF = Ei. Regardless the level of the Fermi energy, for
a nondegenerate semiconductor in equilibrium the product of its electron and hole popula-
tions will be a constant. Using Eq.(2.30) for an intrinsic semiconductor, relations for ni are
obtained; replacing them back, carrier densities at equilibrium can be defined in terms of ni
and EF as

n0 = nie
(EF−Ei)/kBTL , (2.31a)

p0 = nie
(Ei−EF )/kBTL . (2.31b)
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Given that the product of both expressions must be constant since we are considering equi-
librium,

np = n2
i . (2.32)

Finally, using Eq.(2.30) an expression for ni is obtained

ni =
√
NCNV e

−Eg/2kBTL . (2.33)

This expression allows to obtain the value of ni as a function of material properties at a given
temperature. Solving Eqs.(2.30) for an intrinsic semiconductor, where n = p, it is also very
straight forward to obtain the intrinsic Fermi level

Ei = EC + EV
2 + kBTL

2 ln
(
NV

NC

)
, (2.34)

which is usually very near to the middle of the bandgap. This can also be written in terms
of carrier effective masses using Eqs.(2.27),

Ei = EC + EV
2 + 3

4kBTL ln
(
mp

mn

)
. (2.35)

Doped Semiconductors at Equilibrium

In a doped semiconductor under equilibrium conditions, charge neutrality must still be main-
tained when no electric field is affecting the sample, thus

p− n+N+
D −N

−
A = 0,

where N+
D and N−A the concentration of ionized donors and acceptors respectively. The

number of ionized impurities can be found using a Fermi distribution considering degeneracy
factors, but for general purposes it can be considered that the vast majority of impurities are
ionized and

p− n+ND −NA = 0. (2.36)

This is often referred to as the charge neutrality relationship. When the semiconductor is
non-degenerate Eq.(2.32) can be combined with with Eq.(2.36) to obtain each carrier density
at equilibrium, for electrons

n2
i /n− n+ND −NA = 0, (2.37)

which is a quadratic equation that yields

n = ND −NA

2 +
[(

ND −NA

2

)2
+ n2

i

]1/2

. (2.38)
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From a similar analysis, the density of holes p can be obtained

p = n2
i

n
= NA −ND

2 +
[(

NA −ND

2

)2
+ n2

i

]1/2

. (2.39)

In the extrinsic temperature region, which is range at which the carrier concentration is
considered constant regarding temperature changes, all of the dopant carriers have been en-
ergized into the conduction band and there is very little thermal generation of additional
carriers. For a highly doped semiconductor this means that ND � ni for an n-type semicon-
ductor and NA � ni for an p-type semiconductor. Therefore, Eqs.(2.38) and (2.39) for an
n-type semiconductor become

n ' ND, (2.40a)

p ' n2
i /ND, (2.40b)

while for a p-type semiconductor they are approximated by

p ' NA, (2.41a)

n ' n2
i /NA. (2.41b)

These approximations allow to obtain the Fermi energy level for doped semiconductors, which
is given by

EF − Ei = kBTL ln (ND/ni) for an n-type, (2.42a)

Ei − EF = kBTL ln (NA/ni) for a p-type. (2.42b)

2.2 Carrier Transport Models

As discussed in Section 2.1, the use of an effective mass of charge carriers travelling within
the semiconductor allows for a semi-classical description of their motion. Due to the large
amount of mobile carriers within the materials, statistical approaches are often good enough
to represent their behaviour. In this respect, Boltzmann’s transport equation yields macro-
scopic models that vary in complexity depending on the approximations made regarding the
specific problem. These models can be written in terms of several physical quantities, such
as velocity, temperature or energy.

One of the most important aspects of modeling semiconductors is taking into account the
scattering processes within the device. Unlike, for instance, a simple fluid problem, parti-
cles (charge carriers) can be destroyed and/or created while interacting with light, making
collision processes dominant, specially for solar cells. This implies that different problems
need different levels of accuracy and will need different mathematical models. The usual
approach is to consider thermal equilibrium between lattice and charge carriers (TL = Tn =
Tp). This yields the well known drift-diffusion (DD) model, widely presented in literature
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[22, 23, 30, 31].

Every macroscopic model relates carrier population to their movement and/or energy. Since
electric potential is generally responsible (or a consequence) of this charge current, an addi-
tional expression is needed in order to relate its changes within the device and also to have
a well posed mathematical model. For this purpose Poisson’s equation is used, which is an
electrostatic relation between the electric field and charge carrier densities.

All these relations are described briefly in this section. First, Poisson’s equation for semi-
conductors is presented, followed by a description of Boltzmann’s transport equation. The
general version of the Hydrodynamic model is then derived, along with the corresponding
approximations for scattering terms and energy flow, discussing the validity of each assump-
tion. The energy balance used for the lattice temperature description is also presented.
Finally, the Drift-Diffusion model is derived as a simplification of the Hydrodynamic model.
A detailed and mathematically thorough description of several transport equations used in
semiconductor device modeling is made by Jüngel [32].

2.2.1 Poisson’s Equation for Electrostatics

Poisson’s equation relates charge distribution with the electrical potential through the device.
It is one of the essential equations in electrostatics, derived from Gauss’s law and given by

∇2V = −∇ ·E = − e
εs

(p− n+ C) , (2.43)

where E is the electric field, V the electric potential, εs the electric permittivity of the
material and C = C(r) denotes the doping profile which is space dependent and can have
positive or negative values depending whether it is a p or n-type semiconductor.

2.2.2 Boltzmann’s Transport Equation

In Section 2.1, expressions were derived for charge carrier concentrations at thermal equilib-
rium and no current flow. In a similar manner, a statistical approach is used in this section
in order to obtain descriptions out of equilibrium.

A distribution function f(r,k, t) is defined as the ratio of the number of occupied quantum
states for an infinitesimal volume (in both real and k-space) to the total number of states.
Since it can be considered as an occupation probability, 0 ≤ f(r,k, t) ≤ 1 for any point
(r,k, t). As discussed previously, holes are considered to be particles moving independently
to electrons, so any statistical estimate of their evolution will be analogue, only taking into
account the differences in their effective properties. Hence, for simplicity, only the transport
of electrons is considered below.

In a similar way as in subsection 2.1.4 for electrons in equilibrium, the total number of
electrons in a certain volume vol(Ω) in the conduction band can be obtained through the
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integration of infinitesimal momentum volumes dk in the Brillouin zone. Therefore, electron
density n is obtained as units per volume as

n (r, t) = 1
4π3

∫
B
f(r,k, t)dk. (2.44)

Electron density is then a macroscopic quantity obtained by means of the averaging of the
distribution function through k-space. In the following, any averaged magnitude w, will be
expressed using the notation

〈w〉 = 1
4π3

∫
B
w (k) dk, (2.45)

and the electron concentration can be expressed as

n = 〈f〉. (2.46)

In a similar way, we could express the mean velocity as

u = 1
n
〈vgf〉, (2.47)

where vg (k) is the group velocity defined in Eq.(2.16). This comes from the fact that particles
have a random motion, defined in terms of a thermal velocity vth, which contributes to the
total kinetic energy, but not to the average displacement of the particle, therefore

vth = vg − u, (2.48)

which is in accordance with Eq.(2.47) because

〈vthf〉 = 0. (2.49)

The average energy density is similarly defined as

ξ = 〈Ef〉, (2.50)

where E is given by the parabolic band approximation in Eq.(2.18). Since the group velocity
is expressed as

vg (k) = ~k/m∗, (2.51)

the mean velocity and energy, respectively become

nu = 1
m∗
〈pf〉 , (2.52)

ξ = 1
m∗

〈1
2 |p|

2f

〉
. (2.53)

These expressions define the moments associated to f , being 〈f〉 the zeroth moment, 〈pf〉
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the first moment and 〈|p|2f/2〉 the second moment. The quantities 1, p and |p|2/2 are called
weight functions. These functions are used in the moments method when deriving balances
for each macroscopic quantity.

Since f(r,k, t) is considered to be out of equilibrium (opposite to the Fermi approximation),
an equation that describes its evolution is needed. For this purpose, it is assumed that f is
temporarily constant through a trajectory (r(t),k(t)), which means that if we follow a carrier
as it moves in phase space, the probability of occupation does not change [33], then by the
chain rule

Df

Dt
= ∂tf + ∂tr · ∇f + ∂tk · ∇kf. (2.54)

Considering that the rate of change for f balances with the rate of change due to collisions,
the collision operator is introduced

Df

Dt
= (∂tf)c , (2.55)

which quantifies all the irreversible processes not included in the right hand-side part of
Eq.(2.54). Under the semi-classical approach, the variation in the location of the particle,
∂tr, is equivalent to the particle’s velocity, v, which directly depends on momentum. In the
same manner, the rate of change in momentum ∂tk, is caused mainly by electromagnetic
forces. In this particular case the magnetic component is neglected. Therefore, Eq.(2.55) can
be written as

∂tf + v (k) · ∇f + q

~
∇V (r) · ∇kf = (∂tf)c , (2.56)

which is Boltzmann’s transport equation (BTE) for semiconductors. When thermal equilib-
rium is considered, f is equal to the Fermi-Dirac distribution, and is a solution for Eq.(2.56).
Moreover, when the semiconductor is non-degenerate and the Fermi energy is constant, the
Maxwell-Boltzmann distribution can be used. However, under out-of-equilibrium conditions,
a solution to BTE must be found. This is done in purely statistical methods, such as Monte-
Carlo, where a considerable amount of computational resources are needed. Macroscopic
models, in turn, allow for the use of averaged quantities as variables in a system of differen-
tial equations.

The most common approach to derive a macroscopic model starting from BTE is the method
of moments. This method consists of multiplying BTE by weight functions and then inte-
grating them over k-space, obtaining equations for macroscopic variables. The moment can
be considered as the expected value of each random variable, so different weight functions
deliver different expressions for each variable. Using Eqs.(2.52) and (2.53), the zeroth, first
and second moments are expressed in terms of the wave vector k as

m0 = 〈κ0f〉 = 〈f〉 , (2.57a)

m1 = 〈κ1f〉 =
〈 ~k
m∗

f

〉
, (2.57b)
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m2 = 〈κ2f〉 =
〈
~2|k|2

2m∗ f
〉
, (2.57c)

where κ0, κ1 and κ2 are the corresponding weight functions. The physical meaning of each mo-
ment would be the particle, momentum and energy densities respectively. Both drift-diffusion
and hydrodynamic models can be obtained from BTE through the method of moments. These
models are presented below, indicating the assumptions made for their derivation.

2.2.3 Hydrodynamic Transport Model

Hydrodynamic models arise from the need of less restrictive models than the usual DD model.
One of the first versions of these transport equations was presented by Kjell Blotejkaer in
1970 [34]. Under the statistical approach of using effective descriptions for charge carriers, it
is possible to attain models of higher accuracy. The derivation of HD model through BTE
using the method of moments requires some assumptions. These are

• Energy bands are approximated by a parabolic shape.
• Collision operators conserve mass, momentum and energy.
• Quantum effects are neglected (intracollisional field effect, collision broadening).

A thorough review of the suitability of these models was performed by Grasser et al. [35]. In
the rest of this subsection, momentum and energy balances are presented as obtained from
the method of moments, along with the consequent velocity and temperature differential
equations derived from it.

Zeroth Moment - Continuity Equation

Multiplying BTE by the first weight function and integrating in k-space, delivers a mass
balance for electrons and holes given respectively by

∂tn+∇ · (nun) = (∂tn)c , (2.58a)

∂tp+∇ · (pup) = (∂tp)c , (2.58b)

which are called the charge continuity equations. The terms on the right-hand side of each
equation are the collision terms, in the case of carriers they correspond to generation and
recombination rates, discussed in Section 2.4. Since carriers are considered as moving parti-
cles, current flow density equals the particle density times the charge they transport times
their velocity, and as discussed previously both electrons and holes contribute in a separate
way to the total current, thus

Jn = −enun, (2.59a)

Jp = +epup. (2.59b)
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Considering the electron and hole currents, continuity equations, Eqs.(2.58), can be written
as

∂tn−
1
e
∇ · (Jn) = (∂tn)c , (2.60a)

∂tp+ 1
e
∇ · (Jp) = (∂tp)c . (2.60b)

The expressions for continuity, Eqs. (2.60), are part of any macroscopic model, whether it is
DD, HD, energy transport, etc. Continuity equation for each carrier, Eqs.(2.60), are a simple
mass conservation balance and can therefore be derived by using an infinitesimal control
volume.

First Moment - Momentum Balance

Boltzmann’s transport equation is multiplied by the first weight function κ1 = ~k/m∗ from
Eq.(2.57b). Considering the expressions for linear momentum of each carrier pn and pp,

pn = mnnun, (2.61a)

pp = mppup, (2.61b)

for electrons and holes respectively, the average momentum density balance equations are
obtained,

∂t (pn) +∇ · (pn ⊗ un) = en∇V −∇ (nkBTn) + (∂tpn)c , (2.62a)

∂t (pp) +∇ · (pp ⊗ up) = −ep∇V −∇ (pkBTp) + (∂tpp)c . (2.62b)

The left-hand side terms of these equations are the rate of change plus the outflow of momen-
tum density. The right-hand side shows the effect of the force done by the electric field (drift)
and by the electron or hole pressure, which corresponds to the diffusion term in Eq.(2.85).
The last term on the right-hand side represents the rate of change in momentum due to
collisions. The specific description of the collision terms is discussed is subsection 2.2.4.

Due to the assumption of a parabolic band structure, Eqs.(2.61) can be used and electron
and hole momentum balance in terms of velocity (see appendix A) can be expressed as

∂tun + un∇ · un = e

mn
∇V − kB

mnn
∇ (nTn) + (∂tun)c , (2.63a)

∂tup + up∇ · up = − e

mp
∇V − kB

mpp
∇ (pTp) + (∂tup)c . (2.63b)
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Second Moment - Energy Balance

In a similar way, multiplying BTE by the second weight function given by Eq.(2.57c), the
second moment delivers a balance for energy density ξ. For electrons, we define

ξn = 3
2nkBTn + mn

2 nu2
n, (2.64)

where u2
n = un · un and an analogue expression is defined for holes. BTE then yields

∂tξn +∇ · (ξnun) = enun · ∇V −∇ · (nkBTnun)−∇ · (nQn) + (∂tξn)c , (2.65a)

∂tξp +∇ · (ξpup) = −epup · ∇V −∇ · (pkBTpup)−∇ · (nQp) + (∂tξp)c . (2.65b)

The left-hand side of Eq.(2.65) represents the rate of change of energy ∂tξn(p), plus the outflow
of kinetic energy density ∇ ·

(
ξn(p)un(p)

)
. On the right-hand side, the term en(p)un(p) · ∇V

is the energy delivered by the electric field, ∇ · (n(p)kBTn(p)un(p)) is the work performed by
electron or hole pressure, (∂tξn(p))c is the change in kinetic energy attributed to collisions and
∇ · (nQn(p)) is the heat flow density. The choice of Qn(p) has been widely discussed and is
reviewed in subsection 2.2.5.

Using the definition of energy density in Eq.(2.64), energy balances from Eqs.(2.65) can be
rewritten in terms of only carrier density, velocity and temperature (see appendix A) as

∂tTn + un · ∇Tn + 2
3Tn∇ · un + 2

3kBn
∇ · (nQn) = (∂tTn)c , (2.66a)

∂tTp + up · ∇Tp + 2
3Tp∇ · up + 2

3kBp
∇ · (pQp) = (∂tTp)c , (2.66b)

where energy flux nor collision terms are specified.

2.2.4 Scattering Approximations

The equations presented for the HD model have generic collision or scattering terms which
are different for the specific problem context and are generally simplified. The complete
expressions along with the expressions used for this work are presented below. For Eqs.(2.63)
and (2.66) it is simpler and safer to derive the collision terms as a function of momentum
(p) and kinetic energy (ξ) rather than velocity (u) and temperature (T ), respectively [34].
Therefore, the collision terms for electrons are expressed as:

(∂tun)c = 1
mnn

(∂tpn)c −
un
n

(∂tn)c , (2.67)

(∂tTn)c = 2
3nkB

(∂tξn)c −
2un

3nkB
· (∂tpn)c +

(
mnu

2
n

3nkB
− Tn

n

)
(∂tn)c . (2.68)
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Analogue relations are obtained for holes. Then, the collision terms need to be derived for
density, momentum and energy, and will be obtained consequently for velocity and temper-
ature.

Carrier Density Collision Terms

For electrons and holes, time variation of the carriers is expressed as source and sink terms,
meaning carriers moving between the valence and conduction bands. This is represented as
generation and recombination terms Gn(p)(x), Rn(p)(x), presented in detail in Section 2.4,

(∂tn)c = Gn −Rn, (2.69a)

(∂tp)c = Gp −Rp. (2.69b)

Momentum and Velocity Collision Terms

The change of momentum accounts for both inter and intra-band phenomenons. Interband
momentum changes are due to generation and recombination, while the rest of the scatter-
ing processes, namely carrier-lattice, electron-hole or carrier-carrier collisions are expressed
using the relaxation time approximation. With this, we can express momentum changes for
electrons and holes respectively as

(∂tpn)c =
∆pne−l

τm,n
+ ∆pne-h

τeh
+ ∆pne-e

τee
+ pn

n
(∂tn)c , (2.70a)

(∂tpp)c =
∆pph-l

τm,p
+

∆ppe-h

τeh
+

∆pph-h

τhh
+ pp

p
(∂tp)c , (2.70b)

where τm,n, τm,p, τeh, τee and τhh are the relaxation times for electron-lattice, hole-lattice,
electron-hole, electron-electron and hole-hole collisions respectively. Each relaxation time
defines a momentum interchange rate between the carriers and a corresponding final state.
For changes of momentum due to carrier-lattice collisions, it is considered that all the mo-
mentum is given to the lattice, hence the final momentum is zero. On the other hand, in
electron-hole collisions the linear momentum (m∗u) changes at a rate τeh towards the linear
momentum of the other particle, similarly for carrier-carrier interactions.

Electron-hole scattering is usually neglected because high concentrations of different carriers
are seldom present at the same time, given that electronic devices frequently use doped
semiconductors. Collisions between carriers of the same type can occur at a higher rate, but
are neglected since they do not change the total amount of momentum under macroscopic
considerations. Nevertheless, they do randomize the momentum, affecting other scattering
mechanisms. This effect is normally handled as a modification to the expected phonon and
ionized impurity scattering [30].

With these assumptions, considering constant effective mass and hence expressing momentum
as a function of carrier velocity, momentum changes due to scattering effects are approximated
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by

(∂tpn)c = −mnnun
τm,n

+ pn
n

(∂tn)c , (2.71a)

(∂tpp)c = −mppup
τm,p

+ pp
p

(∂tp)c . (2.71b)

The momentum relaxation time τm is a difficult parameter to measure experimentally, but it
is closely related to the carrier mobility, as can be seen from Eq.(2.81). This is why empirical
relations are usually obtained for mobility in terms of other variables, linked to the scattering
mechanisms in consideration. The models used for this work are presented in Section 2.3.
Given that HD models normally use τm instead of µ, it is important to detach the effects of
each scattering process and identify whether the changes are occurring due to the effective
mass or the average time between collisions. Finally, using the expression from Eq.(2.67),
collision terms are expressed as a function of carrier velocities as

(∂tun)c = − un
τm,n

, (2.72a)

(∂tup)c = − up
τm,p

. (2.72b)

Carrier Energy and Temperature Collision Terms

The energy of carriers is transferred to an equilibrium system with a reference temperature
T0, which in this case is assumed as the lattice temperature TL. Considering energy variation
due to interband processes and using the relaxation time approximation yields

(∂tξn)c = ∆ξel
τε,n

+ ξn
n

(∂tn)c = −

(
ξn − 3

2kBnTL
)

τε,n
+ ξn
n

(∂tn)c , (2.73)

where τε,n is the energy relaxation time for electrons. There is an analogue expression for
holes. Then, using Eq.(2.64) for the electron energy density (and the corresponding one for
holes), energy collision terms are

(∂tξn)c = − n

τε,n

(3
2kB (Tn − TL) + 1

2mnun
2
)

+ ξn
n

(∂tn)c , (2.74a)

(∂tξp)c = − p

τε,p

(3
2kB (Tp − TL) + 1

2mpup
2
)

+ ξp
p

(∂tp)c . (2.74b)

The energy relaxation time is usually a function of both carrier and lattice temperature, as
demonstrated in Section 2.3. Equations (2.74), (2.71), (2.69) and (2.68) are combined to
obtain the complete thermal collision terms, giving

(∂tTn)c = −(Tn − TL)
τε,n

+ 2mnun
2

3kBτm,n

(
1− τm,n

2τε,n

)
, (2.75a)
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(∂tTp)c = −(Tp − TL)
τε,p

+ 2mpup
2

3kBτm,p

(
1− τm,p

2τε,p

)
, (2.75b)

for electrons and holes respectively.

2.2.5 Heat Flow Approximation

When using the method of moments, every equation obtained for a moment through its
corresponding weight function will have a higher hierarchy term that will need to be obtained
through the next moment, or through approximation. This is a closure problem that needs
to be solved considering the level of detail required for the specific simulation. In this way,
Drift-diffusion model arises from the first two moments and considering thermal equilibrium
for the higher order terms. On the other hand, hydrodynamic models need considerations
regarding the average energy flow for electrons, nSn, given by

nSn = 〈vgEf〉 . (2.76)

Using the definition of the particle’s group velocity vg, the average energy flow can be ex-
pressed as

nSn = nQn + (ξn + nkBTn) un + u2
n

2 〈mnvthf〉 . (2.77)

where heat flux density nQn is used, which is given by definition as

nQn =
〈1

2mnv
2
thvthf

〉
. (2.78)

The last term in Eq.(2.77) is usually neglected even for non parabolic bands approximations
[36]. Average energy flow is then made up by a convective energy flux density ((ξn + nkBTn) un)
and heat flux density (nQn) terms. Therefore, in order to obtain a solution of the model, heat
flux needs to be approximated in terms of the rest of the variables that comprise the system
of equations. The most common approximation is through the use of a thermal conductivity
according to Fourier’s law, as

nQn = −κn∇Tn, (2.79)

with an analogous relation for holes. This choice has been criticized given that κ∇T only
approximates the diffusive component of heat flux [32], though many times even the total
energy flux is represented using Fourier’s law. Some authors, such as Anile and Romano
[37], present more complex expressions but also justify the use of Fourier’s law under certain
circumstances.

Carrier thermal conductivities κn and κp are sometimes considered to be constant. However,
a better approximation arises from assuming they obey a generalized Wiedemann-Franz law
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[11],

κn =
(5

2 + r

)(
kB
e

)2
σnTn, (2.80a)

κp =
(5

2 + r

)(
kB
e

)2
σpTp, (2.80b)

where σn and σp are the electrical conductivities of electrons and holes respectively. The
factor r relates carrier temperature (or energy) changes with changes in energy relaxation
time. A usual estimate is r = −1. As discussed in Section 2.3, electrical conductivity depends
mainly on carrier mobilities, µn and µp, which describe electronic displacement due to an
electric field,

µn = eτm,n
mn

, (2.81a)

µp = eτm,p
mp

. (2.81b)

Given the relation between mobility, electric field and current, the conductivity of the material
is often presented, analogously to ohm’s law, as

σ = σn + σp = enµn + epµp. (2.82)

With this, thermal conductivities are expressed as

κn = 3
2
k2
B

e
Tnµnn, (2.83a)

κp = 3
2
k2
B

e
Tpµpp. (2.83b)

These expressions are normally used when studying velocity overshoot or hot carriers in
semiconductors.

2.2.6 Lattice Energy Balance

Many times when solving hydrodynamic models the lattice temperature is considered to be
constant through the device. This is justified by the assumption that the lattice acts as a
heat sink for charge carriers, and the energy they deliver to the lattice does not generate large
temperature differences, even though electrons and holes could easily reach temperatures an
order of magnitude higher than that of the lattice.

The energy balance equation for lattice temperature comprises the heat equation for acoustic
phonons, meaning that heat transfer to the lattice occurs directly through this method and
optical phonon emission is only considered indirectly. Therefore, lattice is heated through car-
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rier thermalization and Joule heating, both estimated by relaxation-time approximation,

CL∂tTL = ∇ · (κL∇TL) + 3kBn
2

(
Tn − TL
τE,n

)
+ 3kBp

2

(
Tp − TL
τE,p

)
+ nmnun

2

2τE,n

+ pmpup
2

2τE,p

. (2.84)

2.2.7 Drift-Diffusion Transport Model

Drift-diffusion equations are the most used equations in semiconductor modeling. They were
first derived by Van Roosbroeck [38] in 1950. The main assumptions for the derivation of
this model are the following:

• Energy bands are described by a parabolic approximation.
• The semiconductor is non-degenerate. This means linear collision operators are used.
• The mean free path is very small compared to the device diameter.
• Thermal equilibrium between carriers and lattice (Tn = Tp = TL).

