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ABSTRACT
The effects of the Dzyaloshinsky-Moriya interaction on finite size one-dimensional (1D) magnetic chains are investigated as a function of their
length. The magnetic configuration the system adopts for varying boundary conditions are explored analytically, which leads to the appearance
of chiral configurations that play a crucial role. The coercive and exchange bias fields show an unexpected chain length dependence, caused
by the boundary conditions and by chiral symmetry breaking, which in turn leads to the breakdown of scale-invariance. Our treatment yields
results in agreement with experimental evidence and ongoing research on phthalocyanine iron chains bonded to hydrogen.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5130190., s

As the size of a physical system reaches the nanometer scale the
magnetic ordering energy decreases until it becomes comparable to
thermal fluctuations, which destroy long-range correlations.1 Here
we examine sources of magnetic anisotropy induced by chiral sym-
metry breaking that quench fluctuations and which may stabilize low
dimensional magnetic order, which was given theoretical justifica-
tion2 and achieved by several experimental groups.3–6 Indeed, the
anomalous thermodynamic properties of quasi-one-dimensional
molecular magnets,7–9 field-induced FM ordering,10 and the heli-
cal spin structure of Lanthanide chains–11 have been attributed to
chiral magnetic states. In addition, Chen et al.12 observed chirality-
induced exchange-bias, which we obtain here theoretically. More-
over, Cinti et al.13,14 validated Villains conjecture,15 while Sessoli
et al.16 observed strong magneto-chiral dichroism in a paramagnetic
molecular helix.

In one-dimensional (1D) magnetic systems long-range ferro-
magnetic (FM) order can be achieved by the interaction between the
magnetic atoms and their supporting frames, such as substrates or
inert (non-magnetic) crystal lattices, in which the system is embed-
ded. These interactions create magnetic anisotropy barriers that, in

combination with slow magnetic relaxation, may stabilize magnetic
order.

While magnetic order in low dimensional systems has been a
long time goal, achieving it has proved to be no easy task. On the
one hand experiments are difficult to implement, and from a theo-
retical viewpoint the Mermin-Wagner theorem establishes a strong
limitation: that there can be no spontaneous magnetic long-range
order in one and two-dimensions at finite temperatures induced
exclusively by short range magnetic interactions. However, exper-
imentally success was achieved some time ago,17 with the obser-
vation that monatomic chains of Co on a Pt substrate exhibit
1D local ferromagnetism. A theoretical understanding of the phe-
nomenon was recently put forward,2 on the basis of the addition
to the exchange coupling of the Dzyaloshinsky-Moriya18–20 inter-
action, without any external magnetic anisotropy. It is relevant to
point out that the fabrication of 1D physical systems with magnetic
interactions are essential to address such relevant problems as quan-
tum criticality,21–24 -body problems,23,25–27 spin transport,28–31 and
new (topological) magnetic phases such as the ones predicted by
Haldane.32,33
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We explore symmetry breaking as a consequence of size reduc-
tion, and the emergence of chiral symmetry as a stabilizing agent.
The additional feature we include, and on which we focus our
interest, is the Dzyaloshinsky-Moriya interaction (DMI). In par-
ticular, chiral magnetism in low-dimensional systems is caused
by the spin-orbit interaction and inversion symmetry breaking,
which in turn leads to the DMI.34,35 As already shown1,2,36–38 the
superposition of short range direct exchange plus the DMI2 sta-
bilizes 1D and 2D magnetic order at low temperatures. In fact
thermal and quantum fluctuations, that prevent the onset of long
range order, compete against the spin correlations induced by
short-range interactions, quenching order. However, spontaneous
ordering arises once the short range DMI is incorporated. By reduc-
ing spin fluctuations the inclusion of the DMI generates a heli-
cal spin arrangement which turns out to be stable in one and two
dimensions.2

The microscopic origin of the DMI is based on super-exchange
theory including spin orbit coupling.18–20 There are two different
mechanisms that give rise to antisymmetric exchange between two
metallic ions: the spin-orbit coupling between localized unpaired d-
shell electrons in an inversion-asymmetric crystal field, and the indi-
rect interaction of two magnetic ions through a non-magnetic one.
Weak ferromagnetic order observed in the antiferromagnetic insu-
lating compounds α-Fe2O3 and CrF3 is attributed to the DMI,18–20 as
well as the low temperature phases of the perovskites39–41 La2CuO4
and YBa2Cu3O6.

A possible way to control chirality is by means of the boundary
conditions a 1D chain is subject to. In fact, if the ends of the chain
are subject to identical boundary conditions the magnetic symme-
try will either be translationally invariant or at most will display
some sort of helical order. However, if the chain ends are pinned
in different directions a whole new spectrum of possible magnetic
configurations becomes possible.

