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”Me alejo con espanto y horror de la triste maldad de las funciones que no tienen
derivada”.
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Resumen

En esta tesis presentamos dos modelos de fenómenos cuánticos donde estudiamos compor-
tamientos resonantes. El primero corresponde a una part́ıcula atrapada por una barrera
definida por una Delta de Dirac en el semieje positivo. El segundo modelo corresponde
a una perturbación regular de un valor propio sumergido en un espectro absolutamente
continuo. Es este modelo además mostramos estimaciones para el Dwell Time y su relación
con el Sojourn Time.
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Abstract

In this thesis we present two quantum models where we study resonant behaviours. The
first corresponds to a particle trapped by a delta barrier in the positive real line and the
second to a regular perturbation of an eigenvalue embedded in some continuous spectrum.
In the later model, we also show estimates for the Dwell Time and its relation to the
Sojourn Time.
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Chapter 1

Introduction

In Quantum Mechanics, the observables are the measurable quantities. Mathematically
they are represented by self-adjoint operators on a Hilbert Space H. In this work, the pure
state, or just states, are the unitary vector of H and when the eigenvalues of the operator
exist, they correspond to the possible outcomes of measuring the observable. The expected
value of an observable A in a certain state ϕ is the real number 〈ϕ,Aϕ〉.

Another ingredient is the dynamics of the system. This is defined by its time evolution,
which is written as

ϕ(t) = U(t)ϕ(0)

where (U(t))t∈R is a family of unitary operators. Moreover, it is required that this family
is a group in t (U(0) = Id, U(t+s) = U(t)U(s)) and that it is strongly continuous. By the
Stone Theorem, there exist a unique possibly unbounded operator H that is self-adjoint
on its domain, such that U(t) = e−iHt. The operator H is known as Hamiltonian or the
generator of the group, and it is given by

Hϕ = lim
t→0

i

t
(U(t)ϕ− ϕ).

In other words, if ϕ(0) belongs to the domain of H, then ϕ(t) solves the Schrödinger
Equation

i
∂

∂t
ϕ = Hϕ

and Stone Theorem assures that

ϕ(t) = e−iHtϕ(0).

Generally speaking, the operator H represents the total amount of energy of the system.
Historically, Quantum Mechanics was formulated on the Hilbert space L2(Rn) and the
usual Hamiltonian had the form H = −∆ + V where −∆ is the self-adjoint realization of
the negative Laplacian Operator (kinetic energy) and V (x) a real valued suitable function
defined on Rn (potential energy).
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All this entails that the quantity

〈e−iHtϕ,Ae−iHtϕ〉

represents the expected value of A at time t given the initial state ϕ. In particular, if P is
a orthogonal projection, then

〈e−iHtϕ, Pe−iHtϕ〉 = ||Pe−iHtϕ||2 (1.1)

corresponds to the probability of finding the system at time t in the range of P , with initial
state ϕ ∈ H. In the present thesis, two cases are considered:

i) P = |ϕ〉〈ϕ|, orthogonal projection onto the one dimensional subspace generated by
ϕ. Thus,

〈e−iHtϕ, Pe−iHtϕ〉 = |〈ϕ, e−iHtϕ〉|2, (1.2)

which measures the probability that the particle, initially in state ϕ, remains in such
a state at time t. This number is known as the survival probability. Integrating over
t we obtain the total amount of time that the system stays in its initial state. That
value is known as Sojourn Time.

SH(ϕ) =

∫
R
|〈ϕ, e−iHtϕ〉|2dt (1.3)

ii) For Ω ⊂ Rn, H = L2(Rn), and P = χΩ (characteristic function of Ω) it holds

〈e−iHtϕ, χΩe
−iHtϕ〉 = ||χΩe

−iHtϕ||2 =

∫
B
|e−iHtϕ(x)|2dx.

This quantity can be thought as the probability that the particle lives in the region
Ω at time t given the initial state ϕ. The Dwell Time is then defined as the total
amount of time that the particle lives in region B given the initial state ϕ. This is

DH(ϕ) :=

∫
R
||χΩe

−iHtϕ||2dt. (1.4)

In case (i) when a Hamiltonian H0 has an eigenvalue λ0 with associated eigenvector
φ0, then the survival probability is identically 1:

〈ϕ0, e
−iH0tϕ0〉 = e−iλ0t

which implies
|〈ϕ0, e

−iH0tϕ0〉|2 = |〈ϕ0, e
−iλ0tϕ0〉|2 = 1

In other words, a quantum system which starts in an eigenstate remains in the same state
forever, and the associated Sojourn Time is infinity.

In case (ii), if supp{ϕ} ⊂ Ω then

||χΩe
−iHtϕ||2 = sup{|〈φ, e−iHtϕ〉|2 : ||φ|| = 1, supp{φ} ⊂ Ω} (1.5)
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then the survival probability (1.2) plays an important role in the value of this supremum.
In this work, we will show that in many models this diagonal term is the main contribution
to the quantity ||χΩe

−iHtϕ||2.

The concept of quantum resonance is a very important notion with a lot of relevance
in Physics. Several mathematical approaches have been formulated in order to define this
phenomenon but none encloses all its physical meaning. Important attempts can be seen
in [8] and [18], each approach captures different properties that make it more suitable
according to the settings. This concept tries to capture the behavior of a particle spending
a long time in a suitable state. Here we present two of the most prolific approaches, both
contained in [18]:

• The quantum resonances of a Schrödinger operator H associated with a dense set of
vector D in the Hilbert H are defined as the poles of some meromorphic continuation
of 〈f, (H − z)−1g〉, f, g ∈ D, from C+ to C−. See [25].

• A resonance energy is a complex number λ− iΓ with Γ > 0 if |〈ϕ, e−iHtϕ〉|2 behaves
approximately as |e−i(λ−iΓ)t|2 = e−2Γt for some state ϕ ∈ H.

The first definition is mathematically more precise while the second relates directly
with the system’s dynamics, which will be the point of view of the present thesis. Note
that that exact exponential decay is impossible for many models [18]. As a corollary of
the dynamic definition the manifestation of a resonant behavior is a large Sojourn Time
and as we show in this work a large Dwell Time.

The Sojourn Time 1.3 has been studied in many setting as a tool for finding resonances
as it is large but finite when it is associated to resonant states. See [4], [8], [12], [13]. The
purpose of this thesis is to show that the Dwell Time can also be used as an instrument to
study resonant behaviours. In particular we show one general model where both quantities
are asymptotically similar under resonant regimes. Furthermore, in this case the Dwell
Time is an upper bound for the Sojourn Time, but mostly concentrating on it, in the sense
that all the singularities of the Dwell Time are also present in the Sojourn Time.

Let us describe now the contests of this thesis: we present two perturbative models. In
the first the perturbation is singular but explicit. In the second model the perturbation is
regular and encompasses a pretty wide family of Hamiltonians.

In Chapter 2 we consider the singular model which corresponds to a particle trapped
by a delta barrier in one dimension. Its time evolution is governed, formally, by the
Hamiltonian

Hω = −∆ + ω|δa >< δa|

in L2[0,∞) with Dirichlet Boundary conditions at x = 0 where |δa >< δa|(ψ) = ψ(a)δa.
This is a self-adjoint operator from H1 ⊂ L2(R+) to H−1 with absolutely continuous spec-
trum for ω > 0. The operator Hω reads the motion of a quantum particle through the
positive half-line with a delta-barrier at x = a of strength ω. Intuitively if ω → ∞, the
barrier breaks the positive half-line at x = a in two disjoints regions, trapping the particle
in the region [0, a]. So, for ω < +∞ large enough we expect to find a resonance. We use the
dynamic definition of it in order to modelate the almost exponential decay of the Survival
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Probability Amplitude 1.2. In the Section 2.4, we show the existence of resonance energies
using the analytic definition as poles of the meromorphic continuation of the resolvent
from the upper half-plane to the lower half-plane. This problem is based on the research of
Fernández, Prado and Palma [13] in which we find out an error of calculus in the estimate
of the remainder term in Theorem 5.8 where they exhibit a resonant state. Our Theorem
4 corrects that estimate and extends that result.