Considering these assumptions, the first moment of BTE delivers a momentum conservation
equation given by

kBTL∇n− en∇V = (∂tpn)c. (2.85)

From the second assumption, the collision operator for momentum is estimated using a
relaxation time approximation as

(∂tpn)c = − pn
τm,n

, (2.86)

where τm,n is the relaxation time for electrons. Using the first assumption, i.e. parabolic
bands, the average momentum of electrons can be expressed according to Eq.(2.61) and an
expression for electron average velocity can be obtained

un = eτm,n
mn
∇V − kBTLτm,n

mn

∇n
n
. (2.87)

The term next to the gradient of density is denoted as the diffusion constant, given by

Dn = kBTLτm,n
mn

, (2.88)

which is more often expressed in terms of mobility as

Dn = kBTL
e

µn, (2.89a)

Dp = kBTL
e

µp, (2.89b)
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namely Einstein’s relation. These equations are analogue for holes, with the exception of
having opposite charge (+e). Therefore, using Eqs.(2.87) and (2.59), expressions for current
density of electrons and holes are obtained,

Jn = e (Dn∇n− µnn∇V ) , (2.90a)

Jp = −e (Dp∇p+ µpp∇V ) , (2.90b)

which are the drift-diffusion current equations. These expressions combined with Eq.(2.60)
and Eq.(2.43) complete the Drift-Diffusion model. Note that the expressions for current,
Eqs.(2.90), are used directly in Eqs.(2.60) and the system has one variable less. The usual
derivation of DD equations is conceptually more graphic and develops separately the contri-
bution of the electric field (drift) and concentration gradient (diffusion). It can be found in
detail in any basic semiconductor physics books [22, 23, 30].

2.3 Mobility and Relaxation Times

Carrier mobility characterizes the motion of a charge carrier particle, with respect to the
magnitude of the electric field. Because of this, mobility is usually studied under conditions
where only an electric field generates an electrical current, which can therefore be written
as

Jn ≈ Jn,drift = qnun,drift, (2.91)

for electrons, where un,drift is the electron drift velocity caused by the effect of the electric
field, given by

un,drift = µnE. (2.92)

At low fields, mobility is considered to be constant, having a linear relation between velocity
and electric field. This can be observed in Fig.2.11, where electron and hole drift velocities are
depicted for GaAs and Si as a function of electric field, considering a constant temperature
of TL = 300 K and thermal equilibrium.

Many analytical and experimental studies have been made, obtaining empirical relations for
the dependence of low-field mobility with material doping and temperature. The results of
some of these studies are presented in this section.

According with expressions in Eqs.(2.81), mobility is also a relation between the average
time between scattering events (or momentum relaxation time) τm, effective mass m∗ and
electrical charge of the particle e. Consequently, if mobility is constant, τm is also considered
constant, given that for a specific temperature the effective mass has a constant value given
by Eq.(2.21), and the electrical charge is always constant.

As the electric field increases, the relation with drift velocity ceases to be linear, and un,drift
generally reaches asymptotically a constant value, as can be seen in the behaviour of Silicon
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Figure 2.11: Drift velocity of carriers in high purity Si and GaAs as a function of
the applied electric field at T = 300[K] [30].

in Fig.2.11. This effect is caused by a decrease in τm generated by an increase on the
average number of collisions, and a more efficient energy transfer generated by optical phonon
emission. The decrease in un,drift is even greater for some semiconductors like GaAs, where
carriers even slow down as the field is increased, meaning there is a negative differential
mobility. This behaviour is due to a phenomenon called transferred electron effect. As
explained in the present section, this effect causes mobility to change because of changes in
τm, but also in the effective mass m∗. Therefore, special attention needs to be paid when
using HD models, where τm and m∗ describe the motion of carriers, rather than µ.

Relations that describe these variations of mobility as a function to carrier temperatures have
been presented, in order to take into account these high field (or more generally, high energy)
effects. Since the focus of this work is upon hot-carrier behaviour, these carrier temperature
dependent models will be compared in order to find out which is the most appropriate for
the modeling of hot-carriers.

2.3.1 Lattice Mobility

One of the main sources of carrier scattering is due to collisions with the crystal lattice.
Considering an undoped material at low fields, as temperature increases atoms vibrate more
with respect to their equilibrium positions. This effect increases the probability of collisions
with moving charge carriers. This is referred to as phonon scattering and its effect is normally
fitted by an exponential expression with respect to a reference state, given by

µL = µL300

(
TL
300

)γ0

, (2.93)
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where µL300 is the carrier mobility at TL = 300 K and γ0 is the fitting factor with a negative
value given the inverse relation between mobility and carrier temperature. This relation is
valid for both electrons and holes. Parameters for this relation are listed in Table 2.4 for
GaAs and Si.

Table 2.4: Parameters for modeling temperature dependence of carrier mobility

Material Carrier µL300 [cm2/V s] γ0 Ref
Si n 1448 -2.33 [39]

p 472.8 -2.23
GaAs n 9400 -2.1 [40]

p 491.5 -2.2

2.3.2 Mobility Degradation by Impurities

Regardless that the expression in Eq.(2.93) is valid only for intrinsic materials, it is often
coupled to other empirical relations to account for impurity scattering. Doped materials
contain a large number of distributed charges within them, making the carrier concentrations
increase greatly compared to that of intrinsic materials, and also making the number of
collisions of these carriers increase, degrading their mobility.

As well as degradation due to phonon scattering, impurity scattering in semiconductors is
temperature dependent. Near thermal equilibrium, an increase in temperature is directly
related to an increase in carrier thermal velocity which means it is less likely that carriers
spend time near an impurity and consequently mobility increases. This effect is opposite
when the impurity concentration increases, hence, any empirical relation starts from the
basis that mobility degradation due to impurities increases with impurity concentration and
decreases with temperature. This opposite behaviour makes highly doped materials far less
sensitive to temperature changes.

If only one effect is considered at the time, mobilities sum up according to Matthiessen’s rule,
meaning that if µL is the carrier mobility due to lattice scattering and µI is the mobility only
accounting for impurities, then

µLI =
( 1
µL

+ 1
µI

)−1
, (2.94)

is the total mobility accounting for both effects. Matthiessen’s rule is used because mobility
can be thought of as a measure of the resistance to the movement of the particle, thus each
contribution sums up as parallel resistances in an electric circuit. For instance, a very frequent
approximation for impurity scattering in Silicon is given by Masetti et al. [41] which considers
the effect of different doping impurities, improving earlier models. Even though this is valid
only for a temperature of 300 K it is often used as default model in device simulators such
as Sentaurus by SYNOPSYSr.
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Although this is useful when considering different sources of scattering independently, other
empirical fits usually consider both effects at once. Already in 1967 Caughey and Thomas
[42] developed an empirical model to account for impurity effects in Silicon, this model has
been widely used and adjusted for other materials. This relation states that electron or hole
mobility is given by

µLI = µmin + µL − µmin

1 +
(

C
Nref

)αI , (2.95)

where µL is the phonon dependent mobility as given by Eq.(2.93), C is the doping concen-
tration, µmin a minimum value for mobility at high doping values, N ref a reference doping
concentration and αI an adjustable parameter for the doping dependence. Since Caughey
and Thomas presented this expression not accounting for temperature changes, a common
approach is to adjust µmin, N ref and αI in a similar way as µL having each a different exponent,
thus can be written as

µmin = µmin
300

(
TL
300

)γ1

, (2.96a)

N ref = N ref
300

(
TL
300

)γ2

, (2.96b)

αI = αI300

(
TL
300

)γ3

. (2.96c)

This procedure is followed for instance by Sotoodeh [40] for several III-V binary and ternary
compounds, obtaining relations for low-mobility in GaAs, which are used as a reference in
this work. In this case γ1 = γ3 = 0 so µmin nor αI are temperature dependent, the rest of
the parameters are presented in Table 2.5.

Table 2.5: GaAs parameters for low field mobility calculation [40].

Carrier µmin
300 [cm2/V s] N ref

300 [cm−3] αI300 γ2

n 500 6 · 1016 0.394 3
p 20 1.48 · 1017 0.38 3

Figure 2.12 shows the variation of electron mobility as a function of doping concentration for
GaAs according to Eq.(2.95), using the parameters given in [40]. It can be clearly noted how
higher doping concentrations make the mobility value less sensitive to temperature.

A very similar approach is used by Arora et al. [39] for the calculation of carrier mobility in
Silicon as a function of doping and temperature, the slight difference with Eq.(2.95) is the
use of a temperature dependent mobility µ0 instead of (µL−µmin). The factor γ0 will be used
as the exponent for this temperature dependence following the same shape as in Eq.(2.96).
This relation is given by

µLI = µmin + µ0

1 +
(

C
Nref

)αI , (2.97)
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Figure 2.12: Electron mobility in GaAs for various temperatures using the empir-
ical relation (2.95).

and its parameters are presented in Table 2.6.

Table 2.6: Si parameters for low field mobility calculation.

Carrier µ0,300 [cm2/V s] µmin
300 [cm2/V s] N ref

300 [cm−3] αI300 γ0 γ1 γ2 γ3

n 1268 92 1.3 · 1017 0.91 -2.33 -0.57 2.4 -0.146
p 406.9 54.3 2.35 · 1017 0.88 -2.23 -0.57 2.4 -0.146

Given that empirical models are fitted from experimental data it is usual to find considerable
variation between parameters following different references.

If low-field mobility is considered, then τm can be easily calculated using Eq.(2.81). There are
several works which develop empirical relations that take into account minority or majority
carrier mobility as well as compensation due to having two types of dopant. However, since
all the modeling in this work is done in highly doped non-compensated materials, only the
minority mobility expressions are considered.

In many cases there are additional factors that further reduce the mobility under low field
conditions. Regardless if any other factors are considered, low field mobility will be expressed
as µLF .
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2.3.3 High Energy Mobilities

Velocity Saturation

Al low energies, non-polar semiconductors interact with the acoustic and optical deforma-
tion potential (ADP and OPD respectively), which cause the temperature dependent lattice
scattering, and the doping dependent impurity scattering mechanisms. On the other hand,
under low energy conditions, polar semiconductors such as GaAs, interact with polar acoustic
phonons (piezoelectric scattering) and absorb polar optical phonons (POP). With an increase
in the parallel component of the applied field, carriers can gain energies above the optical
phonon energy threshold, which for a phonon frequency of ωOP corresponds to ~ωOP , and are
able to transfer the energy gained from the field to the lattice by optical phonon emission.
This effect leads to a saturation of the carriers velocity, and a consequent reduction in mo-
bility. The effect is similar to a body moving in a viscous fluid and reaching a limit velocity.
In the case of charge carriers in semiconductors it is called the saturation velocity, vsat.

The value of vsat is often obtained from empirical relations. The relation used in this work
was developed by Quay et al. [43], and depends exclusively on lattice temperature. The
effect of doping density is rarely included for vsat and has a minor effect in the final value.
Temperature dependence of vsat is given by

vsat = vsat300

1−A+A
(
TL
300

) , (2.98)

where A is a factor that depends on the material and type of carrier. The parameters for the
calculation of vsat are presented in Table 2.7.

Table 2.7: Parameters for the calculation of saturation velocity [43].

Material Carrier vsat300 [m/s] A

Silicon n 1 · 105 0.26
p 0.704 · 105 0.63

GaAs n 0.72 · 105 0.56
p 0.63 · 105 0.41

Considering Eq.(2.92), as the electric field is increased, mobility reduces asymptotically to
zero. Electric fields high enough for this effect to be important can be readily attained in
small devices with high doping concentrations. This degradation of mobility at high energies
should be taken into account for the modeling under high-fields and hot-carrier effects. In
this sense, the most common approach is to consider mobility dependence of electric field.
Besides obtaining an empirical fit for doping dependence, Caughey & Thomas [42] developed
expressions for electric field dependence for carrier mobilities on Silicon. This commonly used
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expression is given by

µHF = µLF(
1 + (µLFE/vsat)βC

)1/βC
. (2.99)

For simplicity, the values for the coefficient βC where taken as integrals in the mentioned
work. Canali et al. [44] later obtained more precise parameters and expressions for field and
temperature dependence of the drift velocity, which is why this is often referred to as the
Canali model. Even though these phenomenological descriptions have a very good fit with
experimental data, the energy of carriers does not depend exclusively on the electric field
when modeling a device using a hydrodynamic model. Because of this, different models are
needed, which describe the variation of transport parameters, specifically momentum and
energy relaxation times τm and τε, with carrier temperature. The first to deliver such a
model were Baccarani & Wordeman [11] in order to study velocity overshoot in Silicon. In
their work, they used a basic model for effective momentum relaxation time dependent on
carrier temperature, defined here as Tc, according to

τHFm = τLFm

(
Tc
TL

)γF

. (2.100)

In most cases γF = −1 and the low field momentum relaxation time τLFm is obtained from
the low-field mobility

τLFm = m∗µLF

e
. (2.101)

Consequently, according to this model Eq.(2.100), high field mobility is obtained as

µHF = µLF
(
Tc
TL

)γF

. (2.102)

It must be noted that this model considers effective mass to be constant for high energy
particles (depends only on lattice temperature). As it is discussed below, this is not always
accurate. Considering electrons in a semiconductor under an applied electric field, where no
spatial nor temporal gradients are present, the energy balance consisting of equations (2.65)
and (2.74) leads to

enu2
n

µn
= (ξn − ξ0)

τε
, (2.103)

where Eq. (2.92) was used for drift velocity, given that no carrier density gradients are con-
sidered. This expression shows that not only changes in mobility due to increasing collisions
make velocity saturate, but also changes in the energy transfer rate into the lattice (thermal-
ization). This relation between carrier energy, velocity and the applied electric field, along
with the expression given by Caughey & Thomas, Eq. (2.99) using βC = 2, allows to obtain
a simple expression for energy relaxation time, given by

τbwε = τHFm

2 + 3kBµLF

2ev2
sat

TLTc
TL + Tc

, (2.104)
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where the superscript ‘bw’ is used to highlight the fact that this is obtained through the
model of Baccarani & Wordeman, and τHFm is given by Eq.(2.100). This expression is valid
for both electrons and holes. This approach is used for instance by Jüngel[45], where a Si
diode is simulated and high energy effects such as velocity overshoot can be observed.

Another often used high field mobility model that depends on carrier temperature, is the
one developed by Hänsch et al. [46]. This model also depicts the behavior of semiconductors
that reach asymptotically a maximum velocity vsat. As observed in Fig. 2.11, electrons and
holes for Si, and holes for GaAs show this behavior. The main assumptions of this model are
a linear expression for the distribution function and constant energy relaxation time, which
deliver a self-consistent expression for mobility. The dependence with carrier temperature
according to the cited study is given by

µHF = µLF

1 + αF (Tc − TL) , (2.105)

with the factor αF being

αF = 3kBµLF

2eτεv2
sat
. (2.106)

Since the energy relaxation time defines the rate at which energy is transferred from and
to the lattice from the charge carriers, it is reasonable to expect that this parameter should
depend on the mean energy of both the lattice and carriers. However, for this model it
is assumed to be constant. Additionally, it is very complicated to obtain this parameter
experimentally. To overcome this problem, Gonzalez et al. [47] presented a Monte Carlo
solution based method for several materials under different conditions and developed an
empirical expression depending on lattice and carrier temperatures. This fitting is given
by

τmc
ε,n = τε,0 + τε,1 exp

(
C1

(
Tn
300 + C0

)2
+ C2

(
Tn
300 + C0

)
+ C3

(
TL
300

))
, (2.107)

for electrons, where the superscript ‘mc’ is used to emphasize the use of the Monte Carlo
method. A constant value is used for holes. Parameters used for this expression are presented
in Table 2.8 for Si and GaAs. Nevertheless, the use of this fitting along with the Hänsch
mobility model is inconsistent due to the basic assumptions of the latter, mentioned above.

Table 2.8: Parameters for the calculation of energy relaxation times as a function
of temperature.

Material τε,0 [ps] τε,1 [ps] C0 C1 C2 C3 τε,p [ps]
Silicon 1.0 -0.538 0 0.0015 -0.09 0.17 0.4
GaAs 0.48 0.025 0 -0.053 0.853 0.5 1.0

As can be deduced from the Eqs.(2.102) and (2.105), both the basic and Hänsch models
deliver the degrading behavior of mobility as energy is increased. The main difference between
both of them is the assumption regarding energy relaxation time. This implies there will be a
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difference in the transport parameters with respect to temperature. Therefore, even though
both models should deliver similar results in a situation like the one described to obtain Eq.
(2.103), greater difference could arise in the simulation of a more complex device. A brief
comparison between the two models is presented in the results section.

Transferred Electron Effect

Once more referring to Fig.2.11 it can be noted that electrons in GaAs show a decrease in drift
velocity as the electric field increases, this means a negative differential mobility, which arises
from a phenomenon called transferred electron effect (TEE). While the decrease in mobility
described above can be related to lower momentum relaxation times due to optical phonon
emission, the further reduction in mobility in GaAs and some other compound semiconductors
occurs due to a change in the effective mass of electrons overcoming a specific energy level. As
can be seen in the band diagram of GaAs in Fig.2.7, the valley at the L point is energetically
located near to that of Γ, this means that when electrons have high energies they can easily
be transferred from one band to another, and since L−band will have many available states,
the total change of average effective mass is not negligible. In fact, the effective mass at
the L-band is much higher than that at Γ, thus the average effective mass is increased and
consequently the mobility is reduced. This effect occurs in some III-V materials with satellite
bands near enough to the central band.

The most commonly used relation in order to represent this behavior is an empirical expres-
sion for drift velocity versus electric field, known as the transferred electron model [48]. This
is given by

un,drift(E) = µLFn E + vsat (E/ET )βT

1 + (E/ET )βT
, (2.108)

which is fitted to experimental or Monte-Carlo data through the parameters ET and βT .
Commonly used values for these parameters in GaAs are [49, 50]

ET = 4 kV/cm, (2.109)

βT = 4. (2.110)

Expressions for doping dependence for the reference field ET have also been developed using
the Monte Carlo method [51], given by

ET (N) = F0 + F1

(
N

NF

)βF

, (2.111)

with the fitting parameters for GaAs listed in Table 2.9.

An important study using the Monte Carlo approach was also performed by Tait & Krowne
[52], where they presented the equivalent transport properties calculated by this method
including total effective mass, along with momentum and energy relaxation times. They also
presented the resulting properties such as electron velocity and temperature, for the case of a
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Table 2.9: Parameters for the calculation of ET as a function of doping density
[51].

Parameter Value
F0 [kV/cm] 2.735
F1 [kV/cm] 0.752
NF [cm−3] 2.14 · 1016

βF 0.203

spatially homogeneous electric field on an n−doped GaAs sample. Figure 2.13, presents the
results for electron drift velocity using the transferred electron model with the parameters
from both of the aforementioned references, along with the Monte Carlo results of Tait &
Krowne.

▲

▲

▲▲▲▲
▲
▲▲

▲ ▲ ▲ ▲ ▲ ▲

▲

Figure 2.13: Electron velocity in n−doped GaAs with ND = 1016 cm−3, as a
function of electric field using the transferred electron model and Monte Carlo
results.

A temperature dependent multi-valley mobility model can also be used in order to quantify
this effect. In order to do this, the population ratio PL is defined as [23],

PL = nL
nΓ

= 4
(
mL

mΓ

)3/2
exp

(
−EC,L − EC,Γ

kBTn

)
, (2.112)

where nL and nΓ are the electron populations in the L and Γ valleys respectively, hence

n = nL + nΓ. (2.113)

The pre-factor 4 arises from the fact that there are four times more equivalent upper valleys
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in the L−direction than lower valleys in the Γ−direction. The use of Boltzmann distribution
in order to obtain the population ratio has been criticized because the electrons are not in
thermal equilibrium, neither internally nor with the phonons [34]. However, since the present
work focuses on the modeling of solar cells, the carrier population will be much higher than
most of other devices, therefore internal equilibrium is easier to achieve.

The energy gap at each point is lattice temperature dependent and calculated empirically
from Eq.(2.13), considering that

Eg,L − Eg,Γ = EC,L − EC,Γ. (2.114)

If the change in current density due to transferred electron effect is isolated from other
phenomena (for instance, diffusion current), the total value of the current is equivalent to
the sum of L and Γ valley electrons contribution, each with a low field mobility given by µLFL
and µLFΓ respectively. The latter is expressed as

Jn = enµHFE = e
(
nLµ

LF
L + nΓµ

LF
Γ

)
E, (2.115)

and the high field mobility is obtained as an energy dependent shift from µLFΓ to µLFL . Com-
bining Eqs.(2.113), (2.115) and (2.112),we get

µHF = µLFΓ + PLµ
LF
L

1 + PL
, (2.116)

where the energy dependency is established as a function of electron temperature in the
expression for PL, given in Eq.(2.112). As a consequence of electrons moving from one band
to another, the total average effective mass also changes from that at the Γ-valley to the one
at the L−valley according to

mHF
n = mΓ + PLmL

1 + PL
. (2.117)

It is noted that the mass of each specific electron is strictly mΓ or mL, and mHF
n is the

total average value. From Eq.(2.19) it can be deduced that mL(300 K) = 0.47m0, which
compared to mΓ(300 K) = 0.067m0 is an order of magnitude higher, meaning the change is
significant. The temperature dependency is given by Eq.(2.21). Using the above expressions
the change of average momentum relaxation time can also be obtained from Eq.(2.81). In
order to select the model that better describes the behavior of transport parameters under
high energy conditions, an analysis of different assumptions is made in Chapter 4.
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2.4 Interband Scattering Processes

2.4.1 Generation

Photogeneration

Even before the discovery of the photoelectric effect in 1839, a relation between light’s fre-
quency and its contained energy was accepted, although light was thought of only as a wave.

Max Planck quantified this relation in 1900 [53], proposing the existence of quantums of
energy composing light. Einstein later related these packets with what would later be called
photons, proposing the dual nature of light. This originated the Planck-Einstein relation,
Eq.(2.15), which for light can be written as

Eph(λ) = hc

λ
. (2.118)

This means high-energy light will have a high frequency and therefore a short wavelength,
while on the contrary lower-energy light will have larger wavelength. On the visible range of
light, blue lights are more energetic while red lights have lower energies. A very appropriate
and commonly used unit for the order of magnitude of light’s energy and semiconductor
bandgaps is the electron-volt, eV, which delivers the simplified relation

Eph(eV ) = 1.24
λ(µm) . (2.119)

This relation is essential for the study of solar light conversion given that it allows to accu-
rately approximate the number of electron-hole pairs being created through the solar cell as
light penetrates. The major input for the operation of solar cells is the incident light inten-
sity for a given wavelength. With this, the Planck-Einstein relation can be used to know the
photon flux per wavelength using

H (λ) = Φ (λ)Eph (λ) = Φ (λ) hc
λ
, (2.120)

where H (λ) is the light intensity per unit of area for a given wavelength (for instance in
W/m2). In this context, information of incoming solar light per wavelength is needed. At
the average distance from the sun, the total radiation received by the Earth outside the
atmosphere is 1353 W/m2. This is the sum of the intensity for each wavelength, while the
distribution of the spectral irradiance is given roughly by Planck’s radiation law for a black
body at approximately 5800 K, shown by the dashed line in Fig.2.14. This is a rather good
approximation in space, but at the earth’s surface the incoming light is attenuated by the
atmosphere. The amount of dissipation depends on how much air light has to go through.
This means that the angle at which light is reaching the surface strongly affects H(λ), this
effect is quantified by the concept of air mass.

The air mass (AM) is defined as the secant of the sun’s angle and the zenith, usually defined as
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θ. Therefore, it is a measure of the sun’s path relative to the shortest path that it can undergo
to reach the surface (sun at the zenith). In this manner, AM0 is the irradiance spectre outside
the earth atmosphere; AM1 is the spectrum with the sun at its zenith (θ = 0◦), equivalent
to 925 W/m2 of power; AM2 is the spectrum for θ = 60◦ with an incident power of 691
W/m2 and so on. The international standard used as a reference for evaluating spectrally
selective PV applications is the AM1.5 spectre, this is defined for θ = 48.19◦ under specific
atmospheric conditions defined at [54]. This spectrum is shown in Fig.2.14 along with AM0.

Figure 2.14: Solar spectrum in photon flux density for AM0 and AM1.5 [23].

The fact that each semiconductor material has a very specific energy gap is very relevant
for photonic devices because it implies that there is a wavelength associated to that energy.
Specifically for solar cells, the choice of the best material is closely related to this property.

Photons with an energy equal or above Eg will be able to move an electron from the valence to
the conduction band and therefore generate an electron-hole pair, while if Eph < Eg the energy
of the photons will only contribute to heat the lattice. Moreover, when Eph > Eg hot carriers
are generated which later relax to the bottom of the conduction band (or top of valence band),
giving away their energy as heat. This phenomenon is known as thermalisation. Whichever
the case, any photon with an energy that does not match exactly that of the semiconductor
gap, will mean a waste of energy and the generation will only be one electron-hole pair per
photon with an energy above Eg, for regular solar cells. There are three means of avoiding this
inefficiencies that are currently being studied, upconversion (two or more low energy photons
generating one electron-hole pair), downconversion (one high energy photon generating more
than one electron-hole pair) or hot carrier extraction. The later is studied in this work.

Since light of different energies has different wavelengths, it will interact differently with the
semiconductor lattice. In general terms, higher-energy photons will be absorbed easier than
the ones with lower energies. This is represented through the absorption coefficient denoted

48



2. LITERATURE REVIEW 2.4. INTERBAND SCATTERING PROCESSES

here by αc, which determines how far into a material light of a particular wavelength can
penetrate before it is absorbed. It is usually measured in cm−1. Figure 2.15 shows this
coefficient for several semiconductor materials; this data was tabulated by the Department
of Electrical & Computer Engineering of the Brigham Young University and can be found in
[55], which is the reference used in this work. More specific research on optical absorption on
GaAs has been performed for energies between 0.6 and 2.75 eV by Sturge [56], for different
doping concentrations by Casey et al. [57] and for infrared spectrum by Spitzer and Whelan
[58].

Figure 2.15: Optical absorption coefficient for different semiconductor materials
[59].

