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INTRODUCTION 
 

Alzheimer’s disease (AD) is a progressive disease 

representing the most prevalent cause of dementia in the 

elderly, affecting millions of people worldwide. Clinical 

signs of dementia include a progressive decline in 

cognition, memory, and language. Specifically, AD is 

characterized by a loss of short-term memory and other 

mental abilities, as the neurons responsible for these 

skills are gradually lost.  Almost 70%  of the 50 million  

 

people that live today with dementia have AD. With the 

increase in life expectancy in most middle and 

developed countries, these numbers are expected to rise 

to 150 million people living with dementia by 2050 [1]. 

Neuropathological hallmarks that characterize AD are 

the accumulation of amyloid-β (Aβ) peptide and tau 

protein hyperphosphorylation, resulting in intracellular 

neurofibrillary tangles (NFTs) and atrophy of some 

areas of the brain due to neuronal loss (Figure 1) [2]. 

Despite that more than 100 years have passed from its 
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ABSTRACT 
 

Alzheimer’s disease (AD) is the most prevalent type of dementia. Down syndrome (DS) is the leading genetic risk 
factor for Early-Onset AD, prematurely presenting the classic pathological features of the brain with AD. 
Augmented gene dosage, including the APP gene, could partially cause this predisposition. Recent works have 
revealed that alterations in chromosome location due to the extra Chromosome 21, as well as epigenetic 
modifications, could promote changes in gene expression other than those from Chromosome 21. As a result, 
similar pathological features and cellular dysfunctions in DS and AD, including impaired autophagy, lysosomal 
activity, and mitochondrial dysfunction, could be controlled beyond APP overexpression. In this review, we 
highlight some recent data regarding the origin of the shared features between DS and AD and explore the 
mechanisms concerning cognitive deficiencies in DS associated with dementia, which could shed some light into 
the search for new therapeutic targets for AD treatment. 
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first description by Alois Alzheimer, the etiology and 

sequential pathological mechanisms of AD are still a 

subject of debate. Moreover, the majority of AD cases 

are called sporadic or late-onset AD (LOAD), with an 

unnoticed direct cause. However, we know that the 

main risk factor for LOAD development is the advance 

of aging, in parallel with the progressive weakening of 

homeostatic processes in the organism. Of note, one of 

the genetic risks correlated to LOAD development 

includes the variant 4 for the apolipoprotein E 

(APOE4) [3, 4], which interferes with Aβ peptide 

clearance, generating robust Aβ-plaques [5]. About 1 to 

5% of AD cases are called early-onset (EOAD), 

presenting clinical signs before the age of 65. About 5% 

of EOAD is known to be caused by autosomal 

mutations, like those located in genes encoding proteins 

responsible for Aβ generation, such as APP (amyloid 

protein precursor) and PS1/2 (presenilin 1 and 2, part of 

gamma-secretase enzymes) [6]. However, most cases of 

EOAD remain unexplained [6]. Individuals with Down 

syndrome (DS) represent the largest group of 

individuals under 65 years of age with EOAD, 

presenting an early appearance of the three classical 

features of AD. In that sense, DS is currently considered 

the leading genetic risk factor for EOAD [7]. In the last 

decades, the life expectancy of individuals with DS has 

improved considerably, and, as aging is the primary risk 

factor of AD, the incidence of mixed pathology in this 

population has shown a similar trend [7]. This issue is 

of great concern, since, to date, there are no treatments

 

 
 

Figure 1. Neuropathological hallmarks that characterize Alzheimer’s disease. As Alzheimer's disease progresses, the brain tissue 

shrinks, the volume of the ventricle, which contains cerebrospinal fluid, increases markedly. At the molecular level: 1. Amyloid-β peptides are 
produced by the cleavage of the amyloid precursor protein (APP) in the membrane of the neurons. 2. In the space between the neurons, 
amyloid-β forms oligomers that are thought to disrupt the function of the synapses and act in receptors present in the neuron plasma 
membrane. 3. The fibrils of the amyloid-β oligomers are added in plaques, which interfere with the function of the neurons. 4. Tau 
hyperphosphorylation causes neurofibrillary tangles within neurons, displacing intracellular organelles and disrupting vesicular transport. 
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to delay, stop, or prevent AD. The high incidence of AD 

in adults with DS, together with the ability to identify 

these individuals before or during birth, brings 

opportunities for the discovery of new biomarkers in DS 

individuals before the appearance of AD-associated 

clinical signs, as well as a better understanding of the 

pre-clinical mechanisms related to AD [8]. In the 

present work, we highlight the molecular crosstalk 

between DS and AD, and our main focus is discussing 

novel evidence regarding mitochondrial function and 

dynamics, as well as molecular and epigenetic 

regulation, during the progression of AD in DS 

individuals. 

 

Neuropathology of Alzheimer’s disease 
 

AD is a slowing evolving disorder whose neuro-

pathological features start to appear in the brain about 

20 years before the onset of the symptoms [9]. Current 

AD diagnosis is based on clinical signs and the 

systematic exclusion of other potential dementias, 

including other tauopathies or frontotemporal dementia 

(FTD) [10]. However, and despite the efforts of 

neurologists, from 10 to 30% of patients diagnosed with 

AD by clinical symptomatology do not display the AD 

neuropathological changes characteristic of the disease 

in postmortem analyses [11]. Therefore, AD has been 

recently defined as a disease that presents progressive 

neuropathological changes that can be visualized in vivo 

as biomarkers, more than just based on clinical 

symptoms that are consequences of the disease [2]. The 

aforementioned neuropathological changes are the i) Aβ 

plaques deposited in the brain parenchyma and vessels, 

which can be visualized in vivo by positron emission 

tomography (PET) with specific stains; ii) intracellular 

deposition of NFTs, also observed by PET; and iii) 

neurodegeneration, assessed by structural magnetic 

resonance imaging (MRI) and visualized as the atrophy 

of specific brain areas [2]. Although there is a 

consensus about the presence of these biomarkers for 

definitive AD diagnosis, a direct causality between Aβ 

production, tau hyperphosphorylation, and neuronal cell 

death has not been proved [12]. Furthermore, the 

pathology start point and temporal spreading of both 

proteins are different: Aβ plaques primarily form in the 

neocortex and spread to deeper brain areas, while tau 

starts its accumulation in limbic regions, from where 

NFTs spread to the neocortex [13–15]. 
 

Amyloid-β plaques  
 

The main component of Aβ plaques in AD is the Aβ 

peptide. Aβ is derived from the sequential cleavage of 

APP by β-secretase 1 (BACE1) and complex γ-

secretases. APP is a transmembrane protein present in 

the plasma membrane and other organelles of neurons, 

glia, and other peripheral tissues [16]. This process can 

produce peptides with 40 or 42 amino acids, called 

Aβ40- and Aβ42-peptides. The two extra amino acids of 

the Aβ42-peptide confer the molecule an increased 

propensity to aggregate, classifying it as the most 

“amyloidogenic.” This process was better understood 

when the first case of familial EOAD was elucidated 

and proven to be caused by mutations in the APP gene, 

resulting in an increased production of Aβ42-peptides 

[17]. Two other mutations in genes coding for the two 

components of the γ-secretase complex, PSEN1 and 

PSEN2, were also associated with familial EOAD [18]. 