In Chapter 3 we review a regular perturbation case. Consider a Hamiltonian

Hβ = H0 + βV

where H0 has an eigenvalue ψ embedded in some absolutely continuous spectrum. In
order to get nice propagation properties under the βV perturbation we ask for the exis-
tence of multiple commutators and the so-called Mourre estimate [22] which implies the
Limiting Absorption Principle. This tool give us the necessary regularity for our calculus.
In Section 3.3, we show in Theorem 8 that the localized survival probability amplitude
〈ϕ,Qe−iHβtg(Hβ)ψ〉, for Q some projector, admits the representation

〈ϕ,Qe−iHβtg(Hβ)ψ〉 = (1 + β)e−izβt + β3

up some constants. Moreover, the Sojourn Time and the Dwell Time are asymptotically
of the same order with respect to β as it is stated in Theorem 9.
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Chapter 2

Perturbation by a delta potential

In this Chapter we will study the motion of a particle moving through the positive real
line trapped by a wall at the origin and a singular barrier given by a Dirac delta at x = a,
a 6= 0. The energy of the system is represented by the Delta Hamiltonian −∆ + ω|δa〉〈δa|.
We define it as a distribution-valued operator Hω. In Section 2.2 we introduce an analytic
expression for the resolvent of the perturbed Hamiltonian proved in ([13]). The first usage
of this formula is to show that the Schrödinger operator Hω converges to an operator H∞
in the strong resolvent sense, where H∞ acts as −∆ ⊕ −∆ on L2(0, a) ⊕ L2(a,∞). This
limiting operator has eigenvalues ψm supported on (0, a) for each m ∈ N. The main result is
Theorem 4 where we show that for ω big enough, the probability amplitude 〈ψn, e−iHωtψm〉
admits a quasi-exponential representation plus an error term of order 1/ω. Moreover, this
quantity is negligible for n 6= m being the diagonal term the dominant one. Two essential
facts in this proof are the following: with the formula given in Theorem 3, the Resolvent
Operator can be analytically continued to the positive real line from above. The second is
that the set {ψn} of eigenvectors is an orthonormal basis for L2(0, a). This will be specially
important in order to prove Corollary 5 using Parseval’s Identity.

2.1 Delta Operator

We shall use the notation C1
c (R+) for the space of the once differentiable functions with

continuous derivatives with compact support contained in R+ and H1 the Sobolev space
consisting of all the clases of functions f ∈ L2(R+) for which there exist g ∈ L2(R+) such
that

∫∞
0 fϕ′ = −

∫∞
0 gϕ for all ϕ ∈ C1

c (R+). H1 is a Hilbert space endowed with the inner
product

〈f, g〉H1 = 〈f, g〉L2 + 〈f ′, g′〉L2 .

Let H1
0 be the closure of C1

c (R+) in H1 and H−1 the dual space of H1
0. We have the

embedings H1
0 ⊂ L2(R+) ⊂ H−1 which are continuous with dense ranges. We also recall

that for every f ∈ H1
0 there is a continuous function ϕ (in the equivalence class of f) such

that f = ϕ a.e..

Definition 1. Given a ∈ R+, we define the functional νa as νa(ϕ) = ϕ(a), with domain
D(νa) = H1

0 in L2(R+).

Lemma 2. The functional νa satisfies the following properties:
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1. νa is a bounded functional on H1
0.

2. If δa denotes the delta distribution of H−1, that is δa(ϕ) = ϕ(a), then the transpose
functional ν∗a : C→ H−1 is given by ν∗a(z) = zδa.

3. The operator ν∗aνa : H1
0 ⊂ L2(R+)→ H−1 is given by ν∗aνa(ϕ) = ϕ(a)δa.

Proof. Observe that there is a constant C such that |ϕ(a)| ≤ ||ϕ||∞ ≤ C||ϕ||H1
0

and the
rest is direct from definition.

The operator ν∗aνa defined in Lemma 2 shall be called the Delta Operator and we shall
denote it by |δa〉〈δa|. Moreover, we introduce the perturbed Hamiltonian Hω on L2(R+)
by

Hω = −∆ + ω|δa〉〈δa|, (ω ∈ R), (2.1)

with the domain D(Hω) = {ϕ ∈ L2(R+) : ϕ ∈ H1
0 and ϕ(0) = 0} and taking values in H−1

(note that the free Hamiltonian H0 := −∆, with domain H1
0, acts on the same spaces as

the Delta Operator) and consider its self-adjoint realization over the positive real line.

2.2 Resolvent representation for delta perturbation

Let us denote the resolvent set of Hω by ρ(Hω), ω ≥ 0. For z ∈ ρ(Hω), the resolvent
operator shall be denote by Rω(z) = (Hω − z)−1. For the second resolvent identity, we
have

Rω(z)−R0(z) = −ωRω(z)ν∗aνaR0(z) (2.2)

which implies
Rω(z)ν∗a [1 + ωνaR0(z)ν∗a ] = R0(z)ν∗a

and then
Rω(z)ν∗a = k(z)R0(z)ν∗a (2.3)

where k(z) : C→ C, k(z) = (1 +ωνaR0(z)ν∗a)−1. Substituting equation 2.3 in 2.2, we have

Rω(z) = R0(z)− ωk(z)R0(z)ν∗aνaR0(z)

= R0(z)− ωk(z)R0(z)|δa〉〈δa|R0(z).
(2.4)

Note that in order to obtain equation (2.4) we only used that the perturbation of H0 is of
the form A∗B where A,B are elements of the dual of L2(R+). Taking a step further, in
[13] the authors prove the following result

Theorem 3. For all z ∈ ρ(Hω) and ψ ∈ L2[0,∞),

Rω(z)ψ(x) =

∫ ∞
0

[
G(x, y; z)− ωG(a, y; z)G(x, a; z)

1 + ωG(a, a; z)

]
ψ(y)dy

where

G(x, y; z) =
1

2i
√
z

(ei
√
z|x+y| − ei

√
z|x−y|)

13



for x, y > 0 and Im
√
z > 0, is the Green function associated with the solution of the

Schrödinger equation {
−u′′(x)− zu(x) = ψ(x), x ≥ 0.
u(0) = 0, u ∈ L2[0,∞).

Thus we can obtain a limit resolvent operator using the earlier Theorem. Denote by

(H∞ − z)−1ψ(x) =

∫ ∞
0

[
G(x, y; z)− G(a, y; z)G(x, a; z)

G(a, a; z)

]
ψ(y)dy

So, if we write
ϕ = (H∞ − z)−1ψ := lim

ω→∞
(Hω − z)−1ψ,

with ψ ∈ L2(R+), then is not difficult to see that

(−∆− z)ϕ = ψ, for x ∈ (0, a) ∪ (a,∞).

Also, (H∞−z)−1ψ(a) = 0 and so ϕ(0) = ϕ(a) = 0. In conclusion, if we define the operator
H∞ on L2

0(0, a)⊕ L2
0(a,∞) with domain D(H∞) = D(0,a) ⊕D(a,∞) where

D(0,a) = {ϕ ∈ L2(0, a) : ϕ ∈ H1
0(0, a) and ϕ(0) = ϕ(a) = 0}

D(a,∞) = {ϕ ∈ L2(a,∞) : ϕ ∈ H1
0(a,∞) and ϕ(a) = 0}

such as H∞ = −∆(0,a) ⊕ −∆(a,∞), with −∆(0,a) and −∆(a,∞) acting as the Laplacian
operator on D(0,a) and D(a,∞), respectively, then Hω converges in the strong resolvent
sense to H∞.

Note that the spectrum of H∞ is given by {(nπa )2 : m ∈ N} ∪ [0,∞), i.e., it has a dis-
crete part and an absolutely continuous part, unlike Hω that is an absolutely continuous
operator. The corresponding normalized eigenfunctions for the eigenvalues are given by

ψn(x) =
√

2
aχ[0,a](x) sin

(
nπ
a x
)
.

2.3 A quasi-exponential decay law

Now we will show the main theorem for this section. Here, we present a quasi-exponential
decay law for the survival probability amplitude and how it relates to the initial and final
quantum states.

Theorem 4. Let us fix λm eigenvalue of H∞ and ψm its corresponding eigenvector. Define
ε = (ωa)−1. For ω > 0 large enough, it holds that there exists some complex numbers zε,m,
Cn,m(ε) and En,m such that

〈ψn, e−iHωtψm〉 = Cn,m(ε)e−izε,mt + εEn,m, for all n ∈ N.

Moreover, for ε small Cn,m(ε) is of order ε for n 6= m and of order 1 if n = m.