Optical properties of semiconductors make it important to take special care of material
thickness when designing a solar cell. On one hand, a minimum thickness is needed in order
to capture a considerable part of the incoming light which will be different for each material
and also depending on the wavelength of the incoming light. This would imply the thicker
the absorber layer the better, but in reality carriers traveling through the material recombine
when an electron meets a hole (process explained in section 2.4.2), so thinner layers are
needed to minimize the amount of carriers being recombined. This means there is a trade-off
between more light being captured and carriers being recombined, giving rise to an optimal
solar cell thickness. A very useful technique for reducing the losses by recombination is to
use light trapping techniques allowing for thinner solar cells. For more information regarding
light managing, one can refer to chapter 9 in [31]. Therefore it is important to consider
spatially variable generation when analyzing a solar cell.

Finally, part of the light reaching the surface of the solar cell is reflected at the surface by
a factor denoted here as Rc(λ), which is also wavelength dependent. This means 1 − Rc(λ)
of the light penetrates into the lattice at each frequency. Concluding, in the case of one
electron-hole pair being generated per photon, the generation rate for a specific wavelength
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g(λ, x) decays exponentially in space according to αc, hence

g (λ, x) = αc (λ) Φ (λ) [1−Rc (λ)] exp (−αc (λ)x) . (2.121)

The total depth-dependent generation rate G(x) is

G(x) =
∫ λg

0
g (λ, x) dλ, (2.122)

where the upper limit of integration is defined by the wavelength corresponding to the energy
gap of the material.

Impact Ionization

Impact ionization (II) is a phenomenon that occurs in situations where the energy of carriers
is high. If a conduction electron impacts a bonded valence electron, this electron is displaced
into the conduction band. Therefore, an electron hole pair is generated while the first elec-
tron still has enough energy to be maintained in the conduction band, resulting in three free
carriers from one. The same process can take place starting from a high energy hole, result-
ing in two holes and a conduction electron. This is the opposite to Auger recombination,
described in Section 2.4.2.

From the point of view of solar cells, high-energy carriers that originate the process can come
from a photon with an energy higher than twice the bandgap. This implies that one photon
generates more than one electron hole-pair, which is the principle of Impact Ionization Solar
Cells (IISC) that can attain quantum efficiencies greater than one similarly to hot carrier
solar cells (HCSC).

In this process energy is conserved but particle number is not, so one has to be careful when
expressing the corresponding balance equations. There are different ways of quantifying the
effect of impact ionization depending on the model. For the DD model, field dependent
ionization coefficients are used, while hydrodynamic models allow for the use of a relation
depending on carrier temperature. A study presenting a method for simulating II in a PN
junction using a HD model was carried out by Quate et al. [13], comparing normally used
ionization coefficients with the results of their study. Yet a simpler approach for quantifying
II has been used in [60] for simulating high electron mobility transistors (HEMTs). This is
given by

GIIn (Tn, TL, n) = nAII exp
(−BIIEg

kBTn

)
, (2.123a)

GIIp (Tp, TL, p) = pAII exp
(
−BIIEg
kBTp

)
, (2.123b)

for electrons and holes, respectively. AII and BII are constants and presented in Table 2.10
for III-V materials.
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Table 2.10: Impact ionization modeling constants for III-V materials.

Parameter Value
AII [s−1] 1013

BII 1.0

2.4.2 Recombination

Carrier recombination is the opposite process to generation. Therefore, it is the loss of an
electron or hole through the decay of an electron from the conduction to the valence band.
There are several ways this phenomenon can occur and, depending on the specific mechanism,
the energy can be released as a photon, heat as phonon emission or given up as kinetic energy
to other carrier. This is a process that occurs naturally when the crystalline lattice is at a
finite temperature where, in absence of an external stimulus, thermal recombination balances
with thermal generation. Therefore, the recombination mechanisms described here do not
include thermal recombination rate.

Recombination processes are usually divided in radiative and non-radiative, and their relative
importance depends on the type of semiconductor (direct or indirect bandgap) and the specific
device being studied. The difference between them is whether they emit a photon as a
consequence of the energy decay or dissipate into other types of energy. The directly inverse
process to photo-generation is called band to band, direct or simply radiative recombination;
this mechanism is portrayed in the left of Fig.2.16. In the middle of the same figure, the most
important recombination mechanism for solar cells is shown. It occurs through intermediate
energy states called trap states and recombines one electron with one hole. The last of the
mechanisms presented in this section is named Auger recombination and is also non-radiative.
This mechanism involves three particles.

Band to Band Schockley
Read
Hall

Auger

EC

EV

E

Et
h̄ν

Figure 2.16: Schematic representation of different recombination mechanisms.

Both band to band and Auger recombination mechanisms are also referred to as unavoidable
processes given that they depend directly on properties of the intrinsic material, while SRH
is designated as an avoidable process because it is provoked by imperfections in the material.
The total recombination rate R, will be the addition of all these mechanisms, i.e.

R = Rrad +RAug +RSRH . (2.124)
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Radiative Recombination

Radiative, or spontaneous recombination, is more important for direct bandgap semiconduc-
tors (e.g. GaAs), but not so important for indirect semiconductors. This is desired for some
devices like LEDs but not in solar cells, where it reduces the attainable carrier current. This
type of recombination depends directly on the absorption coefficient of the material, but a
simplified expression is often used with a material-depending parameter, Brad in this case.
The simplified expression for radiative recombination is

Rrad = Brad
(
np− n2

i

)
. (2.125)

When studying a heavily doped semiconductor, minority carrier concentration is dominant
and the expression for radiative recombination can be further reduced to

Rrad ≈
n− n0
τn,rad

, (2.126)

for a p−type semiconductor, where

τn,rad = 1
BradNA

. (2.127)

Similarly,

Rrad ≈
p− p0
τp,rad

, (2.128)

if an n−type semiconductor is considered, where

τp,rad = 1
BradND

. (2.129)

Minority carrier concentrations at equilibrium for electrons and holes are approximated by
Eqs.(2.41b) and (2.40b) respectively. Hence, in this case

p0 = n2
i /NA, (2.130a)

n0 = n2
i /ND. (2.130b)

Radiative recombination is not important for practical solar cells at the operating point, but
in the limit of perfect material it is the mechanism which limits efficiency [31].

Auger Recombination

Auger recombination is a three particle process that consists of the collision between two
similar free carriers resulting in the excitation of one of them into a higher level of kinetic
energy and the recombination of the second with a hole (or electron depending on the case).
In other words, the energy released from the recombination is transferred as kinetic energy
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to a third carrier, which later thermalizes and converts this energy into heat. Each process
is proportional to the densities of the three carriers involved. Therefore, for two electron
collisions,

RAug,n = Ap
(
n2p− n2

0p0
)
, (2.131)

and for two holes collisions,

RAug,p = An
(
np2 − n0p

2
0

)
. (2.132)

Using the equilibrium relations described in subsection 2.1.4, total Auger recombination can
be expressed as

RAug = (Ann+App)
(
np− n2

i

)
. (2.133)

This mechanism is considerable when carrier densities are high. For instance for heavily
doped materials or high-level injection, e.g. concentrated light. These are conditions where
non thermal equilibrium could also be important to take into account. For high doping levels
similar relations to Eqs.(2.126) and (2.128) are obtained, allowing to express carrier lifetimes
as

τn,Aug = 1
AnNA

2 , (2.134a)

τp,Aug = 1
ApND

2 , (2.134b)

for electrons and holes respectively.

Shockley-Read-Hall

Despite being a mechanism that does not occur in an ideal semiconductor, Schockley-Read-
Hall (SRH) or recombination via trap states, is the most important recombination process
in real semiconductors. This process occurs through energy levels located between valence
and conduction bands, which momentarily capture a free carrier. This carrier can then be
released again by thermal activation or recombined if a carrier of the opposite polarity is
captured, leaving the trap empty again. Some of these localized states are close to one band
edge, so they only capture one type of carrier temporarily and then release it again, given
that the energetic distance with the other band edge does not allow them to capture a carrier
of different polarity. These localized states are usually referred to as traps, while the ones
able to capture both types of carriers are called recombination centers. Intuitively this means
SRH recombination will be maximum when the traps are located at the middle of the band
gap.

An expression for SRH recombination can be found through equilibrium statistics for steady-
state conditions. This relation depends on the recombination center density NT , and the
energy level at which these are located ET , which will determine electron and hole density at
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the trap level nT and pT respectively. Thus, the expression for SRH recombination is [30],

RSRH = np− n2
i

τn,SRH (p+ pT ) + τp,SRH (n+ nT ) . (2.135)

If ET is known, carrier density at the traps can be found by

nT = NC (TL) exp
(−EC + ET

kBTL

)
, (2.136a)

pT = NV (TL) exp
(−ET + EV

kBTL

)
, (2.136b)

for electrons and holes, respectively. Carrier effective densities of states NC and NV are
obtained from Eq.(2.27). Temperature dependency of carrier lifetime values τn,SRH and
τp,SRH , is modeled as

τn(p),SRH (TL) =
(300[K]

TL

)3/2
τ300
n(p),SRH, (2.137)

where TL is measured in [K] and τ 300
n(p),SRH is the reference lifetime,

τ300
n(p),SRH = 1

σT,n(p)NT v300
th,n(p)

, (2.138)

being σT,n(p) the capture cross section of the traps and vth the thermal velocity given by

vth =

√
3kBTL
m∗

, (2.139)

for any carrier with an effective mass m∗.

SRH recombination also reduces to an expression analogous to Eq.(2.126) for a p-type semi-
conductor and Eq.(2.128) for n-type materials, which depends only on the recombination
lifetime and excess of minority carriers. Therefore, using Eq.(2.124) a total carrier lifetime
can be obtained depending on each recombination mechanism. This is

1
τn(p)

= 1
τn(p),SRH

+ 1
τn(p),Aug

+ 1
τn(p),rad

, (2.140)

which is the value usually found in references given that the simplification for doped materials
is being considered and the total recombination rate R, calculated as

R ≈ n− n0
τn

, (2.141a)

R ≈ p− p0
τp

, (2.141b)
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for a p-type and n-type material, respectively.

Surface Recombination

Surface recombination can be considered as a special case of trap assisted recombination,
given that occurs in surfaces (or interfaces) where additional energy states are available due
to material imperfections. This is specially important on the surface of the material because
of dangling bonds, making the surface a region filled with recombination centers of different
energy levels. The higher rate of recombination near the surface is interpreted as a leakage of
current, particularly of minority carriers. This current is related to the surface recombination
velocity Sn or Sp [31]. In steady state conditions, it can be found that

Jn (xs) = −eSn (ns − n0) , (2.142)

which is the amount of current escaping the device due to minority carrier recombination.
Here, Jn (xs) and ns are the electron current and density evaluated at the surface, xs. In an
ideal case this value is zero, given that the recombination velocity at the surface would be
zero; a positive value would mean an external injection of carriers at the surface. Similarly
for holes

Jp (xs) = eSp (ps − p0) , (2.143)

with Jp (xs) and ps the hole current and densities evaluated at the surface. From Eq.(2.59),
we note that Eqs.(2.142) and (2.143) allow to obtain expressions for minority carrier bound-
ary conditions relating carrier density and velocity. For instance, for a non-degenerate PN
junction, the value for majority carrier density at the boundaries will be that of the doping
density and the value for minority carrier can be obtained with these expressions depending
on the model used for approximating the current.

Surface recombination was an important problem in the first models of GaAs solar cells, where
a major decay in the current was observed with respect to what was theoretically expected.
Later on, this issue was solved using surface passivation techniques that tie dangling bonds
reducing the amount of available recombination centers. Recombination of minority carriers
near the surface is also reduced by the addition of a doped layer, which produces an electric
field and repels the carriers. This layer is often referred to as the back surface field, BSF.
Because of these techniques, surface recombination is a minor problem in current solar cells.
Already in the mid 80’s this problem was solved, for instance in [10] the values of Sn and Sp
are small. These are used as reference parameters and listed in the following subsection.

Recombination Parameters for GaAs

The necessary parameters to calculate recombination values are presented ahead in Table
2.11. Most of them are taken from a Handbook of Semiconductor Parameters [26] and the
specific ones that could not be found there were obtained from the work done by Palankovski
[29].
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Table 2.11: Recombination parameters for GaAs [26, 29].

Carrier Brad[cm3/s] An,p [cm6/s] ET [eV ] σT [m2] NT [cm−3] Sn,p [cm/s]
Electron(n)

10−10 5 · 10−30
0.4

10−14
2 · 1016 103

Hole(p) 3 · 10−30 10−13 104

2.5 Analytical Solution for a PN Junction Solar Cell

PN junctions are a way of achieving the effect of selective contacts for electronic devices and
the functional component of a solar cell. The doping level of the material is controlled achiev-
ing a potential drop that acts as a selective potential barrier for carriers. There are numerous
methods for coupling layers of doped semiconductors depending on the requirements of the
device, being even possible to use different materials (heterojunctions). The type of junction
analyzed ahead is a PN homojunction.

In simple terms, a PN junction is established when a p-type semiconductor is physically
assembled to an n-type material. Since carriers of opposite polarity are near by, there is
carrier diffusion in the junction in order to reach equilibrium. Such flow leaves an area
near the junction depleted of carriers, hence the name depleted region, and establishes the
potential drop defined as the built in potential Vbi. Since the amount of carriers that diffuse
to each side depends on the charge difference, Vbi is strongly dependent on doping density.
At equilibrium conditions, we get

Vbi = kBTL
e

ln
(
NDNA

n2
i

)
. (2.144)

This expression comes from Eq.(2.90) considering zero current flowing through the device,
therefore thermal equilibrium is assumed. Any external applied voltage Vapp shifts the po-
tential level on one side respect to the other and the potential drop across the junction
becomes

V = Vbi − Vapp, (2.145)

meaning that a negative applied bias extracts even more carriers to balance charges and,
therefore, the depletion region width is increased. The opposite is true for a positive bias.

2.5.1 Depletion Region Approximation

The simplest way to obtain an approximation of carrier densities across the device is through
the depletion region approximation (DRA). This approach consists of two main assumptions.
First, it is assumed that a finite region near the junction contains no free carriers, hence the
name depleted region; also called the space charged region (SCR). This implies that there is
a constant net charge at the surrounding area near the junction, within the SCR. Therefore,
the potential drop equivalent to the built-in voltage, takes place entirely in this region. Since
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the length of this zone depends mainly on the doping densities and material properties, the
total length of each side must be larger than its respective depleted region for the following
analysis to be valid. The zones outside the space charged region are called the neutral
regions, implying that they have constant potential, zero electric field and the majority
carrier value is equivalent to the doping density. Consequently, the amount of current flowing
through the device is determined by minority carrier density variations. Figure 2.17 presents
a representation of each zone together with the electric potential V , field E, and total charge
Q across the junction.

ln

x

P N

0

lp

xJ L

wnwp

x

V

∆V = Vbi

x

x

Q

−E

Figure 2.17: Schematic representation of different zones in a PN junction.

With the assumptions made above, and considering that semiconductor layers have high
quality and an abrupt interface between the ‘P’ and ‘N’ sides with no intermediate energetic
states due to imperfections, one can make further approximations that permit to reach to an
analytical solution for the total current as a function of voltage.

In order to solve for current, transport equations as Drift-Diffusion in Eqs.(2.90) are used.
These expressions are further simplified when considering each specific region separately. In
this manner, no electric field is considered to be present at the neutral regions and the expres-
sion for current is only diffusion dependent and therefore decoupled from Poisson’s equation.
Other main consequence for neutral regions is that recombination rate is linearized depend-
ing only on minority carriers according to Eq.(2.141). This allows to solve independently the
effect of voltage from that of light, obtaining a solution in the dark under bias and a solution
under illumination which are later superimposed. The derivation of the solution using this
procedure can be found in most literature on semiconductor devices, for this reason only the
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relevant equations are presented ahead.

The first significant value to obtain is the width of the depletion layer at each side of the
junction (and therefore the total width). This is obtained solving Poisson’s equation assuming
the potential only varies through the SCR, which is considered true also when external bias
is applied. This yields

wp =
√

2εs(Vbi − Vapp)
q

(
NA

ND(NA +ND)

)
, (2.146a)

wn =
√

2εs(Vbi − Vapp)
q

(
ND

NA(NA +ND)

)
, (2.146b)

at the p and n sides respectively. Thus, the total width of the SCR is

wSCR = wp + wn =
√

2εs(Vbi − Vapp)
q

( 1
NA

+ 1
ND

)
. (2.147)

With this the potential across the device is fully determined under the depletion region
approximation, defined here as VDRA. The most common reference system when defining the
zones of a PN junction is to place x = 0 at the junction, in this case this is defined at the
start of the device, as shown in Fig. 2.17 with lp and ln the lengths of the neutral regions at
the p and n sides respectively. With this reference system the voltage profile is given by

VDRA(x) =



VP 0 < x < lp

(eNA/εs)
(
(x− xJ)2 + 2wp(x− xJ) + w2

p

)
+ VP lp < x < xJ

(eND/εs)
(
(x− xJ)2 + 2wn(x− xJ)− w2

n

)
+ VN xJ < x < xJ + wn

VN xJ + wn < x < L

(2.148)

where as mentioned, voltage describes parabolic profiles across the SCR.

2.5.2 Solution for J(V)

Having specified the length of each region it is possible to obtain the analytical expressions
for the current at each portion under bias and under illumination. The specific solution
presented here considers a generation profile given by Eq.(2.121) which provides a generation
current. Through the use of the diffusion constants given by Eq.(2.89), the diffusion lengths
are defined as

Ln =
√
Dnτn, (2.149a)

Lp =
√
Dpτp, (2.149b)
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for electrons and holes, respectively. It is also assumed that each neutral region is thick
compared to the respective diffusion length of the minority carrier.

With this, conditions are needed at the boundary of each section. For minority carriers at
the edge between the SCR and the neutral regions, the condition is obtained assuming the
separation in the Fermi level of carriers is constant through the SCR and given by the applied
voltage, eVapp; with this n(lp) and p(xJ +wn) are obtained through equilibrium statistics. On
the other hand, the boundary conditions at the external surfaces are given by the expressions
for surface recombination velocities in Eqs.(2.142) and (2.143), which considering absence of
electric field reduce to

Dn
dn
dx

∣∣∣∣
x=0

= −Sn (n (x = 0)− n0) , (2.150a)

−Dp
dp
dx

∣∣∣∣
x=L

= Sp (p (x = L)− p0) . (2.150b)

Solving the continuity equation under these conditions delivers in each case a voltage depen-
dent, and a light dependent current [31]. Because the current needs to be constant across
the device, the total current can be expressed as

JT (Vapp) = Jn (lp) + Jp (lp) = Jn (lp) + Jp (xJ + wn) + Jscr, (2.151)

considering that the current of the space charge region Jscr, is the difference between evalu-
ating at lp and xJ + wn. The differential system obtained from the depletion region approx-
imation can only be solved analytically for a specific wavelength (energy) for the terms that
depend on the generation profile. Thus, for Jn (lp)

Jn (lp) = Jn,diff(Vapp, lp) + Jn,light(lp) = Jn,diff(Vapp, lp) +
∫
jn,light(E, lp)dE. (2.152)

The general solution for each of this contributions is, respectively,

Jn,diff = en2
i

Dn

NALn

Sn cosh
(
lp
Ln

)
+ Dn

Ln
sinh

(
lp
Ln

)
Dn
Ln

cosh
(
lp
Ln

)
+ Sn sinh

(
lp
Ln

) (exp
(
eVapp
kBTL

)
− 1

)
, (2.153)

jn,light(E, lp) = −e (1−Rc) ΦαcLn
α2
cL

2
n − 1

×

exp (−αclp)
(
Sn cosh

(
lp
Ln

)
+ Dn

Ln
sinh

(
lp
Ln

))
−
(
Sn + Dn

Ln
αcLn

)
Dn
Ln

cosh
(
lp
Ln

)
+ Sn sinh

(
lp
Ln

)

+ αcLn exp (−αclp)

.
(2.154)

Analogously for holes, the current evaluated at the border of the SCR and the n neutral
region is

Jp (xJ + wn) = Jp,diff(Vapp, xJ + wn) + Jp,light(xJ + wn)
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= Jp,diff(Vapp, xJ + wn) +
∫
jp,light(E, xJ + wn)dE. (2.155)

The solution to each of these components is

Jp,diff = en2
i

Dp

NDLp

Sp cosh
(
ln
Lp

)
+ Dp

Lp
sinh

(
ln
Lp

)
Dp

Lp
cosh

(
ln
Lp

)
+ Sp sinh

(
ln
Lp

) (exp
(
eVapp
kBTL

)
− 1

)
, (2.156)

jp,light(E, xJ + wn) = −e (1−Rc) ΦαcLp
α2
cL

2
p − 1 exp (−αc (xJ + wn))

×


(
Sp cosh

(
ln
Lp

)
+ Dp

Lp
sinh

(
ln
Lp

))
−
(
Sp − Dp

Lp
αcLp

)
exp (−αcln)

Dp

Lp
cosh

(
ln
Lp

)
+ Sp sinh

(
ln
Lp

) − αcLp

 .
(2.157)

The current density generated at the SCR is often referred to as the recombination-generation
current. Recombination current is voltage dependent, while carrier generation is light depen-
dent. Thus, similarly as for neutral regions, the current at the SCR is

Jscr = Jrec(Vapp) + Jgen = Jrec(Vapp) +
∫
jgen(E)dE, (2.158)

where both terms are integrated across the whole width of the SCR. Keeping in mind that
the generation across the device is given by Eq.(2.121) and the number of carriers by the
number of photons absorbed, the generation term is expressed as

jgen(E) = eΦ (1−Rc) exp (−αclp) (1− exp (−αcwscr)) . (2.159)

For the recombination current, a common approach is to consider SRH recombination to be
dominant. With this, the integral across the SCR yields

Jrec(Vapp) = eniwscr√
τnτp

2 sinh (eVapp/2kBTL)
e (Vbi − Vapp) /kBTL

π

2 , (2.160)

which is the maximum value, considering a large forward bias. Expression in Eq.(2.160) is
often approximated as

Jrec(Vapp) ≈ eniwscr√
τnτp

(
exp

(
eVapp
2kBTL

)
− 1

)
= Jrec,0

(
exp

(
eVapp
2kBTL

)
− 1

)
, (2.161)

which depicts its behavior regarding voltage. Similarly, Jn,diff and Jp,diff, from Eqs.(2.153)
and (2.153) respectively, are combined into

Jdiff (Vapp) = Jdiff,0

(
exp

(
eVapp
kBTL

)
− 1

)
, (2.162)

with Jdiff,0 being

Jdiff,0 =en2
i

Dn

NALn

Sn cosh
(
lp
Ln

)
+ Dn

Ln
sinh

(
lp
Ln

)
Dn

Ln
cosh

(
lp
Ln

)
+ Sn sinh

(
lp
Ln

)
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+en2
i

Dp

NDLp

Sp cosh
(
ln
Lp

)
+ Dp

Lp
sinh

(
ln
Lp

)
Dp

Lp
cosh

(
ln
Lp

)
+ Sp sinh

(
ln
Lp

) . (2.163)

Recombination current Jrec should also incorporate a contribution of other types of recombi-
nation, which is very commonly neglected. In the case of radiative recombination the current
presents a voltage dependency analogue to diffusion current in Eq.(2.162). Both of these volt-
age dependent currents are normally combined into what is referred to as the dark current
Jdark, approximating its exponential behavior using an ideality factor m [31]. This yields

Jdark = Jdiff + Jrec ≈ Jdark,0
(

exp
(
eVapp
mkBTL

)
− 1

)
, (2.164)

meaning that having m = 1 is similar to having an ideal diode and diffusion and/or radiative
recombination currents dominate, while m reaching 2 implies SRH is dominant. In real cells
a m has been observed to be closer to 2 at lower bias, while getting closer to the unity for
higher voltages [31]. Jdark,0, commonly referred to as J0, is called the recombination parameter
and is widely used for solar cell modeling. A thorough discussion on the physical meaning
of this parameter was peformed by Cuevas [61]. This approximation helps presenting the
current voltage dependency in a similar manner to the diode equation, while combining light
generating currents gives

Jsc = Jn,light + Jp,light + Jgen, (2.165)

which is called the short circuit current because is the value of the maximum obtainable
current when Vapp = 0. With this the current-voltage behavior is simply expressed as

J(V ) = Jsc − Jdark,0
(

exp
(
eVapp
mkBTL

)
− 1

)
. (2.166)

Figure 2.18 presents the characteristic curves given by the simplified current voltage expres-
sion in Eq.(2.166). Different values of the ideality factor m were used, showing how much
the curve can be fitted using only this parameter.

Figure 2.18: Current-voltage characteristic curves for solar cells using the deple-
tion region approximation and different values of m.
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The present literature review summarizes the basic theoretical concepts regarding semicon-
ductor physics, required for both a correct execution of the methodology, described ahead,
as well as a proper analysis of the results. The first section aims to mathematically explain
the main physical concepts used to quantify the behavior of charge carriers within semi-
conductor materials. The origin and validity of these approximations is explained. These
quantifications are considerably useful for a first order analysis regarding the range of op-
eration under which the studied configuration is and, therefore, the degree of simplification
that is allowed. The second section briefly describes the origin of the hydrodynamic model
for semiconductors. The model is built using the Boltzmann transport equation as a starting
point in order to define macroscopic variables that simplify the analysis. The Drift-Diffusion
model is also presented, which can be obtained through further simplifications of the latter.
The definition of these macroscopic variables implies the requirement of certain parameters,
each with different empirical or analytical expressions depending on the operating conditions
under consideration. Among these, transport parameters were defined in section 3, where
different models for carrier mobilities and relaxation times were reviewed. High energy mod-
els are included, which are needed for the configurations analysed in the present work. Other
key physical processes that affect the behavior of carriers within a semiconductor are the
collision phenomena, which are described in section 4. The main expressions available to be
used in conjunction with a hydrodynamic model are presented, classified as generation and
recombination processes. In particular, the definition of surface recombination velocities is
essential for the implementation of appropriate boundary conditions. Finally, the simplest
way of obtaining a description of the behavior of carriers within a solar cell under operation
is presented in section 5, which is the solution of the depletion region approximation model.
This is extremely useful in order to verify if the solution given by a more complex model is
within the expected order of magnitude, as well as to evaluate the importance of considering
additional physics into the solution.
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Chapter 3

Methodology

This chapter explains how the objectives of this thesis work are fulfilled, presenting the
general methodology to obtain the solution of the problems. More specifically, the method
utilized to obtain a solution for the simulation of single junction solar cells is presented. This
is a similar methodology as proposed by Osses [18], along with certain concepts from the work
of Jüngel [32]. For this purpose, the general context of the problem to be solved is explained
in Section 3.1 along with the studies that were performed. An example of a hydrodynamic
(HD) model is presented in Section 3.2, which is used for explaining the methodology. The
boundary conditions are given in Section 3.3. The solution of these problems is obtained
using the mathematical methods explained in Sections 3.4 and 3.5. Lastly, the numerical
methods used to solve the system and simulate the device are presented in Section 3.6.

