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Abstract
In the range �-majority query problem, we are given a sequence S[1… n] and a fixed 
threshold � ∈ (0, 1) , and are asked to preprocess S such that, given a query range 
[i… j] , we can efficiently report the symbols that occur more than �(j − i + 1) times 
in S[i… j] , which are called the range �-majorities. In this article we describe the 
first compressed dynamic data structure for range �-majority queries. It represents S 
in compressed space—nHk + o(n lg �) bits for any k = o(lg� n) , where � is the alpha-
bet size and Hk ≤ H0 ≤ lg � is the kth order empirical entropy of S—and answers 
queries in O

(

lg n

� lg lg n

)

 time while supporting insertions and deletions in S in O
(

lg n

�

)

 
amortized time. We then show how to modify our data structure to receive some 
� ≥ � at query time and report the range �-majorities in O

(

lg n

� lg lg n

)

 time, without 
increasing the asymptotic space or update-time bounds. The best previous dynamic 
solution has the same query and update times as ours, but it occupies O(n) words 
and cannot take advantage of being given a larger threshold � at query time. We also 
design the first dynamic data structure for range �-minority—i.e., find a non-�
-majority that occurs in a range—and obtain space and time bounds similar to those 
for �-majorities. We extend the structure to find �(1∕�) �-minorities at the same 
space and time cost. By giving up updates, we obtain static data structures with 
query time O((1∕�) lg lgw �) for both problems, on a RAM with word size 
w = �(lg n) bits, without increasing our space bound. Static alternatives reach time 
O(1∕�) , but they compress S only to zeroth order entropy ( H0 ) or they only handle 
small values of � , that is, lg(1∕�) = o(lg �).
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1 Introduction

An �-majority in a sequence S[1… n] is a character that occurs more than �n 
times in S, where the threshold � ∈ (0, 1) . Misra and Gries [25] proposed a two-
pass algorithm for finding all �-majorities that runs in O(1∕�) space and can be 
made to run in linear time [9]. In contrast, any algorithm that makes only a con-
stant number of passes over S needs nearly linear space even to estimate the fre-
quency of the mode well [2], where the mode of S is defined as its most frequent 
element. Thus, finding �-majorities is often considered a practical way to find 
frequent characters in large files and is important in data mining [9, 12, 23], for 
example.

For the range �-majority query problem, we are asked to preprocess S such 
that, given a query range [i… j] , we can efficiently report the �-majorities of 
S[i… j] , i.e., the symbols that occur more than �(j − i + 1) times in S[i… j] . 
Not surprisingly, this problem seems easier than the range mode query prob-
lem [7, 20], in which the query asks for the most frequent element in the query 
range. Karpinski and Nekrich  [24] first considered the range �-majority query 
problem and proposed a solution that uses O(n∕�) words to support queries in 
O((lg lg n)2∕�) time. Durocher et al. [10] presented the first solution that achieves 
optimal O(1∕�) query time, and their structure occupies O(n lg(1∕�)) words. 
Subsequent researchers have worked to make the space usage independent of 
�  [5, 8, 17] and even to achieve compression  [5, 17]. Among all these works, 
the most recent one is that of Belazzougui et al. [3, 5], who showed how to rep-
resent S using (1 + �)nH0 + o(n) bits for any constant 𝜖 > 0 to answer range �
-majority queries in O(1∕�) time, where H0 is the 0th order empirical entropy 
of S. When more compression is desired, they also showed how to represent S 
in nH0 + o(n)(H0 + 1) bits to support range �-majority in O(f (n)∕�) time, for any 
f (n) = �(1) . Their solutions work for variable � , that is, � is not known at con-
struction time; the value of � is given together with the range [i, j] in each query. 
We refer readers to their most recent paper [5] for a more thorough survey.

Another line of work is that of encodings, which return the positions of the 
�-majorities in S[i… j] without accessing S at all [28]. Existing encodings use 
O(n lg(1∕�)) bits (which is optimal), possibly less than the entropy of S. The best 
encoding to date [18] achieves the optimal time, O(1∕�) . They mention that one 
can combine such an encoding with a representation of S using nHk + o(n lg �) 
bits and offering constant access time [13] in order to have a competitive static 
solution, at least for large enough � : the O(n lg(1∕�)) bits of the encoding are 
o(n lg �) whenever lg(1∕�) = o(lg �) (e.g., if 1∕� = O(polylog �) ). A drawback of 
encodings is that they work only for fixed � ; to have variable � one can build them 
for all the powers of 2 until reaching 1∕� , which raises their space to O(n lg2(1∕�)) 
bits.

In the dynamic setting, we wish to maintain support for range �-majority que-
ries under the following update operations on S: i) ������(c, i) , which inserts 
symbol c between A[i − 1] and A[i], shifting the symbols in positions i through n 
to positions i + 1 through n + 1 , respectively; ii) ������(c, i) , which deletes A[i], 
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shifting the symbols in positions i + 1 through n to positions i through n − 1 , 
respectively. Elmasry  et al.  [11] considered this setting, and designed an O(n)-
word structure that can answer range �-majority queries in O( lg n

� lg lg n
) time, sup-

porting insertions and deletions in O( lg n
�
) amortized time. They obtained their 

results by reducing from another problem, where the data are colored points on 
the real line. Before their work, Karpinski and Nekrich [24] also considered the 
colored points problem. With the same reduction [11], the solutions by Karpinski 
and Nekrich can also be used to encode dynamic sequences, although the results 
are inferior to those of Elmasry et al. [11]. More precisely, their data structures, 
when combined with the reduction [11], can represent S in O(n∕�) words of 
space, answer queries in time O( lg

2 n

�
) , and support insertions and deletions in 

O(
lg2 n

�
) amortized time. Alternatively, they can increase the space cost to O( n lg n

�
) , 

while decreasing the query and update times to O( lg n
�
) worst-case and amortized 

time, respectively. All the previous work for the dynamic case requires � to be a 
fixed value given at construction time.

A closely related problem is the range �-minority query problem, in which we 
preprocess a sequence S such that, given a query range [i… j] , we can efficiently 
report one �-minority of S[i… j] , i.e., a symbol that occurs at least once but not 
more than �(j − i + 1) times in S[i… j] , if such a symbol exists, and otherwise 
return that there is no �-minority in the range. Chan et al. [8] studied this problem 
and designed an O(n)-word data structure that answers range �-minority queries in 
O(1∕�) time. Belazzougui et al. [3, 5] further designed succinct data structures for 
range �-minority. They again presented two tradeoffs: they either represent S using 
(1 + �)nH0 + o(n) bits for any constant 𝜖 > 0 to answer range �-minority queries in 
O(1∕�) time, or use nH0 + o(n)(H0 + 1) bits and support range �-minority queries in 
O(f (n)∕�) time, for any f (n) = �(1) . The solutions of both Chan et al. [8] and Belaz-
zougui et al. [3, 5] work for variable � . No work has been done for dynamic range �
-minority queries.

Our results. In this article we first consider the dynamic range �-majority prob-
lem for fixed � and improve the result of Elmasry et al. [11] in two key performance 
aspects: we reduce their space usage while also reducing their time on some more 
general queries. We describe a data structure that uses even less space than Belaz-
zougui et al.’s static representation: nHk + o(n lg �) bits for any k = o(lg� n) , where � 
is the alphabet size and Hk ≤ H0 ≤ lg � is the kth order empirical entropy of S. At 
the same time, while still supporting updates in O( lg n

�
) amortized time, we can 

reduce query times. Specifically, although we still answer range �-majority queries 
in O( lg n

� lg lg n
) time, like Elmasry  et al., our data structure can receive a threshold 

� ≥ � at query time and report the range �-majorities in O( lg n

� lg lg n
) time, rather than 

O(
lg n

� lg lg n
) time. This type of queries is called range �-majority queries. Gagie  et 

al.  [17] and Chan et al.  [8] investigated reporting �-majorities in the static setting 
(i.e., variable � ) but no one has previously investigated doing so in the dynamic set-
ting. In summary, our time bounds are at least as good as those by Elmasry et al., 
our space bound is better to a surprising degree, and our data structure can take 
advantage of being given a larger threshold at query time in order to answer queries 
more quickly.
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We also design the first solution to the dynamic range �-minority query problem, 
for fixed � . We can represent S using nHk + 2n + o(n lg �) bits for any k = o(lg� n) to 
answer range �-minority queries in O( lg n

� lg lg n
) time, supporting symbol insertions and 

deletions in O( lg n

� lg lg n
) amortized time. We show that our structure—and previous 

ones—can be extended to report �(1∕�) �-minorities within the same space and 
time complexities, and in general to report m �-minorities by replacing 1∕� with 
m + 1∕� in all time complexities.