The energy of a FM spin chain, including the DMI, is given by

E0 = −∑
i,j
[J s⃗i ⋅ s⃗j + D⃗i,j ⋅ (⃗si × s⃗j)], (1)

where J is the exchange coupling between neighboring atoms, D⃗i,j
is the antisymmetric DM vector (Di ,j = −Dj ,i). The chain is ori-
ented along the z-direction, and its length is ℓ = Na, where N is the
total number of magnetic moments and a the lattice parameter. The
DMI, which is induced by localized electrons, is oriented perpen-
dicular to the z-axis. Locally, a parallel spin configuration is ener-
getically preferred by the ferromagnetic exchange interaction, while
a canted spin configuration is favored by this DMI. The competi-
tion between both interactions gives rise to two oppositely handed
helical spin structures, where the handedness depends of the sign of
DMI interaction. Using the DM vector as defined by Levy and Fert,42

we obtain D⃗i,j ∼ r⃗i × r⃗j, where r⃗i is the position of the i-th magnetic
ion. In the vicinity of the chain ends the DMI produces an effec-
tive boundary anisotropy because of symmetry breaking. Indeed, if
D⃗N−1,N ∼ r⃗N−1 × r⃗N ∼ D′x̂ then D⃗1,2 ∼ r⃗1 × r⃗2 ∼ −D′x̂. Therefore, at
the chain ends the DMIs point in opposite directions, which means
that the weak anisotropies are also aligned in opposite directions.
Further, the boundary condition produces a left- and right-handed
reverse mode. This chiral symmetry breaking creates two states with
opposite chirality. The competition between them generates a local

anisotropy in the chain center, which depends on the length of the
helical arraignment; hence, the magnetic reversal mode depends on
the chain length.

In addition, since the magnetic moments lie in the x, y plane, we
can specify the i-th magnetic spin as s⃗i = s[cos(qai + ϕi), c sin(qai +
ϕi)], where q⃗ is the spin wave-vector, and c is the chirality index c
= {1, −1}({right-handed, left-handed}), and ϕi the initial phase.
Using this parametrization Eq. (1) takes the form

E0 = −s2
∑
i,j
(J cos[(i − j)qa + Φi,j]

−cDi,j sin[(i − j)qa + Φi,j]), (2)

with Φi ,j = ϕi − ϕj. Notice that the sign of the DMI is not uniquely
determined. It is this feature the one that allows for an extra degree of
freedom, and opens the possibility for the magnetic moments at the
chain ends to align either parallel or forming a canting angle relative
to each other; analytically, Φ1,N = ϕN − ϕ1 can be equal to 0 (parallel)
or Φ1,N≠0 (canted configuration), where 1 and N label the two end
atoms of the linear chain.

We observe that the exchange interaction does not change with
chirality; however, it appears explicitly in the DMI, which demon-
strates that the DMI generates a chiral ground state.43–45 In the case
of a spin chain the DM vector can be written as Di ,i+1 = (−1)iD,
where the alternating sign (−1)i breaks the inversion symmetry with
respect to the center between two neighbor FM ions.18–20,38 This way,
using Eq. (1), we obtain

E0 = −2s2
∑
i
[J cos(qa + Φi) − (−1)icD sin(qa + Φi)]. (3)

If Φi = Φ for all i then ∑i(−1)i sin(qa + Φ) = 0, which means
that DMI effects can be neglected; thus, the local phase is inti-
mately related with the chirality. Indeed, boundary conditions play
a significant role in the quenching of the chiral symmetry. Let us
now include the fact that the end atoms of the chain are subject to
anisotropy, so that Eq. (1) takes the form

E = E0 + 2∑
i
K(êi ⋅ s⃗i), (4)

where êi is a unit vector in the x, y plane, and is differently oriented
at the chain ends, but êi = 0 otherwise.

We now provide results derived using the scheme outlined
above. We first study the dynamics of a 40 atom 1D FM chain
with free end boundary conditions, as illustrated in the top left of
Fig. 1, which gives rise to the hysteresis loop shown at its right.
The hysteresis loops are obtained by minimization of the Eq. 4, and
including a Zeeman interaction. The exchange bias field is defined
as HEB = (HR + HL)/2, and the coercive field as HC = (HR − HL)/2,
with HR(HL) is the right (left) coercive field along the axis. When
the chain end atoms are pinned parallel to each other, but form-
ing an angle with the rest of the ferromagnetically aligned magnetic
moments, as illustrated left middle of Fig. 1, exchange bias (HEB)
emerges as a consequence of the symmetry breaking imposed by the
pinning, as shown to its right. However, the reversal mode for the
above two cases corresponds to coherent rotation of the magnetic
moments. Finally, we examine what happens for the canted config-
uration, defined by Φ1,N≠0, where 1 and N label the two pinned end
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FIG. 1. Hysteresis loops for a 15 atom 1D chain and
boundary-dependent magnetic spin chain configurations. A)
Free end boundary conditions; C) end parallel spins pinned;
and E) end spins canted. The corresponding sketch of the
spin configurations are illustrated in B), D) and F), respec-
tively. The negative exchange bias is due to the boundary
anisotropy. The kink in the coercivity corresponds to the two
step reversal mode predicted by Villain.15

atoms of the linear chain. In this case the complex chiral magnetic
the structure bottom left of Fig. 1 results, accompanied as well by
exchange bias, as seen to its right. The kink in the coercivity corre-
sponds to the two step reversal mode predicted by Villain.15 Thus,
we notice that the various boundary conditions the chain ends are
subject to significantly modify the magnetic configuration and the
consequent exchange bias field HEB.

