
Pattern Recognition Letters 131 (2020) 398–404 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Improving pattern spotting in historical documents using feature 

pyramid networks 

Ignacio Úbeda 

a , Jose M. Saavedra 

b , Stéphane Nicolas c , Caroline Petitjean 

c , 
Laurent Heutte 

c , ∗

a University of Chile, Beauchef 850, Santiago 8370448, Chile 
b Computer Vision Group, Orand S.A., Estado 360, Santiago 8320180, Chile 
c Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, Technopole du Madrillet, Saint-Étienne-du-Rouvray 76800, France 

a r t i c l e i n f o 

Article history: 

Received 23 July 2019 

Revised 29 January 2020 

Accepted 1 February 2020 

Available online 3 February 2020 

Keywords: 

Pattern spotting 

Image retrieval 

Historical documents 

Convolutional neural network 

a b s t r a c t 

Pattern spotting consists of locating different instances of a given object (i.e. an image query) in a col- 

lection of historical document images. These patterns may vary in shape, size, color, context and even 

style because they are hand-drawn, which makes pattern spotting a difficult task. To tackle this problem, 

we propose a Convolutional Neural Network (CNN) approach based on Feature Pyramid Networks (FPN) 

as the feature extractor of our system. Using FPN allows to extract descriptors of local regions of the 

documents to be indexed and queries, at multiple scales with just a single forward pass. Experiments 

conducted on DocExplore dataset show that the proposed system improves mAP by 73% (from 0.157 to 

0.272) in pattern localization compared with state-of-the-art results, even when the feature extractor is 

not trained with domain-specific data. Memory requirement and computation time are also decreased 

since the descriptor dimension used for distance computation is reduced by a factor of 16. 

© 2020 Published by Elsevier B.V. 
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1. Introduction 

Digitalization of historical document collections helps grant ac-

cess to our cultural heritage to more users while limiting contact

with the real materials. As the amount of data at our disposal has

grown due to technological advances, there is now a need for effi-

cient search in vast repositories of digitized images. For historians,

there is a need to have an automated software tool that allows

them to establish correspondences between documents or parts of

documents, whether on textual content or on graphical parts [27] . 

For the recognition of textual content, in both printed and

handwritten documents, recognition techniques have made great

progress, especially thanks to deep learning techniques (CNN, RNN,

BLSTM) [22] . Word spotting may also be an interesting alterna-

tive to full text recognition in an information retrieval perspective,

which consists in searching for the multiple instances of a given

word in a collection of document images, thanks to a single query

image (query by example paradigm) [8] . On the other hand, his-

torical documents contain also some graphical patterns or objects

which are often interesting for historians but there is little work
∗ Corresponding author. 

E-mail addresses: ignacio.ubeda@ing.uchile.cl (I. Úbeda), Laurent.Heutte@univ- 
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ndeed on the automatic analysis of their graphical content. Most

ontent-based image retrieval (CBIR) algorithms are used to search

or entire images in databases (“image retrieval”) but no tool to

ocate regions (“sub-image retrieval”) within the historical docu-

ents has been proposed. Computers can solve the former task

ith quite good results but precise localization of patterns, partic-

larly the smallest ones, is still a challenging task. 

In [27] the authors explored the question of category level ob-

ect detection, for semantic based indexing, in the context of a

enchmark dataset for cultural heritage studies. They proposed a

enchmark image dataset of medieval images with ground-truth

nformation and a detection system that accurately localizes ob-

ects. En et al. [5,6] have also proposed a benchmark dataset, called

DocExplore” which is publicly available online [4] , and a complete

ystem able to perform image retrieval and pattern spotting, using

uery by example paradigm, as shown in Fig. 1 . 