As a byproduct of our main contributions, static versions of our dynamic data 
structures also use nHk + o(n lg �) bits of space ( +2n bits in the case of �-minori-
ties), for any k = o(lg� n) . They support range �-majority queries for variable � , or 
�-minority queries for fixed � , in time O((1∕�) lg lgw �) . This time is not far from 
the O(1∕�) achieved by Gagie et al.  [5] using (1 + �)nH0 + o(n) bits, for any con-
stant 𝜖 > 0 , or the times in (1∕�) ⋅ �(1) they achieve within nH0 + o(n)(H0 + 1) bits 
of space. The time O(1∕�) is optimal for �-majority queries. The encoding-based 
static solution for �-majority queries [18] takes nHk + o(n lg �) bits and O(1∕�) time 
for fixed � , as long as lg(1∕�) = o(lg �) . For variable � , its range of applicability 
decreases to lg(1∕�) = o(

√

lg �).
A preliminary partial version of this article appeared in Proc. DCC 2017 [16]. 

Apart from a more complete and detailed presentation, this version includes the sup-
port for �-majority queries, the static data structure for �-majority queries, and the 
dynamic data structure for �-minority queries.

2  Preliminaries

In this section, we summarize some existing data structures that will be used in 
our solution. One such data structure is designed for the problem of maintaining a 
string S under ������ and ������ operations to support the following operations: 
������(i) , which returns S[i]; ����(c, i) , which returns the number of occurrences 
of character c in S[1… i] ; and ������(c, i) , which returns the position of the ith 
occurrence of c in S. The following lemma summarizes the currently best com-
pressed solution to this problem, which also supports the extraction of an arbitrary 
substring in optimal time:

Lemma 1 [26] A string of length n over an alphabet of size � can be represented 
using nHk + o(n lg �) bits for any k = o(lg� n) to support ������ , ���� , ������ , 
������ and ������ in O(lg n∕ lg lg n) time. It also supports the extraction of a sub-
string of length l in O(lg n∕ lg lg n + l∕ lg� n) time.

Raman  et al.  [30] considered the problem of representing a dynamic inte-
ger sequence Q to support the following operations: ���(Q, i) , which computes 
∑i

j=1
Q[j] ; ������(Q, x) , which returns the smallest i with ���(Q, i) ≥ x ; and 

������(Q, i, �) , which sets Q[i] to Q[i] + � . One building component of their solu-
tion is a data structure for small sequences, which will also be used in our data 
structures:
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Lemma 2 [30] A sequence, Q, of O(lg� n) nonnegative integers of O(lg n) bits each, 
where 0 ≤ 𝜖 < 1 , can be represented using O(lg1+� n) bits to support ��� , ������ , 
and ������(Q, i, �) where |�| ≤ lg n , in O(1) time. This data structure can be con-
structed in O(lg� n) time, and requires a precomputed universal table occupying 
O(n�

�

) bits for any fixed 𝜖′ > 0.

3  Compressed Dynamic Range Majority Data Structures

In this section we design compressed dynamic data structures for range �-majority 
queries. We define three different types of queries as follows. Given an �-majority 
query with range [i… j] , we compute the size, r, of the query range as j − i + 1 . If 
r ≥ L , where L = ⌈

1

�
(⌈

lg n

lg lg n
⌉)2⌉ , then we say that this query is a large-sized query. 

The query is called a medium-sized query if L′ < r < L , where L� = ⌈

1

�
⌈

lg n

lg lg n
⌉⌉ . If 

r ≤ L′ , then it is a small-sized query.
We represent the input sequence S using Lemma  1. This supports small-sized 

queries immediately: By Lemma 1, we can compute the content of the subsequence 
S[i… j] , where [i… j] is the query range, in O( lg n

lg lg n
+

j−i+1

lg� n
) = O(

lg n

� lg lg n
) time. We 

can then compute the �-majorities in S[i… j] in O(j − i + 1) = O(
lg n

� lg lg n
) time using 

the algorithm of Misra and Gries [25]. Thus it suffices to construct additional data 
structures only for large- and medium-sized queries.

3.1  Supporting Large‑Sized Range ̨ ‑Majority Queries

To support large-sized queries, we construct a weight-balanced B-tree  [1] T with 
branching parameter 8 and leaf parameter L. We augment T by adding, for each 
node, a pointer to the node immediately to its left at the same level, and another 
pointer to the node immediately to its right. These pointers can be maintained eas-
ily under updates, and will not affect the space cost of T asymptotically. Each leaf 
of T represents a contiguous subsequence, or block, of S, and the entire sequence S 
can be obtained by concatenating all the blocks represented by the leaves of T from 
left to right. Each internal node of T then represents a block that is the concatena-
tion of all the blocks represented by its leaf descendants. We number the levels of T 
by 0, 1, 2,… from the leaf level to the root level. Thus level a is higher than level b 
if a > b . Let v be a node at the lth level of T, and let B(v) denote the block it repre-
sents. Then, by the properties of weight-balanced B-trees, if v is a leaf, the length of 
its block, denoted by |B(v)|, is at least L and at most 2L − 1 . If v is an internal node, 
then 1

2
⋅ 8l ⋅ L < |B(v)| < 2 ⋅ 8l ⋅ L . We also have that each internal node has at least 2 

and at most 32 children.
We do not store the actual content of a block in the corresponding node of T. 

Instead, for each v, we store the size of the block that it represents, and in addi-
tion, compute and store information in a structure C(v) called candidate list about 
symbols that can possibly be the �-majorities of subsequences that meet certain 
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conditions. More precisely, let l be the level of v, u be the parent of v, and SB(v) 
be the concatenation of the blocks represented by the node immediately to the left 
of u at level l + 1 , the node u, and the node immediately to the right of u at level 
l + 1 . Then C(v) contains each symbol that appears more than �bl times in SB(v), 
where bl =

1

2
⋅ 8l ⋅ L is the minimum size of a block at level l. Since the maximum 

length of each block at level l + 1 is 4bl+1 = 32bl , we have |SB(v)| ≤ 96bl , and thus 
|C(v)| = O(1∕�) . To show the idea behind the candidate lists, we say that two sub-
sequences touch each other if their corresponding sets of indices in S are not dis-
joint. We then observe that, since the size of any block at level l + 1 is greater 
than 8bl , any subsequence S[i… j] touching B(v) is completely contained in SB(v) 
if r = j − i + 1 is within (bl, 8bl) . Since each �-majority in S[i… j] appears at least 
𝛼r > 𝛼bl times, it is also contained in C(v). Therefore, to find the �-majority in 
S[i… j] , it suffices to verify whether each element in C(v) is indeed an answer; 
more details are to be given in our query algorithm later.

Even though it only requires O(|SB(v)|) time to construct C(v) [25], it would be 
costly to reconstruct it every time an update operation is performed on SB(v). To 
make the cost of maintaining C(v) acceptable, we only rebuild it periodically by 
adopting a strategy by Karpinski and Nekrich [24]. More precisely, when we con-
struct C(v), we store symbols that occur more than �bl∕2 times in SB(v). We also 
keep a counter U(v) that we increment whenever we perform ������ or ������ 
in SB(v). Only when U(v) reaches �bl∕2 do we reconstruct CB , and then we reset 
U(v) to 0. Since at most �bl∕2 updates can be performed to SB(v) between two 
consecutive reconstructions, any symbol that becomes an �-majority in SB(v) any 
time during these updates must have at least �bl∕2 occurrences in SB(v) before 
these updates are performed. Thus we can guarantee that any symbol that appears 
more than �bl times in SB(v) is always contained in C(v) during updates. The size 
of C(v) is still O(bl∕�) , and, as will be shown later, it only requires O((lg n)∕�) 
amortized time per update to S to maintain all the candidate lists.

We also construct data structures to speed up a top-down traversal in T. These 
data structures are defined for the marked levels of T, where the kth marked level 
is level k⌈(1∕6) lg lg n⌉ of T for k = 0, 1,… . Given a node v at the kth marked 
level, the number of its descendants at the (k − 1)-st marked level is at most 
32⌈(1∕6) lg lg n⌉−1 ≤ 32(1∕6) lg lg n = lg5∕6 n . Thus, the sizes of the blocks represented 
by these descendants, when listed from left to right, form an integer sequence, 
Q(v), of at most lg5∕6 n entries. We represent Q(v) using Lemma  2, and store a 
sequence of pointers P(v), in which P(v)[i] points to the ith leftmost descendant 
at the (k − 1)-st marked level.