In pathological conditions, Aβ forms aggregates, 

ranging from soluble oligomers to long amyloid fibers, 

of which the latter can be visualized by PET and the use 

of specific radiopharmaceuticals. 

 

Interestingly, despite differences in the onset, the 

distribution of Aβ accumulation throughout the brain is 

similar in EOAD and LOAD, affecting brain regions that 

serve as convergence areas for information originated in 

different and multiple processing places (called hubs), 

such as the medial, frontal and parietal cortex [19]. 

Although Aβ oligomers have been proposed to be more 

toxic than plaques, both structures are known to cause 

synaptic impairment and neuroinflammation [20, 21]. 

However, Aβ accumulation does not directly correlate 

with neurodegeneration in AD, characterized by neuronal 

loss and brain atrophy. Likewise, treatment strategies 

against AD using antibodies targeting Aβ-42 have shown 

no improvement in cognition in human clinical trials, 

despite the clearance of Aβ plaques in animals models 

(discussed in [22]). 

 

One possibility is that other species of APP fragments, 

different from Aβ fibers, might be involved in neuronal 

death. With the advent of more specific antibodies, 

recent work has shown an unexpected accumulation of 

an APP intracellular fragment generated after β-

secretase activity: the C99 fragment [23]. C99 is a C-

terminal membrane-associated APP intermediate with 

99 amino acids produced before the cleavage of γ-

secretase. This fragment is preferentially produced and 

accumulated in the endosomal autophagic-lysosomal 

(EAL) system [24, 25], which contains the first 

organelles affected in AD. Recent studies have shown 

that C99 exhibits neurotoxic effects independently of 

Aβ-monomers or oligomers in animal models of AD 

and fibroblasts from AD patients [23, 26, 27]. Of note, 

the first site of Aβ accumulation in the central nervous 

system (CNS) of DS individuals is intracellular [28, 29], 

occurring in the EAL compartments [30]. Thus, current 

studies are exploring the effects of APP metabolism 

products, independently of the extracellular 

accumulation of Aβ in AD. 
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On the other hand, the temporal and spatial distribution 

of NFTs formed by pathological tau modification 

(hyperphosphorylation) has been more directly cor-

related to neuronal death and neurodegeneration in AD. 

However, recent evidence is finally proposing 

mechanisms for a synergic effect of both proteins in the 

pathogenesis of this condition [31, 32]. 
  

Neurofibrillary tangles 
 

NFTs are mainly composed of hyperphosphorylated tau 

protein, which is a microtubule-associated protein highly 

expressed in the CNS, especially in neuronal axons. In 

normal conditions, tau stabilizes the cytoskeleton of 

microtubules, which is essential for cell stability and 

vesicle trafficking [33]. In humans, the same gene can 

generate six isoforms of tau by alternative splicing, each 

of which is classified according to the number of 

microtubule-binding repeat sequences present in the 

molecule. In AD, the affected tau isoforms are the ones 

with three- (3R) and four-repeats (4R) [34, 35]. Under 

pathological circumstances, soluble tau proteins undergo 

hyperphosphorylation processes, leading them to adopt 

anomalous forms and aggregates in insoluble and toxic 

inclusions -the NFTs- that are mostly located in the 

neuronal soma. Intracellular consequences of NFTs 

presence are microtubule disintegration and neuronal 

communication dysfunction. The latter is caused by the 

collapse of the transport system, which eventually also 

causes the activation of cell death [36]. 
 

Researches have been exploring the role of both proteins 

(Tau and APP) in AD pathogenesis for decades. Recent 

studies are finally proposing an interesting picture, where 

Aβ plaques would work as a priming factor to tau toxicity 

in the brains of AD patients. Although both processes start 

in different brain areas, when NFTs reach the region 

where Aβ plaques are accumulated, they potentiate tau 

hyperphosphorylation and neuronal toxicity [31]. In this 

scenario, Aβ plaques are not responsible for tau 

modifications and accumulation, as the amyloid theory 

has tried to explain. Instead, Aβ plaques would create a 

stabilizing environment for the NFTs, facilitating tau 

toxicity [37]. This hypothesis would explain how it takes 

almost 20 years to develop AD before the beginning of 

the clinical symptoms. Interestingly, DS individuals 

present both protein phenomena at early ages of their 

lives. 
 

Alzheimer’s disease pathogenesis in Down 

syndrome 
 

DS is a genetic disorder caused by the presence of an 

extra copy of Chr21 or a part of it. It is characterized by 

a complex and variable phenotype, including cranio-

facial abnormalities, heart defects, neurological 

alterations, and cognitive impairments [38]. DS is one 

of the most studied human syndromes, and DS 

neuropathology research has become a revisited field 

during the last decade, for a number of reasons: i) DS is 

the leading single genetic risk for the development of 

EOAD [39, 40]; ii) DS has been considered as a human 

model of accelerated aging, or a model of premature 

aging (question still under debate); iii) DS allows the 

correlation between genetic defects and pathological 

phenotypes; and iv) DS neuropathology is associated 

with neurogenesis defects, brain development abnor-

malities, and cognitive impairments [41]. Overall, the 

neuropathological changes associated with AD in the 

DS population are characterized by the initial formation 

of Aβ plaques within the cerebral cortex and then 

progressing into the hippocampus, striatum, and 

cerebellum [42, 43]. Moreover, NFTs develop in 

neurons that project to those areas, presenting a pattern 

of spread similar to that seen in AD [44]. These and 

other processes have allowed researchers to consider 

DS as a model of preclinical AD, thus contributing to 

the understanding of the pathological mechanisms 

involved in the progression of this disease [43, 45].  

 

Researchers have identified 233 gene encoders in Chr21 

[46]. In addition, RNA molecules that do not translate 

into a protein (called non-coding RNAs (ncRNAs), 

associated with gene transcription regulation) are also 

found in Chr21. A survey that integrates data from 

GENCODE 31 [47], Ensembl GRCh38.95 [48] and a 

set of long non-coding RNAs (lncRNA, discussed in 

detail below) identified by Amaral and colleagues [49], 

revealed the presence of 1,050 lncRNAs in Chr21, in 

addition to 30 microRNAs (miRNAs). For this reason, it 

is possible that other candidate genes or regulatory 

sequences encoded in Chr21 [50] may interfere with Aβ 

aggregation and other events, thereby triggering the 

early onset of AD, beyond APP. 

 

To date, evidence indicates that more than 600 genes 

are overexpressed as a consequence of trisomy 21 [40]. 

In this regard, Chou et al. analyzed differences in the 

expression of genes that presented only two copies in 

trisomic and disomic tissues, under the hypothesis that 

these differences may contribute to the phenotypic 

variations observed in DS. This work found that several 

disomic genes present higher expression variances in 

human trisomic tissues compared to normal ones, and 

the number of disomic genes with high variance was 

significantly higher in trisomic tissues versus normal 

ones. This data suggests that the genetic imbalance 

observed in DS leads to greater instability in 

transcriptional control [40, 51]. 