Due to long-range spin correlations the chiral magnetic order
ground state is characterized by a long-wavelength helical modu-
lation. When the size of the system is less than this wavelength
magnetic order is destroyed. We show that due to chiral symmetry
breaking as the size of the chain increases the coercive field and the
the exchange bias field reach saturation values, which implies scale
invariance breakdown.

Scale invariant quantities correspond to homogeneous func-
tions, satisfying the rescaling symmetry condition

H(λℓ) = ληH(ℓ). (5)

As shown in Fig. 2 the coercive field for free boundary condi-
tion chains decays as HC ∼ 1/ℓη, with η ∼ 4/5 and there is no HEB.
Thus, scale invariance is preserved, even though the DMI has been
included. The boundary condition effects on the exchange bias field
HEB and the coercive field HC are illustrated in Fig. 3.

It is apparent that, after the absolute value of the magnitude of
the exchange bias (HEB < 0) goes through a maximum, there is a
competition between the chiral configuration and the pinning at the
chain ends. In Fig. 3 we show the unexpected length dependence of

the exchange bias HEB and the coercive HE fields as a function of
chain length, for canted boundary conditions (a similar behavior is
displayed for parallel pinned boundary conditions). We notice that
after an initial increase the coercivity becomes length independent
for large chains (N →∞). The relevance of the chiral kink in Fig. 3
disappears as the chain becomes large enough. From numerical cal-
culation we obtain the HEB and HC profile, as shown in Fig. 3, which
are used to fit the length-dependence of this fields, and are given
by

HEB = −1 + αEBe−ℓ/ℓ0 , (6)

FIG. 2. Length-dependence of the coercive field. Decay of the coercive field for a
free boundary condition chain. In this case there is no exchange-bias field.
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FIG. 3. (Upper panel) Exchange bias (HEB) vs. chain length. (Lower panel) Coer-
cive field HC vs. chain length for the boundary conditions depicted in Fig. 1f. The
field strengths are normalized to their saturation values.

HC = 1 − αce−ℓ/ℓ0 , (7)

where ℓ0 ∼ 15a, αEB = 0.6, and αc = 3.4. Clearly the exponential factor
breaks the scale-invariance. This symmetry breaking is attributed to
the mismatch between the the chiral magnetic order wavelength ℓ0
and the chain length ℓ. When the wavelength of the chiral state is
larger than the system size in which is embedded, i.e. when ℓ → 0,
or when the length of the chain ℓ≫ ℓ0, then the effects of the DMI
vanish and scale-invariance is restored (see Eq. 7). For intermediate
sizes HEB and HC are related through

HEB − 1 =
αEB
αc
(1 −HC). (8)

The above equation shows a linear relation between the HEB
and HC fields, caused by the propagation of chiral spin waves that
originate on opposite ends of the chain. While the physical mech-
anism that gives rise to exchange bias is the interface exchange
interaction between two materials with different magnetic proper-
ties, the coercivity depends on global magnetic anisotropies, such
as magneto-crystalline or shape anisotropy. However, in our case
these fields are intimately related and both arise from the same
physical mechanism. Notice that there are no global sources of
magnetic anisotropy in our model, thus only short-range interac-
tions and symmetry breaking give rise to magnetic order. There-
fore, the chiral reversal mode asymmetry yields simultaneously
the nonzero HEB and HC fields. In addition, from Eq. 5 we also
obtain an expression for the ratio of the HR and HL coercive
fields

HR

2 −HL
=
αc − αEB
αc + αEB

, (9)

which means that when HEB = 0

HC =
2μ

1 + μ
, (10)

where μ = (αc − αEB)/(αc + αEB). This expression differs from
exponential decay for free boundary conditions.

In conclusion, we have put forward a model for magnetic
linear chains subject to a variety of boundary conditions, and
including the Dzyaloshinsky-Moriya interaction, in agreement with
experimental evidence for chiral magnetic states in 1D. The model
yields a length dependent coercivity which is in agreement with
numerical simulation. The experimental verification of our results
requires manipulation of small nanostructured, quasi 1D systems,
with controlled boundary conditions. Recently 1D phthalocyanine
iron (FePc) chains embedded into FePc/metal-free phthalocyanine
(H2Pc) superlattices have been fabricated using organic molecu-
lar beam epitaxy, and which allows for control of boundary con-
ditions and chain length. Low temperature magnetic characteriza-
tion reveals a length-dependence of the coercive field in SL arrays,
while the coercive field for free boundary conditions chain remains
almost constant.12,13,15,16,46 Our findings put forward a new strategy
to study magnetic properties of spin chains with chiral symmetry
breaking.
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