We observe that the error |En,m| is a uniform bound in t for the quasi-exponential
decay. However, we think it is possible to obtain a time decay for this term using, for
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example, integration by parts (in a similar way as the main theorem of the next Chapter).
This will be part of a future work.

Theorem 4 gives us an expression for a ”Generalized” Survival Probability Amplitude
〈ψn, e−iHωtψm〉. Now we use it in order to prove an asymptotic behavior for the probabil-
ities

|〈ψm, e−iHωtψm〉|2

and
||χ[0,a]e

−iHωtψm||2

defined earlier in Chapter 1. The first one corresponds to the probability that the particle
remains in its initial state at time t, and the second one to the probability of finding the
particle in the region [0, a] at time t, given an initial state.

Corollary 5. Under the same hypothesis of Theorem 4, if ω is large enough, then for all
t > 0: ∣∣||χ[0,a]e

−iHωtψm||2 − |〈ψm, e−iHωtψm〉|2
∣∣ < o

(
1

ω

)
.

First, we prove the Theorem 4.

Proof of Theorem 4. By the Stone Formula, since Hω has absolutely continuos spectrum
we have

〈ψn, e−iHωtψm〉 =
1

π
lim
δ→0+

∫ ∞
0

e−iλt〈ψn,=Rω(λ+ iδ)ψm〉dλ. (2.5)

By Theorem 3, after taking the limit δ ↓ 0 in λ+ iδ, for λ 6= λm, we have:

=Rω(λ)ψ(x) =

∫ ∞
0
=
[
K(x, y;λ)− ωK(a, y;λ)K(x, a;λ)

1− ωK(a, a;λ)

]
ψm(y)dy

=

(
√
λ−=

[
2i
√
λei2a

√
λ

−1 + i2aε
√
λ+ ei2a

√
λ

])(∫ a

0

sin(
√
λx) sin(

√
λy)√

λ
ψm(y)dy

)
,

where ε = (aω)−1. Let us define

rn,m(λ) :=
√
λ

(∫ a

0

sin(
√
λx)√
λ

ψn(x)dx

)(∫ a

0

sin(
√
λy)√
λ

ψm(y)dy

)
.

Then, resolving the integrals, we obtain

rn,m(λ) =
2(−1)n+m

√
λn
√
λm sin2(a

√
λ)

a
√
λ(λ− λn)(λ− λm)

. (2.6)

Let us notice that for n 6= m, rn,m is arbitrary small when λ tends to a λm, and if n = m
it is of order 1. Thus,

〈ψn,=Rω(λ)ψm〉 =

[
1−=

{
2ie2ia

√
λ

fε(λ)

}]
rn,m(λ). (2.7)
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where
fε(λ) = −1 + 2aiε

√
λ+ e2ai

√
λ. (2.8)

Since fε(λ) does not have real zeros, then the quantity

〈ψn, e−iHωtψm〉 =
1

π

∫ ∞
0

e−iλt=

[
1−=

{
2ie2ia

√
λ

fε(λ)

}]
rn,m(λ)dλ

is a well-defined integral.
Also

=

{
2ie2ai

√
λ

−1 + e2ia
√
λ

}
= 1

so we can write

〈ψn, e−iHωtψm〉 =
1

π

∫ ∞
0

e−iλt=

{
2ie2ai

√
λ

−1 + e2ia
√
λ
− 2ie2ia

√
λ

fε(λ)

}
rn,m(λ)dλ

=
1

π

∫ ∞
0

e−iλt=

{
−4e2ia

√
λa
√
λε

(−1 + e2ia
√
λ)fε(λ)

}
rn,m(λ)dλ

=
1

π

∫ ∞
0

e−iλt=
{
h(λ)ε

fε(λ)

}
rn,m(λ)dλ

with

h(λ) =
−4e2ia

√
λa
√
λ

−1 + e2ia
√
λ
.

Note that

fε(λ) = −2a2(
√
λ−

√
λm)2 + o((

√
λ−

√
λm)2) + i(2aε

√
λ+ sin(2a

√
λ))

so there exists an analityc function D(λ) such that

fε(λ)−D(λ) = −2a2(
√
λ−

√
λm)2 + 2iaε

√
λ.

Define

pε(λ) =
h(λ)ε

−2a2(
√
λ−
√
λm)2 + 2iaε

√
λm

=
h(λ)ε

−2a2[(
√
λ−
√
λ)2 − 2iΓ2

ε,m]

with
Γ2
ε,m =

πm

2a2
ε.

Hence
〈ψn, e−iHωtψm〉 = G1(ε, t) +G2(ε, t)
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where

G1(ε, t) =
1

π

∫ ∞
0

e−iλt={pε(λ)} rn,m(λ)dλ

and

G2(ε, t) =
1

π

∫ ∞
0

e−iλt=

{
h(λ)ε

(
1

fε(λ)
− 1

−2a2[(
√
λ−
√
λ)2 − 2iΓ2

ε,m]

)}
rn,m(λ)dλ.

First we compute G1(ε, t).
The (simple) poles of pε(z) are zε,m = (

√
λm − Γε,m − iΓε,m)2, wε,m = (

√
λm + Γε,m +

iΓε,m)2 and λm (pole of h(λ)). Note that if ε < 4a then

=zε,m = −2Γε,m
√
λm − Γ2

ε,m < 0 (2.9)

and then zε,m lives on the lower half-plane, wε,m on the upper half-plane and λm on the
real axis. For δ > 0 small and R > 0 large let us define the curve γ as

γ = [0, λm − δ] ∪ γδ ∪ [λ+ δ,R] ∪ γR

where γδ(s) = δeis + λm and γR(s) = R(e−is + 1) for s ∈ [0, π].
For R large enough, γ is a closed curve that contains zm. Thus,

1

π

∫
γ
e−iztpε(z)rn,m(z)dz = 2irn,m(zε,m)C1(Γε,m)e−izε,mt

where

C1(Γε,m) =
8a3zε,mΓε,m

πm(1 + i)(1− e2ai(1+i))Γε,m)

Γε→0−→ 2mπ.

Similarly, we have

1

π

∫
γ
e−iztpε(z)rn,m(z)dz = −2irn,m(wε,m)C2(Γε,m)e−iwmt

where

C2(Γε,m) =
−8a3wε,mΓε,m

πm(1− i)(1− e2ai(1−i)Γε,m)

Γε→0−→ 2mπ.

Hence,
1

π

∫
γ
e−izt={pε(z)}rn,m(z)dz = C3(Γε,m)e−izε,mt

where

Cn,m(Γε,m) = rn,m(zε,m)C1(Γε,m) + rn,m(wε,m)C2(Γε,m)e−i4(
√
λmΓε,m−iΓ2

ε,m)t.

It is customary to prove that the contour integrals over γδ and γR converges to zero
when δ tends to zero and R tends to infinity, respectively. In order to do this, for γδ it is
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sufficient to see that

lim
δ→0

∫
γδ

e−iztpε(z)rn,m(λ)dz = lim
δ→0

∫
γδ

e−iztpε(z)rn,m(λ)dz.

For γR we write ∫
γR

e−iztpε(z)rn,m(z)dz =

∫ π

0
e−iγc(s)tφ(s)ds (2.10)

where e−iγc(s)t (of order e−R) dominate the factor φ(s) = pε(γc(s))rn,m(γc(s))γ
′
c(s), which

is of order R. The same occurs for
∫
γRe

−iztpε(z)rn,m(z)dz.
All this implies

G1(ε, t) = Cn,m(Γε,m)e−izε,mt

Moreover, it holds
lim
ε→0

Cn,m(Γε,m) = 4mπrn,m(λm).

On the other hand,

G2(ε, t) =
1

π

∫ ∞
0

e−iλt=
{
h(λ)ε

(
1

fε(λ)
− 1

−2a2(
√
λ−
√
λm)2 + 2iaε

√
λm

)}
rn,m(λ)dλ

=
ε

π

∫ ∞
0

e−iλt={h(λ)gε(λ)} rn,m(λ)dλ

where

gε(λ) =
−2aiε(

√
λm −

√
λ) +D(λ)

fε(λ)(−2a2(
√
λ−
√
λm)2 + 2iaε

√
λm)

Since the functions h(λ), gε and rn,m are explicit, it is not difficult to see that the integral
is well-defined. In conclusion, G2(ε, t) is of order ε and the theorem follows from defining
En,m(ε) as the previous integral.