 

Another study published in 2014 with discordant 

monozygotic DS twins analyzed the transcriptome of 
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induced pluripotent stem cells (iPSC) derived from 

fibroblasts to find chromosomal domains with different 

expression profiles [52]. In this work, the DNA of the 

twins showed regions of increased expression, while 

others showed the opposite behavior. These domains, 

not considered random regarding their organization, 

were denominated GEDDs (Gene expression 

dysregulated domains) [53]. Thus, the organization in 

GEDDs can be the result of the overexpression of one 

or more Chr21 genes, which leads to modifications of 

the chromatin environment. These changes in the 

nuclear compartment of trisomic cells influence the 

overall transcriptome. Thus, GEDDs may be an 

important contributor to the origin and development of 

DS and AD-associated pathologies in DS individuals 

[54].  

 

Some other relevant cellular consequences of Chr21 

third copy and the associated genes that could promote 

the AD-like pathology in DS individuals are described 

below in detail. 

 

Amyloid plaques 

 

The APP gene is one of the genes overexpressed in DS 

(Figure 2) with full trisomy 21 [55]. It encodes the 

amyloid precursor protein that originates the Aβ-

peptide, which is generally observed as diffuse deposits 

that, as age advances, progress to neuritic plaques, 

corresponding to one of the pathological hallmarks 

shared between DS and AD [56, 57]. The gene 

encoding the ETS Proto-Oncogene 2 (EST2) 

transcription factor (Figure 2) is also located on Chr21 

and this factor activates the APP promoter, contributing 

to its overexpression [7]. In addition, overexpression of 

ETS2 triggered by chronic oxidative stress and 

mitochondrial dysfunction, both present in the brains of 

people with DS and AD, has been associated with 

neurodegenerative lesions. Helguera et al. proposed that 

modulation of EST2 expression and the preservation of 

the redox status and mitochondrial function, would be 

relevant to protect neuronal homeostasis, prevent 

cognitive deterioration and the development of AD in 

people with DS [58]. 

 

Different studies have shown that the deposition of Aβ 

can occur from the early age in people with DS, but after 

age 30-40, they are usually observed systematically, and 

their accumulation is exponential, meaning not only an 

early onset of the disease, but also an acceleration in the 

deposition of Aβ plaques, compared to the general 

population [59]. Neuropathological findings similar to 

those observed in AD in people with DS prompted 

different researchers to answer the question if the 

overexpression of the APP gene was sufficient to 

promote a pathology similar to AD. Human APP 

overexpression in mice (a transgenic mouse model of 

AD, TgCRND8 mice) is sufficient to promote an AD-

like pathology that includes Aβ deposition, dystrophic 

neurites, and learning and memory impairments [60]. 

Interestingly, these animals also display alterations in the 

neocortex and hippocampus, mimicking some of the 

pathological features observed in DS. Likewise, high 

expression of APP in fibroblasts of individuals with DS 

is necessary and enough to cause morphological and 

functional anomalies in early endosomes, which 

participate in neuron growth, homeostasis, and synaptic 

functions [61]. 
 

At the onset of AD, neuronal endosomes become 

abnormally enlarged, as in DS, resulting in endosomal 

dysfunction and neuronal vulnerability [26, 61]. 

Confirming these results, endocytic abnormalities were 

reversed by reducing the expression of APP or BACE1 

in APP-transgenic mouse models of AD (TgAPP mice) 

[62]. In addition to Aβ, multiple other APP metabolites 

are thought to contribute to the neuropathology of DS, 

as mentioned before. In an elegant work, Wiseman and 

co-authors generated a DS/AD mouse model by cross-

breeding TgAPP mice with trisomic transgenic mice 

that present the triplication of most genes from human 

Chr21, except APP (Tc21) [63]. Though APP is not 

triplicated, the triplication of other coding genes or 

ncRNAs from Chr21 was sufficient to increase the 

soluble Aβ42/Aβ40 ratio and worsen the cognitive 

decline in the DS/AD model associated with the AD 

[63]. Although the authors have not shown which genes 

or ncRNAs are responsible for this phenotype, these 

results highlight that we have unnoticed the complexity 

of APP protein metabolism. Clarifying which other 

factors are acting in this process will provide novel 

therapeutic targets for AD, in individuals with DS and 

other conditions. 
 

The β-Secretase 2 (BACE2) gene, homolog to the β-

secretase of BACE1, is also transcribed from Chr21 

(Figure 2). However, BACE2 does not exert β-secretase 

activity and, in fact, cleaves APP on the carboxy-

terminal side of the β-secretase cutting site, preventing 

the generation of Aβ [64]. While BACE2 mRNA is 

increased in DS, post-transcriptional regulatory 

mechanisms can either prevent an increase in translation 

or a decrease in the rate of mRNA degradation. These 

findings suggest that BACE2 is probably not responsible 

for AD pathology in the DS brain and that it may have a 

protective function [65]. Nevertheless, a recent study 

has faced these previous results, suggesting that some 

AD-associated mutations in APP may indeed enable a 

conditional β-cleavage activity in BACE2, increasing 

the generation of C99/Aβ progressively in time [65]. 

Thus, the contribution of BACE2 to the AD 

pathogenesis might be dependent on the genetic 
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background of patients. Furthermore, genes located on 

Chr21 that participate in neuroinflammation also play 

an essential role in both pathologies. For instance, 

complement proteins associated with innate immunity 

have been observed in association with Aβ plaques and 

dystrophic neurites in both AD and DS brains [59]. 

Accordingly, individuals with DS have a higher 

incidence of autoimmune diseases and infections and 

show brain overregulation of pro-inflammatory 

markers, including interleukin 1 (IL-1β) [7]. 

 

 
 

Figure 2. Molecular cross-talking between Down syndrome (DS) and Alzheimer's disease (DA). Overexpression of some genes 
located on chromosome 21 have been linked to the development of neuropathological characteristics of AD in DS some individuals, including 
the APP gene, which encodes the amyloid precursor protein, and the EST2 gene that encodes a transcription factor that promotes the 
expression of APP, giving rise to the Aβ toxic peptides, which form the amyloid plaques. Also, the overexpression of RCAN1 and its activity as 
an inhibitor of the phosphatase Calcineurin contributes to the hyperphosphorylation of tau driven by some kinases, among them, the kinase 
encoded by the DIRK1A gene giving originating to the neurofibrillary tangles. SOD1 leads to an increase in ROS levels and oxidative stress due 
to an imbalance in the ratio of  SOD1 and other antioxidant enzymes, resulting in a final accumulation of H2O2, that contributes to 
mitochondrial dysfunction, producing a higher quantity of ROS, characteristic of both pathologies. However, a protective role of SOD1 in 
DS/AD was also proposed due to an indirect reduction in Aβ cytotoxicity (please, see details in the main text); the RCAN1 gene has been 
linked to the increase in mitochondrial fusion, triggering an elongated mitochondrial network, which in turn increases ROS production. The 
gene encoding the phosphoinositide phosphatase synaptojanin 1 (SYNJ1), a key regulator of the signaling phospholipid phosphatidylinositol-
4,5-biphosphate, has been linked to the endosomal dysfunction in DS and AD. Besides, APP processing takes place in the 
endosome/lysosome system as well. The Cystatin B (CSTB) gene functions as an endogenous lysosomal protease inhibitor, and it is found to 
inhibit the functions of cathepsins, contributing to dysfunction in lysosomal proteolysis. The astrocyte-derived cytokine S100B has been 
associated with the activation of glial cells, following by an increase in IL-1β in the nervous system, influencing the neuropathology of AD and 
DS. 
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Neurofibrillary tangles  

 

DS people aged 30–40 show early pathological changes 

of tau in the outer layer of the hippocampus and, 

subsequently, NFTs are observed in this structure, 

together with neural loss in the entorhinal cortex [45]. 