3.1 Problem Description

According to what was stated in the objectives of this work, the general goal is to study the
effects of hot carriers in the behavior of a single-junction solar cell. Nowadays, commercial
solar cells are composed of several layers that deal with specific issues and improve their
efficiency but the basic functional structure of all of them is the PN junction. This is true
for all semiconductor devices. for this reason, single PN junctions have been thoroughly
studied. In the case of a solar cell, this layers are distributed perpendicular to the thickness
of the device and the ratio between the light absorbing area and the thickness is large,
meaning they are suitable for one dimensional simulation. Although sometimes a two or
three dimensional constitutive unit is simulated in order to include two dimensional effects
of the transport of carriers to the contacts, one dimensional simulation is enough for most
purposes. In this manner, all of the simulations in this thesis are done considering a single
junction, one dimensional PN junction as depicted in Fig. 3.1. Here, length L represents
the total thickness of both P and N layers which are united at the junction depth xJ . The
origin x = 0 is defined at the P side of the junction, which is the sun-facing surface.

As explained in the literature review, a built-in potential gap develops between the junction
which is defined here to be zero at the N side (x = L) and negative at the P boundary with
the magnitude of the difference between the built in potential Vbi and the applied positive
bias Vapp.Incoming light enters through the P side of the junction and produces a length and
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Figure 3.1: Scheme of a PN junction solar cell.

frequency dependent generation rate profile g(x, λ), conforming a total generation profile of
G(x), according to Eq.(2.122). For single junction devices the doping profile is expressed as
a function of the length C(x) and is given in its dimensional form by

C(x) =

 −NA 0 < x ≤ xJ

ND xJ < x < L
, (3.1)

meaning the junction is considered to be abrupt. Both layers are established to be made up
of the same material (GaAs in this case), maintaining a homogeneous energy gap through the
device and changing only the polarity of the doping. This is referred to as a homojunction.
The opposite case, called a heterojunction, generates a discontinuity in the gap level. This is
currently implemented in solar cells, boosting the efficiency of newly developed amorphous
silicon solar cells [62], even reaching an internal quantum efficiency (IQE) of near 100%
[63]. Quantum wells, wires or dots are also an example of abrupt heterojuntions currently
investigated for their use in solar cells. This method is physically more complicated to achieve,
numerically harder to analyze and is left out of the scope of this study.

The key feature of hydrodynamic models in order to study the effect of hot-carriers is to
consider that lattice and carrier temperatures are out of thermal equilibrium. This is fun-
damental in order to reproduce the role that high energy electrons or holes play in the
performance of the device. Carrier temperature is often associated only to the velocity of
the particles which, in turn, is expressed as a function of the electric field, as presented
in Eq.(4.7). Using carrier temperature as a new variable means a new dimension into the
analysis and might bring up unexpected outcomes that would have been kept unnoticed oth-
erwise. Many times parameters of simpler models are fitted in order to explain phenomena
that could be explained due to high energy carriers. for this reason, being consistent while
trying to isolate these phenomena can be difficult. With this in mind, the most appropriate
simplifications to be performed on each part of the model are discussed in Chapter 4.

3.2 The Hydrodynamic Model

From the expressions that describe the behavior of semiconductor devices presented at the
literature review, a hydrodynamic model can be condensed for device simulation. The def-
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inition of a hydrodynamic model for semiconductors is not restricted to a single system of
equations, but refers to the similarity they have with the governing equations in fluid dy-
namics. Transport equations presented in Section 2.2 are the general expressions to represent
almost any semiconductor device, within the restrictions discussed therein.

The model presented below is an example in order to demonstrate the non-dimensional form
of the system. It also serves to illustrate the procedure to obtain a numerical solution. Since
these equations are written in a non-dimensional form in the following section, they are
presented with the superscript ∗ to emphasize they are in their dimensional form. The main
assumptions of this model are the following:

• Hole temperature is in equilibrium with lattice temperature Tp = TL.
• The approximation 1

2mnu
2
n � kBTn is used for the energy flow term nSn.

With these assumptions, only the energy balance for electrons needs to be solved, and high-
field effects are considered only for electrons. As it was stated, the problem is solved in one
dimension, yielding

∂2V ∗

∂x∗2
= − e

εs
(p∗ − n∗ + C∗) , (3.2a)

∂n∗

∂t∗
+ ∂(u∗nn∗)

∂x∗
= (G∗ −R∗) , (3.2b)

∂p∗

∂t∗
+
∂(u∗pp∗)
∂x∗

= (G∗ −R∗) , (3.2c)

∂u∗n
∂t∗

+ u∗n
∂u∗n
∂x∗

= e

mn

∂V ∗

∂x∗
− kB
mnn∗

∂(n∗T ∗n)
∂x∗

− u∗n
τm,n

, (3.2d)

∂u∗p
∂t∗

+ u∗p
∂u∗p
∂x∗

= − e

mp

∂V ∗

∂x∗
− kB
mpp∗

∂(p∗T ∗L)
∂x∗

−
u∗p
τm,p

, (3.2e)

∂T ∗n
∂t∗

+ u∗n
∂T ∗n
∂x∗

+ 2
3T
∗
n

∂u∗n
∂x∗

+ 2
3n∗kB

∂

∂x

(
−3

2
k2
Bτm,n
mn

n∗T ∗n
∂T ∗n
∂x∗

)

= −T
∗
n − T ∗L
τε,n

+ 2mn

3kBτm,n

(
1− τm,n

2τε,n

)
u∗n

2,

(3.2f)

CL
∂T ∗L
∂t∗

= ∂

∂x∗

(
κL
∂T ∗L
∂x∗

)
+ 3kBn∗

2

(
T ∗n − T ∗L
τε,n

)
+ n∗mnu

∗
n

2

2τε,n
+
p∗mpu

∗
p

2

2τε,p
, (3.2g)

with C∗ given by Eq.(3.1). Net generation rate is given by Gn = Gp = G and Rn = Rp = R,
considering only band to band processes. Equation (3.2a) comes from the one dimensional
version of Gauss’s law in Eq.(2.43). Continuity Eqs.(3.2b) and (3.2c) are obtained from
Eqs.(2.58) with the collision terms expressed in generic form as in Eqs.(2.69). This means
that the complete expressions for recombination, as presented in Section 2.4.2 is used in-
directly. Velocity Eqs.(3.2d) and (3.2e), which come from the momentum balance, are the
same as Eqs.(2.63) considering only collisions of each carrier with the lattice, therefore given
by the expressions in Eqs.(2.72). Equation (3.2f) comes from the energy balance for elec-
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trons in Eq.(2.66a), approximating the heat flux by Fourier’s law as presented in eq.(2.79),
Wiedemann-Franz law for thermal conductivity and the temperature scattering terms given
by Eq.(2.75).

3.3 Boundary Conditions

When simulating electronic devices it is crucial to impose appropriate boundary conditions
fitting the context of the problem. In this regard, the conditions assumed for each variable
are discussed ahead along with their validity under specific circumstances. Every expression
is given in a one-dimensional form. A discussion on the consequences of varying these values
is presented in Chapter 4.

3.3.1 Voltage

Electrostatic potential, or voltage, presents a variation equivalent to the difference between
the built in voltage Vbi (Eq.(2.144)), and the applied voltage Vapp whether it is positive
or negatively biased. Since this potential is relative to a reference value, any value could
be chosen for one end, while maintaining the amount of voltage drop. In this manner, we
choose the right side (x = L) to be zero, while the left side (x = 0) is equivalent to the
aforementioned voltage difference, hence

V ∗ (0, t) = Vapp − Vbi, (3.3a)

V ∗ (L, t) = 0. (3.3b)

This is particularly true for devices where quasi neutral regions (QNR) are large enough for
the voltage to drop fully at the depletion region. In a more general form, the perpendicular
electric field difference at the boundary between two media will depend on the sheet charge
density at the interface. Since ohmic contacts are being considered, the charges are balanced
at the metal-semiconductor interface, therefore

∂V ∗

∂x∗
(0, t) = ∂V ∗

∂x∗
(L, t) = 0, (3.4)

which is obtained as a consequence if conditions given by Eq.(3.3) are used. In cases where
electric field is used as a variable this means

E∗ (0, t) = E∗ (L, t) = 0. (3.5)

3.3.2 Majority Carrier Densities

As for voltage, the boundary condition for majority carrier concentration is readily defined
when the QNR is fully developed. Here, the carrier densities reach an equilibrium value

66



3. METHODOLOGY 3.3. BOUNDARY CONDITIONS

as discussed in Section 2.1.4. This means the contact is assumed to be far enough from
the junction so that carriers do not get ionized and the carrier concentration is obtained by
Eqs.(2.38) and (2.39). Moreover, considering that single donors are used for both P and N
sides and the doping level is high (as commonly used in solar cells), boundary conditions for
majority carriers are

p∗ (0, t) = 1
2

(
NA +

√
NA

2 + 4ni
)
≈ NA, (3.6a)

n∗ (L, t) = 1
2

(
ND +

√
ND

2 + 4ni
)
≈ ND, (3.6b)

remarking that the p-type semiconductor is located from x∗ = 0 until the junction and
from x∗ = xJ until the full length, the device is n-type. This condition could change if the
boundary comes too close to the SCR, or if the semiconductor is degenerate.

3.3.3 Minority Carrier Densities

Majority carrier concentrations are usually orders of magnitude higher than the ones of
minority carriers. However, minority carriers have a greater effect on the current. This is one
of the basic assumptions when obtaining the analytical solution for the solar cell, presented in
Section 2.5. Minority carriers are much more affected by changes in the bias or the generation
level, which changes the Fermi level, therefore accordingly with Eqs.(2.42) the density also
changes.

The boundary condition for these carriers is found through the expression for the surface
recombination leak current, presented in Chapter 2 by Eqs.(2.142) and (2.142). Using the
expression for current as a function of carrier density and velocity, given in Eq.(2.59), these
equations can be rewritten as,

Jn (0, t) = −en∗ (0, t)u∗n (0, t) = −eSn (n∗ (0, t)− n0) , (3.7a)

Jp (L, t) = ep∗ (L, t)u∗p (L, t) = eSp (p∗ (L, t)− p0) . (3.7b)

This is a condition that relates current with carrier density at the surface. If velocity is
used as a variable this expression can be simplified considering the fact that for solar cells
normally

n∗ (0, t)� n0, (3.8a)

p∗ (L, t)� p0, (3.8b)

consequently

u∗n (0, t) ≈ Sn, (3.9a)

u∗p (L, t) ≈ Sp, (3.9b)
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would be the boundary conditions for carrier velocities at the minority boundaries. In several
occasions the velocity is found as an expression of other variables, such is the case of the DD
model, where Eq.(3.7) leads to

Dn

n∗ (0, t)
∂n∗

∂x∗
(0, t)− µn

∂V ∗

∂x∗
(0, t) = −Sn, (3.10a)

− Dp

p∗ (L, t)
∂p∗

∂x∗
(L, t)− µp

∂V ∗

∂x∗
(L, t) = Sp. (3.10b)

These equations simply reduce to Eqs.(2.150) when conditions in Eqs.(3.4) are fulfilled.

3.3.4 Temperatures

Lattice temperature is considered here to be the bulk temperature of the semiconductor as
a solid body. In this sense the boundary condition is imposed depending on the surrounding
layers of the device and it is a variable that is reasonably simple to control. Accordingly,
many types of boundary conditions would be physically reasonable. In the context of this
thesis, Dirichlet type boundary conditions are imposed, defined as

T ∗L (0, t) = TLP
, (3.11a)

T ∗L (L, t) = TLN
. (3.11b)

In most cases it will be considered that TLP
= TLN

. The use of symmetric boundary condi-
tions for the lattice temperature is supported by the fact that results from thermal modeling
of photovoltaic solar cells show that the temperature of the semiconductor layer is mostly
uniform along the normal axis [64]. On the other hand, the definition of boundary condi-
tions for carrier temperatures in not as straightforward as for lattice temperature. The most
common assumption is to consider that ohmic contacts force thermal equilibrium between
lattice and carriers, thus

T ∗L (0, t) = T ∗n (0, t) = T ∗p (0, t) , (3.12a)

T ∗L (L, t) = T ∗n (L, t) = T ∗p (L, t) , (3.12b)

assuming Dirichlet boundary conditions for the temperatures of electrons and holes as well.
In special cases, such as hot carrier solar cells, hot carrier extraction is achieved by means of
energy selective contacts, then the definition of the boundary condition is debatable. Some
boundary conditions different to those given by Eqs.(3.12) are used in this thesis, which are
discussed in Chapter 4.
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3.4 Nondimensionalization

A common practice when modeling semiconductor devices is to use scaled and non dimen-
sional systems, which simplify the numerical solution, and the analysis of the results [45, 65].
The scaling shown in this section is presented using the non-dimensional version of Eqs.(3.2).
The reference length corresponds to the device length (solar cell thickness) L. Carrier densi-
ties are scaled with a reference doping level N0, usually corresponding to the lowest doping
level. All temperatures are scaled using T0, normally equal to 300[K]. Reference values are
used for voltage, time and velocities, defined as V0, τ0 and u0 respectively, explicited ahead.
Therefore, the non-dimensional variables are

x = x∗/L, (3.13a)

t = t∗/τ0, (3.13b)

V = V ∗/V0, (3.13c)

n = n∗/N0, (3.13d)

p = p∗/N0, (3.13e)

un = u∗n/u0, (3.13f)

up = u∗p/u0, (3.13g)

Tn = T ∗n/T0, (3.13h)

TL = T ∗L/T0. (3.13i)

The terms on the left-hand side of each equation are the non-dimensional expression for
the corresponding variable. In order to better understand the physical meaning of the non-
dimensional groups, the following parameters are introduced

UT = kBT0
e

, (3.14)

ι = τm0

√
kBT0
mn0

, (3.15)

λD =
√
εskBT0
e2N0

=
√
εsUT
eN0

, (3.16)

where UT is the thermal voltage, ι the mean free path for electrons and λD the Debye length.
These parameters are defined using reference magnitudes for momentum relaxation time and
effective mass, corresponding to the low-field values τm0 and mn0, given by

τm0 = τLFm,n(T0, ND), (3.17)

mn0 = mn(T0), (3.18)
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which are calculated according to the relations presented in Sections 2.3 and 2.1 respectively.
High field effects are considered for electrons expressing mn, τm,n and τε,n as

mn = mn0ϕm, (3.19)

τm,n = τm0ϕk, (3.20)

τε,n = τε0ϕε, (3.21)

where ϕm, ϕk and ϕε are non dimensional parameters expressing the variation caused by high
field effects on electron effective mass, momentum and energy relaxation times respectively.
Holes are assumed to be in thermal equilibrium with lattice. Therefore, τm,p, mp and τε,p are
only dependent of TL, and Tp = TL. For convenience, specific reference voltage, time and
velocity are used,

V0 = UT , (3.22)

u0 = eUT τm0
mn0L

, (3.23)

τ0 = L

u0
. (3.24)

In order to simplify the presentation of the system of equations, the following non-dimensional
groups are defined:

εn =
(
ι

L

)2
, (3.25a)

λ = λD
L
, (3.25b)

νn = τm0
τε0

, (3.25c)

νp = τm,p
τε,p

, (3.25d)

mr = mn0
mp

, (3.25e)

γ = τm0
τm,p

, (3.25f)

χ = CL
kBN0

, (3.25g)

ψ = κLτm0
kBN0L2 . (3.25h)

Using these changes of variables, the system given by Eqs.(3.2) yields

∂2V

∂x2 = − 1
λ2 (p− n+ C) , (3.26a)
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∂n

∂t
+ ∂(unn)

∂x
= (G−R) , (3.26b)

∂p

∂t
+ ∂(upp)

∂x
= (G−R) , (3.26c)

εn

[
∂un
∂t

+ un
∂un
∂x

]
= 1
ϕm

(
∂V

∂x
− 1
n

∂(nTn)
∂x

)
− un
ϕk
, (3.26d)

εn

[
∂up
∂t

+ up
∂up
∂x

]
= −mr

(
∂V

∂x
+ 1
p

∂(pTL)
∂x

)
− γup, (3.26e)

∂tTn + un
∂Tn
∂x

+ 2
3Tn

∂un
∂x
− 1
n

∂

∂x

(
ϕk
ϕm

nTn
∂Tn
∂x

)
=

− νn
ϕεεn

(Tn − TL) + 2
3ϕmu

2
n

( 1
ϕk
− νn

2ϕε

)
,

(3.26f)

χ
∂TL
∂t

= ψ

εn

∂2TL
∂x2 + 3

2
νn
ϕεεn

n (Tn − TL) + ϕm
ϕε

νn
2 nu

2
n + γ

mr

νp
2 pu

2
p. (3.26g)

The expressions for doping density, carrier generation and recombination are also non-
dimensionalized as C = C∗/N0 and (G − R) = (G∗ − R∗)/G0. The non-dimensional group
G0 is equal to

G0 = N0u0
L

. (3.27)

Referring to Eq.(3.25a), it can be observed that the Knudsen number for the electron flow
is equivalent to Kn = ι/L = √εn. In fluid dynamics, Kn indicates whether continuum or
statistical mechanics approach should be used to model a problem. For most fluid problems,
the Knudsen number is small, considering how much larger the characteristic length is com-
pared to the mean free path. However, for modern electronic devices the mean free path
approaches the length of the device, which is what produces the need of more accurate mod-
els. Nevertheless, the problems solved in this work have a configuration such that Kn � 1,
and therefore the use of macroscopic models is appropriate.

The non-dimensional groups given by Eqs.(3.25c) and (3.25d) relate the momentum scattering
with the energy delivered as heat to the lattice. Therefore, they are closely related to the
Prandtl numbers Pr for electrons and holes respectively [66]. This number has been proven
to have a correlation with the existence of velocity overshoot in devices where high energy
processes are important [11, 67].

The expression for εn can also be rearranged in order to be defined as

εn = u0L

L2/τm0
= Re, (3.28)

which is a possible definition for a Reynolds number Re for the electron flow. The term
L2/τm0 expresses viscous effects of the electron cloud.
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3.5 Asymptotic Approximation

Using the non-dimensional version of the model presented above, an asymptotic approxima-
tion is made in order to simplify the equations. Given that the Knudsen number is considered
to be small, then it follows that εn � 1. This means that the kinetic energy corresponding
to the velocity needed to cross the device in time τm0 is very large compared to the thermal
energy. Moreover, νn � 1 and νp � 1 will be satisfied if the kinetic energy associated with
the saturation velocity is much smaller than the thermal energy [45]. Consequently, assuming
εn → 0, νn → 0 and νp → 0, the steady state version of Eqs.(3.26b), (3.26c), (3.26d), (3.26e),
(3.26f) and (3.26g) is

∂(unn)
∂x

= (G−R) , (3.29a)

∂(upp)
∂x

= (G−R) , (3.29b)

un = ϕk
ϕm

(
∂V

∂x
− 1
n

∂(nTn)
∂x

)
, (3.29c)

up = −µ
(
∂V

∂x
+ 1
p

∂(pTL)
∂x

)
, (3.29d)

un
∂Tn
∂x

+ 2
3Tn

∂un
∂x
− 1
n

∂

∂x

(
ϕk
ϕm

Tnn
∂Tn
∂x

)
= − νn

ϕεεn
(Tn − TL) + 2ϕm

3ϕk
u2
n, (3.29e)

ψ
∂2TL
∂x2 + 3

2
νn
ϕε
n (Tn − TL) = 0. (3.29f)

The following section presents the numerical method used to solve these equations under the
assumption of only low-field effects. This means ϕm = ϕk = ϕε = 1, and Eqs.(3.29c), (3.29e)
and (3.29f) respectively become

un = ∂V

∂x
− 1
n

∂(nTn)
∂x

, (3.30a)

un
∂Tn
∂x

+ 2
3Tn

∂un
∂x
− 1
n

∂

∂x

(
Tnn

∂Tn
∂x

)
= −νn

εn
(Tn − TL) + 2

3u
2
n, (3.30b)

ψ
∂2TL
∂x2 + 3

2νnn (Tn − TL) = 0. (3.30c)

Accordingly, the non-dimensional version of the DD current equations is

un = ∂V

∂x
− 1
n

∂n

∂x
, (3.31a)

up = −µ
(
∂V

∂x
+ 1
p

∂p

∂x

)
. (3.31b)
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3.6 Numerical Method

The following section presents a brief description of the procedure followed in order to obtain
a numerical solution for the system presented in Section 3.2. Newton’s method is applied on
the discrete system of equations, and a solution is obtained after several iterations. A detailed
description is presented in Appendix B, in case the numerical code needs to be employed or
modified. The implemented routine is explained schematically, describing the steps taken in
order to achieve convergence. Even though different versions of the HD model were solved
in this work, the procedure to get a solution is the same. For this reason, the system in
Eqs.(3.2) is used as an example.

3.6.1 Newton’s Method

Even though the asymptotic approximation for the HD model simplifies the equations con-
siderably, many non-linearities are still present. In order to deal with these non-linearities
remaining in the system, Newton’s method is applied. The system is expressed in terms of
the vector w which gathers all the unknowns,

w =


V
n
p
Tn
TL

 . (3.32)

The variables un and up are left out because they are obtained explicitly by the expressions
given by Eqs.(3.30a) and (3.29d) respectively. With this, the model comprised by Eqs.(3.26a),
(3.29a), (3.29b), (3.30b) and (3.30c) can be written as a function of the variable w as

F (w) =


FV (w)
Fn (w)
Fp (w)
Fc (w)
FL (w)

 = 0, (3.33)

where each homogeneous function is equivalent to

FV = ∂2V

∂x2 + 1
λ2 (p− n+ C) = 0, (3.34a)

Fn = ∂(unn)
∂x

− (G−R) = 0, (3.34b)

Fp = ∂(upp)
∂x

− (G−R) = 0, (3.34c)
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Fc = ∂

∂x

(
Tnn

∂Tn
∂x

)
− 5

3
∂

∂x
(nTnun)− n ∂

∂x
(Tnun)

+ 1
3nTn

∂un
∂x
− νn
εn
n (Tn − TL) + 2

3nu
2
n = 0,

(3.34d)

FL = ψ
∂2TL
∂x2 + 3

2νnn (Tn − TL) = 0, (3.34e)

with the expressions for un and up given by Eqs.(3.30a) and (3.29d) respectively. The linear
application F (w), satisfies

F (w + δw) = F (w) +DF (w) · δw + o (δw) (3.35)

where δw is a small variation from w, and DF (w) corresponds to the Jacobian matrix of
F (w),

DF (w) =



∂FV
∂V

∂FV
∂n

∂FV
∂p

∂FV
∂Tc

∂FV
∂TL

∂Fn
∂V

∂Fn
∂n

∂Fn
∂p

∂Fn
∂Tc

∂Fn
∂TL

∂Fp
∂V

∂Fp
∂n

∂Fp
∂p

∂Fp
∂Tc

∂Fp
∂TL

∂Fc
∂V

∂Fc
∂n

∂Fc
∂p

∂Fc
∂Tc

∂Fc
∂TL

∂FL
∂V

∂FL
∂n

∂FL
∂p

∂FL
∂Tc

∂FL
∂TL



. (3.36)

The iterations are performed considering that for a given approximation of the solution wj,
δwj can be found such that wj + δwj approximately satisfies F (wj + δwj) ≈ 0. Therefore,
using Eq.(3.35) and assuming o(δw) ≈ 0, δwj is obtained by solving

DF
(
wj
)
· δwj = −F

(
wj
)
. (3.37)

The same procedure is performed for the new approximation of the solution given by

wj+1 = wj + δwj . (3.38)

When δw → 0, the system converges to a solution. This is heavily dependent on the initial
approximation w0.