Whereas previous work on the same dataset was based on clas-

ical (handcrafted features) approaches [6] , in this paper we pro-

ose to rely on convolutional neural networks (CNN) for feature

xtraction and to build upon the method presented in [24] . The

ain contribution of this work is the development of a CNN-based

ocal feature extraction for pattern spotting (retrieval and localiza-

ion) that allows to have region descriptors at multiple scales on

ne forward pass. 

https://doi.org/10.1016/j.patrec.2020.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.02.002&domain=pdf
mailto:ignacio.ubeda@ing.uchile.cl
mailto:Laurent.Heutte@univ-rouen.fr
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Fig. 1. Document image retrieval (top) and pattern spotting (bottom), using query 

by example paradigm. 
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Organization of the paper is as follows. Section 2 discusses re-

ated work with a focus on CNN applied in CBIR. In Section 3 we

etail our system proposal. Section 4 explains the adopted proto-

ol to evaluate the system and discusses the obtained results. We

onclude this paper in Section 5 by proposing future works. 

. Related work 

Content-based image retrieval has been an extensively studied

opic for a long time. Early works have proposed hand-crafted -

uch as color or textures based - global features to address this

roblem [20] . Extracting local rather than global features with SIFT

19] , and then using aggregation techniques, such as VLAD [12] or

isher Vector (FV) [13] , to generate compact embeddings 1 have

een proposed more recently. 

One work [6] with this SIFT-based approach is of particu-

ar interest. The system starts by identifying patches with BING

Binarized Normed Gradients) [3] . DenseSIFT descriptors of each

atch are then aggregated using VLAD and FV to obtain the final

atch embedding. At the end, a query similarity search integrating

ompression and approximation techniques (Inverted File, Prod-

ct Quantization and Asymmetric Distance Computation) is used

or pattern localization. While this system has shown good per-

ormance on the corpus of document images of interest on image

etrieval , there is a large room for improvement for pattern spot-

ing . In addition, the system suffers from a number of weaknesses

hat make it unsuitable for other types of document images (color

nformation is not currently used, for example) and requires post-

rocessing for fine localization of objects in regions of interest us-

ng, for example, traditional matching methods [7] . 

Since [15] , CNN have been successfully used in many computer

ision tasks, such as classification or object detection, and CBIR

as been no exception. Several works [2,23] have shown that the

se of pre-trained networks as feature extractors reports state-of-

he-art results compared to classical approaches. The same hap-

ens in the context of document analysis [11] . Of course, when the

re-trained CNN is retrained with context-specific data (something

efered as “fine-tuning”), results are pushed even higher. However,

ollecting training samples and retraining the CNN require signif-

cant amounts of human and computing resources [28] . A survey

bout the transition from classical SIFT-based to CNN-based ap-

roach in CBIR field can be found in [31] . 
1 In this work we use the words: “embedding”, “feature vector” and “representa- 

ion” indistinctly. 
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For sub-image retrieval, local features are more important than

lobal features and for that case, it has been seen that using the

utputs from the convolutional layers (refered as “feature map”)

an be interpreted as local embeddings describing particular image

egions (hereinafter refered as “patches”) [1,14] . Even further, dif-

erent feature maps can be used to obtain representations of these

atches at multiple scales [9] . 

Other CNN-based approaches have been proposed to obtain

atch representations. For example, in [25] they start by sampling

atches and then a pre-trained CNN is feeded with each of them.

he first fully-connected layer is used along with FV aggregation

o finally generate patch embeddings. This gives rise to hybrid

odels in which CNN is used as the extractor of local features

nd these are then aggregated using either classical or new tech-

iques [1,14] . Metric learning approaches have also been proposed

10,26,29] for patch-based matching in which not only represen-

ations are learned but also a similarity measure between the ex-

racted embeddings. 

In [24] we proposed a CNN based approach to obtain patch

epresentations in the context of pattern spotting . Our feature ex-

raction (detailed in Section 3 ) is composed by a pre-trained Fea-

ure Pyramid Network (FPN) [16] that provides multi-scale patch

epresentation. The procedure is similar to that used in [21] with

ne main difference: instead of constructing an image pyramid

nd then applying a CNN for each level independently, we do the

ame in one forward pass. Although we showed in [24] that our

NN based approach enabled to reach the best spotting results on

he dataset used for evaluation, it had some limitations, especially

hen querying with small and non square patterns. We show in

he next section how we dealt with those issues. 