We next prove the following key lemma regarding an arbitrary subsequence 
S[i… j] of length greater than L, which will be used in our query algorithm:

Lemma 3 If r = j − i + 1 > L , then each �-majority element in S[i… j] is contained 
in C(v) for any node v at level l = ⌈

1

3
lg

2r

L
− 1⌉ whose block touches S[i… j].

Proof Let u be v’s parent. Then S[i… j] also touches u, and u is at level l + 1 . Let u1 
and u2 be the nodes immediately to the left and right of u at level l + 1 , respectively.
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Let bl and bl+1 denote the minimum block size represented by nodes at level l and 
l + 1 of T, respectively. Then, by the properties of weight-balanced B-trees, if l > 0 , 
bl =

1

2
⋅ 8l ⋅ L =

1

2
⋅ 8

⌈

1

3
lg

2r

L
−1⌉

⋅ L <
1

2
⋅ 8

1

3
lg

2r

L ⋅ L = r . When l = 0 , bl = L < r . 
Thus, we always have bl < r . Therefore, any �-majority of S[i… j] occurs more than 
𝛼r > 𝛼bl times in S[i… j].

On the other hand, bl+1 =
1

2
⋅ 8

⌈

1

3
lg

2r

L
⌉

⋅ L ≥
1

2
⋅ 8

1

3
lg

2r

L ⋅ L = r . Since S[i… j] 
touches B(u), this inequality means that S[i… j] is entirely contained in either the 
concatenation of B(u1) and B(u), or the concatenation of B(u) and B(u2) . In either 
case, S[i… j] is contained in SB(v). Since any �-majority of S[i… j] occurs more 
than �bl times in S[i… j] , it also occurs more than �bl times in SB(v). As C(v) 
includes any symbol that appears more than �bl times in SB(v), any �-majority of 
S[i… j] is contained in C(v). □

We now describe our query and update algorithms, and analyze space cost.

Lemma 4 Large-sized range �-majority queries can be supported in O( lg n

� lg lg n
) time.

Proof Let [i… j] be the query range, r = j − i + 1 and l = ⌈

1

3
lg

2r

L
− 1⌉ . We first look 

for a node v at level l whose block touches S[i… j] . The obvious approach is to per-
form a top-down traversal of T to look for a node at level l whose block contains 
position i. During the traversal, we make use of the information about the lengths 
of the blocks represented by the nodes of T to decide which node at the next level to 
descend to, and to keep track of the starting position in S of the block represented 
by the node that is currently being visited. More precisely, suppose we visit node 
u at the current level as we have determined previously that B(u) contains S[i]. We 
also know that the first element in B(u) is S[p]. Let u1, u2,… , ud denote the chil-
dren of u, where d ≤ 32 . To decide which child of u represents a block that contains 
S[i], we retrieve the lengths of all |B(uk)|’s, and look for the smallest q such that 
p +

∑q

k=1
�B(uk)� > i . Node uq is then the node at the level below whose block con-

tains S[i], and the starting position of its block in S is p +
∑q−1

k=1
�B(uk)� . As d ≤ 32 

and we store the length of the block that each node represents, these steps use con-
stant time.

However, if we follow the approach described in the previous paragraph, we 
would use O(lg n) time in total, as T has O(lg n) levels. Thus we make use of the 
additional data structures stored at marked levels to speed up this process. If there 
is no marked level between the root level and l, then the top down traversal only 
descends O(lg lg n) levels, requiring O(lg lg n) time only. Otherwise, we perform the 
top-down traversal until we reach the highest marked level. Let x be the node we 
visit at the highest marked level. As Q(x) stores the lengths of the blocks at the next 
marked level, we can perform a ������ operation in Q(x) and then follow an appro-
priate pointer in P(x) to look for the node y at the second highest level that contains 
S[i], and perform a ��� operation in Q(x) to determine the starting position of B(y) 
in S. These operations require constant time. We repeat this process until we reach 
the lowest marked level above level l, and then we descend level by level until we 
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find node v. As there are O(lg n∕ lg lg n) marked levels, the entire process requires 
O(lg n∕ lg lg n) time.

By Lemma 3, we know that the �-majorities of S[i… j] are contained in C(v). We 
then verify, for each symbol, c, in C(v), whether it is indeed an �-majority by com-
puting its number, m, of occurrences in S[i… j] and comparing m to �r . As 
m = ����(c, j) − ����(c, i − 1) , m can be computed in O(lg n∕ lg lg n) time by 
Lemma 1. As |C(v)| = O(1∕�) , it requires O( lg n

� lg lg n
) time in total to find out which of 

these symbols should be included in the answer to the query. Therefore, the total 
query time is O( lg n

lg lg n
+

lg n

� lg lg n
) = O(

lg n

� lg lg n
). □

Lemma 5 The data structures described in Sect.  3.1 can be maintained in O( lg n
�
) 

amortized time under update operations.

Proof We show only how to support ������ ; the support for ������ is similar.
To perform ������(c, i) , we first perform a top down traversal to look for the 

node v at level 0 whose block contains S[i]. During this traversal, we descend level 
by level as in Lemma 4, but we do not use the marked levels to speed up the process. 
For each node u that we visit, we increment the recorded length of B(u). In addition, 
we update the counters U stored in the children of u and in the children of the two 
nodes that surround u. There are a constant number of these nodes, and they can 
all be located in constant time by following either the edges of T, or the pointers 
between two nodes that are next to each other at the same level where we augment T.

When incrementing the counter U of each node, we find out whether the candi-
date list of this node has to be rebuilt. To reconstruct the candidate list of a node x at 
level l, we first compute the starting and ending positions of SB(x) in S. This can be 
computed in constant time because, during the top down traversal, we have already 
computed the starting and ending positions of B(u) in S, and the three nodes whose 
blocks form SB(x), as well as the sizes of these three blocks, can be retrieved by fol-
lowing a constant number of pointers starting from u. We then extract the content 
of SB(x). As |SB(x)| ≤ 96bl (see discussions earlier in this section) and bl ≥ L , by 
Lemma  1, SB(x) can be extracted from S in O(bl) time. We next compute all the 
symbols that appear in SB(x) more than �bl∕2 times in O(bl) time  [25], and these 
are the elements in the reconstructed C(x). Since the counter U(x) has to reach �bl∕2 
before C(x) has to be rebuilt, the amortized cost per update is O(1∕�).

If u is at a marked level, we perform a ������ operation in O(1) time to locate 
the entry of Q(u) that corresponds to the node at the next lower marked level whose 
block contains i, and perform an ������ , again in O(1) time, to increment the value 
stored in this entry. So far we have used O(1∕�) amortized time for each node we 
visit during the top-down traversal. Since T has O(lg n) levels, the overall cost we 
have calculated up to this point is O((lg n)∕�) amortized time.

When a node, z, at level l of T splits into two nodes z1 and z2 , where z1 is to the 
left of z2 , we construct C(z1) and C(z2) in O(bl) time. In addition, for any node y that 
is a child of z1 or z2 , or a child of the node immediately to the left of z1 or the right 
of z2 at the same level, we reconstruct C(y) in O(bl) time. As there are a constant 
number of such nodes, all these structures can be reconstructed in O(bl) time. If l is a 
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marked level, but it is not the lowest marked level, we also build Q(z1) , Q(z2) , P(z1) , 
and P(z2) . We also have to rebuild P(z�) and Q(z�) , where z′ is the lowest ancestor of 
z that is on a marked level. All this takes O(lg5∕6 n) = o(bl) time. By the properties 
of a weight-balanced B-tree, after a node at level l has been split, it requires at least 
1

2
⋅ 8l ⋅ L = bl insertions before it can be split again. Therefore, we can amortize the 

cost of reconstructing these data structures over the insertions between reconstruc-
tions, and each ������ is thus charged with O(1) amortized cost. As each ������ 
may cause one node at each level of T to split, the overall cost charged to an ������ 
operation is thus O(lg n).

Finally, update operations may cause the value of L to change. For this to happen, 
the value of ⌈ lg n

lg lg n
⌉ must change, and this requires �(n) updates. When this happens, 

we rebuild our data structure in O(n lg n) time: we can easily precompute the struc-
tures for each level of T in linear time and there are O(lg n) levels. Thus, such 
rebuilding incurs O(lg n) amortized time for each update. To summarize, ������ can 
be supported in O((lg n)∕�) amortized time. □

Lemma 6 The data structures described in Sect. 3.1 occupy o(n lg �) bits.