Now we prove the Corollary 5,

Proof of Corollary 5. From (1.5) and since {ψn : n ∈ N} is an orthonormal basis for states
supported on the interval (0, a), we have∣∣||χ[0,a]e

−iHωtψm||2 − |〈ψm, e−iHωtψm〉|2
∣∣ < ∑

n6=m
|〈ψn, e−iHωtψm〉|2

<

∑
n6=m
|Cn,m(Γε,m)|2

 e2=zε,mt + ε2

∑
n6=m
|En,m(ε)|2

 (2.11)

Now we note that for λ 6= λm, the sum
∑

n6=m |rn,m(λ)|2 always converges. Also, if ε is
small, for n 6= m, then Cn,m(Γε,m) is of the same order than sin(a

√
zε,m) which is of order

Γε,m = o(
√
ε). This two observations implies that the first sum of the right-hand side of

equation 2.11 is of order ε and the second of order 1, and the corollary follows.
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2.4 Resonances as poles of the resolvent

As we discussed in Chapter 1, there are different approaches when it comes to define
resonances. If we seek for a more classical-mathematical definition, we can take a path a
bit different. By equation 2.7, we can look for the zeros in C of the function fε. Given
ε > 0 let us consider the complex function

fε(z) = −1 + 2iaεz + e2iaz

with z = x+ iy, x, y ∈ R. So we have

fε(z) = 0⇔
{
u(x, y, ε) := −1− 2aεy + e−2ay cos(2ax) = 0.

v(x, y, ε) := 2aεx+ e−2ay sin(2ax) = 0.

The triple (x, y, ε) =
(
mπ
a , 0, 0

)
is a solution of the system. Besides, the Jacobian |∂(u, v)/∂(x, y)|

for that point is 4a2 6= 0. The Implicit Function Theorem says that there exists unique
continuously differentiables functions xε and yε such that x0 = mπ

a , y0 = 0 and{
u(xε, yε, ε) = 0
v(xε, yε, ε) = 0.

Derivating with respect to ε we have{
−y′εh1(xε, yε, ε) + x′εh2(xε, yε, ε)− yε = 0
x′εh1(xε, yε, ε)− y′εh2(xε, yε, ε) + xε = 0

(2.12)

where {
h1(xε, yε, ε) = ε+ e−2yεa cos(2ax)
h1(xε, yε, ε) = e−2yεa sin(2axε)

This implies that

x′0 = −mπ
a
, y′0 = 0.

Derivating again and evaluating in (x0, y0, 0) we obtain

x′′0 =
2mπ

a
, y′′0 =

−2m2π2

a
.

Thus, the zeros of fε admit the following representation as Taylor Series around ε = 0:

z =
mπ

a
− mπ

a
ε+

(
2mπ

a
− i2m

2π2

a

)
ε2 + o(ε2)

=
√
λm −

√
λmε+ 2

√
λm(1− imπ)ε2 + o(ε2).

We summarize this in the following theorem:

Theorem 6. For n,m ∈ N, if ε is small enough, then the poles of 〈ψn, Rω(λ)ψm〉 are of
the form

vε,m =
√
λm −

√
λmε+ 2

√
λm(1− imπ)ε2 + o(ε2)

Physicist usually call lifetime of the resonant energy to the value =vε,m. In this case
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its dominant term with respect to ε is 2
√
λmmπε which is of order 1/ω2. From Theorem

4 we have that =zε,m = o

(
1√
ω

)
(See equation 2.9). So the resonance just computed as

a pole of the resolvent approach the eigenvalue much faster than the one in the previous
section. This difference is a direct consequence of the approximation used in Theorem 4.
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Chapter 3

Perturbation of an eigenvalue
embedded in the continuum

3.1 Context and preliminaries

Let us consider the case where Q is some arbitrary projector on the Hilbert Space H and
ψ ∈ Ran(Q) is unitary. Then, for the Schrödinger operator H we have

|〈ψ, e−iHtψ〉|2 = |〈Qψ,Qe−iHtψ〉|2 ≤ ||Qψ||2||Qe−iHtψ||2 = ||Qe−iHtψ||2

thus ∫
R
|〈ψ, e−iHtψ〉|2dt ≤

∫
R
||Qe−iHtψ||2dt

In this case, the Sojourn Time 1.3 is a lower bound for the Dwell Time 1.4. But we want
to take it a step further. We claim that, in a suitable way, the Sojourn Time behaves like
the Dwell Time. We formalize this idea as follows.

Let H0 be a self-adjoint operator defined on a Hilbert Space H with a simple eigen-
value λ0 embedded on an absolutely continuous spectrum and ψ its corresponding nor-
malized eigenvector. Denote P = |ψ〉〈ψ| the rank one eigenspace projection and denote
H⊥ = P⊥HP⊥ for any operator H such that ψ ∈ Dom(H). Consider now the perturbed
Hamiltonian

Hβ = H0 + βV, β 6= 0

where V is a real valued H0-bounded function with H0-bound smaller than 1. As in the
previous chapter, we shall denote by Rβ(z) := (Hβ − z)−1 for z in the resolvent set of Hβ

and β ≥ 0.
Let g ∈ C∞c (R) be a real valued function compactly supported on some interval (a, b)

such as 0 ≤ g ≤ 1 with g ≡ 1 on [a0, b0] where a < a0 < λ0 < b0 < b.
Denote by EΩ(H) the spectral projection of a self-adjoint operator H on a Borel set Ω,

adA(B) = [A,B] = AB − BA the commutator of A and B and adkA(B) = adk−1
A (adA(B))

its iterations. Note that the commutator [A,B] is defined in the sense of sesquilinear
forms [27]. Assume there exist a self-adjoint operator A and an open interval I such that
following set of hypothesis satisfies:
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(H1) e−isAD(H0) ⊂ D(H0) for all s ∈ R;

(H2) a Mourre estimates holds:

EI(H0)i[H0, A]EI(H0) ≥ cEI(H0) +K

for some c > 0 and K compact;

(H3) adkA(H0) are H0-bounded for k ∈ {1, 2, 3};

(H4) adkA(V ) are H0-bounded for k ∈ {1, 2, 3}.

Now, given the states ϕ,ψ ∈ H the most amount of work will be dedicate to estimate
the quantity

〈ϕ,Qe−iHβtg(Hβ)ψ〉, t ∈ R. (3.1)

The main idea is to consider the survival probability amplitude 〈ϕ,Qe−iHβtg(Hβ)ψ〉
and write it as the sum of two terms, Aϕ,ψ(t, β) and Bϕ,ψ(t, β) being Aϕ,ψ the projection
onto the eigenspace of ψ and B the projection onto the complement. In [14] the authors
proved that Aϕ,ψ(t, β) admits a quasi-exponential representation which delivers a Sojourn
Time of order 1/β2. The main result is enunciated in Theorem 8 (with all the technical
arguments in Proposition 11). Here we show that Bϕ,ψ, as well as itBϕ,ψ, has a β-ponderate

exponential representation plus a β3-order error term (respectively, β
11
9 -order for itBϕ,ψ)

if an extra reflectionless condition is assumed over Hβ. Immediately after we explain that
this particular condition is actually not necessary if we modify our energy locator function
g in a suitable fashion. However, this alternative approach does not allow us to obtain
bounds for itBϕ,ψ. Finally, in Theorem 9, we conclude that the asymptotically behavior
of Aϕ,ψ in β is similar to that of Bϕ,ψ. This means that the Sojourn Time and the Dwell
Time are of the same order.

3.2 Reduction of the problem

By the Spectral Theorem and the Stone formula we have

〈ϕ,Qe−iHβtg(Hβ)ψ〉 =
1

π

∫ ∞
−∞

e−iλtg(λ)〈Qϕ,=Rβ(λ+ i0)ψ〉dλ

=
1

π

∫ ∞
−∞

e−iλtg(λ)〈Qϕ,P=Rβ(λ+ i0)g(λ)ψ〉dλ

+
1

π

∫ ∞
−∞

e−iλtg(λ)〈Qϕ,P⊥=(Rβ(λ+ i0)g(λ)ψ〉dλ

= 〈Qϕ,ψ〉 1
π

∫ ∞
−∞

e−iλtg(λ)〈ψ,=Rβ(λ+ i0)ψ〉dλ

+
1

π

∫ ∞
−∞

e−iλtg(λ)〈Qϕ,P⊥=Rβ(λ+ i0)Pψ〉dλ.