3.6.2 Discretization

Newton’s method is implemented through a one-dimensional finite difference scheme. The
fundamentals of the finite difference method are not described here, but can be found ex-
tensively in literature [68]. The length of the device is divided in Nu + 1 intervals equally
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spaced, which means there are Nu nodes between the boundaries. Each interval has an equal
length given by

∆x = L

Nu + 1 . (3.39)

For the non-dimensional case, L = 1. This means each node is an unknown, and the numerical
goal is to find the vector δw, which consists of 5 ×Nu unknowns. The position of a certain
node i is denoted as xi with i ∈ {1, . . . , Nu}. In the finite difference method, derivatives are
approximated by using the nodes near by to a certain position. In this manner, the first
derivative of a function v evaluated at xi, is approximated by

∂v

∂x
(xi) ≈

vi+1 − vi
∆x ≡ ∂Rx v, (3.40a)

∂v

∂x
(xi) ≈

vi − vi−1
∆x ≡ ∂Lx v, (3.40b)

∂v

∂x
(xi) ≈

vi+1 − vi−1
2∆x ≡ ∂Cx v, (3.40c)

depending whether it needs to be approximated to the right, left or centered respectively.
The right-hand side of each equation is the notation used in this work in order to simplify
the presentation of the methodology. Similarly, the second order derivative is approximated
by

∂2v

∂x2 (xi) ≈
vi+1 − 2vi + vi−1

∆x2 ≡ ∂xxv, (3.41)

An intrinsic characteristic of PN junctions is the existence of abrupt gradients in the area
surrounding the junction. This is specially true for electric potential and carrier concentra-
tions. Therefore, special attention needs to be taken for the discretization to be centered and
consistent. In this case, gradients or terms including gradients like velocities, are discretized
at middle points between nodes. For example, electron velocity is expressed discretely as

uni+1/2 = ∂Rx V −
1
nR

∂Rx (nTn) ≡ uRn , (3.42)

where nR = ni+1/2 is the average value of electron density to the right of the i−th node

nR = ni+1 + ni
2 . (3.43)

The expressions are analogue for electron velocity at (i − 1/2), defined as uni−1/2 = uLn . In
this manner, the discretization of the divergence of the velocity is obtained centered as

∂un
∂x
≈ uRn − uLn

∆x . (3.44)

The Jacobian in Eq.(3.36) is calculated for the discrete versions of the equations in F (w).
The specific components of the matrix DF (w) are presented in Appendix B.
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3.6.3 Boundary Conditions for Newton’s Method

As mentioned in Section 3.3, most boundary conditions are Dirichlet, with the exception of
minority carrier concentrations. In these cases, the boundary condition is fulfilled for the first
prediction of a solution. Subsequent modifications caused by δw will not change the value at
the borders. Therefore, the steady-state boundary conditions for each variation obtained by
solving the system in Eq.(3.37) are given by

δV (0) = δp(0) = δTn(0) = δTL(0) = 0, (3.45a)

δV (1) = δn(1) = δTn(1) = δTL(1) = 0. (3.45b)

The minority carrier concentration depends on the surface recombination velocity, as pre-
sented in section 2.4.2. Accordingly with Eq.(3.9), it is assumed that

uLn (0) = Sn, (3.46a)

uRp (1) = Sp, (3.46b)

Surface recombination velocity is expressed in non-dimensional form by Sn → Sn/u0 and
Sp → Sp/u0. For electrons, the discretized variables yield

(
V1 − V0

∆x

)
−
( 2
n0 + n1

)(
n1Tn1 − n0Tn0

∆x

)
= Sn, (3.47)

where the sub-indexes indicate the node number, being n0, V0 and Tn0 the boundary condi-
tions of the front surface. Therefore, boundary condition for minority electrons depends on
the boundary conditions of voltage and electron temperature, namely VP and TnP

, which are
known. The condition given by Eq.(3.47) is linearized in accordance with Newton’s method
for electrons and holes. This yields the boundary conditions for δn and δp, given by

δn (0) = n1δV1 − 2n1δTn1 − (Sn∆x− V1 + VP + 2Tn1) δn1
Sn∆x− V1 + VP − 2TnP

, (3.48a)

δp (1) =
pNu

δVNu
+ 2pNu

δTLNu
−
(
Sp∆x/µ+ VN − VNu

− 2TLNu

)
δpNu

Sp∆x/µ+ VN − VNu
+ 2TLN

. (3.48b)

The relations obtained above depend on the first nodes to the interior of the device in a
mixed boundary condition. The way in which this is implemented is presented in more detail
in Appendix B.

3.6.4 Numerical Procedure

This section describes the procedure followed in order to obtain the solution to the system
in Eqs.(3.2) at a given operating point. The main values that need to be defined at the
initialization are the following:

76



3. METHODOLOGY 3.6. NUMERICAL METHOD

• Applied Voltage, Vapp.
• Cell thickness, L.
• Junction depth, xJ .
• Doping concentrations, NA and ND.
• Number of mesh points, Nu.
• Equivalent sun intensity.
• Average starting temperature.

These are the main parameters that may need to be modified in order to analyze several
cases of study. Knowing the number of discrete points for the finite difference method, the
mesh is established for Nu + 1 equally spaced intervals defined at Eq.(3.39).

Many of the properties that are used to obtain the non-dimensional version of the equations
are dependent of the lattice temperature. For the majority of the cases it will be assumed that
the increase in lattice temperature is small and, therefore, temperature dependent properties
do not change considerably. Thus, the temperature at which properties are evaluated is

Tl = TL(0) + TL(L)
2 . (3.49)

With the main transport parameters, the value of the non-dimensional groups are obtained.
Having these values it can be verified if the conditions of the problem are suitable for the
approximations described above. Mainly, it is verified if εn � 1 and νn � 1. If the asymptotic
simplifications can be used, the values for the non-dimensional groups are obtained.

Having scaled the variables, the non-dimensional version of the generation profile is obtained
according to Eq.(2.122). The non-dimensional boundary conditions are also defined with
the exception of the minority carriers. If the neutral zones of the device are larger than the
corresponding depleted layer, wn < ln and wp < lp. Then, the depletion region approxi-
mation can be used; an electric potential profile V (x) is obtained according to Eq.(2.148),
defined as VDRA. It is then straightforward to solve continuity equations for each carrier from
Eqs.(3.29a) and (3.29b), using the DD expression for the currents in Eqs.(3.31), with the volt-
age as a known variable. This delivers a first approximation for the carrier concentration
profiles nDRA and pDRA for electrons and holes respectively.

Temperature profiles for the first iteration, T 0
n and T 0

L, are assumed to be linear with respect
to the boundary conditions which, along with the results from the DRA, constitute the initial
iteration w0. This allows to start the iterations by solving the system given by Eq.(3.37) until
δwj becomes small enough, evaluated by the norm |δwj| and a minimum error erm. In order
to ensure the convergence into a solution, a numerical relaxation parameter θ is introduced,
which weighs the value of the next iteration. A description of this procedure is presented in
a diagram in Fig. 3.2.

The methodology followed in order to achieve the goals of the present study was presented in
Chapter 3. A general characterization of the problem to be solved was detailed in section 4.2.
A particular case of a hydrodynamic model fit for semiconductor simulation is presented in
section 3.2, along with the bounadry conditions in section 3.3. The non-dimensional version
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|δwj | < er

Calculate Generation Rate G(x)

Define Operating Conditions

Calculate Temperature Dependent Parameters

Define Mesh

Calculate Non-Dimensional Groups Values

Establish Boundary Conditions

Solve DRA

Update Minority Boundary Conditions

Calculate Recombination Rate R(x)

Obtain δwj

n(0) ; p(L)

No

|δwj | > ermax

No

w0 = (VDRA, nDRA, pDRA, T
0
L, T

0
n)

YesDecrease θ

wj+1 = wj + θ · δwj

Yes

End

Start

Figure 3.2: Numerical procedure diagram.

of the involved variables is explained and applied to this example of the HD model in section
3.4. With the use of this scaled version of the equations, flow parameters are analysed in
section 3.5 in order to deliver an asymptotic approximation of the model, which simplifies
several non-linearities. Finally, a brief description of the main features of the numerical
method used to solve the model is presented in section 3.6. The results of applying this
methodology are presented and analysed in the following chapter.
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Chapter 4

Results

4.1 Numerical Verification of the Results

In order to draw conclusions from the numerical solutions of the model, it is necessary to
get reliable results. To verify this, some simple example cases are solved, examining the
accuracy and convergence of the numerical scheme. There are several variables that describe
the solution of the hydrodynamic model for a solar cell, for this particular case the model
is solved for electric potential, V , carrier densities, n and p, carrier temperatures, Tn or Tp,
and lattice temperature, TL. Electric field, E, and carrier velocities, un and up, are some
variables which can be derived from the previous ones. In this section, these variables are
only analysed from a numerical perspective, leaving the physical analysis for Section 4.2. The
first case to be solved uses the asymptotic approximation presented in Section 3.5 and does
not consider high field effects, therefore ϕm = ϕk = ϕε = 1. The energy balance is much
simpler than the one presented in Eq. (3.30b), and is given by

1
n

∂

∂x

(
Tnn

∂Tn
∂x

)
− νn
εn

(Tn − TL) + 2
3u

2
n = 0. (4.1)

In this case, energy flux nSn is represented using only Fourier’s law, since no high energy
phenomena needs to be modeled. Thermal conductivity is given by Wiedemann-Franz law.
This model gives an insight of how the variables behave under normal operating conditions
in order to make a comparison and understand the effect of high energy carriers.

As a first exercise, Newton’s method is applied using a constant numerical relaxation param-
eter θ. Boundary conditions are linearized as described in Section 3.6. Light is assumed to
enter the device through the p−side (x = 0), and its intensity measured in number of Suns.
1 Sun is equivalent to the AM1.5 spectrum which is weighed in proportion for each wave-
length in case of being different than unity. Only SRH recombination is considered in this
case. Boundary conditions for each temperature are equal and equivalent to Tl, Eq.(3.49),
the value at which temperature dependent properties are evaluated. The main physical and
numerical parameters that characterize this example are summarized in Table 4.1.

Transport properties are calculated according with what was presented in Section 2.3, with
the parameters in Table 4.1. These depend mainly on the bulk temperature TL(x), assumed
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Table 4.1: Parameters used to solve case 1.

Parameter Value Units
NA, ND 1021 [m−3]

L 4 [µm]
xJ 0.5L [µm]
Vapp 0.5 [V]
Tl 300 [K]

#Suns 1 –
θ 0.1 –
Nu 2000 –
er 10−8 –

constant and equal to Tl; and on the doping values of each side of the junction, NA and ND.
The transport and material properties obtained for this case are presented in Table 4.2 and
4.3. Energy relaxation time for holes is not presented given that for this example only the
contribution of electrons is considered for heating effects.

Table 4.2: Transport properties for the device in case 1.

Property Electrons (n) Holes (p) Units
mn(p)/m0 0.0634 0.49 –
τm,n(p) 2.86× 10−13 1.2× 10−13 [s]
τn(p) 2.8× 10−9 8× 10−9 [s]
τε,n 5.72× 10−13 – [s]
Sn(p) −10 100 [m/s]

Table 4.3: Material properties for the device in case 1.

Property Value Units
kL 46 [W/m2K]
Eg 1.424 [eV ]
Vbi 1.036 [V ]

These properties in turn deliver the value of the non-dimensional groups associated with the
hydrodynamic model, which are presented in Table 4.4. It can be seen how the condition
εn � 1 is fulfilled. Therefore, the use of the hydrodynamic model is appropriate. However, νn
and νp are not negligible compared to 1. This is an important factor to take into consideration
for the physical interpretation of the results in this thesis. Nevertheless, since the present
section considers only the numerical perspective, these parameters are used.
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Table 4.4: Non-dimensional groups values for case 1.

ND Group Value
λ 3.4× 10−2

εn 3.7× 10−4

νn 0.5
νp 0.12
mr 0.129
γ 2.383
ψ 59.5

Using these parameters, several results were obtained for different numbers of grid points
Nu. Figure 4.1 shows the results for different convergence steps in Newton’s method using
Nu = 2000. First row presents electron and hole densities along with electric potential
profile, while the second row shows electron and hole velocities and the electric field, which
are not a direct solution of the model, but they are derived from the latter variables. Last two
graphs correspond to electron and lattice temperature increases across the device. The initial
iteration step, corresponding to k = 0, is shown in all of the graphs in the figure with the
green dotted curve. The red dashed curves show an intermediate iterative step, arbitrarily
selected to be k = 10, in order to show the evolution as the method converges. Similarly,
the blue solid curves present the final iteration when δw is lower than the established error
tolerance. The total number of iterations was 205 for this particular case and number of grid
points. The number of iterations is reduced significantly if a relaxation parameter θ closer
to one is used after each iteration, but in order to study the behavior of the convergence, a
fixed parameter is used.

The initial condition is calculated starting from the DRA, as explained in Section 3.6. Elec-
trostatic potential is taken as an input in order to solve decoupled transport equations for
electrons and holes. This delivers initial conditions for V (x), n(x) and p(x), with the corre-
sponding values for un(x), up(x) and E(x), while temperature profiles Tn(x) and TL(x) are
simply assumed linear with respect to their boundary conditions.

As described in Section 4.2, because of the operation regimes of solar cells, voltage profile
across the cell is expected to behave similarly under different operating conditions, therefore
DRA will deliver a good initial approximation for V (x) in most cases. From the figure, it
can be clearly noticed how the initial conditions for carrier densities calculated from the
DRA also give a very valid approximation. However, temperature profiles, specially electron
temperature, have important variations from spatial thermal equilibrium. Nonetheless, the
major variations in carriers densities and velocities coincide with the biggest changes in
temperature levels. This occurs mainly because solving out of thermal equilibrium provides
additional information which has a counter effect in the rest of the variables in order to
maintain the balance in energy flows. Regardless of this, the solved example is a simple case
and using lower order approximations should provide good results.

It can also be noticed how lattice temperature surpasses the final curve at the intermediate
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Figure 4.1: Different convergence steps towards of Newton’s method for the solu-
tion of the HD model in case 1, using Nu = 2000.

iteration step, while the other variables tend gradually to the final solution. Numerical
phenomena like these are expected given the oscillatory nature of Newton’s method when
reaching convergence. In fact, when reaching convergence all variables will fluctuate near a
solution value until this fluctuations are considered small enough, this is only more noticeable
in this case. When these deviations from the solution are too large, they can cause the
method to become unstable. This is why it is important to use a good initial approximation or
advance gradually enough towards the solution, which is accomplished through the relaxation
parameter θ.

Numerically, the allowed error tolerance is only one factor to take into consideration. The
use of different grid points number leads to problems in convergence since spatial gradients
may be too big for a given variable. Special care needs to be taken for example for carrier
densities, which in this example vary between magnitudes of ∼ 1016 to ∼ 1022[m−3] abruptly
within the space charge region, that has a width of the order of 1 µm. This means several
orders of magnitude in a very short distance. Figure 4.2 presents the solution of the HD
model in Case 1 for different numbers of mesh grid. Results for Nu = 100, 500 and 10000 are
presented.

Due to the parameters used for case 1, there are no significant gradients, compared to what
is observed using parameters of a real solar cell. This is why even a relatively coarse grid
delivers valid results. Evidently, the variable that presents the most negligible differences is
electrostatic potential. This corroborates the fact that voltage will present a similar shape
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Figure 4.2: Solution of the HD model in case 1 for different mesh grid numbers,
Nu = 100, 500 and 10000.

in most cases, since rather small changes in carrier densities do not transmit important
differences in voltage via Poisson’s equation. Additionally, because of the smooth shape of
voltage profile and its small gradients, a coarse mesh is sufficient to accurately represent
its behavior. For the rest of the variables, the most noticeable difference can clearly be
observed between Nu = 100 and 500, while using Nu = 10000 produces virtually the same
results. Since current needs to be conserved across the device, changes in carrier velocities
will have a compensating effect in the corresponding carrier density as well as temperature.
The more graphically noticeable differences when using Nu = 10000 can be observed in lattice
temperature. This is explained because of the magnitude of changes in the specific variable.
If these variations are compared in magnitude to those of other variables, the changes are
much smaller. Even in this simple example there are zones where a coarse grid would be
sufficient, given the practically null gradients. Because of this, developing a code where
refining in specific areas is possible would be extremely useful in order to save memory and
iteration time.

Using Nu = 10000 as an ‘exact’ solution, the convergence of each independent variable is
studied. The norms L∞ and L1 are calculated from the difference of several grid numbers
with this target solution. The results are shown in Figures 4.3 and 4.4, respectively. Norm
L∞ clearly presents a tendency to lower errors as the mesh is finer, which was expected, while
L1 shows less decaying behavior. This effect is explained because the norm L1 corresponds
to the total sum of all the deviations from the target solution, therefore, the unit of space
needs to be taken into account. In both figures the values of ‖ TL ‖∞ are amplified in order
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to better fit the orders of magnitude of the rest of the variables.
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Figure 4.3: Convergence of each variable using the norm L∞.
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Figure 4.4: Convergence of each variable using the norm L1.

The norm L∞ corresponds to the value of the maximum difference with respect to the target
solution, therefore, the location of this error can be found. These locations are listed in Table
4.5 for the different grid numbers used. The non-dimensional value of x is presented.

As expected, the location of the L∞ norm coincides with the highest gradients, or peaks
of each variable, which are the regions where the method is less accurate. In this manner,
the maximum error of the electric field always matches the junction depth xJ . For carrier
densities, the most troubling areas for the convergence are when reaching the corresponding
majority quasi neutral regions. This occurs because the biggest gradients are located in these
areas as well. The maximum error for both velocities match their respective peak near the
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Table 4.5: Non-dimensional location of the L∞ norm.

Grid Number Norm Location x
‖ V ‖∞ ‖ n ‖∞ ‖ p ‖∞ ‖ Tn ‖∞ ‖ TL ‖∞ ‖ un ‖∞ ‖ up ‖∞

100 0.5 0.64 0.37 0.47 0.38 0.47 0.53
500 0.5 0.636 0.372 0.474 0.412 0.446 0.53
1000 0.5 0.635 0.372 0.475 0.413 0.478 0.53
5000 0.5 0.635 0.371 0.476 0.414 0.476 0.60

junction, slightly deviated towards the p-side for electrons and to the n-side for holes, while
temperatures show the maximum value of error at their corresponding peak. Solving for cases
with more abrupt gradients, whether it is because of higher doping levels or longer devices,
generates the need for finer meshes in order to avoid numerical issues in the junction area
such as smearing of the results or numerical viscosity effects [45].

Even though numerical differences seem to be of small order for each independent variable,
there are areas where small changes have a major impact in the total current. This is the case
for electron densities, where even though the biggest changes are noticeable at the majority
regions, minority carrier densities are the ones that have a greater impact. For this reason,
it is interesting to analyze the relative error rather than the absolute.

It can be seen how for low density meshes both velocities are the ones with a higher error.
Particularly, the error for un is the highest in all cases. This is related to the fact that ve-
locities are calculated from the gradients of the variables obtained as a result of the method.
Therefore, the difference in precision of the results using a finer grid is amplified when cal-
culating the respective gradients. This is directly related to the error when calculating the
value of the total current, which is arguably the most important output of device simula-
tion. Electric currents are comprised by the movement of carriers due to drift, diffusion and
thermal diffusion, all originated from significant gradients which tend to compensate. Nu-
merically, this means that gradients of high value add up to a value of current which is orders
of magnitude smaller. Therefore, even though convergence is achieved, changes in current
may not be negligible. This effect can be seen in Fig.4.5, where clearly changes in current
are considerable compared to those in the rest of the variables at the same number of grid
points.

Some numerical issues arise independently of the mesh grid number that is used. For instance,
maintaining all other parameters, there is a critical length at which the boundary conditions
for minority carriers density, in this case holes, become unstable. In order to exemplify this
issue, the same parameters are used changing only the total length of the device. In this
case to L = 13 µm, a length at which this instability occurs. This problem is depicted more
clearly when solving a case ‘in the dark’, given that these instabilities occur at the same length
independently of the number of grid points and whether or not photogeneration is present.
Under no illumination conditions and forward bias, carriers move opposite to what occurs
under light, and their densities at the boundaries of the SCR are defined approximately by
the equilibrium minority density under an applied voltage. For holes, this will be defined as
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Figure 4.5: Value of the total current JT for different mesh grid numbers.

pn, given by

pn = p0 exp
(
eVapp
kBTL

)
. (4.2)

The expression for electrons is analogous. Moving from the boundary of the depleted region
towards the contacts, the density of each carrier decreases due to recombination, reaching a
boundary condition that needs to fulfill the relations for surface recombination velocities. In
this case, the boundary condition is expected to reach a density value above p0 and below
pn; this will be fulfilled regardless of the approximation that is used to solve for density.

Figure 4.6: Effect of using a high relaxation parameter θ.

Figure 4.6 shows several results for carrier densities for a solar cell in the dark, under a forward
applied voltage. The red solid curve presents the result for electron density, while the blue
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solid curve shows the solution for holes, both using θ = 0.3, and the green dashed curves
correspond to several iteration steps, k, using θ = 1. The densities equivalent to the doping
levels NA and ND, intrinsic density ni, thermal equilibrium density p0 and hole equilibrium
minority density under an applied voltage pn are also shown in the graph. The first iteration
k = 1 is calculated from the DRA, and it is clearly noticed how it is not far from the real
solution. However, the calculation of k = 2 over compensates this difference and moves
towards a negative density value which, nonetheless, also fulfills the surface recombination
velocity condition. Subsequent iterations add up to increase this difference, and diverge
instead of converging towards the solution, as can be seen in Fig. 4.7 where 20 iteration
steps are shown for both values of θ.
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Figure 4.7: Minority boundary condition for hole density after several iteration
steps, using two values of θ.

Even if a small parameter is used at first, returning to a higher value of θ makes the boundary
condition unstable, therefore special care needs to be taken in order to achieve real conver-
gence given that the error criteria can be satisfied for a density value different to the steady
state solution. Because of these issues, some adjustments were made. First, a condition for
θ was established which verifies if any density value is negative, and imposes a smaller value
of θ if this is true. Second, the error criteria is defined according to the relative error, rather
than the absolute. Finally, the maximum variation of electron temperature with respect to
the former step, given by δTn, was limited using a special relaxation parameter θT . This
avoids abrupt changes in electron temperature, which as a consequence leads to a sudden
decrease in electron density, sometimes reaching negative values, and produce the method
to diverge. This relaxation parameter works only if the next step is predicted to vary more
than 50%, and therefore it is given by

θT = 0.5
θ ‖ δTn/Tn ‖∞

, (4.3)

if θ ‖ δTn/Tn ‖∞ is higher than 0.5, and equal to 1 otherwise. Although this additional factor
aids into the convergence of the method, does not provide a real solution to the cause of the
stability problem. This arises from the fact that the movement direction of carriers changes
over a small region near the surface, because of the surface recombination. The implemen-
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tation of an upwind should help to avoid this numerical issue by changing the discretization
scheme depending on the sign of carrier velocities. Therefore, the implementation of this, or
a similar method, is fundamental for the robustness of the numerical scheme.

4.2 HD modeling of a single junction solar cell

In the present section, a brief description and discussion of the physical aspects of the results is
presented. This general analysis of the variables involved is performed because under normal
operating conditions they have a usual behaviour, which has been thoroughly studied and
represented in analytical models such as the DRA. However, subtle differences in these results
may generate important variations in output current or thermal behaviour. Furthermore, one
of the objectives of this study is to analyse the behaviour of a solar cell under specific design
or operating conditions, where high energy phenomena are present and their effects are not
negligible. The equations and conditions to be solved are identical to the ones presented in
Section 4.1.

Figure 4.8 shows the solution for the hydrodynamic model, given the conditions established
in Table 4.1. All the results in this section are presented in non-dimensional form. Therefore,
each variable is scaled by its corresponding factor as defined in Section 3.4. These factors
depend on properties such as relaxation times or effective mass, which in turn depend on
parameters such as the length of the device or the applied voltage. Therefore, different
operating conditions will deliver different scaling factors. Distance (x), doping densities
(n, p), and temperatures (Tn, TL) are scaled directly by using the values for the length of the
device L, minimum between the doping densities NA or ND (which in this case are equal),
and the boundary condition for lattice temperature Tl, respectively. Under these conditions
the scaling factors for the rest of the variables are given by UT = 0.026 V for voltage,
UT/L = 6465.4 V/m for electric field and u0 = 5121.4 m/s for carrier velocities.

Figure 4.8a: Solution plots of the hydrodynamic model for case 1. Results of
electric potential and field.

Using the depletion approximation, the depleted layer has a defined length given by Eq.
(2.147). In this case equal to 1.24 µm, corresponding to nearly 30% of the total length,
which agrees with what is shown in the figures. These regions are defined by the dashed lines

88



4. RESULTS 4.2. HD MODELING OF A SINGLE JUNCTION SOLAR CELL

on each graph, as a reference in order to explain the results. The ‘p’ quasi-neutral region is
located between 0 and xp; the ‘p’ side of the SCR, with a length of wp, between xp and xJ ;
the ‘n’ side of the SCR, with a length of wn, between xJ and xn; and the ‘n’ quasi-neutral
region between xn and the total length of the device L, or 1 in the non-dimensional version.
In this case both regions have equal lengths, since the doping levels are equal.

The open circuit voltage, Voc of any regular solar cell is located below the built-in voltage,
Vbi. Consequently, the Maximum Power Point (MPP) of operation will also be lower than
Vbi. This means that under normal operating conditions the potential barrier set up by this
voltage is not surpassed and the electric potential and field curves will depict a behavior as
shown in Fig. 4.8a. The graphic on the left shows the electric field, where three zones can be
clearly distinguished. The areas near the boundaries, in this case the contacts of the device,
present a constant value of voltage which implies a zero net electric field. These are the areas
outside of the SCR, which are referred to as quasi-neutral zones. In contrast, within the
SCR a variation of voltage equivalent to |Vbi − Vapp| is developed. This voltage is originated
from the diffusion of carriers at each side at the formation of the junction, and is increased
or decreased by the applied voltage. For solar cells the total potential drop will always be
smaller than Vbi. If the DRA is used, the voltage development has a parabolic shape by
sections as defined in Eq.(2.148), also similar to the curve in the figure. In turn, solving the
HD model delivers a less abrupt interface between one section and another, but the order of
magnitude of the length and relative shape of each section is very similar. The same three
zones are clearly present on the figure on the right, where there is zero electric field near the
edges, and the voltage drop at the SCR causes a peak in the electric field, which makes the
SCR the most active region of the device.

Figure 4.8b: Solution plots of the hydrodynamic model for case 1. Results of
carrier densities for electrons (left) and holes (right).