Proof As T has O(n/L) nodes, the structure of T, pointers between nodes at the same 
level, as well as counters and block lengths stored with the nodes, occupy 
O(n∕L × lg n) = O(

�n(lg lg n)2

lg n
) bits in total. Each candidate list can be stored in 

O((lg �)∕�) bits, so the candidate lists stored in all the nodes use 
O(n∕L × (lg �)∕�) = O(

n lg �(lg lg n)2

lg2 n
) bits in total.

The size of the structures Q(v) and P(v) can be charged to the pointed nodes, so 
there are O(n/L) entries to store. As each entry of Q(v) uses O(lg n) bits, all the Q(v)s 
occupy O(n∕L × lg n) = O(

�n(lg lg n)2

lg n
) bits. The same analysis applies to P(v). There-

fore, the data structures described in this section use 
O(

�n(lg lg n)2

lg n
+

n lg �(lg lg n)2

lg2 n
) = o(n lg �) bits. □

3.2  Supporting Medium‑Sized Range ̨ ‑Majority Queries

We could use the same structures designed in Sect.  3.1 to support medium-sized 
queries if we simply set the leaf parameter of T to be L′ instead of L, but then the 
resulting data structures would not be succinct. To save space, we build a data struc-
ture D(v) for each leaf node v of T. Our idea for supporting medium-sized queries is 
similar to that for large-sized queries, but since the block represented by a leaf node 
of T is small, we are able to simplify the idea and the data structures in Sect. 3.1. 
Such simplifications allow us to maintain a multi-level decomposition of B(v) in 
a hierarchy of lists instead of in a tree, which are further laid out in one contigu-
ous chunk of memory for each leaf node of T, to avoid using too much space for 
pointers.

We now describe this multi-level decomposition of B(v), which will be used 
to define the data structure components of D(v). As we define one set of data 



 Algorithmica

1 3

structure components in D(v) for each level of this decomposition, we use D(v) 
to refer to both the data structure that we build for B(v) and the decomposition 
of B(v). To distinguish a level of D(v) from a level of T, we number each level of 
D(v) using a non-positive integer. At level −l , for l = 0, 1, 2,… , ⌈lg(L∕L�) − 1⌉ , 
B(v) is partitioned into miniblocks of length between L∕2l and L∕2l−1 . Note 
that the level 0 decomposition contains simply one miniblock, which is B(v) 
itself, as the length of any leaf block in T is between L and 2L already. We 
define ml = L∕2l , which is the minimum length of a miniblock at level −l . As 
L� < m

⌈lg(L∕L�)−1⌉ ≤ 2L� , the minimum length of a miniblock at the lowest level, 
i.e., level −⌈lg(L∕L�) − 1⌉ , is between L′ and 2L′.

For each miniblock M at level −l of D(v), we define its predecessor, ����(M) , as 
follows: If M is not the leftmost miniblock at level −l of D(v), then ����(M) is the 
miniblock immediately to its left at the same level. Otherwise, if v is not the leftmost 
leaf ( ����(M) is null otherwise), let v1 be the leaf immediately to the left of v in T, 
and ����(M) is defined to be the rightmost miniblock at level −l of D(v1) . Similarly, 
we define the successor, ����(M) , of M as the miniblock immediately to the right of 
M at level −l of D(v) if such a miniblock exists. Otherwise, ����(M) is the leftmost 
miniblock at level −l of D(v2) where v2 is the leaf immediately to the right of v in 
T if v2 exists, or null otherwise. Then, the candidate list, C(M), of M contains each 
symbol that occurs more than �ml∕2 times in the concatenation of M, ����(M) and 
����(M) . To maintain C(M) during updates, we use the same strategy in Sect. 3.1 
that is used to maintain C(v). More specifically, we store a counter U(M) so that 
we can rebuild C(M) after exactly �ml∕4 update operations have been performed 
to M, ����(M) and ����(M) . Whenever we perform the reconstruction, we include 
in C(M) each symbol that occurs more than �ml∕4 times in the concatenation of M, 
����(M) and ����(M) . Since |����(M)| + |M| + |����(M)| ≤ 6ml , the number of 
symbols included in C(M) is at most 24∕�.

The precomputed information for each miniblock M includes |M|, C(M), and 
U(M). These data for miniblocks at the same level, −l , of D(v) are chained together 
in a doubly linked list Ll(v) . D(v) then contains these O(lg(L∕L�)) = O(lg lg n) lists. 
We cannot, however, afford storing each list in the standard way using pointers 
of O(lg n) bits each, as this would use too much space. Instead, we lay them out 
in a contiguous chunk of memory as follows: We first observe that the number of 
miniblocks at level −l of D(v) is less than 2L∕(L∕2l) = 2l+1 . Thus, the total number 
of miniblocks across all levels is less than 2 ⋅ 2⌈lg(L∕L�)−1⌉+1 − 1 < 4L∕L� . We then 
use an array A(v) of ⌈4L∕L�⌉ fixed-size slots to store D(v), and each slot stores the 
precomputed information of a miniblock.

To determine the size of a slot, we compute the maximum number of bits 
needed to encode the precomputed information for each miniblock M. C(M) 
can be stored in ⌈24∕�⌉ ⋅ ⌈lg �⌉ bits. As M has less than 2L elements, its 
length can be encoded in ⌈lg(2L)⌉ bits. The counter U(M) can be encoded in 
⌈lg(𝛼ml∕4)⌉ < ⌈lg(𝛼L∕2)⌉ ≤ ⌈lg(L∕2)⌉ bits. The two pointers to the neighbours of 
M in the linked list can be encoded as the indices of these miniblocks in the memory 
chunk. Since there are ⌈4L∕L�⌉ slots, each pointer can be encoded in ⌈lg⌈4L∕L�⌉⌉ bits. 
Therefore, we set the size of each slot to be ⌈24∕�⌉ ⋅ ⌈lg �⌉ + 2⌈lg L⌉ + 2⌈lg⌈4L∕L�⌉⌉ 
bits.
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We prepend this memory chunk with a header. This header encodes the indices 
of the slots that store the head of each Ll(v) . As there are ⌈lg(L∕L�)⌉ levels and each 
index can be encoded in ⌈lg⌈4L∕L�⌉⌉ bits, the header uses ⌈lg(L∕L�)⌉ ⋅ ⌈lg⌈4L∕L�⌉⌉ 
bits. Clearly our memory management scheme allows us to traverse each doubly 
linked list Ll(v) easily. When miniblocks merge or split during updates, we need 
to perform insertions and deletions in the doubly linked lists. To facilitate these 
updates, we always store the precomputed information for all miniblocks in D(v) 
in a prefix of A(v), and keep track of the number of used slots of A(v). When we 
perform an insertion into a list Ll(v) , we use the first unused slot of A to store the 
new information, and update the header if the newly inserted list element becomes 
the head. When we perform a deletion, we copy the content of the last used slot (let 
M′ be the miniblock that corresponds to it) into the slot corresponding to the deleted 
element of Ll(v) . We also follow the pointers encoded in the slot for M′ to locate the 
neighbours of M′ in its doubly linked list, and update pointers in these neighbours 
that point to M′ . If M′ is the head of a doubly linked list (we can determine which 
list it is using |M′

| ), we update the header as well. The following lemma shows that 
our memory management strategy does, indeed, save space:

Lemma 7 The data structures described in Sect. 3.2 occupy o(n lg �) bits.

Proof We first analyze the size of the memory chunk storing D(v) for each leaf v of 
T. By our analysis in previous paragraphs, we observe that the header of this chunk 
uses O((lg lg n)2) bits. Each slot of A(v) uses O( lg �

�
+ lg lg n) bits, and A(v) has 

O(lg n∕ lg lg n) entries. Therefore, A(v) occupies O( lg � lg n

� lg lg n
+ lg n) bits. Hence the 

total size of the memory chunk of each leaf of T is O( lg � lg n

� lg lg n
+ lg n) bits. As there are 

O(n/L) leaves in T, the data structures described in this section use 
O(

n lg � lg lg n

lg n
+

�n(lg lg n)2

lg n
) = o(n lg �) bits. □

We now show how to support query and update operations.

Lemma 8 Medium-sized range �-majority queries can be supported in O( lg n

� lg lg n
) 

time.

Proof Let [i… j] be the query range and let r = j − i + 1 . We first perform a top 
down traversal in T to locate the leaf, v, that represents a block containing S[i] in 
O(

lg n

lg lg n
) time using the approach described in the proof of Lemma 4. In this process, 

we can also find the starting position of B(v) in S.
We next make use of D(v) to answer the query as follows. Let l = ⌈lg(L∕r) − 1⌉ . 