(3.2)
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We denote the two terms of the right-hand side of the last equality of 3.2 by

Aϕ,ψ(t, β) := 〈Qϕ,ψ〉
∫ ∞
−∞

e−iλtg(λ)〈ψ,=Rβ(λ+ i0)ψ〉dλ, (3.3)

and

Bϕ,ψ(t, β) :=

∫ ∞
−∞

e−iλtg(λ)〈Qϕ,P⊥=Rβ(λ+ i0)Pψ〉dλ. (3.4)

So, in order to estimate 3.1, we need to estimate these two integrals. Equation 3.3
corresponds to the eigenprojection P of the resolvent, and Equation 3.4 is the projection
onto P⊥. Note that, after taking square modulus, the first term corresponds to the survival
probability defined in equation 1.2.

3.3 Main results

Definition 7. We say that a self-adjoint Schrödinger operator H is reflectionless at ϕ if
for all λ ∈ σess(H) it holds

lim
ε↓0
<〈ϕ, (H − λ− iε)−1ϕ〉 = 0

Reflectionless operators have been investigated in [19] and [20], for example.

The first important result of this chapter is the following.

Theorem 8. Assume hypothesis (H1) to (H4). Also assume

(H5) =F(λ0, 0) > 0.

Fix β sufficiently small. We have that for all t ∈ R, Bϕ,ψ(t, β) admits a quasi-exponential
representation with an error term E of order β and itE also of order β. Moreover, if the
operator Hβ is reflectionless at ψ, then E is of order β3 and itE is of order β

11
9 . Thus,

we have the following estimates:

• General case:

〈ϕ,Qe−iHβtg(Hβ)ψ〉 = Aϕ,ψ(t, β) + cβe−iζβt + c′
{
o(β) for |t| < 1
1
t o(β) for |t| > 1

.

• Hβ reflectionless at ψ:

〈ϕ,Qe−iHβtg(Hβ)ψ〉 = Aϕ,ψ(t, β) + dβe−iζβt + d′
{

o(β3) for |t| < 1
1
t o(β

11
9 ) for |t| > 1

.

where c = c(ϕ,ψ), c′ = c′(ϕ,ψ), d = d(ϕ,ψ) and d′ = d′(ϕ,ψ) are some constants and ζβ
is a complex number with =ζβ < 0 of order β2.
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The reflectionless condition is not necessary but sufficient. A way to obtain a β2-order
error term E without assuming this hypothesis is to operate just as in the proof of Theo-
rem 8 with the difference that the energy-locator function g we will consider with variable
support [aβ, bβ] such that aβ < λ0 < bβ, with aβ := λ0 − |β|||V ||, bβ := λ0 + |β|||V || and
g ≡ 1 on [1

2aβ,
1
2bβ]. The weakness of this approach is due to the following fact: At some

point we derivate g in order to get an estimate for itE but the smoothness of g implies that
g′ does not exist in the limit. Since we need to obtain an integrable decay over time, we
choose to introduce the reflectionless hypothesis. Whatever the chosen path, the following
result holds.

Using Theorem 8 we can assure that the Sojourn Time (1.3) and the Dwell Time (1.4)
have singularities of equal order with respect to β. We now enunciate the main result of
this chapter:

Theorem 9. Assume hypothesis (H1) to H(5) of Theorem 8. If β is small enough, then
for t ∈ R ∣∣||Qe−iHβtg(Hβ)ψ||2 − ||Qψ||2|〈ψ, e−iHβtψ〉|2

∣∣ ≤ β2.

Furthermore ∣∣DHβ (ψ)− ||Qψ||2SHβ (ψ)
∣∣ ≤ o(1).

3.4 Proofs

Now, in order to prove Theorem 8, first we need to control the term Bϕ,ψ(t, β) (3.4).

For z complex number with nonzero imaginary part and β > 0 define{
F(z, β) = 〈ψ, V P⊥(H⊥β − z)−1P⊥V ψ〉,
J (z, β) = 〈ϕ,QP⊥R⊥β (z)P⊥V Pψ〉. (3.5)

For β ≥ 0 denote R⊥β (z) = P⊥(H⊥β − z)−1P⊥ and λβ = λ0 + β〈ψ, V ψ〉.

Proposition 10. Assume hypothesis (H1) to (H4). Also assume

(H5) =F(λ0, 0) > 0.

Then, for β sufficiently small it holds that there exists C > 0 such that

|Bϕ,ψ(t, β)| ≤ Cβ.

The hypothesis (H5) is the so-called Fermi Golden Rule.

Proof. Proposition 14 of Section 3.5 implies that
PRβ(z)P = P (P (Hβ − z)P − PHβP

⊥(Hβ − z)−1P⊥HβP )−1P =
1

λβ − z − β2F(z, β)
P

P⊥Rβ(z)P =
−βP⊥R⊥β (z)P⊥V P

λβ − z − β2F(z, β)
.

(3.6)
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Moreover, if we denote

G(z, β) =
1

λβ − z − β2F(z, β)
(3.7)

then we can write

Bϕ,ψ(t, β) =
1

π

∫ ∞
−∞

e−iλtg(λ)
1

2i
〈Qϕ,P⊥[Rβ(λ+ i0)−Rβ(λ− i0)]Pψ〉dλ

=
1

2πi

∫ ∞
−∞

e−iλtg(λ)〈Qϕ,P⊥Rβ(λ+ i0)Pψ〉dλ

+
1

2πi

∫ ∞
−∞

e−iλtg(λ)〈Qϕ,P⊥Rβ(λ− i0)Pψ〉dλ

=
−β
2πi

∫ ∞
−∞

e−iλtg(λ)J (λ+ i0, β)G(λ+ i0, β)dλ

+
−β
2πi

∫ ∞
−∞

e−iλtg(λ)J (λ− i0, β)G(λ− i0, β)dλ.

(3.8)

Define
D(λ, β) = G(λ, β)−1 = λβ − λ− β2F(λ, β)

for (λ, β) ∈ [a, b] × [−β0, β0]. Take 0 < δ1 < min{|a0 − λ0|, |λ0 − b0|, 1}. We can pick
0 < β1 < β0 such that for any |β| < β1 it holds that{

Ran
(
λβ − β2<F(·, β)

)
⊂ [a0 + δ1, b0 − δ1] and

β2
1 sup(λ,β)∈[a0,b0]×[−β0,β0] |F ′(λ, β)| < 1− δ1.

(3.9)

By continuity, in addition with the Fermi Golden Rule (H5), we can assume that

=F(λ, β) > 0

for λ ∈ [a0, b0] and 0 < |β| < β1. Therefore, for 0 < |β| < β1, this entails, in the first place,
that

|D(λ, β)| ≥ β2=F(λ, β) > 0

if λ ∈ [a0, b0]. Also, for any λ ∈ [a, a0] ∪ [b0, b],

|D(λ, β)| >
∣∣λβ − λ− β2<F(λ, β)

∣∣ ≥ δ1.

This gives a sense for the two integrals in the right-hand side of 3.8 for 0 < |β| < β1.

Now we want to go a step further and show that Bϕ,ψ admits a quasi-exponential rep-
resentation (smaller than the one of Aϕ,ψ) plus a controllable error term.
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Note that Bϕ,ψ(t, β) is equal to

Bϕ,ψ(t, β) =
−β
π

∫ ∞
−∞

e−iλtg(λ)J (λ+ i0, β)=G(λ+ i0, β)dλ

+
−β
π

∫ ∞
−∞

e−iλtg(λ)Ĵ (λ− i0, β)G(λ− i0, β)dλ.

(3.10)

where
Ĵ (λ− i0, β) = 〈Qϕ,=(R⊥β (λ− i0))V ψ〉.

In the following, we will prove that the first integral of the right-hand side of equation
3.10, which we denote by I(t, β), can be approximated by another integral which integrand
is a Lorentzian-like function.

Proposition 11. Under the same hypothesis of Proposition 10, there exist some constant
C and a complex number ζβ in the lower half-plane, which tends to λ0 as β tends to 0,
such that if β is sufficiently small, then

I(t, β) = Cβe−iζβt +R(t, β)

where the error term satisfies

a) R(t, β) = o(β3)

b) itR(t, β) = o(β
11
9 ).