. Our deep proposal 

Our proposal is composed of two stages, one offline and the

ther online. The offline stage is focused on processing and index-

ng the collection of historical documents to be queried while the

nline stage is focused on processing and locating, in the collection

f indexed documents, the multiple instances of the object similar

o the input query image. An overview of the pipeline is given in

ig. 2 . The system is based on the work presented in [24] with

everal key modifications to cope with the limitations mentioned

efore, which allow to significantly improve the performance. Par-

icularly in this work, we offer some solutions to deal with: (1)

mall queries by adding a finer visual representation and (2) non-

quare queries using multiple embedding representations. Finally,

e also added a feature normalization step to the pipeline intro-

uced in [24] to better cope with the correlation of features and

t the similarity measure used. Hereafter, we detail each process-

ng step. 

.1. Offline phase 

As shown in Fig. 2 , the offline phase is made up of four steps

or indexing the collection of historical documents. 

.1.1. Document preprocessing 

The first stage consists in retaining only informative regions of

ach page, i.e. regions that may contain symbols and/or handwrit-

ng but not the background. To this end, we used the algorithm

or background removal proposed in [6] that is based on a region

rowing paradigm starting from the center of the page and, itera-

ively, adding border pixels until some condition is met. 

We fix the input shape of the CNN to I × I pixels. If the page is

maller than I in both dimensions, it is centered on a black canvas

equivalent to zero-padding). On the other hand, if the page ex-

eeds the I size in one (or both) dimension(s), we divide the page
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Fig. 2. Overview of the pipeline with the offline and online procedures. 

Fig. 3. Sub-pages example. All sub-pages have the same shape ( I × I ); overlapping 

may exist between them. 
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through the following procedure: first, we locate the corner cen-

ters matching a I × I template in each corner; then, we create an

equally 2D spaced grid with those corner centers and finally we

extract an I × I patch of the page at each center of the grid. Fig. 3

show the output sub-pages for an example page greater than I in

both dimensions. 

Note that the “sub-pages” obtained through this procedure

might overlap between each other and also some of them might

be smaller than I × I thus zero-padding is also needed for those

cases. Note also that the images are not resized in order to keep

graphical details because some queries can be very small and we

want to spot them as well. 

3.1.2. Feature extraction 

The RetinaNet network architecture [17] , pre-trained on COCO

dataset [18] without fine-tuning, is used as feature extractor for

both pages to be indexed, and queries. For the pages to be indexed,

{ P 2 , P 3 , P 4 , P 5 } levels are extracted from the feature pyramid cre-

ated by the FPN backbone of RetinaNet 2 during the forward pass.

To each “pixel” of each feature map (refered as a “neuron”) is asso-

ciated a feature vector (due to the depth of each feature map) that

comprises a visual representation of its receptive field. We call this

feature vector an “embedding”. Here, shallow layers extract em-

beddings for smaller regions and deeper layers for bigger ones so

we get embeddings in a patch-based manner at different scales for

each page. 

The storage needed to index all the embeddings depends

mainly on the network architecture and the spatial resolution of

the input. For our setting, the different levels of the pyramid, P i ,
2 We keep the same notations as in [16] . 

s  

w  

t  
 ∈ {2, 3, 4, 5}, have a spatial resolution of ( I /2 i , I /2 i ) with a depth

f 256. Although I /2 i ∗I /2 i embeddings are available for each level

 i , not all of those embeddings are useful (e.g. the embedding that

escribes the black canvas is not required). Hence, we can remove

hem in an upcoming stage to reduce storage consumption and

earch space in the online procedure. 