Figure 4.8b shows the carrier density distribution across the device n(x) and p(x), while Fig.
4.8c presents carrier velocities un(x) and up(x), both in logarithmic scale. It has to be kept
in mind that the variables are plotted non-dimensionally, which is why the maximum value
of both carrier densities is 1, given that the device is symmetrically doped.

When the solar cell is under illumination, electron hole-pairs are generated across the whole
depth of the device. This generates a difference in carrier density which is specially noticeable
at the minority regions. This excess of carriers is transported across the device towards the
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Figure 4.8c: Solution plots of the hydrodynamic model for case 1. Results of
carrier velocities for electrons (left) and holes (right).

contacts. Therefore, both minority carriers move toward the junction, as can be seen in
Fig.4.8c, where electron velocity is mainly positive, while hole velocity is negative. A small
inversion in velocities occurs at the minority surfaces of the device caused by the surface
recombination. This makes carrier velocity at these boundaries to rapidly decrease, reaching
the corresponding values for surface recombination velocities. Therefore, un(x = 0) = Sn and
up(x = 1) = Sp. This ‘leakage’ of carriers implies a decrease in carrier density within this
small section, and although it is imperceptible in the graphics, small variations in minority
carrier densities at the boundaries can cause important changes in the attainable current
from the device.

As carriers move through their respective minority region they suffer recombination, which is
why a decrease in density can be noticed as the SCR is approached. Once the carriers enter
the zone with a high electric field, they accelerate and gain their maximum velocity. This
causes carriers to be absorbed faster and, as a result, a decrease in the density occurs. Peak
velocity is therefore coincident with carrier density minimum. This minimum is located at
the left side of the junction for electrons and at the right side for holes, i.e. at the minority
side of the junction for each carrier.

When carriers reach the respective majority side of the junction they are collected almost
instantly. For that reason, carriers generated within the junction have a very high probability
of contributing into conduction. As carriers move through their respective majority region
of the SCR, density increases in several orders of magnitude until reaching the doping den-
sity level. Evidently, velocity is decreased because of the higher number of carrier allowing
conduction. In this particular case hole velocity has a steady increase as carriers approach
the front surface. This is originated by the exponential decrease of pairs being generated as
light penetrates into the device, creating the need for transport of holes to be accelerated
near the contact in order to maintain balance.

The main heat sources and sinks in the lattice for solar cells are thermalisation, Joule effect,
recombination processes, sub-bandgap losses, thermoelectric effects (Seebeck, Peltier and
Thomson), radiation and convection with the surroundings. A thorough analysis of heat
generation in Silicon solar cells considering most of these factors is performed by Couderc et
al. [69]. Nonetheless, during their analysis they only solve transport equations for minority
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Figure 4.8d: Solution plots of the hydrodynamic model for case 1. Results of
electron temperature increase (left) and lattice temperature increase (right).

carriers sections, adding these heat phenomena directly into the lattice heat balance equation.
Hydrodynamic models are able to reproduce all of these heating effects, as discussed in Section
2.2, depending on the different terms included in the balance equations. An analysis of the
contribution of these factors, some of which are often simplified, is included in this Thesis.
However, neither radiation nor convection with the surroundings were directly included.
Peltier effect is also an important source of heating in solar cells which is originated at the
metal-semiconductor interface of the contacts. This phenomenon is not directly modeled in
this work.

Figure 4.8d presents the non-dimensional increment of electron and lattice temperatures,
Tn(x)−1 and TL(x)−1 respectively, which are the result of the corresponding energy balance
equations. It can be seen how lattice temperature is approximately constant across the device,
with a peak reaching barely 0.01% of the boundary condition temperature. This fact was
expected since no high field effects are considered and this case could be solved by simpler
models delivering similar results. Furthermore, no heat is transferred from recombination
nor sub-bandgap losses.

A lattice temperature profile with higher gradients would mean that properties such as
bandgap, mobility, effective masses, thermal conductivity among others, would change their
value in a more considerable manner. This complicates the thermal analysis since the de-
vices exhibit a dynamic behavior regarding heating, opposite to the classical approach of
considering them as a bulk material with a thermal conductivity depending on a constant
lattice temperature. Zhang et al. [70] studied the effect of the junction temperature in the
thermal resistance of the solar cell, using empirical relations developed by Huang et al. [71],
to measure its junction temperature from the external temperature. They showed that there
were important differences in thermal resistance under dark and illuminating conditions.

In contrast to lattice, the peak for carrier temperature reaches almost 200% of the original
lattice temperature. This maximum clearly matches electron velocity peak, since electrons
are the main contributor into heating for this case. In fact, it is well known that the heating of
solid state devices, and solar cells in particular, is originated at the interfaces of junctions and
contacts. The shape of this peak also originates from the expression for thermal conductivity
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κn, which is highly dependent on carrier density, mobility and carrier temperature all of
which have their higher gradients within the SCR. It can be seen how carrier temperature
peak is restricted within the surroundings of the junction. Therefore, the term ∂Tn/∂x is not
considerable near the boundaries which is where it would affect the total current.

However, some new technologies such as thin film solar cells present degradation or failures
due to hot spot formation and thermal runaway. This may be related with the fact that the
junction and, therefore, the internal hot spot, as the one shown in Fig. 4.8d, is closer to
the surface. Hot spots of 300 [K] above the surrounding area have been reported [72]. The
stability of hot spots has been studied by different approaches, but mainly through variations
of the diode equation, coupled with thermal models for the lattice [73, 74].

Nevertheless, all of these studies have the limitation of not knowing the internal temperature
profile of the cell with certainty, given that it is extremely hard to measure. A deeper investi-
gation on the effects of the dynamics between carriers and lattice out of thermal equilibrium
and their respective conditions at the boundaries, could lead to a better understanding of
the causes and possible solutions for thermal issues in solar cells.

4.3 Effect of Hot-Carriers at the Contacts of a PN
Junction Solar Cell

As a first set of results, the carrier temperature dependence at the boundary of the device was
studied, in order to show the influence of carriers and lattice temperatures in the electrical
performance of a GaAs PN junction solar cell. These were obtained during the course of
the development of this thesis, in order to be presented at the XIV Pan-American Congress
of Applied Mechanics, and were later published in the journal Acta Mechanica under the
title Hydrodynamic modeling of hot-carrier effects in a PN junction solar cell [75]. For this
reason, there were several assumptions and solution methods that were later modified. The
main difference with what was presented at Chapter 3 is the use of a constant thermal
conductivity for electrons κn, which leads to important differences in the non dimensional
version of the equations. Another significant difference is the use of hole temperature at
thermal equilibrium with electron temperature Tp = Tn = Tc. This assumption is revised in
Section 4.4, for its use in further results. Perturbations method in asymptotic expansions
was used in order to reduce the non-linearities of the equations, and only the zero order was
solved as sufficient approximation of the solution. Aside from these facts, the model and
method of solution are very much alike to the rest of the results of this thesis, and describe
similar physics. The rest of the differences, along with the limitations and consequences of
these assumptions are discussed at the end of this section.

The physical parameters used for this case are summarized in Table 4.6. A depth dependent
generation rate was used in accordance to what is presented in Section 2.4.1. It was assumed
for this case that the cell was under 1 Sun of illumination, with the AM1.5 spectrum. Even
though the use of a constant thermal conductivity makes the calculations much simpler, there
are not many references for values of κn. However, it is known that its value is much lower
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than lattice thermal conductivity. Therefore, a small arbitrary value was used.

Table 4.6: Relevant parameters and properties for Case 2.

Parameter Value Units
NA 1023 [m−3]
ND 1022 [m−3]
L 10 [µm]

xJ/L 0.1 –
Tl 300 [K]

#Suns 1 –
κn 3 [Wm−1K−1]

Three different voltages (Vapp) were applied on the illuminated cell using these parameters,
0.4, 0.6 and 0.8 V. Results are shown in Figs.4.9 for voltage, electric field, electron density,
hole density, electron velocity, hole velocity, carrier temperature and lattice temperature,
respectively. From these figures, voltage, electron density and hole density vary smoothly in
space for the three applied bias, and depict a behavior similar to the one described in Section
4.2. Electron and hole velocities, shown in Figs. 4.9e and 4.9f, also present the expected peak
near the junction, slightly shifted towards the respective minority side. It can be noticed that
both velocities increase with decreasing the voltage, which is caused by an increase in the
electric field at the junction, due to a higher voltage drop. This also correlates with the peak
of temperature in the same region, as can be seen in Figs.4.9g and 4.9h. Lower temperatures
and velocities, meaning lower energy charge carriers at the junction while increasing the
voltage, also correlate with a more efficient behavior of the cell.

Even though the increase in lattice temperature is small compared to the one shown by
electron temperature, it is considerable given that only Joule effect is assumed to heat up the
device. Current density in solar cells is relatively small, however, its value gets higher at the
front contacts. Nonetheless, since this effect cannot be considered in the one dimensional case,
Joule effect heating is small compared to other heating sources. Even though the conditions
of both examples are quite different, this can be compared to the solution of Case 1, which
considers Wiedemann-Franz law for electron thermal conductivity. Because of the generally
higher κn in this case, the increase in electron temperature is much more distributed across
the device. This implies that the difference Tc − TL is higher in regions where the carrier
density is higher, and therefore thermalization occurs at a higher rate, heating the lattice.

Differences between lattice and carrier temperature are known to affect the performance of
GaAs PN junction solar cells. As was mentioned, the performance of a solar cell under light
is analyzed by imposing specific boundary conditions for Tc. Results in Figs. 4.10 and 4.11
show different curves for total current and power output densities as a function of applied
voltage for different boundary values of Tc and TL. The maximum current and power output
increase when the imposed carrier temperature boundary condition increases. This can be
explained by favorable conditions for hot-carrier flow, which can be physically achieved by
using energy selective contacts in order to reduce the carrier cooling rate. Quantum wells,

93



4. RESULTS 4.3. HOT CARRIERS AT THE CONTACTS OF A SOLAR CELL

quantum wires and quantum dots have been proposed to be used with this purpose [76].
Nonetheless, hot-carrier extraction mechanism is not considered here, and the temperature is
simply imposed. This behavior is further analyzed and compared to experimental references
in the following subsection.
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Figure 4.9a: Steady-state solution for voltage across a PN junction at different
forward bias under 1 Sun of illumination and AM 1.5 spectrum.
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Figure 4.9b: Steady-state solution for electric field across a PN junction at differ-
ent forward bias under 1 Sun of illumination and AM 1.5 spectrum.
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Figure 4.9c: Steady-state solution for electron density across a PN junction at
different forward bias under 1 Sun of illumination and AM 1.5 spectrum.
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Figure 4.9d: Steady-state solution for hole density across a PN junction at differ-
ent forward bias under 1 Sun of illumination and AM 1.5 spectrum.
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Figure 4.9e: Steady-state solution for electron velocity across a PN junction at
different forward bias under 1 Sun of illumination and AM 1.5 spectrum.
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Figure 4.9f: Steady-state solution for hole velocity across a PN junction at differ-
ent forward bias under 1 Sun of illumination and AM 1.5 spectrum.
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Figure 4.9g: Steady-state solution for lattice temperature across a PN junction
at different forward bias under 1 Sun of illumination and AM 1.5 spectrum.
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Figure 4.9h: Steady-state solution for carrier temperature across a PN junction
at different forward bias under 1 Sun of illumination and AM 1.5 spectrum.

4.3.1 GaAs Solar Cell Characteristics and Comparison to Experi-
mental Data

The voltage-current density characteristics in a GaAs PN junction solar cell with non-
symmetric doping concentrations and sides, and with recombination and generation process
was studied with the one-dimensional two-temperature hydrodynamic model. The calculated
characteristic voltage-current density curves are shown in Figs.4.10 and 4.11. Even though
the current density reaches orders of magnitude similar to those of a real operating solar
cell, the value is small compared to a cell under 1 Sun of illumination, in other words, the
simulated cell is very inefficient. Current is decreased because of the boundary condition
used for minority carriers. In this case, the equilibrium condition,

ns = n0,

ps = p0,

was used, which would imply an instantaneous surface recombination. Therefore, substan-
tially decreases the output current. Nonetheless, the behavior regarding temperature changes
is analyzed as described below.
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Figure 4.10a shows the current density as a function of the applied voltage, for different lattice
and electron temperatures as boundary conditions. For each imposed lattice temperature, a
corresponding electron temperature was found in order to match the experimental behavior
of solar cells. As the cell temperature, TL, increases, the open circuit voltage, Voc decreases,
while the short-circuit current, Jsc, is increased [77]. Results from the two-temperature
hydrodynamic model, show a good agreement with measured voltage-current characteristics
obtained when charge carrier temperature is higher than lattice temperature. The predicted
Voc temperature coefficient (dVoc/dTL) is approximately −2 mV/K as previously reported
[78, 79]. The open-circuit voltage is in the order of 1 V at TL = 300 K, 0.88 V at TL = 350
K, and 0.76V at TL = 400 K, and increases when illumination intensity increases [78]. Figure
4.10b presents the corresponding change in power output because of this effect.

On the other hand, when the charge carriers heat up and the lattice temperature boundary
conditions remain constant, the power output increases, as shown in Fig.4.11a. Figure 4.11b
presents the power output for this case, where the higher peak power is noticeable. This
behavior shows a linear dependence similarly to lattice temperature, only with a positive
coefficient of approximately dVoc/dTn = 3.2 mV/K. Although, this would be extremely
difficult to measure experimentally. This is in agreement with hot electron devices [80].

4.3.2 Suggested Improvements in Design of Concentrator Solar
Cell

The power output of a concentrator solar cell is increased as the open circuit voltage, Voc,
and the short circuit current, Jsc are increased. Both Voc and Jsc depend on operational
conditions such as lattice temperature, charge carrier temperature and light intensity, as well
as device characteristics such as device length and doping densities.

The temperature dependence of Voc is influenced by the temperature characteristic of sat-
uration current. This current is proportional to the square root of the ratio between the
diffusion constant and lifetime of electrons, which ratio is usually represented by a power-
law lattice temperature dependence, TLφ, with φ constant [81]. Using the two-temperature
hydrodynamic model, this ratio was observed to be proportional to the carrier temperature,
Tc. Consequently, charge carrier temperature plays a fundamental role in the predicted value
of Voc and this suggests that some improvements can be done.

According to the results, when the lattice temperature remains constant, Voc increases with
charge-carrier temperature, as shown in Fig.4.11a. Even though many simplifications were
considered for this example, the qualitative behavior regarding carrier temperatures at the
contacts is still expected to be true. Therefore, the real challenge lies in developing energy
selective contacts in order to allow hot-carrier extraction. One possibility is by using con-
tacts at both edges of the PN junction with a high electronic thermal conductivity in order
to prevent charge carrier temperature fluctuations and avoid the heat dissipation of the pho-
togenerated carriers into the lattice. This heating is commonly known as the Peltier effect,
and occurs because of the difference in the Peltier coefficients between the two media. These
coefficients represent the amount of heat that carriers are able to transport. On the other
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hand, lattice temperature boundary conditions are determined by lattice thermal conductiv-
ity as well as packaging layers in a PV module. Based on this analysis, the metal contacts
and packaging layers have to be designed to dissipate the heat from hot charge carriers in a
sufficiently large region away from the contact-semiconductor interface, in order to operate
the solar cell at lower lattice temperatures.
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Figure 4.10a: Total current density vs. voltage characteristics for a GaAs PN
junction solar cell under 1 Sun with AM 1.5 spectrum, at different lattice tem-
perature boundary conditions, TL, and different charge carrier temperatures, Tc.
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Figure 4.10b: Power output density vs. voltage characteristics for a GaAs PN
junction solar cell under 1 Sun with AM 1.5 spectrum, at different lattice tem-
perature boundary conditions, TL, and different charge carrier temperatures, Tc.
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Figure 4.11a: Total current density vs. voltage characteristics for a GaAs PN
junction solar cell under 1 Sun with AM 1.5 spectrum, TL = 300[K] (lattice
temperature boundary conditions) at different charge carrier temperatures, Tc.
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Figure 4.11b: Power output density vs. voltage characteristics for a GaAs PN
junction solar cell under 1 Sun with AM 1.5 spectrum, TL = 300[K] (lattice
temperature boundary conditions) at different charge carrier temperatures, Tc

4.3.3 Considerations Regarding the Assumptions for Case 2

Some of the methodology used to obtain the results for this section were later modified. This
can be reviewed in greater detail in reference [75]. There were two main issues with the
method used. The first is regarding the non-dimensionalization, where some interdependent
non-dimensional groups exist. This can be verified with the relation between constants and
independent variables, according to the π-Buckingham theorem [82]. In the current version
of the non-dimensionalization, this is solved through the use of the thermal voltage UT . The
second issue, which is directly related to the first, is the use of a constant thermal conductivity
for electrons, therefore considering it as an independent physical quantity. On the contrary,
if the Wiedemann-Franz law is used, κn is expressed in terms of physical constants and
independent variables that are already in use. This implies that if the asymptotic limit was
imposed on Re, with the first version of the non-dimensionalization and Wiedemann-Franz
law. Subsequently, the thermal-conductivity term of the carrier heat-balance equation is also
simplified, which implies spatial equilibrium.

As was mentioned, thermal equilibrium density was used for minority carriers boundary
condition. This implies an infinite surface recombination velocity, or a semi infinite media.
Therefore, it is not appropriate for solar cell modeling. Characteristic curves in Figs. 4.10a
and 4.11a present an increase in the current value as the voltage increases, which is not the
usual behavior of a solar cell, where the maximum value of current always occurs at Jsc. This
behavior is caused by numerical errors at the minority boundary due to the infinite value of
SRV.

4.4 Hole Temperature Assumption Verification

One of the most significant assumptions used to obtain the results presented in the previous
section was to consider Tp = Tn. In a follow up work, this assumption is contrasted with
the use of Tp = TL. This is done by solving the resulting equation systems under both
assumptions, and low field considerations.
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The physical justification behind the electron-hole thermal equilibrium, is the fact that both
electrons and holes suffer an increase of energy within the SCR, because of the high electric
field therein. However, this raises the question of which energy balance should be solved. The
course of action in the work presented in the previous section was to assume electron energy
balance with an additional term corresponding to the energy delivered by holes. With this,
and considering that νp is also neglected by the asymptotic approximation, the momentum
and energy balance for holes when Tp = Tn, are given by

up = −µ
(
∂V

∂x
+ 1
p

∂(pTn)
∂x

)
, (4.4a)

ψ
∂2TL
∂x2 + 3

2 (νnn+ γνpp) (Tn − TL) = 0. (4.4b)

On the other hand, assuming holes are at thermal equilibrium with the lattice would be
equivalent to consider instantaneous thermalization. This is not necessarily a direct assump-
tion, since energy relaxation time for holes is larger than the one for electrons. However, holes
in GaAs have a higher effective mass than electrons. Therefore, when energy is delivered to
holes a bigger proportion of it corresponds to kinetic energy, rather than thermal. This is
also related to the fact that holes have a more ‘flat’ behavior for energy with respect to the
wave vector k, which implies that when an electron-hole pair is photogenerated, a higher
portion of the energy above Eg is delivered to electrons. In the case where Tp = TL, the
momentum and energy balance are given by

up = −µ
(
∂V

∂x
+ 1
p

∂(pTL)
∂x

)
, (4.5a)

ψ
∂2TL
∂x2 + 3

2νnn (Tn − TL) = 0. (4.5b)

The rest of the equations for both cases are given by Poisson’s equation (3.26a); steady state
continuity equations (3.29a) and (3.29b); low-field momentum balance for electrons (3.30a);
and low-field energy balance for electrons (3.30b). The conditions under which this case of
example was solved are very similar to those of Case 1, with the difference of the p-side
being shorter than the n-side, which is characteristic in solar cells. The parameters for this
example, labeled as Case 3, are summarized in Table 4.7

Table 4.7: Relevant parameters and properties for Case 3.

Parameter Value Units
NA 1022 [m−3]
ND 1021 [m−3]
L 4 · 10−6 [m]
xJ 0.2L [m]
Vapp 0.5 [V]
Tl 300 [K]

#Suns 1 –
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Under the given conditions, εn = 2.43 · 10−4, which corresponds to a Knudsen number of
Kn = 0.0156, and it is relatively safe to use the asymptotic approximation as well. The built
in voltage is Vbi = 1.096[V ]. Figure 4.12 presents the electric potential (left) and electric field
(right) for the steady state solution of Case 3. The solid lines correspond to Tp = TL, while
the dotted lines Tp = Tn.

Figure 4.12: Electric potential and field under the assumptions of Tp = TL and
Tp = Tn.

A clear depression can be seen in the voltage level near the junction for the case of electrons
and holes at thermal equilibrium. This implies a larger voltage drop across the junction, and
therefore a higher electric field, which can be seen in the figure to the right. Besides, in order
to fulfill the boundary conditions given by | Vapp− Vbi |, voltage increases again as the p-side
is reached, which implies a negative differential voltage and, therefore, a reversed electric
field. While it is possible to observe this kind of behavior in some electronic devices, it is not
characteristic of a solar cell. Not only this, but it would have negative consequences, since it
would repel electrons from reaching the SCR rather than attract them. In terms of energy
this depression can be directly related to the quasi-Fermi levels of energy carriers, which are
clearly modified by the assumption of Tp = Tn.

Figure 4.13: Carrier densities and velocities under the assumptions of Tp = TL and
Tp = Tn. The red and blue lines correspond to electrons and holes respectively.

Figure 4.13 shows the effect of considering each assumption on carrier densities and velocities.
The graph on the left presents carrier densities, red lines are for electrons, while holes are
represented with blue. The same is true for carrier velocities, presented in the figure at
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the right. Once again, the solid lines represent the curves using Tp = TL, and the dashed
lines Tp = Tn. Evidently, hole density and velocity are the variables that suffer the greater
changes when comparing both assumptions. The difference is related to the assumption of
thermal equilibrium for holes. This assumption is equivalent to solving hole mass balance
with an imposed higher temperature level at the p-side of the junction, which increases the
number of holes in order to maintain the balance. This increase in density is higher than the
corresponding temperature gradient, and therefore hole velocity is decreased. Additionally,
given the high density and low mobility of holes near the junction, they are not correctly
transported into the p-side. Therefore, the characteristic depression in carrier density near
the junction for solar cells under operating conditions is not observed. This implies this an
unrealistic result.

Figure 4.14: Electron and lattice temperature increase under the assumptions of
Tp = TL and Tp = Tn.

Figure 4.14 shows the variation of electron (left) and lattice temperatures (right). Since the
electron energy balance is practically the same in both cases, the temperature profile does
not change significantly, which implies the contribution of holes is not important. Therefore,
assuming Tp = Tn is similar to imposing the thermal behaviour of electrons on holes. Hole
current density can be expressed as

Jp = −µ
(
p
∂V

∂x
+ Tn

∂p

∂x
+ p

∂Tn
∂x

)
, (4.6)

where it can be noticed that a variation in ∂Tn/∂x directly affects the internal current
behavior. If a peak of temperature is considered like the one if Fig. 4.14, then electric field
and carrier densities must compensate, because the total current must remain constant across
the device. As described above, under these conditions holes density will increase closer to
the n-side, and this increase in the density implies a decrease in the mean hole velocity. At
the same time, this ‘excess’ of holes builds up a negative charge, which is expressed in the
changes in electric field. These changes in carrier densities also affect the recombination level,
which in turn affects the attainable currents. Figure 4.15, presents the recombination level
for both assumptions.

Evidently, under the assumption of Tp = Tn, the net recombination value is much higher.
This means the total current in this case will be lower. The values of the total output current
density in each case are

JT (Tp = Tn) = 199.2[A/m2],
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Figure 4.15: Recombination rate under the assumptions of Tp = TL and Tp = Tn.

JT (Tp = TL) = 205.7[A/m2].

A change in total current density does not necessarily mean one or the other assumption is
more accurate, but comparing the recombination profiles across the device, the one corre-
sponding to Tp = TL presents a behavior more in accordance with the classical assumptions
that there is zero recombination across the SCR.

In summary, assuming holes at thermal equilibrium with electrons leads to results that are
much more questionable than assuming them at thermal equilibrium with the lattice. Addi-
tionally, the thermal equilibrium between electrons and holes is much more difficult to achieve
than between holes and lattice, given that scattering processes between electrons and holes
are much more rare than holes scattering with phonons. Solving for hole temperature as a
separate variable would also lead to a peak temperature at the junction, but the maximum
value and shape of the curve would be very different, which yields different results. These
differences would be much more significant when adding more thermal effects such as heating
through recombination, or over bandgap photons, to the carrier energy balance. Therefore,
when trying to simplify the model, holes at thermal equilibrium with the lattice is a better
assumption.
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4.5 High Field Mobility Effects

As discussed in Section 2.3, high-field effects have a major impact on the transport conditions
for charge carriers. These effects have been attempted to be quantified by different models
that reproduce the experimental behavior of semiconductor materials. In order to provide the
most accurate description of charge carriers behaviour for future works, the following section
studies the implications of using different mobility models in charge transport parameters.
For the modeling of velocity saturation, the temperature dependent model introduced by
Baccarani & Wordeman is compared with the one by Hänsch. Similarly, for transferred
electron effect different assumptions are analyzed for the model based on the population rate
using Boltzmann distribution, and compared with the transferred electron empirical model
and Monte Carlo data.