First, we prove the following technical lemma.

Lemma 12. Given any β ∈ [−β1, β1], there is a unique solution to the equation λ = λβ −
β2<F(λ, β) in [a0, b0]. Also, if λ∞β denotes the solution, we have that λ∞β ∈ [a0 +δ1, b0−δ1]

and |λ∞β − λβ| ≤ β2 sup(λ,β)∈[a0,b0]×[−β1,β1] |F(λ, β)|.

Proof. Equations 3.9 implies that function λ → λβ − β2

2 <F(λ, β) maps [a0 + δ1, b0 − δ1]
on itself and is strictly contractive. By the Banach Fixed Point Theorem the lemma
follows.

Proof of Proposition 11. Define

D̂(λ, β) = Ĝ(λ, β)−1 = λβ − λ− β2F(λ∞β , β)

D1(λ, β) = G1(λ, β)−1 = λβ − λ− β2F(λ∞β , β)− β2F ′(λ∞β , β)(λ− λ∞β )

= λ∞β − λ− iβ2=F(λ, β)− β2F ′(λ∞β , β)(λ− λ∞β )

for (λ, β) ∈ [a0, b0]× [−β1, β1]. By hypothesis (H5), |D̂(λ, β)| > 0 for β 6= 0. This allow us
to define Ĝ(λ, β) = D̂(λ, β)−1 for λ ∈ [a0, b0] and 0 < |β| < β1.

For λ ∈ [a, b] and |β| < β1, define the Lorentzian-like function G1(λ, β) by

G1(λ, β) :=
1

λβ − λ− β2F(λ∞β , β)− β2F ′(λ∞β , β)(λ− λ∞β )
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and
J1(λ, β) := J (λ∞β , β) + J ′(λ∞β , β)(λ− λ∞β ).

where J ′ is the derivative of J with respect to λ. The function G1 is well-defined since

|D1(λ, β)| ≥ |λ∞β − λ− iβ2F(λβ, β)| − β2

(
sup

(λ,β)∈[a0,b0]×[−β0,β0]
|F ′(λ, β)|

)
|λ∞β − λ|

≥

(
1− β2 sup

(λ,β)∈[a0,b0]×[−β0,β0]
|F ′(λ, β)|

)
|D̂(λ, β)| ≥ δ1|D̂(λ, β)|.

This implies that if λ ∈ [a0, b0] and 0 < |β| ≥ β1 then

|G1(λ, β)| ≤ δ−1
1 |Ĝ(λ, β)|. (3.11)

Also
D(λ, β) = λ∞β − λ− iβ2=F(λ∞β , β)− β2(F(λ, β)−F(λ∞β , β)).

For λ ∈ [a0, b0] and |β| < β1, by the Mean Value Theorem,

|D(λ, β)| ≥ |λ∞β − λ− i
β2

2 F(λβ, β)| − β2

2

(
sup(λ,β)∈[a0,b0]×[−β0,β0]|F ′(λ, β)|

)
|λ∞β − λ|

≥

(
1− β2

2
sup

(λ,β)∈[a0,b0]×[−β0,β0]
|F ′(λ, β)|

)
|D̂(λ, β)| ≥ δ1|D̂(λ, β)|

therefore
|G(λ, β)| ≤ δ−1

1 |Ĝ(λ, β)|. (3.12)

According to this, we can write

I(t, β) =
−β
π

(I1(t, β) + I2(t, β) + I3(t, β) + I∂(t, β))

where

I1(t, β) =

∫ b0

a0

e−iλtJ1(λ, β)=G1(λ, β)dλ

I2(t, β) =

∫ b0

a0

e−iλt[J (λ, β)− J1(λ, β)]=G(λ, β)dλ

I3(t, β) =

∫ b0

a0

e−iλtJ1(λ, β)=[G(λ, β)−G1(λ, β)]dλ

I∂(t, β) =

∫ a0

a
e−iλtg(λ)J (λ, β)=G(λ, β)dλ+

∫ b

b0

e−iλtg(λ)J (λ, β)=G(λ, β)dλ

We shall perform now the analysis of each term.

Step 1: We start with the term I1(t, β). We write for λ ∈ [a0, b0], 0 < |β| < β1,
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=G1(λ, β) =
1

2i

(
1

bβ − aβλ
− 1

bβ − aβλ

)
where aβ = 1 + β2F ′(λ∞β , β), bβ = λ∞β aβ − iβ2F(λ∞β , β), and consider the function

g1(z, β) =
1

2i
(J (λ∞β , β) + J ′(λ∞β , β)(z − λ∞β ))

(
1

bβ − aβz
− 1

bβ − aβz

)
which is a meromorphic function in the complex plane with two simple poles ζβ and ζβ
with

ζβ = λ∞β − iβ2
=F(λ∞β , β)

aβ
.

In particular, for λ ∈ [a0, b0], 0 < |β| < β1, g1(λ, β) = J1(λ, β)=G1(λ, β)
In [14], in the proof of Th. 2.1, it is shown that

<ζβ ∈ [a0 − (δ1 − δ′1), b0 − (δ1 − δ′1)]

and
=ζβ < 0.

Let γ be a fixed smooth curve in the lower half plane, joining the endpoints of the
interval [a0, b0] and staying at positive distance from the closure of the bounded set {zβ :
0 < |β| < β1}. Then, there exist β′1 > 0 such as for 0 < |β| < β′1, the closed curve
[a0, b0] ∪ γ− enclose only the pole ζβ and so,∮

[a0,b0]∪γ−
e−iztg1(z, β)dz = c(ϕ)e−iζβt (3.13)

where
c(ϕ) = c1J (λ∞β , β) + c2J ′(λ∞β , β)

with c1 = − 1
aβ

and c2 = − 1
aβ

(ζβ − λ∞β ). Therefore,

I1(t, β) = c(ϕ)e−iζβt +

∫
γ
e−iztg1(z, β)dz. (3.14)

Now, for all z ∈ γ, g1(z, β) = β2h1(z, β) where

h1(z, β) =
(J (λ∞β , β) + J ′(λ∞β , β)(z − λ∞β ))(pβz + qβ)

|aβ|2(z − ζβ)(z − ζβ)
.

where pβ = =F ′(λ∞β , β), qβ = =F(λ∞β , β)− λ∞β =F ′(λ∞β , β).

By construction, infz∈γ,0<|β|<β′1 |z − ζβ| > 0 and infz∈γ,0<|β|<β′1 |z − ζβ| > 0, so the
functions h1(·, β) are analytic in some fixed open region containing γ for any 0 < |β| < β′1.
This entails that supz∈γ,0<|β|<β′1 |h1(z, β)| and supz∈γ,0<|β|<β′1 |h

′
1(z, β)| are finite.

Since γ is contained in the lower half-plane, then |e−izt| ≤ 1 for z ∈ γ and t ≥ 0. Thus,
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for t ≥ 0 and 0 < |β| < β′1, we have∣∣∣∣∫
γ
e−iztg1(z, β)dz

∣∣∣∣ ≤ Cβ2, (3.15)

and ∣∣∣∣∫
γ
e−iztg′1(z, β)dz

∣∣∣∣ ≤ Cβ2. (3.16)

for some C > 0.

Step 2:
Therefore, if we define

R(t, β) =
−β
π

(∫
γ
e−iztg1(z, β)dz + I2(t, β) + I3(t, β) + I∂(t, β)

)
, (3.17)

we have that
I(t, β) = βc1(ϕ)e−iζβt +R(t, β).

According to 3.15, Proposition 19 and Proposition 20, the error term is of order β3 (for β
small enough). This proves item (a).