.1.3. Text region filtering 

Storing the complete pyramid for each page would be mem-

ry costly but also the retrieval procedure would be computation-

lly expensive (an exhaustive search would have to be carried out

n the complete feature maps). In addition, as a user will always

earch for a graphical pattern, queries will appear in graphical re-

ions instead of in text regions or in regions corresponding to the

 artificially created - black canvas. We can address this problem

y training a classifier for removing textual and canvas regions. 

We trained a supervised classifier at each level of the pyramid

sing the 256D embeddings of the complete feature map of the

onsidered level (i.e. the feature vectors used as inputs of the clas-

ifier are provided by the network). The label assigned to each fea-

ure vector for training is simply obtained by looking at the inter-

ection between the receptive field of each neuron and the bound-

ng boxes of non textual regions of interest (ROI) that we manually

abeled on 79 pages of the collection of 1500 pages. Three classes

re considered: black (for the black canvas pixels), text and non-

ext . 

Particularly, if the intersection between all non textual ROI and

he corresponding receptive field is above a fixed threshold, then

he embedding is tagged as non-text class, otherwise, as text or

lack depending of how many black canvas pixels are inside the

eceptive field. Then we collect for all the pages of the dataset,

ll the embedding-label pairs at each level and split them in

rain/validation/test set with 0.6/0.25/0.15, respectively. 

We finally use these classifiers to make predictions for all pages

y stacking the feature map of each level in the first dimension

 n embeddings , n features ) and then predicting with the corresponding

evel classifier. This way, batches of (predicted) non textual embed-

ings are created for each level and the complete feature pyramid

s discarded. 

.1.4. Feature vector normalization 

We use Principal Component Analysis (PCA) to transform the

atches of embeddings and we apply l 2 normalization on each fea-

ure vector as well. Note that instead of using PCA for dimen-

ionality reduction, we use it as a feature decorrelation process,

hich is desirable for many pattern analysis applications [30] . Fur-

hermore, l normalization is carried out to ensure equivalence of
2 
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Table 1 

RandomForest classifier results on the test set 

for the text region filtering procedure. 

P 2 P 3 P 4 P 5 

Recall 0.994 0.997 0.991 0.985 

4

4

 

m  

c  

d  

1  

m  

s  

t  

q  

p  

t  

s  

t  

t  

e  

s  

t  

t  

l

4

 

f  

m  

p  

t  

t  

r  

a  

n

4

 

q  

t

4

 

t  

t  

R  

F

l  

a  

t  

n

 

T  

m  

w  

d  

t  

(  
ifferent similarity measures (e.g. cosine similarity, dot-product

imilarity and Euclidean distance). 

Both transformation (PCA fitting and transforming) and l 2 nor-

alization are carried out with the complete batch of non textual

mbeddings obtained from the previous stage at each level inde-

endently. Finally, the transformation matrix is stored to apply it

uring the online procedure as well. 

.2. Online phase 

As shown in Fig. 2 , the online phase is made up of five steps

or locating, in the collection of indexed documents, the multiple

nstances of the object similar to the input query image. 

.2.1. Query preprocessing 

We apply the same procedure for centering the queries in can-

as for the online phase but instead of using a black one, we use

 “blank” background page from a manuscript, in order to reduce

he noise introduced by black color. Note that those black regions

re filtered in the offline phase which is not possible to do in the

nline phase. 

.2.2. Feature extraction 

Contrary to the offline phase where a pyramid of feature maps

s extracted for each page to be indexed, during the online phase

e extract embedding(s) for the query in just one level of the

yramid. In particular, we assign a query of width w and height

 to the level P k by Eq. (1) and we set k 0 = 4 as in [16] : 

 = 

⌊ 

k 0 + log 2 ( 
√ 

wh / 224) 
⌋ 

(1) 

Our experiments were conducted considering two cases: one

mbedding and multiple embeddings per query. As the queries are

entered, we keep the center neuron at determined level P k as the

mbedding for the query in the former case and we keep the cen-

er neuron with its n symmetrical neighbors (on the same level P k )

n the latter. We discuss in detail the impact of adding multiple

mbeddings in Section 4.3.2 . 