The NFTs follow a similar pattern of distribution in DS 

and AD, beginning in the entorhinal cortex and extending 

towards the hippocampus. However, a higher density of 

NFTs has been observed in DS brains, compared with 

AD brains, but a more significant number of studies are 

needed to confirm these observations [45]. 

 

Increased Dual Specificity Tyrosine Phosphorylation 

Regulated Kinase 1A (DYRK1A) gene dosage due to 

Chr21 trisomy may also contribute to the early onset of 

neurofibrillary degeneration in DS (Figure 2), through 

the phosphorylation of alternative splicing factors, that 

alters the relative abundance of tau protein with three or 

four microtubule-binding domains [66]. Recent in vivo 

studies performed in animal models overexpressing this 

gene have demonstrated that DYRK1A plays a critical 

role in several neurodegenerative processes found in 

DS, including age-dependent cognitive decline, 

cholinergic neuron degeneration, augmented levels of 

APP and Aβ, and tau tangles [67]. Accordingly, when 

the Dyrk1a gene dosage is normalized by crossbreeding 

of a DS mouse model strain (Ts65Dn) with a 

DYRK1A-KO mouse, the density of the senescent cells 

in the cortex, hippocampus, and septum is decreased 

[67]. Moreover, the degeneration of cholinergic neurons 

is prevented and the expression of APP in the 

hippocampus, the load of Aβ in the cortex and the 

hippocampus, and the expression of phosphorylated tau 

in the hippocampus and cerebellum are reduced [66]. In 

the same line, other recent evidence has shown that 

pharmacological inhibition of DYRK1A is sufficient to 

decrease the Aβ load and insoluble tau accumulation in 

a mouse model of AD [68].  

 

In parallel, the overexpression of another gene located 

in Chr21, the regulator of Calcineurin 1gene (RCAN1), 

also called the DS critical region gene 1 (DSCR1) 

(Figure 2), is also implicated in DS tau pathology via 

stimulation of the GSK-3β (kinase involved in tau 

hyperphosphorylation) and the inhibition of 

Calcineurin. Moreover, Hoeffer et al. also demonstrated 

that RCAN1 plays a role in memory and synaptic 

plasticity by examining the behavioral and 

electrophysiological properties of Rcan1 knockout mice 

tissues. These mice exhibit impairments in spatial 

memory and learning, reduced associative cued 

memory, and impaired late-phase long-term potentiation 

phenotypes, similar to those seen in transgenic mice 

with increased Calcineurin activity. These findings 

suggest that RCAN1 regulates long-term potentiation 

and memory by inhibiting Calcineurin phosphatase 

signaling [69]. Additionally, Hoeffer et al. showed a 

role of RCAN1 in the regulation of innate anxiety. 

Rcan1 knockout mice displayed reduced anxiety in 

several tests of unconditioned anxiety. Acute 

pharmacological inhibition of Calcineurin rescued these 

deficits, while transgenic overexpression of human 

RCAN1 increased anxiety. These results identify 

RCAN1 as a mediator of innate emotional states and a 

possible therapeutic target for anxiety, considering that 

anxiety is a shared feature between people afflicted by 

DS and AD [70]. 

 

Finally, several reports have indicated that the 

progression of tau pathology in DS occurs subsequently 

from the early-life accumulation of intracellular APP 

metabolites, but on a more rapid timeframe than in AD, 

possibly due to excessive tau phosphorylation by 

DYRK1A and RCAN1-gain of function [71]. 

 

Oxidative stress 

 

Another factor associated with the origin of some 

pathologies related to DS is altered mitochondrial 

activity, followed by a failure in the detection and 

implementation of quality control processes. 

Impairments in mitochondria quality control result in 

increased reactive oxygen species (ROS) production 

that triggers oxidative stress and inflammation, and the 

release of pro-apoptotic factors. Oxidative damage is 

consistently observed in DS, beginning at a young age 

and becoming exacerbated with aging and AD 

progression [41]. Oxidative stress is generated by the 

imbalance between the formation and elimination of 

ROS. 

 

In DS patients, the overproduction of ROS is not 

normally compensated by the physiological neutralizing 

mechanisms (antioxidants). This fact can be explained 

by the overexpression of genes from Chr21 involved in 

the production of these radicals, and the reduction of 

antioxidant agents. An example of this is the superoxide 

dismutase enzyme (SOD1), which plays an essential 

role in the first antioxidant defense line against ROS. 

SOD1 catalyzes the dismutation of superoxide to 

molecular oxygen (O2) and H2O2, which can be 

converted back to water by catalase (CAT) and 

glutathione peroxidase (GPX). Therefore, SOD1 

overexpression by trisomy 21 leads to an imbalance in 

the ratio of SOD1, CAT, and GPX, resulting in the 

accumulation of H2O2, which is a substrate for other 

forms of ROS (Figure 2) [72]. However, the role of 

SOD1 appears to be not so straight forward. For 

instance, in young adult DS individuals, and just before 

the onset of dementia, researchers have found low 

levels of antioxidant enzymes SOD1/GPX activities, 
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which were correlated with the deterioration of 

cognitive ability [73]. Moreover, in another work, 

researchers followed the same patients for four years 

and found that lower SOD1 activity was predictive of a 

decrease in memory performance over time [74]. 

Besides, in a study that sought to demonstrate the effect 

of the host genotype on phenotypes induced by APP 

overexpression using different lines of transgenic mice 

(C3H/HeJ and B6), it was shown that overexpression of 

the SOD1 gene conferred protection against APP-

induced premature death [75]. The explanation for this 

observation is that the neurotoxic effects of Aβ peptides 

are guided by peroxides, suggesting that at least one 

route that explains Aβ cytotoxicity is the production of 

free radicals, causing an increase in the levels of H2O2 

and lipid peroxides in the cell membrane [76]. This link 

between oxidative damage, neurodegeneration and the 

protective effect of SOD1 overexpression in AD 

pathology was also proposed in an investigation by 

Murakami et al. [77]. In this study, SOD1 deficiency in 

a transgenic mouse model that overexpresses the APP 

gene (Tg2576) generated an increase in Aβ 

oligomerization and memory impairment [77]. Thus, the 

relevance of SOD1 on the AD development in DS and 

non-DS individuals should be evaluated more 

concerning its activity than its expression. 