Note that by using integration by parts, and since g(a) = 0 = g(b) and g(a0) = 1 =
g(b0), we have the following four equations

it

∫
γ
e−iztg1(z, β)dz =

∫
γ
e−iztg′1(z, β)dz

− e−ib0tJ1(b0, β)=G1(b0, β) + e−ia0tJ1(a0, β)=G1(a0, β)

itI2(t, β) =

∫ b0

a0

e−iλt[(J (λ, β)− J1(λ, β))=G(λ, β)]′dλ

− e−ib0t(J (b0, β)− J1(b0, β))=G(b0, β)

+ e−ia0t(J (a0, β)− J1(a0, β))=G(a0, β)

itI3(t, β) =

∫ b0

a0

e−iλt[J1(λ, β)=(G(λ, β)−G1(λ, β))]′dλ

− e−ib0tJ1(b0, β)=(G(b0, β)−G1(b0, β))

+ e−ia0tJ1(a0, β)=(G(a0, β)−G1(a0, β))

itI∂(t, β) =

∫ a0

a
e−iλt[g(λ)J (λ, β)=G(λ, β)]′dλ

+

∫ b

b0

e−iλt[g(λ)J (λ, β)=G(λ, β)]′dλ

− e−ia0tJ (a0, β)=G(a0, β) + e−ib0tJ (b0, β)=G(b0, β)
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which implies that

itR(t, β) =
−β
π

(K1(t, β) +K2(t, β) +K3(t, β) +K∂(t, β))

where

K1(t, β) =

∫
γ
e−iztg′1(z, β)dz

K2(t, β) =

∫ b0

a0

e−iλt[(J (λ, β)− J1(λ, β))=G(λ, β)]′dλ

K3(t, β) =

∫ b0

a0

e−iλt[J1(λ, β)=(G(λ, β)−G1(λ, β))]′dλ

K∂(t, β) =

∫ a0

a
e−iλt[g(λ)J (λ, β)=G(λ, β)]′dλ+

∫ b

b0

e−iλt[g(λ)J (λ, β)=G(λ, β)]′dλ

(3.18)

By equation 3.16 and Proposition 20, K1 and K∂ are of order β2. By Proposition 21,
K2 and K3 are of order β

2
9 . This completes the proof.

Now we prove the Theorem 8.

Proof of Theorem 8. By Proposition 11, we have that for β small enough,

Bϕ,ψ(t, β) = Cβe−iζβt + E(t, β),

with
E(t, β) = R(t, β) + Î(t, β)

where Î(t, β) is the second integral of the right-hand side of 3.10. Note that this term
converges and is of order β by Proposition 10. Using a completely analogous argument as
used in Proposition 11(b) we see that itÎ(t, β) is also of order β. The only difference is that
in the first integral (namely Î1(t, β)), in the previous Proposition we got an exponencial
contribution but now we can skip the pole of G(λ− i0) defining a convenient path γ. This
proves the first part of the Theorem.

Now, if Hβ is reflectionless at ψ, then we have that the function G(λ − i0) is purely
imaginary so, as before, we can use the exact same approximation argument used for I(t, β)
in Proposition 11(a) and show that Î(t, β) has also a quasi-exponential representation plus
a β3-order error term.

Proof of Theorem 9. By equations 3.2, we see that∣∣||Qe−iHβtg(Hβ)ψ||2 − |〈ψ, e−iHβtψ〉|2
∣∣ ≤ sup

||ϕ||=1
|Bϕ,ψ(t, β)|2

30



and equation 3.10 says

sup
||ϕ||=1

|Bϕ(t, β)|2 ≤ sup
||ϕ||=1

|I(t, β)|2 + sup
||ϕ||=1

|Î(t, β)|2

where the constants of each term of I(t, β) are bounded by some linear combination of
supλ∈[a0,b0] |J (λ, β)| and supλ∈[a0,b0] |J ′(λ, β)|. See equations 3.13, 3.15, 3.16, and Proposi-

tions 19, 20 and 21. Similarly, the constants of Î(t, β) are bounded by linear combinations
of supλ∈[a0,b0] |J (λ− i0, β)| and supλ∈[a0,b0] |J ′(λ− i0, β)|. For Lemma 15, this supremums
are bounded.

This and Theorem 8 imply

sup
||ϕ||=1

|Bϕ,ψ(t, β)|2 = Cβ2|e−iζβt|2 +

{
o(β2) for |t| < 1
1
t2
o(β2) for |t| > 1

.

which proved the first assertion. The rest of the proof is straightforward from the fact that
=ζβ = o(β2).

3.5 Technicalities

First, we need the following technical lemmas for the preliminaries of Section 3.3.

Lemma 13. Let H be a self-adjoint operator and P an orthogonal projection such that
PH ⊂ HP . Then, for all z ∈ ρ(H),

P⊥(H − z)−1P⊥ = P⊥(P⊥HP⊥ − z)−1P⊥.

Proof. See [14], Lemma 3.1.

Proposition 14. (Schur-Livsic-Feshbach-Grushin Formula)
Let z ∈ ρ(H). The operator

P (H − z)P − PHP⊥(H⊥ − z)−1P⊥HP

is invertible as an operator from RanP to RanP . Moreover,

P (H − z)−1P = P (P (H − z)P − PHP⊥(H⊥ − z)−1P⊥HP )−1P

and
P⊥(H − z)−1P = −P⊥(H⊥ − z)−1P⊥HP (H − z)−1P.

Proof. The first part is proved in [23]. Since L2(R) = PL2(R) ⊕ P⊥L2(R), the operators
(H − z)−1 and H − z can be represented as an operators matrices:(

P (H − z)P P (H − z)P⊥
P⊥(H − z)P P⊥(H − z)P⊥

)
= (H − z)
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(
y11 y12

y21 y22

)
:=

(
P (H − z)−1P P (H − z)−1P⊥

P⊥(H − z)−1P P⊥(H − z)−1P⊥

)
= (H − z)−1.

So {
y21P (H − z)P + y22P

⊥(H − z)P = 0
y21P (H − z)P⊥ + y22P

⊥(H − z)P⊥ = Irang(P⊥).

The second equation implies that

y22 = P⊥(H − z)−1P⊥ − y21PHP
⊥(H − z)−1P⊥

and substituting in the first equation we obtain

y21P (H − z)P + P⊥(H − z)−1P⊥HP − y21PHP
⊥(H − z)−1P⊥HP = 0

=⇒ y21 = −P⊥(H − z)−1P⊥HP (H − z)−1P

The next lemma, known as the Limiting Absorption Principle, gives us regularity
enough over the functions F , J and its derivatives with respecto to λ when we take
the limit to the real line. This is critical. Hypothesis (H1) − (H4) are not necessary but
sufficient.

Lemma 15. Assume the set of hypothesis (H1) to (H4). There exists an interval I
containing λ0 and β0 > 0 such that for |β| < β0 and all λ ∈ I the norm limits

F(λ± i0, β) = lim
ε↓0
F(λ± iε, β)

J (λ± i0, β) = lim
ε↓0
J (λ± iε, β)

exists and are bounded uniformly in λ and β. Furthermore, J (λ± i0, β) and F(λ± i0, β)
are C1(I± × [−β0, β0]) and its derivatives are 1

9 -Hölder continuous on I± × [−β0, β0].

Proof. Under the assumption of ψ ∈ D(A2), by a complete analogous proof than Lemma
8.11 in [22], the lemma follows from Theorem 2.2 in [24]. In [21] the authors prove that
ψ ∈ D(A2) is consequence of the regularity of ad3

A(H0).

The next technical results are used in order to prove Proposition 11. Lemmas 16, 17
and 18 are borrowed from [14].

Lemma 16. Let (µ, ν) ∈ [0,∞[×[0,∞[, 0 ≤ |β| < β1 and zβ = λ∞β − iβ2=F (λ∞β , β) =

λβ − β2F(λ∞β , β). There exist C > 0 and 0 < β2 < β1, such that for any 0 < |β| < β2,

∫ b0

a0

|λ−<zβ|µ

|λ− zβ|ν
dλ ≤


Cβ2(µ−ν+1) if µ− ν + 1 < 0
C| log |β|| if µ− ν + 1 = 0

C if µ− ν + 1 > 0.

Proof. See [14], Lemma 2.2.
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Lemma 17. There exist C > 0 such that for any λ ∈ [a0, b0], 0 < |β| < β1:

|G(λ, β)−G1(λ, β)| ≤ Cβ2|Ĝ(λ, β)|2|λ− λ∞β |
1
9

+1

Proof. See [14] Lemma 2.3.

Lemma 18. There exists some C > 0 such that for any λ ∈ [a0, b0] and 0 < |β| < β1:

|G′(λ, β)−G′1(λ, β)| ≤ Cβ2|Ĝ(λ, β)|2|λ− λ∞β |
1
9

Proof. See [14] Lemma 2.4.

Proposition 19. For β small enough, there exists C > 0 such that

|I2(t, β)| ≤ Cβ2 and |I3(t, β)| ≤ Cβ2.