.2.3. Feature vector normalization 

The same normalization procedure described for the offline

hase (transformation and l 2 normalization) is applied during the

nline phase. To this end, the fitted transformation matrix of the

ssigned level P k , previously determined during the offline phase,

s applied on the query embedding(s). On the other hand, l 2 nor-

alization only requires its own embedding information. 

.2.4. Similarity search 

Queries are searched only at the same level to which they were

ssigned (e.g. if a query is assigned to P 4 , then it is looked for only

t the P 4 level of batches). Cosine similarity is used as the sim-

larity measure but since the embeddings are l 2 normalized, dot

roduct can also be used to speed up the search. Recall that each

mbedding is a visual representation of a specific patch of the in-

ut image based on the receptive field of the associated neuron.

ence this search will find the closest patch from the pages to the

uery. 

.2.5. Post-processing 

Coordinate translation is applied since the pages are cropped

y the background removal stage (and some of them divided into

ub-pages). For localization, the query template is centered on the

ound patch center (already translated). Finally, a filtering step is

dded to discard the localization if the bounding box is not entirely

ontained in the original page (particularly useful for big queries)

nd non-maximum (hereinafter refered to as “non-max”) suppres-

ion is carried out on the obtained ranking to avoid overlapping

ounding box retrievals for the same instance. 
. Results and discussion 

.1. Experimental protocol 

We use the DocExplore dataset [4,5] to evaluate the perfor-

ance of our system. DocExplore is a publicly available dataset

omposed of medieval (hand-drawn) illuminated manuscripts

ated back from 10th to 16th century. In particular, 1500 pages and

447 queries among 35 different categories are used for the experi-

entation. Two tasks, image retrieval and pattern spotting , are con-

idered for mAP (mean Average Precision) evaluation. The aim of

he image retrieval task is to retrieve pages that contain the given

uery, regardless of its position in the page. On the other hand, the

attern spotting task aims at localizing the queried graphical pat-

ern, with a bounding box, within the retrieved page (note that a

ingle page may contain multiple instances of the same query). In

he latter, a correct retrieval is considered when the IoU (intersec-

ion over union) with the ground truth is above 0.5. We used the

valuation kit provided in [4] . Particularly for our experiments, we

et I = 10 0 0 (input image shape) and we considered the first m re-

rieved patches provided after non-max suppression for evaluating

he system. We set m = 10 0 0 , which means that if N is the total

ength of the complete ranking, this value of m yields to m � N . 

.2. Text region filtering results 

Several classifiers were trained and model selection was per-

ormed using the validation set. Since the classifier is used for re-

oving textual regions it may be seen as a non textual region pro-

osal procedure. Thus, recall of non-text class is the most impor-

ant metric in this case (high recall of non-text class would imply

hat all non textual regions have correctly been classified). Recall

ates for the best classifier (RandomForest) at each pyramid level

re given in Table 1 : one can see that thanks to high recall rates

o potential graphical region is missed. 

.3. Image retrieval and pattern spotting results 

Since we introduce two modifications to deal with small

ueries as well as non-square queries, we focus in this section on

hose two changes. 

.3.1. Finer visual representation 

Small queries are the most difficult to spot and almost 96% of

he DocExplore dataset is composed of them. Thus, it is an impor-

ant problem and we deal with it by including the P 2 level of the

etinaNet model to have a finer (greater resolution) level than P 3 .

ig. 4 shows receptive field centers for all neurons at P 2 and P 3 
evels. It can be seen that with P 2 a denser grid is now considered

nd more embeddings could match small query embedding. In par-

icular, the distance between two patch centers of two neighboring

eurons in the same feature map is 2 i pixels for level P i . 