As ml = L∕2⌈lg(L∕r)−1⌉ , we have ml∕2 ≤ r < ml . We then scan the list Ll(v) to look for 
a miniblock, M, that contains S[i] at level −l . This can be done by first locating the 
head of Ll(v) from the header of the memory chunk that stores D(v), and then per-
forming a linear scan, computing the starting position of each miniblock in Ll(v) 
along the way. As Ll(v) has at most O(L∕L�) = O(

lg n

lg lg n
) entries, we can locate M in 

O(
lg n

lg lg n
) time.
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Since ml > r , S[i… j] is either entirely contained in the concatenation of ����(M) 
and M, or in the concatenation of M and ����(M) . Thus each �-majority of S[i… j] 
must occur more than 𝛼r > 𝛼ml∕2 times in the concatenation of ����(M) , M and 
����(M) . Therefore, each �-majority of S[i… j] is contained in C(M). We can then 
perform ���� operations in S to verify whether each symbol in C(M) is indeed an �
-majority of S[i… j] . As C(M) has O(1∕�) symbols, this process requires O( lg n

� lg lg n
) 

time. The total query time is hence O( lg n

� lg lg n
). □

Lemma 9 The data structures described in Sect.  3.2 can be maintained in 
O(

lg n

lg lg n
+

lg lg n

�
) amortized time under update operations.

Proof We show only how to support ������ ; the support for ������ is similar.
To perform ������(c, i) , we first perform a top down traversal in T to locate the 

leaf, v, that represents a block containing S[i] in O( lg n

lg lg n
) time. We then increment 

the recorded lengths of all the miniblocks that contain S[i]. We also increment the 
counters U of these miniblocks, as well as the counters of their predecessors and 
successors. All the miniblocks whose counters should be incremented are located in 
D(v), D(v1) and D(v2) , where v1 and v2 are the leaves immediately to the left and 
right of v in T. At each level −l , we scan each doubly linked list Ll(v) , Ll(v1) and 
Ll(v2) to locate these miniblocks. Since D(v), D(v1) and D(v2) have O( lg n

lg lg n
) mini-

blocks in total over all levels, it requires O( lg n

lg lg n
) to find these miniblocks and update 

them.
The above process can find all these miniblocks, as well as their starting and end-

ing positions in S. It may be necessary to reconstruct the candidate list of these mini-
blocks. Similarly to the analysis in the proof of Lemma 5, the candidate list of each 
of these miniblocks can be maintained in O(1∕�) amortized time. Since there are 
O(lg lg n) levels in D(v), D(v1) and D(v2) , and only a constant number of miniblocks 
needing rebuilding at each level, O((lg lg n)∕�) amortized time will be required to 
reconstruct all of them.

An insertion may also cause a miniblock M to split. As in the proof of Lemma 5, 
we compute the candidate lists and other required information for the miniblocks 
created as a result of the split in time linear in the length of M, and amortize the cost 
over the insertions that lead to the split. As the number of these insertions is also 
proportional to the length of M, the amortized cost is again O(1). As there can pos-
sibly be a split at each level of D(v), it requires O(lg lg n) amortized time to handle 
them. Finally, when the value of L′ changes, we rebuild all the data structures 
designed in this section. Since these data structures are constructed for O(lg lg n) 
levels and the structures for each level can be rebuilt in linear time, this process 
incurs O(lg lg n) amortized time. Therefore, the total time required to support ������ 
is O( lg n

lg lg n
+

lg lg n

�
). □

Combining Lemmas 1 and 4–9, we obtain our first result, when the structure is 
queried for �-majorities.
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Theorem 1 For any 0 < 𝛼 < 1 , a sequence of length n over an alphabet of size � can 
be represented using nHk + o(n lg �) bits for any k = o(lg� n) to answer range �
-majority queries in O( lg n

� lg lg n
) time, and to support symbol insertions and deletions 

in O( lg n
�
) amortized time.

4  Supporting ˇ‑Majorities

Theorem  1 supports range �-majority queries, where � is chosen at construction 
time. We now enhance our data structure to find range �-majorities, for any � ≥ � 
given at query time together with the interval [i… j] . While it is easy to answer those 
queries in time O( lg n

� lg lg n
) , our goal is to reach time O( lg n

� lg lg n
) . Updates are still car-

ried out in amortized time O( lg n
�
).

Although we have not used this in previous sections, note that we can focus our 
attention in the case 𝛽 > 1∕𝜎 , since otherwise we can directly check the range of S 
for each of the � symbols c, reporting those where ����(c, j) − ����(c, i − 1) > 𝛽r , 
all in time O( � lg n

lg lg n
) = O(

lg n

� lg lg n
) . Thus, at construction time we can set � to 1∕� if � 

turns out to be smaller. This implies, in particular, that all our 1
�
 in the complexities 

can be replaced by min(
1

�
, �) . We will also use the fact that lg 1

�
= O(lg �) ∩ O(lg n) . 

Similarly, it makes sense to consider � ≤ 1∕2 only, as otherwise we use the solution 
for � = 1∕2 and report only the true �-majorities found, within the same complexity.

4.1  Large and Medium‑Sized Intervals

For large and medium-sized intervals, it is not difficult to answer �-majority queries 
within the desired time. Note that, in those cases, the crux of the solution is to verify 
a list of candidates, C(v) in the block v (for large intervals) or C(M) in the miniblock 
M (for medium-sized intervals), both of size O(1∕�) . It is sufficient that those lists 
are sorted by decreasing frequency of the elements and that we stop verifying them 
when reaching an element with frequency below �r . Since r > bl in large intervals 
and r ≥ ml∕2 in medium-sized intervals, there can be only O(1∕�) such candidates 
and we solve the query in time O( lg n

� lg lg n
).

We can maintain those list only approximately sorted, however. When the lists 
are created, we do sort them by decreasing frequency, but the elements can later 
change their frequencies upon updates. The order in which we store the symbols is 
not modified upon updates until the lists are rebuilt. Because frequencies can change 
only by a maximum of � = �bl∕2 (for large intervals) or � = �ml∕4 (for medium-
sized intervals) before we rebuild the lists, we can safely stop verifying when the 
frequency we compute on the fly drops below �r − � , since this guarantees that the 
next element cannot have a current frequency over �r . Since r > bl for large inter-
vals and r ≥ ml∕2 for medium-sized intervals, it holds that 𝛽r − 𝛾 > 𝛽bl∕2 for large 
intervals and �r − � ≥ �ml∕4 for medium-sized intervals, and therefore the resulting 
complexity is in both cases O( lg n

� lg lg n
).
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4.2  Small Intervals

The small ranges, which were solved by brute force, pose a more difficult problem, 
because now we cannot afford scanning a block of S of size O( lg n

� lg lg n
) . To handle 

small ranges, we add further structures to our tree leaves, which contain L′ to 2L′ 
elements for L� = ⌈

1

�
⌈

lg n

lg lg n
⌉⌉ . The leaves will be further partitioned into halves 

repeatedly in lg(1∕�) levels, until reaching size between L∗ and 2L∗ , for L∗ = ⌈

lg n

lg lg n
⌉.

These additional levels, numbered −l∗ for l = 0,… , ⌊lg(L�∕L∗)⌋ , are organized 
much as the miniblocks of Sect. 3.2. Indeed, our highest level, −0∗ , is the same level, 
−⌈lg(L∕L�)⌉ , as the deepest one of Sect. 3.2. The main difference is that, in the new 
levels, not only the sizes ml∗ are halved as we descend, but also the majority thresh-
olds are doubled: we use the value �l∗ = � ⋅ 2l

∗ to define the candidate lists C(M) at 
level −l∗ . In our last level, −l∗ = −⌊lg(L�∕L∗)⌋ , it holds that �l∗ = �(1) (precisely, 
𝛼l∗ > 1∕2 ) and ml∗ = O(

lg n

lg lg n
) (precisely, L∗ ≤ ml∗ ≤ 2L∗).

Because, at each level −l∗ , C(M) can store at most 24∕�l∗ = 24∕(� 2l
∗

) elements, 
the miniblocks of different levels −l∗ are of different size. We then do not store the 
information of all the miniblocks descending from a leaf block in a single chunk 
of memory, as done in Sect. 3.2. Instead, we stratify the storage of miniblocks per 
level −l∗ : For each leaf block, we have an array of O(lg 1

�
) entries, one per level −l∗ , 

to memory areas of miniblocks of that level descending from the leaf block. Within 
each memory area, the slots are of the same size, as in Sect. 3.2.