 

Mitochondria, despite being the primary source of 

cellular energy and the central organelle controlling 

cellular homeostasis, also represent the primary 

production source of superoxides as a byproduct of the 

oxidative phosphorylation process. These ROS can 

cause oxidative modifications in mitochondrial proteins, 

lipids, and mitochondrial DNA (mtDNA), increasing 

mitochondrial dysfunction and triggering the production 

of more ROS by damaged mitochondria, thus exceeding 

the capacity of the different cellular antioxidant systems 

and causing cell death [78]. Several studies have 

demonstrated that exogenous H2O2 induces the 

expression of APP and Aβ aggregation, which is 

associated with the production of ROS [79–81]. ROS 

also induce calcium-dependent excitotoxicity and can 

trigger impaired cellular respiration, together with 

alterations of the synaptic functions associated with 

learning and memory [80]. Cells from patients with DS 

have shown severe alterations in different mitochondrial 

proteins [82, 83]. These observations have strengthened 

the idea that throughout the life of a DS subject, their 

cells are under a permanent oxidative stress hazard [83]. 

For instance, cortical neurons of DS patients exhibit a 

high production of intracellular ROS, resulting in the 

peroxidation of cell membrane lipids, thus com-

promising neuronal survival [84]. 

 

Moreover, another study has also reported 

mitochondrial dysfunction in DS fibroblasts and 

mtDNA mutations in brain tissues from DS patients 

[85]. The specific process of damaged mitochondria 

clearance is called mitophagy, a selective type of 

macroautophagy (please, see below). In a recent work 

from our group, we showed that RCAN1 helps maintain 

a more fused mitochondrial network by inhibiting the 

mitochondrial fission process in trisomic iPSC (a 

human cellular model of DS) from DS patients [86]. 

RCAN1 inhibits Calcineurin, which dephosphorylates 

and activates DRP1 (a mitochondrial fission protein), 

allowing its translocation to the mitochondria to 

promote mitochondrial fission. In the presence of 

increased RCAN1 levels, as in cells from DS 

individuals, fission of the mitochondrial network 

decreases, and oxygen consumption is increased, which 

is consistent with previous studies reporting an increase 

in oxidative stress in DS cells [85]. Therefore, the 

increased ROS levels observed in cells of patients with 

DS could be explained by an increase in the dosage of 

RCAN1. Although fusion and a more continuous 

mitochondrial morphology have been linked to an 

increase in O2 consumption and higher ATP production, 

it is important to mention that a sustained mitochondrial 

fusion could increase the production of ROS and, more 

importantly, could also increase mitochondrial 

membrane potential, thus affecting mitochondrial 

elimination through mitophagy [86]. 

 

Loss of proteostasis: the failure in protein clearance 

 

Similar to other neurodegenerative diseases, such as 

Parkinson’s and Huntington's diseases, the accumulation 

of dysfunctional organelles and misfolded proteins is a 

feature of AD histopathological studies. In general, the 

accumulation of cytosolic components is a consequence 

of deficiencies in intracellular degradation systems, 

resulting in the loss of proteostasis. Autophagy (or self-

eating) is one of the essential quality control pathways for 

the clearance of cytosolic components through their 

delivery to the lysosome. Three kinds of autophagy 

processes have been described in mammals that differ in 

the way the substrate reaches the lysosome: the 

chaperone-mediated autophagy (CMA), the micro-

autophagy, and the macroautophagy [87]. CMA and 

microautophagy can degrade soluble cargos, selectively 

destined to the lysosome or late endosome, respectively. 

The macroautophagy (hereafter referred to as autophagy), 

however, is the crucial process responsible for the 

clearance of insoluble substrates, including organelles, 

protein aggregates, and pathogens [88]. Through the 

formation of de novo double-membrane vesicles, called 

autophagosomes, the autophagy pathway isolates the 

cargo to posteriorly deliver it to the lysosome via vesicle 

fusion processes, forming the autolysosomes [89]. In AD 

brains, a remarkable increase in autolysosomes is 

observed in postmortem brain tissues, displaying partially 
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degraded cargos, including mitochondria [90, 91]. In AD 

brains, it has already been shown that the last step of 

autophagy is impaired, including lysosome activity. 

Indeed, mutations in PS1 associated with EOAD have 

been linked to an increase in lysosomal pH by a deficient 

transport of the vacuolar-type H+-ATPase complex 

(vATPase) to the lysosome membrane, resulting in 

decreased lysosomal activity [92]. Several studies 

regarding genetic risks for LOAD have found 

autophagy/lysosomal deficiencies related to AD 

susceptibility [93]. A recent study using primary human 

DS fibroblasts reported an early dysfunction in the 

lysosomal degradative capacity that was dependent on 

the additional copy of the APP gene and, more 

specifically, on the APP carboxyl fragment terminal 

(C99) [94]. Researchers found that a moderate increase in 

C99 levels was sufficient to impair lysosomal function in 

DS due to an increase in the luminal organelle pH. 

Remarkable, this effect was molecularly mediated by a 

direct physical interaction between C99 with the cytosol-

exposed domain of vATPase, which was reverted by 

specifically lowering C99 levels or adding acidic 

nanoparticles [94]. Given that C99 levels are also 

increased in AD patients even without APP mutations as 

mentioned above, these findings contribute to 

understanding early processes underlying lysosome 

deficits in both diseases. 

 

In subjects with DS and AD, high levels of the 

mammalian target of rapamycin (mTOR) activation, a 

central inhibitor of the autophagy machinery, 

contributes to Aβ generation and the formation of NFTs 

[95–97]. mTOR activation results in a direct decrease in 

the functionality of the autophagy/lysosome system and, 

therefore, impairs the Aβ and NFTs clearance. 

Moreover, a very recent investigation by Bordi and co-

authors reported that primary human fibroblasts derived 

from individuals with DS are mitophagy-deficient, thus 

leading to the accumulation of damaged mitochondria 

with a consequent increase in oxidative stress. This 

finding was associated with two molecular pathway 

features: i) the deficiency in the activation of the 

mitophagy pathway dependent upon PINK1/PARKIN 
and; ii) the suppression of autophagy, due to mTOR 

hyperactivation [98]. 

 

Endolysosomal dysfunction causes alteration of many 

cellular processes that are essential for neuronal 

functioning, including protein renewal at synapses, local 

signaling and also has subsequent effects on the 

cytoskeleton, protein synthesis, and retrograde 

signaling. Overexpression of APP is also linked to 

endocytic changes, events observed in both AD and DS. 

Endocytosis is critical for the transmission and transport 

of neurotrophic factors in neuron axons, both in 

retrograde and anterograde directions. The APP protein 

is processed by the β- and γ-secretases in the cell 

membrane and endosomes, which are markedly 

enlarged in the brains of people at the early stages of 

AD [99]. In patients with DS, a significant increase in 

the size of endosomes is also observed at the fetal stage 

(28 weeks of gestation), long before the development of 

AD. This data suggests an early failure in endosomal 

trafficking and/or recycling in DS patients, paralleling 

early events observed in AD [100]. 