The impact of including P 2 is shown in the first two lines of

able 2 . Compared with [24] , respectively 31% and 57% of improve-

ent are obtained in image retrieval and pattern spotting tasks

ith the P 2 and T&N (transformation and normalization of embed-

ings) setting. The main cost of this improvement is at execution

ime. In the online phase, two main procedures are carried out:

1) searching for the query embedding in the indexed patch-page
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Fig. 4. Receptive field centers (red points) for all neurons at P 2 (middle) and P 3 
(right) for the page after background removal (left). The page has been cropped 

for better visualization. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Table 2 

mAP results for image retrieval and pattern spotting task, 

with/without P 2 , with/without transformation and nor- 

malization (T&N) of embeddings. ∗Results reproduced 

from [24] . 

Configuration image retrieval pattern spotting 

without P 2 
∗ 0.386 0.173 

with P 2 0.468 0.242 

with P 2 + T&N 0.505 0.272 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Scatter plot of top 5 highest improvement categories with P 2 with respect 

to the query size. Relative improvement is shown in parenthesis. 

Fig. 6. Receptive field for P 2 (yellow) and P 3 (blue) for an instance of the “croix”

(left) and “rubanlettrine” (right) object categories. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 7. Examples of queries in each of the 2 × 2 groups. Groups are: big&non- 

square (top-left), big&square (top-right), small&non-square (bottom-left) and 

small&square (bottom-right). 
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embeddings and (2) creating the ranking for the query with non-

overlapping bounding box. 

Both procedures increase their execution time, respectively

search and ranking time, with the addition of P 2 because more

embeddings have to be indexed due to bigger spatial resolution,

increasing the search time and, as said before, P 2 tends to return

several patches of the same pattern, increasing the ranking time. In

particular, search time is increased by a factor 3 (from roughly 7 to

21 s on a regular laptop) when the query is searched at P 2 instead

P 3 and ranking time is increased from 1.5 to 2.3 s per query. In

the case of T&N modification, indexed embeddings can be trans-

formed and normalized during the offline phase hence only the

query embedding should be processed during the online phase,

which is marginal compared with the search time (less than 1 s

per query). 

Our hypothesis was that P 2 would improve performance for

small queries. Because of the way queries are assigned to a level,

the only categories that may be affected are the smallest ones

(those that were assigned to P 3 in the previous version of the

system, and are now assigned to P 2 ). Our goal here is to iden-

tify and characterize the categories which took the most bene-

fit from the addition of P 2 (i.e. we do not take into account the

T&N modification). Student’s t -test was carried out to compare the

means of AP (Average Precision) values, with and without P 2 , and

this was repeated for each category. In Fig. 5 we show a scatter

plot of categories with highest improvement (significance level of

0.05), with respect to width and height size. Smallest categories

are most benefiting from the P 2 addition, with the exception of

rubanlettrine , as well as categories which are closed to the

dashed line, i.e. relatively square. What these categories have in

common is that unlike in the previous system without P 2 , now the

receptive field of the center neuron is fully contained in the query,

hence allowing a noiseless embedding. In Fig. 6 we show an in-

stance of two of these categories with the old receptive field ( P 3 )

and the new one ( P 2 ). Note that in the case of rubanlettrine ,
P 2 receptive field is “blind” because it is only looking at the center

of the query instead of P 3 receptive field. However, this turns out

to be better as it is now fully contained in the query. 

The above analysis suggests that best results are obtained when

the receptive field is completely contained in the area covered by

the query (noiseless embeddings are extracted). However, blind
eceptive fields are not desirable because they may loose crucial

uery information. A trade-off should be found between maximiz-

ng query area covered by the receptive field and minimizing noise

ntroduced by the canvas. Queries that best balance this trade-off

re those with shape closer to the shape of the receptive field

f the assigned level. Since receptive fields are square because of

quare convolutional kernels, we expect that best results are com-

ng from square queries as well. We aim at validating this state-

ent with a deeper analysis. 