We also impose further structure to the linked lists of miniblocks inside each 
memory area: the list nodes are not anymore linked, but they are the leaves of a 
B-tree of arity B to 2B, for B =

√

lg n . Since the list at level −l∗ has 2l∗ < 1

𝛼
+ 1 ele-

ments, the B-tree is of height O(lg(1∕�)∕ lg lg n) . Each B-tree node stores the up to 
2
√

lg n subtree sizes (measured in terms of number of positions of S stored in all the 
subtree leaves) using Lemma 2, which allows routing the search for a given position 
in S in constant time per B-tree node. To facilitate memory management, we have 
one memory area for the B-tree nodes and another for the list nodes, so that memory 
slots are of the same size within each area.

Finally, we use a new arrangement to store the lists C(M) in these miniblocks. 
Instead of representing the candidate symbols directly, we store one position of 
����(M) ⋅M ⋅ ����(M) where the symbol appears. The actual symbol can then be 
obtained with an access to S in time O( lg n

lg lg n
) . Further, we sort all the O(1∕�l∗ ) posi-

tions of the candidates as follows: The primary criterion for the sort is ⌈lg(1∕f )⌉ , 
where f is the relative frequency of the element in ����(M) ⋅M ⋅ ����(M) . The sec-
ondary criterion, when the first produces ties, is the increasing order of the positions 
in ����(M) ⋅M ⋅ ����(M) we use to represent the symbols.

Therefore, the list C(M) is partitioned into O(lg n) chunks of symbols with the 
same quantized frequency, qf = ⌈lg(1∕f )⌉ , and the positions stored are increasing 
within each chunk. Those chunks are then represented as the differences between 
consecutive positions using �-codes [6], and a difference of zero is used to signal 
the end of a chunk. By Jensen’s Inequality, the number of bits required to represent 
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k differences that add up to m is O(k lg(m∕k)).1 Since there are at most 2qf elements 
with quantized frequency qf  , their chunk is represented with O(2qf (lg(m) − qf )) bits. 
Adding up to relative frequency f ∗ = �l∗∕24 (i.e., the minimum for a candidate 
stored in C(M)), the total space in bits is at most

and since in our case m = O(ml∗ ) = O(
lg n

�2l
∗
lg lg n

) = O(
lg n

�l∗ lg lg n
) , the total space to rep-

resent C(M) is O((1∕�l∗ ) lg lg n).

Lemma 10 The data structures described in Sect. 4 occupy o(n lg �) bits.

Proof The analysis is analogous to that of Lemma 7. The number of miniblocks at 
level −l∗ of each array A(v) is at most 2L∕(L�∕2l∗ ) = O(

lg n

lg lg n
⋅ 2l

∗+1) . The size of the 
miniblocks includes the space to store the list of candidates, O((1∕�l∗ ) lg lg n) bits, 
plus a constant number of (lg L)-bit counters and pointers, which require 
O(lg lg n + lg

1

�
) further bits. The B-tree nodes, stored in another memory area, 

require O(B lg L) bits per node, but have O(1/B) nodes per miniblock M, thus their 
space is already covered in our formula. All this adds up to O((1∕�l∗ ) lg lg n + lg

1

�
) 

bits per miniblock, which multiplied by the number of miniblocks at level −l∗ of 
A(v) yields O( lg n

�
+

lg n lg
1

�

lg lg n
⋅ 2l

∗

) bits. Summing up this space over all the lg 1

�
 levels 

−l∗ , we obtain O(
lg n lg

1

�

�
+

lg n lg
1

�

� lg lg n
) = O(

lg n lg
1

�

�
) bits. Finally, multiplying this space 

by the O(n/L) leaves, we obtain O(
n lg

1

�
(lg lg n)2

lg n
) = o(n lg �) bits.

We also have O(lg 1

�
) global pointers for the memory areas of each level −l∗ , 

which multiplied by the O(n/L) leaves yields O( �n lg �(lg lg n)
2

lg n
) = o(n lg �) bits in 

total. □

Now we show how to support range �-majority queries with this structure.

Lemma 11 Small-sized range �-majority queries, for any � ≥ � , can be supported in 
O(

lg n

� lg lg n
) time.

Proof After we arrive at the corresponding leaf block v in time O( lg n

lg lg n
) as in the 

proof of Lemma 8, we choose the level −l∗ according to r = j − i + 1 : it must hold 
that ml∗∕2 ≤ r < ml∗ , i.e., lg n

2r lg lg n
≤ 𝛼l∗ <

lg n

r lg lg n
 . This level is appropriate to apply the 

same reasoning of Lemma  8, and it exists whenever 2L∗ ≤ r < L� . On the other 

qf=lg⌈24∕�l∗ ⌉
�

qf=0

2qf (lgm − qf ) = 2

�

24

�l∗

��

lgm − lg

�

24

�l∗

�

+ 1

�

− lgm − 2

= O

�

lg(�l∗m)

�l∗

�

,

1 Since �-codes can only represent positive numbers and we want to use zero to signal end of chunks, we 
will always use the code for x + 1 to represent the number x. This adds only O(k) extra bits.
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hand, we need that �l∗ ≤ � in order to ensure that the candidates stored in C(M) 
(which include all the possible �l∗-majorities) include all the possible �-majorities. 
Since 𝛼l∗ <

lg n

r lg lg n
 , it suffices that lg n

r lg lg n
≤ � to have �l∗ ≤ � . This condition is equiv-

alent to r ≥ lg n

� lg lg n
 . We can always assume this condition to be true, since otherwise 

we can use Lemma  1 to extract S[i… j] and find its majorities in time O( lg n

� lg lg n
) 

without the help of any other data structure.
We then traverse the B-tree of level −l∗ so as to find the appropriate miniblock M. 

The traversal takes time O( lg(1∕�)
lg lg n

) = O(
lg n

lg lg n
) . Once we arrive at the proper mini-

block M, we scan the successive chunks of C(M). Since the frequencies in the next 
chunk (at the moment of list construction) could not be more than those in the cur-
rent chunk, and since some frequency may have increased by at most �l∗ml∗∕4 since 
the last reconstruction, we can safely stop the scan when the highest frequency seen 
in the current chunk does not exceed �r − �l∗ml∗∕4.

Let us analyze the cost we incur to scan up to this threshold. Since frequencies can 
also decrease by up to ml∗∕4 until the next reconstruction, an element with current 
frequency over �r − �l∗ml∗∕4 must have had frequency over 
�r − �l∗ml∗∕2 ≥ (� − �l∗ )ml∗∕2 when the list was built, and thus its relative frequency 
was f ≥ (� − �l∗ )∕12 . Its quantized frequency was therefore qf ≤ ⌈lg(12∕(� − �l∗ ))⌉ , 
and thus we might have to process up to 2qf+1 = O(

1

�−�l∗
) elements before covering 

its chunk. This is O(1∕�) if � ≥ 2�l∗ ; otherwise we might use the argument that the 
whole list is of size O(1∕�l∗ ) = O(1∕�) anyway. Therefore, we try out each candidate 
using ���� on S in time O( lg n

� lg lg n
) and complete the query. □

Finally, we show that we can still maintain the structure within the original 
time.

Lemma 12 The data structures described in Sect. 4 can be maintained in amortized 
time O( lg

2(1∕�)

lg lg n
+

1

�
+

lg n

lg lg n
) under update operations.

Proof For large and medium blocks, the only difference is that we must sort the can-
didate lists C(v) and C(M) by decreasing frequency. This is not difficult because we 
already spend time O(bl) (for large ranges) and O(ml) (for medium-sized ranges) in 
building the lists. The frequencies range over a universe of the same size, thus we 
can sort them within the same times, O(bl) or O(ml) , using radix sort.

The maintenance procedure for the levels −l∗ is very similar to that of miniblocks 
described in Lemma  9. One difference is that, when changes in a miniblock M 
occurs, we must update its size upwards in its B-tree. This adds O( lg(1∕�)

lg lg n
) time, 

because Lemma 2 allows us update each B-tree node in constant time. Node splits 
and merges require O(B) time, but these amortize to O(1). Finally, a single update 
requires modifying the B-trees in all the lg(1∕�) levels −l∗ , for a total update cost of 
O(

lg2(1∕�)

lg lg n
).
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The amortized cost to reconstruct a list C(M) at level −l∗ is O(1∕�l∗ ) , including 
the special sorting and encoding we use. Since a single update is reflected in all the 
levels, we must add up this cost for all −l∗ , yielding O(1∕�) . Updates also need time 
O(

lg n

lg lg n
) to reach the desired miniblock. □

We now have all the elements to prove our main result. Note that O( lg n
�
) encom-

passes all the update costs for the three range sizes.