Proof. For λ ∈ [a0, b0] and β ≤ β1, it holds that:

|J (λ, β)− J1(λ, β)| = |J (λ, β)− J (λ∞β , β)− J ′(λ∞β , β)(λ− λ∞β )|

=

∣∣∣∣∣
∫ λ

λ∞β

J ′(µ, β)− J ′(λ∞β , β)dµ

∣∣∣∣∣
≤ sup

µ∈[λ∞β ,λ]
|J ′(µ, β)||λ− λ∞β |

1
9

+1

(3.19)

where the last inequality is consequence of Lemma 15.
Consequence of equation 3.12 is∣∣∣∣∫ b0

a0

e−iλt(J (λ, β)− J1(λ, β))=G(λ, β)dλ

∣∣∣∣
≤
∫ b0

a0

sup
µ∈[λ∞β ,λ]

|J ′(µ, β)||λ− λ∞β |
1
9

+1|=G(λ, β)|dλ

= sup
λ∈[a0,b0]

|J ′(λ, β)|β2

∫ b0

a0

|λ− λ∞β |
1
9

+1=F(λ, β)

|D(λ, β)|2
dλ

≤ c sup
λ∈[a0,b0]

|J ′(λ, β)|β2 sup
λ∈[a0,b0]

|=F(λ, β)|
∫ b0

a0

|λ− λ∞β |
1
9

+1

|λ− λ∞β + iβ2=F(λ∞β , β)|2
dλ

(3.20)

where the last integral converges due to Lemma 16 for 0 ≤ |β| ≤ β2. So,

|I2(t, β)| ≤ Cβ2

if 0 < |β| < β2 for some C > 0.
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By Lemmas 16 and 17, if 0 < |β| < β2 there exist C > 0 such that

|I3(t, β)| =
∣∣∣∣∫ b0

a0

e−iλtJ1(λ, β)=(G(λ, β)−G1(λ, β))dλ

∣∣∣∣
≤ sup

λ∈[a0,b0]
|J (λ, β)|

∫ b0

a0

|G(λ, β)−G1(λ, β)|dλ

≤ sup
λ∈[a0,b0]

|J (λ, β)|β2

∫ b0

a0

|λ− λ∞β |
1
9

+1

|λ− λ∞β + iβ2=F(λ∞β , β)|2
dλ

≤ Cβ2.

(3.21)

Proposition 20. For β small enough, it holds that

|I∂(t, β)| ≤ Cβ2 and |K∂(t, β)| ≤ Cβ2.

Proof. By definition of β1, for all λ ∈ [a, a0], |β| < β1, |D(λ, β)| > a0 + δ1 − λ ≥ δ1 > 0.
Also, if β 6= 0,

=G(λ, β) = β2 =F(λ, β)

|D(λ, β)|2
. (3.22)

As F is bounded, we have that for 0 < |β| < β1,∣∣∣∣∫ a0

a
e−iλtg(λ)J (λ, β)=G(λ, β)dλ

∣∣∣∣
≤ β2 sup

λ∈[a0,b0]
|F(λ, β)| sup

λ∈[a0,b0]
|J (λ, β)|

∫ a0

a

1

(a0 + δ1 − λ)2
dλ

≤ Cβ2

(3.23)

for some C > 0 and similarly∣∣∣∣∫ b

b0

e−iλtg(λ)J (λ, β)=G(λ, β)dλ

∣∣∣∣ ≤ Cβ2

and so
|I∂(t, β)| ≤ Cβ2. (3.24)

On the other side, for λ ∈ [a, a0],

K∂(t, β) =

∫ a0

a
e−iλtg′(λ)J (λ, β)=G(λ, β)dλ

+

∫ a0

a
e−iλtg(λ)J ′(λ, β)=G(λ, β)dλ

+

∫ a0

a
e−iλtg(λ)J (λ, β)=G′(λ, β)dλ

By the same argument in equation 3.23, if 0 < |β| < β1, the first and the second
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integrals are of order β2. From 3.22, we have

=G′(λ, β) = β2=F ′(λ, β)

|D(λ, β)|2
− 2β2<(D(λ, β)D′(λ, β))=F(λ, β)

|D(λ, β)|4
(3.25)

with D′(λ, β) = −1− β2F(λ, β). It follows that for t ∈ R, 0 < |β| < β1:∣∣∣∣∫ a0

a
e−iλtg(λ)J (λ, β)=G′(λ, β)dλ

∣∣∣∣
≤ c4(ϕ)β2

∫ a0

a

g(λ)|=F(λ, β)|+ |g′(λ)||=F ′(λ, β)|
(a0 + δ1 − λ)2

dλ

+ 2c4(ϕ)β2

∫ a0

a

(1 + β2|F ′(λ, β)|)|=F(λ, β)|
(a0 + δ1 − λ)3

dλ

≤ Cβ2

(3.26)

for some C > 0. A similar procedure applies for λ ∈ [b0, b].

Proposition 21. For any small enough β, there exists C > 0 such that

|K2(t, β)| ≤ β
2
9 and |K3(t, β)| ≤ β

2
9 .

Proof. Let 0 < |β| ≤ β1.
After derivate, for K2 we have

|K2| ≤
∫ b0

a0

|J ′(λ∞β )||=(G(λ, β)−G1(λ, β))|dλ+

∫ b0

a0

|J1(λ)||=(G′(λ, β)−G′1(λ, β))|dλ

≤ |J ′(λ∞β )|
∫ b0

a0

|G(λ, β)−G1(λ, β)|dλ

+ sup
λ∈[a0,b0]

|J (λ∞β , β) + J ′(λ∞β , β)(λ− λ∞β )|
∫ b0

a0

|G′(λ, β)−G′1(λ, β)|dλ

(3.27)

By Lemmas 17 and 18, we have that∫ b0

a0

|G(λ, β)−G1(λ, β)|dλ ≤
∫ b0

a0

|λ− λ∞β |
1
9

+1

|λ− λ∞β + iβ2=F(λ∞β , β)|2
dλ

and ∫ b0

a0

|G′(λ, β)−G′1(λ, β)|dλ ≤ β2

∫ b0

a0

|λ− λ∞β |
1
9

|λ− λ∞β + iβ2=F(λ∞β , β)|2
dλ.

Now, if 0 < |β| < β2, Lemma 16 implies that the first integral is of order β2 and the second

one is, up to a positive multiplicative constant, bounded by β
2
9 .
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For K3 holds that

|K3| ≤
∫ b0

a0

|J ′(λ, β)− J ′1(λ, β)||=G(λ, β)|dλ

+

∫ b0

a0

|J (λ, β)− J1(λ, β)||=G′(λ, β)|dλ.

By equations 3.19, 3.22 and 3.12 for the first integral we have there exists C > 0 such that∫ b0

a0

|J ′(λ, β)− J ′1(λ, β)||=G(λ, β)|dλ ≤ Cβ2

∫ b0

a0

|λ− λ∞β |
1
9

+1

|D(λ, β)|2
dλ

≤ Cβ2

∫ b0

a0

|λ− λ∞β |
1
9

+1

|D̂(λ, β)|2
dλ

(3.28)

where the last integral converges due to 16 for 0 < |β| < β2. For the second integral,
because of equations 3.19 and 3.25 we have there exists some C > 0 and C ′ > 0 such that∫ b0

a0

|J (λ, β)− J1(λ, β)||=G′(λ, β)|dλ ≤ Cβ2

∫ b0

a0

|λ− λ∞β |
1
9

+1 |=F ′(λ, β)|
|D(λ, β)|2

dλ

+ C ′β2

∫ b0

a0

|λ− λ∞β |
1
9

+1<(D(λ, β)D′(λ, β))=F(λ, β)

|D(λ, β)|4
dλ

≤ β2

(
C

∫ b0

a0

|λ− λ∞β |
1
9

+1

|D̂(λ, β)|2
dλ+ C ′

∫ b0

a0

|λ− λ∞β |
1
9

+1

|D̂(λ, β)|3
dλ

) (3.29)

if 0 < |β| < β2. Consequence of Lemma 16, just like with K2, with µ = 1
9 + 1 and ν = 3,

is that the second term of the RHS is the dominant term and so, the integral in the LHS,
and thus K3, is bounded, up to a positive multiplicative constant, by β

2
9 .
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