 

Another gene located on Chr 21 and associated with 

endosomal dysfunction is the synaptojanin 1 (SYNJ1) 

gene (Figure 2). SYNJ1 is a polyphosphoinositide 

phosphatase that dephosphorylates phosphatidylinositol-

4,5-bisphosphate, which regulates membrane trans-

duction and membrane trafficking in the endocytic 

pathway at synapses [101]. The SYNJ1 protein is highly 

enriched in the brain. Specifically, it is located at nerve 

terminals and associated with synaptic vesicles, coating 

endocytic intermediates [102]. Synj1 mutant mice die 

early after birth, exhibit accumulation of clathrin-coated 

vesicles at nerve terminals, and increased synaptic 

depression in the hippocampus [103].  

 

Moreover, the overexpression of the previously 

mentioned RCAN1 gene has also been associated with 

failures in exocytic events, which contributes to the 

synaptic dysfunction observed in individuals with DS 

[103]. Using an in vitro model of DS (neuronal cell line 

derived from the mouse cerebral cortex), the work 

carried out by Vasquez Navarrete et al. demonstrated 

the contribution of the overexpression of RCAN1 in the 

decrease of the number of exocytic events induced by 

Ca2+ in trisomic cells [104]. 

 

Overall, extensive accumulation of ubiquitinated 

proteins has also been observed in DS brain tissues [93], 

further suggesting systemic defects in protein quality 

control and clearance failure by both the proteasomal 

and lysosomal systems [105]. For instance, previous 

studies on neuronal cell culture showed that RCAN1 

overexpression leads to mitochondrial degeneration and 

lower cellular levels of ATP, which, in turn, resulted in 

a temporary mTOR inhibition [106]. Nevertheless, 

mTOR basal activity was recovered after 24 h [106].  In 

DS and AD individuals, however, the chronic over-

expression of RCAN1 during a lifetime would trigger 

cellular deleterious results, as mentioned before, 

regarding synaptic dysfunctions, increased oxidative 

stress and NFTs generation. In the case of AD in DS 

individuals, more detailed studies are required to 

address the relationship between RCAN1 and mTOR 

activity during the neurodegeneration process [95, 106]. 

 

Finally, the Cystatin B (CSTB) gene, also present in 

Chr21 (Figure 2), functions as an endogenous lysosomal 
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protease inhibitor that inhibits the function of cathepsins 

(enzymes that degrade proteins), contributing to the 

dysfunction in lysosomal proteolysis. In a study carried 

out by Yang et al., researchers demonstrated that the 

deletion of CSTB in a transgenic mouse model of AD 

that overexpresses APP was enough to improve the 

learning/memory function in APP transgenic mice, 

resulting in reduced Aβ pathology [107]. Furthermore, 

in a posterior study, these researchers found that the 

deletion of CSTB in the AD mouse model (TgCRND8) 

gave rise to a reduction not only of lysosomal proteins, 

but also of lysosomal lipids [108], like the gangliosides, 

which also contribute to neurodegeneration in AD 

[109]. Although this gene was suggested to not be 

necessary for the DS phenotypes in a mouse model 

[110], few studies have explored the role of this gene in 

the AD-linked symptoms observed in DS humans.  

 

Apolipoprotein E (APOEε4) in DS 

 

The APOEε4 gene is located on chromosome 19 and is 

the most substantial genetic risk factor for sporadic AD 

or LOAD [100]. Studies have indicated that the 

inheritance of the APOEε4 allele promotes the earlier 

appearance of endosomal enlargement at the preclinical 

stages of AD. Notably, APOEε4 is a significant factor 

modulating the severity of the AD phenotype in DS. 

Several studies have shown that DS patients who carry 

APOEε4 exhibit increased risk of AD, earlier dementia 

onset, and a more significant amyloid load. Considering 

the shared genetic characteristics between DS and AD, 

researchers have speculated that the APOE4 allele 

accelerates endosomal pathology in both conditions 

during the early development of AD [111]. 

 

Neuroinflammation 

 

Neuroinflammation refers to an inflammatory process 

taking place in the nervous system. It can be triggered 

by persistent systemic inflammation through the 

delivery of cytokines and other soluble molecules from 

peripheral immune cells, such as mast cells; or directly, 

by the engagement of nervous system glial cells, 

especially microglia. Neuroinflammation participates in 

the pathogenesis of several neurodegenerative diseases, 

including AD (reviewed in [111–113]), challenging the 

view of AD as a neurocentric disease. 

 

Overexpression of the astrocyte-derived cytokine S100B 

(calcium-binding protein B, encoded by a gene in Chr21) 

and the neuroinflammatory cytokine IL-1β have been 

identified as early events in DS [114] (Figure 2). Barger 

and Harmon provided the first evidence of a link 

between neuronal stress, APP expression, and neuro-

inflammation, showing that an elevated release of the α-

secretase cleaved fragment, sAPPα (from the non-

amyloidogenic pathway), activates microglia and induces 

the expression of IL-1β, a pro-inflammatory cytokine 

[115]. According to these results, the search for a 

relationship between the overexpression of APP, S100B, 

and IL-1β resulted in experiments showing that the 

activation of glia and the resultant increase of IL-1β and 

S100B in the nervous system influences the 

neuropathogenesis of both AD and DS. This may be 

relevant, as the dramatic overexpression of APP observed 

in DS might promote self-propagating cycles of neuro-

inflammatory cytokines (IL-1β and S100B), an 

overproduction which in turn, increases APP expression 

[114]. Interestingly, a study evaluating histopathological 

differences between brain samples from AD-patients and 

“mismatched” patients (who had no AD symptoms, but 

whose brains presented Aβ accumulation) showed vast 

microglial activation in AD, compared to the mismatched 

samples [116]. Overall, these data suggest a key role for 

neuroinflammation in AD development. 

 

Non-coding RNAs and their roles in 

Alzheimer’s disease and Down syndrome 
 

ncRNAs comprise the most representative 

transcriptional units of the mammalian genome. 

Thousands of ncRNAs families have been described, 

exerting fundamental roles in key molecular 

mechanisms in organisms from different domains of 

life [116]. Two of the most studied classes of ncRNAs 

are the miRNAs and the lncRNAs. miRNAs are part of 

the large group of small RNAs, which comprise RNA 

families with 21–25 nucleotides in size [117]. They act 

as post-transcriptional regulators, leading to 

degradation or avoiding the translation of messenger 

RNAs (mRNAs). In contrast, lncRNAs are non-coding 

transcripts with more than 200 nucleotides in length. 

Recent research estimates that there are more than 

170,000 lncRNAs throughout the human genome. 

These normally originate from intergenic regions or 

with some level of overlapping with coding genes. 

Despite the existence of a large number of lncRNAs in 

the eukaryotic genome, the mechanism of action of 

only a small fraction of them is known. Moreover, 

both miRNAs and lncRNAs are known to be 

associated with different human diseases, including 

cancer, cardiovascular conditions, neurological 

disorders [117], DS [118–120] and AD [121–124]. 

 

MicroRNAs associated with Alzheimer’s disease and 

Down Syndrome 

 

Thirty miRNAs are transcribed from Chr21 and, 

therefore, could be potentially overexpressed in DS. 