Theorem 2 For any 0 < 𝛼 < 1 , a sequence of length n over an alphabet of size � can 
be represented using nHk + o(n lg �) bits for any k = o(lg� n) to answer range �
-majority queries for any � ≥ � in O( lg n

� lg lg n
) time, and to support symbol insertions 

and deletions in O( lg n
�
) amortized time.

4.3  A Static Variant

A static variant of our solutions uses blocks and miniblocks of fixed size, so one can 
access in constant time the desired block at the corresponding level l, −l , or −l∗ , and 
then try out the prefix of O(1∕�) stored candidates that covers all the possible �-majori-
ties. All that precomputed data amounts to o(n lg �) bits of space, even when built for 
the minimum � of interest, max(1∕n, 1∕�) , as shown in Lemmas 6, 7, and 10. Using a 
sequence representation that uses nHk + o(n lg �) bits [4, Thm. 11] and answers access 
queries in time O(1) and rank queries in time O(lg lgw �) , where w = �(lg n) is the 
RAM word size in bits, we can solve �-majority queries in time O((1∕�) lg lgw �).

Since the structure has O(lg n) levels and each level is built in linear time as 
described in Lemmas 5, 9, and 12, the construction time is O(n lg n) . The sequence 
representation we use [4, Thm. 11] is built in linear time.

Interestingly, since update times are irrelevant in this case, the asymptotic time and 
space complexities of our data structure do not depend on � . Thus, our structure can 
be built directly for the minimum relevant value of � , max(1∕n, 1∕�) , and then it can 
be queried for any value of � (if � ≤ max(1∕n, 1∕�) , we just try out all the � possi-
ble candidates using ���� on S[i… j] ). Thus, this data structure can be used to answer 
range �-majorities for variable � , which is even more powerful than the range �-major-
ity query. The following theorem presents our result, which is stated as a solution to the 
range �-majority problem for variable �.

Theorem 3 On a RAM machine of w = �(lg n) bits, a sequence of length n over an 
alphabet of size � can be represented using nHk + o(n lg �) bits for any k = o(lg� n) 
to answer range �-majority queries for any 0 < 𝛼 < 1 defined at query time, in 
O((1∕�) lg lgw �) time. The structure is built in O(n lg n) time.
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5  Finding ̨ ‑Minorities

We now introduce the first dynamic structure to find �-minorities in array ranges. 
We build on the idea of Chan et al. [8], who find A = 1 + ⌊1∕�⌋ distinct elements in 
S[i… j] and try them out one by one, since one of those must be a minority (there 
may be no minority if there are less than A distinct elements in S[i… j] ). A succinct 
static structure based on this idea [3] uses an O(n)-bit range minimum query data 
structure [14], of which no dynamic succinct version exists.

We use a different dynamic arrangement that can be implemented in succinct 
space. We partition S into pieces, which contain A to 3A distinct elements, except 
when S contains a single piece with less than A distinct elements. The following 
property is the key to find an �-minority in time O( lg n

� lg lg n
).

Lemma 13 If S[i… j] overlaps one or two pieces only and it has an �-minority, then 
this minority element is one of the distinct elements in those pieces. If S[i… j] con-
tains a piece with at least A distinct elements, then one of the distinct elements in 
that contained piece is a minority in S[i… j].

Proof If S[i… j] overlaps one or two pieces only, then all of its distinct elements 
are also distinct elements in some of those overlapped pieces, so the result holds. 
If S[i… j] contains a piece with A distinct elements, then one of those must be an �
-minority of S[i… j] , since not all of them can occur more than � ⋅ (j − i + 1) times 
in S[i… j]. □

Our data structure is formed by a compressed dynamic representation of S using 
nHk + o(n lg �) bits (Lemma 1) plus two dynamic bitvectors that add 2n + o(n) bits: 

1. P[1… n] , where P[r] = 1 iff a new piece starts at S[r].
2. C[1… n] , where each distinct element in each piece has one arbitrary occurrence 

at position r (within the piece) marked with C[r] = 1.

The dynamic bitvectors support the operations ������ , ���� , ������ , ������ , and 
������ , in time O(lg n∕ lg lg n) (see [27, Lem. 8.1] or [21]).

To find an �-minority in S[i… j] , we use ���� and ������ on P to determine the 
first and the last piece overlapped by [i… j] . More precisely, we compute the starting 
position of the first of these pieces as x = ������1(P, ����1(P, i)) and the ending 
position of the last as y = ������1(P, ����1(P, j) + 1) − 1 . If there are one or two 
pieces overlapped by [i… j] , that is, ����1(P, y) − ����1(P, x − 1) ≤ 2 , we try out 
all their at most 6A distinct elements as follows: For k = 1, 2,… , we find their kth 
distinct element, c, in S[i… j] using the formula c = S[p] for 
p = ������1(C, ����1(C, x − 1) + k)] . We then compute ����c(S, j) − ����c(S, i − 1) to 
count how many times c occurs in S[i… j] and thus determine whether c is an �
-minority. We repeat this process until we find and return an �-minority, or until 
p > y , in which case we report that there is no �-minority in the query range. If 
S[i… j] overlaps 3 pieces or more, we choose its leftmost contained piece (the left 
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and right endpoints of this piece are ������1(P, ����1(P, i − 1) + 1) and 
������1(P, ����1(P, i − 1) + 2) − 1 , respectively), and do as before to obtain its A 
to 3A candidates and count their occurrences in S. This process yields, in time 
O(

lg n

� lg lg n
) , an �-minority of S[i… j] , if there is one.

5.1  Handling Updates

To insert a new symbol c at position i in S, we first do the insertion in S, and also 
insert a 0 in P[i] and C[i]. We then find the piece P[x… y] where P[i] belongs, using 
x = ������1(P, ����1(P, i)) and y = ������1(����1(P, i) + 1) − 1 . Finally, if 
����c(S, y) − ����c(S, x − 1) = 1 , then c is a new distinct symbol in the piece and 
we must mark it, with C[i] ← 1.

This completes the insertion process unless we exceed the maximum number of 
distinct element in the piece, that is, ����1(C, y) − ����1(C, x − 1) > 3A . In this 
case, we repartition the piece into pieces of size A to 3A.

The repartitioning proceeds as follows. We locate the first occurrences of the dis-
tinct elements in the piece, using ���� and ������ on C and S: For k = 1, 2,… , 
the kth distinct symbol is ck = S[ik] , with ik = ������1(C, ����1(C, x − 1) + k) . The 
first occurrence of ck in the piece is then pk = ������ck

(S, ����ck (S, x − 1) + 1) . We 
unmark its position in C, C[ik] ← 0 (note that ik needs not be the first occurrence, pk , 
of the kth distinct element).

Once we have collected all the first positions pk of the O(A) distinct elements in 
the piece, we use the classic algorithm that computes order statistics in linear time 
(i.e., O(A)) on the positions pk to find the (A + 1) st smallest of them, p. The first 
new piece, with exactly A distinct elements, then goes from x to p − 1 , so we set 
P[p] ← 1 and mark in C the A positions we had located, C[pk] ← 1 for the A values 
pk < p.

We now create the next new pieces from S[p… y] . To do this, we simply replace 
those values pk < p with their first occurrence in S[p… y] using ���� and ������ 
on S again, compute the (A + 1) st smallest position again, and so on, until covering 
the whole original overflowed piece S[x… y].

This process generates a number of pieces with A distinct elements, except the 
last one, which may have fewer. In this case, we merge the last two pieces built, into 
one that will have less than 2A distinct elements. Those are found by repeating the 
generation of the penultimate piece, this time not marking only the A smallest posi-
tions pk , but including them all. Overall, each new piece is built in time O( lg n

� lg lg n
).

To delete c = S[i] , we remove the position i from sequences S, P, and C. If it 
holds that P[i] = 1 before removing it, then we had deleted the mark of the begin-
ning of the piece, so we reset P[i] ← 1 again after removing P[i]. If it holds that 
C[i] = 1 before removing it, we must see if there is another occurrence of c in its 
piece. We compute the piece endpoints x and y as for the insertion, and then see 
if ����c(S, y) − ����c(S, x − 1) ≥ 1 . If so, we set another occurrence of c in C, for 
example the first, C[������c(S, ����c(S, x − 1) + 1)] ← 1 . Otherwise, we have lost 
a distinct element in the piece and must see if we still have sufficiently many distinct 
elements, that is, if ����1(C, y) − ����1(C, x − 1) ≥ A . If this is true, we finish.
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Otherwise, we have less than A distinct elements in the piece, so we merge it with 
the previous or next piece (if none exists, then S has only one piece, which can have 
less than A distinct elements). The merged piece has at least A distinct elements, but 
it might have up to 4A − 1 and thus overflow. The merging then consists of removing 
the intermediate 1 in P that separates the two pieces and running our repartitioning 
process described above. The cost will be, again, O( lg n

� lg lg n
) per piece generated.