For this analysis we categorize two variables: size w × h and

spect ratio h / w , each into two levels of categorization: small/big

nd square/non-square and we assign each query to one of the

 × 2 groups created with this categorization. For the cutting

oints we set log (size) = 10 and a tolerance of 0.2 in the aspect

atio (i.e. if ar q is aspect ratio of query q , then the query is square

ff | ar q − 1 | ≤ 0 . 2 ). We set these values because of query size distri-

ution and visual validation. Examples of each category are shown

n Fig. 7 . 
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Fig. 8. Multiple receptive fields to cover rubanlettrine. 3 (left), 5 (middle) and 7 

(right) embeddings are considered in the example. Each red dot is the center of a 

receptive field, in yellow the receptive field positioned at the middle of the query 

and in random colors its symmetrical neighbors. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 3 

mAP and median AP (medAP) for pattern spotting task 

on each of the 2 × 2 groups for P 2 configuration (i.e. 

without T&N modification). 

size aspect ratio freq mAP medAP 

big square 0.03 0.665 0.925 

small square 0.13 0.496 0.572 

big non-square 0.01 0.451 0.399 

small non-square 0.83 0.187 0.139 
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Table 4 

mAP for image retrieval task on each of the 2 × 2 groups com- 

parison between single and multipe embeddings per query. 

# embeddings 

size aspect ratio 1 3 5 7 

big square 0.749 0.757 0.762 0.758 

small square 0.742 0.763 0.775 0.771 

big non-square 0.660 0.674 0.686 0.682 

small non-square 0.459 0.529 0.540 0.528 

mAP 0.505 0.567 0.577 0.567 

Table 5 

mAP for image retrieval and pattern spotting tasks comparison be- 

tween state-of-the-art system [6] and our current proposal (FPN 

with P 2 + T&N). We also show results on image retrieval task for 

5-embedding configuration (Mltp). 

image retrieval pattern spotting 

State-of-the-art 0.580 0.157 

FPN ( P 2 + T&N) 0.505 0.272 

FPN ( P 2 + T&N + Mltp) 0.577 –

Table 6 

mAP and median AP (medAP) for image retrieval task on each of 

the 2 × 2 groups comparison between state-of-the-art system [6] 

and our current Feature Pyramid Network approach (FPN). 

State-of-the-art FPN 

size aspect ratio mAP medAP mAP medAP 

big square 0.881 1.000 0.749 1.000 

small square 0.801 0.918 0.742 0.854 

big non-square 0.701 0.764 0.660 0.887 

small non-square 0.535 0.500 0.459 0.434 
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Our goal is to find differences between those groups and char-

cterize best/poor performance queries. Table 3 shows mean and

edian AP for these groups in addition to the frequency of each of

hem. Two important observations can be made: (1) the dataset is

eavily concentrated in small and non-square queries which turns

ut to be the most difficult ones to spot and yields worst perfor-

ance queries, decreasing overall mAP ( Table 2 ); and (2), aspect

atio is the key factor to have good performance rather than size.

mall and square are preferable to big and non-square queries. This

esult makes sense because our approach is based on neurons re-

eptive fields, which are square due to the kernel shape. Improve-

ents dealing with non-square queries are expected to have great

mpact because they are a large group of the dataset. 

.3.2. Multiple embedding representation 

One way to deal with non-square queries would be to consider

ot only the center neuron as embedding but also more neurons

o cover the entire query (recall the trade-off mentioned before).

o this end, we conducted some preliminary experiments, consid-

ring multiple embeddings for image retrieval with promising re-

ults. We considered 3, 5 and 7 embeddings per query (the em-

edding positioned at the middle of the query and its symmetrical

D-neighbors) as shown in Fig. 8 for the query rubanlettrine .
hose different patches of the query (“sub-queries”) were then

ooked independently with the indexed page-embeddings and all

sub-query” rankings were merged and re-sorted based on the

imilarity measure. 

Results of this procedure are shown in Table 4 where the

entral embedding (# embeddings = 1) mAP is presented as

ell. Compared to the 1-embedding baseline, the 5-embedding in-

reases the mAP for the small and non-square queries group by

8%, which shows this is a promising solution to investigate in the

uture to face non-square queries. Furthermore, more embeddings

o not imply better results (as with 5 and 7), and some queries

ave now worst average precision with multiple embeddings; we

elieve that an optimal number of embeddings should be consid-

red for each query instance rather than fixing one single number

or queries of any size. 
Finally, efficiency is now an issue because each embedding is

ooked for independently and as such it increases computation

ime for retrieval during the online phase. 