Different miRNAs are significantly upregulated in both 

AD and DS brains, which are known to downregulate the 

expression of regulatory and anti-inflammatory genes in 
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both diseases [118]. In 2015, Zhao and colleagues 

reported the overexpression of miRNA-155 in the 

postmortem brain tissue of patients with AD, with a 

potential role in sporadic AD [125]. One of the targets of 

miR-155 is complement factor H mRNA (CFH), a 

soluble innate-immune regulatory glycoprotein in AD 

and DS tissues and in primary brain experimental models 

of AD, which are also centrally involved in pathogenic 

signaling pathways that include inflammatory neuro-

degeneration [126]. More recently, Arena and co-authors 

described that miR-146a and miR-155 are key regulators 

of the innate immune response [127]. They reported 

higher levels of miR-146a expression in astroglial cells 

within the hippocampal white matter of DS, compared 

with normal fetuses, and identified that this elevated 

expression persisted postnatally. This may be a key 

finding, as the expression level of miR-146a has been 

suggested as an important determinant for neuronal 

development [115]. In addition, this work revealed the 

deregulation of these two immunomodulatory miRNAs 

in an AD mouse model (APP/PS1) and a DS mouse 

model (Ts65Dn) [128]. 

 

Following the overexpression of miR-155 and miR-802 

in trisomic iPS-derived neuronal progenitor cells (iPS-

NPCs), methyl-CpG binding protein 2 (MeCP2) is 

degraded. Additionally, trisomic iPS-NPCs exhibited 

developmental defects and generated fewer neurons 

than controls. Decreased MeCP2 expression may also 

contribute to the neurochemical abnormalities observed 

in the brains of DS individuals [129]. 

 

A computational analysis of the potential miRNAs 

interacting with synapsin II mRNA, which encodes a 

neuron-specific neurotransmitter phosphoprotein and is 

significantly downregulated in AD, showed that it 

contains 14 potential binding sites for different miRNAs 

in its 3′UTR mRNA. In addition, synapsin II mRNA has 

been identified as a target for miR-125b. Small 

increases in miR-125b expression in AD may have a 

bearing on synaptic protein deficits, as observed in the 

AD affected the brain [130] (Figure 3).  

 

LncRNAs associated with Alzheimer’s disease and 

Down Syndrome 

 

Even though there is no direct evidence linking 

lncRNAs to both DS and AD, the presence of more than 

1,000 lncRNAs in Chr21, their mechanisms of action, 

and tissue specificity with higher levels of expression in 

neuronal tissues may suggest a potential crosstalk 

between lncRNAs in both diseases. For instance, the 

expression level of Down Syndrome Critical Region 9 

(DSCR9) lncRNA, which is transcribed from Chr21, 

presented a specific tissue expression, and was abundant 

in the heart and brain, with higher abundance in the 

hippocampus and amygdala. DSCR9 was highly 

correlated with genes that were known as important 

factors in the development and functions of the nervous 

system, suggesting that DSCR9 can regulate proteins 

related to DS and other neurological diseases [120] 

(Figure 3). 
 

To date, some of the lncRNAs associated with AD are 

BACE1-Antisense Strand (BACE-AS) transcribed from 

the Antisense Strand of the BACE1 gene. BACE1-AS is 

capable of overexpressing the BACE1 mRNA that 

encodes the protein responsible for the proteolysis of 

the APP protein [126, 130]. The ncRNA Brain 

Cytoplasmic RNA 1 (BCYRN1), which modulates the 

protein synthesis in dendrites, presented higher levels in 

AD compared to healthy controls, and it was associated 

with synaptodendritic deterioration [126]. In a study 

that sought the identification of lncRNAs associated 

with AD disease using microarray data based on 

postmortem tissue samples from patients with AD and 

elderly controls, 24 lncRNAs were found to be 

upregulated and 84 were downregulated in AD patients, 

compared to healthy controls. Gene set enrichment 

analysis (GSEA) revealed that the downregulated 

n341006 lncRNA was associated with the protein 

ubiquitination pathway, and the significantly 

upregulated n336934 lncRNA showed to be linked to 

cholesterol homeostasis, a pathway that has been shown 

to be dysregulated in AD disease [124]. 
 

Finally, a recent study analyzed the RNA expression 

profile from disomic and trisomic iPSCs [119]. The 

results showed a significant disturbance in the 

expression of lncRNAs, compared to protein-coding 

genes in trisomic iPSC. Moreover, differentially 

expressed lncRNAs associated with different 

mitochondrial functions (e.g., mitochondrial organiza-

tion, electron transport, ATP synthesis, and mito-

chondrial membrane organization), and most genes 

related to mitochondria were repressed in trisomic 

iPSCs, revealing that alterations of lncRNA expression 

could be related to the mitochondrial dysfunction 

observed in DS patients [119]. 
 

Epigenetic mechanisms in Alzheimer’s disease 

and Down syndrome 
 

In addition to the pathological characteristics linked to 

DS and AD mentioned above, different epigenetic 

modifications that participate in neurological defects 

have been identified, mediating brain development and 

synaptic plasticity [128], further increasing the 

complexity associated with both pathologies. These 

epigenetic mechanisms include DNA methylation, 

chromatin remodeling, nuclear reorganization, but also 

specific and direct modifications in RNA transcripts, 
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which may influence the final functional roles of 

different coding and ncRNAs (Figure 3). 

 

DNA epigenetics 

 

Previous studies have reported that the complete genome 

has differentially methylated regions, which have been 

associated with the repression of gene expression, and 

that are enriched in Chr21 of patients with DS [130, 132]. 

These results affirm that the presence of an extra 

chromosome can alter the methylation pattern of the 

complete genome. At this point, it is convenient to 

remember that each chromosome occupies a specific 

place in the nucleus of each cell, and in the case of those 

cells that have an extra chromosome, the organization of 

chromatin can vary, thereby altering the expression of the 

entire genome. 

 

Interestingly, an early onset of epigenetic changes 

linked to AD and DS pathologies has been suggested. In 

the work of Mendioroz et al., the authors evaluated 

DNA methylation in the brains of DS fetuses, as well as 

in the cerebral and cerebellar cortex of adults with DS, 

and found that some genes that were differentially 

 

 
 

Figure 3. Gene expression regulation and examples of non-coding RNA in Down syndrome (DS) and Alzheimer's disease 
(AD). Gene regulation occurs through the genome, epigenome, and epitranscriptome. Beyond the DNA sequence, chromosomes are 

regulated by their locations or territories in the nucleus. The presence of an extra chromosome can alter the chromatin structure, ultimately 
affecting the transcription of the entire genome. At the epigenetic level, gene expression is regulated by reversible modifications of histones 
within nucleosomes that include methylation, acetylation, phosphorylation, ubiquitination, and sumoylation. Chemical modifications in RNA 
regulate the fate of transcription through a network of methyltransferases (writers), demethylases (drafts) and specific RNA reading proteins. 
The regulation of expression by ncRNAs can be affected at different levels. In red letters, the miRNAs and lncRNA encoded in Chr21 linked to 
DS and AD (miRNA-125b-a, miRNA-155, miR-99a, let-7c, and miRNA-802) and lncRNA (DSCR9) are highlighted. 
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methylated in fetal brains, kept the same pattern in adult 

brain cells [131]. This data, along with some other 

investigations, has been an essential pillar for the future 

implementation of methylation pattern studies in the 

prenatal diagnosis of DS, allowing the use of non-

invasive techniques with blood samples from the 

mother [132, 133]. 