5.2  Analysis

Our partitioning process may require time proportional to the length of the piece, 
which can be arbitrarily longer than 3A. Consider for example A = 2 and the 
piece (abc)ndef  . Inserting a g at the end produces 3

2
n + 2 pieces of length 2. We 

can show, however, that the amortized cost of a repartitioning is within the 
desired time bounds. We will measure the cost in terms of number of operations 
over the sequences, each of which costs O( lg n

lg lg n
).

Let us define a potential function � = n − A ⋅ (m − 1) , where m is the number 
of pieces at the present moment. It always holds � ≥ 0 , even when we start with 
n = 1 element and m = 1 piece. Then an insertion or a deletion without overflow 
or underflow modifies � by �� = ±1 , which does not affect the asymptotic cost. 
A repartitioning, instead, takes a piece and produces t > 1 pieces out of it. The 
actual cost of generating each piece, ignoring constants, is A operations on the 
sequences; therefore the total cost of the operation is A ⋅ t . On the other hand, the 
difference in potential is �� = A ⋅ (1 − t) (n does not change while repartitioning). 
Therefore, the amortized cost of the repartitioning is A.

The case of an underflow is similar: we first join two pieces, which increases � 
by A. We then repartition the resulting piece into t, which costs A ⋅ t and changes the 
potential by �� = A ⋅ (1 − t) . In total, the amortized cost of an underflow is 2A.

Since A = O(1∕�) and the operations we are counting cost O( lg n

lg lg n
) , the amor-

tized cost of the operations ������ and ������ is O( lg n

� lg lg n
).

Theorem 4 For any 0 < 𝛼 < 1 , a sequence of length n over an alphabet of size � can 
be represented using nHk + 2n + o(n lg �) bits for any k = o(lg� n) to answer range �
-minority queries in O( lg n

� lg lg n
) time, and to support symbol insertions and deletions 

in O( lg n

� lg lg n
) amortized time.

By using the idea in static form, we also obtain the first solution for �-minority 
queries using high-order entropy space. Here the bitvectors take constant time to 
answer ������ , ���� and ������ queries, and the static sequence representation 
[4, Thm. 11] yields time O(lg lgw �) per operation. The construction is easily done 
in linear time.

Theorem  5 On a RAM machine of w = �(lg n) bits, a sequence of length n over 
an alphabet of size � can be represented using nHk + 2n + o(n lg �) bits for any 
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k = o(lg� n) , to answer range �-minority queries in O((1∕�) lg lgw �) time. The 
structure is built in O(n) time.

The static result, however, is not a merit of our novel piece partitioning. In fact, it 
is not hard to obtain the same space and time from previous work [3], by using the 
base sequence representation we use [4, Thm. 11] (the base representation chosen 
by Belazzougui et al. [3] compresses to nearly nH0 ≥ nHk , but it yields better query 
time, O(1∕�)).

More interestingly, following the literature, we have considered the problem of 
spotting one �-minority, but we could output any number m = O(1∕�) of them 
within the same space and time: if A = m + ⌊1∕�⌋ , then there are m minorities 
among any A distinct elements in S[i… j] . By using exactly the same described data 
structure with this new value of A we can output m �-minorities, or all of them if 
there are fewer. We could also use larger values of m, but then the query and update 
times become O(m lg n

lg lg n
) in the dynamic case and the query time becomes O(m lg lgw �) 

in the static case.
The alternative (static) solutions for range �-minority queries [3, 8] can be 

extended similarly. They use a data structure that allows listing all the distinct 
elements in a range in real time. If they list m + ⌊1∕�⌋ distinct elements instead 
of 1 + ⌊1∕�⌋ , they also obtain m �-minorities. Note that, since they take time 
O(m + 1∕�) , they are worst-case optimal for listing m = �(1∕�) �-minorities 
because the output size can be m. Unlike the case of listing one �-minority, whose 
complexity is unknown, listing m = �(1∕�) �-minorities has a natural and reachable 
lower bound of �(m).

We cannot, instead, find �-minorities for some � ≥ � in time less than O( lg n

� lg lg n
) . 

If the range S[i… j] completely contains a piece, then it suffices to test 1 + ⌊1∕�⌋ 
elements of the contained piece in order to find a �-minority, because all those dis-
tinct elements appear in S[i… j] . Otherwise, however, the range S[i… j] is contained 
in one or the concatenation of two pieces, and we do not know which of the 
O(A) = O(1∕�) distinct elements stored for each piece appears in S[i… j] . In that 
case, we may have to test them all until finding a �-minority inside S[i… j].

6  Conclusions and Open Problems

In this article, we have designed the first compressed data structure for dynamic 
range �-majority. To achieve this result, our key strategy is to perform a multi-level 
decomposition of the sequence S and, for each block of S, precompute a candidate 
set that includes all the �-majorities of any query range of the right size that touches 
this block. Thus, when answering a query, we need not find a set of blocks whose 
union forms the query range, as is required in the solution of Elmasry et al.  [11]. 
Instead, we only look for a single block that touches the query range. This simpler 
strategy allows us to achieve compressed space.

Furthermore, we generalize our solution to design the first dynamic data structure 
that can maintain S in the same space and update time, to support the computation 
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of the �-majorities in a given query range for any � ∈ [�, 1) in O( lg n

� lg lg n
) time. Note 

that here � is given with the queries, and only � is fixed and given beforehand. This 
type of query is more general than range �-majority queries and was only studied in 
the static case before [5, 17].

Finally, we design the first dynamic data structure for the range �-minority query 
problem, and this data structure is also compressed. Even simple static solutions [8] 
based on range minimum queries are difficult to dynamize. We find a new, simple 
data structure that is easy to maintain upon updates and gives sufficient information 
to find �-minorities in time O( lg n

� lg lg n
) . We also extend the solution so as to output up 

to m �-minorities in time O((m + 1∕�)
lg n

lg lg n
) ; the extension is applicable to the other 

(static) solutions of this problem [3, 8], and makes them optimal when listing 
m = �(1∕�) �-minorities. Solving �-minorities in time proportional to 1∕� , for any 
� ≥ � given at query time, is an open problem.

For constant � , our query time O( lg n

lg lg n
) for �-majority is optimal within polyloga-

rithmic update time, as it matches the lower bound of the simpler operation majority 
[22, Prop. 3], which considers the particular case of binary alphabets, ranges of the 
form S[1… i] , and � = 1∕2 . Another obvious lower bound is �(1∕�) , as it is the 
output size in the worst case. Combining both lower bounds, we obtain �(

lg n

lg lg n
+

1

�
) 

query time. It is not clear whether a dynamic �-majority data structure can reach that 
bound within polylogarithmic update time, even without compression.

Elmasry et al. [11, Lem. 1] give a finer lower bound for dynamic �-majorities that 
includes � in the formula. For polylogarithmic update time and computer words with 
a polylogarithmic number of bits, the bound is �(

lg(min(�,1−�)n)

lg lg n
) , reaching the maxi-

mum with constant �.
Another interesting question is whether the bounds change when allowing only 

insertions or only deletions for the updates. These operations have been considered 
together since the beginning (e.g., proving lower bounds on bit flips and then reduc-
ing flips to insertion/deletion pairs [15, 22]). Situations where only insertions occur, 
for example, are common in practice, and thus this question is relevant.

No lower bounds are known for listing m �-minorities, other than the trivial �(m) . 
As explained, we have shown how existing static data structures can be extended to 
work in time O(1∕� + m) , which makes them optimal for m = �(1∕�) , but the gap 
for m = o(1∕�) remains open.

Finally, we show that static versions of our data structures for �-majority and �
-minority also use nHk + o(n lg �) bits of space ( +2n bits in the case of minorities) 
and answer queries in time O((1∕�) lg lgw �) . The best static solutions answer que-
ries in time O(1∕�) (which is optimal for queries that may return �(1∕�) elements), 
but either use more than nH0 ≥ nHk bits of space [5] or are compressed only for 
lg(1∕�) = o(lg �) [18].

No satic structure using nHk + o(n lg �) bits answering range �-majority or �
-minority queries in O(1∕�) time exists. Further, one may aim at reaching output-
sensitive time for those problems, that is, O(m) if they output m results. This seems 
unlikely, however: Gawrychowski and Nicholson [19] show that solving �-majori-
ties in output-sensitive time would disprove the set intersection conjecture [29].
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