In order to compare electron temperature and electric field dependent models, both of them
are analyzed under physical assumptions that allow to obtain a direct relation between these
two variables. This is usually done by assuming a bulk semiconductor under the effect of
a constant electric field, and no consideration for spatial or temporal gradients for carriers.
This leads to Eq.(2.103), which using the definition of electron average energy is equivalent
to assuming (∂tTn)c = 0 in Eq. (2.75a). In other words, a balance of the energy yielding from
carriers to the lattice is done with no diffusive effect consideration. Electron temperature
can then be written in terms of electric field as

Tn = 2e2τε,nτm,n
3kBmn

(
1− τm,n

2τε,n

)
E2 + TL. (4.7)

Lattice temperature is considered to be constant, contrary to the HD model used in this
work where an additional energy balance is included. The transport parameters τm,n,mn

and τε,n are all averaged effective quantities and do not represent the properties of each
single electron, but the electron cloud as a whole. Therefore, under high field conditions and
considering the transferred electron effect, all of them depend on electron temperature Tn,
making Eq.(4.7) an implicit expression. Most of the times, even when electron temperature is
being considered as the independent variable for changes in transport properties, the concept
of mobility is used in replacement of τm,n and mn. This is done by assuming τm,n � τε,n,
which is equivalent to the asymptotic approximation of νn → 0 in the non dimensional version
of the equations presented in Section 3.5. With this, electron temperature depends on the
electric fields according to

Tn = 2eτε,nµn
3kB

E2 + TL, (4.8)

obtaining a relation that directly applies the concept of mobility, without accounting sepa-
rately for changes in effective mass and momentum relaxation time. Nonetheless, since our
interest is in every independent transport parameter, Eq. (4.7) will be used for the evaluation
of different transport models, regardless that the results are very similar.
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4.5.1 Velocity Saturation Models

Models that represent the saturation of velocity are widely used for covalent semiconductors,
for instance Si or Ge, but do not depict accurately the behavior of polar semiconductor such
as GaAs or CdTe which have satellite bands. However, in this kind of materials, these models
are useful for characterizing each band separately. A distribution function can then be used
in order to determine the population of each band and its local contribution to conduction.
This procedure is explained in the following section. In the present section, the model of
Baccarani & Wordeman (BW) and the Hänsch model, are compared in order to define which
of them will be used to determine the transport properties of electrons at each independent
conduction band.

The starting point of BW model is the assumption of a constant diffusion coefficient Dn. This
implies that γF = −1 for Eq. (2.102), and gives a relation for momentum relaxation time
based on an experimentally measurable parameter. Consequently, energy relaxation time
accounts for the necessary variations in temperature for the transport of carriers to obey the
experimental behavior regarding electric field. In contrast, Hänsch model directly assumes a
constant energy relaxation time, but derives a very good approximation for mobility while also
maintaining self consistency. Despite these differences, both models describe the degrading
behavior of mobility as energy is increased. Saturation velocity for GaAs is used according to
the value given in Table 2.7. Even though as electric field increases, electron velocity should
continue to decrease, this value is normally used for reference purposes.

Figure 4.16 shows the behavior of mobility as electric field increases, according to BW and
Hänsch models. The value of τε,n for Hänsch model was taken as the low field value for BW
model, τbwε , given by Eq. (2.104). Therefore, both models use the same low field momentum
relaxation time. It can be observed how for low values of electric field the value of mobility
remains practically constant. However, for values of electric field above 100 V/cm, mobility
varies significantly. As a reference, a PN junction with doping levels of NA = 1016 cm−3 and
ND = 1015 cm−3 for the p and n sides respectively, can reach local electric field values of the
order of 10 kV/cm in the area near the junction. Doping values for high performance solar
cells are even higher than these.

From Fig. 4.16, it can also be seen how mobility steadily decreases for both models for high
electric fields. This correlates with electrons asymptotically reaching the saturation velocity
value, as can be observed in Fig. 4.17. Even though a noticeable difference is observed
between both models for the middle values of electric field, it is irrelevant to select only from
these results the best model to use, given that this is not the actual behavior of electrons
in GaAs. A comparison could be made instead on their applicability for independent band
modeling.

The fact that Hänsch’s model adjusts its behavior considering a constant energy relaxation
time implies that using it becomes more arbitrary than using BWmodel. Figure 4.18 presents
the variation of drift velocity with respect to the electric field, for three different choices of
τε. All of the relaxation times were evaluated at TL = Tn = 300 K, and a doping density
of ND = 1016 cm−3. The blue solid line corresponds to τε1 = τbwε,n and the red dashed line
uses τε2 = τmc

ε,n , from Eqs. (2.104) and (2.107) respectively. The green dotted line uses an
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Figure 4.16: Mobility in GaAs as a function of electric field, according to Baccarani
& Wordeman and Hänsch models.

Figure 4.17: Drift velocity in GaAs as a function of electric field, according to
Baccarani & Wordeman and Hänsch models.

arbitrary energy relaxation time given by τε3 = τmc
ε,n/2. It is observed that all the energy

relaxation times show a good agreement with the expected results, even when there is almost
an order of magnitude of difference between the highest and lowest values. This is expected,
since Hänsch model uses τε as a parameter for the calculation of mobility, therefore it adjusts
very well for a wide range of values.

The most important difference between both models can be observed when analyzing electron
temperature as the independent variable. According to Eq. (4.7), the use of a different value
of τε has significant effects on the rise of temperature due to the effect of the electric field.
This variation is shown in Fig. 4.19, where Tn as a function of electric field is depicted for
the BW model, and several values of τε,n for the Hänsch model. A difference of nearly one
order of magnitude can be observed when using the Hänsch model, assuming different τε.

This difference in temperature needs to be compensated for different models to describe
a similar behavior of mobility regarding electric field. Figure 4.20, presents the change in
mobility using both models for GaAs at TL = 300[K], Tn ranging from 300 to 800 and two
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Figure 4.18: Drift velocity in GaAs as a function of electric field according to
Hänsch model, considering different values for energy relaxation time.

Figure 4.19: Electron temperature in GaAs as a function of electric field, according
to Baccarani & Wordeman and Hänsch model, using different values for energy
relaxation time.

doping levels, ND = 1016 and ND = 1018 cm−3. The value of energy relaxation time for
Hänsch model is equal to the low field value of BW model. It can be seen how for lower
doping levels the difference between using one model or the other is significant, but for higher
doping levels this difference becomes less important. This is related to the fact that energy
relaxation time according to the BW model varies indirectly with the doping level through
low field mobility. The choice of this parameter for Hänsch model increases the difficulty
of obtaining a consistent model, and could be potentially used to adjust the model to fit
experimental results. In this sense, it can be argued that BW model has the limitation of
having less parameters to fit experimental data, given that βC , the exponent in Canali model,
is chosen to be equal to 2. However, using non-integer values for βC would result in much
more complex or non explicit expressions for τm and τε.

These results show that both models have different behavior regarding temperature, but
predict the same results for electric field due to the effect of τε, which quantifies the effect of
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Figure 4.20: Mobility in GaAs as a function of carrier temperature (high field),
according to Baccarani & Wordeman and Hänsch models, for two doping levels.

thermalization. This implies that when analyzing electronic devices using a HD model, the
choice of the phenomenological relations for high energy transport parameters has significant
effects on the thermal behavior described by the model. In this sense, the use of Hänsch
model for each band in order to define the total effective transport parameters generates
even more questions regarding the assumptions. As described, this model uses a constant
energy relaxation time and as was shown, this parameter can be selected within a wide range
of values, not affecting significantly on the resulting mobility of electrons, but having an
important impact on electron temperature. For these reasons, BW model was selected over
Hänsch for the modeling of independent bands in GaAs.

4.5.2 Baccarani & Wordeman Transferred Electron Model

As described in Section 2.3, transferred electron effect (TEE) occurs when electrons are
excited from a low-mass central valley to a high-mass satellite valley. Under certain conditions
this generates a negative differential mobility, which has many possible applications and
effects. The models presented above are useful to determine the transport properties of
charge carriers moving along a single band, assumed to be spherical and parabolic. Therefore,
when studying materials where the TEE is important, other approaches are needed. The
most common is to consider the dependency of drift velocity regarding the electric field, as
presented in Eq.(2.108). This model is shown in Fig. 2.13 for two different references along
with results from a Monte Carlo simulation.

The approach implemented on this work models each band independently, and accounts for
the TEE through the use of the population ratio PL, defined in Eq.(2.112).

As presented in the previous section, the basis of the BW model is to represent the behav-
ior of carriers at high energies as they reach the saturation velocity. Here, the main input
parameters that adjust the model to empirical data are the low-field mobility and the sat-
uration velocity. This means that in order to model both band separately, four parameters
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are needed; the low-field electron mobility of each band, defined as µΓ
n0 and µLn0, and the cor-

responding saturation velocities vΓ
n,sat and vLn,sat. From these parameters, the only one that

is readily experimentally measurable is µΓ
n0, since this is the mobility measured at low fields,

where most of the electrons are located within the Γ−band. As discussed in Section 2.3,
this parameter is mainly affected by doping density and temperature of the sample. In turn,
the low-field mobility for electrons in the L−band is not a measurable parameter since these
electrons only exist under high energy conditions. In the same manner, saturation velocities
for each band are never reached, since they correspond to the average velocity that would
be achieved if the transference of electrons did not exist. Consequently, the total average
electron velocity is bounded by these two values, being vΓ

n,sat the upper limit and vLn,sat the
lower. These velocities are not experimentally measurable, although vn,sat should be closer
to vLn,sat. Since at high electric fields coulombic type scattering becomes less effective for
increasing carrier energy [83], saturation velocities are much more stable regarding changes
on doping level and/or quality of the sample.

The value of mobility that electrons would have if they traveled only through the L−band
at low fields is not directly noticeable on their average behavior. However, it does affect the
way this band is modeled and therefore it is important for the approach used in this work.
One of the few references that can be found for the value of µLn0 is a study by Nichols et
al. [84], which attempts to isolate the effect of each independent band in the mobility of
GaAs samples. An even greater decrease in mobility because of temperature compared to
mobility of the Γ−band was reported here, although this is not considered in the present
work. From this, a value of µLn0 ∼ 2500 cm2/Vs can be extracted [21].

The total value of saturation velocity is an important parameter in order to reach the desired
performance of many devices, therefore, many studies have been done in order to find its
value with precision. Most common studies use indirect measurements through Gunn or
IMPATT diodes [85]. This implies the obtained value depends on material parameters such
as the diffusion constant. Other more direct method is the time-of-flight technique, but this is
harder to accomplish for very high fields [83, 86]. These studies have shown that for very high
fields, the saturation velocity in GaAs continues to decrease as the electric field increases,
which can be explained by more electrons being transferred to the L−valley or even to the
upper X−valley. Considering this, the value of vLn,sat will be assumed to be that of the total
saturation velocity for electrons at very high fields. Just as µLn0, the saturation value for
electrons at the Γ−valley, vΓ

n,sat, is useful only in a method where both bands are modeled
separately given that at very high fields, most electrons are moving through the L−valley.
Because of this, not much reference is found either for this value. The only reference that
could be found was a study on heterojunction bipolar transistors (HBTs) by Palankovski
[29], where vΓ

n,sat = 2.5 · 105 m/s was used. An interesting step towards the validation of this
model would be to obtain these parameters from Monte Carlo simulations.

Using these parameters, the average velocity for electrons moving through each individual
valley can be calculated. These are shown in Fig. 4.21, where the upper curve represents
the velocity of the faster electrons in the Γ−band, and the lower curve the slower electrons
moving in the L−band. The transferred electron model using the parameters from Barnes
[49] is also depicted as a reference. Electron drift velocity is plotted rather than mobility
because it describes more graphically the effect of transferred electrons. It can be observed
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how the curve of the TE model shows a peak value which is higher than the predicted value
for the Γ−valley electrons at the corresponding field. Since the value of low-field mobility,
µΓ
n,0, has been thoroughly studied, this may suggest a higher value of saturation velocity

for electrons in the Γ−valley, or a different behavior regarding electric field than the one
described by Caughey & Thomas [42], such as a higher value of βC in Eq.(2.99), on the
model given by Canali. Unfortunately, using the Canali model does not allow to derive such
a simple expression for relaxation times as a function of carrier temperature as the one given
by Baccarani & Wordeman. The effect of varying vΓ

n,sat is studied ahead.

Figure 4.21: Average electron drift velocity for individual valleys using the BW
model, along with the field dependent transferred electron model.

Having the behavior of electrons on each valley, it is straightforward to model the effect
of TEE in mobility using Eq.(2.116). However, another difficulty arises when considering
calculation of the total energy relaxation time, given that this is not an intrinsic property of
electrons moving in a certain band, but a result of the rate of thermalization of hot electrons.
Therefore, it can not be calculated by simply weighting the parameter for each band, as in Eq.
(2.116). Due to this, two different averaging functions are compared. The first one considers
energy relaxation time as an intrinsic property of each electron in the corresponding valley,
therefore

τε,n = f1
(
τΓ
ε,n, τ

L
ε,n

)
=
τΓ
ε,n + PLτ

L
ε,n

1 + PL
. (4.9)

The second option arises from considering only the thermalization in the collision component
of carrier temperature. Therefore,

n (∂tTn)c ≈ −nΓ
TΓ
n − TL
τΓ
ε,n

− nL
TL
n − TL
τLε,n

, (4.10)

which if T Γ
n = T L

n is assumed, delivers

τε,n = f2
(
τΓ
ε,n, τ

L
ε,n

)
=

(1 + PL) τΓ
ε,nτ

L
ε,n

PLτΓ
ε,n + τLε,n

. (4.11)
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However, this assumption would be valid only when 3kBTn � mnu
2
n, which restrains the

validity of the model. Figure 4.22 presents the comparison between the two functions, along
with the results using the TE model. It can be clearly observed how the first weighting
function delivers a much better approximation with the TE model as a reference. This
occurs because of the dependency of energy relaxation times with temperature. Figure 4.23
shows the electron temperature dependence of total energy relaxation time τε, using the two
weighting functions f1 and f2. It can be seen that the increase in total energy relaxation
time when using f1 is much sharper than when using f2. A higher τε implies a lower energy
transfer from carriers to the lattice, which means higher temperatures are reached and more
electrons are transferred to the satellite band. This implies that when f1 is used, mobility
decreases at lower electric fields than when using f2, as can be seen in Fig. 4.22. It can
also be noticed that the peak average velocity in the TE model does not agree with the one
delivered by the present model. Therefore, some parameters can be altered in order to obtain
a better approximation.

Figure 4.22: Total average electron drift velocity using the BW model for each
band, along with the transferred electron model. Two different weighing functions
for the total energy relaxation time are used.

One way of achieving a better fitting with the parameters in hand, is to increase the saturation
velocity of electrons in the Γ−valley, taking in consideration that this is one of the most
uncertain parameters, along with the low-field mobility of electrons in the L-valley. Therefore,
increasing vΓ

n,sat would require an adjustment of µLn,0. Through trial and error, a value of
vΓ
n,sat ∼ 4 · 107 cm/s is obtained for the peak value of the TE model to be lower than the
curve for electrons at the Γ−valley. Figure 4.24 shows three curves for different values of µLn,0,
corresponding to 2.5, 3.5 and 5 cm2/Vs. The mentioned value of vΓ

n,sat was used in all cases.
Even though the Γ−valley curve is always above the one given by the TE model, the peak
velocity reaches values that are much higher. Because of the larger difference in velocities of
electrons in both valleys, the change in mobility is also much more abrupt. Increasing the
L−valley mobility only slightly decreases the velocity peak and makes the mobility change
much steeper than it is expected to be.
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Figure 4.23: Total energy relaxation time τε,n as a function of electron tempera-
ture, using the two different weighing functions f1 and f2.

Figure 4.24: Total average electron drift velocity using the BW model for each
band, along with the transferred electron model. Three different values of µLn,0 are
used, for a saturation velocity of vΓ

n,sat = 4 · 107.

It is concluded that the shifting of the peak velocity value regarding electric field can be
corrected by adjusting some parameters, particularly vΓ

n,sat. However, in order to do this a
different distribution function would be needed for PL, instead of the Maxwell-Boltzmann
distribution. This would make the calculations of transferred electrons much more complex,
and no references have been found where this is done. As discussed above, a different behavior
regarding electric field can also be assumed through the use of a different parameter βC for
the Γ−valley electrons, which also makes the calculation of the transport parameters for the
corresponding band much more difficult. A very interesting exercise would be to perform
Monte Carlo calculations of these parameters, modeling the behavior of each band as if no
transference of electrons existed. With this, the need of a different population ratio PL would
be verified. Therefore, under these conditions the better fitting achieved is through the use of
the mentioned parameters found in references, despite the displacement of the peak velocity
value.

112



4. RESULTS 4.5. HIGH FIELD MOBILITY EFFECTS

Finally, in order to verify the accuracy of the model, a comparison is made with a study by
Tait [52], where phenomenological transport parameters are derived from large scale Monte
Carlo particle simulations, in order to be used in a hydrodynamic model. In the cited study,
different values of effective mass and saturation velocity for electrons in the satellite valley are
used, compared to this work. In order to compare these parameters with the ones given by the
transferred electron model using Baccarani & Wordeman relations (BWTE model), the same
values are used. Figure 4.25 compares the high-field electron drift velocity using different
models. The blue solid line shows the results for the transferred electron field dependent
model (TE model); the red dashed line the results using the Baccarani & Wordeman model
for each band (BWTE model); and the black triangles the results from the Monte Carlo
simulations.
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Figure 4.25: High-field electron drift velocity using the field dependent and Bac-
carani & Wordeman based transferred electron models, along with Monte Carlo
results from Tait [52].

A very good agreement is observed between the TE model and the Monte Carlo results
for electron velocity. In the case of the BWTE model, a larger difference can be observed,
showing a displacement of the curve near the peak value, which is shifted towards higher fields
for the BWTE model. As described above, the most probable cause of these differences is the
expression used for the population ratio of electrons. However, the temperature dependency
of the BWTE model allows to obtain an insight on the causes of these differences, through
the analysis of the rest of the transport parameters involved. Figures 4.27 to 4.29 present
the field dependent behavior of effective mass, temperature, momentum relaxation time and
energy relaxation time, respectively.

Given the general expression for electron mobility µ = eτm/mn, the main variables that af-
fect the velocity of electrons are momentum relaxation time and total effective mass. These
parameters also depend on electron temperature, which in turn is affected by the rate of
thermalization, determined by the energy relaxation time τε. Figure 4.26 shows the com-
parison of electron momentum relaxation time between the BWTE model and Monte Carlo
results. The major differences can be seen in the medium fields region, where the peaks of
τm coincide with the corresponding peaks of electron velocity. A steady decrease is observed

113



4. RESULTS 4.5. HIGH FIELD MOBILITY EFFECTS

for high electric fields, which is necessary in order to achieve velocity saturation, considering
a constant effective mass. It is then concluded that the higher differences for medium fields
are related to different behavior of total electron effective mass.
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Figure 4.26: High-field behavior of momentum relaxation time for electrons using
the Baccarani & Wordeman based transferred electron model, along with Monte
Carlo results from Tait [52].

Figure 4.27 presents the comparison of total electron effective mass between the BWTE
model and Monte Carlo results. It is verified that the mid-field region is where the larger
differences between results are seen. For high-field conditions, total effective mass depends
on the amount of electrons on each band, therefore it depends directly on the total energy
of electrons. The approach used in this work is to use the population ratio PL, which
assumes that electron energy can be approximated through their temperature. Neglecting
the population at the X−valley, electrons can only have the mass corresponding to Γ and
L valleys. Therefore, the comparison between Monte Carlo results and BWTE model shows
the accuracy of the approximation used to calculate this ratio. It is expected that both
curves have similar values for both very low and very high electric fields, given that the
same effective masses of independent bands are being used, which can be seen in Fig. 4.27.
However, the Monte Carlo results show that the onset of electron transfer to the satellite
band occurs earlier than PL predicts, and the transfer process is not as abrupt as shown by
the BWTE model. This confirms that the main relation to be optimized in this model is the
population ratio, PL.

As can be seen in Fig. 4.28, the behavior of electron temperature varies importantly with
respect to the electric field for both models, which is directly related to the behavior of energy
relaxation time, shown in Fig. 4.29. In relation to the rest of the parameters analysed, these
are clearly the ones that show a larger deviation from the Monte Carlo results. They also
show similar inflexion points, given their coupling through thermalization. Since the model
is based on fitting the behavior of mobility, electron temperature, by means of the energy
relaxation time, is the variable that controls these differences and makes the model fit better.
Another important result is the verification of the fact that energy relaxation time does not
behave as an intrinsic property similar to effective mass, therefore, a different expression
is needed in order to obtain more reliable temperature results. As expected, higher levels
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Figure 4.27: High-field behavior of electron effective mass using the Baccarani &
Wordeman based transferred electron model, along with Monte Carlo results from
Tait [52].

of electron temperature are directly related to higher values of total effective mass, which
means that in the Monte Carlo simulations, electrons on average gain more energy at lower
fields. This correlates with the coupling of energy relaxation time and the population ratio
with electron temperature. On the other hand, the similarity in the highest field value of the
results of both models is not relevant, given that for even higher electric fields the difference
in results would be larger.
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Figure 4.28: High-field behavior of electron temperature using the Baccarani &
Wordeman transferred electron model, along with Monte Carlo results from Tait
[52].

Therefore, both the energy relaxation time τε,n and the population ratio PL need to be
improved in order to achieve more accurate results for electron temperature, that in turn
lead to better transport parameters using the BWTE model. In this sense, the most critical
expression to improve seems to be PL, specially considering the assumptions made in order
to obtain the expression. Given that most transport parameters depend directly on electron

115



4. RESULTS 4.5. HIGH FIELD MOBILITY EFFECTS

▲

▲
▲

▲
▲
▲
▲▲▲

▲

▲

▲ ▲

▲

▲

Figure 4.29: High-field behavior of energy relaxation time for electrons using
the Baccarani & Wordeman transferred electron model, along with Monte Carlo
results from Tait [52].

temperature, the fact that this variable is not accurately predicted is relevant and should be
further studied.
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Conclusions

The main conclusions of the studies performed in the present work are described in the
following chapter.

Numerical Verification of the Results

On the first place, a simple case of a symmetric solar cell under a spatially constant carrier
generation rate was solved, where no high-field effects were considered. Convective energy
flux is not included in the energy balance, only heating by means of collision phenomena, and
heat transfer is modelled using Fourier’s law. Boundary conditions for carrier densities and
electric potential are imposed according to Section 3.3, while thermal boundary conditions
are assumed constant for both electrons and lattice. This was performed in order to describe
the general behaviour of charge carriers within a solar cell under operation, as well as to
validate the numerical method used for the subsequent results.

An analysis of the numerical method is presented in Section 4.1. The convergence of the
scheme was analysed for the solution of a solar cell example case. For the solved case,
the solution of the HD model was obtained taking the DRA as an initial condition for a
mesh of Nu=2000 and a constant relaxation parameter. Several iterations of the method are
presented in order to show the variation of each variable. The DRA was observed to be a
good approximation for voltage and carrier densities, while special care needs to be taken for
temperature in order to avoid divergence, specially carrier temperature which varies greatly
in space. Given that high-field effects are not being taken into account, electron temperatures
and velocities present higher values than what would be expected in reality. This observations
corroborate the importance of the selection of the initial conditions. Much improvement can
be achieved in convergence time by selecting an appropriate relaxation parameter θ. A mesh
sensibility analysis was also performed through the study of the location and magnitude of
the residuals with respect to a solution using a fine mesh. This showed the importance of an
adequate spatial interval for variables that present high gradients in small regions.

Additionally, the use of non-homogeneous discretization of space is required in order to
efficiently solve cases where doping differences are higher or the dimensions of the device are
larger. It is also important to take special care with the convergence of velocities and current,
since these are obtained from balances of high magnitude gradients. The obtained value is
therefore very sensitive to the accuracy of the method.
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Some numerical instabilities are presented at the minority carrier boundaries, when increasing
the length of the device. These are caused by the treatment of the carrier density spatial
gradient direction. This can be solved through the use of an adapted discretization method,
such as the upwind scheme.

HD modeling of a single junction solar cell

Section 4.2 presents a general description of the physical behaviour observed in the involved
variables. The non-dimensional version of the results is presented. The length of the depletion
region, i.e. where major variations in the magnitude of each variables occur, is observed to
be virtually the same as given by the DRA. Voltage through the device is the variable that
presents less deviation from the result given by the DRA. This will be the case for solar cells
as long as the length of each doped side is sufficiently larger than the corresponding depleted
region and, therefore, the quasi-neutral zones develops.

The behaviour of charge carriers along the device is also well depicted, presenting constant
values of carrier densities at the majority carrier regions corresponding with low values of
carrier velocities. On the other hand, at the minority sides of the cell, generated carriers
exhibit a decreasing density value as they approach the junction and recombine, at the same
time as an increasing velocity magnitude in accordance to the high electric fields value near
the junction. It is also observed that the behaviour of carriers near the minority side surface is
well modelled, presenting an inversion in the velocity value. The expression for the minority
carriers boundary condition has to be reconsidered when the thickness of the doped region
is small, as in thin film solar cells. In that case, a constant surface recombination velocity
value might not be the best approximation of the phenomenon.

Lattice temperature exhibits a practically constant value for this case. This is because ther-
malization because of sub-bandgap losses nor recombination heating are considered. Consid-
ering variations in transport properties because of high energy values could also contribute
to the heating of the lattice. In contrast, electron temperature presents an important peak
at the minority side of the junction, matching electron velocity peak. Since high magnitude
variations are not located near the surface of the cell, electron temperature gradient does
not generate a direct effect on the attainable current. However, the high values of electron
temperature near the junction cause variations on the transport properties, which directly
affect the amount of carriers that are captured into the majority region. Because of this it is
of great importance to consider high-field models into the transport equations.