 

Advances have been made in the development of novel 

drugs targeting DNA modifying enzymes, called 

epidrugs. Some of these drugs have been successfully 

tested in AD rodent models, preventing synaptic 

plasticity disruption and reversing cognitive impairment. 

This kind of therapeutic intervention emerges as a 

powerful potential for AD treatment [134, 135]. 

 

RNA epigenetics 

 

RNAs have long been known to contain specific 

modifications that alter the canonical nucleosides 

adenosine, cytidine, guanosine, and uridine. More than 

170 post-transcriptionally modified nucleosides have 

been reported in RNA [136]. These post-transcriptional 

modifications can profoundly influence the structure, 

stability and base-pairing properties of RNA, and are 

increasingly recognized as a mechanism for regulating 

RNA localization, splicing, longevity, interaction with 

other molecules and RNA base-pairing features [136]. 

Evidence also indicates that RNA modifications could 

act as important regulators of synaptic plasticity, 

memory, and learning [137]. Recent interest has shifted 

researches to identify modifications in mRNAs, 

miRNAs, and lncRNAs, driven by advances in next-

generation sequencing. These modifications can be 

achieved by more than 360 different proteins, of which 

almost 80 of them work as RNA-modifying enzymes 

(RMEs) in mammals. RMEs comprise three main 

classes of proteins: "writers," that catalyze reactions; 

"readers," that recognize the modifications; and 

"erasers" that remove them [137]. 

 

CONCLUDING REMARKS 
 

Despite the advances towards the understanding of AD 

pathophysiology, the prevalence of this disorder is 

increasing enormously worldwide. Currently, no accurate 

methods of diagnosis, biomarkers, or treatments are 

available. The current therapeutic approaches that 

showed positive results in the pre-clinical phase have 

been disappointing in human clinical trials. They include 

anticholinergic drugs, antioxidant products, and the last 

line of biopharmaceutical drugs, monoclonal antibodies 

against aggregated forms of Aβ. In this regard, it is worth 

to mention the recent discussion about the human 

antibody Aducanumab, developed by Biogen Inc. This 

antibody targets aggregated forms of Aβ, in the hope of 

reducing its accumulation [138]. After a positive result in 

preclinical and phase I clinical trials [137], a large phase 

III trial (communicated in 2019) failed in reducing the 

cognitive decline in AD patients [139]. Unexpectedly, 

Biogen announced recently that it will restart the FDA 

approval process for Aducanumab, indicating that a new 

analysis of the previous data set showed that the drug 

reduced the clinical deterioration in early AD patients 

when it was administered in higher doses [139]. Despite 

the encouraging statement, a detailed discussion in the 

scientific and medical field will be necessary when the 

company finally publishes the complete data [140]. 

However, and despite this recent achievement, alternative 

therapeutic targets are required in order to be able to 

benefit a significant number of individuals from the 

called “grey tsunami” [141], including the DS subjects. 

DS is the leading genetic risk factor for EOAD 

development. Thus, an in-depth review of the available 

information and a thorough analysis of non-conventional 

genetic data from DS subjects is expected to shed some 

light on future therapeutic approaches for all cases  

of AD. 

 

As mentioned earlier, mitochondria have an essential 

role in cellular homeostasis. Therefore, mitochondrial 

dysfunction and excessive ROS production can be 

considered as a convergent mechanism in the neuronal 

dysfunction associated with DS and AD. Taking this 

into account, different strategies could be combined to 

prevent the damage caused by ROS and modulate 

energetic metabolism, thus avoiding some 

manifestations of both pathologies [142]. Moreover, the 

fact that toxic Aβ peptides have been found in the 

mitochondrial matrix, where they interact with some 

mitochondrial enzymes, suggests that blocking this 

interaction could be used as a novel therapeutic strategy 

to avoid alterations in the Krebs cycle and energy 

production. Moreover, we also have recently shown that 

the RCAN1 protein (proven to be elevated in DS and 

AD), regulates the equilibrium between mitochondrial 

fission and fusion, increasing mitochondrial ROS 

production, as well [86], which is a characteristic 

feature for both conditions. Indeed, in a trisomic model 

of DS iPSCs, we demonstrated that a decrease of 

RCAN1 levels was sufficient to rescue mitochondrial 

morphology and oxygen consumption levels. In this 

regard, the use of human patient-derived iPSCs proved 

to be a useful tool for in vitro studies, maintaining the 

unique cellular characteristics that have started to be 

considered as important hallmarks of both conditions. 

 

On the other hand, increase in epigenomic research and 

next-generation sequencing has opened new therapeutic 

options for several diseases, including neurological and 

genetic disorders. Learning and memory, which are 

altered in most individuals with DS over 40 years of 
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age, can be modulated by epigenetic mechanisms [143]. 

Epigenetic markers are reversible, offering an enormous 

therapeutic potential to alleviate or cure specific genetic 

deficits. The use of drugs against epigenetic enzymes, 

or epidrugs, has now emerged as an alternative 

treatment or could synergistically act with classical 

pharmacology. More current epigenetic therapies have 

already been used for cancer and epilepsy [143], and 

could also provide new possibilities for the treatment of 

DS and AD to improve cognition. Additionally, DNA 

methylation provides a new diagnostic method for the 

detection of DS and novel therapeutic targets that could 

appear from the investigation of this topic [144].  

 

To date, different therapeutic strategies have been 

proposed to prevent or stop AD without success, 

increasing the need for new avenues in dementia 

research. Exploring the mechanisms concerning 

cognitive deficiencies in a disease model such as DS 

could shed some future light into the search for new 

therapeutic targets for such a devastating disease. In this 

aspect, in this review, we propose organelles and 

protein quality control mechanisms, as well as 

epigenomic research, as two of the most promising 

fields of study in future AD research. 

 

While protein dosage is an expected cause of AD 

pathology in DS, it is essential to consider the imbalance 

in non-coding DNA sequences, and small and lncRNAs 

present in the context of the trisomy. Although these 

species are not translated into proteins, they are potent 

epigenetic regulators of gene expression both in genes 

located on Chr21 (cis-regulation), and others located on 

other chromosomes (trans-regulation) [143]. Never-

theless, little is known about non-coding sequences 

located on Chr21, or in other chromosomes related to 

pathological aspects of DS. Accordingly, along with 

deepening the knowledge about the role of these nucleic 

acid structures in DS, novel biomarkers for early 

diagnosis of AD could be elucidated. These new 

biomarkers would benefit not only the diagnosis of AD 

pathology in individuals with DS but could also offer the 

possibility of tracking the progression of the disease in its 

initial stages and monitor the effectiveness of different 

treatments in the general population [8]. In the present 

review, we have highlighted the latest findings regarding 

the common molecular pathways between DS and AD, 

seeking to emphasize less studied aspects, such as 

mitochondrial function and epigenetic regulation. 
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