.4. Comparison with state-of-the-art 

We compare our proposal with the state-of-the-art system [6] .

able 5 shows overall mAP for both tasks. Compared with state-of-

he-art, our current system - the one without multiple embedding

ince it has not been tested on pattern spotting task yet - shows

n improvement of 73% in pattern spotting but it is still below the

tate-of-the-art results in image retrieval , by almost 13%. When we

se multiple embeddings this difference is reduced just to 0.5%. 

On the other hand, the proposed approach uses 256D embed-

ings compared with the 4096D VLAD descriptors used in [6] . This

eduction of the descriptor dimension by a factor of 16 along with

he improvement in the spotting task show that CNN features are

ore discriminative than VLAD descriptors at locating patterns,

ven when the CNN was not trained with domain-specific data.

etter localization and worst retrieval mAP can be explained by

he fact that instances of the same category may appear several

imes on the same page. 

Finally, the same 2 × 2 categorization of the queries, as pre-

ented in sub-section 4.3.1, is carried out for an in-depth compari-

on between the state-of-the-art system and our current approach

FPN with P 2 + T&N). Results are respectively shown in Tables 6

nd 7 for image retrieval and pattern spotting . Both tables show that

or the state-of-the-art system, size is the key factor for good per-

ormance as one can see in Table 7 . For our system, aspect ratio

s the key factor in FPN to have good AP performance because the

est results are always obtained with square queries, regardless of

he query size. 
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Table 7 

mAP and median AP (medAP) for pattern spotting task on each of 

the 2 × 2 groups comparison between state-of-the-art system [6] 

and our current Feature Pyramid Network approach (FPN). 

State-of-the-art FPN 

size aspect ratio mAP medAP mAP medAP 

big square 0.546 0.385 0.681 0.949 

small square 0.102 0.044 0.546 0.639 

big non-square 0.405 0.333 0.509 0.500 

small non-square 0.149 0.101 0.214 0.161 
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5. Conclusion 

We proposed a CNN-based system for spotting and retrieving

image patterns in historical documents. The feature maps are used

to extract features of local regions (patches) in the input image

based on each neuron (“pixel” in the feature map) receptive field.

With those feature maps we construct a feature pyramid to have a

multi-scale representation of the different patches. In this way, we

can extract multi-scale local features for the whole document page

with a single forward pass. In order to deal with small, non-square

patterns, we have designed and added to our system a specific so-

lution based on multiple receptive fields. 

Experiments carried out on the DocExplore dataset show that

the proposed system improves mAP by 73% in pattern localization

compared with state-of-the-art results, even if descriptor dimen-

sion used for distance computation is reduced by a factor of 16.

Limitation of the approach is that for the retrieval task, it leads

to a mAP which is inferior by 13% compared to state-of-the-art re-

sults. However the specific solution based on the description of the

query by multiple receptive fields, allows to reduce this limitation

and obtain a mAP inferior by 0.5% only when compared to the

state-of-the-art for the retrieval task. This new procedure which

provides promising results could also be implemented to improve

localization results and is part of our ongoing work. 

Last but not least, since the feature extractor of our system was

not trained with domain-specific data, we believe that results in

both tasks may be improved if we are able to integrate transfer

learning. The lack of large historical document image datasets for

object detection (with ground-truth information) limits however

this strategy but looking for a solution to this limitation is also part

of our future work. A good starting point would be to fine-tune our

feature extractor with the DocExplore dataset, to see if significant

improvements can be obtained. Since we do not want to use the

same dataset for transfer learning and mAP evaluation (to avoid

overfitting), we will look for new historical document datasets or

even create an artificially one for this purpose. 
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