When studying devices that do not present a clear quasi-neutral region, such as thin-film
solar cells, the effect of carrier temperature near the surface should be considerable. In those
cases, surface boundary conditions should be reconsidered in order to accurately represent the
physics involved. On one hand, the value of surface recombination velocity can no longer be
considered as a constant value. Additionally, the assumption of thermal equilibrium between
lattice and carrier temperatures is questionable.
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Hot-Carriers at the Contacts of a Solar Cell

The performance of a GaAs PN junction solar cell under different thermal boundary condi-
tions was studied. In this case, holes are assumed to be at thermal equilibrium with electrons.
On the first place, three different output voltage values were considered for the same ther-
mal boundary conditions. An increase in the velocity of carriers is observed as voltage is
decreased, which is attributed to the higher electric field near the junction. Carrier temper-
ature peak is also observed to decrease as voltage is increased, which correlates to the cell
working closer to the MPP. Heating of the lattice through the Joule effect is considerable,
even though the concentration of current at the contacts is not considered due to the 1D
characteristics of the simulation. The relatively high heating level of the lattice is explained
because of the constant value assumed for electron thermal conductivity. Therefore, a com-
prehensive analysis which involve carrier-lattice thermal interaction should consider a model
for electron thermal conductivity, such as the Wiedemann-Franz model.

Different thermal boundary conditions were imposed on the model of the solar cell. When
varying lattice temperature, electron temperature was selected in order to achieve a reference
value for the temperature coefficient, dVoc/dTL. As observed in experience, when the solar
cell is working under higher lattice temperatures, lower performance values are achieved.
Therefore, output current is reduced. Additionally, electron temperature boundary condition
was varied while lattice temperature remained constant. It was observed that imposing higher
electron temperature on the boundaries of the device, increases the total output current and,
therefore, the efficiency of the cell. A positive value of dVoc/dTn = 3.2mV/K was obtained for
the open circuit linear thermal dependence factor for electron temperature at the boundaries.
This is a direct consequence of hot carrier extraction, given that the excess of energy is not
transformed into lattice heating.

This results indicate that important improvements can be achieved in the performance of the
solar cell by means of improving the thermal management at the contacts. While electron
temperature at the contacts needs to be maintained at high levels, lattice temperature is
desired to be as low as possible. The two-temperature thermal modeling contributes to
predict the thermal resistance of solar cells, to improve the thermal control strategies and
the design of cooling systems to be used in photovoltaic modules.

Hole Temperature Assumption Verification

One of the main assumptions regarding charge carriers temperature was also analysed by the
comparison of two conditions, holes temperature equal to electron temperature, Tp = Tn, and
holes temperature equal to lattice temperature, Tp = TL. High field effects on transport pa-
rameters were not considered on these calculations. It was observed that the contribution of
holes into the carrier energy balance is rather small, which implies that considering holes tem-
perature equal to electron temperature is virtually equivalent to imposing the temperature
profile of electrons to holes. These have a temperature peak at the p−side of the junction,
which by the solution of mass and momentum balances implies an increase in holes density,
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along with a decrease in their velocity. The high density and low velocity values of holes
near the junction causes that the expected depression in density value of solar cells under
operation is not observed. In turn, this increase in hole density builds-up electric charge in
this region, causing an inversion of the electric field, which is also not expected under normal
operating conditions. Even though lattice temperature is low in both cases a difference in
several orders of magnitude can be seen in the transmission of energy to the lattice, which
is higher in the case of Tp = Tn because of the high thermalization rate caused by the high
energy of holes at a high density area. An important difference between both cases can also
be seen in the total current value, because of the effect of temperature on the recombination
levels. Therefore, it is really important to use the most adequate assumption because it has
great effect when obtaining quantitative results. As a conclusion, the assumption of Tp = TL
is a better and more physically justified assumption than Tp = Tn.

High Field Mobility Effects

In order to provide the most accurate description of charge carriers behaviour for future works,
section 4.5 studies the implications of using different mobility models in charge transport
parameters. Temperature dependent and field dependent models are compared assuming a
bulk of semiconductor under a constant electric field, in this way, a relation between electric
field and temperature is obtained.

On the first place, temperature dependent models for single valley semiconductors are anal-
ysed. In particular, the model proposed by Baccarani & Wordeman is compared to the one
by Hänsch. It was observed that both models accurately described the decrease of electron
mobility as electric field is increased. Additionally, different values of energy relaxation times
were evaluated for the Hänsch model. With all of them, a good representation of electron
velocity according to electric field is obtained. However, a great difference is observed in
the respective level of carrier temperature. An important difference is also observed between
both models when comparing different doping levels. As a result, even though both models
provide an accurate description of carriers behaviour, due to the additional difficulty of se-
lecting a correct value of energy relaxation time for the Hänsch model, and the effect this can
have on the values of the transport parameters, the BW model was used for the subsequent
analysis.

On the second place, the use of an electron temperature dependent transferred electron
model is studied, which applies the Baccarani & Wordeman model in order to represent
the transport parameters on each independent band. A brief review of references for the
transport parameters on each band is presented.

Within this model, given that the population ratio, PL, is used in order to define the im-
portance of each band on the average transport properties, two different averaging functions
are studied for energy relaxation time. The first one assumes the energy relaxation time as
an intrinsic property of electrons on the central and satellite bands, while the second arises
from assuming thermal equilibrium of electrons on each band. It was observed that the first
assumption delivers results which fit very good with the TE field dependent model, while
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the second one presents a decrease of carrier velocity at much higher electric fields. A slight
difference in the electric field corresponding to the peak velocity value was also observed.
Better results were not obtained assuming different values of µLn,0 and vΓ

n,sat. In order to
improve this, a different distribution function for the population ratio would be needed.

Finally, the results are compared with a reference which provided phenomenological transport
parameters from large scale Monte Carlo simulations. A very good agreement is observed for
carrier velocity between the results obtained from the BWTE and Monte Carlo models, with
slight differences at middle field values caused mainly by the distribution function used for
the population ratio. When momentum relaxation time and effective mass are analysed, a
relatively good agreement can be seen for both. However, a noticeable difference is observed
for the average mass value between the BWTE model and Monte Carlo results, in particular
at the onset of electron transfer from one band to the other, which is directly attributed to
the population ratio, PL. When analysing electron temperature, which is the independent
variable in the relations, a great difference is observed between both results. It is deduced
that this is caused by the effect of the averaging expression for the energy relaxation time,
along with the distribution function for the population ratio, which increases this difference.

In conclusion, the BWTE model delivers results with a good fit to results from Monte Carlo
simulations for momentum relaxation time, average effective mass and, in turn, carrier ve-
locity, but show a greater difference for carrier temperature and energy relaxation time. In
order to obtain more accurate results, the averaging expression for the energy relaxation time
τε,n and the distribution function for the population ratio PL need to be improved.

Future Work

As a continuation or related work to what is presented in this thesis, the following topics are
suggested:

• Study of thermal contribution of different heat losses on a solar cell, comparing their
quantification through analytical expressions with a hydrodynamic model considering
high field effects.
• Using the hydrodynamic model for the improvement of the understanding of thermal

behavior in novel technologies such as thin film or perovskite solar cells.
• In depth study of boundary thermo-electrical effects as the distance between the junc-

tion and the cell surface gets shorter, such as in thin film solar cells.
• Two, or three, dimensional study of hot spot generation and dissipation using a hydro-

dynamic model.
• Implement a model using L-band electrons as a third carrier in order to develop an

improved expression for band population distribution function.
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Appendix A

HD model derivation

Hydrodynamic set of equations from original HD model, with non specified collision terms.
The equations below will be expressed for any carrier, electron or hole, designated as ρ, every
variable contained in this section is dependent of the specific carrier.

A.1 Zeroth moment

Multiplying Boltzmann’s transport equation by the zeroth moment delivers the continuity
equation for semiconductors.

∂tρ+∇ · (ρu) = (∂tρ)c (A.1)

Where (∂tρ)c accounts for collision (source and sink) terms, in this case generation and
recombination of electrons. Then for electrons and holes respectively:

∂tn
∗ +∇ · (n∗u∗n) = (∂tn∗)c (A.2)

∂tp
∗ +∇ ·

(
p∗u∗p

)
= (∂tp∗)c (A.3)

A.2 First moment

Multiplying Boltzmann’s transport equation by the first moment ~k/m∗ = p/m∗ delivers
the momentum balance equation for semiconductors.

∂t (p) +∇ · (p⊗ u) = eρ∇V −∇ (ρkBT ) + (∂t (p))c (A.4)
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HD MODEL DERIVATION

Then, using a parabolic band model, meaning constant effective mass m∗, the carrier mo-
mentum can be written as:

p = m∗ρu (A.5)

And momentum equation A.4 is expressed as:

∂t (m∗ρu) +∇ · (m∗ρu⊗ u) = eρ∇V −∇ (ρkBT ) + (∂t (mρu))c (A.6)

The second term can be expanded given that mass is considered constant and using the
expression for the divergence of a tensorial product as:

∇ · (m∗ρu⊗ u) = m∗ (u∇ · (ρu) + ρu∇ · u) (A.7)

Then equation A.6 turns to:

m∗ (ρ∂tu + u∂tρ+ u∇ · (ρu) + ρu∇ · u) = eρ∇V −∇ (ρkBT ) +m∗ (ρ (∂tu)c + u (∂tρ)c)

m∗ρ∂tu +m∗u [∂tρ+∇ · (ρu)− (∂tρ)c] +m∗ρu∇ · u = eρ∇V −∇ (ρkBT ) +m∗ρ (∂tu)c (A.8)

Where the expression in square brackets equals zero from A.1 and hence the expression in
terms of carrier velocity is obtained.

m∗ρ∂tu +m∗ρu∇ · u = eρ∇V −∇ (ρkBT ) +m∗ρ (∂tu)c (A.9)

And dividing by m∗ρ:

∂tu + u∇ · u = e

m∗
∇V − kB

m∗ρ
∇ (ρT ) + (∂tu)c (A.10)

So expressing for electrons and holes using dimensional variables:

∂tu∗n + u∗n∇ · u∗n = e

m∗e
∇V − kB

m∗en
∗∇ (n∗T ∗n) + (∂tu∗n)c (A.11)

∂tu∗p + u∗p∇ · u∗p = − e

m∗h
∇V − kB

m∗hp
∗∇

(
p∗T ∗p

)
+
(
∂tu∗p

)
c

(A.12)

where the first term on the right side has a negative sign because of the opposite electrical
charge of holes.
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A.3 Second moment

The equation obtained from integrating BTE using the second moment ~2|k|2/2m∗ is the
energy balance depending on the kinetic energy density:

∂tξ +∇ · (ξu + q)− eρu · ∇V +∇ · (ρkBTu) = (∂tξ)c (A.13)

Where the energy density is

ξ = 3
2ρkBT + 1

2ρm
∗u2 (A.14)

And the heat flow is approximated by Fourier’s law.

q = −kρ∇T (A.15)

Using expression A.14 the transient term becomes:

∂tξ = ∂t

(3
2ρkBT + 1

2ρm
∗u2
)

= 3
2ρkB∂tT +

(3
2kBT + 1

2m
∗u2
)
∂tρ+m∗ρu · ∂tu

Similarly for the collision terms:

(∂tξ)c = 3
2ρkB (∂tT )c +

(3
2kBT + 1

2m
∗u2
)

(∂tρ)c +m∗ρu · (∂tu)c

The second term in A.13, using Fourier’s law is expanded as:

∇ · (ξu + q) = ∇ ·
((3

2kBT + 1
2m
∗u2
)

(ρu)− kρ∇T
)

=
(3

2kBT + 1
2m
∗u2
)
∇ · (ρu) + ρu · ∇

(3
2kBT + 1

2m
∗u2
)
−∇ · (kρ∇T )

=
(3

2kBT + 1
2m
∗u2
)
∇ · (ρu) + ρu ·

(3
2kB∇T +m∗u∇ · u

)
−∇ · (kρ∇T )

Also the fourth term in A.13 is expanded as:

∇ · (ρkBTu) = ρkBT∇ · u + kBu · ∇ (ρT )

Replacing these expressions, equation A.13 is rewritten as:

3
2ρkB∂tT +

(3
2kBT + 1

2m
∗u2
)
∂tρ+m∗ρu · ∂tu +

(3
2kBT + 1

2m
∗u2
)
∇ · (ρu)
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+ ρu ·
(3

2kB∇T +m∗u∇ · u
)
−∇ · (kρ∇T )− eρu · ∇V + ρkBT∇ · u + kBu · ∇ (ρT )

= 3
2ρkB (∂tT )c +

(3
2kBT + 1

2m
∗u2
)

(∂tρ)c +m∗ρu · (∂tu)c (A.16)

Reorganizing the terms we can write:

3
2ρkB∂tT +

(3
2kBT + 1

2m
∗u2
)

[∂tρ+∇ · (ρu)− (∂tρ)c]

+mρu ·
[
∂tu + u∇ · u− e

m∗
∇V + kB

m∗ρ
∇ (ρT )− (∂tu)c

]
3
2kBρu · ∇T −∇ · (kρ∇T ) + kBρT∇ · u = 3

2kBρ (∂tT )c (A.17)

Where the expressions in square brackets on the first and second lines equal zero from
equations A.1 and A.10 respectively, hence we get:

3
2ρkB∂tT + 3

2kBρu · ∇T −∇ · (kρ∇T ) + kBρT∇ · u = 3
2kBρ (∂tT )c (A.18)

Finally, dividing the whole expression by 3kBρ/2 the energy balance as a function of carrier
temperature is obtained:

∂tT + u · ∇T + 2
3T∇ · u−

2
3kBρ

∇ · (kρ∇T ) = (∂tT )c (A.19)

Hence, for elecrtons and holes:

∂tT
∗
n + u∗n · ∇T ∗n + 2

3T
∗
n∇ · u∗n −

2
3kBn∗

∇ · (kn∇T ∗n) = (∂tT ∗n)c (A.20)

∂tT
∗
p + u∗p · ∇T ∗p + 2

3T
∗
p∇ · u∗p −

2
3kBp∗

∇ ·
(
kp∇T ∗p

)
=
(
∂tT

∗
p

)
c

(A.21)
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Appendix B

Components of the Jacobian Matrix

The following appendix presents the composition of the Jacobian matrix used to solve the
finite difference scheme. As presented in Section 3.6, this is composed by

DF (w) =



∂FV
∂V

∂FV
∂n

∂FV
∂p

∂FV
∂Tc

∂FV
∂TL

∂Fn
∂V

∂Fn
∂n

∂Fn
∂p

∂Fn
∂Tc

∂Fn
∂TL

∂Fp
∂V

∂Fp
∂n

∂Fp
∂p

∂Fp
∂Tc

∂Fp
∂TL

∂Fc
∂V

∂Fc
∂n

∂Fc
∂p

∂Fc
∂Tc

∂Fc
∂TL

∂FL
∂V

∂FL
∂n

∂FL
∂p

∂FL
∂Tc

∂FL
∂TL



. (3.36 rev.)

Using non dimensional version of κn = nTn, the functions comprising F (w) as presented at
Section 3.6 as an example of a HD model, are

FV = ∂2V

∂x2 + 1
λ2 (p− n+ C) = 0, (3.34a rev.)

Fn = −∂(unn)
∂x

+ (G−R) = 0, (3.34b rev.)

Fp = −∂(upp)
∂x

+ (G−R) = 0, (3.34c rev.)

Fc = ∂

∂x

(
Tnn

∂Tn
∂x

)
− νn
εn
n (Tn − TL)− n ∂

∂x
(Tnun) + 1

3nTn
∂un
∂x

+ 2
3nu

2
n = 0, (3.34d rev.)

FL = ψ
∂2TL
∂x2 + 3

2νnn (Tn − TL) = 0. (3.34e rev.)
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COMPONENTS OF THE JACOBIAN MATRIX

These are used as an example in order to present the matrix as it is implemented in the code.
First, the functions of F are written in their discrete version as

(FV )i = Vi+1 − 2Vi + Vi−1
∆x2 + 1

λ2 (pi − ni + Ci) , (B.1)

(Fn)i = −nRu
R
n − nLuLn
∆x + (Gi −Ri) , (B.2)

(Fp)i = −
pRu

R
p − pLuLp
∆x + (Gi −Ri) , (B.3)

(Fc)i = (nTn)R · ∂Rx Tn − (nTn)L · ∂Lx Tn
∆x − 5

3
(nTn)R · uRn − (nTn)L · uLn

∆x

− ni
TnRu

R
n − TnLuLn
∆x + 1

3niTni
uRn − uLn

∆x − νn
εn
ni (Tni − TLi) + 2

3niu
R
nu

L
n

(B.4)

(FL)i = ψ
TLi+1 − 2TLi + TLi−1

∆x2 + 3
2νnni (Tni − TLi) (B.5)

Here, some terms are abbreviated in order to present the equations more clearly. For instance,
the downstream average value of electron density is expressed as

nR = ni+1 + ni
2 ,

while the downstream expression for velocity is defined as

uRn = ∂Rx V −
1
nR

∂Rx (nTn)

=
(
Vi+1 − Vi

∆x

)
−
( 2
ni+1 + ni

)(
ni+1Tni+1 − niTni

∆x

)
.

Similar expressions are used for the rest of the variables, using the subscript L for the
corresponding upstream expression. Once discretized, the partial derivative of each function
in F is calculated. For instance, FV derived in V , is expressed as

∂FV
∂V
· δV = δVi+1 − 2δVi + δVi−1

∆x2 . (B.6)

Therefore, each matrix is expressed using the tridiagonal vectors as

∂FV
∂V
· δV = aV Vi δVi−1 + bV Vi δVi + cV Vi δVi+1 (B.7)

In this case in particular, each element is given by,

aV,Vi = cV,Vi = 1
∆x2 , (B.8)

bV,Vi = − 2
∆x2 . (B.9)
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The boundary conditions are established by aV V1 δV0 and cV VNu
δVNu+1. The same algorithm

and analogue notation is used for every partial derivative. Each vector of the corresponding
component of the matrix is presented ahead. For ∂FV /∂n and ∂FV /∂p, the vectors are
constant and given by

bV,pi = −bV,ni = 1
λ2 . (B.10)

For electrons mass balance, the submatrices given by the partial derivatives ∂Fn/∂V , ∂Fn/∂n
and ∂Fn/∂Tc are given by,

an,Vi = −(nL)i
∆x2 (B.11)

bn,Vi = (nL)i + (nR)i
∆x2 (B.12)

cn,Vi = −(nR)i
∆x2 (B.13)

an,ni =
(Tn)i−1

∆x2 +

(
∂Lx V

)
i

2∆x (B.14)

bn,ni = −2(Tn)i
∆x2 +

(
∂Lx V

)
i
−
(
∂Rx V

)
i

2∆x (B.15)

cn,ni =
(Tn)i+1

∆x2 −

(
∂Rx V

)
i

2∆x (B.16)

an,ci = ni−1
∆x2 (B.17)

bn,ci = − 2ni
∆x2 (B.18)

cn,ci = ni+1
∆x2 (B.19)

For holes mass balance, the submatrices given by the partial derivatives ∂Fp/∂V , ∂Fp/∂p
and ∂Fp/∂TL are given by,

ap,Vi = (pL)i
∆x2 (B.20)

bp,Vi = −(pL)i + (pR)i
∆x2 (B.21)

cp,Vi = (pR)i
∆x2 (B.22)

ap,pi =
(TL)i−1

∆x2 −

(
∂Lx V

)
i

2∆x (B.23)
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bp,pi = −2(TL)i
∆x2 +

(
∂Rx V

)
i
−
(
∂Lx V

)
i

2∆x (B.24)

cp,pi =
(TL)i+1

∆x2 +

(
∂Rx V

)
i

2∆x (B.25)

an,Li = pi−1
∆x2 (B.26)

bn,Li = − 2pi
∆x2 (B.27)

cn,Li = pi+1
∆x2 (B.28)

For carriers energy balance, the submatrices given by the partial derivatives ∂Fc/∂V , ∂Fc/∂n,
∂Fc/∂Tc and ∂Fc/∂TL are given by,

ac,Vi = −2
3
ni
(
uRn

)
i

∆x + ni
∆x2

((Tn)i
3 −

(
TnR

)
i

)
(B.29)

bc,Vi = 2
3
ni
((
uRn

)
i
−
(
uLn

)
i

)
∆x − ni

∆x2

(2 (Tn)i
3 −

(
TnR

)
i
−
(
TnL

)
i

)
(B.30)

cc,Vi = 2
3
ni
(
uLn

)
i

∆x + ni
∆x2

((Tn)i
3 −

(
TnL

)
i

)
(B.31)

ac,ni = −

(
∂Lx Tn

)
i
(Tn)i−1

2∆x +

2
3
ni
(
uRn

)
i

(nL)i


(
∂Lx (nTn)

)
i

(nL)i
+

(Tn)i−1
∆x



−

(Tn)i
3∆x −

(
TnL

)
i

∆x

( ni
(nL)i

)(Tn)i−1
∆x +

(
∂Lx (nTn)

)
i

2 (nL)i


(B.32)

bc,ni =

((
∂Rx Tn

)
i
−
(
∂Lx Tn

)
i

)
(Tn)i

2∆x + νn
εn

((Tn)i − (TL)i) + 2
3
(
uRn

)
i

(
uLn

)
i

+ 2ni
3


(
uRn

)
i

(nL)i


(
∂Lx (nTn)

)
i

2 (nL)i
− (Tn)i

∆x

+

(
uLn

)
i

(nR)i


(
∂Rx (nTn)

)
i

2 (nR)i
+ (Tn)i

∆x



+

(Tn)i
3∆x −

(
TnR

)
i

∆x

 ni
(nR)i

(Tn)i
∆x +

(
∂Rx (nTn)

)
i

2 (nR)i

+
(
uRn

)
i



+

(Tn)i
3∆x −

(
TnL

)
i

∆x

 ni
(nL)i

(Tn)i
∆x −

(
∂Lx (nTn)

)
i

2 (nL)i

− (uLn)
i



(B.33)
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cc,ni =

(
∂Rx Tn

)
i
(Tn)i+1

2∆x +

2
3
ni
(
uLn

)
i

(nR)i


(
∂Rx (nTn)

)
i

2 (nR)i
−

(Tn)i+1
∆x



−

(Tn)i
3∆x −

(
TnR

)
i

∆x

( ni
(nR)i

)(Tn)i+1
∆x +

(
∂Rx (nTn)

)
i

2 (nR)i


(B.34)

ac,ci = 1
∆x


(
nTnL

)
i

∆x −
ni−1

(
∂Lx Tn

)
i

2

+
2nini−1

(
uRn

)
i

3 (nL)i ∆x

− nini−1
(nL)i ∆x2

((Tn)i
3 −

(
TnL

)
i

)
+
ni
(
uLn

)
i

2∆x

(B.35)

bc,ci = 1
∆x

−
(
nTnR

)
i

∆x +
ni
(
∂Rx Tn

)
i

2 −

(
nTnL

)
i

∆x −
ni−1

(
∂Lx Tn

)
i

2

− νn
εn
ni

+ n2
i

(nR)i ∆x2

((Tn)i
3 −

(
TnR

)
i

)
+ n2

i

(nL)i ∆x2

((Tn)i
3 −

(
TnL

)
i

)

+ 2n2
i

3∆x


(
uLn

)
i

(nR)i
−

(
uRn

)
i

(nL)i

+ ni
6∆x

((
uLn

)
i
−
(
uRn

)
i

)
(B.36)

cc,ci = 1
∆x


(
nTnR

)
i

∆x +
ni+1

(
∂Rx Tn

)
i

2

− 2nini+1
(
uLn

)
i

3 (nR)i ∆x

− nini+1
(nR)i ∆x2

((Tn)i
3 −

(
TnR

)
i

)
−
ni
(
uRn

)
i

2∆x

(B.37)

bc,Li = νn
εn
ni (B.38)

Finally, for lattice energy balance, the submatrices given by the partial derivatives ∂FL/∂n,
∂FL/∂Tc and ∂FL/∂TL are given by,

bL,ni = 3νn
2 ((Tn)i − (TL)i) (B.39)

bL,ci = 3νn
2 ni (B.40)

aL,Li = ψ

∆x2 (B.41)

bL,Li = − 2ψ
∆x2 −

3νn
2 ni (B.42)

cL,Li = ψ

∆x2 (B.43)

The rest of the coefficients whose value is not specified are equal to zero.

138


	Introduction
	Literature review
	Semiconductor Material Basics
	Structure
	Band Structure in Semiconductors
	Effective Masses
	Statistics at Equilibrium

	Carrier Transport Models
	Poisson's Equation for Electrostatics
	Boltzmann's Transport Equation
	Hydrodynamic Transport Model
	Scattering Approximations
	Heat Flow Approximation
	Lattice Energy Balance
	Drift-Diffusion Transport Model

	Mobility and Relaxation Times
	Lattice Mobility
	Mobility Degradation by Impurities
	High Energy Mobilities

	Interband Scattering Processes
	Generation
	Recombination

	Analytical solution for a PN junction
	Depletion Region Approximation
	Solution for J(V)


	Methodology
	Problem Description
	The Hydrodynamic Model
	Boundary Conditions
	Voltage
	Majority Carrier Densities
	Minority Carrier Densities
	Temperatures

	Nondimensionalization
	Asymptotic Approximation
	Numerical Method
	Newton's Method
	Discretization
	Boundary Conditions for Newton's Method
	Numerical Procedure


	Results
	Numerical Verification
	HD modeling of a single junction solar cell
	Hot Carriers at the contacts of a solar cell
	GaAs Solar Cell Characteristics and Comparison to Experimental Data
	Suggested Improvements in Design of Concentrator Solar Cell
	Considerations Regarding the Assumptions for Case 2

	Hole Temperature Assumption Verification
	High Field Mobility Effects
	Velocity Saturation Models
	Baccarani & Wordeman Transferred Electron Model


	Conclusions
	 Bibliography
	HD model derivation
	Zeroth moment
	First moment
	Second moment

	Components of the Jacobian Matrix

